TW201937778A - Laser processing apparatus and laser processing method - Google Patents
Laser processing apparatus and laser processing method Download PDFInfo
- Publication number
- TW201937778A TW201937778A TW107144413A TW107144413A TW201937778A TW 201937778 A TW201937778 A TW 201937778A TW 107144413 A TW107144413 A TW 107144413A TW 107144413 A TW107144413 A TW 107144413A TW 201937778 A TW201937778 A TW 201937778A
- Authority
- TW
- Taiwan
- Prior art keywords
- substrate
- value
- detected
- height
- laser processing
- Prior art date
Links
- 238000012545 processing Methods 0.000 title claims abstract description 77
- 238000003672 processing method Methods 0.000 title claims abstract description 28
- 239000000758 substrate Substances 0.000 claims abstract description 219
- 238000001514 detection method Methods 0.000 claims abstract description 95
- 230000001678 irradiating effect Effects 0.000 claims abstract description 4
- 230000005540 biological transmission Effects 0.000 claims description 22
- 238000004458 analytical method Methods 0.000 claims description 19
- 238000007405 data analysis Methods 0.000 claims description 6
- 238000013480 data collection Methods 0.000 claims description 3
- 238000000034 method Methods 0.000 abstract description 44
- 238000005224 laser annealing Methods 0.000 description 15
- 238000006392 deoxygenation reaction Methods 0.000 description 10
- 230000003287 optical effect Effects 0.000 description 6
- 229910021417 amorphous silicon Inorganic materials 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 239000010409 thin film Substances 0.000 description 5
- 239000011261 inert gas Substances 0.000 description 4
- 239000010408 film Substances 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 3
- 238000011179 visual inspection Methods 0.000 description 3
- 230000007547 defect Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229920001621 AMOLED Polymers 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67242—Apparatus for monitoring, sorting or marking
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67242—Apparatus for monitoring, sorting or marking
- H01L21/67288—Monitoring of warpage, curvature, damage, defects or the like
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L22/00—Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
- H01L22/10—Measuring as part of the manufacturing process
- H01L22/12—Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L22/00—Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
- H01L22/20—Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
- H01L22/24—Optical enhancement of defects or not directly visible states, e.g. selective electrolytic deposition, bubbles in liquids, light emission, colour change
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L22/00—Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
- H01L22/30—Structural arrangements specially adapted for testing or measuring during manufacture or treatment, or specially adapted for reliability measurements
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/40—Thermal treatment, e.g. annealing in the presence of a solvent vapour
- H10K71/421—Thermal treatment, e.g. annealing in the presence of a solvent vapour using coherent electromagnetic radiation, e.g. laser annealing
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Recrystallisation Techniques (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
Description
本發明是關於一種雷射處理裝置和雷射處理方法,且更確切地說,是關於一種可在用雷射處理基底的同時即時地檢測基底的變形的雷射處理裝置和雷射處理方法。The present invention relates to a laser processing device and a laser processing method, and more particularly, to a laser processing device and a laser processing method capable of detecting deformation of a substrate in real time while processing the substrate with the laser.
製造例如AMOLED面板的顯示器裝置涉及對應於低溫多晶矽製程的準分子雷射退火(excimer laser annealing;ELA)製程。在本文中,準分子雷射退火製程是使用準分子雷射形成多晶矽(polycrystalline silicon;P-Si)薄膜的過程。即,在準分子雷射退火製程中,從準分子雷射光源發射的脈衝雷射光束形成為線光束,且用此線光束照射基底上的非晶矽(amorphous silicon;a-Si)薄膜,由此使非晶矽薄膜結晶。Manufacturing a display device such as an AMOLED panel involves an excimer laser annealing (ELA) process corresponding to a low-temperature polycrystalline silicon process. In this article, the excimer laser annealing process is a process of forming a polycrystalline silicon (P-Si) film using excimer laser. That is, in the excimer laser annealing process, a pulsed laser beam emitted from an excimer laser light source is formed into a line beam, and an amorphous silicon (a-Si) film on a substrate is irradiated with the line beam, Thereby, the amorphous silicon thin film is crystallized.
準分子雷射退火製程的問題在於在玻璃基底上發生例如翹曲的變形。在相關技術中,在完成準分子雷射退火製程之後,工程師通過使用目視檢查裝置來直接檢查處理完成的基底的變形。即,存在的問題在於,由於工程師直接檢查基底且檢查基底是否異常,因此結果根據工程師的技能水準而變化,且檢查花費較長時間。A problem with the excimer laser annealing process is that deformation such as warping occurs on the glass substrate. In the related art, after the excimer laser annealing process is completed, the engineer directly inspects the deformation of the processed substrate by using a visual inspection device. That is, there is a problem in that since the engineer directly checks the substrate and checks whether the substrate is abnormal, the result varies according to the skill level of the engineer, and the inspection takes a long time.
在以下專利文獻中公開本發明的背景技術。 [相關技術文獻] [專利文獻] (專利文獻1)KR10-2011-0071591 A (專利文獻2)KR10-2015-0046425 AThe background art of the present invention is disclosed in the following patent documents. [Related Technical Documents] [Patent Documents] (Patent Document 1) KR10-2011-0071591 A (Patent Document 2) KR10-2015-0046425 A
本發明提供雷射處理裝置和雷射處理方法,利用所述雷射處理裝置和方法可在用雷射處理基底的同時即時地檢測基底的變形。The invention provides a laser processing device and a laser processing method, by which the deformation of a substrate can be detected in real time while processing the substrate with the laser.
根據示範性實施例,雷射處理裝置包含:腔室,具有位於所述腔室中的處理空間和安裝在所述腔室的一側上的透射窗口;平台,經過安裝以便定位腔室的內部的基底;第一檢測單元,配置成檢測從基底反射的反射光;第二檢測單元,配置成檢測基底的高度;以及感測單元,收集通過第一檢測單元和第二檢測單元檢測到的資料,分析收集的資料且確定基底的變形。According to an exemplary embodiment, a laser processing apparatus includes a chamber having a processing space located in the chamber and a transmission window installed on one side of the chamber; and a platform that is installed to position the interior of the chamber A first detection unit configured to detect reflected light reflected from the substrate; a second detection unit configured to detect a height of the substrate; and a sensing unit to collect data detected by the first detection unit and the second detection unit , Analyze the collected data and determine the deformation of the substrate.
第一檢測單元可檢測平台的每個位置的反射光強度,且第二檢測單元可針對平台的每個位置和基底的每個區段來檢測基底的高度。The first detection unit can detect the intensity of the reflected light at each position of the platform, and the second detection unit can detect the height of the substrate for each position of the platform and each section of the substrate.
第二檢測單元可在基底的處理方向上定位在第一檢測單元的前面。The second detection unit may be positioned in front of the first detection unit in a processing direction of the substrate.
感測單元可包含:收集部件,配置成儲存檢測到的反射光強度的值和檢測到的基底的高度的值;分析部件,將儲存在收集部件中的值分別與參考強度值和參考高度值進行比較,且使用比較結果來計算第一區和第二區;以及確定部件,配置成將第一區與第二區的交疊區域確定為變形區域。The sensing unit may include: a collecting part configured to store a value of the detected reflected light intensity and a value of the height of the detected substrate; and an analyzing part that compares the value stored in the collecting part with a reference intensity value and a reference height value Performing a comparison, and using the comparison result to calculate the first region and the second region; and a determining component configured to determine an overlapping region of the first region and the second region as a deformation region.
雷射處理裝置可包含配置成顯示感測單元的確定結果的顯示單元。The laser processing apparatus may include a display unit configured to display a determination result of the sensing unit.
顯示單元可在螢幕上即時地顯示感測單元中收集的資料和感測單元的確定結果。The display unit can display the data collected in the sensing unit and the determination result of the sensing unit on the screen in real time.
