TW201933267A - 機器人客服轉人工客服的方法和裝置 - Google Patents
機器人客服轉人工客服的方法和裝置 Download PDFInfo
- Publication number
- TW201933267A TW201933267A TW107145199A TW107145199A TW201933267A TW 201933267 A TW201933267 A TW 201933267A TW 107145199 A TW107145199 A TW 107145199A TW 107145199 A TW107145199 A TW 107145199A TW 201933267 A TW201933267 A TW 201933267A
- Authority
- TW
- Taiwan
- Prior art keywords
- user
- customer service
- confidence score
- status
- model
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 57
- 238000011156 evaluation Methods 0.000 claims abstract description 44
- 238000013210 evaluation model Methods 0.000 claims abstract description 36
- 238000010801 machine learning Methods 0.000 claims abstract description 18
- 230000008569 process Effects 0.000 claims description 31
- 238000013528 artificial neural network Methods 0.000 claims description 24
- 230000015654 memory Effects 0.000 claims description 23
- 230000001537 neural effect Effects 0.000 claims description 19
- 230000006399 behavior Effects 0.000 claims description 18
- 238000004590 computer program Methods 0.000 claims description 17
- 238000012549 training Methods 0.000 claims description 15
- 238000003058 natural language processing Methods 0.000 claims description 10
- 238000012546 transfer Methods 0.000 claims description 7
- 230000002159 abnormal effect Effects 0.000 claims description 5
- 230000006403 short-term memory Effects 0.000 claims description 5
- 238000012706 support-vector machine Methods 0.000 claims description 5
- 230000007774 longterm Effects 0.000 claims description 4
- 238000003062 neural network model Methods 0.000 claims description 4
- 230000004913 activation Effects 0.000 claims description 3
- TVEXGJYMHHTVKP-UHFFFAOYSA-N 6-oxabicyclo[3.2.1]oct-3-en-7-one Chemical compound C1C2C(=O)OC1C=CC2 TVEXGJYMHHTVKP-UHFFFAOYSA-N 0.000 claims 1
- 238000012545 processing Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 239000013598 vector Substances 0.000 description 5
- 230000000875 corresponding effect Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 238000013527 convolutional neural network Methods 0.000 description 2
- 238000003066 decision tree Methods 0.000 description 2
- 238000013136 deep learning model Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000007477 logistic regression Methods 0.000 description 2
- 210000002569 neuron Anatomy 0.000 description 2
- 230000000306 recurrent effect Effects 0.000 description 2
- 238000013473 artificial intelligence Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/30—Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
- G06F16/33—Querying
- G06F16/3331—Query processing
- G06F16/334—Query execution
- G06F16/3344—Query execution using natural language analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F40/00—Handling natural language data
- G06F40/40—Processing or translation of natural language
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/044—Recurrent networks, e.g. Hopfield networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
- G06Q10/063—Operations research, analysis or management
- G06Q10/0639—Performance analysis of employees; Performance analysis of enterprise or organisation operations
- G06Q10/06393—Score-carding, benchmarking or key performance indicator [KPI] analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce
- G06Q30/01—Customer relationship services
- G06Q30/015—Providing customer assistance, e.g. assisting a customer within a business location or via helpdesk
- G06Q30/016—After-sales
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
- G06N20/10—Machine learning using kernel methods, e.g. support vector machines [SVM]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computing arrangements using knowledge-based models
- G06N5/01—Dynamic search techniques; Heuristics; Dynamic trees; Branch-and-bound
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Business, Economics & Management (AREA)
- General Physics & Mathematics (AREA)
- Human Resources & Organizations (AREA)
- Artificial Intelligence (AREA)
- General Engineering & Computer Science (AREA)
- Computational Linguistics (AREA)
- Data Mining & Analysis (AREA)
- Software Systems (AREA)
- Development Economics (AREA)
