TW202123523A - A thermal runaway inhibitor - Google Patents

A thermal runaway inhibitor Download PDF

Info

Publication number
TW202123523A
TW202123523A TW109124893A TW109124893A TW202123523A TW 202123523 A TW202123523 A TW 202123523A TW 109124893 A TW109124893 A TW 109124893A TW 109124893 A TW109124893 A TW 109124893A TW 202123523 A TW202123523 A TW 202123523A
Authority
TW
Taiwan
Prior art keywords
aqueous electrolyte
thermal runaway
general formula
group
storage device
Prior art date
Application number
TW109124893A
Other languages
Chinese (zh)
Inventor
撹上健二
長田広幸
Original Assignee
日商Adeka股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商Adeka股份有限公司 filed Critical 日商Adeka股份有限公司
Publication of TW202123523A publication Critical patent/TW202123523A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/06Phosphorus compounds without P—C bonds
    • C07F9/08Esters of oxyacids of phosphorus
    • C07F9/09Esters of phosphoric acids
    • C07F9/12Esters of phosphoric acids with hydroxyaryl compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/64Liquid electrolytes characterised by additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Secondary Cells (AREA)

Abstract

The present invention provides: a thermal runaway inhibitor comprising a phosphate ester compound represented by general formula (1) described in the description, the thermal runaway being caused by an internal short-circuit of a non-aqueous electrolyte secondary battery; and a method for inhibiting a thermal runaway caused by an internal short-circuit of a non-aqueous electrolyte power storage device by including 0.01-10 mass% of said thermal runaway inhibitor in a non-aqueous electrolyte.

Description

熱失控抑制劑Thermal runaway inhibitor

本發明關於一種由非水電解質蓄電裝置的內部短路所造成的熱失控抑制劑及使用該抑制劑之內部短路造成的熱失控之抑制方法。The present invention relates to a thermal runaway inhibitor caused by an internal short circuit of a non-aqueous electrolyte power storage device and a method for suppressing the thermal runaway caused by the internal short circuit using the inhibitor.

鋰離子二次電池等的非水電解質二次電池,由於小型且重量輕、能量密度高、高容量且可重覆充放電,因此被廣泛使用作為攜帶型電腦、手持攝影機、資訊終端裝置等的攜帶電子機器的電源。另外,從環保問題的觀點看來,使用非水電解質二次電池的電動車或利用電力作為一部分動力的混合動力車正在實用化。Non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries are widely used as portable computers, handheld cameras, information terminal devices, etc. due to their small size, light weight, high energy density, high capacity, and repetitive charging and discharging. Carry the power supply of electronic equipment. In addition, from the viewpoint of environmental issues, electric vehicles using non-aqueous electrolyte secondary batteries or hybrid vehicles using electric power as part of the power are being put into practical use.

非水電解質二次電池,是由電極、間隔件、非水電解質等的構件所構成。非水電解質的主溶劑使用了引火性的有機溶劑,在因為內部短路等而放出高能量的情況,會發生熱失控,會有起火或破裂的危險性,因此一直有各種對策被提出檢討。這樣的對策,已知有使用主成分為聚烯烴的多孔質薄膜作為間隔件的方法(參考例如專利文獻1、2);除了間隔件之外,還在正極與負極之間設置多孔質耐熱層的方法(參考例如專利文獻3);將電極活性物質表面以金屬氧化物被覆的方法(參考例如專利文獻4);以含鋰的鎳氧化物作為正極活性物質的方法(參考例如專利文獻5);以橄欖石型磷酸鋰化合物作為正極活性物質的方法(參考例如專利文獻6);以尖晶石構造的鈦酸鋰化合物作為負極活性物質的方法(參考例如專利文獻7);使用不燃性的氟系溶劑作為非水電解質的主溶劑的方法(參考例如專利文獻8、9);不使用有機溶劑作為非水電解質,而使用固體電解質的方法(參考例如專利文獻10)等。The non-aqueous electrolyte secondary battery is composed of components such as electrodes, separators, and non-aqueous electrolytes. The main solvent of the non-aqueous electrolyte uses a flammable organic solvent. When high energy is released due to an internal short circuit, thermal runaway may occur, and there may be a risk of fire or rupture. Therefore, various countermeasures have been proposed for review. Such a countermeasure is known as a method of using a porous film whose main component is polyolefin as a separator (see, for example, Patent Documents 1 and 2); in addition to the separator, a porous heat-resistant layer is provided between the positive electrode and the negative electrode. Method (see, for example, Patent Document 3); method of coating the surface of an electrode active material with a metal oxide (see, for example, Patent Document 4); method of using lithium-containing nickel oxide as a positive electrode active material (see, for example, Patent Document 5) Method of using an olivine-type lithium phosphate compound as a positive electrode active material (see, for example, Patent Document 6); using a spinel-structured lithium titanate compound as a method of negative electrode active material (see, for example, Patent Document 7); using non-flammable The method of using a fluorine-based solvent as the main solvent of the non-aqueous electrolyte (see, for example, Patent Documents 8 and 9); the method of using a solid electrolyte instead of using an organic solvent as the non-aqueous electrolyte (see, for example, Patent Document 10), and the like.

為了藉由主成分為聚烯烴的多孔質薄膜的間隔件來防止內部短路,必須加厚間隔件,在設置多孔質耐熱層的方法中,電池會因為多孔質耐熱層的份而變大,在將電極活性物質表面以金屬氧化物被覆的方法中,電極的電極合劑層中所含有的電極活性物質的含量會相對減少,電池的容量變小,任一者皆會失去小型且重量輕、高容量這些非水電解質二次電池的優點。在以含鋰的鎳氧化物或橄欖石型磷酸鋰化合物作為正極活性物質的方法或以尖晶石構造的鈦酸鋰化合物作為負極活性物質的方法中,任一者皆無法得到高能量密度。另外,在使用氟系溶劑的方法中,由於氟系溶劑非常高價,而且有必要大量使用,因此會導致成本大幅提高。在使用固體電解質的方法中,由於使用了沒有流動性的固體電解質材料,因此內部電阻變高,與使用有機溶劑的非水電解質相比,性能會降低。In order to prevent internal short-circuits with the porous film separator whose main component is polyolefin, it is necessary to thicken the separator. In the method of providing the porous heat-resistant layer, the battery becomes larger due to the porous heat-resistant layer. In the method of coating the surface of the electrode active material with a metal oxide, the content of the electrode active material contained in the electrode mixture layer of the electrode will be relatively reduced, and the capacity of the battery will be reduced. The capacity of these non-aqueous electrolyte secondary batteries has advantages. In the method of using lithium-containing nickel oxide or olivine-type lithium phosphate compound as the positive electrode active material, or the method of using the spinel-structured lithium titanate compound as the negative electrode active material, high energy density cannot be obtained either. In addition, in the method of using a fluorine-based solvent, since the fluorine-based solvent is very expensive and needs to be used in large quantities, this leads to a significant increase in cost. In the method of using a solid electrolyte, since a solid electrolyte material having no fluidity is used, the internal resistance becomes high, and the performance is lowered compared with a non-aqueous electrolyte using an organic solvent.

另一方面,磷酸酯化合物已知可作為阻燃劑,也已知有具有含有磷酸酯化合物的非水電解質之鋰離子二次電池。然而,磷酸烷酯化合物雖然具有提升難燃性的效果,然而抑制內部短路造成熱失控的效果不足(參考例如專利文獻11~13),芳香基磷酸酯化合物已知具有抑制過充電時的熱失控的效果(參考例如專利文獻14),然而抑制內部短路造成熱失控的效果仍為未知。 [先前技術文獻] [專利文獻]On the other hand, phosphate compounds are known as flame retardants, and lithium ion secondary batteries having non-aqueous electrolytes containing phosphate compounds are also known. However, although alkyl phosphate compounds have the effect of improving flame retardancy, the effect of suppressing thermal runaway caused by internal short-circuits is insufficient (see, for example, Patent Documents 11 to 13). Aromatic phosphate compounds are known to inhibit thermal runaway during overcharging. (See, for example, Patent Document 14), however, the effect of suppressing thermal runaway caused by internal short circuits is still unknown. [Prior Technical Literature] [Patent Literature]

專利文獻1:國際公開第2016/152266號 專利文獻2:國際公開第2016/056288號 專利文獻3:日本特開2005-174792號公報 專利文獻4:日本特開2011-216300號公報 專利文獻5:日本特開2002-015736號公報 專利文獻6:日本特開2007-012441號公報 專利文獻7:日本特開2008-159280號公報 專利文獻8:國際公開第2007/043526號 專利文獻9:國際公開第2008/007734號 專利文獻10:日本特開2016-207567號公報 專利文獻11:日本特開平11-176471號公報 專利文獻12:日本特開2008-204789號公報 專利文獻13:日本特開2015-065130號公報 專利文獻14:日本特開2005-347240號公報Patent Document 1: International Publication No. 2016/152266 Patent Document 2: International Publication No. 2016/056288 Patent Document 3: Japanese Patent Application Publication No. 2005-174792 Patent Document 4: Japanese Patent Application Publication No. 2011-216300 Patent Document 5: Japanese Patent Laid-Open No. 2002-015736 Patent Document 6: Japanese Patent Application Publication No. 2007-012441 Patent Document 7: Japanese Patent Laid-Open No. 2008-159280 Patent Document 8: International Publication No. 2007/043526 Patent Document 9: International Publication No. 2008/007734 Patent Document 10: Japanese Patent Application Laid-Open No. 2016-207567 Patent Document 11: Japanese Patent Laid-Open No. 11-176471 Patent Document 12: Japanese Patent Application Laid-Open No. 2008-204789 Patent Document 13: Japanese Patent Application Publication No. 2015-065130 Patent Document 14: Japanese Patent Laid-Open No. 2005-347240

[發明所欲解決的課題][The problem to be solved by the invention]

本發明的課題在於提供一種添加劑,用來製造不會大型化或成本大幅提高,即使發生內部短路也不易發生熱失控,起火或破裂的危險性小的非水電解質蓄電裝置。 [用於解決課題的手段]The subject of the present invention is to provide an additive for manufacturing a non-aqueous electrolyte power storage device that does not increase in size or greatly increase the cost, does not easily cause thermal runaway even if an internal short circuit occurs, and has a low risk of fire or rupture. [Means used to solve the problem]

本發明人等針對上述課題鑽研檢討,結果發現,即使是具有以有機溶劑作為溶劑的非水電解質的非水電解質蓄電裝置,藉由在非水電解質中摻合磷酸芳香酯化合物,熱失控不易發生、可防止內部短路造成起火或破裂,而完成了本發明。亦即,本發明為一種熱失控抑制劑,其係含有下述一般式(1)所表示的磷酸酯化合物的非水電解質蓄電裝置之熱失控抑制劑,並且前述非水電解質蓄電裝置具有:含有正極活性物質的正極、含有負極活性物質的負極及非水電解質,前述熱失控為由非水電解質蓄電裝置的內部短路所造成的熱失控。The inventors of the present invention studied and reviewed the above-mentioned problems and found that even a non-aqueous electrolyte power storage device having a non-aqueous electrolyte using an organic solvent as a solvent, by blending a phosphoric acid aromatic ester compound in the non-aqueous electrolyte, thermal runaway is unlikely to occur. , It can prevent internal short circuit from causing fire or rupture, thus completing the present invention. That is, the present invention is a thermal runaway inhibitor, which is a thermal runaway inhibitor for a non-aqueous electrolyte power storage device containing a phosphate compound represented by the following general formula (1), and the aforementioned non-aqueous electrolyte power storage device has: In the positive electrode of the positive electrode active material, the negative electrode containing the negative electrode active material, and the non-aqueous electrolyte, the aforementioned thermal runaway is a thermal runaway caused by an internal short circuit of the non-aqueous electrolyte power storage device.

