TW201933584A - Split-gate flash memory cell and method for forming the same - Google Patents
Split-gate flash memory cell and method for forming the same Download PDFInfo
- Publication number
- TW201933584A TW201933584A TW107101533A TW107101533A TW201933584A TW 201933584 A TW201933584 A TW 201933584A TW 107101533 A TW107101533 A TW 107101533A TW 107101533 A TW107101533 A TW 107101533A TW 201933584 A TW201933584 A TW 201933584A
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- flash memory
- conductive
- forming
- memory device
- Prior art date
Links
Landscapes
- Semiconductor Memories (AREA)
- Non-Volatile Memory (AREA)
Abstract
Description
本揭露實施例關於一種快閃記憶體元件,且特別有關於一種分離式閘極快閃記憶體元件(split-gate flash memory cell)。 The present disclosure relates to a flash memory component, and more particularly to a split-gate flash memory cell.
非揮發性(non-volatile)記憶體裝置被廣泛地應用於電子產業中。即使系統之電源消失,儲存於非揮發性記憶體中的資料仍可被保留。非揮發性記憶體可為單次可程式裝置(one-time programmable devices,例如:電子式可程式唯讀記憶體(electrically programmable read-only memory,EPROM))或者可為複寫裝置(re-programmable devices,例如:電子式抹除式可複寫唯讀記憶體(electrically-erasable programmable read-only memory,EEPROM))。 Non-volatile memory devices are widely used in the electronics industry. Even if the power of the system disappears, the data stored in the non-volatile memory can be retained. The non-volatile memory device can be a one-time programmable device (for example, an electrically programmable read-only memory (EPROM)) or a re-programmable device (re-programmable devices). For example, an electrically-erasable programmable read-only memory (EEPROM).
非揮發性記憶體的一個例子是快閃記憶體。快閃記憶體因為具有如尺寸小以及低功率消耗量之優點而越來越受歡迎。 An example of a non-volatile memory is a flash memory. Flash memory is becoming more and more popular because of its advantages such as small size and low power consumption.
然而,現有的快閃記憶體並未在各方面皆令人滿意。 However, existing flash memory is not satisfactory in all respects.
本發明實施例提供一種分離式閘極快閃記憶體元件。上述分離式閘極快閃記憶體元件包括半導體基板、位於上述半導體基板上的浮置閘極介電層以及浮置閘極。上述浮置閘極包括位於上述浮置閘極介電層上的導電層、位於上述導電層之頂表面上之成對的導電間隔物。上述分離式閘極快閃記憶體元件亦包括覆蓋上述浮置閘極的閘極間介電層。上述閘極間介電層覆蓋上述導電層與此些導電間隔物的側壁。上述分離式閘極快閃記憶體元件亦包括位於上述閘極間介電層上的控制閘極。 Embodiments of the present invention provide a split gate flash memory component. The split gate flash memory device includes a semiconductor substrate, a floating gate dielectric layer on the semiconductor substrate, and a floating gate. The floating gate includes a conductive layer on the floating gate dielectric layer and a pair of conductive spacers on a top surface of the conductive layer. The split gate flash memory device also includes an inter-gate dielectric layer covering the floating gate. The inter-gate dielectric layer covers the conductive layer and sidewalls of the conductive spacers. The split gate flash memory device also includes a control gate on the dielectric layer between the gates.
本發明實施例亦提供一種分離式閘極快閃記憶體元件之形成方法。上述方法包括提供半導體基板、形成第一介電層於上述半導體基板上、形成第一導電層於上述第一介電層上、形成罩幕層於上述第一導電層上。上述罩幕層具有露出上述第一導電層之第一部分的開口。上述方法亦包括形成成對之導電間隔物於上述開口之相對側壁上並位於上述第一導電層之第一部分之頂表面上、形成介電材料以填充上述開口、移除上述罩幕層以及上述罩幕層下方之上述第一導電層之部分但保留上述成對之導電間隔物與上述第一導電層之第一部分以形成浮置閘極於上述第一介電層上、形成第二介電層於上述成對之導電間隔物與上述第一導電層之第一部分的側壁上。上述方法亦包括形成控制閘極於上述第一介電層、上述第二介電層與上述介電材料上。 Embodiments of the present invention also provide a method of forming a split gate flash memory device. The method includes providing a semiconductor substrate, forming a first dielectric layer on the semiconductor substrate, forming a first conductive layer on the first dielectric layer, and forming a mask layer on the first conductive layer. The mask layer has an opening exposing the first portion of the first conductive layer. The method also includes forming a pair of conductive spacers on opposite sidewalls of the opening and on a top surface of the first portion of the first conductive layer, forming a dielectric material to fill the opening, removing the mask layer, and the above Portion of the first conductive layer under the mask layer but retaining the pair of conductive spacers and the first portion of the first conductive layer to form a floating gate on the first dielectric layer to form a second dielectric And a layer on the sidewalls of the pair of conductive spacers and the first portion of the first conductive layer. The method also includes forming a control gate on the first dielectric layer, the second dielectric layer, and the dielectric material.
10‧‧‧分離式閘極快閃記憶體元件 10‧‧‧Separate gate flash memory components
100‧‧‧半導體基板 100‧‧‧Semiconductor substrate
100a‧‧‧通道區 100a‧‧‧Channel area
102‧‧‧源極/汲極區 102‧‧‧Source/Bungee Zone
202‧‧‧第一介電層 202‧‧‧First dielectric layer
202a‧‧‧浮置閘極介電層 202a‧‧‧Floating gate dielectric layer
302‧‧‧第一導電層 302‧‧‧First conductive layer
304‧‧‧導電層 304‧‧‧ Conductive layer
304’‧‧‧側壁 304’‧‧‧ Sidewall
302t‧‧‧頂表面 302t‧‧‧ top surface
402‧‧‧罩幕層 402‧‧‧ Cover layer
404‧‧‧開口 404‧‧‧ openings
404a、404b‧‧‧開口側壁 404a, 404b‧‧‧ open side wall
502‧‧‧第二導電層 502‧‧‧Second conductive layer
602a、602b‧‧‧導電間隔物 602a, 602b‧‧‧ conductive spacers
602a”、602b”‧‧‧側壁 602a", 602b"‧‧‧ side wall
602a’‧‧‧第一傾斜側壁 602a’‧‧‧First sloping side wall
602b’‧‧‧第二傾斜側壁 602b’‧‧‧Second inclined side wall
702‧‧‧介電材料 702‧‧‧ dielectric materials
702a‧‧‧介電材料之部分 702a‧‧‧Parts of dielectric materials
702b‧‧‧介電材料底表面 702b‧‧‧ dielectric material bottom surface
702t‧‧‧介電材料頂表面 702t‧‧‧ dielectric material top surface
802‧‧‧浮置閘極 802‧‧‧Floating gate
902‧‧‧第二介電層 902‧‧‧Second dielectric layer
902t‧‧‧介電層之頂表面 902t‧‧‧ top surface of the dielectric layer
1002‧‧‧控制閘極 1002‧‧‧Control gate
1102‧‧‧閘極間介電層 1102‧‧‧Inter-gate dielectric layer
T1、T2、T3、T4、T5‧‧‧厚度 T1, T2, T3, T4, T5‧‧‧ thickness
h‧‧‧高度 H‧‧‧height
W1、W2‧‧‧寬度 W1, W2‧‧‧ width
以下將配合所附圖式詳述本發明實施例。應注意 的是,各種特徵並未按照比例繪製且僅用以說明例示。事實上,元件的尺寸可能經放大或縮小,以清楚地表現出本發明實施例的技術特徵。 The embodiments of the present invention will be described in detail below with reference to the accompanying drawings. Should pay attention The various features are not drawn to scale and are merely illustrative. In fact, the dimensions of the elements may be enlarged or reduced to clearly show the technical features of the embodiments of the present invention.