- Economics (AREA)
- Strategic Management (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Computing Systems (AREA)
- Evolutionary Computation (AREA)
- Mathematical Physics (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Business, Economics & Management (AREA)
- Marketing (AREA)
- Educational Administration (AREA)
- Entrepreneurship & Innovation (AREA)
- Finance (AREA)
- Accounting & Taxation (AREA)
- Operations Research (AREA)
- Tourism & Hospitality (AREA)
- Quality & Reliability (AREA)
- Game Theory and Decision Science (AREA)
- Databases & Information Systems (AREA)
- Audiology, Speech & Language Pathology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Medical Informatics (AREA)
- Manipulator (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
Abstract
本說明書提供一種機器人客服轉人工客服的方法,包括:從機器人客服與用戶的至少一輪會話中獲取會話特徵;獲取用戶的狀態特徵;將所述會話特徵和狀態特徵輸入信心分評估模型,得到目前信心分評估值;所述信心分評估模型為機器學習模型,採用標記有出人工點的機器人客戶與用戶的會話樣本、以及用戶的狀態特徵樣本進行訓練;在目前信心分評估值滿足預定出人工條件時,將用戶轉接人工客服。
Description
本說明書涉及資料處理技術領域,尤其涉及一種機器人客服轉人工客服的方法和裝置。
隨著網際網路的發展,基於人工智慧技術的虛擬機器人在企業用戶服務領域的應用越來越廣泛。機器人客服不需要休息,可以更加快速和標準化的反應用戶的問題,以語音對話或文字聊天的形式與用戶進行溝通,將人工客服從大量重複性問答中解放出來。
對一些非一般的用戶問題,機器人客服往往難以給出令用戶滿意的答覆。目前客服中心最為常用的架構是機器人客服與人工客服並存,預設由機器人客服先接待用戶,當機器人客服未解決用戶的問題時,轉接人工客服。出人工點(即以人工客服代替機器人客服為用戶服務的時點)是否適當對客服中心的營運效率和用戶的滿意度都有重要的影響。
對一些非一般的用戶問題,機器人客服往往難以給出令用戶滿意的答覆。目前客服中心最為常用的架構是機器人客服與人工客服並存,預設由機器人客服先接待用戶,當機器人客服未解決用戶的問題時,轉接人工客服。出人工點(即以人工客服代替機器人客服為用戶服務的時點)是否適當對客服中心的營運效率和用戶的滿意度都有重要的影響。
有鑒於此,本說明書提供一種機器人客服轉人工客服的方法,包括:
從機器人客服與用戶的至少一輪會話中獲取會話特徵;
獲取用戶的狀態特徵;
將所述會話特徵和狀態特徵輸入信心分評估模型,得到目前信心分評估值;所述信心分評估模型為機器學習模型,採用標記有出人工點的機器人客戶與用戶的會話樣本、以及用戶的狀態特徵樣本進行訓練;
在目前信心分評估值滿足預定出人工條件時,將用戶轉接人工客服。
本說明書還提供了一種機器人客服轉人工客服的裝置,包括:
會話特徵獲取單元,用於從機器人客服與用戶的至少一輪會話中獲取會話特徵;
狀態特徵獲取單元,用於獲取用戶的狀態特徵;
信心分評估單元,用於將所述會話特徵和狀態特徵輸入信心分評估模型,得到目前信心分評估值;所述信心分評估模型為機器學習模型,採用標記有出人工點的機器人客戶與用戶的會話樣本、以及用戶的狀態特徵樣本進行訓練;
轉接判斷單元,用於在目前信心分評估值滿足預定出人工條件時,將用戶轉接人工客服。
本說明書提供的一種電腦設備,包括:記憶體和處理器;所述記憶體上儲存有可由處理器執行的電腦程式;所述處理器執行所述電腦程式時,執行上述機器人客服轉人工客服的方法所述的步驟。
本說明書提供的一種電腦可讀儲存媒體,其上儲存有電腦程式,所述電腦程式被處理器執行時,執行上述機器人客服轉人工客服的方法所述的步驟。
由以上技術方案可見,本說明書的實施例中,以從機器人與用戶的會話中獲取的會話特徵和用戶的狀態特徵作為信心分評估機器學習模型的輸入,得到目前信心分評估值,並根據目前信心分評估值來判斷是否需要轉接人工客服,由於用戶的狀態特徵常常能夠實現其具體需求和迫切程度,應用本說明書的實施例後可以提高出人工點的準確性,在提升客服中心服務效率的同時使用戶對服務更加滿意。
從機器人客服與用戶的至少一輪會話中獲取會話特徵;
獲取用戶的狀態特徵;
將所述會話特徵和狀態特徵輸入信心分評估模型,得到目前信心分評估值;所述信心分評估模型為機器學習模型,採用標記有出人工點的機器人客戶與用戶的會話樣本、以及用戶的狀態特徵樣本進行訓練;
在目前信心分評估值滿足預定出人工條件時,將用戶轉接人工客服。
本說明書還提供了一種機器人客服轉人工客服的裝置,包括:
會話特徵獲取單元,用於從機器人客服與用戶的至少一輪會話中獲取會話特徵;
狀態特徵獲取單元,用於獲取用戶的狀態特徵;
信心分評估單元,用於將所述會話特徵和狀態特徵輸入信心分評估模型,得到目前信心分評估值;所述信心分評估模型為機器學習模型,採用標記有出人工點的機器人客戶與用戶的會話樣本、以及用戶的狀態特徵樣本進行訓練;
轉接判斷單元,用於在目前信心分評估值滿足預定出人工條件時,將用戶轉接人工客服。
本說明書提供的一種電腦設備,包括:記憶體和處理器;所述記憶體上儲存有可由處理器執行的電腦程式;所述處理器執行所述電腦程式時,執行上述機器人客服轉人工客服的方法所述的步驟。
本說明書提供的一種電腦可讀儲存媒體,其上儲存有電腦程式,所述電腦程式被處理器執行時,執行上述機器人客服轉人工客服的方法所述的步驟。
由以上技術方案可見,本說明書的實施例中,以從機器人與用戶的會話中獲取的會話特徵和用戶的狀態特徵作為信心分評估機器學習模型的輸入,得到目前信心分評估值,並根據目前信心分評估值來判斷是否需要轉接人工客服,由於用戶的狀態特徵常常能夠實現其具體需求和迫切程度,應用本說明書的實施例後可以提高出人工點的準確性,在提升客服中心服務效率的同時使用戶對服務更加滿意。
在用戶接受機器人客服服務的過程中,用戶與機器人客服的互動過程能夠實現機器人客服的服務效果。例如,如果用戶在互動中重複著同樣的問題,或者表達了不滿情緒,通常意味著機器人客服對用戶問題的解決能力欠佳,需要人工客服處理。因此,用戶與機器人客服的會話通常會被用來作為判斷是否需要轉接人工客服的依據。
另一方面,用戶的自身因素也會影響對人工客戶的需求程度。例如,帳戶被盜的用戶通常都有較强的人工客服需求,而查詢帳單的用戶一般有更好的耐心與機器人客戶溝通。此外,不同年齡、職業、教育背景的用戶,對機器人客服的接受度也不盡相同,青年用戶能較快理解機器人客服的回答,而老年用戶常常需要人工客服的詳細指導。
本說明書的實施例提出一種新的機器人客服轉人工客服的方法,採用用戶的狀態特徵來描述用戶的自身因素,利用以機器人客服與用戶會話中提取的會話特徵和用戶的狀態特徵訓練完成的信心分評估模型,得到目前信心分評估值,在目前信心分評估值滿足預定出人工條件時轉接人工客服,由於信心分評估模型不僅基於機器人客服與用戶的會話過程,並且基於用戶狀態特徵實現的用戶對人工客服的需求程度和迫切程度來給出目前信心分評估值,本說明書的實施例能夠對出人工點給出更加準確的判斷,不僅能夠提高客服中心的服務效率,而且還能夠提高用戶對服務的滿意程度。
本說明書的實施例可以執行在任何具有計算和儲存能力的設備上,如手機、平板電腦、PC(Personal Computer,個人電腦)、筆記型電腦、伺服器等設備;還可以由執行在兩個或兩個以上設備的邏輯節點來實現本說明書實施例中的各項功能。
本說明書的實施例中,採用從機器人客服與用戶的會話中提取的會話特徵、和用戶的狀態特徵來建立機器學習模型,本說明書中稱之為信心分評估模型。其中,從機器人客服與用戶的會話中提取的會話特徵可以是以機器人客服與用戶的會話為基礎,採用NLP(Natural Language Processing,自然語言處理)方法能夠獲取的任何特徵,即NLP特徵。具體而言,可以是用戶提問與機器人回答的關聯度、問答輪數、答案類型(機器人客服的答案是陳述還是提問、答案是具體問題的答案還是全盤托出答案等等)、答案重複次數、用戶是否提出換人工、用戶是否在解釋自己的問題等特徵中的任意個數。會話特徵的確定和從會話中獲取會話特徵的具體方式均可參照現有技術實現,不再贅述。
除與機器人客服的會話以外,其他能夠實現用戶目前對人工客服的需求程度以及解決問題的迫切程度的用戶資訊都可以用來作為用戶的狀態特徵,本說明書的實施例對具體的狀態特徵以及狀態特徵的數量均不做限定。以下舉例說明。
第一個例子:用戶的行為記錄特徵。用戶的行為記錄特徵包括用戶在預定時間段內對客服中心諮詢服務範圍內所有產品的訪問記錄、和/或功能使用記錄等。例如,可以是過去72小時內在某個App(應用程式)內打開哪些頁面、進行哪些功能操作等。用戶的行為記錄特徵反映了短期內用戶對被諮詢產品的使用情況;如果某個用戶在該時間段內頻繁使用客服功能,並且查詢了同一個知識點,那麽該用戶很可能遇到了機器人客服解決不了的問題,需要人工服務;如果某個用戶嘗試了某個功能操作很多遍,該用戶對人工客服有的需求往往更為迫切。