Figure 02_image001
Figure 02_image001

(式中,R1 ~R4 各自獨立,表示氫原子、氟原子或碳數1~4之烷基,X1 表示一般式(2)或一般式(3)所表示之基,a表示0或1~4之數)。(In the formula, R 1 to R 4 are independent of each other and represent a hydrogen atom, a fluorine atom, or an alkyl group having 1 to 4 carbon atoms, X 1 represents a group represented by general formula (2) or general formula (3), and a represents 0 Or a number from 1 to 4).

Figure 02_image003
Figure 02_image003

(式中,R5 ~R8 各自獨立,表示氫原子、氟原子或碳數1~4之烷基,X2 表示直接鍵結、氧原子、硫原子、亞磺醯基、磺醯基、或下述一般式(4)所表示之基,b表示0或1之數,*表示鍵結鍵)。(In the formula, R 5 to R 8 are independent of each other and represent a hydrogen atom, a fluorine atom, or an alkyl group having 1 to 4 carbon atoms, and X 2 represents a direct bond, an oxygen atom, a sulfur atom, a sulfinyl group, a sulfinyl group, Or the base represented by the following general formula (4), b represents the number of 0 or 1, and * represents a bonding bond).

Figure 02_image005
Figure 02_image005

(式中,R9 ~R10 各自獨立,表示氫原子、碳數1~10之烴基、碳數1~2之氟化烷基,或R9 與R10 交聯而成之碳數5~12之烴基,*表示鍵結鍵)。(In the formula, R 9 to R 10 are independent of each other and represent a hydrogen atom, a hydrocarbon group with 1 to 10 carbons, a fluorinated alkyl group with 1 to 2 carbons, or a cross-linked R 9 and R 10 with a carbon number of 5 to The hydrocarbon group of 12, * represents a bonding bond).

Figure 02_image007
Figure 02_image007

(式中,R11 ~R14 各自獨立,表示氫原子、氟原子、碳數1~10之烴基、碳數1~2之氟化烷基,*表示鍵結鍵)。 [發明之效果](In the formula, R 11 to R 14 are independent of each other and represent a hydrogen atom, a fluorine atom, a hydrocarbon group with 1 to 10 carbons, and a fluorinated alkyl group with 1 to 2 carbons, and * represents a bonding bond). [Effects of Invention]

藉由使用藉由本發明所得到的熱失控抑制劑,可提供不會大型化或大幅提高成本,小型且重量輕、高容量、即使發生內部短路也不易發生熱失控、起火或破裂的危險性小的非水電解質蓄電裝置。By using the thermal runaway inhibitor obtained by the present invention, it is possible to provide a small size, light weight, high capacity, and low risk of thermal runaway, fire or rupture, even if an internal short circuit occurs, without increasing the size or greatly increasing the cost. The non-aqueous electrolyte storage device.

本發明為一種非水電解質蓄電裝置之熱失控抑制劑,其特徵為含有一般式(1)所表示的磷酸酯化合物。而且,前述非水電解質蓄電裝置具有:含有正極活性物質的正極、含有負極活性物質的負極及非水電解質,前述熱失控為由非水電解質蓄電裝置的內部短路造成的熱失控。此外,會有將一般式(1)所表示之磷酸酯化合物稱為本發明之磷酸酯化合物的情形。The present invention is a thermal runaway inhibitor for a non-aqueous electrolyte power storage device, which is characterized by containing a phosphate compound represented by general formula (1). Furthermore, the non-aqueous electrolyte power storage device has a positive electrode containing a positive electrode active material, a negative electrode containing the negative electrode active material, and a non-aqueous electrolyte, and the thermal runaway is a thermal runaway caused by an internal short circuit of the non-aqueous electrolyte power storage device. In addition, the phosphoric acid ester compound represented by the general formula (1) may be referred to as the phosphoric acid ester compound of the present invention.

一般式(1)之中,R1 ~R4 各自獨立,表示氫原子或碳數1~4之烷基。碳數1~4之烷基,可列舉甲基、乙基、丙基、異丙基、丁基、異丁基、二級丁基、第三丁基。R1 ~R4 從抑制熱失控的效果大的觀點看來,以氫原子、甲基、乙基為佳,氫原子、甲基為更佳,氫原子為最佳。In general formula (1), R 1 to R 4 are each independent and represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. The alkyl group having 1 to 4 carbon atoms includes a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a secondary butyl group, and a tertiary butyl group. R 1 to R 4 are preferably a hydrogen atom, a methyl group, and an ethyl group, more preferably a hydrogen atom and a methyl group, and most preferably a hydrogen atom, from the viewpoint of the large effect of suppressing thermal runaway.

X1 表示下述一般式(2)或一般式(3)所表示之基。X 1 represents a group represented by the following general formula (2) or general formula (3).

Figure 02_image009
Figure 02_image009

(式中,R5 ~R8 各自獨立,表示氫原子、氟原子或碳數1~4之烷基,X2 表示直接鍵結、氧原子、硫原子、亞磺醯基、磺醯基、或下述一般式(4)所表示之基,b表示0或1之數,*表示鍵結鍵)。(In the formula, R 5 to R 8 are independent of each other and represent a hydrogen atom, a fluorine atom, or an alkyl group having 1 to 4 carbon atoms, and X 2 represents a direct bond, an oxygen atom, a sulfur atom, a sulfinyl group, a sulfinyl group, Or the base represented by the following general formula (4), b represents the number of 0 or 1, and * represents a bonding bond).

Figure 02_image011
Figure 02_image011

(式中,R9 ~R10 各自獨立,表示氫原子、碳數1~10之烴基、碳數1~2之氟化烷基,或R9 與R10 交聯而成之碳數5~12之烴基,*表示鍵結鍵)。(In the formula, R 9 to R 10 are independent of each other and represent a hydrogen atom, a hydrocarbon group with 1 to 10 carbons, a fluorinated alkyl group with 1 to 2 carbons, or a cross-linked R 9 and R 10 with a carbon number of 5 to The hydrocarbon group of 12, * represents a bonding bond).

Figure 02_image013
Figure 02_image013

(式中,R11 ~R14 各自獨立,表示氫原子、氟原子、碳數1~10之烴基、碳數1~2之氟化烷基,*表示鍵結鍵)(In the formula, R 11 to R 14 are independent of each other and represent a hydrogen atom, a fluorine atom, a hydrocarbon group with 1 to 10 carbons, a fluorinated alkyl group with 1 to 2 carbons, and * represents a bonding bond)

一般式(2)之中,R5 ~R8 各自獨立,表示氫原子或碳數1~4之烷基。碳數1~4之烷基可列舉一般式(1)的R1 ~R4 所例示的烷基。R5 ~R8 從熱失控的抑制效果的觀點看來,以氫原子、甲基、乙基為佳,氫原子、甲基為更佳,氫原子為最佳。In general formula (2), R 5 to R 8 are each independent and represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. The alkyl group having 1 to 4 carbon atoms includes the alkyl groups exemplified by R 1 to R 4 in the general formula (1). From the standpoint of the effect of suppressing thermal runaway, R 5 to R 8 are preferably a hydrogen atom, a methyl group, and an ethyl group, more preferably a hydrogen atom and a methyl group, and most preferably a hydrogen atom.

X2 表示直接鍵結、氧原子、硫原子、亞磺醯基、磺醯基、或前述一般式(4)所表示之基,b表示0或1之數,*表示鍵結鍵。X 2 represents a direct bond, an oxygen atom, a sulfur atom, a sulfinyl group, a sulfonyl group, or the group represented by the aforementioned general formula (4), b represents the number of 0 or 1, and * represents a bonding bond.

一般式(4)之中,R9 、R10 各自獨立,表示氫原子、氟原子、碳數1~10之烴基、碳數1~2之氟化烷基,或R9 與R10 交聯而成之碳數5~12之烴基。碳數1~10之烴基可列舉甲基、乙基、丙基、異丙基、丁基、異丁基、二級丁基、第三丁基、戊基、異戊基、二級戊基、第三戊基、己基、二級己基、庚基、辛基、2-甲基己基、2-乙基己基、壬基、癸基、環己基、苯基、苄基、環己基、環戊基、2-降莰基等。碳數1~2之氟烷基可列舉氟甲基、二氟甲基、三氟甲基、2-氟乙基、1,1,2,2-四氟乙基、全氟乙基等。R9 與R10 交聯而成的烴基,可列舉讓X2 成為亞環己基[下式(5)]、3,3,5-三甲基亞環己基[下式(6)]、八氫-4,7-亞甲基-5H-茚-5-亞基[下式(7)]、9H-芴-9-亞基[下式(8)]的烴基。In the general formula (4), R 9 and R 10 are independent of each other and represent a hydrogen atom, a fluorine atom, a hydrocarbon group with 1 to 10 carbons, a fluorinated alkyl group with 1 to 2 carbons, or R 9 and R 10 are cross-linked It is a hydrocarbon group with 5-12 carbons. The hydrocarbon groups with 1 to 10 carbons include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, secondary butyl, tertiary butyl, pentyl, isopentyl, and secondary pentyl. , Third pentyl, hexyl, secondary hexyl, heptyl, octyl, 2-methylhexyl, 2-ethylhexyl, nonyl, decyl, cyclohexyl, phenyl, benzyl, cyclohexyl, cyclopentyl Base, 2-nor campanyl and so on. Examples of the fluoroalkyl group having 1 to 2 carbon atoms include fluoromethyl, difluoromethyl, trifluoromethyl, 2-fluoroethyl, 1,1,2,2-tetrafluoroethyl, and perfluoroethyl. The hydrocarbyl group formed by cross-linking R 9 and R 10 includes making X 2 a cyclohexylene group [the following formula (5)], 3,3,5-trimethylcyclohexylene [the following formula (6)], and Hydrocarbon group of hydrogen-4,7-methylene-5H-inden-5-ylidene [the following formula (7)] and 9H-fluorene-9-ylidene [the following formula (8)].

Figure 02_image015
Figure 02_image015

(式(5)~(8)之中,*表示鍵結鍵)。(Among formulas (5) to (8), * represents a bonding bond).

