CN111524980A - Flash memory and forming method thereof - Google Patents

Flash memory and forming method thereof Download PDF

Info

Publication number
CN111524980A
CN111524980A CN201910104330.8A CN201910104330A CN111524980A CN 111524980 A CN111524980 A CN 111524980A CN 201910104330 A CN201910104330 A CN 201910104330A CN 111524980 A CN111524980 A CN 111524980A
Authority
CN
China
Prior art keywords
floating gate
dielectric layer
pair
flash memory
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910104330.8A
Other languages
Chinese (zh)
Inventor
恩凯特·库马
李家豪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vanguard International Semiconductor Corp
Original Assignee
Vanguard International Semiconductor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vanguard International Semiconductor Corp filed Critical Vanguard International Semiconductor Corp
Priority to CN201910104330.8A priority Critical patent/CN111524980A/en
Publication of CN111524980A publication Critical patent/CN111524980A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/01Manufacture or treatment
    • H10D30/021Manufacture or treatment of FETs having insulated gates [IGFET]
    • H10D30/0411Manufacture or treatment of FETs having insulated gates [IGFET] of FETs having floating gates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/68Floating-gate IGFETs
    • H10D30/681Floating-gate IGFETs having only two programming levels
    • H10D30/683Floating-gate IGFETs having only two programming levels programmed by tunnelling of carriers, e.g. Fowler-Nordheim tunnelling
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/68Floating-gate IGFETs
    • H10D30/6891Floating-gate IGFETs characterised by the shapes, relative sizes or dispositions of the floating gate electrode

Landscapes

  • Non-Volatile Memory (AREA)
  • Semiconductor Memories (AREA)

Abstract

本发明实施例提供一种快闪存储器及其形成方法。此快闪存储器包括半导体基板、位于半导体基板上的浮栅极结构、覆盖浮栅极结构的侧壁及顶表面的栅极间介电层、以及位于栅极间介电层上的控制栅极。上述浮栅极结构包括位于半导体基板上的浮栅极介电层、位于浮栅极介电层上的一对介电间隔物,其中此对介电间隔物具有朝向彼此的倾斜侧壁、以及位于浮栅极介电层上,且位于此对介电间隔物之间的浮栅极。上述浮栅极具有一对尖端,此对尖端分别位于介电间隔物的倾斜侧壁上。本发明提供的快闪存储器及其形成方法,能够缩短快闪存储器抹除时间,改善快闪存储器的性能。

Figure 201910104330

An embodiment of the present invention provides a flash memory and a method for forming the same. The flash memory includes a semiconductor substrate, a floating gate structure located on the semiconductor substrate, an inter-gate dielectric layer covering the sidewalls and top surface of the floating gate structure, and a control gate located on the inter-gate dielectric layer. The floating gate structure includes a floating gate dielectric layer located on the semiconductor substrate, a pair of dielectric spacers located on the floating gate dielectric layer, wherein the pair of dielectric spacers have inclined sidewalls facing each other, and a floating gate located on the floating gate dielectric layer and between the pair of dielectric spacers. The floating gate has a pair of tips, and the pair of tips are respectively located on the inclined sidewalls of the dielectric spacers. The flash memory and the method for forming the same provided by the present invention can shorten the erasing time of the flash memory and improve the performance of the flash memory.

Figure 201910104330

Description

快闪存储器及其形成方法Flash memory and method of forming the same

技术领域technical field

本发明实施例是关于半导体制造技术,特别是有关于快闪存储器及其形成方法。Embodiments of the present invention relate to semiconductor manufacturing technology, and in particular, to a flash memory and a method for forming the same.

背景技术Background technique

快闪存储器为非易失性的存储器的一种型态。一般而言,一个快闪存储器包含两个栅极,第一个栅极为储存数据的浮栅极(floating gate),而第二个栅极为进行数据的输入和输出的控制栅极(control gate)。浮栅极位于控制栅极的下方且为“漂浮”的状态。所谓漂浮是指以绝缘材料环绕且隔离浮栅极以防止电荷流失。控制栅极连接至字线(wordline,WL)以控制装置。快闪存储器的优点之一为可以区块-区块抹除数据(block-by-blockerasing)。快闪存储器广泛地用于企业伺服器、储存和网络科技,以及广泛的消费电子产品,例如随身碟(USB)快闪驱动装置、行动电话、数字相机、平板电脑、笔记型电脑的个人电脑插卡(PC cards)和嵌入式控制器等等。Flash memory is a type of non-volatile memory. Generally speaking, a flash memory includes two gates, the first gate is a floating gate for storing data, and the second gate is a control gate for data input and output . The floating gate is located below the control gate and is in a "floating" state. Floating means surrounding and isolating the floating gate with insulating material to prevent charge loss. The control gate is connected to a wordline (WL) to control the device. One of the advantages of flash memory is that it can block-by-block erasing data. Flash memory is widely used in enterprise server, storage, and networking technologies, as well as in a wide range of consumer electronics, such as USB flash drives, PC plug-ins for mobile phones, digital cameras, tablet computers, and notebook computers. Cards (PC cards) and embedded controllers, etc.

市场上可得到许多不同种类的非易失性存储器,例如快闪存储器、电子抹除式可复写只读存储器(electrically erasable programmable read-only memory,EEPROM)和多次写入(multi-time programmable,MTP)非易失性存储器。然而,嵌入式(embedded)快闪存储器,特别是嵌入式分离栅极(split-gate)快闪存储器,相较于其他的非易失性存储器的技术具有较大的优势。There are many different types of non-volatile memory available on the market, such as flash memory, electronically erasable programmable read-only memory (EEPROM), and multi-time programmable memory. MTP) non-volatile memory. However, embedded flash memory, especially embedded split-gate flash memory, has great advantages over other non-volatile memory technologies.

虽然现有的快闪存储器及其制造方法已足够应付它们原先预定的用途,但它们仍未在各个方面皆令人满意,因此快闪存储器的技术目前仍有需克服的问题。Although the existing flash memories and their manufacturing methods are sufficient for their original intended use, they are still not satisfactory in all aspects, so there are still problems to be overcome in the flash memory technology.

发明内容SUMMARY OF THE INVENTION

本发明实施例提供一种快闪存储器。此快闪存储器包括半导体基板、位于半导体基板上的浮栅极结构、覆盖浮栅极结构的侧壁及顶表面的栅极间介电层、以及位于栅极间介电层上的控制栅极。上述浮栅极结构包括位于半导体基板上的浮栅极介电层、位于浮栅极介电层上的一对介电间隔物,其中此对介电间隔物具有朝向彼此的倾斜侧壁、以及位于浮栅极介电层上,且位于此对介电间隔物之间的浮栅极。上述浮栅极具有一对尖端,此对尖端分别位于介电间隔物的倾斜侧壁上。Embodiments of the present invention provide a flash memory. The flash memory includes a semiconductor substrate, a floating gate structure on the semiconductor substrate, an inter-gate dielectric layer covering sidewalls and a top surface of the floating gate structure, and a control gate on the inter-gate dielectric layer . The floating gate structure described above includes a floating gate dielectric layer on a semiconductor substrate, a pair of dielectric spacers on the floating gate dielectric layer, wherein the pair of dielectric spacers have sloped sidewalls facing each other, and A floating gate on the floating gate dielectric layer and between the pair of dielectric spacers. The floating gate has a pair of tips, and the pair of tips are respectively located on the inclined sidewalls of the dielectric spacer.

本发明实施例提供一种快闪存储器的形成方法。此方法包括提供半导体基板、在半导体基板上形成遮罩层,其中遮罩层具有开口,此开口露出半导体基板的一部分、在开口中形成浮栅极结构、去除遮罩层、形成覆盖浮栅极结构的栅极间介电层、以及在栅极间介电层上形成控制栅极。上述形成浮栅极结构的步骤包括在半导体基板上形成浮栅极介电层,且在开口的相对侧壁上及在浮栅极介电层上形成一对介电间隔物、以及在开口中形成浮栅极,其中浮栅极设置在浮栅极介电层上,且浮栅极位于此对介电间隔物之间,且其中浮栅极具有一对尖端,此对尖端各别位于介电间隔物上。Embodiments of the present invention provide a method for forming a flash memory. The method includes providing a semiconductor substrate, forming a mask layer on the semiconductor substrate, wherein the mask layer has an opening that exposes a portion of the semiconductor substrate, forming a floating gate structure in the opening, removing the mask layer, and forming a covering floating gate an inter-gate dielectric layer of the structure, and a control gate is formed on the inter-gate dielectric layer. The above-described steps of forming a floating gate structure include forming a floating gate dielectric layer on a semiconductor substrate, and forming a pair of dielectric spacers on opposite sidewalls of the opening and on the floating gate dielectric layer, and forming a pair of dielectric spacers in the opening A floating gate is formed, wherein the floating gate is disposed on the floating gate dielectric layer, and the floating gate is located between the pair of dielectric spacers, and wherein the floating gate has a pair of tips, and the pair of tips are respectively located in the dielectric spacer on electrical spacers.