第二個例子:用戶的業務狀態特徵。用戶的業務狀態特徵實現了用戶在被諮詢產品上所開設帳戶的資訊,可以包括用戶帳戶的業務開通狀態、帳戶認證狀態、帳戶登錄狀態、和/或帳戶異常狀態等。用戶的業務狀態特徵常常能夠實現用戶解決問題的迫切程度,如果用戶帳戶處在“被凍結”(一種帳戶異常狀態)、“異地登錄”(一種帳戶登錄狀態)等狀態時,用戶很可能遇到了被盜被騙等問題,對人工客服會有很迫切的需求。
第三個例子:用戶的身份資訊特徵。用戶的身份資訊特徵是用戶作為自然人的資訊,可以包括用戶的性別、年齡、常駐地域、和/或教育程度等。不同身份資訊特徵的用戶對機器人客服的接受程度通常不同,如年輕的用戶、教育程度高的用戶更習慣機器人客服的問答模式,年長的用戶、教育程度較低的用戶對人工客服更加偏愛。
如前所述,信心分評估模型的輸入包括從機器人客服與用戶的會話中獲取會話特徵、以及用戶的狀態特徵,其輸出包括信心分評估值。信心分評估模型採用標記有出人工點的機器人客戶與用戶的會話樣本、以及用戶的狀態特徵樣本進行訓練,其中,出人工點是在與用戶的會話過程中,以人工客服代替機器人客服的適當時點。在訓練信心分評估模型時,可以在會話樣本中標記了出人工點和會話特徵後輸入信心分評估模型進行訓練;也可以只在會話樣本中標記出人工點,由電腦程式自動對會話樣本進行NLP處理後得到會話特徵,再輸入信心分評估模型進行訓練。
信心分評估模型所採用的機器學習算法可以根據實際應用場景的特點來選擇,不做限定。信心分評估模型可以是基於支持向量機的機器學習模型,如SVC(Support Vector Machine,支持向量機)等;可以是基於樹型的機器學習模型,如GBDT(Gradient Boosting Decision Tree,梯度提升決策樹)等;可以是線性模型,如LR(Logistic Regression,邏輯回歸)等;也可以是神經網路模型,如DNN(Deep Neural Networks,深度神經網路)、RNN (Recurrent Neural Networks,循環神經網路)、CNN (Convolutional Neural Networks,卷積神經網路)等。
在一種實現方式中,採用Wide and Deep(深度和廣度)模型來建立信心分評估模型。Wide and Deep模型包括線性子模型和深度神經網路子模型,採用將深度神經網路子模型與淺層線性子模型相結合的訓練模式。透過結合線性子模型的記憶能力(memorization)和深度神經網路子模型的泛化能力(generalization),並且採用聯合訓練(joint training),將整體模型的訓練誤差同時反饋到線性子模型和深度神經網路子模型中進行參數更新,同時優化2個子模型的參數,從而達到整體Wide and Deep模型的預測能力最優。
在用戶與機器人客服的問答過程中,會話特徵直接實現了用戶對人工客服的需求,屬於强相關特徵;而用戶的狀態特徵與問答過程沒有直接的關聯,只是間接影響著用戶對人工客服的需求,屬於弱相關特徵。為了實現這兩類特徵對結果的影響,可以採用Wide and Deep learning模型中不同的子模型來處理這兩類特徵。具體而言,以會話特徵作為線性子模型的輸入,經線性子模型處理後得到線性子模型的輸出向量;以用戶的狀態特徵作為深度神經網路子模型的輸入,經深度神經網路子模型處理後得到深度神經網路子模型的輸出向量;然後將兩個子模型的輸出向量拼起來,經過一個神經元計算輸出。
在Wide and Deep learning模型訓練階段,可以將是否標記為出人工點作為輸出(假設信心分評估值分別為1或0);在使用訓練後的模型進行預測時,輸出可以視為該時點是出人工點的可能性(信心分評估值為0到1之間的浮點數)。
本說明書的實施例中,機器人客服轉人工客服的方法的流程如圖1所示。
步驟110,從機器人客服與用戶的至少一輪會話中獲取會話特徵。
在信心分評估模型訓練完成後,可以在即時的機器人客服與用戶的會話過程中,利用信心分評估模型來判斷在會話中用戶發言後的時點,是否需要切換為人工客服。
本說明書的實施例中,以一次用戶發言、或者一次機器人客服發言和一次用戶發言為一個輪次。通常機器人客服與用戶的會話的第一輪是用戶發言,第二輪及後續輪次是一次機器人客服發言和一次用戶發言。每個輪次以用戶發言來結束,該時點也即是可以由人工客服代替機器人客服的時點,或者說是可能的出人工點。
可以將機器人客服與用戶會話的一個到多個輪次來作為獲取會話特徵的基礎。例如將目前時點前預定輪次數目的會話作為獲取會話特徵的基礎,如果目前時點已經進行的會話輪次小於預定輪次數目,則整個會話作為獲取會話特徵的基礎;再如,始終將已經進行的整個會話作為獲取會話特徵的基礎。
步驟120,獲取用戶的狀態特徵。
根據實際應用場景中客服中心和所諮詢服務產品服務端的具體實現,可以從保存用戶狀態特徵的預定網路位置、預定資料庫表等處讀取到用戶的狀態特徵,不做限定。
需要說明的是,步驟110和步驟120之間沒有時序關係。機器人客服與用戶的會話通常隨著會話過程的繼續不斷更新,而用戶的狀態特徵則一般在一次客戶服務過程中不會發生變化,因此步驟110在一次客戶服務過程中可能執行多次,而步驟120則通常執行一次。
步驟130,將會話特徵和狀態特徵輸入信心分評估模型,得到目前信心分評估值。
將從目前時點前若干輪次的機器人客服與用戶的會話中提取的會話特徵、用戶的狀態特徵輸入到信心分評估模型中,得到在會話中用戶最後一次發言後的目前時點(即目前輪次會話的用戶發言後時點)的信心分評估值。
步驟140,在目前信心分評估值滿足預定出人工條件時,將用戶轉接人工客服。
如果目前信心分評估值滿足預定出人工條件,則認為目前時點需要人工客服介入,將用戶轉接至人工客服。
預定出人工條件可以是目前信心分評估值大於或小於預定信心分閾值,視實際應用場景中目前信心分評估值更高是代表更强的對人工客服的需求程度,還是更弱的對人工客服的需求程度。預定信心分閾值可以綜合考慮訓練後信心評估分模型與會話樣本的擬合程度、實際應用場景中的用戶與人工客服的數量比例等因素來確定。也可以由設置一定的標準,由程式根據所設置的標準自動確定預定信心分閾值。例如,可以將會話樣本輸入到訓練後的信心評估模型中,得到會話樣本中對應於出人工點的樣本信心分評估值;設定一系列不同的預定信心分閾值的具體數值,計算當選擇不同數值的預定信心分閾值時樣本信心分評估值的覆蓋率和準確率,設定針對覆蓋率和準確率的評判標準,按照評判標準的評價最好的覆蓋率和準確率對應的數值作為預定信心分閾值。
可見,本說明書的實施例中,採用用戶的狀態特徵來描述用戶的自身因素,以從機器人與用戶的會話中獲取的會話特徵和用戶的狀態特徵作為信心分評估機器學習模型的輸入,得到目前信心分評估值,在目前信心分評估值滿足預定出人工條件時轉接人工客服,由於信心分評估模型基於用戶狀態特徵實現的用戶對人工客服的需求程度和迫切程度來給出目前信心分評估值,應用本說明書的實施例後可以增加出人工點的準確性,不僅能夠提高客服中心的服務效率,而且還能夠提高用戶對服務的滿意程度。
上述對本說明書特定實施例進行了描述。其它實施例在所附申請專利範圍的範圍內。在一些情況下,在申請專利範圍中記載的動作或步驟可以按照不同於實施例中的順序來執行並且仍然可以實現期望的結果。另外,在附圖中描繪的過程不一定要求示出的特定順序或者連續順序才能實現期望的結果。在某些實施方式中,多任務處理和平行處理也是可以的或者可能是有利的。
在本說明書的一個應用例示中,第三方支付平台的客服中心為使用其客戶端App的用戶提供線上服務。客戶中心的技術人員採用從機器人客服與用戶的會話中提取的會話特徵、以及用戶的狀態特徵,建立Wide and Deep模型,作為信心分評估模型。本應用例示中,用戶的狀態特徵包括用戶的行為記錄特徵、業務狀態特徵和身份資訊特徵。
Wide and Deep模型的結構如圖2所示,以會話特徵作為線性子模型的輸入,以用戶的狀態特徵作為深度神經網路子模型的輸入。通常Wide and Deep模型中深度神經網路子模型的各層神經層均為Dense(緊密)神經層,即該神經層採用若干個Dense神經元進行資料處理。本應用例示中,深度神經網路子模型採用Dense神經層處理業務狀態特徵,採用Dense神經層處理身份資訊特徵,採用LSTM(Long Short-Term Memory,長短期記憶網路)神經層處理行為記錄特徵;上述三個神經層的輸出經Dense神經層將三種用戶狀態特徵的處理結果綜合為一個深度神經網路子模型的輸出向量,再由一個Dense神經層將兩個子模型的輸出向量綜合為整個模型的輸出,即信心分評估值。經本案的發明人在試驗中發現,圖2所示的神經層結構能夠達到更好的效果。
技術人員在若干機器人客服與用戶的會話的歷史記錄中標註出人工點後,將其作為會話樣本,並將這些用戶的狀態特徵作為狀態特徵樣本,由程式自動從會話樣本中提取出會話特徵後,將會話樣本的會話特徵和狀態特徵樣本輸入到Wide and Deep模型中進行訓練。
當客服中心接到用戶的服務請求時,其處理過程如圖3所示。
步驟305,接收用戶的輸入。
步驟310,由機器人客服根據用戶的問題給出回覆。
步驟315,獲取用戶的行為記錄特徵、業務狀態特徵和身份資訊特徵。
步驟320,判斷是否收到用戶的下一次輸入,如果未收到,流程結束;如果收到,執行步驟325。
步驟325,從機器人客服與用戶在本次服務的所有會話中提取會話特徵。
步驟330,將會話特徵和用戶的狀態特徵輸入到訓練完成的Wide and Deep信心分評估模型中,模型的輸出為目前信心分評估值。
步驟335,判斷目前信心分評估值是否滿足預定出人工條件,如果是,執行步驟340;如果否,執行步驟345。
步驟340,轉接人工客服,流程結束。
步驟345,由機器人客服給出用戶回覆,轉步驟320。
與上述流程實現對應,本說明書的實施例還提供了一種機器人客服轉人工客服的裝置。該裝置均可以透過軟體實現,也可以透過硬體或者軟硬體結合的方式實現。以軟體實現為例,作為邏輯意義上的裝置,是透過所在設備的CPU(Central Process Unit,中央處理器)將對應的電腦程式指令讀取到內記憶體中執行形成的。從硬體層面而言,除了圖4所示的CPU、內記憶體以及記憶體之外,機器人客服轉人工客服的裝置所在的設備通常還包括用於進行無線信號收發的晶片等其他硬體,和/或用於實現網路通信功能的板卡等其他硬體。