一般式(3)之中,R11 ~R14 各自獨立,表示氫原子、氟原子、碳數1~10之烴基、碳數1~2之氟化烷基,*表示鍵結鍵。碳數1~10之烴基及碳數1~2之氟化烷基可列舉一般式(2)所例示的烴基及氟化烷基烷基。R11 ~R14 從熱失控的抑制效果大的觀點看來,以氫原子、甲基、乙基為佳,氫原子、甲基為更佳,氫原子為最佳。In general formula (3), R 11 to R 14 are each independent and represent a hydrogen atom, a fluorine atom, a hydrocarbon group with 1 to 10 carbons, and a fluorinated alkyl group with 1 to 2 carbons, and * represents a bonding bond. The hydrocarbon group having 1 to 10 carbon atoms and the fluorinated alkyl group having 1 to 2 carbon atoms include the hydrocarbon groups and fluorinated alkylalkyl groups exemplified in the general formula (2). R 11 to R 14 are preferably a hydrogen atom, a methyl group, and an ethyl group, more preferably a hydrogen atom and a methyl group, and most preferably a hydrogen atom, from the viewpoint that the effect of suppressing thermal runaway is large.

X2 從熱失控的抑制效果大的觀點看來,以直接鍵結、氧原子、磺醯基、一般式(4)所表示之基為佳。在X2 並非一般式(4)所表示之基的情況,以直接鍵結、氧原子為更佳,直接鍵結再更佳。在X2 為一般式(4)所表示之基的情況,R9 、R10 以氫原子、甲基、乙基為佳,甲基為較佳。X 2 is preferably a group represented by a direct bond, an oxygen atom, a sulfonyl group, and general formula (4) from the viewpoint of a large effect of suppressing thermal runaway. In the case where X 2 is not the group represented by the general formula (4), direct bonding or oxygen atom is more preferable, and direct bonding is even more preferable. When X 2 is a group represented by general formula (4), R 9 and R 10 are preferably a hydrogen atom, a methyl group, or an ethyl group, and a methyl group is more preferable.

一般式(1)之中,a表示0或1~4之數。在a為1~4之數的情況,可為重複單元數a不同的化合物的混合物,在混合物的情況,a表示平均數。a以1~4之數為佳,1~2之數為較佳,1.0~1.7之數為較佳,1.1~1.6之數為更佳。In general formula (1), a represents 0 or a number from 1 to 4. When a is a number of 1 to 4, it may be a mixture of compounds having different repeating unit numbers a, and in the case of a mixture, a represents an average number. A is preferably a number of 1 to 4, preferably a number of 1 to 2, preferably a number of 1.0 to 1.7, and more preferably a number of 1.1 to 1.6.

本發明之磷酸酯化合物之中,合適的化合物可例示下述式(9)~(17)。Among the phosphoric acid ester compounds of the present invention, suitable compounds can be exemplified by the following formulas (9) to (17).

Figure 02_image017
Figure 02_image017

(式(9)~(17)之中,a與一般式(1)的a同義)(Among formulas (9)~(17), a is synonymous with a in general formula (1))

上述化合物之中,以式(9)、式(10)、式(11)、式(12)及式(16)所表示的化合物為佳。Among the above-mentioned compounds, compounds represented by formula (9), formula (10), formula (11), formula (12) and formula (16) are preferred.

式(11)所表示的化合物,以

Figure 02_image019
為佳,且以a為1.2的化合物為佳。The compound represented by formula (11) is
Figure 02_image019
It is preferred, and a compound having a of 1.2 is preferred.

式(12)所表示的化合物,以a為1.2的化合物為佳。 式(16)所表示的化合物,以a為1.2的化合物為佳。The compound represented by formula (12) is preferably a compound whose a is 1.2. The compound represented by formula (16) is preferably a compound whose a is 1.2.

上述一般式(1)所表示之磷酸酯化合物可藉由周知的手段來獲得。例如一般式(1)之中a為0的化合物,可使氧氯化磷與在苯環上具有一個羥基的化合物,例如酚、甲酚等在既定條件下進行反應,來獲得。另外,一般式(1)之中a為1~4的化合物,還可藉由使過量的氧氯化磷與在苯環上具有兩個羥基的化合物,例如氫醌、間苯二酚、雙酚A、聯苯酚F等在既定條件下反應之後,將未反應的氧氯化磷除去,進一步與在苯環上具有一個羥基的化合物反應來獲得。另外,一般式(1)之中a為1~4的化合物,可藉由使一般式(1)之中a為0的化合物與在苯環上具有兩個羥基的化合物進行反應,同時將所產生的苯環上具有一個羥基的化合物除去,所謂的酯交換反應來獲得。The phosphate compound represented by the above general formula (1) can be obtained by a known method. For example, the compound in which a is 0 in the general formula (1) can be obtained by reacting phosphorus oxychloride with a compound having a hydroxyl group on the benzene ring, such as phenol and cresol under predetermined conditions. In addition, in the general formula (1), the compound whose a is 1 to 4 can also be combined with an excess of phosphorus oxychloride and a compound having two hydroxyl groups on the benzene ring, such as hydroquinone, resorcinol, and bisphenol After phenol A, biphenol F, etc. are reacted under predetermined conditions, unreacted phosphorus oxychloride is removed, and it is obtained by further reacting with a compound having a hydroxyl group on the benzene ring. In addition, the compound of general formula (1) where a is 1 to 4 can be obtained by reacting the compound of general formula (1) where a is 0 with a compound having two hydroxyl groups on the benzene ring. The resulting compound with a hydroxyl group on the benzene ring is removed by the so-called transesterification reaction.

在本發明中,將本發明的磷酸酯化合物摻合至非水電解質中作為熱失控抑制劑。非水電解質中的本發明的磷酸酯化合物的含量,相對於非水電解質總量,以0.01質量%~10質量%為佳,0.05質量%~5質量%為更佳,0.1質量%~3質量%為最佳。在非水電解質中的本發明的磷酸酯化合物的含量太少的情況,無法得到充分的熱失控抑制效果,在太多的情況,無法得到與摻合量的增加相符的效果。本發明之磷酸酯化合物可只使用一種,或將兩種以上組合使用。在將兩種以上組合使用的情況,以至少一種為一般式(1)之中a為0的化合物與一般式(1)之中a為1~4的化合物為佳。In the present invention, the phosphate compound of the present invention is blended into a non-aqueous electrolyte as a thermal runaway inhibitor. The content of the phosphate compound of the present invention in the non-aqueous electrolyte is preferably 0.01% to 10% by mass, more preferably 0.05% to 5% by mass, and more preferably 0.1% to 3% by mass relative to the total amount of the non-aqueous electrolyte. % Is the best. When the content of the phosphate compound of the present invention in the non-aqueous electrolyte is too small, a sufficient thermal runaway suppression effect cannot be obtained, and when there are too many cases, an effect corresponding to an increase in the blending amount cannot be obtained. The phosphoric acid ester compound of the present invention may be used in one kind or in combination of two or more kinds. In the case of using two or more in combination, at least one compound in which a is 0 in general formula (1) and a compound in which a is 1 to 4 in general formula (1) is preferred.

本發明之磷酸酯化合物抑制由非水電解質蓄電裝置的內部短路所造成的熱失控的機制仍未被充分闡明,被推測是在內部短路的初期階段,本發明的磷酸酯化合物的一部分會因為短路電流而分解,在電極表面形成絕緣膜。這種絕緣膜也有由磷酸烷酯形成的可能性,然而這並不足夠,推測本發明的磷酸酯化合物,尤其在烷基短或沒有烷基的式(9)~(17)的化合物的情況,會形成堅固的絕緣膜。The mechanism of the phosphate compound of the present invention to suppress thermal runaway caused by the internal short circuit of the non-aqueous electrolyte storage device has not been fully elucidated. It is presumed that in the initial stage of the internal short circuit, part of the phosphate compound of the present invention may be short-circuited. The current is decomposed, and an insulating film is formed on the surface of the electrode. This insulating film may also be formed of alkyl phosphate, but this is not sufficient. It is presumed that the phosphate compound of the present invention is especially in the case of compounds of formulas (9) to (17) with short alkyl groups or no alkyl groups. , Will form a strong insulating film.

此外,由內部短路造成的熱失控,是正極與負極電路短路,電子一口氣由正極流到負極而引起異常的焦耳發熱,此發熱會觸發電解液與電極的反應、電解液的熱分解、正極的熱分解等,而發生熱失控的現象。另一方面,過充電造成的熱失控,是因為過充電,鋰離子由正極過度地被抽出,正極材料的結晶構造被破壞,正極的安定性降低所造成的發熱、電池內部電阻增加造成的發熱、電解液的氧化分解等,而發生熱失控的現象。像這樣,由內部短路造成的熱失控與過充電造成的熱失控,是由完全不同的現象所引起。In addition, the thermal runaway caused by the internal short circuit is the short circuit of the positive and negative electrodes. The electrons flow from the positive electrode to the negative electrode at a stretch, causing abnormal Joule heating. This heating will trigger the reaction between the electrolyte and the electrode, the thermal decomposition of the electrolyte, and the positive electrode. Thermal decomposition, etc., and the phenomenon of thermal runaway occurs. On the other hand, thermal runaway caused by overcharge is due to overcharge, lithium ions are excessively extracted from the positive electrode, the crystal structure of the positive electrode material is destroyed, the stability of the positive electrode is reduced, and the internal resistance of the battery increases. , The oxidative decomposition of electrolyte, etc., and the phenomenon of thermal runaway occurs. Like this, thermal runaway caused by internal short circuit and thermal runaway caused by overcharge are caused by completely different phenomena.

蓄電裝置的具體例子,含有非水電解質二次電池(鋰離子二次電池等)及電雙層電容(鋰離子電容等)。本實施形態所關連的非水電解液在鋰離子二次電池及鋰離子電容的用途是特別有效果的。Specific examples of power storage devices include non-aqueous electrolyte secondary batteries (lithium ion secondary batteries, etc.) and electric double layer capacitors (lithium ion capacitors, etc.). The non-aqueous electrolyte related to this embodiment is particularly effective in the use of lithium ion secondary batteries and lithium ion capacitors.

本發明可適用的非水電解質蓄電裝置的非水電解質,可列舉例如將支持電解質溶解於有機溶劑所得到的液體電解質;將支持電解質溶解於有機溶劑,並以高分子膠體化的高分子膠體電解質;不含有機溶劑,支持電解質分散於高分子中而成的純正高分子電解質等。尤其,具有液體電解質的非水電解質蓄電裝置容易因為內部短路而發生熱失控,起火或爆發的危險性高,因此本發明的熱失控抑制劑,以適用於具有液體電解質的非水電解質蓄電裝置的非水電解質為佳。The non-aqueous electrolyte of the non-aqueous electrolyte storage device applicable to the present invention includes, for example, a liquid electrolyte obtained by dissolving a supporting electrolyte in an organic solvent; a polymer gel electrolyte in which a supporting electrolyte is dissolved in an organic solvent and gelled with a polymer ; It does not contain organic solvents and supports pure polymer electrolytes composed of electrolytes dispersed in polymers. In particular, non-aqueous electrolyte power storage devices with liquid electrolytes are prone to thermal runaway due to internal short circuits, and the risk of fire or explosion is high. Therefore, the thermal runaway inhibitor of the present invention is suitable for use in non-aqueous electrolyte power storage devices with liquid electrolytes. Non-aqueous electrolyte is preferred.