本发明提供的快闪存储器及其形成方法,能够缩短快闪存储器抹除时间,改善快闪存储器的性能。The flash memory and its forming method provided by the present invention can shorten the erasing time of the flash memory and improve the performance of the flash memory.

以下的实施例与所附的参考图式将提供详细的描述。The following examples and accompanying reference drawings will provide a detailed description.

附图说明Description of drawings

以下将配合所附图式详述本发明的一些实施例。应注意的是,依据在业界的标准做法,各种部件并未按照比例绘制且仅用以说明例示。事实上,可能任意地放大或缩小元件的尺寸,以清楚地表现出本发明实施例的部件。Some embodiments of the present invention will be described in detail below with the accompanying drawings. It should be noted that, in accordance with standard practice in the industry, the various features are not drawn to scale and are for illustration purposes only. In fact, the dimensions of elements may be arbitrarily enlarged or reduced to clearly represent components of the embodiments of the invention.

图1-图9是根据一些实施例,绘示出用于形成图9的快闪存储器的示例方法的各个中间阶段的剖面示意图。1-9 are cross-sectional schematic diagrams illustrating various intermediate stages of an example method for forming the flash memory of FIG. 9, according to some embodiments.

图10、图11是根据一些实施例,绘示出用于形成图11的快闪存储器的另一示例方法的各个中间阶段的剖面示意图。10 and 11 are schematic cross-sectional views illustrating various intermediate stages of another example method for forming the flash memory of FIG. 11, according to some embodiments.

附图标记:Reference number:

10、20~快闪存储器;10, 20~flash memory;

100~半导体基板;100~semiconductor substrate;

102~遮罩层;102~mask layer;

104~开口;104 ~ opening;

106~第一介电层;106~the first dielectric layer;

108~第二介电层;108~the second dielectric layer;

110a、110b~介电间隔物;110a, 110b~dielectric spacers;

110a’、110b’~侧壁;110a', 110b'~side walls;

110c~浮栅极介电层;110c~floating gate dielectric layer;

120、120’~浮栅极;120, 120'~floating gate;

120a、120b、120a’、120b’~尖端;120a, 120b, 120a', 120b' ~ tip;

120s、120s’~顶表面;120s, 120s’ ~ top surface;

140~氧化物结构;140~oxide structure;

200、200’~浮栅极结构;200, 200'~floating gate structure;

220~栅极间介电层;220 ~ inter-gate dielectric layer;

300~控制栅极;300~Control grid;

400~源极/漏极区;400~source/drain region;

W1、W2~底部宽度。W1, W2 ~ Bottom width.

具体实施方式Detailed ways

以下的揭示内容提供许多不同的实施例或范例,以展示本发明实施例的不同部件。以下将揭示本说明书各部件及其排列方式的特定范例,用以简化本发明叙述。当然,这些特定范例并非用于限定本发明。例如,若是本说明书以下的发明内容叙述了将形成第一部件于第二部件之上或上方,即表示其包括了所形成的第一及第二部件是直接接触的实施例,亦包括了尚可将附加的部件形成于上述第一及第二部件之间,则第一及第二部件为未直接接触的实施例。此外,本发明说明中的各式范例可能使用重复的参照符号及/或用字。这些重复符号或用字的目的在于简化与清晰,并非用以限定各式实施例及/或所述配置之间的关系。The following disclosure provides many different embodiments or examples to illustrate different components of embodiments of the invention. The following will disclose specific examples of the various components of the present specification and their arrangement, so as to simplify the description of the present invention. Of course, these specific examples are not intended to limit the invention. For example, if the following summary of the present specification describes that the first part is formed on or above the second part, it means that it includes the embodiment in which the first and second parts are formed in direct contact, and also includes further Additional components may be formed between the first and second components described above, the first and second components being embodiments that are not in direct contact. Furthermore, the various examples in the description may use repeated reference symbols and/or wording. These repeated symbols or words are used for simplicity and clarity, and are not used to limit the relationships between the various embodiments and/or the configurations.

再者,为了方便描述图式中一元件或部件与另一(些)元件或部件的关系,可使用空间相对用语,例如“在…之下”、“下方”、“下部”、“上方”、“上部”及诸如此类用语。除了图式所绘示的方位外,空间相对用语亦涵盖使用或操作中的装置的不同方位。当装置被转向不同方位时(例如,旋转90度或者其他方位),则其中所使用的空间相对形容词亦将依转向后的方位来解释。应可理解的是,于本发明实施例所述的方法之前、之中、及/或之后可提供额外的操作,且在方法的其他实施例中,可替换或省略一些所述的操作。Furthermore, for convenience in describing the relationship of one element or component to another element or component(s) in the figures, spatially relative terms such as "below", "below", "lower", "above" may be used , "upper" and similar terms. In addition to the orientation depicted in the drawings, spatially relative terms also encompass different orientations of the device in use or operation. When the device is turned in a different orientation (eg, rotated 90 degrees or other orientations), the spatially relative adjectives used therein will also be interpreted according to the turned orientation. It should be understood that additional operations may be provided before, during, and/or after the method described in the embodiments of the present invention, and in other embodiments of the method, some of the described operations may be replaced or omitted.

在此,“约”、“大约”、“大抵”的用语通常表示在一给定值或范围的20%之内,较佳是10%之内,且更佳是5%之内,或3%之内,或2%之内,或1%之内,或0.5%之内。应注意的是,说明书中所提供的数量为大约的数量,亦即在没有特定说明“约”、“大约”、“大抵”的情况下,仍可隐含“约”、“大约”、“大抵”的含义。Herein, the terms "about", "approximately", "approximately" generally mean within 20%, preferably within 10%, and more preferably within 5% of a given value or range, or within 3% Within %, or within 2%, or within 1%, or within 0.5%. It should be noted that the quantities provided in the specification are approximate quantities, that is, “about”, “approximately” and “approximately” can still be implied without the specific description of “about”, “approximately” and “approximately”. probably" meaning.

此处描述示例方法及结构的一些变化。本领域技术人员将可容易理解在其他实施例的范围内可做其他的修改。虽然讨论的一些方法实施例以特定顺序进行,各式其他方法实施例可以另一合乎逻辑的顺序进行,且可包括少于或多于此处讨论的步骤。在一些图示中,其中所示的一些组件或部件的元件符号可被省略,以避免与其他组件或部件混淆;此是为了便于描绘此些图示。Several variations of example methods and structures are described herein. Those skilled in the art will readily appreciate that other modifications may be made within the scope of other embodiments. Although some method embodiments are discussed as being performed in a particular order, various other method embodiments can be performed in another logical order and can include fewer or more steps than those discussed herein. In some figures, reference numerals of some components or parts shown therein may be omitted to avoid confusion with other components or parts; this is to facilitate the depiction of such figures.

本发明实施例提供一种快闪存储器及其形成方法,特别是嵌入式分离栅极快闪存储器。在本发明一些实施例中,使用一对介电间隔物以创造出具有一对尖锐尖端的浮栅极。由于装置的抹除(erase)效率取决于尖端的尖锐程度,此对尖锐尖端可以改善分离栅极快闪存储器的性能。在本发明中将讨论根据本发明实施例的用于形成快闪存储器的方法。Embodiments of the present invention provide a flash memory and a method for forming the same, particularly an embedded split gate flash memory. In some embodiments of the invention, a pair of dielectric spacers is used to create a floating gate with a pair of sharp tips. Since the erase efficiency of the device depends on the sharpness of the tips, the pair of sharp tips can improve the performance of the split gate flash memory. A method for forming a flash memory according to an embodiment of the present invention will be discussed in this disclosure.

图1-图9是根据一些实施例,绘示出用于形成图9的快闪存储器10的示例方法的各个中间阶段的剖面示意图。1-9 are cross-sectional schematic diagrams illustrating various intermediate stages of an example method for forming the flash memory 10 of FIG. 9, according to some embodiments.