圖5所示為本說明書實施例提供的一種機器人客服轉人工客服的裝置,包括會話特徵獲取單元、狀態特徵獲取單元、信心分評估單元和轉接判斷單元,其中:會話特徵獲取單元用於從機器人客服與用戶的至少一輪會話中獲取會話特徵;狀態特徵獲取單元用於獲取用戶的狀態特徵;信心分評估單元用於將所述會話特徵和狀態特徵輸入信心分評估模型,得到目前信心分評估值;所述信心分評估模型為機器學習模型,採用標記有出人工點的機器人客戶與用戶的會話樣本、以及用戶的狀態特徵樣本進行訓練;轉接判斷單元用於在目前信心分評估值滿足預定出人工條件時,將用戶轉接人工客服。
一個例子中,所述信心分評估模型為深度和廣度(Wide and Deep)模型,所述Wide and Deep模型包括線性子模型和深度神經網路子模型,以會話特徵作為線性子模型的輸入,以狀態特徵作為深度神經網路子模型的輸入。
上述例子中,所述狀態特徵可以包括以下至少一項:用戶的行為記錄特徵、業務狀態特徵和身份資訊特徵;所述深度神經網路子模型採用緊密(Dense)神經層處理業務狀態特徵,採用Dense神經層處理身份資訊特徵,採用長短期記憶網路(LSTM)神經層處理行為記錄特徵。
可選的,所述會話特徵為自然語言處理(NLP)特徵,包括以下的一項到多項:用戶提問與機器人回答的關聯度、問答輪數、答案類型。
可選的,所述狀態特徵包括以下至少一項:用戶的行為記錄特徵、業務狀態特徵和身份資訊特徵;所述行為記錄特徵包括以下至少一項:用戶在預定時間段內的訪問記錄、操作記錄;所述業務狀態特徵包括以下至少一項:用戶帳戶的業務開通狀態、帳戶認證狀態、帳戶登錄狀態、帳戶異常狀態;所述身份資訊特徵包括以下至少一項:用戶的性別、年齡、常駐地域。
可選的,所述信心分評估模型包括:基於支持向量機的機器學習模型、基於樹型的機器學習模型、線性模型、神經網路模型。
可選的,所述預定出人工條件包括:目前信心分評估值大於或小於預定信心分閾值。
本說明書的實施例提供了一種電腦設備,該電腦設備包括記憶體和處理器。其中,記憶體上儲存有能夠由處理器執行的電腦程式;處理器在執行儲存的電腦程式時,執行本說明書實施例中機器人客服轉人工客服的方法的各個步驟。對機器人客服轉人工客服的方法的各個步驟的詳細描述請參見之前的內容,不再重複。
本說明書的實施例提供了一種電腦可讀儲存媒體,該儲存媒體上儲存有電腦程式,這些電腦程式在被處理器執行時,執行本說明書實施例中機器人客服轉人工客服的方法的各個步驟。對機器人客服轉人工客服的方法的各個步驟的詳細描述請參見之前的內容,不再重複。
以上所述僅為本說明書的較佳實施例而已,並不用以限制本案,凡在本案的精神和原則之內,所做的任何修改、等同替換、改進等,均應包含在本案保護的範圍之內。
在一個典型的配置中,計算設備包括一個或多個處理器(CPU)、輸入/輸出介面、網路介面和內記憶體。
內記憶體可能包括電腦可讀媒體中的非永久性記憶體,隨機存取記憶體 (RAM)和/或非易失性內記憶體等形式,如唯讀記憶體(ROM)或閃存(flash RAM)。內記憶體是電腦可讀媒體的例示。
電腦可讀媒體包括永久性和非永久性、可移動和非可移動媒體可以由任何方法或技術來實現資訊儲存。資訊可以是電腦可讀指令、資料結構、程式的模塊或其他資料。電腦的儲存媒體的例子包括,但不限於相變內記憶體(PRAM)、靜態隨機存取記憶體(SRAM)、動態隨機存取記憶體(DRAM)、其他類型的隨機存取記憶體(RAM)、唯讀記憶體(ROM)、電氣可抹除可程式唯讀記憶體 (EEPROM)、快閃記憶體或其他內記憶體技術、唯讀光碟唯讀記憶體(CD-ROM)、數位多功能光碟(DVD)或其他光學儲存、磁盒式磁帶,磁帶磁碟儲存或其他磁性儲存設備或任何其他非傳輸媒體,可用於儲存可以被計算設備存取的資訊。按照本文中的界定,電腦可讀媒體不包括暫存電腦可讀媒體(transitory media),如調變的資料信號和載波。
還需要說明的是,術語“包括”、“包含”或者其任何其他變體意在涵蓋非排他性的包含,從而使得包括一系列要素的過程、方法、商品或者設備不僅包括那些要素,而且還包括沒有明確列出的其他要素,或者是還包括為這種過程、方法、商品或者設備所固有的要素。在沒有更多限制的情況下,由語句“包括一個……”限定的要素,並不排除在包括所述要素的過程、方法、商品或者設備中還存在另外的相同要素。
本領域技術人員應明白,本說明書的實施例可提供為方法、系統或電腦程式產品。因此,本說明書的實施例可採用完全硬體實施例、完全軟體實施例或結合軟體和硬體方面的實施例的形式。而且,本說明書的實施例可採用在一個或多個其中包含有電腦可用程式碼的電腦可用儲存媒體(包括但不限於磁碟記憶體、CD-ROM、光學記憶體等)上實施的電腦程式產品的形式。
另一方面,用戶的自身因素也會影響對人工客戶的需求程度。例如,帳戶被盜的用戶通常都有較强的人工客服需求,而查詢帳單的用戶一般有更好的耐心與機器人客戶溝通。此外,不同年齡、職業、教育背景的用戶,對機器人客服的接受度也不盡相同,青年用戶能較快理解機器人客服的回答,而老年用戶常常需要人工客服的詳細指導。
本說明書的實施例提出一種新的機器人客服轉人工客服的方法,採用用戶的狀態特徵來描述用戶的自身因素,利用以機器人客服與用戶會話中提取的會話特徵和用戶的狀態特徵訓練完成的信心分評估模型,得到目前信心分評估值,在目前信心分評估值滿足預定出人工條件時轉接人工客服,由於信心分評估模型不僅基於機器人客服與用戶的會話過程,並且基於用戶狀態特徵實現的用戶對人工客服的需求程度和迫切程度來給出目前信心分評估值,本說明書的實施例能夠對出人工點給出更加準確的判斷,不僅能夠提高客服中心的服務效率,而且還能夠提高用戶對服務的滿意程度。
本說明書的實施例可以執行在任何具有計算和儲存能力的設備上,如手機、平板電腦、PC(Personal Computer,個人電腦)、筆記型電腦、伺服器等設備;還可以由執行在兩個或兩個以上設備的邏輯節點來實現本說明書實施例中的各項功能。
本說明書的實施例中,採用從機器人客服與用戶的會話中提取的會話特徵、和用戶的狀態特徵來建立機器學習模型,本說明書中稱之為信心分評估模型。其中,從機器人客服與用戶的會話中提取的會話特徵可以是以機器人客服與用戶的會話為基礎,採用NLP(Natural Language Processing,自然語言處理)方法能夠獲取的任何特徵,即NLP特徵。具體而言,可以是用戶提問與機器人回答的關聯度、問答輪數、答案類型(機器人客服的答案是陳述還是提問、答案是具體問題的答案還是全盤托出答案等等)、答案重複次數、用戶是否提出換人工、用戶是否在解釋自己的問題等特徵中的任意個數。會話特徵的確定和從會話中獲取會話特徵的具體方式均可參照現有技術實現,不再贅述。
除與機器人客服的會話以外,其他能夠實現用戶目前對人工客服的需求程度以及解決問題的迫切程度的用戶資訊都可以用來作為用戶的狀態特徵,本說明書的實施例對具體的狀態特徵以及狀態特徵的數量均不做限定。以下舉例說明。
第一個例子:用戶的行為記錄特徵。用戶的行為記錄特徵包括用戶在預定時間段內對客服中心諮詢服務範圍內所有產品的訪問記錄、和/或功能使用記錄等。例如,可以是過去72小時內在某個App(應用程式)內打開哪些頁面、進行哪些功能操作等。用戶的行為記錄特徵反映了短期內用戶對被諮詢產品的使用情況;如果某個用戶在該時間段內頻繁使用客服功能,並且查詢了同一個知識點,那麽該用戶很可能遇到了機器人客服解決不了的問題,需要人工服務;如果某個用戶嘗試了某個功能操作很多遍,該用戶對人工客服有的需求往往更為迫切。
第二個例子:用戶的業務狀態特徵。用戶的業務狀態特徵實現了用戶在被諮詢產品上所開設帳戶的資訊,可以包括用戶帳戶的業務開通狀態、帳戶認證狀態、帳戶登錄狀態、和/或帳戶異常狀態等。用戶的業務狀態特徵常常能夠實現用戶解決問題的迫切程度,如果用戶帳戶處在“被凍結”(一種帳戶異常狀態)、“異地登錄”(一種帳戶登錄狀態)等狀態時,用戶很可能遇到了被盜被騙等問題,對人工客服會有很迫切的需求。
第三個例子:用戶的身份資訊特徵。用戶的身份資訊特徵是用戶作為自然人的資訊,可以包括用戶的性別、年齡、常駐地域、和/或教育程度等。不同身份資訊特徵的用戶對機器人客服的接受程度通常不同,如年輕的用戶、教育程度高的用戶更習慣機器人客服的問答模式,年長的用戶、教育程度較低的用戶對人工客服更加偏愛。
如前所述,信心分評估模型的輸入包括從機器人客服與用戶的會話中獲取會話特徵、以及用戶的狀態特徵,其輸出包括信心分評估值。信心分評估模型採用標記有出人工點的機器人客戶與用戶的會話樣本、以及用戶的狀態特徵樣本進行訓練,其中,出人工點是在與用戶的會話過程中,以人工客服代替機器人客服的適當時點。在訓練信心分評估模型時,可以在會話樣本中標記了出人工點和會話特徵後輸入信心分評估模型進行訓練;也可以只在會話樣本中標記出人工點,由電腦程式自動對會話樣本進行NLP處理後得到會話特徵,再輸入信心分評估模型進行訓練。
信心分評估模型所採用的機器學習算法可以根據實際應用場景的特點來選擇,不做限定。信心分評估模型可以是基於支持向量機的機器學習模型,如SVC(Support Vector Machine,支持向量機)等;可以是基於樹型的機器學習模型,如GBDT(Gradient Boosting Decision Tree,梯度提升決策樹)等;可以是線性模型,如LR(Logistic Regression,邏輯回歸)等;也可以是神經網路模型,如DNN(Deep Neural Networks,深度神經網路)、RNN (Recurrent Neural Networks,循環神經網路)、CNN (Convolutional Neural Networks,卷積神經網路)等。