液體電解質及高分子膠體電解質所使用的支持電解質可使用以往周知的支持電解質。以下針對非水電解質蓄電裝置為鋰離子二次電池或鋰離子電容的情況的支持電解質作說明,而鈉離子二次電池或鈉離子電容的情況,是使用將鋰原子以鈉原子取代後的支持電解質。液體電解質及高分子膠體電解質所使用的支持電解質,可列舉LiPF6 、LiBF4 、LiAsF6 、LiCF3 SO3 、LiCF3 CO2 、LiN(CF3 SO2 )2 、LiN(C2 F5 SO2 )2 、LiN(SO2 F)2 、LiC(CF3 SO2 )3 、LiB(CF3 SO3 )4 、LiB(C2 O4 )2 、LiBF2 (C2 O4 )、LiSbF6 、LiSiF5 、LiSCN、LiClO4 、LiCl、LiF、LiBr、LiI、LiAlF4 、LiAlCl4 、LiPO2 F2 及其衍生物等,這些之中,以使用選自由LiPF6 、LiBF4 、LiClO4 、LiAsF6 、LiCF3 SO3 、LiN(CF3 SO2 )2 、LiN(C2 F5 SO2 )2 、LiN(SO2 F)2 、LiPO2 F2 及LiC(CF3 SO2 )3 及LiCF3 SO3 的衍生物及LiC(CF3 SO2 )3 的衍生物所構成的群中的一種以上為佳。液體電解質及高分子膠體電解質中的支持電解質的含量,宜為0.5mol/L~7mol/L,較佳為0.8mol/L~1.8mol/L。As the supporting electrolyte used for the liquid electrolyte and the polymer gel electrolyte, conventionally known supporting electrolytes can be used. The following describes the supporting electrolyte when the non-aqueous electrolyte storage device is a lithium ion secondary battery or a lithium ion capacitor, while the sodium ion secondary battery or sodium ion capacitor uses a support after replacing lithium atoms with sodium atoms. Electrolyte. The supporting electrolyte used in the liquid electrolyte and the polymer gel electrolyte includes LiPF 6 , LiBF 4 , LiAsF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiN(CF 3 SO 2 ) 2 , LiN(C 2 F 5 SO 2 ) 2 , LiN (SO 2 F) 2 , LiC (CF 3 SO 2 ) 3 , LiB (CF 3 SO 3 ) 4 , LiB (C 2 O 4 ) 2 , LiBF 2 (C 2 O 4 ), LiSbF 6 , LiSiF 5 , LiSCN, LiClO 4 , LiCl, LiF, LiBr, LiI, LiAlF 4 , LiAlCl 4 , LiPO 2 F 2 and derivatives thereof, etc., among these, to use selected from LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiCF 3 SO 3 , LiN(CF 3 SO 2 ) 2 , LiN(C 2 F 5 SO 2 ) 2 , LiN(SO 2 F) 2 , LiPO 2 F 2 and LiC(CF 3 SO 2 ) 3 and One or more types of derivatives of LiCF 3 SO 3 and derivatives of LiC(CF 3 SO 2 ) 3 are preferred. The content of the supporting electrolyte in the liquid electrolyte and the polymer gel electrolyte is preferably 0.5 mol/L to 7 mol/L, preferably 0.8 mol/L to 1.8 mol/L.

純正高分子電解質所使用的支持電解質,可列舉例如LiN(CF3 SO2 )2 、LiN(C2 F5 SO2 )2 、LiN(SO2 F)2 、LiC(CF3 SO2 )3 、LiB(CF3 SO3 )4 、LiB(C2 O4 )2The supporting electrolyte used in the pure polymer electrolyte includes, for example, LiN(CF 3 SO 2 ) 2 , LiN(C 2 F 5 SO 2 ) 2 , LiN(SO 2 F) 2 , LiC(CF 3 SO 2 ) 3 , LiB(CF 3 SO 3 ) 4 , LiB(C 2 O 4 ) 2 .

在本發明中所使用的用來調製液狀非水電解質的有機溶劑,可使用通常使用於非水電解質的有機溶劑的一種,或將兩種以上組合使用。具體而言,可列舉例如飽和環狀碳酸酯化合物、飽和環狀酯化合物、亞碸化合物、碸化合物、醯胺化合物、飽和鏈狀碳酸酯化合物、鏈狀醚化合物、環狀醚化合物、飽和鏈狀酯化合物等。The organic solvent used in the present invention for preparing the liquid non-aqueous electrolyte may be one of organic solvents generally used in non-aqueous electrolytes, or a combination of two or more. Specifically, for example, saturated cyclic carbonate compounds, saturated cyclic ester compounds, arsenic compounds, arsenic compounds, amide compounds, saturated chain carbonate compounds, chain ether compounds, cyclic ether compounds, saturated chain Like ester compounds and so on.

前述有機溶劑之中,飽和環狀碳酸酯化合物、飽和環狀酯化合物、亞碸化合物、碸化合物及醯胺化合物,由於比介電率高,可達成提高非水電解質的介電率的作用,故為適合,尤其以飽和環狀碳酸酯化合物為佳。飽和環狀碳酸酯化合物,可列舉例如碳酸伸乙酯、碳酸1,2-伸丙酯、碳酸1,3-伸丙酯、碳酸1,2-伸丁酯、碳酸1,3-伸丁酯、1,1-二甲基碳酸伸乙酯等。前述飽和環狀酯化合物,可列舉例如γ-丁內酯、γ-戊內酯、γ-己內酯、δ-己內酯、δ-辛內酯等。前述亞碸化合物,可列舉例如二甲亞碸、二乙基亞碸、二丙基亞碸、二苯基亞碸、噻吩等。前述碸化合物,可列舉例如二甲基碸、二乙基碸、二丙基碸、二苯基碸、環丁碸(亦稱為四亞甲基碸)、3-甲基環丁碸、3,4-二甲基環丁碸、3,4-二苯基甲基環丁碸、環丁烯碸、3-甲基環丁烯碸、3-乙基環丁烯碸、3-溴甲基環丁烯碸等,環丁碸、四甲基環丁碸為佳。前述醯胺化合物,可列舉N-甲基吡咯烷酮、二甲基甲醯胺、二甲基乙醯胺等。Among the aforementioned organic solvents, saturated cyclic carbonate compounds, saturated cyclic ester compounds, arsenite compounds, arsenic compounds, and amide compounds have high specific permittivity and can achieve the effect of increasing the permittivity of the non-aqueous electrolyte. Therefore, it is suitable, especially a saturated cyclic carbonate compound. Examples of saturated cyclic carbonate compounds include ethylene carbonate, 1,2-propylene carbonate, 1,3-propylene carbonate, 1,2-butylene carbonate, and 1,3-butylene carbonate. , 1,1-Dimethylethylene carbonate, etc. Examples of the saturated cyclic ester compound include γ-butyrolactone, γ-valerolactone, γ-caprolactone, δ-caprolactone, and δ-caprolactone. Examples of the above-mentioned sulphurite compounds include dimethyl sulphurite, diethyl sulphurite, dipropyl sulphurite, diphenyl sulphurite, thiophene and the like. The aforementioned stubborn compound includes, for example, dimethyl stubborn, diethyl stubborn, dipropyl stubborn, diphenyl stubborn, cyclobutane (also known as tetramethylene stubborn), 3-methylcyclobutane, 3 ,4-Dimethylcyclobutene, 3,4-diphenylmethylcyclobutene, cyclobutene, 3-methylcyclobutene, 3-ethylcyclobutene, 3-bromomethyl Cyclobutene, etc., cyclobutene and tetramethylcyclobutene are preferred. Examples of the aforementioned amide compound include N-methylpyrrolidone, dimethylformamide, and dimethylacetamide.

前述有機溶劑之中,飽和鏈狀碳酸酯化合物、鏈狀醚化合物、環狀醚化合物及飽和鏈狀酯化合物,是可降低非水電解質的黏度、提高電解質離子的移動性等,使輸出密度等的電池特性優異的化合物。另外,由於是低黏度,因此可提高在低溫下的非水電解質的性能,由此看來尤其以飽和鏈狀碳酸酯化合物為佳。飽和鏈狀碳酸酯化合物,可列舉例如碳酸二甲酯、乙基甲基碳酸酯、碳酸二乙酯、乙基丁基碳酸酯、甲基第三丁基碳酸酯、碳酸二異丙酯、第三丁基丙基碳酸酯等。前述鏈狀醚化合物或環狀醚化合物,可列舉例如二甲氧基乙烷、乙氧基甲氧基乙烷、二乙氧基乙烷、四氫呋喃、二噁戊烷、二噁烷、1,2-雙(甲氧基羰氧基)乙烷、1,2-雙(乙氧基羰氧基)乙烷、1,2-雙(乙氧基羰氧基)丙烷、乙二醇雙(三氟乙基)醚、丙二醇雙(三氟乙基)醚、乙二醇雙(三氟甲基)醚、二乙二醇雙(三氟乙基)醚等,這些之中,以二噁戊烷為佳。Among the aforementioned organic solvents, saturated chain carbonate compounds, chain ether compounds, cyclic ether compounds, and saturated chain ester compounds can reduce the viscosity of the non-aqueous electrolyte, increase the mobility of electrolyte ions, etc., and increase the output density. A compound with excellent battery characteristics. In addition, due to the low viscosity, the performance of the non-aqueous electrolyte at low temperatures can be improved. From this point of view, saturated chain carbonate compounds are particularly preferred. Saturated chain carbonate compounds, for example, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, ethyl butyl carbonate, methyl tert-butyl carbonate, diisopropyl carbonate, the first Tributyl propyl carbonate and so on. The aforementioned chain ether compound or cyclic ether compound includes, for example, dimethoxyethane, ethoxymethoxyethane, diethoxyethane, tetrahydrofuran, dioxpentane, dioxane, 1, 2-bis(methoxycarbonyloxy)ethane, 1,2-bis(ethoxycarbonyloxy)ethane, 1,2-bis(ethoxycarbonyloxy)propane, ethylene glycol bis( Trifluoroethyl) ether, propylene glycol bis(trifluoroethyl) ether, ethylene glycol bis(trifluoromethyl) ether, diethylene glycol bis(trifluoroethyl) ether, etc., among these, dioxins Pentane is preferred.