第1至11圖為一系列的剖面圖,其根據本揭露之實施例繪示出形成分離式閘極快閃記憶體元件之方法。 1 through 11 are a series of cross-sectional views illustrating a method of forming a split gate flash memory device in accordance with an embodiment of the present disclosure.
以下的揭露內容提供許多不同的實施例或範例以實施本案的不同特徵。以下的揭露內容敘述各個構件及其排列方式的特定範例,以簡化說明。當然,這些特定的範例並非用以限定。例如,若是本發明實施例敘述了一第一特徵形成於一第二特徵之上或上方,即表示其可能包含上述第一特徵與上述第二特徵是直接接觸的實施例,亦可能包含了有附加特徵形成於上述第一特徵與上述第二特徵之間,而使上述第一特徵與第二特徵可能未直接接觸的實施例。另外,以下所揭露之不同範例可能重複使用相同的參考符號及/或標記。這些重複係為了簡化與清晰的目的,並非用以限定所討論的不同實施例及/或結構之間有特定的關係。 The following disclosure provides many different embodiments or examples to implement various features of the present invention. The following disclosure sets forth specific examples of various components and their arrangement to simplify the description. Of course, these specific examples are not intended to be limiting. For example, if an embodiment of the present invention describes that a first feature is formed on or above a second feature, that is, it may include an embodiment in which the first feature is in direct contact with the second feature, and may also include Additional features are formed between the first feature and the second feature described above, such that the first feature and the second feature may not be in direct contact with each other. In addition, the different examples disclosed below may reuse the same reference symbols and/or labels. These repetitions are not intended to limit the specific relationship between the various embodiments and/or structures discussed.
後文將說明本揭露之各種實施例。類似的標號可被用來表示類似的元件。應可理解的是,額外的操作步驟可實施於所述方法之前、之間或之後,且在所述方法的其他實施例中,部分的操作步驟可被取代或省略。 Various embodiments of the present disclosure will be described hereinafter. Like numbers may be used to indicate like elements. It will be appreciated that additional operational steps may be performed before, during or after the method, and that in other embodiments of the method, portions of the operational steps may be substituted or omitted.
本發明實施例之分離式閘極快閃記憶體元件包括浮置閘極(floating gate),上述浮置閘極包含設置於導電層頂表面上之成對的導電間隔物。上述成對之導電間隔物可提升本發 明實施例之分離式閘極快閃記憶體元件的效能(例如:縮短抹除時間(erasing time))。於後文將說明本發明實施例之形成分離式閘極快閃記憶體元件之方法。 The split gate flash memory device of the embodiment of the invention comprises a floating gate comprising a pair of conductive spacers disposed on a top surface of the conductive layer. The above pair of conductive spacers can enhance the hair The performance of the split gate flash memory component of the embodiment (e.g., shortening the erasing time). A method of forming a split gate flash memory device in accordance with an embodiment of the present invention will be described hereinafter.
第1圖根據本揭露之實施例繪示出形成分離式閘極快閃記憶體元件之方法的起始步驟。如第1圖所示,提供半導體基板100。舉例而言,半導體基板100可包括矽。在一些實施例中,半導體基板100可包括其他元素半導體(例如:鍺)、化合物半導體(例如:碳化矽(SiC)、砷化鎵(GaAs)、砷化銦(InAs)或磷化銦(InP))以及合金半導體(例如:SiGe、SiGeC、GaAsP或GaInP)。在其他的實施例中,半導體基板100可包括絕緣層上半導體基板(semiconductor-on-insulator(SOI)substrate)。上述絕緣層上半導體基板可包括底板、設置於上述底板上的埋藏氧化層以及設置於上述埋藏氧化層上的半導體層。 Figure 1 illustrates the initial steps of a method of forming a split gate flash memory device in accordance with an embodiment of the present disclosure. As shown in FIG. 1, a semiconductor substrate 100 is provided. For example, the semiconductor substrate 100 may include germanium. In some embodiments, the semiconductor substrate 100 may include other elemental semiconductors (eg, germanium), compound semiconductors (eg, tantalum carbide (SiC), gallium arsenide (GaAs), indium arsenide (InAs), or indium phosphide (InP). )) and alloy semiconductors (for example: SiGe, SiGeC, GaAsP or GaInP). In other embodiments, the semiconductor substrate 100 may include a semiconductor-on-insulator (SOI) substrate. The semiconductor substrate on the insulating layer may include a bottom plate, a buried oxide layer provided on the bottom plate, and a semiconductor layer provided on the buried oxide layer.