在一種實現方式中,採用Wide and Deep(深度和廣度)模型來建立信心分評估模型。Wide and Deep模型包括線性子模型和深度神經網路子模型,採用將深度神經網路子模型與淺層線性子模型相結合的訓練模式。透過結合線性子模型的記憶能力(memorization)和深度神經網路子模型的泛化能力(generalization),並且採用聯合訓練(joint training),將整體模型的訓練誤差同時反饋到線性子模型和深度神經網路子模型中進行參數更新,同時優化2個子模型的參數,從而達到整體Wide and Deep模型的預測能力最優。
在用戶與機器人客服的問答過程中,會話特徵直接實現了用戶對人工客服的需求,屬於强相關特徵;而用戶的狀態特徵與問答過程沒有直接的關聯,只是間接影響著用戶對人工客服的需求,屬於弱相關特徵。為了實現這兩類特徵對結果的影響,可以採用Wide and Deep learning模型中不同的子模型來處理這兩類特徵。具體而言,以會話特徵作為線性子模型的輸入,經線性子模型處理後得到線性子模型的輸出向量;以用戶的狀態特徵作為深度神經網路子模型的輸入,經深度神經網路子模型處理後得到深度神經網路子模型的輸出向量;然後將兩個子模型的輸出向量拼起來,經過一個神經元計算輸出。
在Wide and Deep learning模型訓練階段,可以將是否標記為出人工點作為輸出(假設信心分評估值分別為1或0);在使用訓練後的模型進行預測時,輸出可以視為該時點是出人工點的可能性(信心分評估值為0到1之間的浮點數)。
本說明書的實施例中,機器人客服轉人工客服的方法的流程如圖1所示。
步驟110,從機器人客服與用戶的至少一輪會話中獲取會話特徵。
在信心分評估模型訓練完成後,可以在即時的機器人客服與用戶的會話過程中,利用信心分評估模型來判斷在會話中用戶發言後的時點,是否需要切換為人工客服。
本說明書的實施例中,以一次用戶發言、或者一次機器人客服發言和一次用戶發言為一個輪次。通常機器人客服與用戶的會話的第一輪是用戶發言,第二輪及後續輪次是一次機器人客服發言和一次用戶發言。每個輪次以用戶發言來結束,該時點也即是可以由人工客服代替機器人客服的時點,或者說是可能的出人工點。
可以將機器人客服與用戶會話的一個到多個輪次來作為獲取會話特徵的基礎。例如將目前時點前預定輪次數目的會話作為獲取會話特徵的基礎,如果目前時點已經進行的會話輪次小於預定輪次數目,則整個會話作為獲取會話特徵的基礎;再如,始終將已經進行的整個會話作為獲取會話特徵的基礎。
步驟120,獲取用戶的狀態特徵。
根據實際應用場景中客服中心和所諮詢服務產品服務端的具體實現,可以從保存用戶狀態特徵的預定網路位置、預定資料庫表等處讀取到用戶的狀態特徵,不做限定。
需要說明的是,步驟110和步驟120之間沒有時序關係。機器人客服與用戶的會話通常隨著會話過程的繼續不斷更新,而用戶的狀態特徵則一般在一次客戶服務過程中不會發生變化,因此步驟110在一次客戶服務過程中可能執行多次,而步驟120則通常執行一次。
步驟130,將會話特徵和狀態特徵輸入信心分評估模型,得到目前信心分評估值。
將從目前時點前若干輪次的機器人客服與用戶的會話中提取的會話特徵、用戶的狀態特徵輸入到信心分評估模型中,得到在會話中用戶最後一次發言後的目前時點(即目前輪次會話的用戶發言後時點)的信心分評估值。
步驟140,在目前信心分評估值滿足預定出人工條件時,將用戶轉接人工客服。
如果目前信心分評估值滿足預定出人工條件,則認為目前時點需要人工客服介入,將用戶轉接至人工客服。
預定出人工條件可以是目前信心分評估值大於或小於預定信心分閾值,視實際應用場景中目前信心分評估值更高是代表更强的對人工客服的需求程度,還是更弱的對人工客服的需求程度。預定信心分閾值可以綜合考慮訓練後信心評估分模型與會話樣本的擬合程度、實際應用場景中的用戶與人工客服的數量比例等因素來確定。也可以由設置一定的標準,由程式根據所設置的標準自動確定預定信心分閾值。例如,可以將會話樣本輸入到訓練後的信心評估模型中,得到會話樣本中對應於出人工點的樣本信心分評估值;設定一系列不同的預定信心分閾值的具體數值,計算當選擇不同數值的預定信心分閾值時樣本信心分評估值的覆蓋率和準確率,設定針對覆蓋率和準確率的評判標準,按照評判標準的評價最好的覆蓋率和準確率對應的數值作為預定信心分閾值。
可見,本說明書的實施例中,採用用戶的狀態特徵來描述用戶的自身因素,以從機器人與用戶的會話中獲取的會話特徵和用戶的狀態特徵作為信心分評估機器學習模型的輸入,得到目前信心分評估值,在目前信心分評估值滿足預定出人工條件時轉接人工客服,由於信心分評估模型基於用戶狀態特徵實現的用戶對人工客服的需求程度和迫切程度來給出目前信心分評估值,應用本說明書的實施例後可以增加出人工點的準確性,不僅能夠提高客服中心的服務效率,而且還能夠提高用戶對服務的滿意程度。
上述對本說明書特定實施例進行了描述。其它實施例在所附申請專利範圍的範圍內。在一些情況下,在申請專利範圍中記載的動作或步驟可以按照不同於實施例中的順序來執行並且仍然可以實現期望的結果。另外,在附圖中描繪的過程不一定要求示出的特定順序或者連續順序才能實現期望的結果。在某些實施方式中,多任務處理和平行處理也是可以的或者可能是有利的。
在本說明書的一個應用例示中,第三方支付平台的客服中心為使用其客戶端App的用戶提供線上服務。客戶中心的技術人員採用從機器人客服與用戶的會話中提取的會話特徵、以及用戶的狀態特徵,建立Wide and Deep模型,作為信心分評估模型。本應用例示中,用戶的狀態特徵包括用戶的行為記錄特徵、業務狀態特徵和身份資訊特徵。
Wide and Deep模型的結構如圖2所示,以會話特徵作為線性子模型的輸入,以用戶的狀態特徵作為深度神經網路子模型的輸入。通常Wide and Deep模型中深度神經網路子模型的各層神經層均為Dense(緊密)神經層,即該神經層採用若干個Dense神經元進行資料處理。本應用例示中,深度神經網路子模型採用Dense神經層處理業務狀態特徵,採用Dense神經層處理身份資訊特徵,採用LSTM(Long Short-Term Memory,長短期記憶網路)神經層處理行為記錄特徵;上述三個神經層的輸出經Dense神經層將三種用戶狀態特徵的處理結果綜合為一個深度神經網路子模型的輸出向量,再由一個Dense神經層將兩個子模型的輸出向量綜合為整個模型的輸出,即信心分評估值。經本案的發明人在試驗中發現,圖2所示的神經層結構能夠達到更好的效果。
技術人員在若干機器人客服與用戶的會話的歷史記錄中標註出人工點後,將其作為會話樣本,並將這些用戶的狀態特徵作為狀態特徵樣本,由程式自動從會話樣本中提取出會話特徵後,將會話樣本的會話特徵和狀態特徵樣本輸入到Wide and Deep模型中進行訓練。
當客服中心接到用戶的服務請求時,其處理過程如圖3所示。
步驟305,接收用戶的輸入。
步驟310,由機器人客服根據用戶的問題給出回覆。
步驟315,獲取用戶的行為記錄特徵、業務狀態特徵和身份資訊特徵。
步驟320,判斷是否收到用戶的下一次輸入,如果未收到,流程結束;如果收到,執行步驟325。
步驟325,從機器人客服與用戶在本次服務的所有會話中提取會話特徵。
步驟330,將會話特徵和用戶的狀態特徵輸入到訓練完成的Wide and Deep信心分評估模型中,模型的輸出為目前信心分評估值。
步驟335,判斷目前信心分評估值是否滿足預定出人工條件,如果是,執行步驟340;如果否,執行步驟345。
步驟340,轉接人工客服,流程結束。
步驟345,由機器人客服給出用戶回覆,轉步驟320。
與上述流程實現對應,本說明書的實施例還提供了一種機器人客服轉人工客服的裝置。該裝置均可以透過軟體實現,也可以透過硬體或者軟硬體結合的方式實現。以軟體實現為例,作為邏輯意義上的裝置,是透過所在設備的CPU(Central Process Unit,中央處理器)將對應的電腦程式指令讀取到內記憶體中執行形成的。從硬體層面而言,除了圖4所示的CPU、內記憶體以及記憶體之外,機器人客服轉人工客服的裝置所在的設備通常還包括用於進行無線信號收發的晶片等其他硬體,和/或用於實現網路通信功能的板卡等其他硬體。
圖5所示為本說明書實施例提供的一種機器人客服轉人工客服的裝置,包括會話特徵獲取單元、狀態特徵獲取單元、信心分評估單元和轉接判斷單元,其中:會話特徵獲取單元用於從機器人客服與用戶的至少一輪會話中獲取會話特徵;狀態特徵獲取單元用於獲取用戶的狀態特徵;信心分評估單元用於將所述會話特徵和狀態特徵輸入信心分評估模型,得到目前信心分評估值;所述信心分評估模型為機器學習模型,採用標記有出人工點的機器人客戶與用戶的會話樣本、以及用戶的狀態特徵樣本進行訓練;轉接判斷單元用於在目前信心分評估值滿足預定出人工條件時,將用戶轉接人工客服。
一個例子中,所述信心分評估模型為深度和廣度(Wide and Deep)模型,所述Wide and Deep模型包括線性子模型和深度神經網路子模型,以會話特徵作為線性子模型的輸入,以狀態特徵作為深度神經網路子模型的輸入。
上述例子中,所述狀態特徵可以包括以下至少一項:用戶的行為記錄特徵、業務狀態特徵和身份資訊特徵;所述深度神經網路子模型採用緊密(Dense)神經層處理業務狀態特徵,採用Dense神經層處理身份資訊特徵,採用長短期記憶網路(LSTM)神經層處理行為記錄特徵。
可選的,所述會話特徵為自然語言處理(NLP)特徵,包括以下的一項到多項:用戶提問與機器人回答的關聯度、問答輪數、答案類型。
可選的,所述狀態特徵包括以下至少一項:用戶的行為記錄特徵、業務狀態特徵和身份資訊特徵;所述行為記錄特徵包括以下至少一項:用戶在預定時間段內的訪問記錄、操作記錄;所述業務狀態特徵包括以下至少一項:用戶帳戶的業務開通狀態、帳戶認證狀態、帳戶登錄狀態、帳戶異常狀態;所述身份資訊特徵包括以下至少一項:用戶的性別、年齡、常駐地域。
可選的,所述信心分評估模型包括:基於支持向量機的機器學習模型、基於樹型的機器學習模型、線性模型、神經網路模型。