前述飽和鏈狀酯化合物,以分子中的碳數的合計為2~8的單酯化合物及二酯化合物為佳,具體的化合物,可列舉例如蟻酸甲酯、蟻酸乙酯、醋酸甲酯、醋酸乙酯、醋酸丙酯、醋酸異丁酯、醋酸丁酯、丙酸甲酯、丙酸乙酯、酪酸甲酯、異酪酸甲酯、三甲基醋酸甲酯、三甲基醋酸乙酯、丙二酸甲酯、丙二酸乙酯、琥珀酸甲酯、琥珀酸乙酯、3-甲氧基丙酸甲酯、3-甲氧基丙酸乙酯、乙二醇二乙酸酯、丙二醇二乙酸酯等,蟻酸甲酯、蟻酸乙酯、醋酸甲酯、醋酸乙酯、醋酸丙酯、醋酸異丁酯、醋酸丁酯、丙酸甲酯及丙酸乙酯為佳。The aforementioned saturated chain ester compound is preferably a monoester compound and a diester compound whose total carbon number in the molecule is 2-8. Specific compounds include, for example, methyl formate, ethyl formate, methyl acetate, and acetic acid. Ethyl acetate, propyl acetate, isobutyl acetate, butyl acetate, methyl propionate, ethyl propionate, methyl butyrate, methyl isobutyrate, trimethyl methyl acetate, trimethyl ethyl acetate, propylene Methyl diacid, ethyl malonate, methyl succinate, ethyl succinate, methyl 3-methoxypropionate, ethyl 3-methoxypropionate, ethylene glycol diacetate, propylene glycol Diacetate, etc., methyl formate, ethyl formate, methyl acetate, ethyl acetate, propyl acetate, isobutyl acetate, butyl acetate, methyl propionate and ethyl propionate are preferred.

其他,非水電解質的調製所使用的有機溶劑,可使用例如乙腈、丙腈、硝基甲烷或其衍生物、各種離子液體。In addition, as the organic solvent used in the preparation of the non-aqueous electrolyte, for example, acetonitrile, propionitrile, nitromethane or its derivatives, and various ionic liquids can be used.

高分子膠體電解質所使用的高分子,可列舉聚環氧乙烷、聚環氧丙烷、聚氯乙烯、聚丙烯腈、聚甲基丙烯酸甲酯、聚乙烯、聚偏二氟乙烯、聚六氟丙烯等。純正高分子電解質所使用的高分子,可列舉聚環氧乙烷、聚環氧丙烷、聚苯乙烯磺酸。膠體電解質中的摻合比率、複合化的方法並無特別限制,可採用本技術領域中周知的摻合比率、周知的複合化方法。The polymers used in the polymer gel electrolyte include polyethylene oxide, polypropylene oxide, polyvinyl chloride, polyacrylonitrile, polymethyl methacrylate, polyethylene, polyvinylidene fluoride, and polyhexafluoroethylene. Propylene and so on. Examples of polymers used in the pure polymer electrolyte include polyethylene oxide, polypropylene oxide, and polystyrene sulfonic acid. The blending ratio in the gel electrolyte and the method of recombination are not particularly limited, and the blending ratios and well-known recombination methods known in the art can be used.

非水電解質中,進一步為了提升電池壽命、提升安全性等,亦可含有例如電極被膜形成劑、抗氧化劑、阻燃劑、過充電防止劑等周知的其他添加劑。The non-aqueous electrolyte may further contain other well-known additives such as an electrode coating film forming agent, an antioxidant, a flame retardant, and an overcharge preventing agent in order to further improve battery life and safety.

本發明可適用的非水電解質蓄電裝置之含有正極活性物質的正極,是在集電體上形成了含有正極活性物質的電極合劑層的電極,可使用例如將使正極活性物質、黏結劑及導電助材以有機溶劑或水泥漿化而成的物體塗佈於集電體,並使其乾燥,而製成薄片狀之電極。The positive electrode containing the positive electrode active material of the non-aqueous electrolyte power storage device to which the present invention is applicable is an electrode in which an electrode mixture layer containing the positive electrode active material is formed on the current collector. For example, it can be used to make the positive electrode active material, binder, and conductive The auxiliary material is coated with an organic solvent or cement paste on the current collector and dried to make a sheet-shaped electrode.

正極之正極活性物質可使用周知的正極活性物質。以下針對非水電解質蓄電裝置為鋰離子二次電池或鋰離子電容的情況的支持電解質作說明,而在鈉離子二次電池或鈉離子電容的情況,是使用將鋰原子以鈉原子取代後的正極活性物質。As the positive electrode active material of the positive electrode, a well-known positive electrode active material can be used. The following describes the supporting electrolyte when the non-aqueous electrolyte storage device is a lithium ion secondary battery or a lithium ion capacitor, and in the case of a sodium ion secondary battery or a sodium ion capacitor, the lithium atom is replaced by sodium atom Positive active material.

在鋰離子二次電池或鋰離子電容的情況,周知的正極活性物質可列舉例如鋰過渡金屬複合氧化物、含鋰的過渡金屬磷酸化合物、含鋰的矽酸鹽化合物、含鋰的過渡金屬硫酸化合物、硫、含硫的化合物等。前述鋰過渡金屬複合氧化物的過渡金屬,以釩、鈦、鉻、錳、鐵、鈷、鎳、銅等為佳。鋰過渡金屬複合氧化物的具體例子,可列舉LiCoO2 等的鋰鈷複合氧化物、LiNiO2 等的鋰鎳複合氧化物、LiMnO2 、LiMn2 O4 、Li2 MnO3 等的鋰錳複合氧化物、這些鋰過渡金屬複合氧化物中作為主體的過渡金屬原子的一部分以鋁、鈦、釩、鉻、錳、鐵、鈷、鋰、鎳、銅、鋅、鎂、鎵、鋯等的其他金屬取代後的化合物等。將作為主體的過渡金屬原子的一部分以其他金屬取代後的鋰過渡金屬複合氧化物,可列舉例如Li1.1 Mn1.8 Mg0.1 O4 、Li1.1 Mn1.85 Al0.05 O4 、LiNi0.5 Co0.2 Mn0.3 O2 、LiNi0.8 Co0.1 Mn0.1 O2 、LiNi0.5 Mn0.5 O2 、LiNi0.80 Co0.17 Al0.03 O2 、LiNi0.80 Co0.15 Al0.05 O2 、Li(Ni1/3 Co1/3 Mn1/3 )O2 、LiNi0.6 Co0.2 Mn0.2 O2 、LiMn1.8 Al0.2 O4 、LiNi0.5 Mn1.5 O4 、Li2 MnO3 -LiMO2 (M=Co,Ni,Mn)等。前述含鋰的過渡金屬磷酸化合物的過渡金屬,以釩、鈦、錳、鐵、鈷、鎳等為佳,具體例子可列舉例如LiFePO4 、LiMnx Fe1-x PO4 (0<x<1)等的磷酸鐵化合物類、LiCoPO4 等的磷酸鈷化合物類、這些鋰過渡金屬磷酸化合物中作為主體的過渡金屬原子的一部分以鋁、鈦、釩、鉻、錳、鐵、鈷、鋰、鎳、銅、鋅、鎂、鎵、鋯、鈮等的其他金屬取代後的化合物、Li3 V2 (PO4 )3 等的磷酸釩化合物類等。含鋰的矽酸鹽化合物,可列舉Li2 FeSiO4 等。含鋰的過渡金屬硫酸化合物,可列舉LiFeSO4 、LiFeSO4 F等。這些可只使用一種,或將兩種以上組合使用。In the case of lithium ion secondary batteries or lithium ion capacitors, well-known positive electrode active materials include, for example, lithium transition metal composite oxides, lithium-containing transition metal phosphate compounds, lithium-containing silicate compounds, and lithium-containing transition metal sulfuric acid. Compounds, sulfur, sulfur-containing compounds, etc. The transition metal of the foregoing lithium transition metal composite oxide is preferably vanadium, titanium, chromium, manganese, iron, cobalt, nickel, copper, etc. Specific examples of lithium transition metal composite oxides include lithium cobalt composite oxides such as LiCoO 2 , lithium nickel composite oxides such as LiNiO 2 , and lithium manganese composite oxides such as LiMnO 2 , LiMn 2 O 4 and Li 2 MnO 3 Some of the transition metal atoms in these lithium transition metal composite oxides as the main body are aluminum, titanium, vanadium, chromium, manganese, iron, cobalt, lithium, nickel, copper, zinc, magnesium, gallium, zirconium and other metals Substituted compounds, etc. Examples of lithium transition metal composite oxides obtained by substituting a part of the main transition metal atoms with other metals include Li 1.1 Mn 1.8 Mg 0.1 O 4 , Li 1.1 Mn 1.85 Al 0.05 O 4 , and LiNi 0.5 Co 0.2 Mn 0.3 O 2. LiNi 0.8 Co 0.1 Mn 0.1 O 2 , LiNi 0.5 Mn 0.5 O 2 , LiNi 0.80 Co 0.17 Al 0.03 O 2 , LiNi 0.80 Co 0.15 Al 0.05 O 2 , Li(Ni 1/3 Co 1/3 Mn 1/3 ) O 2 , LiNi 0.6 Co 0.2 Mn 0.2 O 2 , LiMn 1.8 Al 0.2 O 4 , LiNi 0.5 Mn 1.5 O 4 , Li 2 MnO 3 -LiMO 2 (M=Co, Ni, Mn), etc. The transition metal of the aforementioned lithium-containing transition metal phosphate compound is preferably vanadium, titanium, manganese, iron, cobalt, nickel, etc. Specific examples include LiFePO 4 , LiMn x Fe 1-x PO 4 (0<x<1 ) And other iron phosphate compounds, LiCoPO 4 and other cobalt phosphate compounds. In these lithium transition metal phosphate compounds, part of the transition metal atoms as the main body is aluminum, titanium, vanadium, chromium, manganese, iron, cobalt, lithium, and nickel. , Copper, zinc, magnesium, gallium, zirconium, niobium and other metal substituted compounds, Li 3 V 2 (PO 4 ) 3 and other vanadium phosphate compounds. Examples of the lithium-containing silicate compound include Li 2 FeSiO 4 and the like. Examples of lithium-containing transition metal sulfuric acid compounds include LiFeSO 4 and LiFeSO 4 F. Only one kind of these may be used, or two or more kinds may be used in combination.

本發明的熱失控抑制劑適合使用於具有高充放電容量的非水電解質蓄電裝置。具有高充放電容量的正極活性物質,可列舉LiCoO2 、LiMn2 O4 、LiNi0.5 Mn1.5 O4 、Li(Ni0.8 Co0.15 Al0.05 )O2 、LiNiX CoY MnZ O2 (X+Y+Z=1、0≦X≦1、0≦Y≦1、0≦Z≦1)、LiNiO2 、Li2 MnO3 -LiMO2 (M=Co,Ni,Mn)、本發明的熱失控抑制劑,適合使用於具有這些正極活性物質的非水電解質蓄電裝置。The thermal runaway inhibitor of the present invention is suitable for use in non-aqueous electrolyte power storage devices with high charge and discharge capacity. Positive electrode active materials with high charge and discharge capacity include LiCoO 2 , LiMn 2 O 4 , LiNi 0.5 Mn 1.5 O 4 , Li(Ni 0.8 Co 0.15 Al 0.05 )O 2 , LiNi X Co Y Mn Z O 2 (X+ Y+Z=1, 0≦X≦1, 0≦Y≦1, 0≦Z≦1), LiNiO 2 , Li 2 MnO 3 -LiMO 2 (M=Co, Ni, Mn), thermal runaway of the present invention The inhibitor is suitable for use in non-aqueous electrolyte power storage devices having these positive electrode active materials.