根據另一示範性實施例,雷射處理方法包含:將基底定位在雷射光束的傳播路徑上;在處理方向上移動基底時用雷射光束照射基底;檢測從基底反射的反射光;檢測基底的高度;以及收集和分析檢測到的資料且使用分析結果確定基底的變形。According to another exemplary embodiment, a laser processing method includes: positioning a substrate on a propagation path of a laser beam; irradiating the substrate with the laser beam when the substrate is moved in the processing direction; detecting reflected light reflected from the substrate; detecting the substrate Height; and collect and analyze the detected data and use the analysis results to determine the deformation of the substrate.
在檢測反射光時,可檢測平台的每個位置的反射光強度,且在檢測高度時,可針對平台的每個位置和基底的每個區段來檢測基底的高度。When detecting the reflected light, the intensity of the reflected light at each position of the platform can be detected, and when detecting the height, the height of the substrate can be detected for each position of the platform and each section of the substrate.
在移動基底時可一起執行檢測反射光和檢測高度,且檢測反射光的位置可在檢測處理方向上的高度的位置的下游。The detection of the reflected light and the detection of the height may be performed together when the substrate is moved, and the position of the detection of the reflected light may be downstream of the position of the height in the processing direction.
確定基底的變形可包含:資料收集操作,儲存檢測到的反射光強度的值和檢測到的基底的高度的值;資料分析操作,將檢測到和收集的值與預定參考值相比較,且通過使用比較結果來計算第一區和第二區;以及確定操作,將第一區與第二區的交疊區域確定為變形區域。Determining the deformation of the substrate may include: a data collection operation that stores a value of the detected reflected light intensity and a detected height value of the substrate; a data analysis operation that compares the detected and collected value with a predetermined reference value, and passes The comparison results are used to calculate the first and second regions; and a determination operation is performed to determine an overlapping region of the first and second regions as a deformation region.
資料分析操作可包含:將檢測到的反射光強度的值與預設參考強度值進行比較,選擇比較差值超出誤差值設定範圍的檢測到的反射光強度的值,以及將基底上的對應於具有檢測到和選擇的反射光強度的值的平台的位置的區域作為第一區計算;且將檢測到的基底的高度的值與預設參考高度值進行比較,選擇比較差值超出誤差值設定範圍的檢測到的基底的高度的值,且將基底上的對應於具有檢測到和選擇的基底的高度的值的平台的位置和基底的區段的區域作為第二區計算。The data analysis operation may include: comparing the value of the detected reflected light intensity with a preset reference intensity value, selecting a value of the detected reflected light intensity whose comparison value is outside the setting range of the error value, and comparing the value corresponding to The area of the platform position having the detected and selected reflected light intensity value is calculated as the first area; and the detected height value of the substrate is compared with a preset reference height value, and the comparison difference is selected to exceed the error value setting The value of the range of the height of the detected substrate is calculated, and the area on the substrate corresponding to the position of the platform having the value of the height of the detected and selected substrate and the section of the substrate is calculated as the second region.
雷射處理方法可包含輸出收集的資料和關於基底的變形的確定結果。The laser processing method may include outputting collected data and determination results regarding deformation of the substrate.
可在移動基底的同時即時地執行輸出。Output can be performed in real time while moving the substrate.
變形可包含基底的翹曲,且在用雷射光束照射基底時,可對基底進行退火。The deformation may include warping of the substrate, and the substrate may be annealed when the substrate is irradiated with a laser beam.
在下文中,將參考隨附圖式詳細描述本發明的實施例。然而,本發明可以不同形式體現,且不應解釋為限於本文所陳述的實施例。實際上,提供這些實施例以使得本發明將是透徹且完整的,且這些實施例將把本發明概念的範圍完整地傳達給所屬領域的技術人員。為描述示範性實施例,可放大附圖,且在附圖中,相同附圖標號是指相同元件。Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. The invention may, however, be embodied in different forms and should not be construed as limited to the embodiments set forth herein. Indeed, these embodiments are provided so that this invention will be thorough and complete, and these embodiments will fully convey the scope of the inventive concept to those skilled in the art. To describe the exemplary embodiments, the drawings may be enlarged, and in the drawings, the same drawing reference numerals refer to the same elements.
根據示範性實施例的雷射處理裝置和雷射處理方法提供一種技術特徵,其中可在用雷射處理基底的同時即時地檢測基底的變形。A laser processing apparatus and a laser processing method according to an exemplary embodiment provide a technical feature in which a deformation of a substrate can be detected in real time while the substrate is processed with the laser.
根據示範性實施例的雷射處理裝置和雷射處理方法可應用於準分子雷射退火製程。當然,根據示範性實施例的雷射處理裝置和雷射處理方法還可用於各種基底的各種雷射處理製程。The laser processing apparatus and the laser processing method according to the exemplary embodiments may be applied to an excimer laser annealing process. Of course, the laser processing apparatus and the laser processing method according to the exemplary embodiments can also be used in various laser processing processes of various substrates.
在下文中,參考準分子雷射退火製程,將詳細描述示範性實施例。Hereinafter, an exemplary embodiment will be described in detail with reference to an excimer laser annealing process.
圖1是根據示範性實施例的雷射處理裝置的示意圖。另外,圖2是說明根據示範性實施例的準分子雷射退火製程的結果的示意圖。FIG. 1 is a schematic diagram of a laser processing apparatus according to an exemplary embodiment. In addition, FIG. 2 is a schematic diagram illustrating a result of an excimer laser annealing process according to an exemplary embodiment.
在下文中,將參考圖1和圖2詳細描述根據示範性實施例的雷射處理裝置。根據示範性實施例的雷射處理裝置包含:腔室10,具有位於其中的處理空間和安裝在其的一側上的透射視窗11;平台20,安裝在腔室10的內部以便將基底S定位在雷射光束L的傳播路徑上,雷射光束L穿過透射視窗11且從腔室10的外部導引到內部;第一感測單元40,檢測從基底S反射的反射光L';第二檢測單元,檢測基底S的高度;以及感測單元60,收集通過第一檢測單元40和第二檢測單元50檢測到的資料且分析基底S的變形。Hereinafter, a laser processing apparatus according to an exemplary embodiment will be described in detail with reference to FIGS. 1 and 2. A laser processing apparatus according to an exemplary embodiment includes a chamber 10 having a processing space therein and a transmission window 11 mounted on one side thereof, and a platform 20 installed inside the chamber 10 to position the substrate S On the propagation path of the laser beam L, the laser beam L passes through the transmission window 11 and is guided from the outside to the inside of the chamber 10; the first sensing unit 40 detects the reflected light L ′ reflected from the substrate S; Two detection units detect the height of the substrate S; and a sensing unit 60 collects data detected by the first detection unit 40 and the second detection unit 50 and analyzes the deformation of the substrate S.
另外,根據示範性實施例的雷射處理裝置可進一步包含:光源(未繪示),設置在腔室10的外部且輸出例如雷射光束的光線;光學單元30,設置在光源與透射視窗11之間,在其中形成光線傳播路徑,使用透鏡和鏡子處理線光束形狀的光,且使以線光束形狀處理的雷射光束L入射在透射視窗11上;以及脫氧模組80,安裝在腔室10的一側上以便圍繞透射視窗11的下部表面,將已穿過透射窗口11的雷射光束L導引到基底S,且在用雷射光束L照射的基底上形成惰性氣體氛圍。In addition, the laser processing apparatus according to the exemplary embodiment may further include: a light source (not shown) provided outside the chamber 10 and outputting light such as a laser beam; an optical unit 30 provided between the light source and the transmission window 11 Between them, a light propagation path is formed, and a lens and a mirror are used to process the light in the shape of a linear beam, and a laser beam L processed in the shape of the linear beam is made incident on the transmission window 11; and a deoxidizing module 80 is installed in the chamber On one side of 10 so as to surround the lower surface of the transmission window 11, the laser beam L having passed through the transmission window 11 is guided to the substrate S, and an inert gas atmosphere is formed on the substrate illuminated with the laser beam L.