图1根据本发明实施例绘示出形成快闪存储器10的方法的起始步骤。如图1所示,提供半导体基板100。上述基板100可以为或包括块体半导体(bulk semiconductor)基板、绝缘体上覆半导体(semiconductor-on-insulator,SOI)基板或类似基板,其可为掺杂(例如,使用p-型或n-型掺质(dopant))或未掺杂的。一般而言,绝缘体上覆半导体基板包括形成于绝缘体上的半导体材料的膜层。举例来说,此绝缘层可为,埋藏氧化物(buried oxide,BOX)层、氧化硅(silicon oxide)层、或类似膜层。提供上述绝缘层于基板上,通常是硅(silicon)或玻璃(glass)基板。亦可使用其他基板,例如多层(multi-layered)或梯度(gradient)基板。在一些实施例中,半导体基板的半导体材料可包括含硅(silicon,Si)或锗(germanium,Ge)的元素半导体;包括碳化硅(silicon carbide)、砷化镓(galliumarsenic)、磷化镓(gallium phosphide)、磷化铟(indium phosphide)、砷化铟(indiumarsenide)或锑化铟(indium antimonide)的化合物(compound)半导体;包括SiGe、GaAsP、AlInAs、AlGaAs、GaInAs、GaInP、或GaInAsP的合金半导体;或上述的组合。FIG. 1 illustrates initial steps of a method of forming a flash memory 10 according to an embodiment of the present invention. As shown in FIG. 1, a semiconductor substrate 100 is provided. The substrate 100 described above may be or include a bulk semiconductor substrate, a semiconductor-on-insulator (SOI) substrate, or the like, which may be doped (eg, using p-type or n-type) doped (dopant) or undoped. In general, a semiconductor-on-insulator substrate includes a layer of semiconductor material formed on an insulator. For example, the insulating layer may be a buried oxide (BOX) layer, a silicon oxide (silicon oxide) layer, or the like. The above-mentioned insulating layer is provided on a substrate, which is usually a silicon (silicon) or glass (glass) substrate. Other substrates may also be used, such as multi-layered or gradient substrates. In some embodiments, the semiconductor material of the semiconductor substrate may include elemental semiconductors containing silicon (Si) or germanium (Ge); including silicon carbide (silicon carbide), gallium arsenide (gallium arsenic), gallium phosphide ( Compound semiconductors of gallium phosphide, indium phosphide, indiumarsenide, or indium antimonide; including alloys of SiGe, GaAsP, AlInAs, AlGaAs, GaInAs, GaInP, or GaInAsP semiconductor; or a combination of the above.

在一些实施例中,半导体基板100为p型硅基板。举例来说,p型硅基板100的掺质可包括硼(boron)、铝(aluminum)、镓(gallium)、铟(indium)、其他适当的掺质、或上述的组合,且p型硅基板100的掺质浓度可为5x1014至5x1016cm-3。在其他的实施例中,半导体基板100可为n型硅基板。举例来说,n型硅基板100的掺质可包括砷(arsenic)、磷(phosphorus)、锑(antimony)、其他适当的掺质或上述的组合,且n型硅基板100的掺质浓度可为5x1014至5x1016cm-3。后文的实施例将以使用p型硅基板100为例进行说明,但本发明并不以此为限。In some embodiments, the semiconductor substrate 100 is a p-type silicon substrate. For example, the dopant of the p-type silicon substrate 100 may include boron, aluminum, gallium, indium, other suitable dopants, or a combination thereof, and the p-type silicon substrate The dopant concentration of 100 can be 5x1014 to 5x1016 cm -3 . In other embodiments, the semiconductor substrate 100 may be an n-type silicon substrate. For example, the dopant of the n-type silicon substrate 100 may include arsenic, phosphorus, antimony, other suitable dopants, or a combination thereof, and the dopant concentration of the n-type silicon substrate 100 may be 5x1014 to 5x1016cm -3 . The following embodiments will be described by using the p-type silicon substrate 100 as an example, but the present invention is not limited thereto.

接下来,如图2所示,在半导体基板100上形成遮罩层102,且在遮罩层102中形成开口104。如图2所示,藉由开口104暴露一部分的半导体基板100,且上述开口104是形成以定义将于后形成的浮栅极结构的位置。Next, as shown in FIG. 2 , a mask layer 102 is formed on the semiconductor substrate 100 , and openings 104 are formed in the mask layer 102 . As shown in FIG. 2, a portion of the semiconductor substrate 100 is exposed through the opening 104, and the opening 104 is formed to define the position of the floating gate structure to be formed later.

在一些实施例中,遮罩层102可以包括氮化物(nitride),例如氮化硅(siliconnitride)、氮氧化硅(silicon oxynitride)、其他适当的材料、或上述的组合。举例来说,可以藉由低压化学气相沉积(low-pressure chemical vapor deposition,LPCVD)工艺、等离子增强化学气相沉积(plasma-enhanced chemical vapor deposition,PECVD)工艺、其他适当的工艺、或上述的组合来形成遮罩层102。举例来说,遮罩层102的厚度可为0.1微米至1微米,但不以此为限。In some embodiments, the mask layer 102 may include a nitride, such as silicon nitride, silicon oxynitride, other suitable materials, or a combination thereof. For example, it can be formed by a low-pressure chemical vapor deposition (LPCVD) process, a plasma-enhanced chemical vapor deposition (PECVD) process, other suitable processes, or a combination thereof. A mask layer 102 is formed. For example, the thickness of the mask layer 102 may be 0.1 micrometer to 1 micrometer, but not limited thereto.

在一些实施例中,可以藉由图案化工艺以在遮罩层102中形成开口104。举例来说,上述图案化工艺可以包括光刻工艺(例如,光刻胶涂布(photoresist coating)、软烘烤、遮罩对准(mask aligning)、曝光、曝光后烘烤、光刻胶显影、其他适当的工艺、或上述的组合)、腐蚀工艺(例如,湿式腐蚀工艺、干式腐蚀工艺、其他适当的工艺、或上述的组合)、其他适当的工艺、或上述的组合。在一些实施例中,可以藉由光刻工艺以在遮罩层102上形成具有对应于开口104的开口的图案化光刻胶层(未绘示),接着可以进行腐蚀工艺来去除上述图案化光刻胶层的开口所露出的部分遮罩层102,以在遮罩层102中形成开口104。In some embodiments, the openings 104 may be formed in the mask layer 102 by a patterning process. For example, the patterning process described above may include a photolithography process (eg, photoresist coating, soft bake, mask aligning, exposure, post exposure bake, photoresist development) , other suitable processes, or combinations of the above), etching processes (eg, wet etch processes, dry etch processes, other suitable processes, or combinations of the above), other suitable processes, or combinations of the above. In some embodiments, a patterned photoresist layer (not shown) having openings corresponding to the openings 104 may be formed on the mask layer 102 by a photolithography process, and then an etching process may be performed to remove the patterning A portion of the mask layer 102 exposed by the opening of the photoresist layer to form an opening 104 in the mask layer 102 .

图3绘示出第一介电层106的形成。第一介电层106顺应性地形成于遮罩层102之上,因此第一介电层106沿着开口104的相对侧壁及底表面。在后续工艺中,位于开口104的底表面的第一介电层106将作为浮栅极介电层110c,且位于开口104的相对侧壁的第一介电层106将作为一部分的介电间隔物110a及110b(没有绘示于图3中,但可参照下述关于图5的说明)。FIG. 3 illustrates the formation of the first dielectric layer 106 . The first dielectric layer 106 is conformally formed over the mask layer 102 , so that the first dielectric layer 106 is along opposite sidewalls and bottom surfaces of the opening 104 . In subsequent processes, the first dielectric layer 106 on the bottom surface of the opening 104 will serve as the floating gate dielectric layer 110c, and the first dielectric layer 106 on the opposite sidewalls of the opening 104 will serve as a part of the dielectric spacer Objects 110a and 110b (not shown in FIG. 3, but can refer to the description of FIG. 5 below).

在一些实施例中,第一介电层106可以为氧化硅、氮化硅、氮氧化硅、高介电常数(high-k)介电材料、或其它任何适合的介电材料、或上述的组合。此高介电常数(high-k)介电材料的材料可以为金属氧化物、金属氮化物、金属硅化物、过渡金属氧化物、过渡金属氮化物、过渡金属硅化物、金属的氮氧化物、金属铝酸盐、锆硅酸盐、锆铝酸盐。举例来说,此高介电常数(high-k)介电材料可为LaO、AlO、ZrO、TiO、Ta2O5、Y2O3、SrTiO3(STO)、BaTiO3(BTO)、BaZrO、HfO2、HfO3、HfZrO、HfLaO、HfSiO、HfSiON、LaSiO、AlSiO、HfTaO、HfTiO、HfTaTiO、HfAlON、(Ba,Sr)TiO3(BST)、Al2O3、其它适当材料的其它高介电常数介电材料、或上述组合。在一些实施例中,可藉由化学气相沉积工艺(例如,等离子增强化学气相沉积(plasma-enhanced chemical vapor deposition,PECVD)工艺、或有机金属化学气相沉积(metalorganic chemical vapor deposition,MOCVD)工艺)、原子层沉积(atomic layerdeposition,ALD)工艺(例如,等离子增强原子层沉积(plasma enhanced atomic layerdeposition,PEALD)工艺)、其他适当的工艺、或上述的组合来形成第一介电层106。In some embodiments, the first dielectric layer 106 may be silicon oxide, silicon nitride, silicon oxynitride, high-k dielectric material, or any other suitable dielectric material, or the above combination. The high dielectric constant (high-k) dielectric material can be metal oxide, metal nitride, metal silicide, transition metal oxide, transition metal nitride, transition metal silicide, metal oxynitride, Metal aluminates, zirconium silicates, zirconium aluminates. For example, the high-k dielectric material can be LaO, AlO, ZrO, TiO, Ta2O5, Y2O3, SrTiO3(STO), BaTiO3(BTO), BaZrO, HfO2, HfO3, HfZrO, HfLaO , HfSiO, HfSiON, LaSiO, AlSiO, HfTaO, HfTiO, HfTaTiO, HfAlON, (Ba,Sr)TiO3(BST), Al2O3, other high dielectric constant dielectric materials of other suitable materials, or combinations thereof. In some embodiments, a chemical vapor deposition process (eg, a plasma-enhanced chemical vapor deposition (PECVD) process, or a metalorganic chemical vapor deposition (MOCVD) process), The first dielectric layer 106 is formed by an atomic layer deposition (ALD) process (eg, a plasma enhanced atomic layer deposition (PEALD) process), other suitable processes, or a combination thereof.