黏結劑可列舉例如聚四氟乙烯(PTFE)、聚偏二氟乙烯(PVDF)、乙烯-丙烯-二烯共聚物(EPDM)、苯乙烯-丁二烯橡膠(SBR)、丙烯腈丁二烯橡膠(NBR)、苯乙烯-異戊二烯共聚物、聚甲基甲基丙烯酸酯、聚丙烯酸酯、聚乙烯醇(PVA)、羧甲基纖維素(CMC)、羧甲基纖維素鈉(CMCNa)、甲基纖維素(MC)、澱粉、聚乙烯基吡咯烷酮、聚乙烯(PE)、聚丙烯(PP)、聚環氧乙烷(PEO)、聚醯亞胺(PI)、聚醯胺醯亞胺(PAI)、聚丙烯腈(PAN)、聚氯乙烯(PVC)、聚丙烯酸、聚胺甲酸乙酯等。黏結劑的使用量,相對於正極活性物質,通常為1質量%~20質量%左右,宜為2質量%~10質量%。The binder can include, for example, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), ethylene-propylene-diene copolymer (EPDM), styrene-butadiene rubber (SBR), acrylonitrile butadiene Rubber (NBR), styrene-isoprene copolymer, polymethacrylate, polyacrylate, polyvinyl alcohol (PVA), carboxymethyl cellulose (CMC), sodium carboxymethyl cellulose ( CMCNa), methyl cellulose (MC), starch, polyvinylpyrrolidone, polyethylene (PE), polypropylene (PP), polyethylene oxide (PEO), polyimide (PI), polyamide Amide (PAI), polyacrylonitrile (PAN), polyvinyl chloride (PVC), polyacrylic acid, polyurethane, etc. The amount of the binder used is usually about 1% by mass to 20% by mass relative to the positive electrode active material, preferably 2% by mass to 10% by mass.

導電助材,可列舉例如碳黑、科琴黑、乙炔黑、槽黑、爐黑、燈黑、熱碳黑、奈米碳管、氣相法碳纖維(Vapor Grown Carbon Fiber;VGCF)、石墨烯、富勒烯、針狀煤焦等的碳材料;鋁粉、鎳粉、鈦粉等的金屬粉末;氧化鋅、氧化鈦等的導電性金屬氧化物;La2 S3 、Sm2 S3 、Ce2 S3 、TiS2 等的硫化物。導電助劑的粒徑,以平均粒徑為0.0001μm~100μm為佳,0.01μm~50μm為較佳。Conductive auxiliary materials, for example, carbon black, Ketjen black, acetylene black, channel black, furnace black, lamp black, thermal carbon black, carbon nanotubes, vapor-phase carbon fiber (Vapor Grown Carbon Fiber; VGCF), graphene Carbon materials such as, fullerenes, needle-like coal char; metal powders such as aluminum powder, nickel powder, and titanium powder; conductive metal oxides such as zinc oxide and titanium oxide; La 2 S 3 , Sm 2 S 3 , Sulfides such as Ce 2 S 3 and TiS 2. The particle size of the conductive auxiliary agent preferably has an average particle size of 0.0001 μm to 100 μm, preferably 0.01 μm to 50 μm.

泥漿化的溶劑可使用能將黏結劑溶解的有機溶劑或水。有機溶劑,可列舉例如N-甲基吡咯烷酮、二甲基甲醯胺、二甲基乙醯胺、甲基乙基酮、環己酮、醋酸甲酯、丙烯酸甲酯、二乙三胺、N,N-二甲基胺基丙胺、環氧乙烷、四氫呋喃等。溶劑的使用量,相對於正極活性物質,通常為10質量%~400質量%左右,宜為20質量%~200質量%。As the slurrying solvent, an organic solvent or water that can dissolve the binder can be used. Organic solvents include, for example, N-methylpyrrolidone, dimethylformamide, dimethylacetamide, methyl ethyl ketone, cyclohexanone, methyl acetate, methyl acrylate, diethylenetriamine, N , N-Dimethylaminopropylamine, ethylene oxide, tetrahydrofuran, etc. The amount of the solvent used is usually about 10% by mass to 400% by mass, preferably 20% by mass to 200% by mass relative to the positive electrode active material.

正極的集電體通常可使用鋁、不銹鋼、鍍鎳鋼等。集電體的形狀可列舉箔狀、板狀、網狀等,以箔狀為佳。箔狀的情況,箔的厚度通常為1μm~100μm。As the current collector of the positive electrode, aluminum, stainless steel, nickel-plated steel, or the like can usually be used. The shape of the current collector may be a foil shape, a plate shape, a mesh shape, etc., and a foil shape is preferred. In the case of a foil shape, the thickness of the foil is usually 1 μm to 100 μm.

本發明可適用的非水電解質蓄電裝置之含有負極活性物質的負極,是在集電體上形成含有負極活性物質的電極合劑層的電極,可使用例如將負極活性物質、黏結劑及導電助材以有機溶劑或水泥漿化而成的物體塗佈於集電體,並使其乾燥,而製成薄片狀之電極。The negative electrode containing the negative electrode active material of the non-aqueous electrolyte power storage device to which the present invention is applicable is an electrode in which an electrode mixture layer containing the negative electrode active material is formed on the current collector. For example, the negative electrode active material, binder, and conductive auxiliary material can be used. The object made by organic solvent or cement slurry is coated on the current collector and dried to make a sheet-shaped electrode.

負極的負極活性物質可使用周知的負極活性物質。以下針對非水電解質蓄電裝置為鋰離子二次電池或鋰離子電容的情況的支持電解質作說明,而在鈉離子二次電池或鈉離子電容的情況,是使用將負極活性物質之中具有鋰原子的負極活性物質的鋰原子以鈉原子取代後的負極活性物質。As the negative electrode active material of the negative electrode, a well-known negative electrode active material can be used. The following is a description of the supporting electrolyte when the non-aqueous electrolyte storage device is a lithium ion secondary battery or a lithium ion capacitor. In the case of a sodium ion secondary battery or a sodium ion capacitor, lithium atoms are used in the negative electrode active material. A negative electrode active material in which the lithium atoms of the negative electrode active material are replaced with sodium atoms.

周知的負極活性物質,可列舉碳質材料、鋰、鋰合金、矽、矽合金、氧化矽、錫、錫合金、氧化錫、磷、鍺、銦、氧化銅、硫化銻、氧化鈦、氧化鐵、氧化錳、氧化鈷、氧化鎳、氧化鉛、氧化釕、氧化鎢、氧化鋅,此外還有LiVO2 、Li2 VO4 、Li4 Ti5 O12 、鈦鈮系氧化物等的複合氧化物、導電性聚合物、含硫的化合物等。碳質材料並未受到特別限定,可列舉天然石墨、人造石墨、富勒烯、石墨烯、石墨短纖維、奈米碳管、石墨晶鬚、高配向性熱分解石墨、凝析石墨等的結晶性碳、難石墨化碳、易石墨化碳及石油系煤焦、煤炭系煤焦、石油系瀝青的碳化物、煤炭系瀝青的碳化物、酚樹脂・結晶纖維素等樹脂的碳化物等及這些物質一部分碳化而成的碳材料、爐黑、乙炔黑、瀝青系碳纖維、聚丙烯腈系碳纖維等。含硫的化合物,可列舉硫變性聚丙烯腈、一般式(CSx)n(x為0.9~1.5且n為4以上的數)所表示的多硫化碳等。此外,正極活性物質為含硫的化合物的情況,負極活性物質可使用含硫的化合物以外的負極活性物質。Known negative electrode active materials include carbonaceous materials, lithium, lithium alloys, silicon, silicon alloys, silicon oxide, tin, tin alloys, tin oxide, phosphorus, germanium, indium, copper oxide, antimony sulfide, titanium oxide, and iron oxide , Manganese oxide, cobalt oxide, nickel oxide, lead oxide, ruthenium oxide, tungsten oxide, zinc oxide, in addition to composite oxides such as LiVO 2 , Li 2 VO 4 , Li 4 Ti 5 O 12 , and titanium-niobium-based oxides , Conductive polymers, sulfur-containing compounds, etc. The carbonaceous material is not particularly limited, and examples include crystals of natural graphite, artificial graphite, fullerene, graphene, short graphite fibers, carbon nanotubes, graphite whiskers, high-alignment thermally decomposed graphite, and condensed graphite. Carbon, hardly graphitized carbon, easily graphitized carbon, petroleum-based coal coke, coal-based coal coke, petroleum-based pitch carbide, coal-based pitch carbide, phenol resin, crystalline cellulose and other resin carbides, etc. Carbon materials, furnace black, acetylene black, pitch-based carbon fibers, polyacrylonitrile-based carbon fibers, etc., which are partially carbonized of these substances. Examples of the sulfur-containing compound include sulfur-modified polyacrylonitrile, polysulfide carbon represented by the general formula (CSx)n (x is 0.9 to 1.5 and n is a number of 4 or more). In addition, when the positive electrode active material is a sulfur-containing compound, a negative electrode active material other than the sulfur-containing compound may be used as the negative electrode active material.

黏結劑、導電助材及泥漿化的溶劑,可列舉與正極的情況同樣的物質。上述黏結劑的使用量,相對於負極活性物質,通常為1質量%~30質量%左右,宜為2質量%~15質量%左右。另外,上述溶劑之使用量,相對於負極活性物質,通常10質量%~400質量%左右,宜為20質量%~200質量%。Examples of binders, conductive aids, and slurried solvents are the same as in the case of the positive electrode. The amount of the above-mentioned binder used is usually about 1% to 30% by mass, preferably about 2% to 15% by mass relative to the negative electrode active material. In addition, the amount of the solvent used is usually about 10% to 400% by mass, preferably 20% to 200% by mass relative to the negative electrode active material.

負極的集電體,通常可使用銅、鎳、不銹鋼、鍍鎳鋼、鋁等。集電體的形狀,可列舉箔狀、板狀、網狀等,以箔狀為佳。箔狀的情況,箔的厚度通常為1μm~100μm。As the current collector of the negative electrode, copper, nickel, stainless steel, nickel-plated steel, aluminum, etc. are usually used. The shape of the current collector may be a foil shape, a plate shape, a mesh shape, etc., and a foil shape is preferred. In the case of a foil shape, the thickness of the foil is usually 1 μm to 100 μm.