另外,根據示範性實施例的雷射處理裝置可進一步包含顯示感測單元60的偵測結果的顯示單元70。In addition, the laser processing apparatus according to the exemplary embodiment may further include a display unit 70 that displays a detection result of the sensing unit 60.
基底S可以是具有矩形板形狀和上部表面的玻璃基底,在所述上部表面上形成非晶矽薄膜。當然,基底S可以是各種基底中的任一種,例如用於製造半導體的矽基底,在所述基底上執行或完成用於在其上部表面上形成薄膜、元件等的各種製程,且基底S的形狀可以是各種形狀中的任一種,例如圓形板或矩形板。The substrate S may be a glass substrate having a rectangular plate shape and an upper surface on which an amorphous silicon thin film is formed. Of course, the substrate S may be any of various substrates, for example, a silicon substrate for manufacturing a semiconductor, on which various processes for forming a thin film, an element, etc. are performed or completed, and the substrate S The shape may be any of various shapes, such as a circular plate or a rectangular plate.
提供光源(未繪示)以便發射雷射。光源是產生雷射的元件,且可根據將使用的雷射光束的波長採用各種類型的雷射,例如KrF準分子雷射或ArF準分子雷射。Provide a light source (not shown) to emit laser light. The light source is an element that generates a laser, and various types of lasers can be used depending on the wavelength of the laser beam to be used, such as a KrF excimer laser or an ArF excimer laser.
腔室10中可具有處理空間,可在所述處理空間中處理基底S。腔室10可具有柱狀形狀,所述柱狀形狀具有矩形橫截面。當然,根據基底S的形狀,除矩形柱體之外,腔室10可具有各種形狀。腔室10可在其的側壁上具有閘門閥(未繪示),且基底S可經由閘門閥輸入到腔室10中。腔室10可在其的一側上具有透射窗口11。透射視窗11可安裝在腔室10的上壁的一側上且覆蓋脫氧模組80的上部部分。透射窗口11可由石英材料製成。雷射光束L可穿過透射視窗11且進入到腔室10中。The chamber 10 may have a processing space therein, and the substrate S may be processed in the processing space. The chamber 10 may have a cylindrical shape having a rectangular cross section. Of course, depending on the shape of the substrate S, the cavity 10 may have various shapes other than a rectangular cylinder. The chamber 10 may have a gate valve (not shown) on a side wall thereof, and the substrate S may be input into the chamber 10 via the gate valve. The chamber 10 may have a transmission window 11 on one side thereof. The transmission window 11 may be installed on one side of the upper wall of the chamber 10 and cover an upper portion of the deoxygenation module 80. The transmission window 11 may be made of a quartz material. The laser beam L can pass through the transmission window 11 and enter the chamber 10.
可安裝平台20以便將基底S定位在腔室10的內部。基底S可安裝在平台20上。平台20可在處理方向X上水準移動基底S。因此,平台20可將基底S定位在雷射光束L的傳播路徑上,雷射光束L穿過透射視窗11且從腔室10的外部導引到內部。The platform 20 may be installed to position the substrate S inside the chamber 10. The substrate S may be mounted on the platform 20. The stage 20 can move the substrate S horizontally in the processing direction X. Therefore, the platform 20 can position the substrate S on the propagation path of the laser beam L, which passes through the transmission window 11 and is guided from the outside to the inside of the chamber 10.
光學單元30可具有連接到光源的一側和朝透射視窗11延伸的另一端。光學單元30可設置在光源與透射視窗11之間,且可在其中形成光傳播路徑。光學單元30可設置有透鏡系統、反射鏡、衰減器、光束分光器以及光束切割器。通過使用這些,光學單元30可將光線處理成線光束形狀,且允許雷射光束L被處理成線光束形狀且入射在透射視窗11上。The optical unit 30 may have one side connected to the light source and the other end extending toward the transmission window 11. The optical unit 30 may be disposed between the light source and the transmission window 11, and a light propagation path may be formed therein. The optical unit 30 may be provided with a lens system, a mirror, an attenuator, a beam splitter, and a beam cutter. By using these, the optical unit 30 can process light into a linear beam shape, and allow the laser beam L to be processed into a linear beam shape and incident on the transmission window 11.
將已穿過透射視窗11的雷射光束L發射到基底S的上部表面上。當雷射光束L發射到基底S的上部表面上時,反射光L'從基底S的上部表面反射。這種反射光L'又稱作傾倒光束(dump beam)。The laser beam L having passed through the transmission window 11 is emitted onto the upper surface of the substrate S. When the laser beam L is emitted onto the upper surface of the substrate S, the reflected light L ′ is reflected from the upper surface of the substrate S. This reflected light L 'is also called a dump beam.
第一檢測單元40可安裝在腔室10的內部的預定位置處,以便檢測反射光L'。第一檢測單元40可以是可檢測反射光L'的強度的傾倒光束功率計。第一檢測單元40從其檢測反射光L'的基底區域可以是在基底S的縱向方向上的多個位置處在基底S的寬度方向上延伸的區域。在本文中,縱向方向是平行於處理方向X的方向,且寬度方向Y可以是與處理方向X和豎直方向兩者交叉的方向。第一檢測單元40可即時地檢測從安裝在平台20上且在處理方向上移動的基底S反射的反射光L'。即,第一檢測單元40可檢測平台的每個位置的反射光強度。在本文中,平台位置是指平台20相對於處理方向X的位置。從第一檢測單元40檢測到的反射光L'的強度可用於檢測基底S的變形。在本文中,基底S的變形可包含基底的翹曲。The first detection unit 40 may be installed at a predetermined position inside the chamber 10 so as to detect the reflected light L ′. The first detection unit 40 may be a pouring beam power meter that can detect the intensity of the reflected light L ′. The substrate region from which the first detection unit 40 detects the reflected light L ′ may be a region extending in the width direction of the substrate S at a plurality of positions in the longitudinal direction of the substrate S. Herein, the longitudinal direction is a direction parallel to the processing direction X, and the width direction Y may be a direction crossing both the processing direction X and the vertical direction. The first detection unit 40 can immediately detect the reflected light L ′ reflected from the substrate S mounted on the platform 20 and moving in the processing direction. That is, the first detection unit 40 can detect the intensity of the reflected light at each position of the platform. Herein, the platform position refers to the position of the platform 20 relative to the processing direction X. The intensity of the reflected light L ′ detected from the first detection unit 40 can be used to detect the deformation of the substrate S. Herein, the deformation of the substrate S may include warping of the substrate.
第一檢測單元40可安裝在腔室10的內部或外部,以便與雷射光束L的傳播路徑間隔開且定位在反射光L'的傳播路徑上。在示範性實施例中,說明安裝在腔室10的內部的第一檢測單元40。更確切地說,第一檢測單元40可安裝在脫氧模組80的路徑內部,且經過安裝以便匹配反射光L'的傳播路徑。The first detection unit 40 may be installed inside or outside the chamber 10 so as to be spaced apart from the propagation path of the laser beam L and positioned on the propagation path of the reflected light L ′. In the exemplary embodiment, the first detection unit 40 installed inside the chamber 10 is explained. More specifically, the first detection unit 40 may be installed inside the path of the deoxygenation module 80 and installed to match the propagation path of the reflected light L ′.