在一些實施例中,半導體基板100為p型矽基板。舉例而言,p型矽基板100的摻質可包括硼、鋁、鎵、銦、其他適當的摻質或上述之組合,且p型矽基板100之摻質濃度可為5x1014至5x1016cm-3。在其他的實施例中,半導體基板100可為n型矽基板。舉例而言,n型矽基板100的摻質可包括砷、磷、銻、其他適當的摻質或上述之組合,且n型矽基板100之摻質濃度可為5x1014至5x1016cm-3。為了簡明起見,後文之實施例將以使用p型矽基板100為例子進行說明,但本揭露並不以此為限。 In some embodiments, the semiconductor substrate 100 is a p-type germanium substrate. For example, the dopant of the p-type germanium substrate 100 may include boron, aluminum, gallium, indium, other suitable dopants, or a combination thereof, and the dopant concentration of the p-type germanium substrate 100 may be 5× 10 14 to 5× 10 16 cm. -3 . In other embodiments, the semiconductor substrate 100 can be an n-type germanium substrate. For example, the dopant of the n-type germanium substrate 100 may include arsenic, phosphorus, antimony, other suitable dopants or a combination thereof, and the n-type germanium substrate 100 may have a dopant concentration of 5× 10 14 to 5× 10 16 cm −3 . . For the sake of brevity, the following embodiments will be described using the p-type germanium substrate 100 as an example, but the disclosure is not limited thereto.
如第2圖所示,形成第一介電層202於半導體基板100之上。第一介電層202之一部分可充當分離式閘極快閃記憶 體元件之浮置閘極介電層,於後文將對此詳細說明。在本實施例中,第一介電層202包括氧化矽。可經由氧化製程、化學氣相沉積製程(chemical vapor deposition process)、其他適當的製程或上述之組合形成氧化矽。舉例而言,上述氧化製程可包括乾式氧化製程(例如:Si+O2→SiO2)、濕式氧化製程(例如:Si+2H2O→SiO2+2H2)或上述之組合。 As shown in FIG. 2, a first dielectric layer 202 is formed over the semiconductor substrate 100. A portion of the first dielectric layer 202 can serve as a floating gate dielectric layer for a separate gate flash memory component, as will be described in more detail below. In the present embodiment, the first dielectric layer 202 includes hafnium oxide. Cerium oxide can be formed via an oxidation process, a chemical vapor deposition process, other suitable processes, or a combination thereof. For example, the above oxidation process may include a dry oxidation process (eg, Si+O 2 →SiO 2 ), a wet oxidation process (eg, Si+2H 2 O→SiO 2 +2H 2 ), or a combination thereof.
在一些其他的實施例中,第一介電層202包括高介電常數(high-k)介電材料(例如:介電常數大於3.9之材料)。舉例而言,上述高介電常數介電材料可包括HfO2、LaO、AlO、ZrO、TiO、Ta2O5、Y2O3、SrTiO3、BaTiO3、BaZrO、HfZrO、HfLaO、HfTaO、HfSiO、HfSiON、HfTiO、LaSiO、AlSiO、(Ba,Sr)TiO3、Al2O3、其他適當的高介電常數介電材料或上述之組合。舉例而言,可經由化學氣相沉積製程、原子層沉積(atomic layer deposition,ALD)製程、物理氣相沉積(physical vapor deposition,PVD)製程、其他適當的製程或上述之組合形成上述高介電常數介電層。舉例而言,上述化學氣相沉積製程可為電漿輔助化學氣相沉積(plasma enhanced chemical vapor deposition,PECVD)製程或有機金屬化學氣相沉積(metalorganic chemical vapor deposition,MOCVD)製程。舉例而言,上述原子層沉積製程可為電漿輔助原子層沉積(plasma enhanced atomic layer deposition,PEALD)製程。舉例而言,上述物理氣相沉積製程可為真空蒸鍍製程(vacuum evaporation process)或濺鍍製程(sputtering process)。 In some other embodiments, the first dielectric layer 202 comprises a high-k dielectric material (eg, a material having a dielectric constant greater than 3.9). For example, the above high-k dielectric material may include HfO 2 , LaO, AlO, ZrO, TiO, Ta 2 O 5 , Y 2 O 3 , SrTiO 3 , BaTiO 3 , BaZrO, HfZrO, HfLaO, HfTaO, HfSiO. HfSiON, HfTiO, LaSiO, AlSiO, (Ba, Sr)TiO 3 , Al 2 O 3 , other suitable high dielectric constant dielectric materials or combinations thereof. For example, the high dielectric can be formed by a chemical vapor deposition process, an atomic layer deposition (ALD) process, a physical vapor deposition (PVD) process, other suitable processes, or a combination thereof. Constant dielectric layer. For example, the chemical vapor deposition process may be a plasma enhanced chemical vapor deposition (PECVD) process or a metalorganic chemical vapor deposition (MOCVD) process. For example, the above atomic layer deposition process may be a plasma enhanced atomic layer deposition (PEALD) process. For example, the physical vapor deposition process described above may be a vacuum evaporation process or a sputtering process.
在一些實施例中,第一介電層202之厚度T1可為 50Å至300Å,但本揭露不以此為限。 In some embodiments, the thickness T1 of the first dielectric layer 202 can be 50Å to 300Å, but this disclosure is not limited to this.
接著,如第3圖所示,形成第一導電層302於第一介電層202之上。在本實施例中,第一導電層302包括多晶矽。在其他的實施例中,第一導電層302可包括金屬(例如:鎢、鈦、鋁、銅、鉬、鎳、鉑、類似之材料或上述之組合)、金屬合金、金屬氮化物(例如:氮化鎢、氮化鉬、氮化鈦、氮化鉭、類似之材料或上述之組合)、金屬矽化物(例如:矽化鎢、矽化鈦、矽化鈷、矽化鎳、矽化鉑、矽化鉺、類似之材料或上述之組合)、金屬氧化物(例如:氧化釕、氧化銦、類似之材料或上述之組合)、其他適當的材料或上述之組合。 Next, as shown in FIG. 3, a first conductive layer 302 is formed over the first dielectric layer 202. In the present embodiment, the first conductive layer 302 includes polysilicon. In other embodiments, the first conductive layer 302 may comprise a metal (eg, tungsten, titanium, aluminum, copper, molybdenum, nickel, platinum, a similar material, or a combination thereof), a metal alloy, a metal nitride (eg, Tungsten nitride, molybdenum nitride, titanium nitride, tantalum nitride, similar materials or combinations thereof, metal telluride (for example: tungsten telluride, titanium telluride, cobalt telluride, nickel telluride, platinum telluride, antimony telluride, similar A material or a combination thereof, a metal oxide (e.g., yttria, indium oxide, a similar material, or a combination thereof), other suitable materials, or a combination thereof.
舉例而言,可經由化學氣相沉積製程(例如:低壓化學氣相沉積製程(LPCVD)或電漿輔助化學氣相沉積製程)、物理氣相沉積製程(例如:真空蒸鍍製程或濺鍍製程)、其他適當的製程或上述之組合形成第一導電層302。 For example, a chemical vapor deposition process (eg, a low pressure chemical vapor deposition process (LPCVD) or a plasma assisted chemical vapor deposition process), a physical vapor deposition process (eg, a vacuum evaporation process or a sputtering process) The first conductive layer 302 is formed by other suitable processes or a combination thereof.