可選的,所述預定出人工條件包括:目前信心分評估值大於或小於預定信心分閾值。
本說明書的實施例提供了一種電腦設備,該電腦設備包括記憶體和處理器。其中,記憶體上儲存有能夠由處理器執行的電腦程式;處理器在執行儲存的電腦程式時,執行本說明書實施例中機器人客服轉人工客服的方法的各個步驟。對機器人客服轉人工客服的方法的各個步驟的詳細描述請參見之前的內容,不再重複。
本說明書的實施例提供了一種電腦可讀儲存媒體,該儲存媒體上儲存有電腦程式,這些電腦程式在被處理器執行時,執行本說明書實施例中機器人客服轉人工客服的方法的各個步驟。對機器人客服轉人工客服的方法的各個步驟的詳細描述請參見之前的內容,不再重複。
以上所述僅為本說明書的較佳實施例而已,並不用以限制本案,凡在本案的精神和原則之內,所做的任何修改、等同替換、改進等,均應包含在本案保護的範圍之內。
在一個典型的配置中,計算設備包括一個或多個處理器(CPU)、輸入/輸出介面、網路介面和內記憶體。
內記憶體可能包括電腦可讀媒體中的非永久性記憶體,隨機存取記憶體 (RAM)和/或非易失性內記憶體等形式,如唯讀記憶體(ROM)或閃存(flash RAM)。內記憶體是電腦可讀媒體的例示。
電腦可讀媒體包括永久性和非永久性、可移動和非可移動媒體可以由任何方法或技術來實現資訊儲存。資訊可以是電腦可讀指令、資料結構、程式的模塊或其他資料。電腦的儲存媒體的例子包括,但不限於相變內記憶體(PRAM)、靜態隨機存取記憶體(SRAM)、動態隨機存取記憶體(DRAM)、其他類型的隨機存取記憶體(RAM)、唯讀記憶體(ROM)、電氣可抹除可程式唯讀記憶體 (EEPROM)、快閃記憶體或其他內記憶體技術、唯讀光碟唯讀記憶體(CD-ROM)、數位多功能光碟(DVD)或其他光學儲存、磁盒式磁帶,磁帶磁碟儲存或其他磁性儲存設備或任何其他非傳輸媒體,可用於儲存可以被計算設備存取的資訊。按照本文中的界定,電腦可讀媒體不包括暫存電腦可讀媒體(transitory media),如調變的資料信號和載波。
還需要說明的是,術語“包括”、“包含”或者其任何其他變體意在涵蓋非排他性的包含,從而使得包括一系列要素的過程、方法、商品或者設備不僅包括那些要素,而且還包括沒有明確列出的其他要素,或者是還包括為這種過程、方法、商品或者設備所固有的要素。在沒有更多限制的情況下,由語句“包括一個……”限定的要素,並不排除在包括所述要素的過程、方法、商品或者設備中還存在另外的相同要素。
本領域技術人員應明白,本說明書的實施例可提供為方法、系統或電腦程式產品。因此,本說明書的實施例可採用完全硬體實施例、完全軟體實施例或結合軟體和硬體方面的實施例的形式。而且,本說明書的實施例可採用在一個或多個其中包含有電腦可用程式碼的電腦可用儲存媒體(包括但不限於磁碟記憶體、CD-ROM、光學記憶體等)上實施的電腦程式產品的形式。
110‧‧‧步驟
120‧‧‧步驟
130‧‧‧步驟
140‧‧‧步驟
305‧‧‧步驟
310‧‧‧步驟
315‧‧‧步驟
320‧‧‧步驟
325‧‧‧步驟
330‧‧‧步驟
335‧‧‧步驟
340‧‧‧步驟
345‧‧‧步驟
圖1是本說明書實施例中一種機器人客服轉人工客服的方法的流程圖;
圖2是本說明書應用例示中一種Wide and Deep模型的結構示意圖;
圖3是本說明書應用例示中一次客戶服務的處理流程圖;
圖4是執行本說明書實施例的設備的一種硬體結構圖;
圖5是本說明書實施例中一種機器人客服轉人工客服的裝置的邏輯結構圖。
Claims (16)
- 一種機器人客服轉人工客服的方法,包括: 從機器人客服與用戶的至少一輪會話中獲取會話特徵; 獲取用戶的狀態特徵; 將所述會話特徵和狀態特徵輸入信心分評估模型,得到目前信心分評估值;所述信心分評估模型為機器學習模型,採用標記有出人工點的機器人客戶與用戶的會話樣本、以及用戶的狀態特徵樣本進行訓練; 在目前信心分評估值滿足預定出人工條件時,將用戶轉接人工客服。
- 根據申請專利範圍第1項所述的方法,其中所述信心分評估模型為深度和廣度(Wide and Deep)模型,所述Wide and Deep模型包括線性子模型和深度神經網路子模型,以會話特徵作為線性子模型的輸入,以狀態特徵作為深度神經網路子模型的輸入。
- 根據申請專利範圍第2項所述的方法,其中所述狀態特徵包括以下至少一項:用戶的行為記錄特徵、業務狀態特徵和身份資訊特徵; 所述深度神經網路子模型採用緊密(Dense)神經層處理業務狀態特徵,採用Dense神經層處理身份資訊特徵,採用長短期記憶網路(LSTM)神經層處理行為記錄特徵。
- 根據申請專利範圍第1項所述的方法,其中所述會話特徵為自然語言處理(NLP)特徵,包括以下的一項到多項:用戶提問與機器人回答的關聯度、問答輪數、答案類型。
- 根據申請專利範圍第1項所述的方法,其中所述狀態特徵包括以下至少一項:用戶的行為記錄特徵、業務狀態特徵和身份資訊特徵; 所述行為記錄特徵包括以下至少一項:用戶在預定時間段內的訪問記錄、操作記錄; 所述業務狀態特徵包括以下至少一項:用戶帳戶的業務開通狀態、帳戶認證狀態、帳戶登錄狀態、帳戶異常狀態; 所述身份資訊特徵包括以下至少一項:用戶的性別、年齡、常駐地域。
- 根據申請專利範圍第1項所述的方法,其中所述信心分評估模型包括:基於支持向量機的機器學習模型、基於樹型的機器學習模型、線性模型、神經網路模型。
- 根據申請專利範圍第1項所述的方法,其中所述預定出人工條件包括:目前信心分評估值大於或小於預定信心分閾值。
- 一種機器人客服轉人工客服的裝置,包括: 會話特徵獲取單元,用於從機器人客服與用戶的至少一輪會話中獲取會話特徵; 狀態特徵獲取單元,用於獲取用戶的狀態特徵; 信心分評估單元,用於將所述會話特徵和狀態特徵輸入信心分評估模型,得到目前信心分評估值;所述信心分評估模型為機器學習模型,採用標記有出人工點的機器人客戶與用戶的會話樣本、以及用戶的狀態特徵樣本進行訓練; 轉接判斷單元,用於在目前信心分評估值滿足預定出人工條件時,將用戶轉接人工客服。
- 根據申請專利範圍第8項所述的裝置,其中所述信心分評估模型為深度和廣度(Wide and Deep)模型,所述Wide and Deep模型包括線性子模型和深度神經網路子模型,以會話特徵作為線性子模型的輸入,以狀態特徵作為深度神經網路子模型的輸入。
- 根據申請專利範圍第9項所述的裝置,其中所述狀態特徵包括以下至少一項:用戶的行為記錄特徵、業務狀態特徵和身份資訊特徵; 所述深度神經網路子模型採用緊密(Dense)神經層處理業務狀態特徵,採用Dense神經層處理身份資訊特徵,採用長短期記憶網路(LSTM)神經層處理行為記錄特徵。
- 根據申請專利範圍第8項所述的裝置,其中所述會話特徵為自然語言處理(NLP)特徵,包括以下的一項到多項:用戶提問與機器人回答的關聯度、問答輪數、答案類型。
- 根據申請專利範圍第8項所述的裝置,其中所述狀態特徵包括以下至少一項:用戶的行為記錄特徵、業務狀態特徵和身份資訊特徵; 所述行為記錄特徵包括以下至少一項:用戶在預定時間段內的訪問記錄、操作記錄; 所述業務狀態特徵包括以下至少一項:用戶帳戶的業務開通狀態、帳戶認證狀態、帳戶登錄狀態、帳戶異常狀態; 所述身份資訊特徵包括以下至少一項:用戶的性別、年齡、常駐地域。
- 根據申請專利範圍第8項所述的裝置,其中所述信心分評估模型包括:基於支持向量機的機器學習模型、基於樹型的機器學習模型、線性模型、神經網路模型。
- 根據申請專利範圍第8項所述的裝置,其中所述預定出人工條件包括:目前信心分評估值大於或小於預定信心分閾值。
- 一種電腦設備,包括:記憶體和處理器;所述記憶體上儲存有可由處理器執行的電腦程式;所述處理器執行所述電腦程式時,執行如申請專利範圍第1到7項中任意一項所述的步驟。
- 一種電腦可讀儲存媒體,其上儲存有電腦程式,所述電腦程式被處理器執行時,執行如申請專利範圍第1到7項中任意一項所述的步驟。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810076926.7A CN108363745B (zh) | 2018-01-26 | 2018-01-26 | 机器人客服转人工客服的方法和装置 |
CN201810076926.7 | 2018-01-26 | ||
??201810076926.7 | 2018-01-26 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201933267A true TW201933267A (zh) | 2019-08-16 |
TWI698830B TWI698830B (zh) | 2020-07-11 |
Family
ID=63007175
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW107145199A TWI698830B (zh) | 2018-01-26 | 2018-12-14 | 機器人客服轉人工客服的方法和裝置及其電腦設備與電腦可讀儲存媒體 |
Country Status (8)
Country | Link |
---|---|
US (1) | US10977664B2 (zh) |
EP (1) | EP3719732A1 (zh) |
JP (1) | JP6991341B2 (zh) |
KR (1) | KR102445992B1 (zh) |
CN (1) | CN108363745B (zh) |
SG (1) | SG11202006127PA (zh) |
TW (1) | TWI698830B (zh) |
WO (1) | WO2019144773A1 (zh) |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108363745B (zh) * | 2018-01-26 | 2020-06-30 | 阿里巴巴集团控股有限公司 | 机器人客服转人工客服的方法和装置 |