第二檢測單元50可檢測基底S的高度。第二檢測單元50可以是雷射移位感測器。第二檢測單元50可容納在腔室10的內部。更確切地說,第二檢測單元50可定位在平台20上方且高於基底S。第二檢測單元50可即時地檢測安裝在平台20上且在平台20的每個位置和基底S的每個區段的處理方向X上移動的基底S的上部表面的高度。即,第二檢測單元50可針對平台的每個位置和基底的每個區段來檢測基底的高度。The second detection unit 50 can detect the height of the substrate S. The second detection unit 50 may be a laser shift sensor. The second detection unit 50 may be accommodated inside the chamber 10. More precisely, the second detection unit 50 may be positioned above the platform 20 and higher than the substrate S. The second detection unit 50 can detect the height of the upper surface of the substrate S installed on the platform 20 and moving in each position of the platform 20 and the processing direction X of each section of the substrate S in real time. That is, the second detection unit 50 may detect the height of the substrate for each position of the platform and each section of the substrate.
第二檢測單元50的檢測區域可以是在基底S的縱向方向上的多個位置處在基底S的寬度方向上延伸的區域。更確切地說,第二檢測單元50的檢測區域可在基底S的縱向方向上的多個位置處在基底S的寬度方向上延伸,可在處理方向X上通過穿過基底S的上部表面的縱向區域線而彼此分離,且可排列在基底S的寬度方向Y上。The detection area of the second detection unit 50 may be an area extending in the width direction of the substrate S at a plurality of positions in the longitudinal direction of the substrate S. More specifically, the detection areas of the second detection unit 50 may extend in the width direction of the substrate S at a plurality of positions in the longitudinal direction of the substrate S, and may pass through the upper surface of the substrate S in the processing direction X. The vertical area lines are separated from each other and can be arranged in the width direction Y of the substrate S.
第二檢測單元50可針對平台的每個位置和基底的每個區段來檢測基底的高度。在本文中,所述區段可以是在處理方向X上通過穿過基底S的上部表面的虛擬縱向區域線(未繪示)彼此分離的區域。在本文中,縱向方向可以是平行於處理方向X的方向。從第二檢測單元50檢測到的基底S的高度可用於檢測基底S的變形。示範性實施例說明劃分成從區段A到區段E的五個區段的基底S的上部表面。The second detection unit 50 may detect the height of the substrate for each position of the platform and each section of the substrate. Herein, the sections may be regions separated from each other in the processing direction X by virtual longitudinal area lines (not shown) passing through the upper surface of the substrate S. Herein, the longitudinal direction may be a direction parallel to the processing direction X. The height of the substrate S detected from the second detection unit 50 can be used to detect the deformation of the substrate S. The exemplary embodiment illustrates the upper surface of the substrate S divided into five sections from section A to section E.
在基底S的處理方向X上,第二檢測單元50可在第一檢測單元40的前面。換句話說,在基底S的處理方向X上,第二檢測單元50可定位在第一檢測單元40的下游側上。即,第二檢測單元50安裝成在處理方向X上與第一檢測單元間隔開。在本文中,第二檢測單元50可支撐在脫氧模組80的側表面上,或在腔室10的內部表面上。In the processing direction X of the substrate S, the second detection unit 50 may be in front of the first detection unit 40. In other words, in the processing direction X of the substrate S, the second detection unit 50 may be positioned on the downstream side of the first detection unit 40. That is, the second detection unit 50 is installed to be spaced from the first detection unit in the processing direction X. Herein, the second detection unit 50 may be supported on a side surface of the deoxygenation module 80 or on an inner surface of the chamber 10.
因此,從基底S的視角來看,當基底S首次穿過第一檢測單元40下方時,用雷射光束L照射基底S的上部表面,且從基底S的上部表面發出反射光L'。這種反射光L'通過第一檢測單元40檢測。接著,當基底S穿過第二檢測單元50下方時,基底S的上部表面的高度可由測量移位的雷射檢測。因此,在檢測到的反射光強度的值與檢測到的基底的高度的值之間可能存在時間相位差。此類相位差可通過感測單元60校正。Therefore, from the perspective of the substrate S, when the substrate S first passes under the first detection unit 40, the upper surface of the substrate S is irradiated with the laser beam L, and the reflected light L 'is emitted from the upper surface of the substrate S. This reflected light L ′ is detected by the first detection unit 40. Next, when the substrate S passes under the second detection unit 50, the height of the upper surface of the substrate S can be detected by a laser shifted by the measurement. Therefore, there may be a temporal phase difference between the value of the detected reflected light intensity and the value of the detected height of the substrate. Such a phase difference can be corrected by the sensing unit 60.
感測單元60可包含:收集部件(未繪示),儲存檢測到的反射光強度的值和檢測到的基底的高度的值;分析部件(未繪示),將儲存在收集部件中的值分別與參考值和參考高度值進行比較,且使用比較結果計算第一區和第二區;以及確定部件(未繪示),將第一區與第二區的交疊區域確定為變形區域。The sensing unit 60 may include: a collection part (not shown) that stores a value of the detected reflected light intensity and a value of the height of the detected substrate; and an analysis part (not shown) that stores the value in the collection part Compare with the reference value and the reference height value respectively, and use the comparison results to calculate the first and second regions; and determine a component (not shown) to determine the overlapping region of the first and second regions as the deformation region.
收集部件收集由第一檢測單元40和第二檢測單元50檢測到的資料,分析部件分析收集的資料,且確定部件可使用分析結果檢測基底S的變形。收集部件可連接到第一檢測單元40和第二檢測單元50。由收集部件收集的資料包含通過第一檢測單元40針對平台的每個位置來檢測到的反射光強度。另外,由收集部件收集的資料包含通過第二檢測單元50針對基底S的每個區段和平台的每個位置來檢測到的基底的高度。The collecting part collects the data detected by the first detecting unit 40 and the second detecting unit 50, the analyzing part analyzes the collected data, and the determining part can use the analysis result to detect the deformation of the substrate S. The collection part may be connected to the first detection unit 40 and the second detection unit 50. The data collected by the collection means includes the intensity of the reflected light detected by the first detection unit 40 for each position of the platform. In addition, the data collected by the collection means includes the height of the substrate detected by the second detection unit 50 for each section of the substrate S and each position of the platform.
分析部件連接到收集部件且通過如下方法分析收集的資料。分析部件選擇通過將檢測到的反射光強度的值與參考強度值進行比較計算出的差值超出設定誤差範圍的檢測值,且將對應於所選檢測值的平台位置作為第一區計算。在本文中,參考強度值可以是反射光於正常狀態的參考強度值。即,分析部件將預定參考強度值與在處理期間檢測到的檢測值進行比較,且當設定誤差範圍之外的具有至少預定大小的誤差出現時,分析部件可將其對應的區域計算為第一區。The analysis unit is connected to the collection unit and analyzes the collected data by the following method. The analysis component selects a detection value in which a difference calculated by comparing the detected reflected light intensity value with a reference intensity value exceeds a set error range, and calculates a platform position corresponding to the selected detection value as a first region. Herein, the reference intensity value may be a reference intensity value of reflected light in a normal state. That is, the analysis component compares the predetermined reference intensity value with the detection value detected during the processing, and when an error having at least a predetermined size outside the set error range occurs, the analysis component may calculate its corresponding area as the first Area.
另外,分析部件選擇通過將檢測到的基底的高度的值與預定參考高度值進行比較計算出的差值超出設定誤差範圍的檢測值,且將對應於所選檢測值的平台位置和基底區段作為第二區計算。參考高度值可以是正常狀態下的基底的參考高度。即,分析部件將預定參考高度值與在處理期間檢測到的檢測高度值進行比較,且當設定誤差範圍之外的至少預定大小的誤差出現時,分析部件可將其對應的基底S上的區域計算為第二區。In addition, the analysis component selects a detection value whose difference calculated by comparing the value of the detected height of the substrate with a predetermined reference height value that exceeds a set error range, and compares the platform position and the substrate section corresponding to the selected detection value. Calculated as the second zone. The reference height value may be a reference height of the substrate in a normal state. That is, the analysis component compares the predetermined reference height value with the detected height value detected during processing, and when an error of at least a predetermined size outside the set error range occurs, the analysis component may compare the area on the corresponding substrate S Calculated as the second zone.