在本發明可適用的非水電解質蓄電裝置中,在正極與負極之間使用了間隔件,該間隔件可使用通常使用的高分子的微多孔薄膜等,並無特別限定。薄膜可列舉例如由以聚乙烯、聚丙烯、聚偏二氟乙烯、聚偏二氯乙烯、聚丙烯腈、聚丙烯醯胺、聚四氟乙烯、聚碸、聚醚碸、聚碳酸酯、聚醯胺、聚醯亞胺、聚環氧乙烷或聚環氧丙烷等的聚醚類、羧甲基纖維素或羥丙基纖維素等的各種纖維素類、聚(甲基)丙烯酸及其各種酯類等為主體的高分子化合物或其衍生物、其共聚物或混合物所形成的薄膜等,這些薄膜會有被氧化鋁或二氧化矽等的陶瓷材料、或氧化鎂、芳綸樹脂、聚偏二氟乙烯被覆的情形。此外,在非水溶劑電解質為純正高分子電解質的情況,會有不含間隔件的情形。In the non-aqueous electrolyte power storage device to which the present invention is applicable, a separator is used between the positive electrode and the negative electrode. The separator can be a generally used polymer microporous film, etc., and is not particularly limited. The film can be exemplified by polyethylene, polypropylene, polyvinylidene fluoride, polyvinylidene chloride, polyacrylonitrile, polyacrylamide, polytetrafluoroethylene, polyether, polyether, polycarbonate, poly Polyethers such as amide, polyimide, polyethylene oxide or polypropylene oxide, various celluloses such as carboxymethyl cellulose or hydroxypropyl cellulose, poly(meth)acrylic acid and its A variety of esters, etc. as the main polymer compound or its derivatives, copolymers or mixtures formed films, etc., these films may be ceramic materials such as alumina or silica, or magnesium oxide, aramid resin, In the case of polyvinylidene fluoride coating. In addition, when the non-aqueous solvent electrolyte is a pure polymer electrolyte, it may not contain a spacer.

本發明可適用的非水電解質蓄電裝置,以適用於非水電解質二次電池為佳。非水電解質二次電池的形態,可為單電池、正極與負極隔著間隔件叠合成多層的層合式電池,或將長條薄片狀間隔件、正極及負極捲繞而成的捲繞式電池等的任一形態,從電池的充放電容量高、內部短路造成的熱失控容易發生的觀點看來,本發明以適用於層合式的非水電解質二次電池或捲繞式的非水電解質二次電池為佳。 [實施例]The applicable non-aqueous electrolyte storage device of the present invention is preferably applicable to non-aqueous electrolyte secondary batteries. The form of the non-aqueous electrolyte secondary battery can be a single cell, a multilayer battery in which a positive electrode and a negative electrode are laminated with a separator in between, or a wound battery in which a long sheet-like separator, a positive electrode and a negative electrode are wound. From the viewpoint of the high charge and discharge capacity of the battery and the possibility of thermal runaway caused by internal short circuit, the present invention is suitable for laminated non-aqueous electrolyte secondary batteries or wound-type non-aqueous electrolyte secondary batteries. The secondary battery is better. [Example]

以下藉由實施例及比較例對本發明作具體說明,然而這些例子並不會限制本發明的範圍此外,實施例中的「份」或「%」只要沒有特別註明,是以質量來計。The following examples and comparative examples illustrate the present invention in detail. However, these examples do not limit the scope of the present invention. In addition, "parts" or "%" in the examples are based on mass unless otherwise specified.

[非水電解質的調製] 在由49.5體積%的碳酸伸乙酯、49.5體積%的碳酸二乙酯、碳酸伸乙烯酯1體積%所形成的混合溶劑中,使LiPF6 溶解成為1.0mol/L的濃度,調製出比較例1的非水電解質。另外,在比較例1的非水電解質中使下述磷酸酯化合物溶解成為表1所記載的濃度,調製出實施例1~實施例9以及比較例2~3的非水電解質。[Preparation of non-aqueous electrolyte] In a mixed solvent of 49.5% by volume of ethylene carbonate, 49.5% by volume of diethyl carbonate, and 1% by volume of vinylene carbonate, LiPF 6 was dissolved to 1.0 mol/L The non-aqueous electrolyte of Comparative Example 1 was prepared. In addition, the following phosphoric acid ester compound was dissolved in the non-aqueous electrolyte of Comparative Example 1 to the concentration described in Table 1, and the non-aqueous electrolytes of Examples 1 to 9 and Comparative Examples 2 to 3 were prepared.

Figure 02_image021
Figure 02_image021

Figure 02_image023
Figure 02_image023

Figure 02_image025
Figure 02_image025

Figure 02_image027
Figure 02_image027

Figure 02_image029
Figure 02_image029

Figure 02_image031
Figure 02_image031

Figure 02_image033
Figure 02_image033

[正極的製造] 將94.0質量份作為正極活性物質的Li(Ni0.6 Co0.2 Mn0.2 )O2 (北京當升材料科技股份有限公司(Beijing Easpring Material Technology Co., Ltd,)製,商品名:NCM622)、3.0質量份作為導電助劑的乙炔黑(Denka製)、3.0質量份作為黏結劑的聚氟亞乙烯(Kureha製)混合至90質量份的N-甲基吡咯烷酮,使用自轉・公轉攪拌機,進行分散,調製出泥漿。藉由缺角輪塗佈機法,在輥狀的鋁箔(厚度20μm)集電體的兩面逐面連續塗佈該泥漿組成物,並在90℃下乾燥。將該輥切成縱50mm、橫90mm,將橫邊(短邊)的一方的兩面的電極合劑層由端部算起除去10mm,使集電體露出之後,在150℃下進行真空乾燥2小時,製作出正極。 [Production of positive electrode] Li(Ni 0.6 Co 0.2 Mn 0.2 )O 2 (produced by Beijing Easpring Material Technology Co., Ltd,) using 94.0 parts by mass as the positive electrode active material, trade name: NCM622), 3.0 parts by mass of acetylene black (manufactured by Denka) as a conductive aid, and 3.0 parts by mass of polyvinylidene fluoride (manufactured by Kureha) as a binder are mixed to 90 parts by mass of N-methylpyrrolidone, using a rotation/revolution mixer , Disperse, prepare mud. The slurry composition was continuously coated on both sides of a roll-shaped aluminum foil (thickness 20 μm) current collector by the cut-off wheel coater method, and dried at 90°C. The roll was cut into a length of 50 mm and a width of 90 mm, and the electrode mixture layer on one of the horizontal sides (short sides) was removed by 10 mm from the end to expose the current collector, and then vacuum dried at 150°C for 2 hours , Make a positive electrode.

[負極的製造] 將96.5質量份作為電極活性物質的人造石墨(日立化成製)、0.5質量份作為導電助劑的乙炔黑(Denka製)、2.0質量份作為黏結劑的苯乙烯-丁二烯橡膠(水分散液、日本ZEON製)及1.0質量份的羧甲基纖維素鈉(DAICEL FINECHEM製)混合至100質量份的水,使用自轉・公轉攪拌機,進行分散,調製出泥漿。藉由缺角輪塗佈機法,在輥狀的銅箔(厚度10μm)集電體的兩面逐面連續塗佈該泥漿組成物,並在90℃下乾燥。將該輥切成縱55mm、橫95mm,將橫邊(短邊)的一方的兩面的電極合劑層由端部算起除去10mm,使集電體露出之後,在150℃下進行真空乾燥2小時,製作出負極。[Manufacture of negative electrode] 96.5 parts by mass of artificial graphite (manufactured by Hitachi Chemical) as an electrode active material, 0.5 parts by mass of acetylene black (manufactured by Denka) as a conductive aid, and 2.0 parts by mass of styrene-butadiene rubber as a binder (aqueous dispersion) , Japan ZEON) and 1.0 parts by mass of sodium carboxymethyl cellulose (made by DAICEL FINECHEM) are mixed to 100 parts by mass of water, and dispersed using a rotation/revolution mixer to prepare a slurry. The slurry composition was continuously coated on both sides of a roll-shaped copper foil (thickness 10 μm) current collector by the cut-off wheel coater method, and dried at 90°C. The roll was cut into a length of 55 mm and a width of 95 mm. The electrode mixture layer on one of the horizontal sides (short sides) was removed by 10 mm from the end to expose the current collector, and then vacuum dried at 150°C for 2 hours , Make a negative electrode.

[層合型電池的製作] 以使電池容量成為3Ah的方式將正極與負極隔著間隔件(Celgard公司製,商品名:Celgard 2325)層合,在正極與負極分別設置正極端子與負極端子,得到層合體。將所得到的層合體與實施例1~實施例9、比較例1~3的非水電解質收納於鋁層合薄膜,得到實施例1~實施例9、比較例1~3的層合型電池。[Production of laminated battery] The positive electrode and the negative electrode were laminated with a separator (manufactured by Celgard, trade name: Celgard 2325) so that the battery capacity was 3 Ah, and the positive electrode and the negative electrode were respectively provided with the positive electrode terminal and the negative electrode terminal to obtain a laminate. The obtained laminate and the non-aqueous electrolytes of Examples 1 to 9 and Comparative Examples 1 to 3 were housed in an aluminum laminate film to obtain laminated batteries of Examples 1 to 9 and Comparative Examples 1 to 3 .

[充電方法] 在25℃的恆溫槽中,將充電終止電壓定在4.2V、放電終止電壓定在2.75V,以充電率0.1C、放電率0.1C充放電1次,進行脫氣處理。進一步以同樣的條件進行充放電循環5次,以充電率0.1C充電至4.3V,然後使用於測試。[Charging method] In a thermostat at 25°C, set the end-of-charge voltage at 4.2V, set the end-of-discharge voltage at 2.75V, charge and discharge once at a charge rate of 0.1C and a discharge rate of 0.1C, and perform degassing treatment. Furthermore, the charge and discharge cycle was carried out 5 times under the same conditions, charged to 4.3V at a charge rate of 0.1C, and then used for testing.

[釘刺測試方法] 將表面溫度為23℃的電池固定於開了直徑10mm的孔的酚樹脂板上,在孔的中央部以直徑3mm、長度65mm的鐵製圓釘(N65)並以1mm/s的速度垂直於電池表面刺入,穿入電池10mm,保持10分鐘之後,將釘子拔掉。將釘子刺進電池之後的電池的最高表面溫度揭示於表2。此外,最高表面溫度是使用熱電偶來測定距離釘刺部10mm的電池表面的溫度,將溫度上昇到最大時的溫度定為最高表面溫度。[Nailing test method] A battery with a surface temperature of 23°C was fixed on a phenol resin plate with a hole of 10mm in diameter. In the center of the hole, an iron round nail (N65) with a diameter of 3mm and a length of 65mm was perpendicular to the hole at a speed of 1mm/s. Penetrate the surface of the battery and penetrate 10mm into the battery. After holding for 10 minutes, remove the nail. Table 2 shows the maximum surface temperature of the battery after the nail is pierced into the battery. In addition, the maximum surface temperature is measured by using a thermocouple to measure the temperature of the battery surface 10 mm from the nail piercing part, and the temperature when the temperature rises to the maximum is defined as the maximum surface temperature.