US12086718B2 (en) * | 2018-08-07 | 2024-09-10 | Amadeus S.A.S. | Machine learning systems and methods for attributed sequences |
CN109202908B (zh) * | 2018-10-19 | 2021-01-29 | 和美(深圳)信息技术股份有限公司 | 机器人的控制方法、装置、设备、系统和存储介质 |
CN110020426B (zh) * | 2019-01-21 | 2023-09-26 | 创新先进技术有限公司 | 将用户咨询分配到客服业务组的方法及装置 |
CN110602334A (zh) * | 2019-09-03 | 2019-12-20 | 上海航动科技有限公司 | 一种基于人机协同的智能外呼方法及系统 |
CN110838014A (zh) * | 2019-09-20 | 2020-02-25 | 北京智齿博创科技有限公司 | 在线客服系统中人工智能路由策略 |
CN111143537A (zh) * | 2019-12-30 | 2020-05-12 | 税友软件集团股份有限公司 | 一种基于智能客服系统的服务方法、装置、设备及介质 |
CN111538822B (zh) * | 2020-04-24 | 2023-05-09 | 支付宝(杭州)信息技术有限公司 | 一种智能客户服务机器人训练数据的生成方法和系统 |
CN111369080B (zh) * | 2020-05-27 | 2020-08-28 | 支付宝(杭州)信息技术有限公司 | 一种智能客服解决率预测方法和系统以及多业务预测模型 |
US11907670B1 (en) | 2020-07-14 | 2024-02-20 | Cisco Technology, Inc. | Modeling communication data streams for multi-party conversations involving a humanoid |
US11875362B1 (en) | 2020-07-14 | 2024-01-16 | Cisco Technology, Inc. | Humanoid system for automated customer support |
CN113037935B (zh) * | 2020-08-13 | 2022-09-27 | 深圳市世纪中正科技开发有限公司 | 基于大数据处理的用户语音呼叫系统 |
CN111932144B (zh) * | 2020-08-25 | 2023-09-19 | 腾讯科技(上海)有限公司 | 一种客服坐席分配方法、装置、服务器及存储介质 |
CN112182189B (zh) * | 2020-10-10 | 2023-06-30 | 网易(杭州)网络有限公司 | 一种对话处理方法、装置、电子设备及存储介质 |
CN112508585A (zh) * | 2020-12-03 | 2021-03-16 | 大唐融合通信股份有限公司 | 一种广电客户服务业务处理的方法、设备及装置 |
CN112329928B (zh) * | 2020-12-30 | 2021-04-30 | 四川新网银行股份有限公司 | 基于异构模型的用户满意度分析方法 |
US12118568B2 (en) | 2021-01-27 | 2024-10-15 | Cisco Technology, Inc. | Self-provisioning humanoid for automated customer support |
CN115866141B (zh) * | 2022-11-23 | 2024-08-30 | 中电智恒信息科技服务有限公司 | 一种人机耦合式呼叫中流量控制方法、系统及存储介质 |
Family Cites Families (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7222075B2 (en) * | 1999-08-31 | 2007-05-22 | Accenture Llp | Detecting emotions using voice signal analysis |
US6275806B1 (en) | 1999-08-31 | 2001-08-14 | Andersen Consulting, Llp | System method and article of manufacture for detecting emotion in voice signals by utilizing statistics for voice signal parameters |
JP5033994B2 (ja) * | 2006-01-19 | 2012-09-26 | 株式会社国際電気通信基礎技術研究所 | コミュニケーションロボット |
JP4412504B2 (ja) | 2007-04-17 | 2010-02-10 | 本田技研工業株式会社 | 音声認識装置、音声認識方法、及び音声認識用プログラム |
JP2011033680A (ja) | 2009-07-30 | 2011-02-17 | Sony Corp | 音声処理装置及び方法、並びにプログラム |
CN103456297B (zh) | 2012-05-29 | 2015-10-07 | 中国移动通信集团公司 | 一种语音识别匹配的方法和设备 |
US8788439B2 (en) | 2012-12-21 | 2014-07-22 | InsideSales.com, Inc. | Instance weighted learning machine learning model |
US9177318B2 (en) | 2013-04-22 | 2015-11-03 | Palo Alto Research Center Incorporated | Method and apparatus for customizing conversation agents based on user characteristics using a relevance score for automatic statements, and a response prediction function |
US9728184B2 (en) | 2013-06-18 | 2017-08-08 | Microsoft Technology Licensing, Llc | Restructuring deep neural network acoustic models |
US9613619B2 (en) | 2013-10-30 | 2017-04-04 | Genesys Telecommunications Laboratories, Inc. | Predicting recognition quality of a phrase in automatic speech recognition systems |
US9413891B2 (en) | 2014-01-08 | 2016-08-09 | Callminer, Inc. | Real-time conversational analytics facility |
US20150201077A1 (en) | 2014-01-12 | 2015-07-16 | Genesys Telecommunications Laboratories, Inc. | Computing suggested actions in caller agent phone calls by using real-time speech analytics and real-time desktop analytics |
KR102143238B1 (ko) * | 2014-03-13 | 2020-08-10 | 에스케이플래닛 주식회사 | 메신저 서비스에서 프로필 정보를 이용한 부가정보 제공 방법, 이를 위한 시스템 및 장치 |
US10235639B1 (en) * | 2014-03-14 | 2019-03-19 | Directly Software, Inc. | Al based CRM system |
CN105592237B (zh) * | 2014-10-24 | 2019-02-05 | 中国移动通信集团公司 | 一种会话切换的方法、装置及智能客服机器人 |
CN104409075B (zh) | 2014-11-28 | 2018-09-04 | 深圳创维-Rgb电子有限公司 | 语音识别方法和系统 |
CN105072173A (zh) * | 2015-08-03 | 2015-11-18 | 谌志群 | 自动客服和人工客服自动切换的客服方法及系统 |
US9635181B1 (en) | 2015-10-19 | 2017-04-25 | Genesys Telecommunications Laboratories, Inc. | Optimized routing of interactions to contact center agents based on machine learning |
CN106909930A (zh) * | 2015-12-23 | 2017-06-30 | 神州数码信息系统有限公司 | 一种基于政务机器问答系统的人机自动切换的模型与方法 |