在一些实施例中,第一介电层106的厚度可以为

Figure BDA0001966337350000061
至300埃,但本发明实施例并不限于此。In some embodiments, the thickness of the first dielectric layer 106 may be
Figure BDA0001966337350000061
to 300 angstroms, but the embodiment of the present invention is not limited thereto.

接下来,如图4所示,在第一介电层106上形成第二介电层108,其中第二介电层108过填充开口104。部分的第二介电层108将在后续工艺中作为一部分的介电间隔物110a及110b(没有绘示于图4中,但可参照下述关于图5的说明)。用于形成第二介电层108的材料可相似于用于形成第一介电层106的材料,故于此不再赘述。在一些实施例中,第二介电层108及第一介电层106可以由相同的材料所形成。在其他实施例中,第二介电层108及第一介电层106可以由不同的材料所形成。Next, as shown in FIG. 4 , a second dielectric layer 108 is formed on the first dielectric layer 106 , wherein the second dielectric layer 108 overfills the opening 104 . A portion of the second dielectric layer 108 will be used as a portion of the dielectric spacers 110a and 110b in the subsequent process (not shown in FIG. 4 , but please refer to the description of FIG. 5 below). The material used to form the second dielectric layer 108 may be similar to the material used to form the first dielectric layer 106 , and thus will not be repeated here. In some embodiments, the second dielectric layer 108 and the first dielectric layer 106 may be formed of the same material. In other embodiments, the second dielectric layer 108 and the first dielectric layer 106 may be formed of different materials.

在一些实施例中,可藉由化学气相沉积工艺(例如,等离子增强化学气相沉积(plasma-enhanced chemical vapor deposition,PECVD)工艺、或有机金属化学气相沉积(metalorganic chemical vapor deposition,MOCVD)工艺)、原子层沉积(atomic layerdeposition,ALD)工艺(例如,等离子增强原子层沉积(plasma enhanced atomic layerdeposition,PEALD)工艺)、旋转涂布玻璃(spin-on-glass,SOG)工艺、其他适当的工艺、或上述的组合来形成第一介电层106。In some embodiments, a chemical vapor deposition process (eg, a plasma-enhanced chemical vapor deposition (PECVD) process, or a metalorganic chemical vapor deposition (MOCVD) process), Atomic layer deposition (ALD) process (eg, plasma enhanced atomic layer deposition (PEALD) process), spin-on-glass (SOG) process, other suitable process, or The above-mentioned combination forms the first dielectric layer 106 .

图5绘示出浮栅极介电层110c及一对介电间隔物110a及110b的形成。在一些实施例中,对第一介电层106及第二介电层108进行异向性回腐蚀工艺(anisotropicetchingback process),以去除部分的第一介电层106及第二介电层108。如图5所示,在异向性回腐蚀工艺之后,位于开口104的底表面的第一介电层106作为浮栅极介电层110c,且位于开口104的相对侧壁的第一介电层106以及剩余的第二介电层108作为上述介电间隔物110a及110b。5 illustrates the formation of a floating gate dielectric layer 110c and a pair of dielectric spacers 110a and 110b. In some embodiments, an anisotropic etching back process is performed on the first dielectric layer 106 and the second dielectric layer 108 to remove part of the first dielectric layer 106 and the second dielectric layer 108 . As shown in FIG. 5 , after the anisotropic etch back process, the first dielectric layer 106 on the bottom surface of the opening 104 serves as the floating gate dielectric layer 110 c , and the first dielectric layer 106 on the opposite sidewalls of the opening 104 serves as the floating gate dielectric layer 110 c Layer 106 and the remaining second dielectric layer 108 serve as the above-described dielectric spacers 110a and 110b.

在后续工艺中,上述介电间隔物110a及110b将用以创造具有一对尖端120a及120b的浮栅极120(没有绘示于图5中,但可参照下述关于图6的说明),其中此对尖端120a及120b分别位于介电间隔物110a及110b之上。In the subsequent process, the above-mentioned dielectric spacers 110a and 110b will be used to create the floating gate 120 having a pair of tips 120a and 120b (not shown in FIG. 5, but please refer to the description of FIG. 6 below), The pair of tips 120a and 120b are located above the dielectric spacers 110a and 110b, respectively.

如图5所示,在一些实施例中,在异向性回腐蚀工艺之后,介电间隔物110a可以具有倾斜侧壁110a’,且介电间隔物110b可以具有朝向倾斜侧壁110a’的倾斜侧壁110b’。上述这对倾斜侧壁110a’及110b’具有增加尖端120a及120b的尖锐度的好处(参照图6)。As shown in FIG. 5, in some embodiments, after the anisotropic etch back process, the dielectric spacers 110a may have sloped sidewalls 110a', and the dielectric spacers 110b may have slopes toward the sloped sidewalls 110a' side wall 110b'. The above-described pair of sloping side walls 110a' and 110b' has the benefit of increasing the sharpness of the tips 120a and 120b (see Fig. 6).

在一些实施例中,在异向性回腐蚀工艺之后,上述这对介电间隔物110a及110b可以与遮罩层102具有相同的高度,如图5所示。换句话说,此对介电间隔物110a及110b的最顶部处与遮罩层102的顶表面位于同一水平,这也有助于提升尖端120a及120b的尖锐度(参照图6)。In some embodiments, after the anisotropic etch back process, the pair of dielectric spacers 110 a and 110 b may have the same height as the mask layer 102 , as shown in FIG. 5 . In other words, the topmost portion of the pair of dielectric spacers 110a and 110b is at the same level as the top surface of the mask layer 102, which also helps to improve the sharpness of the tips 120a and 120b (refer to FIG. 6).

在一些实施例中,上述异向性回腐蚀工艺可以是干腐蚀工艺,例如等离子腐蚀工艺(plasma etching process)、反应离子腐蚀工艺(reactive ion etching process)、其他适当的工艺、或上述的组合。In some embodiments, the above-mentioned anisotropic etching process may be a dry etching process, such as a plasma etching process, a reactive ion etching process, other suitable processes, or a combination thereof.

图6绘示出浮栅极120的形成。在一些实施例中,形成浮栅极120以填充开口104,其中浮栅极120设置在浮栅极介电层110c上,且位于介电间隔物110a及110b之间。上述浮栅极120、介电间隔物110a及110b、以及浮栅极介电层110c一起构成浮栅极结构200。此外,如图6所示,浮栅极120具有一对尖端120a及120b,此对尖端120a及120b各别位于上述介电间隔物110a及110b的倾斜侧壁110a’及110b’上。浮栅极120的尖端120a及120b可以增加浮栅极120及将于后续工艺中形成的控制栅极之间的电流,从而改善快闪存储器的性能(例如,缩短抹除时间)。FIG. 6 illustrates the formation of the floating gate 120 . In some embodiments, floating gate 120 is formed to fill opening 104, wherein floating gate 120 is disposed on floating gate dielectric layer 110c and between dielectric spacers 110a and 110b. The floating gate 120 , the dielectric spacers 110 a and 110 b, and the floating gate dielectric layer 110 c together constitute the floating gate structure 200 . In addition, as shown in FIG. 6, the floating gate 120 has a pair of tips 120a and 120b located on the inclined sidewalls 110a' and 110b' of the dielectric spacers 110a and 110b, respectively. The tips 120a and 120b of the floating gate 120 can increase the current flow between the floating gate 120 and the control gate to be formed in a subsequent process, thereby improving the performance of the flash memory (eg, shortening the erase time).