在一些實施例中,第一導電層302之厚度T2可為0.05至0.5μm,但本揭露不以此為限。 In some embodiments, the thickness T2 of the first conductive layer 302 may be 0.05 to 0.5 μm, but the disclosure is not limited thereto.
接著,如第4圖所示,形成罩幕層402於第一導電層302之上,且於罩幕層402中形成開口404。開口402可具有相對之側壁404a與404b。如第4圖所示,開口404露出導電層302之一部分。在一些實施例中,開口404所露出之導電層302之部分將成為分離式閘極快閃記憶體元件之浮置閘極,於後文將對此詳細說明。 Next, as shown in FIG. 4, a mask layer 402 is formed over the first conductive layer 302, and an opening 404 is formed in the mask layer 402. The opening 402 can have opposing side walls 404a and 404b. As shown in FIG. 4, the opening 404 exposes a portion of the conductive layer 302. In some embodiments, a portion of the conductive layer 302 exposed by the opening 404 will be the floating gate of the split gate flash memory device, as will be described in more detail below.
在一些實施例中,罩幕層402可包括氮化矽、氮氧化矽(silicon oxynitride)、其他適當的材料或上述之組合。舉例 而言,可以低壓化學氣相沉積製程、電漿輔助化學氣相沉積製程、其他適當的製程或上述之組合形成罩幕層402。舉例而言,罩幕層402的厚度T3可為0.1至0.5μm,但本揭露不以此為限。 In some embodiments, the mask layer 402 can comprise tantalum nitride, silicon oxynitride, other suitable materials, or a combination thereof. For example, the mask layer 402 can be formed by a low pressure chemical vapor deposition process, a plasma assisted chemical vapor deposition process, other suitable processes, or a combination thereof. For example, the thickness T3 of the mask layer 402 may be 0.1 to 0.5 μm , but the disclosure is not limited thereto.
在一些實施例中,可以圖案化製程於罩幕層402中形成開口404。舉例而言,上述圖案化製程可包括微影製程(例如:光阻塗佈(photoresist coating)、軟烘烤(soft baking)、光罩對準(mask aligning)、曝光(exposure)、曝光後烘烤(post-exposure baking)、光阻顯影(developing photoresist)、其他適當的製程或上述之組合)、蝕刻製程(例如:濕式蝕刻製程、乾式蝕刻製程、其他適當的製程或上述之組合)、其他適當的製程或上述之組合。在一些實施例中,可以微影製程形成具有對應開口404之開口的圖案化光阻層(未繪示於圖中)於罩幕層402上,接著進行蝕刻製程移除上述圖案化光阻層之開口所露出之罩幕層402之部分以於罩幕層402中形成開口404。 In some embodiments, the opening 404 can be formed in the mask layer 402 by a patterning process. For example, the above patterning process may include a lithography process (eg, photoresist coating, soft baking, mask aligning, exposure, post-exposure bake) Post-exposure baking, developing photoresist, other suitable processes, or combinations thereof, etching processes (eg, wet etching processes, dry etching processes, other suitable processes, or combinations thereof), Other suitable processes or combinations of the above. In some embodiments, a patterned photoresist layer (not shown) having an opening corresponding to the opening 404 may be formed on the mask layer 402 by a lithography process, followed by an etching process to remove the patterned photoresist layer. A portion of the mask layer 402 exposed by the opening forms an opening 404 in the mask layer 402.
接著,如第5圖所示,形成第二導電層502於罩幕層402以及開口404所露出之第一導電層302之部分上。開口404中的第二導電層502將被異向性地回蝕刻(anisotropically etched back)以於開口404之相對側壁404a與404b上形成導電間隔物。在本實施例中,第二導電層502包括多晶矽。在其他的實施例中,第二導電層502可包括金屬(例如:鎢、鈦、鋁、銅、鉬、鎳、鉑、類似之材料或上述之組合)、金屬合金、金屬氮化物(例如:氮化鎢、氮化鉬、氮化鈦、氮化鉭、類似之材料或上述之組合)、金屬矽化物(例如:矽化鎢、矽化鈦、矽化鈷、矽化鎳、矽化鉑、矽化鉺、類似之材料或上述之組合)、金屬氧 化物(例如:氧化釕、氧化銦、類似之材料或上述之組合)、其他適當的材料或上述之組合。 Next, as shown in FIG. 5, a second conductive layer 502 is formed on the mask layer 402 and a portion of the first conductive layer 302 exposed by the opening 404. The second conductive layer 502 in the opening 404 will be anisotropically etched back to form conductive spacers on the opposing sidewalls 404a and 404b of the opening 404. In the present embodiment, the second conductive layer 502 includes polysilicon. In other embodiments, the second conductive layer 502 may comprise a metal (eg, tungsten, titanium, aluminum, copper, molybdenum, nickel, platinum, a similar material, or a combination thereof), a metal alloy, a metal nitride (eg, Tungsten nitride, molybdenum nitride, titanium nitride, tantalum nitride, similar materials or combinations thereof, metal telluride (for example: tungsten telluride, titanium telluride, cobalt telluride, nickel telluride, platinum telluride, antimony telluride, similar Material or combination of the above), metal oxygen A compound (e.g., yttria, indium oxide, a similar material, or a combination thereof), other suitable materials, or a combination thereof.
舉例而言,可以化學氣相沉積製程(例如:低壓化學氣相沉積製程或電漿輔助化學氣相沉積製程)、物理氣相沉積製程(例如:真空蒸鍍製程或濺鍍製程)、其他適當的製程或上述之組合形成第二導電層502。 For example, a chemical vapor deposition process (eg, a low pressure chemical vapor deposition process or a plasma assisted chemical vapor deposition process), a physical vapor deposition process (eg, a vacuum evaporation process or a sputtering process), other appropriate The process or combination of the above forms a second conductive layer 502.
在一些實施例中,第一導電層302與第二導電層502可包括相同的材料(例如:於本實施例中,第一導電層302與第二導電層502都包括多晶矽)。然而,在其他的實施例中,第一導電層302與第二導電層502可包括不同的材料。 In some embodiments, the first conductive layer 302 and the second conductive layer 502 may include the same material (for example, in the embodiment, the first conductive layer 302 and the second conductive layer 502 both include polysilicon). However, in other embodiments, the first conductive layer 302 and the second conductive layer 502 may comprise different materials.