因此,分析部件可將預定參考值與在處理期間檢測到的值進行比較,且藉此通過分析誤差大小的方法計算每個區域。Therefore, the analysis unit can compare the predetermined reference value with the value detected during the processing, and thereby calculate each area by analyzing the magnitude of the error.
同時,當準備相應處理時,可在處理裝置的初始設置過程確定上述參考值。舉例而言,當基底S未發生變形時,可將從基底S反射的反射光L'的強度設定為參考強度,且可將基底S的上部表面的高度確定為參考高度。另外,對每個差值設定的誤差值的範圍可從通過檢查在前一準分子雷射退火過程中基底的變形獲得的結果獲得。在示範性實施例中不必具體限制。Meanwhile, when preparing the corresponding processing, the above reference value may be determined during the initial setting process of the processing device. For example, when the substrate S is not deformed, the intensity of the reflected light L ′ reflected from the substrate S may be set as the reference intensity, and the height of the upper surface of the substrate S may be determined as the reference height. In addition, the range of the error value set for each difference can be obtained from the results obtained by examining the deformation of the substrate during the previous excimer laser annealing. There is no particular limitation in the exemplary embodiment.
確定部件連接到分析部件,且通過以下方法使用分析結果來檢測基底S的變形。確定部件將第一區與第二區的交疊區域確定為基底S的變形區域,且在顯示單元70上顯示這一變形區域。在本文中,將確定結果轉換成二維座標,且可以圖形或圖表的形狀顯示所述結果。同時,將上文所提到的交疊區域確定為變形區域的中心部分,通過預定區域圍繞交疊區域的區域也可被確定為變形區域的週邊部分且被輸出。The determination part is connected to the analysis part, and the analysis result is used to detect the deformation of the substrate S by the following method. The determining part determines an overlapping area of the first area and the second area as a deformed area of the substrate S, and displays this deformed area on the display unit 70. In this article, the determination results are converted into two-dimensional coordinates, and the results can be displayed in the shape of a graph or a chart. At the same time, the overlapping area mentioned above is determined as the central part of the deformation area, and the area surrounding the overlapping area by a predetermined area can also be determined as the peripheral part of the deformation area and output.
顯示單元70用以輸出感測單元60的確定結果。顯示單元70可將由感測單元60收集的資料轉換成表格且將資料以文本形式輸出在螢幕上,且將感測單元60的確定結果轉換成座標且以圖形或圖表的形式顯示在螢幕上。顯示單元70可設置為例如控制整個過程的裝置控制器的控制程式的形式,且可將每條資訊與處理控制螢幕一起提供給使用者。The display unit 70 is configured to output a determination result of the sensing unit 60. The display unit 70 can convert the data collected by the sensing unit 60 into a table and output the data on the screen in text form, and convert the determination result of the sensing unit 60 into coordinates and display it on the screen in the form of a graph or chart. The display unit 70 may be provided in the form of, for example, a control program of a device controller that controls the entire process, and may provide each piece of information to the user together with the process control screen.
脫氧模組80可安裝在腔室10的內部以便覆蓋透射視窗11的下部部分且具有穿過雷射光束L的通道。在豎直方向上通過穿過脫氧模組80的中心形成通道。通道可具有由透射視窗11覆蓋的上部端和朝基底S的上部表面打開的下部端。脫氧模組80可在其中設置有氣體噴射單元。氣體噴射單元可將惰性氣體噴射到通道的下部部分。惰性氣體氛圍可由惰性氣體在基底S上形成,且可防止氧氣或外來物質滲入基底S的上部側中。The deoxygenation module 80 may be installed inside the chamber 10 so as to cover a lower portion of the transmission window 11 and have a passage through the laser beam L. A channel is formed in the vertical direction by passing through the center of the deoxygenation module 80. The channel may have an upper end covered by the transmission window 11 and a lower end opened toward an upper surface of the substrate S. The deoxygenation module 80 may be provided with a gas injection unit therein. The gas injection unit may inject an inert gas to a lower portion of the passage. The inert gas atmosphere may be formed on the substrate S by an inert gas and may prevent oxygen or foreign substances from penetrating into the upper side of the substrate S.
已穿過透射視窗11的雷射光束L可穿過脫氧模組80的通道且發射到基底S的上部表面。當雷射光束L發射到基底S的上部表面上時,反射光L'從基底S的上部表面反射。可將反射光L'收集到脫氧模組80的內部的通道中。第一檢測單元40可安裝在脫氧模組80的通道上方。反射光L'可由第一檢測單元40檢測。The laser beam L that has passed through the transmission window 11 may pass through the channel of the deoxygenation module 80 and be emitted to the upper surface of the substrate S. When the laser beam L is emitted onto the upper surface of the substrate S, the reflected light L ′ is reflected from the upper surface of the substrate S. The reflected light L ′ may be collected into a channel inside the deoxygenation module 80. The first detection unit 40 may be installed above a passage of the deoxygenation module 80. The reflected light L ′ can be detected by the first detection unit 40.
如上文所描述,在雷射處理裝置中,在發射雷射光束L且基底S上的膜結晶的過程期間,即時地檢測傾倒光束(例如反射光L')的強度和基底S的高度,分析檢測結果,且可藉此即時地確定是否發生變形和發生位置的形式。另外,雷射處理裝置可顯示圖形使用者介面中的確定結果。因此,可即時快速地確定準分子退火製程中的缺陷,即,已發生翹曲的基底。As described above, in the laser processing device, during the process of emitting the laser beam L and crystallization of the film on the substrate S, the intensity of the dumped beam (for example, the reflected light L ′) and the height of the substrate S are detected in real time, and analyzed The result of the test, and the form of the occurrence of the deformation and the occurrence position can be determined instantly. In addition, the laser processing device can display the determination result in the graphical user interface. Therefore, defects in the excimer annealing process, that is, a substrate on which warpage has occurred, can be determined quickly and immediately.
圖3是根據示範性實施例的雷射處理方法的流程圖。另外,圖4是說明在應用根據示範性實施例的雷射處理裝置和雷射處理方法的準分子雷射退火製程中收集的資料的一個實例的視圖,且圖5是描述一種用於分析在應用根據示範性實施例的雷射處理裝置和雷射處理方法的準分子雷射退火製程中收集的資料的方法的視圖。FIG. 3 is a flowchart of a laser processing method according to an exemplary embodiment. In addition, FIG. 4 is a view illustrating an example of data collected in an excimer laser annealing process to which a laser processing apparatus and a laser processing method according to an exemplary embodiment are applied, and FIG. 5 is a view describing a method for analyzing the View of a method of applying data collected in an excimer laser annealing process of a laser processing apparatus and a laser processing method according to an exemplary embodiment.
在本文中,圖5中的(a)是繪示所收集資料當中的平台位置的圖式,圖5B是繪示反射光強度的圖式,且圖5中的(c)是繪示基底的高度的圖式。在本文中,在圖5中,每個圖式的橫坐標是繪示過程執行時間的軸線。In this article, (a) in FIG. 5 is a drawing showing the position of the platform in the collected data, FIG. 5B is a drawing showing the intensity of the reflected light, and (c) in FIG. 5 is a drawing showing the base Height schema. Herein, in FIG. 5, the abscissa of each diagram is an axis showing the execution time of the process.
參考圖1到圖5,將詳細描述使用根據示範性實施例的雷射處理裝置的雷射處理方法。1 to 5, a laser processing method using a laser processing apparatus according to an exemplary embodiment will be described in detail.