Figure 02_image035
Figure 02_image035

本測試中,表面溫度的上昇,是由電池內部短路所造成。結果顯示,具有摻合了本發明的磷酸酯化合物的非水電解質的電池,與並未摻合磷酸酯化合物的比較例1、摻合了磷酸烷酯的比較例2~3作比較,最高表面溫度大幅降低,或不易發生內部短路造成的熱失控。In this test, the increase in surface temperature is caused by a short circuit inside the battery. The results showed that the battery with the non-aqueous electrolyte blended with the phosphoric acid ester compound of the present invention has the highest surface as compared with Comparative Example 1 in which the phosphoric acid ester compound is not blended, and Comparative Examples 2 to 3 in which the phosphoric acid ester compound is blended. The temperature is greatly reduced, or thermal runaway caused by internal short circuit is not easy to occur.

Claims (4)

一種熱失控抑制劑,其係含有下述一般式(1)所表示之磷酸酯化合物的非水電解質蓄電裝置之熱失控抑制劑,並且前述非水電解質蓄電裝置具有:含有正極活性物質的正極、含有負極活性物質的負極及非水電解質,前述熱失控為由非水電解質蓄電裝置的內部短路所造成的熱失控,
Figure 03_image037
(式中,R1 ~R4 各自獨立,表示氫原子、氟原子或碳數1~4之烷基,X1 表示一般式(2)或一般式(3)所表示之基,a表示0或1~4之數)
Figure 03_image039
(式中,R5 ~R8 各自獨立,表示氫原子、氟原子或碳數1~4之烷基,X2 表示直接鍵結、氧原子、硫原子、亞磺醯基、磺醯基、或下述一般式(4)所表示之基,b表示0或1之數,*表示鍵結鍵)
Figure 03_image041
(式中,R9 ~R10 各自獨立,表示氫原子、碳數1~10之烴基、碳數1~2之氟化烷基,或R9 與R10 交聯而成之碳數5~12之烴基,*表示鍵結鍵)
Figure 03_image043
(式中,R11 ~R14 各自獨立,表示氫原子、氟原子、碳數1~10之烴基、碳數1~2之氟化烷基,*表示鍵結鍵)。
A thermal runaway inhibitor, which is a thermal runaway inhibitor for a non-aqueous electrolyte power storage device containing a phosphate compound represented by the following general formula (1), and the non-aqueous electrolyte power storage device has: a positive electrode containing a positive electrode active material, The negative electrode and the non-aqueous electrolyte containing the negative electrode active material, the aforementioned thermal runaway is the thermal runaway caused by the internal short circuit of the non-aqueous electrolyte power storage device,
Figure 03_image037
(In the formula, R 1 to R 4 are independent of each other and represent a hydrogen atom, a fluorine atom, or an alkyl group having 1 to 4 carbon atoms, X 1 represents a group represented by general formula (2) or general formula (3), and a represents 0 Or a number from 1 to 4)
Figure 03_image039
(In the formula, R 5 to R 8 are independent of each other and represent a hydrogen atom, a fluorine atom, or an alkyl group having 1 to 4 carbon atoms, and X 2 represents a direct bond, an oxygen atom, a sulfur atom, a sulfinyl group, a sulfinyl group, Or the base represented by the following general formula (4), b represents the number of 0 or 1, and * represents the bonding bond)
Figure 03_image041
(In the formula, R 9 to R 10 are independent of each other and represent a hydrogen atom, a hydrocarbon group with 1 to 10 carbons, a fluorinated alkyl group with 1 to 2 carbons, or a cross-linked R 9 and R 10 with a carbon number of 5 to The hydrocarbon group of 12, * means bonding bond)
Figure 03_image043
(In the formula, R 11 to R 14 are independent of each other and represent a hydrogen atom, a fluorine atom, a hydrocarbon group with 1 to 10 carbons, and a fluorinated alkyl group with 1 to 2 carbons, and * represents a bonding bond).
如請求項1之熱失控抑制劑,其中一般式(1)的a表示1~4之數。Such as the thermal runaway inhibitor of claim 1, wherein a in the general formula (1) represents a number from 1 to 4. 一種由非水電解質蓄電裝置的內部短路所造成的熱失控之抑制方法,其係包含:在非水電解質中以相對於非水電解質總量為0.01質量%~10質量%摻合如請求項1或2之熱失控抑制劑。A method for suppressing thermal runaway caused by an internal short circuit of a non-aqueous electrolyte power storage device, which includes: blending in a non-aqueous electrolyte at 0.01 to 10% by mass relative to the total amount of the non-aqueous electrolyte, as claimed in claim 1 Or 2 thermal runaway inhibitor. 如請求項3之由非水電解質蓄電裝置的內部短路所造成的熱失控之抑制方法,其中前述非水電解質為以有機溶劑為溶劑的非水電解質。The method for suppressing thermal runaway caused by an internal short circuit of a non-aqueous electrolyte power storage device according to claim 3, wherein the non-aqueous electrolyte is a non-aqueous electrolyte using an organic solvent as a solvent.
TW109124893A 2019-07-26 2020-07-23 A thermal runaway inhibitor TW202123523A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-137638 2019-07-26
JP2019137638 2019-07-26

Publications (1)

Publication Number Publication Date
TW202123523A true TW202123523A (en) 2021-06-16

Family

ID=74230261

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109124893A TW202123523A (en) 2019-07-26 2020-07-23 A thermal runaway inhibitor

Country Status (5)

Country Link
JP (1) JPWO2021020121A1 (en)
KR (1) KR20220038079A (en)
CN (1) CN114222748A (en)
TW (1) TW202123523A (en)
WO (1) WO2021020121A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12039331B2 (en) 2017-04-28 2024-07-16 Intel Corporation Instructions and logic to perform floating point and integer operations for machine learning

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024043559A1 (en) * 2022-08-25 2024-02-29 에스케이온 주식회사 Electrolyte for rechargeable lithium battery and rechargeable lithium battery including same

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4240422B2 (en) 1997-10-07 2009-03-18 日立マクセル株式会社 Organic electrolyte secondary battery
JP4092757B2 (en) * 1997-12-26 2008-05-28 ソニー株式会社 Non-aqueous electrolyte secondary battery
JP3394020B2 (en) 2000-06-29 2003-04-07 株式会社東芝 Lithium ion secondary battery
JP3953026B2 (en) 2003-12-12 2007-08-01 松下電器産業株式会社 Electrode plate for lithium ion secondary battery, lithium ion secondary battery and method for producing the same
KR100574328B1 (en) * 2003-12-30 2006-04-26 제일모직주식회사 Nonqueous Electrolyte for Battery
KR100670448B1 (en) 2004-05-31 2007-01-16 삼성에스디아이 주식회사 Electrolyte for lithium ion secondary battery and Lithium ion secondary battery comprising the same
JP5093997B2 (en) 2005-06-30 2012-12-12 三洋電機株式会社 Non-aqueous electrolyte secondary battery and manufacturing method thereof
US20090253044A1 (en) 2005-10-12 2009-10-08 Mitsui Chemicals, Inc. Nonaqueous Electrolyte and Lithium ion Secondary Battery Using Same
JP5206408B2 (en) 2006-07-13 2013-06-12 ダイキン工業株式会社 Electrochemical devices
JP5150095B2 (en) 2006-12-20 2013-02-20 株式会社東芝 Non-aqueous electrolyte battery
JP5201847B2 (en) 2007-02-20 2013-06-05 パナソニック株式会社 Nonaqueous electrolyte secondary battery
KR100995413B1 (en) * 2008-08-01 2010-11-18 삼성에스디아이 주식회사 Electrolyte for lithium ion secondary battery and lithium ion secondary battery comprising the same
JP5510002B2 (en) 2010-03-31 2014-06-04 Tdk株式会社 Active material manufacturing method and electrode manufacturing method
CN101807720B (en) * 2010-03-31 2012-08-15 张家港市国泰华荣化工新材料有限公司 Flame-retardant electrolyte solution and application thereof
JP2015065130A (en) 2013-09-26 2015-04-09 旭硝子株式会社 Nonaqueous electrolytic solution for secondary batteries, and lithium ion secondary battery
KR20160102108A (en) 2014-10-10 2016-08-29 스미또모 가가꾸 가부시키가이샤 Laminate, non-aqueous electrolyte secondary battery separator including the laminate, and non-aqueous electrolyte secondary battery including the laminate
CN107431235B (en) 2015-03-23 2019-12-13 远景Aesc能源元器件有限公司 Lithium ion secondary battery
JP6380221B2 (en) 2015-04-27 2018-08-29 トヨタ自動車株式会社 Active material composite particles, electrode active material layer, and all solid lithium battery
JP6925176B2 (en) * 2017-06-14 2021-08-25 三菱ケミカル株式会社 Non-aqueous electrolyte and non-aqueous electrolyte secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12039331B2 (en) 2017-04-28 2024-07-16 Intel Corporation Instructions and logic to perform floating point and integer operations for machine learning

Also Published As

Publication number Publication date
CN114222748A (en) 2022-03-22
WO2021020121A1 (en) 2021-02-04
KR20220038079A (en) 2022-03-25
JPWO2021020121A1 (en) 2021-02-04

Similar Documents

Publication Publication Date Title
CN113782817B (en) Electrolyte for nonaqueous electrolyte battery and nonaqueous electrolyte battery using same
CN109860703B (en) Electrolyte and electrochemical device
US9728805B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
TWI581481B (en) Electrolyte for non-aqueous electrolyte battery and lithium non-aqueous electrolyte battery
JP7223221B2 (en) Additive for non-aqueous electrolyte, non-aqueous electrolyte, and non-aqueous electrolyte battery
CN111527636A (en) Electrolyte for nonaqueous electrolyte battery and nonaqueous electrolyte battery using same
JPH11191431A (en) Nonaqueous electrolyte battery
TWI583039B (en) Nonaqueous electrolyte lithium secondary battery
KR102240708B1 (en) Binder composition for use in secondary battery electrode, slurry composition for use in secondary battery electrode, secondary battery electrode, and secondary battery
JP2019053983A (en) Non-aqueous electrolyte additive, electrolyte for non-aqueous electrolyte cell, and non-aqueous electrolyte cell
WO2020170833A1 (en) Electrolyte composition, nonaqueous electrolyte, and nonaqueous electrolyte secondary battery
JPWO2019181704A1 (en) Thermal runaway inhibitor
TW202123523A (en) A thermal runaway inhibitor
JP2001015156A (en) Nonaqueous electrolyte battery
JP7250401B2 (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery containing the same
JP2021163684A (en) Nonaqueous electrolytic solution, and nonaqueous electrolytic secondary battery arranged by use thereof
JP2005005116A (en) Battery
KR20170120897A (en) Organic electrolytic solution and Lithium battery comprising organic electrolyte solution
JP2019220415A (en) Composition, nonaqueous electrolyte and nonaqueous electrolyte secondary battery
WO2023225897A1 (en) Electrochemical device and electronic device comprising same
US20220231337A1 (en) Nonaqueous Electrolytic Solution
US20220231338A1 (en) Nonaqueous Electrolytic Solution
Feng Physical and electrochemical investigation of various dinitrile plasticizers in highly conductive polymer electrolyte membranes for lithium ion battery application
JP2023525314A (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery containing the same
JP2021051854A (en) Method for manufacturing nonaqueous electrolyte secondary battery