舉例而言,第二導電層502的厚度T4可為0.1至0.4μm,但本揭露不以此為限。 For example, the thickness T4 of the second conductive layer 502 may be 0.1 to 0.4 μm , but the disclosure is not limited thereto.
接著,如第6圖所示,異向性地回蝕刻第二導電層502以形成分離式閘極快閃記憶體元件之浮置閘極之導電間隔物602a與602b於開口404之相對側壁404a與404b以及開口404所露出之第一導電層302之部分之頂表面302t上。導電間隔物602a與602b以及開口404下方之導電層302之部分將共同充當分離式閘極快閃記憶體元件的浮置閘極。 Next, as shown in FIG. 6, the second conductive layer 502 is anisotropically etched back to form the conductive spacers 602a and 602b of the floating gate of the split gate flash memory device at opposite sidewalls 404a of the opening 404. And 404b and a portion of the top surface 302t of the portion of the first conductive layer 302 exposed by the opening 404. The conductive spacers 602a and 602b and portions of the conductive layer 302 under the opening 404 will collectively function as a floating gate of the split gate flash memory device.
在一些實施例中,可以乾式蝕刻製程(例如:電漿蝕刻製程或反應式離子蝕刻製程)異向性地回蝕刻第二導電層502。 In some embodiments, the second conductive layer 502 can be anisotropically etched back by a dry etch process (eg, a plasma etch process or a reactive ion etch process).
在一些實施例中,在上述回蝕刻製程之後,導電間隔物602a可具有第一傾斜側壁602a’,而導電間隔物602b可具有面對第一傾斜側壁602a’的第二傾斜側壁602b’(如第6圖所 示)。 In some embodiments, after the etch back process described above, the conductive spacer 602a can have a first sloped sidewall 602a', and the conductive spacer 602b can have a second sloped sidewall 602b' that faces the first sloped sidewall 602a' (eg, Figure 6 Show).
在一些實施例中,在回蝕刻製程之後,成對之導電間隔物602a與602b低於罩幕層402之頂表面,這可有利於後續之形成分離式閘極快閃記憶體元件之浮置閘極的製程,於後文將對此詳細說明。舉例而言,導電間隔物602a與602b之任一者的高度h可為0.08至0.33μm,而高度h與罩幕層402之厚度T3的比值可為0.6至0.95。 In some embodiments, after the etch back process, the pair of conductive spacers 602a and 602b are lower than the top surface of the mask layer 402, which may facilitate subsequent formation of the floating of the split gate flash memory device. The process of the gate will be described in detail later. For example, the height h of any of the conductive spacers 602a and 602b may be 0.08 to 0.33 μm , and the ratio of the height h to the thickness T3 of the mask layer 402 may be 0.6 to 0.95.
接著,如第7圖所示,形成介電材料702以填充開口404。介電材料702不同於罩幕層402與第一導電層302之材料,且將於後續之形成分離式閘極快閃記憶體元件之浮置閘極的製程中被用來充當蝕刻罩幕。 Next, as shown in FIG. 7, a dielectric material 702 is formed to fill the opening 404. The dielectric material 702 is different from the material of the mask layer 402 and the first conductive layer 302 and will be used as an etch mask in the subsequent process of forming the floating gate of the split gate flash memory device.
在本實施例中,介電材料702包括氧化矽。在其他的實施例中,介電材料702可包括HfO2、LaO、AlO、ZrO、TiO、Ta2O5、Y2O3、SrTiO3、BaTiO3、BaZrO、HfZrO、HfLaO、HfTaO、HfSiO、HfSiON、HfTiO、LaSiO、AlSiO、(Ba,Sr)TiO3、Al2O3、其他適當的高介電常數介電材料或上述之組合。 In the present embodiment, the dielectric material 702 includes yttrium oxide. In other embodiments, the dielectric material 702 may include HfO 2 , LaO, AlO, ZrO, TiO, Ta 2 O 5 , Y 2 O 3 , SrTiO 3 , BaTiO 3 , BaZrO, HfZrO, HfLaO, HfTaO, HfSiO, HfSiON, HfTiO, LaSiO, AlSiO, (Ba, Sr)TiO 3 , Al 2 O 3 , other suitable high dielectric constant dielectric materials or combinations thereof.
在一些實施例中,可過填充(overfill)開口404,然後進行平坦化製程以形成介電材料702。舉例而言,可進行化學氣相沉積製程(例如:電漿輔助化學氣相沉積製程或有機金屬化學氣相沉積製程)、旋轉塗佈製程(spin-on coating process)、原子層沉積製程(例如:電漿輔助原子層沉積製程)、物理氣相沉積製程(例如:真空蒸鍍製程或濺鍍製程)、其他適當的製程或上述之組合以於罩幕層402上形成一介電層(未繪示於圖中)以過填充開口404,接著可進行回蝕刻製程或化學機械研磨製程 (chemical-mechanical-polishing(CMP)process)以移除開口404外之上述介電層之部分,而開口404中之上述介電層的殘留部分則作為介電材料702。 In some embodiments, the opening 404 can be overfilled and then planarized to form a dielectric material 702. For example, a chemical vapor deposition process (eg, a plasma-assisted chemical vapor deposition process or an organometallic chemical vapor deposition process), a spin-on coating process, an atomic layer deposition process (eg, : a plasma-assisted atomic layer deposition process, a physical vapor deposition process (eg, a vacuum evaporation process or a sputtering process), other suitable processes, or a combination thereof to form a dielectric layer on the mask layer 402 (not Illustrated in the figure) to overfill the opening 404, followed by an etch back process or a chemical mechanical polishing process A chemical-mechanical-polishing (CMP) process is performed to remove portions of the dielectric layer outside the opening 404, and a residual portion of the dielectric layer in the opening 404 is used as the dielectric material 702.
在一些實施例中,如第7圖所示,在進行上述化學機械研磨製程或回蝕刻製程之後,介電材料702可具有大抵上平坦的頂表面702t,其可與罩幕層402之頂表面齊平。 In some embodiments, as shown in FIG. 7, the dielectric material 702 may have a substantially flat top surface 702t that may be adjacent to the top surface of the mask layer 402 after performing the above-described CMP process or etchback process. Qi Ping.
在一些實施例中,如第7圖所示,介電材料702具有大抵上平坦的底表面702b,其可直接接觸開口404下方之第一導電層302之部分的頂表面302t。 In some embodiments, as shown in FIG. 7, dielectric material 702 has a substantially flat bottom surface 702b that can directly contact top surface 302t of a portion of first conductive layer 302 below opening 404.