根據示範性實施例的雷射處理方法包含:將基底放置在雷射光束傳播路徑上;在處理方向上移動基底時用雷射光束照射基底;檢測從基底反射的反射光;檢測基底的高度;以及收集且分析檢測到的資料且使用分析結果確定基底的變形。A laser processing method according to an exemplary embodiment includes: placing a substrate on a laser beam propagation path; irradiating the substrate with a laser beam when the substrate is moved in a processing direction; detecting reflected light reflected from the substrate; detecting a height of the substrate; And collect and analyze the detected data and use the analysis results to determine the deformation of the substrate.
首先,製備基底S。基底S可以是具有上部表面的玻璃基底,在所述上部表面上形成非晶矽薄膜。基底S通過閘門閥裝載到腔室10中,且可安裝在平台20的上部表面上。First, a substrate S is prepared. The substrate S may be a glass substrate having an upper surface on which an amorphous silicon thin film is formed. The substrate S is loaded into the chamber 10 through a gate valve, and can be mounted on the upper surface of the platform 20.
接著,將基底S定位在雷射光束L的傳播路徑上。即,基底S定位在處理開始位置處。接著,在處理方向X上移動時用雷射光束L照射基底S(S100)。在本文中,處理方向X和平台20的移動方向是相同的方向,且處理方向X和雷射光束L的掃描方向可以是彼此相反的方向。當用雷射光束L照射基底上的薄膜時,可能發生基底S的變形。如圖1中所說明,彎曲區域R1可產生於基底S上。將所述彎曲區域與正常區域R2進行比較,可理解彎曲區域R1與正常區域R1之間的差異。即,可發現彎曲區域R1處於基底S與正常區域R2不同地變形的狀態。Next, the substrate S is positioned on the propagation path of the laser beam L. That is, the substrate S is positioned at the processing start position. Next, the substrate S is irradiated with the laser beam L while moving in the processing direction X (S100). Herein, the processing direction X and the moving direction of the stage 20 are the same direction, and the processing direction X and the scanning direction of the laser beam L may be directions opposite to each other. When the thin film on the substrate is irradiated with the laser beam L, deformation of the substrate S may occur. As illustrated in FIG. 1, a curved region R1 may be generated on the substrate S. Comparing the curved region with the normal region R2, it can be understood that the difference between the curved region R1 and the normal region R1. That is, it can be found that the curved region R1 is in a state where the base S is deformed differently from the normal region R2.
在執行上述過程時,檢測到從基底S反射的反射光L'(S200)。通過使用第一檢測器40檢測反射光L'。更確切地說,處理方向X的每個位置的反射光強度,即為平台的每個位置的反射光強度。此類過程也可說是觀察能量的變化量的過程。When the above process is performed, the reflected light L ′ reflected from the substrate S is detected (S200). The reflected light L ′ is detected by using the first detector 40. More precisely, the intensity of the reflected light at each position in the processing direction X is the intensity of the reflected light at each position on the platform. Such a process can also be said to be a process of observing the amount of change in energy.
與上述過程一起,檢測基底S的高度(S300)。在本文中,基底的高度是基底S的每個區段的高度和平台的每個位置的高度。這一過程也可說是觀察基底的變形量的過程。Together with the above process, the height of the substrate S is detected (S300). Herein, the height of the base is the height of each section of the base S and the height of each position of the platform. This process can also be said to be the process of observing the amount of deformation of the substrate.
在移動基底S時,在處理方向X上彼此間隔開的位置中的每一處一起執行反射光L'的檢測和基底S的高度的檢測。在本文中,關於處理方向X,檢測反射光的基底上的位置可以是檢測基底上的位置的後側的高度。When the substrate S is moved, detection of the reflected light L ′ and detection of the height of the substrate S are performed together at each of the positions spaced apart from each other in the processing direction X. Herein, with regard to the processing direction X, the position on the substrate that detects the reflected light may be the height of the back side of the position on the detection substrate.
即,第一檢測單元40的位置位於第二檢測單元50的位置的上游側上。因此,相對於基底S,檢測反射光L'可比檢測基底S的高度更早開始。在本文中,第一檢測單元40與第二檢測單元50之間的距離d可用於補償檢測到的值。That is, the position of the first detection unit 40 is located on the upstream side from the position of the second detection unit 50. Therefore, with respect to the substrate S, the detection of the reflected light L ′ may start earlier than the detection of the height of the substrate S. Herein, the distance d between the first detection unit 40 and the second detection unit 50 may be used to compensate the detected value.
與檢測基底S的高度一起,收集且分析從檢測部件檢測到的資料,且通過使用分析結果確定基底S的變形(S400)。在確定之前,每個檢測部件的檢測值相對於同一平台按時間順序檢測。在本文中,針對平台的每個位置佈置每個檢測值。另外,校正相對於每個檢測值的平台位置值以匹配第一檢測單元40與第二檢測單元50之間的距離。即,在使用分析結果確定基底S的變形時,可補償每個檢測值的時間相位差。Along with detecting the height of the substrate S, data detected from the detection part is collected and analyzed, and the deformation of the substrate S is determined by using the analysis result (S400). Before the determination, the detection value of each detection component is detected in chronological order with respect to the same platform. In this article, each detection value is arranged for each position of the platform. In addition, the platform position value with respect to each detection value is corrected to match the distance between the first detection unit 40 and the second detection unit 50. That is, when the deformation of the substrate S is determined using the analysis results, the time phase difference of each detected value can be compensated.
舉例來說,當在平台位置的單元中第一檢測單元40與第二檢測單元50之間的距離為50時,平台位置處為1的反射光強度的變化量的值與平台位置處為51的基底高度的變化量的值相匹配,且可確定為基底S的預定相同位置處的反射光強度的變化量的值和基底的高度的變化量的值。For example, when the distance between the first detection unit 40 and the second detection unit 50 in the unit of the platform position is 50, the value of the change amount of the reflected light intensity at 1 at the platform position and 51 at the platform position The value of the amount of change in the height of the substrate matches and can be determined as the value of the amount of change in the intensity of the reflected light at a predetermined same position of the substrate S and the value of the amount of change in the height of the substrate.
確定基底S的變形可按以下次序執行:資料收集操作,用以儲存檢測到的反射光強度值和檢測到的基底的高度值;資料分析操作,用以將檢測到和收集的值與預定參考值進行比較且使用比較結果計算第一區和第二區;以及確定操作,用以將第一區與第二區的交疊區域確定為變形區域。Determining the deformation of the substrate S can be performed in the following order: a data collection operation to store the detected reflected light intensity value and a detected height value of the substrate; a data analysis operation to compare the detected and collected value with a predetermined reference Compare the values and calculate the first and second regions using the comparison results; and a determining operation to determine the overlapping region of the first and second regions as the deformation region.
首先,將資料收集在收集部件中。此時,如圖4和圖5中所繪示,作為資料收集的檢測值中的每一個根據處理時間對準,且可作為相對於預定值的相對值而被收集。舉例來說,將當基底在縱向方向上的中心穿過透射視窗下方且用雷射光束照射時的平台位置設定成參考值0,且相對於參考值0確定平台位置。另外,關於反射光強度,將參考強度值的大小設定成0,且相對於參考強度值,以相對值收集檢測值。另外,關於基底高度,將參考高度值的大小設定成0,且接著相對於參考高度值,以相對值收集檢測值。First, collect the data in a collection component. At this time, as illustrated in FIGS. 4 and 5, each of the detection values collected as data is aligned according to the processing time, and may be collected as a relative value with respect to a predetermined value. For example, the platform position when the center of the substrate in the longitudinal direction passes below the transmission window and is irradiated with the laser beam is set to a reference value 0, and the platform position is determined relative to the reference value 0. In addition, regarding the reflected light intensity, the magnitude of the reference intensity value is set to 0, and the detection value is collected as a relative value with respect to the reference intensity value. In addition, regarding the base height, the magnitude of the reference height value is set to 0, and then the detected value is collected at a relative value with respect to the reference height value.