在一些实施例中,上述浮栅极120的材料包括多晶硅(poly-silicon)。在其他实施例中,上述浮栅极120的材料可以包括金属(例如,钨(tungsten)、钛(titanium)、铝(aluminum)、铜(copper)、钼(molybdenum)、镍(nickel)、铂(platinum)、类似材料、或上述的组合)、金属合金、金属氮化物(例如,氮化钨(tungsten nitride)、氮化钼(molybdenumnitride)、氮化钛(titanium nitride)、氮化钽(tantalum nitride)、类似材料、或上述的组合)、金属硅化物(例如,硅化钨(tungsten silicide)、硅化钛(titanium silicide)、硅化钴(cobalt silicide)、硅化镍(nickel silicide)、硅化铂(platinum silicide)、硅化铒(erbium silicide)、类似材料、或上述的组合)、金属氧化物(例如,氧化钌(rutheniumoxide)、氧化铟锡(indium tin oxide)、类似材料、或上述的组合)、其他适当的材料、或上述的组合。In some embodiments, the material of the floating gate 120 includes poly-silicon. In other embodiments, the material of the floating gate 120 may include metals (eg, tungsten, titanium, aluminum, copper, molybdenum, nickel, platinum) (platinum, similar materials, or combinations of the above), metal alloys, metal nitrides (eg, tungsten nitride, molybdenum nitride, titanium nitride, tantalum nitride) Nitride, similar materials, or a combination of the foregoing), metal silicides (eg, tungsten silicide, titanium silicide, cobalt silicide, nickel silicide, platinum silicide) silicide), erbium silicide (erbium silicide, similar materials, or a combination of the above), metal oxides (eg, ruthenium oxide, indium tin oxide, similar materials, or a combination of the above), other Appropriate materials, or a combination of the above.

举例来说,可以藉由化学气相沉积工艺(例如,低压化学气相沉积(LPCVD)工艺、等离子增强化学气相沉积(PECVD)工艺)、物理气相沉积(physical vapor deposition,PVD)工艺(例如,真空蒸发(vacuum evaporation)工艺、或溅射(sputtering)工艺)、其他适当的工艺、或上述的组合来形成上述浮栅极120。在一些实施例中,浮栅极120的材料可以形成为过填充开口104,且接着进行回腐蚀(etch back)或平坦化工艺(例如,化学机械抛光(chemical-mechanical-polishing,CMP)工艺)以去除位于开口104外的浮栅极120的材料的多余部分,以在开口104中形成浮栅极120。For example, chemical vapor deposition (eg, low pressure chemical vapor deposition (LPCVD) process, plasma enhanced chemical vapor deposition (PECVD) process), physical vapor deposition (PVD) process (eg, vacuum evaporation) (vacuum evaporation process, or sputtering process), other suitable processes, or a combination of the above to form the floating gate 120 . In some embodiments, the material of the floating gate 120 may be formed to overfill the opening 104 and then subjected to an etch back or planarization process (eg, a chemical-mechanical-polishing (CMP) process) To remove excess portion of the material of the floating gate 120 outside the opening 104 to form the floating gate 120 in the opening 104 .

在一些实施例中,如图6所示,浮栅极120可以具有平坦的顶表面120s。在平坦化工艺或回腐蚀工艺之后,此平坦的顶表面120s与上述介电间隔物110a及110b的最顶部处齐平。在一些实施例中,如图6所示,浮栅极120及介电间隔物110a及110b在剖面示意图中共同构成一矩形形状(rectangular shape)。In some embodiments, as shown in FIG. 6 , the floating gate 120 may have a flat top surface 120s. After the planarization process or the etch-back process, the planar top surface 120s is flush with the topmost portions of the above-described dielectric spacers 110a and 110b. In some embodiments, as shown in FIG. 6 , the floating gate 120 and the dielectric spacers 110 a and 110 b together form a rectangular shape in the schematic cross-sectional view.

接下来,如图7所示,进行腐蚀工艺(例如,湿式腐蚀、干式腐蚀工艺、其他合适的工艺、或上述的组合)以选择性的从半导体基板100去除遮罩层102,而在腐蚀工艺之后,浮栅极结构200留在半导体基板100上。Next, as shown in FIG. 7, an etching process (eg, wet etching, dry etching process, other suitable processes, or a combination of the above) is performed to selectively remove the mask layer 102 from the semiconductor substrate 100, while etching After the process, the floating gate structure 200 remains on the semiconductor substrate 100 .

如图7所示,介电间隔物110a及110b各可以具有底部宽度W1,且浮栅极结构200可以具有底部宽度W2,其中W2大于W1。当W1越小时,由于尖端120a及120b更尖锐,因此装置的抹除效率越好。As shown in FIG. 7, each of the dielectric spacers 110a and 110b may have a bottom width W1, and the floating gate structure 200 may have a bottom width W2, where W2 is greater than W1. When W1 is smaller, since the tips 120a and 120b are sharper, the erasing efficiency of the device is better.

接着,如图8所示,在半导体基板100及浮栅极结构200上顺应性地形成栅极间介电层220。在一些实施例中,栅极间介电层220、介电间隔物110a及110b、以及浮栅极介电层110c完全地包覆浮栅极120。Next, as shown in FIG. 8 , an inter-gate dielectric layer 220 is conformally formed on the semiconductor substrate 100 and the floating gate structure 200 . In some embodiments, the inter-gate dielectric layer 220 , the dielectric spacers 110 a and 110 b , and the floating gate dielectric layer 110 c completely encapsulate the floating gate 120 .

在所绘示的实施例中,栅极间介电层220可以包括氧化硅。可以藉由氧化工艺、化学气相沉积工艺、其他适当的工艺、或上述的组合来形成上述氧化硅。举例来说,上述氧化工艺可以包括干式氧化工艺(例如:Si+O2→SiO2)、湿式氧化工艺(例如:Si+2H2O→SiO2+2H2)、或上述的组合。In the illustrated embodiment, the inter-gate dielectric layer 220 may include silicon oxide. The above silicon oxide may be formed by an oxidation process, a chemical vapor deposition process, other suitable processes, or a combination thereof. For example, the above oxidation process may include a dry oxidation process (eg, Si+O2→SiO2), a wet oxidation process (eg, Si+2H2O→SiO2+2H2), or a combination thereof.

在其他实施例中,栅极间介电层220可以包括高介电常数介电材料。此高介电常数介电材料可以包括LaO、AlO、ZrO、TiO、Ta2O5、Y2O3、SrTiO3(STO)、BaTiO3(BTO)、BaZrO、HfO2、HfO3、HfZrO、HfLaO、HfSiO、HfSiON、LaSiO、AlSiO、HfTaO、HfTiO、HfTaTiO、HfAlON、(Ba,Sr)TiO3(BST)、Al2O3、其它适当材料的其它高介电常数介电材料、或的述组合。举例来说,可藉由化学气相沉积工艺(例如,等离子增强化学气相沉积(PECVD)工艺、或有机金属化学气相沉积(MOCVD)工艺)、原子层沉积(ALD)工艺(例如,等离子增强原子层沉积(PEALD)工艺)、物理气相沉积工艺(例如,真空蒸发(vacuum evaporation)工艺、或溅射(sputtering)工艺)、其他适当的工艺、或上述的组合来形成此高介电常数介电材料。In other embodiments, the inter-gate dielectric layer 220 may include a high-k dielectric material. The high-k dielectric material may include LaO, AlO, ZrO, TiO, Ta2O5, Y2O3, SrTiO3(STO), BaTiO3(BTO), BaZrO, HfO2, HfO3, HfZrO, HfLaO, HfSiO, HfSiON, LaSiO, AlSiO, HfTaO, HfTiO, HfTaTiO, HfAlON, (Ba,Sr)TiO3(BST), Al2O3, other high dielectric constant dielectric materials of other suitable materials, or combinations thereof. For example, chemical vapor deposition (eg, plasma-enhanced chemical vapor deposition (PECVD) processes, or metal-organic chemical vapor deposition (MOCVD) processes), atomic layer deposition (ALD) processes (eg, plasma-enhanced atomic layer deposition (PEALD) process), physical vapor deposition process (eg, vacuum evaporation process, or sputtering process), other suitable processes, or a combination of the above to form the high-k dielectric material .

在一些实施例中,栅极间介电层220的厚度可以为50埃至250埃,但本发明实施例并不限于此。In some embodiments, the thickness of the inter-gate dielectric layer 220 may be 50 angstroms to 250 angstroms, but the embodiments of the present invention are not limited thereto.