接著,如第8圖所示,可以蝕刻製程(例如:濕式蝕刻製程或乾式蝕刻製程)或其他適當的製程移除罩幕層402以及罩幕層402下方之第一導電層302之部分,但成對之導電間隔物602a與602b以及開口404下方之第一導電層302之部分則留在第一介電層202上以作為浮置閘極802(亦即,浮置閘極802包括開口404下方之第一導電層302之部分以及成對之導電間隔物602a與602b)。應注意的是,於本揭露之後續段落中,留在第一介電層202上之第一導電層302之部分亦可稱作浮置閘極802之導電層304。 Next, as shown in FIG. 8, an etching process (eg, a wet etching process or a dry etching process) or other suitable process removal mask layer 402 and portions of the first conductive layer 302 under the mask layer 402 may be performed, However, the pair of conductive spacers 602a and 602b and portions of the first conductive layer 302 under the opening 404 remain on the first dielectric layer 202 as the floating gate 802 (i.e., the floating gate 802 includes an opening). Portions of the first conductive layer 302 below 404 and pairs of conductive spacers 602a and 602b). It should be noted that in the subsequent paragraphs of the present disclosure, the portion of the first conductive layer 302 remaining on the first dielectric layer 202 may also be referred to as the conductive layer 304 of the floating gate 802.
回來參照第7圖,介電材料702可於形成浮置閘極802之蝕刻製程中被用來充當蝕刻罩幕。在一些實施例中,導電間隔物602a與602b低於罩幕層402之頂表面,因此介電材料702可具有實質上位於導電間隔物602a與602b之頂部上的部分702a而可保護導電間隔物602a與602b免於蝕刻之損害。 Referring back to FIG. 7, dielectric material 702 can be used to serve as an etch mask in an etch process that forms floating gate 802. In some embodiments, the conductive spacers 602a and 602b are lower than the top surface of the mask layer 402, such that the dielectric material 702 can have portions 702a substantially on top of the conductive spacers 602a and 602b to protect the conductive spacers. 602a and 602b are protected from etching damage.
在一些實施例中,如第8圖所示,成對之導電間隔 物602a與602b係位於浮置閘極802之導電層304之相對頂端上。 In some embodiments, as shown in Figure 8, the paired conductive spacing Objects 602a and 602b are located on opposite ends of conductive layer 304 of floating gate 802.
如第8圖所示,導電間隔物602a與602b之任一者可具有底部寬度W1,而浮置閘極802之導電層304可具有頂部寬度W2。W1與W2的比值(亦即,W1/W2)可取決於h與T3之比值(亦即,h/T3)。在一些h與T3之比值接近1(例如:為0.8至1)的實施例中,W1與W2之比值可較小(例如:為0.3至0.425),但其生產成本較高。在一些h與T3之比值較小(例如:為0.3至0.7)的實施例中,W1與W2之比值可能較大(例如:大於0.485),但其間隔物尖端可能會不夠尖而降低抹除效率。因此,在本實施例中,導電間隔物602a與602b之底部寬度W1與浮置閘極802之導電層304之頂部寬度W2的比值為0.425至0.485而可避免上述缺點。 As shown in FIG. 8, any of the conductive spacers 602a and 602b may have a bottom width W1, and the conductive layer 304 of the floating gate 802 may have a top width W2. The ratio of W1 to W2 (i.e., W1/W2) may depend on the ratio of h to T3 (i.e., h/T3). In some embodiments where the ratio of h to T3 is close to one (e.g., 0.8 to 1), the ratio of W1 to W2 may be small (e.g., 0.3 to 0.425), but its production cost is high. In some embodiments where the ratio of h to T3 is small (eg, 0.3 to 0.7), the ratio of W1 to W2 may be large (eg, greater than 0.485), but the tip of the spacer may be less sharp and less erased. effectiveness. Therefore, in the present embodiment, the ratio of the bottom width W1 of the conductive spacers 602a and 602b to the top width W2 of the conductive layer 304 of the floating gate 802 is 0.425 to 0.485, which avoids the above disadvantages.
接下來,如第9圖所示,形成第二介電層902於第一介電層202、浮置閘極802之導電層304之側壁304’、導電間隔物602a與602b之側壁602a”與602b”以及介電材料702上。第二介電層902與介電材料702的一部分可充當分離式閘極快閃記憶體元件的閘極間介電層,於後文將對此詳細說明。在一些實施例中,由於第二介電層902係共形地形成於介電材料702之大抵上平坦的頂表面702t上,第二介電層902之頂表面902t可大抵上為平坦的。 Next, as shown in FIG. 9, the second dielectric layer 902 is formed on the first dielectric layer 202, the sidewall 304' of the conductive layer 304 of the floating gate 802, and the sidewall 602a of the conductive spacers 602a and 602b. 602b" and dielectric material 702. The second dielectric layer 902 and a portion of the dielectric material 702 can serve as an inter-gate dielectric layer of a separate gate flash memory component, as will be described in more detail below. In some embodiments, since the second dielectric layer 902 is conformally formed on the substantially flat top surface 702t of the dielectric material 702, the top surface 902t of the second dielectric layer 902 can be substantially flat.
在本實施例中,第二介電層902包括氧化矽。可以氧化製程(例如:乾式氧化製程或濕式氧化製程)、化學氣相沉積製程、其他適當的製程或上述之組合形成上述氧化矽。 In the present embodiment, the second dielectric layer 902 includes hafnium oxide. The above-described cerium oxide may be formed by an oxidation process (for example, a dry oxidation process or a wet oxidation process), a chemical vapor deposition process, other suitable processes, or a combination thereof.