隨後,分析資料。資料分析操作可包含:將檢測到的反射光強度的值與參考強度值進行比較,且當比較差值超出設定誤差值範圍時,選擇檢測到的反射光強度的值,且將基底上對應於檢測值為所選反射光強度的平台位置的區域作為第一區計算;以及將檢測到的基底的高度的值與參考高度值進行比較,且當比較差值超出設定誤差值範圍時,選擇檢測到的基底的高度的值,且將基底上對應於檢測值為所選基底的高度的平台位置和基底區段的區域作為第二區計算。Then, analyze the data. The data analysis operation may include: comparing the detected reflected light intensity value with a reference intensity value, and when the comparison difference exceeds a set error value range, selecting the detected reflected light intensity value, and correspondingly The area where the detection value is the platform position of the selected reflected light intensity is calculated as the first area; and the value of the detected height of the substrate is compared with the reference height value, and when the comparison difference exceeds the set error value range, the detection is selected To the height of the substrate, and the area of the platform corresponding to the height of the selected substrate and the area of the substrate segment on the substrate are calculated as the second region.
即,如圖5中的(b)所繪示,將反射光強度的誤差值範圍設定成例如0到2,選擇檢測到的值,其的檢測到的反射光強度值與參考強度值之間的差值,即檢測到的反射光強度的值相對於參考強度值的相對值超出誤差值的設定範圍,且將基底上的對應於具有檢測到和選擇的反射光強度值的平台位置的區域作為第一區計算。That is, as shown in (b) of FIG. 5, the error value range of the reflected light intensity is set to, for example, 0 to 2, and the detected value is selected. Between the detected reflected light intensity value and the reference intensity value, The difference between the detected reflected light intensity value and the reference intensity value exceeds the setting range of the error value, and the area on the substrate corresponding to the platform position with the detected and selected reflected light intensity value is set. Calculated as the first zone.
另外,將基底的高度的誤差值範圍設定成例如0到0.1,且選擇檢測到的值,其的檢測到的基底的高度的值與參考高度值之間的差值,即檢測到的基底的高度的值的相對值超出誤差值的設定範圍,且將基底上的對應於具有檢測到和選擇的基底的高度的值的平台位置和基底區段的區域作為第二區計算。在本文中,在附圖中,第一區與第二區之間的時間差是因第一檢測單元40與第二檢測單元50之間的分離距離d所致。In addition, the error value range of the height of the substrate is set to, for example, 0 to 0.1, and the detected value is selected, and the difference between the detected value of the height of the substrate and the reference height value, that is, the detected The relative value of the height value exceeds the setting range of the error value, and the area on the substrate corresponding to the platform position and the substrate segment having the value of the height of the detected and selected substrate is calculated as the second region. Herein, in the drawings, the time difference between the first region and the second region is caused by the separation distance d between the first detection unit 40 and the second detection unit 50.
隨後,將關於基底的變形的確定結果轉換成座標且以圖形和圖表的形式輸出在螢幕上,且將收集的資料轉換成表格且以文本形式輸出到螢幕。可在處理期間,即在移動基底時即時地執行這一操作。Subsequently, the determination result about the deformation of the base is converted into coordinates and output on the screen in the form of graphs and charts, and the collected data is converted into a table and output to the screen in text form. This can be done immediately during processing, ie while the substrate is being moved.
即,如圖4中所繪示,使用顯示單元70以文本形式輸出感測單元60中收集的資料,且如圖2所繪示,將感測單元60的確定結果轉換成座標且以圖形形式輸出。That is, as shown in FIG. 4, the data collected in the sensing unit 60 is output in text form using the display unit 70, and as shown in FIG. 2, the determination result of the sensing unit 60 is converted into coordinates and in a graphic form Output.
如上文所描述,在示範性實施例中,將基底S劃分成從區段A到區段E的五個區段。另外,當用雷射光束照射安裝在平台上的基底S且在移動平台時對所述基底進行退火時,針對縱向方向上的多個位置中的每一個來檢測反射光強度,且針對縱向方向和寬度方向上的多個位置中的每一個來檢測基底的高度。隨後,分析檢測結果,將計算出的第一區與第二區的交疊區域確定為變形區域,且因此,將結果輸出到螢幕上。由於在處理期間將此類螢幕即時地提供給使用者,因此快速檢測到基底的變形,可降低有缺陷的製程比例,且可提高產率。另外,省略常規的目視檢查過程,以使得可明顯減少整體處理時間。As described above, in the exemplary embodiment, the substrate S is divided into five sections from section A to section E. In addition, when the substrate S mounted on the platform is irradiated with a laser beam and the substrate is annealed while the platform is moved, the reflected light intensity is detected for each of a plurality of positions in the longitudinal direction, and for the longitudinal direction And each of a plurality of positions in the width direction to detect the height of the substrate. Subsequently, the detection result is analyzed, and the calculated overlapping area of the first area and the second area is determined as the deformation area, and therefore, the result is output to the screen. Since such a screen is provided to the user in real time during processing, the deformation of the substrate can be quickly detected, the proportion of defective processes can be reduced, and the yield can be improved. In addition, the conventional visual inspection process is omitted so that the overall processing time can be significantly reduced.
即,在根據示範性實施例的雷射處理裝置和雷射處理方法中,在雷射退火製程期間根據平台位置檢測傾倒光束的強度和基底的高度的變化量,分析檢測到的值且藉此確定翹曲(即彎曲)是否發生和翹曲的精確位置和形狀,且可在可用於使用者的狀態下處理確定結果並輸出。That is, in the laser processing apparatus and the laser processing method according to an exemplary embodiment, the intensity of the dumped beam and the change amount of the height of the substrate are detected according to the position of the platform during the laser annealing process, the detected values are analyzed, and thereby Determines if warping (ie, bending) occurs and the exact location and shape of the warp, and the determination result can be processed and output in a state available to the user.
根據示範性實施例,當使用雷射處理基底時,可收集用以檢測基底的變形區域的各種資料,分析收集的資料,且可通過分析結果檢測基底上的變形區域。可在處理基底時即時地執行這些過程。即,可即時地檢測基底的變形。另外,可利用例如圖形或文本的各種形式將檢測結果和用於檢測的各種資料作為圖像提供。According to an exemplary embodiment, when a laser is used to process a substrate, various data for detecting a deformed area of the substrate may be collected, the collected data may be analyzed, and the deformed area on the substrate may be detected through an analysis result. These processes can be performed immediately while the substrate is being processed. That is, the deformation of the substrate can be detected immediately. In addition, the detection results and various materials for detection can be provided as images using various forms such as graphics or text.
因此,在早期檢測基底的變形,且因此可降低製程缺陷比例,且可提高產率。另外,可省略常規的肉眼檢查過程,以使得可明顯減少整體處理時間。Therefore, the deformation of the substrate is detected at an early stage, and thus the process defect ratio can be reduced, and the yield can be improved. In addition, the conventional visual inspection process can be omitted so that the overall processing time can be significantly reduced.
提供上文所提到的示範性實施例不是為了限制而是為了描述本發明。以上示範性實施例中所公開的配置和方法可彼此組合或共用以被修改為各種形式,且應注意,修改的實施例屬於本發明的範圍內。即,本發明可在申請專利範圍和與其等效的技術構想內實施彼此不同的各種形式,且與本發明有關的所屬領域中具通常知識者可理解,可在本發明的技術構想的範圍內執行各種實施例。The above-mentioned exemplary embodiments are provided not to limit but to describe the present invention. The configurations and methods disclosed in the above exemplary embodiments may be combined or shared with each other to be modified into various forms, and it should be noted that the modified embodiments belong to the scope of the present invention. That is, the present invention can implement various forms different from each other within the scope of the patent application and equivalent technical ideas, and those having ordinary knowledge in the field related to the present invention can understand that it can be within the scope of the technical ideas of the present invention Various embodiments are implemented.