图9绘示出控制栅极300的形成。在一些实施例中,控制栅极300形成在栅极间介电层220上。更具体而言,如图9所示,控制栅极300覆盖介电间隔物110a,且控制栅极300没有覆盖介电间隔物110b。应注意的是,控制栅极300藉由栅极间介电层220与浮栅极结构200分开。在所绘示的实施例中,上述控制栅极300包括多晶硅。在其他实施例中,上述控制栅极300的材料可以包括金属(例如,钨(tungsten)、钛(titanium)、铝(aluminum)、铜(copper)、钼(molybdenum)、镍(nickel)、铂(platinum)、类似材料、或上述的组合)、金属合金、金属氮化物(例如,氮化钨(tungsten nitride)、氮化钼(molybdenum nitride)、氮化钛(titaniumnitride)、氮化钽(tantalum nitride)、类似材料、或上述的组合)、金属硅化物(例如,硅化钨(tungsten silicide)、硅化钛(titanium silicide)、硅化钴(cobalt silicide)、硅化镍(nickel silicide)、硅化铂(platinum silicide)、硅化铒(erbium silicide)、类似材料、或上述的组合)、金属氧化物(例如,氧化钌(ruthenium oxide)、氧化铟锡(indium tinoxide)、类似材料、或上述的组合)、其他适当的材料、或上述的组合。FIG. 9 illustrates the formation of the control gate 300 . In some embodiments, the control gate 300 is formed on the inter-gate dielectric layer 220 . More specifically, as shown in FIG. 9, the control gate 300 covers the dielectric spacer 110a, and the control gate 300 does not cover the dielectric spacer 110b. It should be noted that the control gate 300 is separated from the floating gate structure 200 by the inter-gate dielectric layer 220 . In the illustrated embodiment, the control gate 300 includes polysilicon. In other embodiments, the material of the control gate 300 may include metals (eg, tungsten, titanium, aluminum, copper, molybdenum, nickel, platinum) (platinum, similar materials, or combinations of the above), metal alloys, metal nitrides (eg, tungsten nitride, molybdenum nitride, titanium nitride, tantalum nitride) Nitride, similar materials, or a combination of the foregoing), metal silicides (eg, tungsten silicide, titanium silicide, cobalt silicide, nickel silicide, platinum silicide) silicide), erbium silicide (erbium silicide, similar materials, or a combination of the above), metal oxides (eg, ruthenium oxide, indium tin oxide, similar materials, or a combination of the above), other Appropriate materials, or a combination of the above.

在一些实施例中,可以藉由沉积工艺且接着进行图案化工艺来形成控制栅极300。上述沉积工艺可以包括化学气相沉积工艺(例如,低压化学气相沉积(LPCVD)工艺、或等离子增强化学气相沉积(PECVD)工艺)、物理气相沉积工艺(例如,真空蒸发工艺、溅射工艺)、其他适当的工艺、或上述的组合。上述图案化工艺可以包括腐蚀工艺。In some embodiments, the control gate 300 may be formed by a deposition process followed by a patterning process. The above-mentioned deposition processes may include chemical vapor deposition processes (eg, low pressure chemical vapor deposition (LPCVD) processes, or plasma enhanced chemical vapor deposition (PECVD) processes), physical vapor deposition processes (eg, vacuum evaporation processes, sputtering processes), other appropriate process, or a combination of the above. The above-mentioned patterning process may include an etching process.

图9亦绘示出一对源极/漏极区400的形成。在一些实施例中,藉由将离子注入至半导体基板100中以形成上述源极/漏极区400。浮栅极结构200和控制栅极300位于此对源极/漏极区400之间。FIG. 9 also illustrates the formation of a pair of source/drain regions 400 . In some embodiments, the above-described source/drain regions 400 are formed by implanting ions into the semiconductor substrate 100 . The floating gate structure 200 and the control gate 300 are located between the pair of source/drain regions 400 .

在本实施例中,半导体基板100为p型基板,且源极/漏极区400藉由在半导体基板100内注入n型掺杂物所形成,例如磷(phosphorous,P)或砷(arsenic,As)。在其他实施例中,半导体基板100为n型基板,且源极/漏极区400藉由在半导体基板100内注入p型掺杂物所形成,例如硼(B)。半导体基板100的导电类型与源极/漏极区400的导电类型相反。In the present embodiment, the semiconductor substrate 100 is a p-type substrate, and the source/drain regions 400 are formed by implanting n-type dopants, such as phosphorous (P) or arsenic (arsenic,) into the semiconductor substrate 100 . As). In other embodiments, the semiconductor substrate 100 is an n-type substrate, and the source/drain regions 400 are formed by implanting p-type dopants, such as boron (B), into the semiconductor substrate 100 . The conductivity type of the semiconductor substrate 100 is opposite to that of the source/drain regions 400 .

如图9所示,快闪存储器10包括半导体基板100、位于半导体基板100上的浮栅极结构200、覆盖浮栅极结构200的侧壁及顶表面的栅极间介电层220、以及位于栅极间介电层220上的控制栅极300。上述浮栅极结构200包括位于半导体基板100上的浮栅极介电层110c、位于浮栅极介电层110c上的一对介电间隔物110a及110b,其中此对介电间隔物110a及110b具有朝向彼此的倾斜侧壁110a’及110b’、以及位于浮栅极介电层110c上,且位于此对介电间隔物110a及110b之间的浮栅极120。上述浮栅极120具有一对尖端120a及120b,此对尖端120a及120b分别位于介电间隔物110a及110b的倾斜侧壁110a’及110b’上。装置的抹除效率取决于尖端120a及120b的尖锐程度。上述倾斜侧壁110a’及110b’具有增加尖端120a及120b的尖锐度的好处,从而改善快闪存储器10的性能。As shown in FIG. 9 , the flash memory 10 includes a semiconductor substrate 100 , a floating gate structure 200 on the semiconductor substrate 100 , an inter-gate dielectric layer 220 covering sidewalls and a top surface of the floating gate structure 200 , and an inter-gate dielectric layer 220 on the semiconductor substrate 100 . Control gate 300 on inter-gate dielectric layer 220 . The above floating gate structure 200 includes a floating gate dielectric layer 110c on the semiconductor substrate 100, a pair of dielectric spacers 110a and 110b on the floating gate dielectric layer 110c, wherein the pair of dielectric spacers 110a and 110b 110b has sloped sidewalls 110a' and 110b' facing each other, and a floating gate 120 on floating gate dielectric layer 110c between the pair of dielectric spacers 110a and 110b. The floating gate 120 described above has a pair of tips 120a and 120b located on the inclined sidewalls 110a' and 110b' of the dielectric spacers 110a and 110b, respectively. The erasing efficiency of the device depends on how sharp the tips 120a and 120b are. The sloped sidewalls 110a' and 110b' described above have the benefit of increasing the sharpness of the tips 120a and 120b, thereby improving the performance of the flash memory 10.

在一些实施例中,此对介电间隔物110a及110b的最顶部处与遮罩层102的顶表面位于同一水平,这也有助于提升尖端120a及120b的尖锐度,从而进一步增加快闪存储器10的性能。In some embodiments, the topmost portion of the pair of dielectric spacers 110a and 110b is at the same level as the top surface of the mask layer 102, which also helps to improve the sharpness of the tips 120a and 120b, thereby further increasing the flash memory 10 performance.

图10、图11是根据一些实施例,绘示出用于形成图11中的快闪存储器20的另一示例方法的各个中间阶段的剖面示意图。为了清楚起见,相似或相同的元件及工艺将使用相同的参照符号。为了简明的目的,此处不再重复对这些工艺及装置的描述。FIGS. 10 and 11 are schematic cross-sectional views illustrating various intermediate stages of another example method for forming the flash memory 20 of FIG. 11 , according to some embodiments. For the sake of clarity, similar or identical elements and processes will use the same reference numerals. For the sake of brevity, the descriptions of these processes and apparatus are not repeated here.

除了形成额外的氧化物结构(oxide structure)140以进一步使浮栅极的尖端更尖锐以外,快闪存储器20相似于快闪存储器10。如此一来,浮栅极120’即具有凹陷的顶表面120s’,且快闪存储器20的浮栅极120’的尖端120a’及120b’较图9的快闪存储器10的浮栅极120的尖端120a及120b更尖锐。Flash memory 20 is similar to flash memory 10 except that an additional oxide structure 140 is formed to further sharpen the tip of the floating gate. As such, the floating gate 120' has the recessed top surface 120s', and the tips 120a' and 120b' of the floating gate 120' of the flash memory 20 are smaller than those of the floating gate 120 of the flash memory 10 of FIG. The tips 120a and 120b are sharper.

参照图10,在形成如图6所述的浮栅极120之后,在去除遮罩层102之前,在浮栅极120’的顶表面上形成氧化物结构140。如图10所示,在一些实施例中,对浮栅极120进行氧化工艺,以形成浮栅极120’及位于浮栅极120’上的氧化物结构140,其中浮栅极120’具有凹陷的顶表面120s’,且浮栅极120’的最顶部处与上述介电间隔物110a及110b的最顶部处位于同一水平。上述浮栅极120’的尖端120a’及120b’较图9的快闪存储器10的尖端120a及120b更尖锐,因此将于后续工艺中形成的快闪存储器20相较于快闪存储器10具有更佳的抹除效率。10, after forming the floating gate 120 as described in FIG. 6, before removing the mask layer 102, an oxide structure 140 is formed on the top surface of the floating gate 120'. As shown in FIG. 10 , in some embodiments, an oxidation process is performed on the floating gate 120 to form the floating gate 120 ′ and the oxide structure 140 on the floating gate 120 ′, wherein the floating gate 120 ′ has a recess The top surface 120s' of the floating gate 120' is at the same level as the tops of the above-mentioned dielectric spacers 110a and 110b. The tips 120a' and 120b' of the floating gate 120' are sharper than the tips 120a and 120b of the flash memory 10 in FIG. Best erasing efficiency.