US10063702B2 (en) * | 2015-12-30 | 2018-08-28 | Shanghai Xiaoi Robot Technology Co., Ltd. | Intelligent customer service systems, customer service robots, and methods for providing customer service |
CN107025228B (zh) * | 2016-01-29 | 2021-01-26 | 阿里巴巴集团控股有限公司 | 一种问题推荐方法及设备 |
CN105808652B (zh) * | 2016-02-26 | 2021-05-25 | 北京京东尚科信息技术有限公司 | 在线客服的实现方法和装置 |
CN105701088B (zh) * | 2016-02-26 | 2018-12-28 | 北京京东尚科信息技术有限公司 | 从机器对话切换到人工对话的方法和装置 |
EP3427193A1 (en) * | 2016-04-13 | 2019-01-16 | Google LLC | Wide and deep machine learning models |
CN109074292B (zh) * | 2016-04-18 | 2021-12-14 | 谷歌有限责任公司 | 适当的代理的自动化助理调用 |
JP6736691B2 (ja) * | 2016-06-13 | 2020-08-05 | グーグル エルエルシー | 人間のオペレータへのエスカレーション |
CN107590159A (zh) * | 2016-07-08 | 2018-01-16 | 阿里巴巴集团控股有限公司 | 机器人客服转人工客服的方法和装置 |
US10403273B2 (en) | 2016-09-09 | 2019-09-03 | Oath Inc. | Method and system for facilitating a guided dialog between a user and a conversational agent |
CN107071193B (zh) * | 2016-11-28 | 2020-05-29 | 阿里巴巴集团控股有限公司 | 互动应答系统接入用户的方法和装置 |
CN106611597B (zh) | 2016-12-02 | 2019-11-08 | 百度在线网络技术(北京)有限公司 | 基于人工智能的语音唤醒方法和装置 |
CN107451199B (zh) * | 2017-07-05 | 2020-06-26 | 阿里巴巴集团控股有限公司 | 问题推荐方法及装置、设备 |
CN107506372A (zh) * | 2017-07-11 | 2017-12-22 | 哈尔滨工业大学深圳研究生院 | 一种机器人客服在混合类型会话下的自动会话切换方法 |
US10558852B2 (en) * | 2017-11-16 | 2020-02-11 | Adobe Inc. | Predictive analysis of target behaviors utilizing RNN-based user embeddings |
CN108363745B (zh) * | 2018-01-26 | 2020-06-30 | 阿里巴巴集团控股有限公司 | 机器人客服转人工客服的方法和装置 |
-
2018
- 2018-01-26 CN CN201810076926.7A patent/CN108363745B/zh active Active
- 2018-12-14 TW TW107145199A patent/TWI698830B/zh active
- 2018-12-29 WO PCT/CN2018/125297 patent/WO2019144773A1/zh unknown
- 2018-12-29 JP JP2020536672A patent/JP6991341B2/ja active Active
- 2018-12-29 EP EP18902124.9A patent/EP3719732A1/en not_active Withdrawn
- 2018-12-29 KR KR1020207018960A patent/KR102445992B1/ko active IP Right Grant
- 2018-12-29 SG SG11202006127PA patent/SG11202006127PA/en unknown
-
2020
- 2020-05-31 US US16/888,801 patent/US10977664B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN108363745B (zh) | 2020-06-30 |
CN108363745A (zh) | 2018-08-03 |
EP3719732A4 (en) | 2020-10-07 |
SG11202006127PA (en) | 2020-07-29 |
EP3719732A1 (en) | 2020-10-07 |
JP2021524071A (ja) | 2021-09-09 |
TWI698830B (zh) | 2020-07-11 |
KR20200095516A (ko) | 2020-08-10 |
US10977664B2 (en) | 2021-04-13 |
WO2019144773A1 (zh) | 2019-08-01 |
US20200294063A1 (en) | 2020-09-17 |
KR102445992B1 (ko) | 2022-09-21 |
JP6991341B2 (ja) | 2022-01-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI698830B (zh) | 機器人客服轉人工客服的方法和裝置及其電腦設備與電腦可讀儲存媒體 | |
WO2018006727A1 (zh) | 机器人客服转人工客服的方法和装置 | |
US11874861B2 (en) | Retraining a conversation system based on negative feedback | |
US11190464B2 (en) | Customer care training using chatbots | |
US10346782B2 (en) | Adaptive augmented decision engine | |
US11875125B2 (en) | System and method for designing artificial intelligence (AI) based hierarchical multi-conversation system | |
US11928985B2 (en) | Content pre-personalization using biometric data | |
JP7488871B2 (ja) | 対話推薦方法、装置、電子機器、記憶媒体ならびにコンピュータプログラム | |
EP3370164A1 (en) | Artificial intelligence digital agent | |
Patil et al. | A voice based assistant using Google dialogflow and machine learning | |
US20210056172A1 (en) | Interleaved conversation concept flow enhancement | |
US11755848B1 (en) | Processing structured and unstructured text to identify sensitive information | |
Arora et al. | Artificial intelligence and virtual assistant—working model | |
US20210064982A1 (en) | Cross-domain homophily quanitifcation for transfer learning | |
Jiang et al. | Large Language Model for Causal Decision Making | |
US10970490B2 (en) | Automatic evaluation of artificial intelligence-based processes | |
JP2016045769A (ja) | 対話システム評価方法、対話システム評価装置及びプログラム | |
US20210142180A1 (en) | Feedback discriminator | |
KR20230071673A (ko) | 언어 모델을 이용한 개방형 도메인 대화 모델 구축을 위한 방법, 컴퓨터 장치, 및 컴퓨터 프로그램 | |
CN112417106B (zh) | 一种基于文本的问题生成方法及其装置 | |
US20240152871A1 (en) | Intelligent generation of job profiles | |
Hjelm | Question-answering chatbot for Northvolt IT Support | |
Karekar et al. | Bhagavad Geeta Based ChatBot | |
NZ785406A (en) | System and method for designing artificial intelligence (ai) based hierarchical multi-conversation system | |
CN116956873A (zh) | 链上资产发放方法及装置 |