10‧‧‧腔室10‧‧‧ chamber
11‧‧‧透射窗口11‧‧‧ Transmission window
20‧‧‧平台20‧‧‧ platform
30‧‧‧光學單元30‧‧‧Optical unit
40‧‧‧第一感測單元40‧‧‧first sensing unit
50‧‧‧第二感測單元50‧‧‧Second sensing unit
60‧‧‧感測單元60‧‧‧sensing unit
70‧‧‧顯示單元70‧‧‧display unit
80‧‧‧脫氧模組80‧‧‧deoxygenation module
d‧‧‧距離d‧‧‧distance
L‧‧‧雷射光束L‧‧‧laser beam
L'‧‧‧反射光L'‧‧‧ reflected light
R1‧‧‧彎曲區域R1‧‧‧ curved area
R2‧‧‧正常區域R2‧‧‧normal area
S‧‧‧基底S‧‧‧ substrate
S100、S200、S300、S400‧‧‧步驟S100, S200, S300, S400 ‧‧‧ steps
X‧‧‧處理方向X‧‧‧ Processing direction
Y‧‧‧寬度方向Y‧‧‧Width direction
圖1是根據示範性實施例的雷射處理裝置的示意圖。 圖2是說明根據示範性實施例的準分子雷射退火製程的結果的示意圖。 圖3是根據示範性實施例的雷射處理方法的流程圖。 圖4是說明在應用根據示範性實施例的雷射處理裝置和雷射處理方法的準分子雷射退火製程中收集的資料的一個實例的視圖。 圖5是描述一種用於分析在應用根據示範性實施例的雷射處理裝置和雷射處理方法的準分子雷射退火製程中收集的資料的方法的視圖。FIG. 1 is a schematic diagram of a laser processing apparatus according to an exemplary embodiment. FIG. 2 is a schematic diagram illustrating a result of an excimer laser annealing process according to an exemplary embodiment. FIG. 3 is a flowchart of a laser processing method according to an exemplary embodiment. 4 is a view illustrating one example of data collected in an excimer laser annealing process to which a laser processing apparatus and a laser processing method according to an exemplary embodiment are applied. 5 is a view describing a method for analyzing data collected in an excimer laser annealing process to which a laser processing apparatus and a laser processing method according to an exemplary embodiment are applied.
Claims (14)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2018-0000330 | 2018-01-02 | ||
KR1020180000330A KR102118133B1 (en) | 2018-01-02 | 2018-01-02 | Laser processing apparatus and method |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201937778A true TW201937778A (en) | 2019-09-16 |
TWI848924B TWI848924B (en) | 2024-07-21 |
Family
ID=67129566
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW107144413A TWI848924B (en) | 2018-01-02 | 2018-12-11 | Laser processing apparatus and laser processing method |
Country Status (3)
Country | Link |
---|---|
KR (1) | KR102118133B1 (en) |
CN (1) | CN109994395B (en) |
TW (1) | TWI848924B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110277327B (en) * | 2019-07-22 | 2024-03-22 | 深圳市艾特自动化有限公司 | System and method for detecting silicon wafers in online graphite boat |
CN114203618A (en) * | 2020-09-18 | 2022-03-18 | 上海新微技术研发中心有限公司 | Substrate processing apparatus |
CN113182957A (en) * | 2021-05-13 | 2021-07-30 | 安徽力幕新材料科技有限公司 | Waste collecting device for production and processing of film-coated aluminum foil and waste retreatment method |
US20240038557A1 (en) * | 2022-07-28 | 2024-02-01 | Applied Materials, Inc. | Methods and apparatus for processing a substrate |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3346214B2 (en) * | 1997-03-26 | 2002-11-18 | セイコーエプソン株式会社 | Method for manufacturing crystalline semiconductor film, annealing apparatus, method for manufacturing thin film transistor, and active matrix substrate for liquid crystal display device |
JP2000021941A (en) * | 1998-07-06 | 2000-01-21 | Toshiba Corp | Wafer stress measuring device and wafer condition measuring device |
KR101164524B1 (en) | 2009-12-21 | 2012-07-10 | 에이피시스템 주식회사 | Laser processing apparatus which can control size of laser beam |
KR101777688B1 (en) | 2013-10-21 | 2017-09-27 | 에이피시스템 주식회사 | treatment equipment |
JP2016025242A (en) * | 2014-07-22 | 2016-02-08 | 住友電気工業株式会社 | Warpage measurement apparatus of semiconductor wafer |
JP6272743B2 (en) * | 2014-09-24 | 2018-01-31 | 株式会社ニューフレアテクノロジー | Substrate processing equipment |
KR101877274B1 (en) * | 2015-05-29 | 2018-07-12 | 에이피시스템 주식회사 | Mura quantifying system by Laser crystallization facility using UV and Mura quantifying method by Laser crystallization facility using UV |
-
2018
- 2018-01-02 KR KR1020180000330A patent/KR102118133B1/en active IP Right Grant
- 2018-12-11 TW TW107144413A patent/TWI848924B/en active
- 2018-12-27 CN CN201811609820.5A patent/CN109994395B/en active Active
Also Published As
Publication number | Publication date |
---|---|
KR102118133B1 (en) | 2020-06-03 |
KR20190082568A (en) | 2019-07-10 |
CN109994395B (en) | 2024-07-09 |
TWI848924B (en) | 2024-07-21 |
CN109994395A (en) | 2019-07-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI848924B (en) | Laser processing apparatus and laser processing method | |
US7327444B2 (en) | Substrate inspection apparatus and method | |
KR101273739B1 (en) | Inspection method of polycrystalline silicon thin film and the same apparatus | |
CN101587840B (en) | Method of forming semiconductor thin film and semiconductor thin film inspection apparatus | |
US20080204737A1 (en) | Mask pattern inspection apparatus with koehler illumination system using light source of high spatial coherency | |
US6975386B2 (en) | Film quality inspecting method and film quality inspecting apparatus | |
JP3101257B2 (en) | Method for inspecting sample surface and X-ray analyzer using the same | |
US7659989B2 (en) | Focus determination for laser-mask imaging systems | |
JP2012243929A (en) | Inspection method and device of polycrystalline silicon thin film | |
KR100738809B1 (en) | Surface inspection system and method of controlling system | |
US20220084780A1 (en) | Optical system with compensation lens | |
TWI697664B (en) | Mura quantifying system by laser crystallization facility and mura quantifying method by laser crystallization facility | |
KR102279169B1 (en) | Detection apparatus and detection method | |
JP3971943B2 (en) | Optical inspection method and optical inspection system | |
US20090316981A1 (en) | Method and device for inspecting a disk-shaped object | |
JPH06318446A (en) | Analysis method and device | |
TWI697663B (en) | Mura quantifying system by laser crystallization facility using uv and mura quantifying method by laser crystallization facility using uv | |
JPH08247957A (en) | Defect detection method and apparatus for inspecting appearance of liquid crystal substrate or ic wafer | |
JP2020071135A (en) | Crack detector and crack detection method | |
JP2018160553A (en) | Laser processing device | |
JP2011069676A (en) | Inspection system, and inspection method | |
CN114531857A (en) | Inspection apparatus and inspection method | |
JP5033365B2 (en) | Inspection device | |
JP2019219295A (en) | Wafer inspection device and wafer inspection method | |
JPH01206203A (en) | Checking method of imperfection of film thickness |