接下来,去除遮罩层102,并且对图10中所示的结构进行相似于图7至图9所述的工艺的一系列工艺,以完成如图11中所示的快闪存储器20。Next, the mask layer 102 is removed, and a series of processes similar to those described in FIGS. 7 to 9 are performed on the structure shown in FIG. 10 to complete the flash memory 20 as shown in FIG. 11 .

如图11所示,快闪存储器20包括半导体基板100、位于半导体基板100上的浮栅极结构200’、覆盖浮栅极结构200’的侧壁及顶表面的栅极间介电层220、以及位于栅极间介电层220上的控制栅极300。上述浮栅极结构200’包括位于半导体基板100上的浮栅极介电层110c、位于浮栅极介电层110c上的一对介电间隔物110a及110b,其中此对介电间隔物110a及110b具有朝向彼此的倾斜侧壁110a’及110b’、以及位于浮栅极介电层110c上,且位于此对介电间隔物110a及110b之间的浮栅极120’。上述浮栅极120’具有一对尖端120a’及120b’,此对尖端120a’及120b’分别位于介电间隔物110a及110b的倾斜侧壁110a’及110b’上。上述倾斜侧壁110a’及110b’具有增加尖端120a’及120b’的尖锐度的好处,从而改善快闪存储器20的性能。As shown in FIG. 11 , the flash memory 20 includes a semiconductor substrate 100 , a floating gate structure 200 ′ on the semiconductor substrate 100 , an inter-gate dielectric layer 220 covering sidewalls and a top surface of the floating gate structure 200 ′, and the control gate 300 on the inter-gate dielectric layer 220 . The above floating gate structure 200' includes a floating gate dielectric layer 110c on the semiconductor substrate 100, a pair of dielectric spacers 110a and 110b on the floating gate dielectric layer 110c, wherein the pair of dielectric spacers 110a and 110b have sloped sidewalls 110a' and 110b' facing each other, and a floating gate 120' on the floating gate dielectric layer 110c and between the pair of dielectric spacers 110a and 110b. The floating gate 120' has a pair of tips 120a' and 120b' located on the inclined sidewalls 110a' and 110b' of the dielectric spacers 110a and 110b, respectively. The sloping sidewalls 110a' and 110b' described above have the benefit of increasing the sharpness of the tips 120a' and 120b', thereby improving the performance of the flash memory 20 .

在一些实施例中,此对介电间隔物110a及110b的最顶部处与遮罩层102的顶表面位于同一水平,这也有助于提升尖端120a’及120b’的尖锐度,从而进一步改善快闪存储器20的性能。In some embodiments, the topmost portion of the pair of dielectric spacers 110a and 110b is at the same level as the top surface of the mask layer 102, which also helps to improve the sharpness of the tips 120a' and 120b', thereby further improving the speed Flash memory 20 performance.

在一些实施例中,上述浮栅极结构200’还包括位于浮栅极120’及栅极间介电层220之间的氧化物结构140。在此实施例中,浮栅极120’具有凹陷的顶表面120s’,这可以进一步使尖端120a’及120b’更尖锐。在此实施例中,浮栅极120’的最顶部处与上述介电间隔物110a及110b的最顶部处位于同一水平。如此一来,即可更进一步改善快闪存储器20的抹除效率。In some embodiments, the above floating gate structure 200' further includes an oxide structure 140 between the floating gate 120' and the inter-gate dielectric layer 220. In this embodiment, the floating gate 120' has a recessed top surface 120s', which can further sharpen the tips 120a' and 120b'. In this embodiment, the topmost portion of the floating gate 120' is at the same level as the topmost portion of the dielectric spacers 110a and 110b described above. In this way, the erasing efficiency of the flash memory 20 can be further improved.

综合上述,本发明实施例的快闪存储器元件包括一对介电间隔物,此对介电间隔物用以创造具有一对尖锐尖端的浮栅极。此对尖锐尖端可以增加浮栅极及控制栅极之间的电流,从而改善快闪存储器的性能(例如,缩短抹除时间)。In summary, the flash memory device of the embodiments of the present invention includes a pair of dielectric spacers, and the pair of dielectric spacers is used to create a floating gate with a pair of sharp tips. The pair of sharp tips can increase the current between the floating gate and the control gate, thereby improving the performance of the flash memory (eg, shortening the erase time).

以上概略说明了本发明数个实施例的特征,使所属技术领域内技术人员对于本发明可更为容易理解。任何所属技术领域内技术人员应了解到本说明书可轻易作为其他结构或工艺的变更或设计基础,以进行相同于本发明实施例的目的及/或获得相同的优点。任何所属技术领域内技术人员亦可理解与上述等同的结构或工艺并未脱离本发明的精神及保护范围内,且可在不脱离本发明的精神及范围内,当可作更改、替代与润饰。The features of several embodiments of the present invention have been briefly described above, so that those skilled in the art can more easily understand the present invention. Those skilled in the art should appreciate that this description can easily be used as a basis for modification or design of other structures or processes to achieve the same purpose and/or obtain the same advantages of the embodiments of the present invention. Any person skilled in the art can also understand that the structures or processes equivalent to the above do not depart from the spirit and protection scope of the present invention, and can be changed, replaced and modified without departing from the spirit and scope of the present invention. .

Claims (20)