在其他的實施例中,第二介電層902包括高介電常 數(high-k)介電材料(例如:介電常數大於3.9之材料)。舉例而言,上述高介電常數介電材料可包括HfO2、LaO、AlO、ZrO、TiO、Ta2O5、Y2O3、SrTiO3、BaTiO3、BaZrO、HfZrO、HfLaO、HfTaO、HfSiO、HfSiON、HfTiO、LaSiO、AlSiO、(Ba,Sr)TiO3、Al2O3、其他適當的高介電常數介電材料或上述之組合。舉例而言,可經由化學氣相沉積製程、原子層沉積製程、物理氣相沉積製程、其他適當的製程或上述之組合形成上述高介電常數介電層。舉例而言,上述化學氣相沉積製程可為電漿輔助化學氣相沉積製程或有機金屬化學氣相沉積製程。舉例而言,上述原子層沉積製程可為電漿輔助原子層沉積製程。舉例而言,上述物理氣相沉積製程可為真空蒸鍍製程或濺鍍製程。 In other embodiments, the second dielectric layer 902 comprises a high-k dielectric material (eg, a material having a dielectric constant greater than 3.9). For example, the above high-k dielectric material may include HfO 2 , LaO, AlO, ZrO, TiO, Ta 2 O 5 , Y 2 O 3 , SrTiO 3 , BaTiO 3 , BaZrO, HfZrO, HfLaO, HfTaO, HfSiO. HfSiON, HfTiO, LaSiO, AlSiO, (Ba, Sr)TiO 3 , Al 2 O 3 , other suitable high dielectric constant dielectric materials or combinations thereof. For example, the high-k dielectric layer described above may be formed via a chemical vapor deposition process, an atomic layer deposition process, a physical vapor deposition process, other suitable processes, or a combination thereof. For example, the above chemical vapor deposition process may be a plasma assisted chemical vapor deposition process or an organometallic chemical vapor deposition process. For example, the above atomic layer deposition process may be a plasma assisted atomic layer deposition process. For example, the physical vapor deposition process described above may be a vacuum evaporation process or a sputtering process.
舉例而言,第二介電層902之厚度T5可為50Å至250Å,但本揭露不以此為限。 For example, the thickness T5 of the second dielectric layer 902 may be 50 Å to 250 Å, but the disclosure is not limited thereto.
接著,如第10圖所示,形成控制閘極1002於第一介電層202、第二介電層902以及介電材料702上。在本實施例中,控制閘極1002包括多晶矽。在其他的實施例中,控制閘極1002可包括金屬(例如:鎢、鈦、鋁、銅、鉬、鎳、鉑、類似之材料或上述之組合)、金屬合金、金屬氮化物(例如:氮化鎢、氮化鉬、氮化鈦、氮化鉭、類似之材料或上述之組合)、金屬矽化物(例如:矽化鎢、矽化鈦、矽化鈷、矽化鎳、矽化鉑、矽化鉺、類似之材料或上述之組合)、金屬氧化物(例如:氧化釕、氧化銦、類似之材料或上述之組合)、其他適當的材料或上述之組合。 Next, as shown in FIG. 10, a control gate 1002 is formed on the first dielectric layer 202, the second dielectric layer 902, and the dielectric material 702. In the present embodiment, the control gate 1002 includes a polysilicon. In other embodiments, the control gate 1002 can comprise a metal (eg, tungsten, titanium, aluminum, copper, molybdenum, nickel, platinum, a similar material, or a combination thereof), a metal alloy, a metal nitride (eg, nitrogen) Tungsten, molybdenum nitride, titanium nitride, tantalum nitride, similar materials or combinations thereof, metal telluride (for example: tungsten telluride, titanium telluride, cobalt telluride, nickel telluride, platinum telluride, antimony telluride, similar A material or a combination thereof, a metal oxide (e.g., yttria, indium oxide, a similar material, or a combination thereof), other suitable materials, or a combination thereof.
舉例而言,可經由沉積製程以及隨後之圖案化製 程形成控制閘極1002。上述沉積製程可包括化學氣相沉積製程(例如:低壓化學氣相沉積製程或電漿輔助化學氣相沉積製程)、物理氣相沉積製程(例如:真空蒸鍍製程或濺鍍製程)、其他適當的製程或上述之組合。圖案化製程可包括蝕刻製程。 For example, via a deposition process and subsequent patterning The process forms a control gate 1002. The deposition process may include a chemical vapor deposition process (eg, a low pressure chemical vapor deposition process or a plasma assisted chemical vapor deposition process), a physical vapor deposition process (eg, a vacuum evaporation process or a sputtering process), other suitable Process or a combination of the above. The patterning process can include an etch process.
接著,如第11圖所示,可形成源極/汲極區102於半導體基板100中。控制閘極1002下方之半導體基板100中的通道區100a可分隔源極/汲極區102。在本實施例中,源極/汲極區102係摻雜有n型摻質。舉例而言,控制閘極1002可於佈植製程中被用來充當罩幕以將磷離子或砷離子佈植至控制閘極1002相對兩側之半導體基板100中,而形成摻質濃度為5x1017cm-3至5x1020cm-3的源極/汲極區102。在其他的實施例中,半導體基板100為n型矽基板,因此源極/汲極區102係摻雜有p型摻質(例如:硼、鋁、鎵、銦、其他適當的摻質或上述之組合),且源極/汲極區102之摻質濃度可為5x1017cm-3至5x1020cm-3。 Next, as shown in FIG. 11, the source/drain regions 102 may be formed in the semiconductor substrate 100. The channel region 100a in the semiconductor substrate 100 under the control gate 1002 can separate the source/drain regions 102. In this embodiment, the source/drain regions 102 are doped with an n-type dopant. For example, the control gate 1002 can be used as a mask in the implantation process to implant phosphorous or arsenic ions into the semiconductor substrate 100 on opposite sides of the control gate 1002 to form a dopant concentration of 5×10. Source/drain region 102 of 17 cm -3 to 5x10 20 cm -3 . In other embodiments, the semiconductor substrate 100 is an n-type germanium substrate, and thus the source/drain regions 102 are doped with a p-type dopant (eg, boron, aluminum, gallium, indium, other suitable dopants, or the like) The combination of the source/drain regions 102 may have a dopant concentration of 5 x 10 17 cm -3 to 5 x 10 20 cm -3 .
如第11圖所示,形成了分離式閘極快閃記憶體元件10。分離式閘極快閃記憶體元件10包括浮置閘極802,浮置閘極802包含導電層304以及成對之導電間隔物602a與602b。浮置閘極802下方之第一介電層202之部分202a可稱為浮置閘極介電層,而覆蓋浮置閘極802之第二介電層902之部分與介電材料702可稱為閘極間介電層1102。在一些實施例中,如第11圖所示,浮置閘極802可被浮置閘極介電層202a與閘極間介電層1102完全地包覆。如第11圖所示,閘極間介電層1102可覆蓋導電層304之側壁304’以及導電間隔物602a與602b之側壁602a”與602b”。 As shown in Fig. 11, a split gate flash memory device 10 is formed. The split gate flash memory device 10 includes a floating gate 802 that includes a conductive layer 304 and pairs of conductive spacers 602a and 602b. A portion 202a of the first dielectric layer 202 under the floating gate 802 may be referred to as a floating gate dielectric layer, and a portion of the second dielectric layer 902 covering the floating gate 802 and the dielectric material 702 may be referred to as It is an inter-gate dielectric layer 1102. In some embodiments, as shown in FIG. 11, the floating gate 802 can be completely covered by the floating gate dielectric layer 202a and the inter-gate dielectric layer 1102. As shown in FIG. 11, the inter-gate dielectric layer 1102 can cover the sidewalls 304' of the conductive layer 304 and the sidewalls 602a" and 602b" of the conductive spacers 602a and 602b.
綜合上述,本發明實施例之分離式閘極快閃記憶體元件包括浮置閘極。上述浮置閘極包含設置於導電層之頂表面上之成對的導電間隔物。上述成對之導電間隔物可增加浮置閘極與控制閘極之間的電流,因此可提升分離式閘極快閃記憶體元件的效能(例如:縮短抹除時間)。 In summary, the split gate flash memory device of the embodiment of the present invention includes a floating gate. The floating gate includes a pair of conductive spacers disposed on a top surface of the conductive layer. The pair of conductive spacers can increase the current between the floating gate and the control gate, thereby improving the performance of the split gate flash memory device (eg, shortening the erase time).
前述內文概述了許多實施例的特徵,使本技術領域中具有通常知識者可以從各個方面更佳地了解本發明實施例。本技術領域中具有通常知識者應可理解,且可輕易地以本發明實施例為基礎來設計或修飾其他製程及結構,並以此達到相同的目的及/或達到與在此介紹的實施例等相同之優點。本技術領域中具有通常知識者也應了解這些相等的結構並未背離本發明實施例的發明精神與範圍。在不背離本發明實施例的發明精神與範圍之前提下,可對本發明實施例進行各種改變、置換或修改。 The foregoing summary of the various embodiments of the invention may be Those skilled in the art will understand that other processes and structures can be readily designed or modified based on the embodiments of the present invention to achieve the same objectives and/or to achieve the embodiments described herein. The same advantages. Those of ordinary skill in the art should also understand that such equivalent structures are not departing from the spirit and scope of the invention. Various changes, permutations, or modifications may be made to the embodiments of the invention without departing from the spirit and scope of the invention.
此外,本揭露之每一請求項可為個別的實施例,且本揭露之範圍包括本揭露之每一請求項及每一實施例彼此之結合。 In addition, each of the claims of the present disclosure may be an individual embodiment, and the scope of the disclosure includes each of the claims and each embodiment of the disclosure.
此外,雖然前文揭露了一些本揭露的實施例,此些實施例並非用來限定本揭露的範圍。另外,並未說明本揭露實施例之所有優點。再者,在不背離本揭露實施例的發明精神與範圍之前提下,所屬領域具通常知識者可對本揭露實施例進行各種改變、置換或修改。因此,所保護之發明範圍應取決於申請專利範圍。 In addition, although the embodiments of the present disclosure are disclosed herein, the embodiments are not intended to limit the scope of the disclosure. In addition, not all advantages of the disclosed embodiments are described. Furthermore, various changes, permutations, or alterations may be made in the embodiments of the present disclosure without departing from the spirit and scope of the invention. Therefore, the scope of the claimed invention should depend on the scope of the patent application.
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107101533A TWI673855B (en) | 2018-01-16 | 2018-01-16 | Split-gate flash memory cell and method for forming the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107101533A TWI673855B (en) | 2018-01-16 | 2018-01-16 | Split-gate flash memory cell and method for forming the same |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201933584A true TW201933584A (en) | 2019-08-16 |
TWI673855B TWI673855B (en) | 2019-10-01 |
Family
ID=68315767
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW107101533A TWI673855B (en) | 2018-01-16 | 2018-01-16 | Split-gate flash memory cell and method for forming the same |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI673855B (en) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5970371A (en) * | 1998-07-06 | 1999-10-19 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method of forming sharp beak of poly to improve erase speed in split-gate flash EEPROM |
US6768162B1 (en) * | 2003-08-05 | 2004-07-27 | Powerchip Semiconductor Corp. | Split gate flash memory cell and manufacturing method thereof |
KR100558001B1 (en) * | 2003-09-23 | 2006-03-06 | 삼성전자주식회사 | Methods of fabricating a flash memory cell having spilt gate structure using spacer oxidation process |
TWI224357B (en) * | 2003-12-29 | 2004-11-21 | Vanguard Int Semiconduct Corp | Structure and method for protecting substrate of active area |
-
2018
- 2018-01-16 TW TW107101533A patent/TWI673855B/en active
Also Published As
Publication number | Publication date |
---|---|
TWI673855B (en) | 2019-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI646683B (en) | Semiconductor structure and method of forming same | |
TWI710116B (en) | Semiconductor device and manufacturing method thereof | |
US8101477B1 (en) | Method for making semiconductor device | |
CN105990442B (en) | Semiconductor devices and its manufacturing method | |
TWI723390B (en) | Flash memory structure with enhanced floating gate and method of forming the same | |
US11968828B2 (en) | Method of forming a semiconductor device with a dual gate dielectric layer having middle portion thinner than the edge portions | |
US8101492B2 (en) | Method for making semiconductor device | |
US10510897B2 (en) | Semiconductor device and manufacturing method thereof | |
US20210305387A1 (en) | Semiconductor structure with enlarged gate electrode structure and method for forming the same | |
TW201739050A (en) | Semiconductor device and manufacturing method thereof | |
US11177268B2 (en) | Memory device and manufacturing method thereof | |
US20210257361A1 (en) | Semiconductor device and manufacturing method thereof | |
US9418864B2 (en) | Method of forming a non volatile memory device using wet etching | |
CN110854194B (en) | Semiconductor structure and forming method thereof | |
TWI785537B (en) | Semiconductor device and method of forming thereof | |
US10629753B2 (en) | Split-gate flash memory cell and method for forming the same | |
TWI673855B (en) | Split-gate flash memory cell and method for forming the same | |
EP1969603B1 (en) | Sonos memory device with reduced short-channel effects | |
US20100200907A1 (en) | Semiconductor Integrated Circuit Device and Method of Fabricating the Same | |
US10622481B2 (en) | Method of rounding corners of a fin | |
US20200343371A1 (en) | Method of rounding fin-shaped structure | |
TWI713202B (en) | Flash memories and methods for forming the same | |
CN110690116A (en) | Semiconductor structure and manufacturing method thereof | |
CN110071111A (en) | Separated grid fast-flash memory element and forming method thereof | |
CN111524980A (en) | Flash memory and forming method thereof |