1.一种快闪存储器,其特征在于,包括︰1. a flash memory, is characterized in that, comprises: 一半导体基板;a semiconductor substrate; 一浮栅极结构,位于该半导体基板上,该浮栅极结构包括:A floating gate structure on the semiconductor substrate, the floating gate structure includes: 一浮栅极介电层,位于该半导体基板上;a floating gate dielectric layer on the semiconductor substrate; 一对介电间隔物,位于该浮栅极介电层上,其中该对介电间隔物具有朝向彼此的倾斜侧壁;以及a pair of dielectric spacers on the floating gate dielectric layer, wherein the pair of dielectric spacers have sloped sidewalls facing each other; and 一浮栅极,位于该浮栅极介电层上,且位于该对介电间隔物之间,其中该浮栅极具有一对尖端,该对尖端各别位于该对介电间隔物的倾斜侧壁上;a floating gate on the floating gate dielectric layer and between the pair of dielectric spacers, wherein the floating gate has a pair of apexes, the pair of apexes are respectively located at the inclination of the pair of dielectric spacers on the side wall; 一栅极间介电层,覆盖该浮栅极结构的侧壁及顶表面;以及an inter-gate dielectric layer covering the sidewalls and the top surface of the floating gate structure; and 一控制栅极,位于该栅极间介电层上。a control gate on the inter-gate dielectric layer. 2.如权利要求1所述的快闪存储器,其特征在于,该浮栅极具有一平坦的顶表面。2. The flash memory of claim 1, wherein the floating gate has a flat top surface. 3.如权利要求2所述的快闪存储器,其特征在于,该浮栅极的顶表面与该对介电间隔物的最顶部处位于同一水平。3 . The flash memory of claim 2 , wherein a top surface of the floating gate and a topmost portion of the pair of dielectric spacers are at the same level. 4 . 4.如权利要求2所述的快闪存储器,其特征在于,该浮栅极及该对介电间隔物在剖面示意图中共同构成一矩形形状。4 . The flash memory of claim 2 , wherein the floating gate and the pair of dielectric spacers together form a rectangular shape in a schematic cross-sectional view. 5 . 5.如权利要求1所述的快闪存储器,其特征在于,该浮栅极结构还包括一氧化物结构,位于该浮栅极及该栅极间介电层之间。5. The flash memory of claim 1, wherein the floating gate structure further comprises an oxide structure between the floating gate and the inter-gate dielectric layer. 6.如权利要求5所述的快闪存储器,其特征在于,该浮栅极具有一凹陷的顶表面。6. The flash memory of claim 5, wherein the floating gate has a recessed top surface. 7.如权利要求5所述的快闪存储器,其特征在于,该浮栅极的最顶部处与该对介电间隔物的最顶部处位于同一水平。7 . The flash memory of claim 5 , wherein the topmost position of the floating gate and the topmost position of the pair of dielectric spacers are at the same level. 8 . 8.如权利要求1所述的快闪存储器,其特征在于,该浮栅极及该控制栅极包括多晶硅。8. The flash memory of claim 1, wherein the floating gate and the control gate comprise polysilicon. 9.如权利要求1所述的快闪存储器,其特征在于,该栅极间介电层、该对介电间隔物、及该浮栅极介电层完全地包覆该浮栅极。9. The flash memory of claim 1, wherein the inter-gate dielectric layer, the pair of dielectric spacers, and the floating gate dielectric layer completely cover the floating gate. 10.一种快闪存储器的形成方法,其特征在于,包括︰10. A method for forming a flash memory, comprising: 提供一半导体基板;providing a semiconductor substrate; 在该半导体基板上形成一遮罩层,其中该遮罩层具有一开口,该开口露出该半导体基板的一部分;forming a mask layer on the semiconductor substrate, wherein the mask layer has an opening, and the opening exposes a part of the semiconductor substrate; 在该开口中形成一浮栅极结构,形成该浮栅极结构的步骤包括:A floating gate structure is formed in the opening, and the steps of forming the floating gate structure include: 在该半导体基板上形成一浮栅极介电层,且在该开口的相对侧壁上及在该浮栅极介电层上形成一对介电间隔物;以及forming a floating gate dielectric layer on the semiconductor substrate, and forming a pair of dielectric spacers on opposite sidewalls of the opening and on the floating gate dielectric layer; and 在该开口中形成一浮栅极,其中该浮栅极设置在该浮栅极介电层上,且该浮栅极位于该对介电间隔物之间,且其中该浮栅极具有一对尖端,该对尖端分别位于该对介电间隔物上;A floating gate is formed in the opening, wherein the floating gate is disposed on the floating gate dielectric layer, and the floating gate is located between the pair of dielectric spacers, and wherein the floating gate has a pair of a tip, the pair of tips are respectively located on the pair of dielectric spacers; 去除该遮罩层;remove the mask layer; 形成一栅极间介电层覆盖该浮栅极结构;以及forming an inter-gate dielectric layer overlying the floating gate structure; and 在该栅极间介电层上形成一控制栅极。A control gate is formed on the inter-gate dielectric layer. 11.如权利要求10所述的快闪存储器的形成方法,其特征在于,形成该浮栅极介电层及该对介电间隔物的步骤包括:11. The method of claim 10, wherein the step of forming the floating gate dielectric layer and the pair of dielectric spacers comprises: 沿着该开口的相对侧壁及底表面顺应性地形成一第一介电层;conformably forming a first dielectric layer along opposite sidewalls and bottom surfaces of the opening; 在该第一介电层上形成一第二介电层,其中该第二介电层过填充该开口;以及forming a second dielectric layer on the first dielectric layer, wherein the second dielectric layer overfills the opening; and 对该第一介电层及该第二介电层进行一异向性回腐蚀工艺,在该异向性回腐蚀工艺之后,位于该开口的底表面上的该第一介电层作为该浮栅极介电层,且位于该开口的相对侧壁上的该第一介电层及剩余的该第二介电层作为该对介电间隔物。An anisotropic etch-back process is performed on the first dielectric layer and the second dielectric layer. After the anisotropic etch-back process, the first dielectric layer on the bottom surface of the opening serves as the floating A gate dielectric layer, and the first dielectric layer and the remaining second dielectric layer on opposite sidewalls of the opening serve as the pair of dielectric spacers. 12.如权利要求10所述的快闪存储器的形成方法,其特征在于,该对介电间隔物的最顶部处与该遮罩层的顶表面位于同一水平。12 . The method of claim 10 , wherein the topmost portion of the pair of dielectric spacers is at the same level as the top surface of the mask layer. 13 . 13.如权利要求10所述的快闪存储器的形成方法,其特征在于,该对介电间隔物具有朝向彼此的倾斜侧壁。13. The method of forming a flash memory as claimed in claim 10, wherein the pair of dielectric spacers have inclined sidewalls facing each other. 14.如权利要求10所述的快闪存储器的形成方法,其特征在于,该浮栅极具有一平坦的顶表面。14. The method of claim 10, wherein the floating gate has a flat top surface. 15.如权利要求14所述的快闪存储器的形成方法,其特征在于,该浮栅极的最顶部处与该对介电间隔物的最顶部处位于同一水平。15 . The method of claim 14 , wherein the topmost position of the floating gate and the topmost position of the pair of dielectric spacers are at the same level. 16 . 16.如权利要求10所述的快闪存储器的形成方法,其特征在于,形成该浮栅极结构的步骤还包括对该浮栅极进行一氧化工艺,以在该浮栅极及该栅极间介电层之间形成一氧化物结构。16. The method for forming a flash memory as claimed in claim 10, wherein the step of forming the floating gate structure further comprises performing an oxidation process on the floating gate, so as to form the floating gate and the gate An oxide structure is formed between the inter-dielectric layers. 17.如权利要求16所述的快闪存储器的形成方法,其特征在于,该浮栅极具有凹陷的顶表面。17. The method of claim 16, wherein the floating gate has a recessed top surface. 18.如权利要求10所述的快闪存储器的形成方法,其特征在于,该遮罩层包括氮化物。18. The method for forming a flash memory as claimed in claim 10, wherein the mask layer comprises nitride. 19.如权利要求10所述的快闪存储器的形成方法,其特征在于,该浮栅极及该控制栅极包括多晶硅。19. The method of claim 10, wherein the floating gate and the control gate comprise polysilicon. 20.如权利要求10所述的快闪存储器的形成方法,其特征在于,该栅极间介电层、该对介电间隔物、及该浮栅极介电层完全地包覆该浮栅极。20. The method of claim 10, wherein the inter-gate dielectric layer, the pair of dielectric spacers, and the floating gate dielectric layer completely cover the floating gate pole.
CN201910104330.8A 2019-02-01 2019-02-01 Flash memory and forming method thereof Pending CN111524980A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910104330.8A CN111524980A (en) 2019-02-01 2019-02-01 Flash memory and forming method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910104330.8A CN111524980A (en) 2019-02-01 2019-02-01 Flash memory and forming method thereof

Publications (1)

Publication Number Publication Date
CN111524980A true CN111524980A (en) 2020-08-11

Family

ID=71900135

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910104330.8A Pending CN111524980A (en) 2019-02-01 2019-02-01 Flash memory and forming method thereof

Country Status (1)

Country Link
CN (1) CN111524980A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6465837B1 (en) * 2001-10-09 2002-10-15 Silicon-Based Technology Corp. Scaled stack-gate non-volatile semiconductor memory device
US6635533B1 (en) * 2003-03-27 2003-10-21 Powerchip Semiconductor Corp. Method of fabricating flash memory
US20030211688A1 (en) * 2002-05-08 2003-11-13 Nanya Technology Corp Method of forming poly tip of floating gate in split-gate memory
US6660588B1 (en) * 2002-09-16 2003-12-09 Advanced Micro Devices, Inc. High density floating gate flash memory and fabrication processes therefor
CN1945798A (en) * 2005-08-17 2007-04-11 三星电子株式会社 Method of manufacturing a non-volatile memory device
CN101034721A (en) * 2006-03-06 2007-09-12 台湾积体电路制造股份有限公司 Split-gate memory cell and method for forming the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6465837B1 (en) * 2001-10-09 2002-10-15 Silicon-Based Technology Corp. Scaled stack-gate non-volatile semiconductor memory device
US20030211688A1 (en) * 2002-05-08 2003-11-13 Nanya Technology Corp Method of forming poly tip of floating gate in split-gate memory
US6660588B1 (en) * 2002-09-16 2003-12-09 Advanced Micro Devices, Inc. High density floating gate flash memory and fabrication processes therefor
US6635533B1 (en) * 2003-03-27 2003-10-21 Powerchip Semiconductor Corp. Method of fabricating flash memory
CN1945798A (en) * 2005-08-17 2007-04-11 三星电子株式会社 Method of manufacturing a non-volatile memory device
CN101034721A (en) * 2006-03-06 2007-09-12 台湾积体电路制造股份有限公司 Split-gate memory cell and method for forming the same

Similar Documents

Publication Publication Date Title
TWI723390B (en) Flash memory structure with enhanced floating gate and method of forming the same
CN106298796B (en) For manufacturing the method for having the fingered channel capacitor of splitting grid flash cell
US10644011B1 (en) Non-volatile memory
US12191366B2 (en) Semiconductor structure with enlarged gate electrode structure and method for forming the same
US8101492B2 (en) Method for making semiconductor device
US9673303B2 (en) Semiconductor device and method of fabricating the same
CN109309093B (en) Integrated chip and method of forming the same for reducing the CMP dishing effect at the edge of a memory array
US11177268B2 (en) Memory device and manufacturing method thereof
US20100252874A1 (en) Memory Device
CN116801629A (en) Memory device and method of forming same
US8546871B2 (en) Non-volatile memory cell and fabricating method thereof
US9263293B2 (en) Flash memory structure and method for forming the same
US20200176609A1 (en) Flash memories and methods for forming the same
US8829587B2 (en) Flash memory device and manufacturing method of the same
CN111696864B (en) Semiconductor device and method of forming the same
US10629753B2 (en) Split-gate flash memory cell and method for forming the same
TWI713202B (en) Flash memories and methods for forming the same
CN111524980A (en) Flash memory and forming method thereof
US20110079839A1 (en) Non-Volatile Memory Devices Having Reduced Susceptibility to Leakage of Stored Charges and Methods of Forming Same
TWI673855B (en) Split-gate flash memory cell and method for forming the same
KR102270966B1 (en) Flash memory with improved gate structure and a method of creating the same
CN110071111A (en) Separated grid fast-flash memory element and forming method thereof
CN110061005A (en) Flash memory and its manufacturing method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination