TW201932921A - Light generation device, exposure device comprising light generation device, exposure system, light generation method, and exposed photoresist production method - Google Patents
Light generation device, exposure device comprising light generation device, exposure system, light generation method, and exposed photoresist production method Download PDFInfo
- Publication number
- TW201932921A TW201932921A TW107140518A TW107140518A TW201932921A TW 201932921 A TW201932921 A TW 201932921A TW 107140518 A TW107140518 A TW 107140518A TW 107140518 A TW107140518 A TW 107140518A TW 201932921 A TW201932921 A TW 201932921A
- Authority
- TW
- Taiwan
- Prior art keywords
- light
- vortex
- generating
- exposure
- generating device
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/20—Exposure; Apparatus therefor
- G03F7/2051—Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source
- G03F7/2053—Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source using a laser
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/28—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/20—Exposure; Apparatus therefor
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Abstract
Description
本發明係有關於光產生裝置、具備光產生裝置的曝光裝置、曝光系統、光產生方法、及曝光光阻的製造方法。特別是,本發明係有關於利用光渦產生以預定距離離間的至少2光束的光產生裝置、利用該以預定距離離間的至少2光束進行曝光的曝光裝置、以及利用該光產生裝置及曝光裝置的曝光系統、光產生方法、及曝光光阻的製造方法。The present invention relates to a light generating device, an exposure device including the light generating device, an exposure system, a light generating method, and a method for manufacturing an exposure photoresist. In particular, the present invention relates to a light generating device that generates at least two light beams separated by a predetermined distance using a light vortex, an exposure device that performs exposure using the at least two light beams separated by a predetermined distance, and the light generating device and the exposure device. Exposure system, light generating method, and manufacturing method of exposure photoresist.
在金屬微細構造的形成中,光微影法成為必要不可或缺的技術。光微影法中的剝離法是代表性的構造製作過程。不限於剝離法,於光微影法中雖一定要有向光阻材料的「感光」製程,但其中分為2大途徑。In the formation of metal microstructures, photolithography has become an indispensable technique. The lift-off method in the photolithography method is a typical structure manufacturing process. It is not limited to the lift-off method. Although in the photolithography method, there must be a "photosensitive" process for the photoresist material, but there are two main ways.
一為遮罩曝光法,在光阻上配置施以圖案加工的遮蔽基板(遮罩),形成感光區域的2維圖案(例如參照非專利文獻1)。在該手法中,能夠容易在遮罩的圖案施予忠實的微細加工,能形成數10nm程度的微細金屬構造。但是,有在遮罩的製造需花上高成本的難點。又,需要在每個圖案準備遮罩,柔軟性不佳。再來,構造若微細化的話,來自遮罩邊界部的光的繞射會對加工圖案造成壞影響。One is a mask exposure method in which a masking substrate (mask) subjected to pattern processing is arranged on a photoresist to form a two-dimensional pattern of a photosensitive region (for example, refer to Non-Patent Document 1). In this method, faithful microfabrication can be easily applied to the pattern of the mask, and a fine metal structure of several tens of nanometers can be formed. However, there is a difficulty in that the manufacturing of the mask requires high costs. In addition, a mask needs to be prepared for each pattern, which has poor flexibility. Furthermore, if the structure is miniaturized, the diffraction of light from the boundary portion of the mask adversely affects the processing pattern.
與遮罩曝光法並列的另一種代表手法為雷射描繪曝光法(例如參照非專利文獻2)。在該等手法中,以2維地掃描試料載台乃至雷射光,在光阻上形成感光區域的2維圖案。描繪曝光法可形成的圖案的柔軟性高,藉由在電腦上描繪程式化的軌跡,而能夠加工任意的金屬圖案。也就是說,如同遮罩曝光法,具有在每個圖案不需要格外消耗品的優點。不過,因為加工圖案的空間解析度會受限於所使用的雷射的波長的繞射極限,與遮罩曝光法相比在加工圖案的微細化需要下功夫。Another representative method in parallel with the mask exposure method is a laser drawing exposure method (for example, refer to Non-Patent Document 2). In these methods, the sample stage and the laser light are scanned in two dimensions to form a two-dimensional pattern of the photosensitive region on the photoresist. The pattern that can be formed by the drawing exposure method has high flexibility, and by drawing a stylized trace on a computer, an arbitrary metal pattern can be processed. That is, like the mask exposure method, there is an advantage that no extra consumables are required in each pattern. However, because the spatial resolution of the processed pattern is limited by the diffraction limit of the wavelength of the laser used, it requires more work to refine the processed pattern than the mask exposure method.
各種報告指出活用雷射描繪曝光法的優點,且用來實現更微細的加工的嘗試。直接的方法為(1)提高曝光光學系統的開口數、(2)雷射光的短波長化這2個。但是,基於該等方法的微細化已到達技術極限。
作為實現微細加工的途徑,有利用縱電場進行高解析度化的方法(例如參照非專利文獻3)。在該方法中,將具有稱為徑向偏光的放射狀的偏光空間分佈光波在高開口數的條件下集光。在徑向偏光的偏光分佈的特性上,於集光點產生強縱電場(在雷射的進行方向產生的局部電場),因為該電場形成比高斯光的繞射極限還小的點,微細加工成為可能。不過在本方法中,需要高開口數的透鏡,焦點深度的問題更為顯著化。Various reports have pointed out the advantages of using laser to describe the exposure method and attempts to achieve finer processing. The direct methods are (1) increasing the number of openings in the exposure optical system, and (2) shortening the laser light. However, the miniaturization based on these methods has reached the technical limit.
As a method for achieving microfabrication, there is a method of increasing the resolution using a longitudinal electric field (for example, refer to Non-Patent Document 3). In this method, a radially polarized spatially-distributed light wave having a radial shape called radial polarization is collected under a condition of a high number of openings. In the characteristics of the polarization distribution of radially polarized light, a strong longitudinal electric field (a local electric field generated in the direction of the laser's progress) is generated at the light collection point, because this electric field forms a point smaller than the diffraction limit of Gaussian light. become possible. However, in this method, a lens with a high number of apertures is required, and the problem of depth of focus becomes more significant.
光渦,因為具有甜甜圈狀的強度分佈及軌道角運動量等的特異光學性質而受到注目,近年提案有各種應用法(例如參照非專利文獻4)。
一般從雷射射出的光波的橫模式為TEM00模式,因為具有能以高斯函數的形狀記述的強度分佈而稱為高斯光。該高斯光在束的剖面內具有同樣的(無視因繞射產生的拋物狀相位因子的情形)相位分佈。
另一方面,光渦為具有螺旋狀波面(等相位面)的光波,該電場能以下記式(1)表示(式(1)中,A(r)為振幅、l為拓撲荷(TC(Topological Charge))、θ為方位角)。The vortex has attracted attention because of its unique optical properties such as a donut-like intensity distribution and orbital angular motion. Various applications have been proposed in recent years (for example, see Non-Patent Document 4).
Generally, the transverse mode of a light wave emitted from a laser is the TEM00 mode, and it is called Gaussian light because it has an intensity distribution that can be described in the shape of a Gaussian function. This Gaussian light has the same (disregarding the parabolic phase factor due to diffraction) phase distribution in the cross section of the beam.
On the other hand, the vortex is a light wave with a spiral wave surface (equal phase surface), and the electric field energy can be expressed by the following formula (1) (In formula (1), A (r) is the amplitude and l is the topological charge (TC ( Topological Charge)), θ is the azimuth angle).
光渦的螺旋梯度由TC的值決定,該參數成為將一般光渦附上特徵的指標。因為波面形成螺旋,在光渦的束中心會形成相位成為不定的奇異點,而因為在奇異點上由繞射產生的2次球面波彼此會以互相抵消的方式干涉,光強度完全消失。作為結果,強度分佈成為甜甜圈狀的形狀。光渦的甜甜圈形狀強度分佈的核心徑因應繞奇異點的螺旋梯度而具有不同的性質,當具有最平緩的相位梯度的光渦的情形,該核心徑dV
會比高斯束的束腰dG
還小。
但是,將具有比高斯束的束腰dG
還小的核心徑dV
的光渦用於雷射描繪曝光法,即便掃描具有甜甜圈形狀強度分佈的光渦,會僅留下將甜甜圈形狀的外緣作為直徑的光束的軌跡,無法使用比高斯束的束腰dG
還小的核心徑dV
。
[先前技術文獻]
[非專利文獻]The spiral gradient of the vortex is determined by the value of TC, and this parameter becomes an index that attaches features to the general vortex. Because the wave surface forms a spiral, a singular point with an indefinite phase is formed at the center of the beam of the vortex, and because the secondary spherical waves generated by diffraction at the singular point interfere with each other in a mutually canceling manner, the light intensity completely disappears. As a result, the intensity distribution becomes a donut-like shape. The core diameter of the doughnut shape intensity distribution of the light vortex has different properties according to the spiral gradient around the singularity point. When the vortex has the most gentle phase gradient, the core diameter d V is larger than the beam waist of the Gaussian beam. d G is still small.
However, a vortex having a core diameter d V smaller than the beam waist d G of the Gaussian beam is used for the laser trace exposure method. Even if the vortex with a doughnut-shaped intensity distribution is scanned, only the sweetness will remain. The outer edge of the ring shape is used as the trajectory of a beam of a diameter, and a core diameter d V smaller than the beam waist d G of the Gaussian beam cannot be used.
[Prior technical literature]
[Non-patent literature]
[非專利文獻1]S. Rizvi, “Handbook of Photomask Manufacturing Technology,” CRC Press p. 728 (2005).
[非專利文獻2]Z. Cui, “Nanofabrication: Principles, Capabilities and Limits,” Springer Press p. 343 (2010).
[非專利文獻3]K. Ushakova, Q. Y. van den Berg, S. F. Pereira, and H. P. Urbach, “Demonstration of spot size reduction by focusing amplitude modulated radially polarized light on a photoresist,” Journal of Optics 17, 125615 (2015).
[非專利文獻4]A. M. Yao, M. J. Padgett, and M. Babiker, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photon. 3, 161-204 (2011).[Non-Patent Document 1] S. Rizvi, "Handbook of Photomask Manufacturing Technology," CRC Press p. 728 (2005).
[Non-Patent Document 2] Z. Cui, "Nanofabrication: Principles, Capabilities and Limits," Springer Press p. 343 (2010).
[Non-Patent Document 3] K. Ushakova, QY van den Berg, SF Pereira, and HP Urbach, “Demonstration of spot size reduction by focusing amplitude modulated polar polarized light on a photoresist,” Journal of Optics 17, 125615 (2015).
[Non-Patent Document 4] AM Yao, MJ Padgett, and M. Babiker, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photon. 3, 161-204 (2011).
[發明所欲解決的問題][Problems to be solved by the invention]
在此,本發明的目的為提供一種光產生裝置及光產生方法,將具有甜甜圈形狀強度分佈的光渦的核心徑dV 作為暗線利用,產生能用於雷射描繪曝光法的光,特別是能用於微細加工的雷射描繪曝光法的光。Here, an object of the present invention is to provide a light generating device and a light generating method that use a core diameter d V of a light vortex having a doughnut shape intensity distribution as a dark line to generate light that can be used for a laser drawing exposure method, In particular, light for laser drawing exposure methods that can be used for microfabrication.
又,本發明的目的為加上上述目的、或除了上述目的以外,不使用(1)高開口數的曝光光學系統、及/或(2)短波長化雷射光這些技術,而提供一種產生能用於可微細加工的雷射描繪曝光法的光的光產生裝置及光產生方法。又,本發明的目的為加上上述目的,藉由使用(1)高開口數的曝光光學系統、及/或(2)短波長化雷射光,再提供一種產生能用於可微細加工的雷射描繪曝光法的光的光產生裝置及光產生方法。In addition, an object of the present invention is to provide the above-mentioned object, or in addition to the above-mentioned object, without using technologies such as (1) an exposure optical system with a high number of apertures, and / or (2) short-wavelength laser light, and provide an energy generating device. Light generating device and light generating method for light that can be processed by a laser processing method of laser drawing exposure. In addition, an object of the present invention is to add the above-mentioned object, and by using (1) an exposure optical system with a high number of apertures, and / or (2) a short-wavelength laser light, a further object is to provide a laser that can be used for fine processing. A light generating device and a light generating method for emitting light depicting an exposure method.
再來,本發明的目的為加上上述目的、或除了上述目的以外,使用上述光產生裝置及光產生方法,提供一種進行雷射描繪曝光法的曝光裝置及曝光方法。
再來,本發明的目的為加上上述目的、或除了上述目的以外,提供一種使用上述曝光裝置及曝光方法的曝光系統及光阻的製造方法。
[解決問題的手段]Furthermore, the objective of this invention is to provide the exposure apparatus and exposure method which perform the laser drawing exposure method using the said light generating apparatus and light generating method in addition to the said objective, or in addition to the said objective.
Furthermore, an object of the present invention is to provide the above-mentioned object, or in addition to the above-mentioned object, to provide an exposure system and a method for manufacturing a photoresist using the above-mentioned exposure device and exposure method.
[Means to solve the problem]
為了達成上述目的,本發明者們找到利用光渦,特別是利用光渦的核心部的技術。利用相同雷射光調製光渦的情形與維持原狀利用該雷射光(高斯光)的情形相比較,如同上述,光渦的核心徑dV
比高斯光的束腰dG
還小。本發明者們利用比該高斯光的束腰dG
還小的光渦的核心徑dV
,克服繞射極限的問題,找出可微細加工的光產生裝置及光產生方法、利用該裝置及方法的曝光裝置及曝光方法、以及曝光系統及光阻製造方法。
亦即,本發明者們找出以下的發明。In order to achieve the above-mentioned object, the present inventors have found a technique using a light vortex, particularly a core portion of the light vortex. Compared with the case where the vortex is modulated with the same laser light and the case where the laser light (Gaussian light) is used as it is, as described above, the core diameter d V of the vortex is smaller than the beam waist d G of the Gaussian light. The present inventors used the core diameter d V of the vortex smaller than the beam waist d G of the Gaussian light to overcome the problem of the diffraction limit, and found a light-generating device and a light-generating method that can be finely processed. Method of exposure device and exposure method, and exposure system and photoresist manufacturing method.
That is, the present inventors have found the following inventions.
<1>一種光產生裝置,係產生使具有互相相異的拓撲荷的複數光渦干涉而得到的光。
<2>一種光產生裝置,具有:產生具有第1拓撲荷的第1光渦的第1光渦產生裝置;
產生具有與第1拓撲荷絕對值相等且符號相異的第2拓撲荷的第2光渦的第2光渦產生裝置;及
使第1光渦與第2光渦干涉的干涉裝置;
其中,從前述干涉裝置產生預定距離離間的至少2光束。<1> A light generating device generates light obtained by interfering with a plurality of vortexes having mutually different topological charges.
<2> A light generating device comprising: a first light vortex generating device for generating a first light vortex having a first topological charge;
A second vortex generating device that generates a second vortex having a second topological load that is equal to the absolute value of the first topological load and has a different sign; and an interference device that causes the first vortex to interfere with the second vortex;
Wherein, at least two light beams separated by a predetermined distance are generated from the interference device.
<3>在上述<2>中,可以更具有:控制從第1光渦產生裝置產生的第1光渦與從第2光渦產生裝置產生的第2光渦的相位差的相位控制裝置。
<4>在上述<2>或<3>中,可以更具有:產生線偏光的線偏光產生裝置。
<5>在上述<4>中,線偏光產生裝置可以包含:產生同調光的同調光產生裝置。
<6>在上述<5>中,該同調光的同調度可以為0.95以上、較佳為0.98以上。<3> In the above <2>, it may further include a phase control device that controls a phase difference between the first vortex generated by the first vortex generation device and the second vortex generated by the second vortex generation device.
<4> In the above <2> or <3>, it may further include a linearly polarized light generating device that generates linearly polarized light.
<5> In the above-mentioned <4>, the linearly polarized light generating device may include: a coherent light generating device that generates coherent light.
<6> In the above <5>, the co-scheduled co-schedule may be 0.95 or more, and preferably 0.98 or more.
<7>如上述<2>~<6>中的任1項中,可以更具有:產生線偏光的線偏光產生裝置;來自該線偏光產生裝置的線偏光,因通過第1及第2光渦產生裝置、相位控制裝置及干涉裝置,而產生以預定距離離間的至少2光束。
<8>如上述<2>~<7>中的任1項中,第1及第2光渦產生裝置為軸對稱偏光元件也可以。<7> As described in any one of the items <2> to <6>, it may further include: a linearly polarized light generating device that generates linearly polarized light; and the linearly polarized light from the linearly polarized light generating device passes the first and second light The vortex generating device, the phase control device, and the interference device generate at least two light beams separated by a predetermined distance.
<8> As in any one of the items <2> to <7>, the first and second vortex generators may be axisymmetric polarizing elements.
<9>一種光產生裝置,具有:產生同調光的同調光產生裝置;
使同調光成為線偏光的偏光子;
使線偏光成為第1光渦及具有與第1光渦絕對值相同且符號相異的拓撲荷的第2光渦的軸對稱偏光元件;及
使第1光渦與第2光渦干涉的干涉裝置;
其中,
從干涉裝置產生預定距離離間的至少2光束。
<10>在上述<9>中,預定距離比同調光的直徑還小也可以。<9> A light generating device having: a coherent light generating device that generates coherent light;
Polarizers that make coherent light linearly polarized;
Axisymmetric polarizing element for making linearly polarized light a first light vortex and a second light vortex having a topological charge with the same absolute value and a different sign from the first light vortex; Device
among them,
At least two light beams are generated at predetermined distances from the interference device.
<10> In the above <9>, the predetermined distance may be smaller than the diameter of the co-dimming.
<11>一種曝光裝置,具有:上述<2>~<10>中任1項的光產生裝置;及
利用從該光產生裝置產生的以預定距離離間的至少2光束,進行曝光的曝光機構。
<12>在上述<11>中,曝光機構可以具備:掃描前述以預定距離離間的至少2光束的掃描裝置。<11> An exposure device comprising: the light generating device of any one of the above <2> to <10>; and an exposure mechanism that performs exposure by using at least two light beams generated from the light generating device and spaced apart by a predetermined distance.
<12> In the above <11>, the exposure mechanism may include a scanning device that scans the at least two light beams that are spaced apart by a predetermined distance.
<13>一種曝光系統,具有:上述<11>或<12>記載的曝光裝置;及光阻;
其中,
在光阻形成將預定距離作為線寬的暗線。
<14>在上述<13>中,前述光阻可以為負型。<13> An exposure system comprising: the exposure device according to <11> or <12>; and a photoresist;
among them,
A dark line having a predetermined distance as a line width is formed on the photoresist.
<14> In the above <13>, the photoresist may be a negative type.
<15>一種光產生方法,係產生使具有互相相異的拓撲荷的複數光渦干涉而得到的光。
<16>一種光產生方法,具有:C)產生具有第1拓撲荷的第1光渦的第1光渦產生工程;
D)產生具有與第1拓撲荷絕對值相等且符號相異的第2拓撲荷的第2光渦的第2光渦產生工程;及
F)使第1光渦與第2光渦干涉的干涉工程;
其中,在干涉工程後,產生以預定距離離間的至少2光束。<15> A light generating method that generates light obtained by interfering with a plurality of vortexes having mutually different topological charges.
<16> A light generating method, including: C) a first vortex generating process for generating a first vortex having a first topological charge;
D) a second vortex generation process for generating a second vortex having a second topological charge that is equal to the absolute value of the first topological charge and has a different sign; and
F) interference engineering for interfering the first vortex and the second vortex;
Among them, after interference engineering, at least two light beams are generated that are separated by a predetermined distance.
<17>在上述<16>中,可以更具有:E)控制從前述C)第1光渦產生工程產生的前述第1光渦與從前述D)前述第2光渦產生裝置產生的前述第2光渦的相位差的相位控制工程。
<18>在上述<17>中,C)第1光渦產生工程及D)第2光渦產生工程可以略同時進行。
<19>在上述<16>或<17>中,C)第1光渦產生工程及D)第2光渦產生工程,可以藉由軸對稱偏光元件略同時進行。<17> In the above <16>, it may further include: E) controlling the first vortex generated from the C) first vortex generation process and the first vortex generated from the D) second vortex generation device. Phase control engineering of phase difference of 2 vortex.
<18> In the above <17>, C) the first vortex generation process and D) the second vortex generation process may be performed at the same time.
<19> In the above <16> or <17>, C) the first vortex generation process and D) the second vortex generation process can be performed at the same time by the axisymmetric polarizing element.
<20>如上述<16>~<19>中的任1項中,在C)第1光渦產生工程前且D)第2光渦產生工程前,可以更具有B)產生線偏光的線偏光產生工程;利用該線偏光進行C)第1光渦產生工程及D)第2光渦產生工程。
<21>在上述<20>中,在前述B)線偏光產生工程前,可以更具有A)產生同調光的同調光產生工程。
<22>在上述<21>中,該同調光的同調度可以為0.95以上、較佳為0.98以上。<20> As in any one of the above <16> to <19>, before C) before the first vortex generation process and D) before the second vortex generation process, it may have B) a line that generates linearly polarized light Polarized light generation process; use this linearly polarized light to perform C) the first vortex generation process and D) the second vortex generation process.
<21> In the above <20>, before the above-mentioned B) linearly polarized light generation process, it may further have A) a co-modulated light generation process that generates co-dimmed light.
<22> In the above <21>, the co-scheduled co-schedule may be 0.95 or more, and preferably 0.98 or more.
<23>在上述<21>或<22>中,預定距離可以比同調光的光束的直徑還小。
<24>一種光產生方法,具有:A)產生同調光的同調光產生工程;
B)使同調光成為線偏光,產生線偏光的線偏光產生工程;
C)從線偏光產生第1光渦的第1光渦產生工程;
D)從線偏光產生具有與該第1光渦絕對值相等且符號相異的拓撲荷的第2光渦的第2光渦產生工程;
E)控制從C)第1光渦產生工程產生的第1光渦與從D)第2光渦產生裝置產生的第2光渦的相位差的相位控制工程;及
F)使第1光渦與第2光渦干涉的干涉工程;
其中,F)干涉工程後,產生以比同調光的光束的直徑還小的距離離間的至少2光束。<23> In the above-mentioned <21> or <22>, the predetermined distance may be smaller than the diameter of the light beam of the same dimming.
<24> A light generation method, comprising: A) a coherent light generation process that generates coherent light;
B) The process of generating linearly polarized light into linearly polarized light and generating linearly polarized light;
C) a first vortex generating process for generating a first vortex from linearly polarized light;
D) a second light vortex generating process for generating a second light vortex having a topological charge equal to the absolute value of the first light vortex and having a different sign from linear polarized light;
E) a phase control process for controlling a phase difference between the first vortex generated from C) the first vortex generation process and the second vortex generated from D) the second vortex generation device; and
F) interference engineering for interfering the first vortex and the second vortex;
Among them, F) after the interference process, at least two light beams are generated that are separated by a distance smaller than the diameter of the light beam of the same light.
<25>一種曝光光阻的製造方法,具有:G)利用上述<16>~<24>中任一項記載的光產生方法得到的至少2光束將光阻曝光的曝光工程;
得到將至少2光束離間的距離作為暗線曝光的光阻。
<26>在上述<25>中,G)曝光工程包含:G)-1)將至少2光束在光阻的表面上掃描的工程也可以。
<27>在上述<25>或<29>中,光阻可以為負型。
[發明的效果]<25> A method for manufacturing an exposure photoresist, comprising: G) an exposure process for exposing the photoresist by using at least two light beams obtained by the light generation method according to any one of the above <16> to <24>;
Obtain a photoresist that uses at least two light beams as the dark line exposure.
<26> In the above <25>, the G) exposure process includes G) -1) a process of scanning at least two light beams on the surface of the photoresist.
<27> In the above <25> or <29>, the photoresist may be a negative type.
[Effect of the invention]
根據本發明,能夠提供一種光產生裝置及光產生方法,將具有甜甜圈形狀強度分佈的光渦的核心徑dV
作為暗線利用,產生能用於雷射描繪曝光法的光,特別是能用於微細加工的雷射描繪曝光法的光。
又,根據本發明,加上上述效果、或除了上述效果以外,不使用(1)高開口數的曝光光學系統、及/或(2)短波長化雷射光這些技術,而能夠提供一種產生能用於可微細加工的雷射描繪曝光法的光的光產生裝置及光產生方法。According to the present invention, it is possible to provide a light generating device and a light generating method that use a core diameter d V of a light vortex having a doughnut-shaped intensity distribution as a dark line, and generate light that can be used for a laser drawing exposure method, particularly Laser light for micromachining.
In addition, according to the present invention, in addition to or in addition to the above-mentioned effects, technologies such as (1) an exposure optical system with a high number of apertures and / or (2) short-wavelength laser light are not used, and a generation power Light generating device and light generating method for light that can be processed by a laser processing method of laser drawing exposure.
又,根據本發明,加上上述效果,藉由使用(1)高開口數的曝光光學系統、及/或(2)短波長化雷射光,能夠再提供一種產生能用於可微細加工的雷射描繪曝光法的光的光產生裝置及光產生方法。Furthermore, according to the present invention, in addition to the above-mentioned effects, by using (1) an exposure optical system with a high number of apertures and / or (2) short-wavelength laser light, it is possible to further provide a laser that can be used for fine processing A light generating device and a light generating method for emitting light depicting an exposure method.
再來,根據本發明,加上上述效果、或除了上述效果以外,使用上述光產生裝置及光產生方法,能夠提供一種進行雷射描繪曝光法的曝光裝置及曝光方法。
再來,根據本發明,加上上述效果、或除了上述效果以外,能夠提供一種使用上述曝光裝置及曝光方法的曝光系統及光阻的製造方法。Furthermore, according to the present invention, in addition to or in addition to the above-mentioned effects, using the above-mentioned light generating device and light generating method, it is possible to provide an exposure device and an exposure method that perform a laser drawing exposure method.
Furthermore, according to the present invention, in addition to or in addition to the above-mentioned effects, it is possible to provide an exposure system and a method for manufacturing a photoresist using the above-mentioned exposure apparatus and exposure method.
本發明揭示利用比該高斯光的束腰dG 還小的光渦的核心徑dV 的光產生裝置及光產生方法、利用該光產生裝置及光產生方法的曝光裝置及曝光方法、以及曝光系統及曝光光阻的製造方法。以下,就其等分別說明。The invention discloses a light generating device and a light generating method using a core diameter d V of a light vortex smaller than a beam waist d G of the Gaussian light, an exposure device and an exposure method using the light generating device and the light generating method, and exposure. System and manufacturing method of exposure photoresist. Each of them will be described below.
<光產生裝置>及<光產生方法>
本發明揭示以下的光產生裝置及光產生方法。
亦即,本發明揭示一種光產生裝置及光產生方法,係產生使具有互相相異的拓撲荷的複數光渦干涉而得到的光。
具體來說,本發明揭示以下的光產生裝置及光產生方法。
亦即,本發明的光產生裝置具有:
產生具有第1拓撲荷的第1光渦的第1光渦產生裝置;
產生具有與第1拓撲荷絕對值相等且符號相異的第2拓撲荷的第2光渦的第2光渦產生裝置;及
使第1光渦與第2光渦干涉的干涉裝置;
其中,從干涉裝置產生以預定距離離間的至少2光束。
又,本發明的光產生方法具有:
C)產生具有第1拓撲荷的第1光渦的第1光渦產生工程;
D)產生具有與第1拓撲荷絕對值相等且符號相異的第2拓撲荷的第2光渦的第2光渦產生工程;及
F)使第1光渦與第2光渦干涉的干涉工程;
其中,在干涉工程後,產生以預定距離離間的至少2光束。
以下,主要說明關於本發明的光產生裝置,本發明的光產生方法伴隨著光產生裝置的說明進行說明。在「裝置」的說明中「方法」的說明不充分時,將該不充分的說明作為「方法」適時記載。<Light generating device> and <Light generating method>
The present invention discloses the following light generating device and light generating method.
That is, the present invention discloses a light generating device and a light generating method for generating light obtained by interfering with a plurality of vortexes having mutually different topological charges.
Specifically, the present invention discloses the following light generating device and light generating method.
That is, the light generating device of the present invention has:
A first vortex generating device that generates a first vortex having a first topological charge;
A second vortex generating device that generates a second vortex having a second topological load that is equal to the absolute value of the first topological load and has a different sign; and an interference device that causes the first vortex to interfere with the second vortex;
Among them, at least two light beams separated by a predetermined distance are generated from the interference device.
The light generating method of the present invention includes:
C) a first vortex generating process for generating a first vortex having a first topological charge;
D) a second vortex generation process for generating a second vortex having a second topological charge that is equal to the absolute value of the first topological charge and has a different sign; and
F) interference engineering for interfering the first vortex and the second vortex;
Among them, after interference engineering, at least two light beams are generated that are separated by a predetermined distance.
Hereinafter, the light generating device of the present invention will be mainly described, and the light generating method of the present invention will be described along with the description of the light generating device. When the description of the "device" is insufficient in the description of the "device", the insufficient description is appropriately recorded as the "method".
<<第1及第2光渦產生裝置>>
本發明的光產生裝置具有第1及第2光渦產生裝置。
第1光渦產生裝置產生具有第1拓撲荷的第1光渦。
第2光渦產生裝置產生具有與第1拓撲荷絕對值相等且符號相異的第2拓撲荷的第2光渦。
光渦如同上述,為具有螺旋狀波面(等相位面)的光波,該電場能以上記式(1)表示(式(1)中,A(r)為振幅、l為拓撲荷(TC(Topological Charge))、θ為方位角)。
在此,第1及第2拓撲荷(相當於式(1)中的l),能設為±1的組合、±2的組合、±3的組合,較佳為拓撲荷為±1的組合或±2的組合,更佳為螺旋次數為±1的組合。例如,第1及第2拓撲荷之中,一者為+1、另一者為-1較佳。<<< first and second vortex generators >>
The light generating device of the present invention includes first and second vortex generating devices.
The first vortex generator generates a first vortex having a first topological charge.
The second light vortex generating device generates a second light vortex having a second topological charge that is equal to the absolute value of the first topological charge and has a different sign.
As mentioned above, the vortex is a light wave with a spiral wave surface (equal phase surface). The electric field energy is expressed by the above formula (1) (In formula (1), A (r) is the amplitude and l is the topological charge (TC (Topological Charge)), θ is the azimuth angle).
Here, the first and second topological loads (equivalent to l in equation (1)) can be set to a combination of ± 1, a combination of ± 2, and a combination of ± 3, and a combination of a topological load of ± 1 is preferred. Or a combination of ± 2, more preferably a combination of ± 1 helix number. For example, among the first and second topological charges, one is +1 and the other is -1.
第1及第2光渦產生裝置若是能夠產生上述第1光渦、上述第2光渦的裝置的話,並沒有特別限定,例如能夠使用從前公知的光渦產生裝置。
作為第1及第2光渦產生裝置,雖可以是空間光調變器(例如液晶空間光調變器)(例如參照V. Y. Bazhenov, M. V. Vasnetsov, and M. S. Soskin, “Laser beams with screw dislocations in their wavefronts,” JETP Lett. 52, 1037-1039 (1990))、螺旋型相位板(例如參照M. W. Beijersbergen, R. P. C. Coeerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112, 321-327 (1994))、軸對稱偏光元件(例如參照G. Biener, A. Niv, V. Kleiner, and E. Hasman, “Formation of helical beams by use of Pancharatnam.Berry phase optical elements,” Opt. Lett. 27, 1875-1877 (2002))等,但不以此為限。
其中,軸對稱偏光元件為光學軸在元件面內以旋轉對稱分佈的偏光元件。該軸對稱偏光元件因應雙折射及2色性作為軸對稱波長板及軸對稱偏光子作用。
作為第1及第2光渦產生裝置,藉由使用上述空間光調變器、螺旋型相位板、軸對稱偏光元件,與本發明的光產生裝置的態樣不同。關於該態樣將於後述。The first and second vortex generators are not particularly limited as long as they can generate the first vortex and the second vortex. For example, a conventionally known vortex generator can be used.
As the first and second vortex generators, they may be spatial light modulators (such as liquid crystal spatial light modulators) (for example, see VY Bazhenov, MV Vasnetsov, and MS Soskin, "Laser beams with screw dislocations in their wavefronts. , "JETP Lett. 52, 1037-1039 (1990)), spiral phase plates (for example, see MW Beijersbergen, RPC Coeerwinkel, M. Kristensen, and JP Woerdman," Helical-wavefront laser beams produced with a spiral phaseplate, "Opt Commun. 112, 321-327 (1994)), axisymmetric polarizing elements (for example, see G. Biener, A. Niv, V. Kleiner, and E. Hasman, "Formation of helical beams by use of Pancharatnam. Berry phase optical elements, ”Opt. Lett. 27, 1875-1877 (2002)), etc., but not limited to this.
Among them, the axisymmetric polarizing element is a polarizing element whose optical axis is distributed symmetrically in the element plane. This axisymmetric polarizing element acts as an axisymmetric wavelength plate and axisymmetric polaron due to birefringence and dichroism.
The first and second vortex generators are different from the light generator of the present invention by using the above-mentioned spatial light modulator, spiral phase plate, and axisymmetric polarizing element. This aspect will be described later.
第1及第2光渦產生工程能藉由上述第1及第2光渦產生裝置來達成。The first and second vortex generating processes can be achieved by the above-mentioned first and second vortex generating devices.
<<干涉裝置>>
本發明的裝置具有使第1光渦與第2光渦干涉的干涉裝置;因為具備該干涉裝置,從該干涉裝置產生以預定距離離間的至少2光束。
作為該干涉裝置,若是能發揮上述作用的裝置的話則沒有特別限定。
作為干涉裝置,雖相依於使用的第1及第2光渦產生裝置等,但可以是例如馬赫-曾德爾干涉計、邁克生干涉計、偏光子等,不過沒有限定於其等。
此外,如同上述,作為第1及第2光渦產生裝置,藉由使用上述空間光調變器、螺旋型相位板、軸對稱偏光元件,與本發明的光產生裝置的態樣不同。此時,使用者可以適宜選擇使用的干涉裝置。關於該等態樣將於後述。<< Interference Device >>
The device according to the present invention includes an interference device that interferes with the first vortex and the second vortex. Since the interference device is provided, at least two light beams separated by a predetermined distance are generated from the interference device.
The interference device is not particularly limited as long as it is a device capable of performing the above-mentioned functions.
Although the interferometer is dependent on the first and second vortex generators used, it may be, for example, a Mach-Zehnder interferometer, a Michelson interferometer, a polarizer, etc., but it is not limited to these.
In addition, as described above, the first and second vortex generating devices are different from the light generating device of the present invention by using the above-mentioned spatial light modulator, spiral phase plate, and axisymmetric polarizing element. In this case, the user can appropriately select the interference device to be used. These aspects will be described later.
在干涉裝置中,使第1光渦與第2光渦在同軸干涉、或在干涉裝置中,更具有:使第1光渦與第2光渦干涉前,控制該第1光渦與第2光渦的相位差的相位控制裝置也可以。此外,相依於使用的第1及第2光渦產生裝置、使用的干擾裝置等,決定配置相位控制裝置的位置也可以。In the interference device, the first light vortex and the second light vortex interfere coaxially, or the interference device further includes controlling the first light vortex and the second light vortex before interfering with the second light vortex. A phase control device for the phase difference of the vortex may be used. The position of the phase control device may be determined depending on the first and second vortex generating devices used, the interference device used, and the like.
從干涉裝置產生以預定距離離間的至少2光束。
預定距離相依於使用的第1及/或第2光渦產生裝置、使用的第1及/或第2光渦、使用的干擾裝置、使用的相位控制裝置等用於本發明的裝置的構成要素。
干涉工程能藉由上述干涉裝置來達成。At least two light beams spaced apart by a predetermined distance are generated from the interference device.
The predetermined distance depends on the components of the device used in the present invention, such as the first and / or second vortex generating device used, the first and / or second vortex used, the interference device used, and the phase control device used. .
Interference engineering can be achieved by the above-mentioned interference device.
<<相位控制裝置>>
相位控制裝置如同上述,若具有控制第1光渦與第2光渦的相位差的作用者則沒有特別限定。
例如,作為相位控制裝置,可以是半波長板、1/4波長板、電光學調變元件、電光學調變元件與1/4波長板的組合、音響光學元件等,但不限定於其等。
此外,相位控制裝置相依於使用的第1及第2光渦產生裝置、使用的干擾裝置等,決定配置相位控制裝置的位置也可以。例如,為比第1及第2光渦產生裝置還為光束入射側(更為光源側)的情形、第1及第2光渦產生裝置與干涉裝置之間的情形、比干涉裝置更為光束射出側的情形、及其等的組合等。
相位控制工程能藉由上述相位控制裝置來達成。<< Phase Control Device >>
As described above, the phase control device is not particularly limited as long as it has a function of controlling the phase difference between the first vortex and the second vortex.
For example, the phase control device may be, but is not limited to, a half-wavelength plate, a quarter-wavelength plate, an electro-optic modulation element, a combination of an electro-optic modulation element and a quarter-wavelength plate, and an acoustic optical element. .
In addition, the phase control device may determine the position where the phase control device is disposed depending on the first and second vortex generating devices used, the interference device used, and the like. For example, it is a case where the light beam incident side (more light source side) is used than the first and second vortex generating devices, a situation between the first and second vortex generating devices and the interference device, and a light beam is larger than the interference device. The situation on the injection side, and combinations thereof.
The phase control process can be achieved by the above-mentioned phase control device.
<<其他的裝置>>
本發明的光產生裝置具有上述第1及第2光渦產生裝置、干擾裝置、及相位控制裝置這些其他裝置也可以。
例如,本發明的裝置,更具有產生線偏光的線偏光產生裝置也可以。
又,該線偏光產生裝置包含產生同調光的同調光產生裝置也可以。該同調光的同調度為0.95以上、較佳為0.98以上。
線偏光產生工程能藉由上述線偏光產生裝置來達成。<< Other Devices >>
The light generating device of the present invention may include other devices such as the first and second vortex generating devices, an interference device, and a phase control device.
For example, the device of the present invention may further include a linearly polarized light generating device that generates linearly polarized light.
The linearly polarized light generating device may include a coherent light generating device that generates coherent light. The co-scheduled co-schedule is 0.95 or more, preferably 0.98 or more.
The linearly polarized light generating process can be achieved by the above-mentioned linearly polarized light generating device.
作為本發明的裝置的一態樣具有產生線偏光的線偏光產生裝置,來自該線偏光產生裝置的線偏光,因通過第1及第2光渦產生裝置、及干涉裝置,而產生前述以預定距離離間的至少2光束也可以。
作為本發明的裝置的一態樣,第1及第2光渦產生裝置是軸對稱偏光元件也可以。One aspect of the device of the present invention includes a linearly polarized light generating device that generates linearly polarized light. The linearly polarized light from the linearly polarized light generating device passes through the first and second vortex generating devices and the interference device to generate the aforementioned predetermined A distance of at least 2 beams is also acceptable.
As one aspect of the device of the present invention, the first and second vortex generating devices may be axisymmetric polarizing elements.
具體來說,作為本發明的裝置的一態樣,可以具有:產生同調光,特別是同調度為0.95以上、較佳為0.98以上的同調光的同調光產生裝置;
使同調光成為線偏光的偏光子或偏光裝置;
使線偏光成為第1光渦及具有與第1光渦絕對值相同且符號相異的拓撲荷的第2光渦的軸對稱偏光元件;及
使第1光渦與第2光渦干涉的干涉裝置;
其中,從干涉裝置產生以預定距離離間的至少2光束也可以。Specifically, as an aspect of the device of the present invention, there may be: a coherent light generating device that generates coherent light, especially a co-ordinated light with a schedule of 0.95 or more, preferably 0.98 or more;
Polarizers or polarizers that make coherent light linearly polarized;
Axisymmetric polarizing element for making linearly polarized light a first light vortex and a second light vortex having a topological charge with the same absolute value and a different sign from the first light vortex; and interference between the first light vortex and the second light vortex Device
Among them, at least two light beams separated by a predetermined distance from the interference device may be generated.
本發明的光產生裝置的態樣
本發明的光產生裝置的一態樣雖已上述,但本發明的光產生裝置,相依於作為第1及第2光渦產生裝置使用的裝置,能設為接下來的態樣。State sample of the light generating device of the present invention Although the aspect of the light generating device of the present invention has been described above, the light generating device of the present invention can be connected to the device used as the first and second vortex generating devices, and can be connected to the device. Down look.
a1. 作為第1及第2光渦產生裝置使用空間光調變器的情形(相依於馬赫-曾德爾干涉計的態樣者)
圖1為表示作為第1及第2光渦產生裝置使用空間光調變器時的光產生裝置的態樣的示意圖。
本態樣的光產生裝置a1具備:作為光源的雷射a2、束分光鏡a3、相位調變器a4、第1及第2空間光調變器a5及a6、還有束分光鏡a7。亦即,本態樣的光產生裝置a1具備:由束分光鏡a3、相位調變器a4、第1及第2空間光調變器a5及a6、還有束分光鏡a7構成的馬赫-曾德爾干涉計。
來自雷射a2的雷射光被束分光鏡a3分成2束,一者通過相位調變器a4向第1空間光調變器a5入射。藉由相位調變器a4及第1空間光調變器a5,TC為l1
的第1光渦從第1空間光調變器a5射出,向束分光鏡a7入射。另一方面,TC為l2
的第2光渦從第2空間光調變器a6射出,向束分光鏡a7入射。
在束分光鏡a7,第1及第2光渦互相干涉,產生以預定距離離間的至少2光束。a1. When a spatial light modulator is used as the first and second vortex generators (depending on the appearance of the Mach-Zehnder interferometer)
FIG. 1 is a schematic diagram showing an aspect of a light generating device when a spatial light modulator is used as the first and second vortex generating devices.
The light generating device a1 of this aspect includes a laser a2 as a light source, a beam splitter a3, a phase modulator a4, first and second spatial light modulators a5 and a6, and a beam splitter a7. That is, the light generating device a1 in this aspect includes a Mach-Zehnder composed of a beam splitter a3, a phase modulator a4, first and second spatial light modulators a5 and a6, and a beam splitter a7. Interferometer.
The laser light from the laser a2 is divided into two beams by the beam splitter a3, and one of them is incident on the first spatial light modulator a5 through the phase modulator a4. A4 phase modulator by a second spatial light modulator a5, the TC of l a5 first light emitted from the first scroll spatial light modulator 1, is incident to the beam splitter a7. On the other hand, TC is l 2 of the second optical vortex light modulator is emitted from the second space a6, a7 is incident to the beam splitter.
In the beam splitter a7, the first and second vortexes interfere with each other to generate at least two light beams separated by a predetermined distance.
在圖1中,作為相位控制裝置的相位調變器a4,配置於束分光鏡a3與第1空間光調變器a5之間。此外,為了進行相位控制,在第1空間光調變器a5與束分光鏡a7之間、及/或在第2空間光調變器a6與束分光鏡a7之間,再配置相位控制裝置也可以。
此外,在圖1中,作為干涉裝置雖是使用馬赫-曾德爾干涉計的態樣,但置換成後述b的邁克生干涉計的態樣也可以。In FIG. 1, a phase modulator a4 as a phase control device is disposed between the beam splitter a3 and the first spatial light modulator a5. In addition, for phase control, a phase control device is further provided between the first spatial light modulator a5 and the beam splitter a7, and / or between the second spatial light modulator a6 and the beam splitter a7. can.
In addition, in FIG. 1, although the form of the Mach-Zehnder interferometer is used as the interference device, the form of the Michelson interferometer replaced by b described below may be used.
a2. 作為第1及第2光渦產生裝置使用螺旋型相位板的情形(相依於馬赫-曾德爾干涉計的態樣者)
圖2為表示作為第1及第2光渦產生裝置使用螺旋型相位板時的光產生裝置的態樣的示意圖。
圖2的態樣的光產生裝置a11與圖1同樣採用馬赫-曾德爾干涉計的態樣。亦即,本態樣的光產生裝置a11具備:作為光源的雷射a2、束分光鏡a3、第1及第2螺旋型相位板a12及a13、相位調變器a4、反射鏡a15及a16、還有束分光鏡a7。亦即,本態樣的光產生裝置a11具備:由束分光鏡a3、第1及第2螺旋型相位板a12及a13、相位調變器a4、反射鏡a15及a16、還有束分光鏡a7構成的馬赫-曾德爾干涉計。
來自雷射a2的雷射光被束分光鏡a3分成2束,一者通過第1螺旋型相位板a12及相位調變器a4產生TC為l1
的第1光渦,在反射鏡a15被反射而向束分光鏡a7入射。另一方面,通過第2螺旋型相位板a13產生TC為l2
的第2光渦,在反射鏡a16被反射而向束分光鏡a7入射。
在束分光鏡a7,第1及第2光渦互相干涉,產生以預定距離離間的至少2光束。
此外,在圖2中,作為干涉裝置雖是使用馬赫-曾德爾干涉計的態樣,但置換成後述b的邁克生干涉計的態樣也可以。a2. When a spiral phase plate is used as the first and second vortex generators (depending on the appearance of the Mach-Zehnder interferometer)
FIG. 2 is a schematic diagram showing an aspect of a light generating device when a spiral phase plate is used as the first and second vortex generating devices.
The light generating device a11 in the aspect of FIG. 2 adopts the aspect of the Mach-Zehnder interferometer in the same manner as in FIG. 1. That is, the light generating device a11 in this aspect includes a laser a2 as a light source, a beam splitter a3, first and second spiral phase plates a12 and a13, a phase modulator a4, mirrors a15 and a16, and There is a beam splitter a7. That is, the light generating device a11 in this aspect includes a beam splitter a3, first and second spiral phase plates a12 and a13, a phase modulator a4, mirrors a15 and a16, and a beam splitter a7. Mach-Zehnder interferometer.
The laser light from the laser a2 is divided into two beams by a beam splitter a3. One of them generates a first vortex with a TC of 11 by the first spiral phase plate a12 and the phase modulator a4, and is reflected by the mirror a15. It enters the beam splitter a7. On the other hand, A13 produced by the second phase plate spiral for the TC second optical vortex l 2, the mirror being reflected to a16 a7 incident beam splitter.
In the beam splitter a7, the first and second vortexes interfere with each other to generate at least two light beams separated by a predetermined distance.
In addition, in FIG. 2, although the Mach-Zehnder interferometer is used as the interference device, it may be replaced with the Michelson interferometer in b described later.
b. 作為第1及第2光渦產生裝置使用空間光調變器的情形(相依於邁克生干涉計的態樣者)
圖3為表示作為第1及第2光渦產生裝置使用空間光調變器時,採用邁克生干涉計的態樣的光產生裝置的態樣的示意圖。
本態樣的光產生裝置b1具備:作為光源的雷射b2、束分光鏡b3、相位調變器b4、第1及第2空間光調變器b5及b6。亦即,本態樣的光產生裝置b1具備:由束分光鏡b3、相位調變器b4、第1及第2空間光調變器b5及b6構成的邁克生干涉計。
來自雷射b2的雷射光被束分光鏡b3分成2束,一者向第1空間光調變器b5入射,TC為l1
的第1光渦從第1空間光調變器b5射出,在向束分光鏡b3入射。
另一者通過相位調變器b4向第2空間光調變器b6入射。在第2空間光調變器b6產生光渦,該光渦通過相位調變器b4成為TC為l2
的第2光渦,向束分光鏡b3入射。
在束分光鏡b3,第1及第2光渦互相干涉,產生以預定距離離間的至少2光束。
在圖3中,作為相位控制裝置的相位調變器b4,配置於束分光鏡b3與第2空間光調變器b6之間。此外,為了進行相位控制,再配置相位控制裝置也可以。b. Use of spatial light modulators as the first and second vortex generators (depending on the appearance of the Michelson interferometer)
FIG. 3 is a schematic diagram showing an aspect of a light generating device in the form of a Michelson interferometer when a spatial light modulator is used as the first and second vortex generating devices.
The light generating device b1 of this aspect includes a laser b2 as a light source, a beam splitter b3, a phase modulator b4, and first and second spatial light modulators b5 and b6. That is, the light generating device b1 of this aspect includes a Michelson interferometer including a beam splitter b3, a phase modulator b4, and first and second spatial light modulators b5 and b6.
The laser light from the laser b2 is divided into two beams by the beam splitter b3. One of them is incident on the first spatial light modulator b5, and the first vortex with a TC of l 1 is emitted from the first spatial light modulator b5. It enters the beam splitter b3.
The other enters the second spatial light modulator b6 through the phase modulator b4. A light vortex is generated in the second spatial light modulator b6, and the light vortex passes through the phase modulator b4 to become a second light vortex with a TC of 12 and enters the beam splitter b3.
In the beam splitter b3, the first and second vortexes interfere with each other to generate at least two light beams separated by a predetermined distance.
In FIG. 3, a phase modulator b4 as a phase control device is disposed between the beam splitter b3 and the second spatial light modulator b6. In addition, in order to perform phase control, a phase control device may be further provided.
c1. 作為第1及第2光渦產生裝置使用軸對稱偏光元件的情形
圖4為表示作為第1及第2光渦產生裝置使用軸對稱偏光元件時的光產生裝置的態樣的示意圖。
本態樣的光產生裝置c1具備:作為光源的雷射c2、偏光調節器c3、軸對稱偏光元件c4、偏光子c5。偏光調節器c3具備:偏光板c3-1、電光學調變器(EOM)c3-2及1/4波長板c3-3。
來自雷射c2的雷射光,在偏光調節器c3,形成由左右圓偏光成分構成的線偏光,入射至軸對稱偏光元件c4。在軸對稱偏光元件c4中,形成TC為l1
及l2
的第1及第2光渦,射出至偏光子c5,在該偏光子c5中第1及第2光渦互相干涉,產生以預定距離離間的至少2光束。c1. When an axisymmetric polarizing element is used as the first and second vortex generating devices FIG. 4 is a schematic view showing a state of the light generating device when using the axisymmetric polarizing element as the first and second vortex generating devices.
The light generating device c1 in this aspect includes a laser c2 as a light source, a polarization adjuster c3, an axisymmetric polarization element c4, and a polarizer c5. The polarization regulator c3 includes a polarizing plate c3-1, an electro-optic modulator (EOM) c3-2, and a 1/4 wavelength plate c3-3.
The laser light from the laser c2 forms linearly polarized light consisting of left and right circularly polarized components at the polarization adjuster c3 and enters the axisymmetric polarizing element c4. In the axisymmetric polarizing element c4, first and second vortices with TCs of l 1 and 12 are formed, and the vortices are emitted to the polaron c5. In the polaron c5, the first and second vortices interfere with each other, and the predetermined Distance at least 2 beams apart.
在圖4中,作為相位控制裝置的電光學調變器c3-2及1/4波長板c3-3配置於偏光板c3-1與軸對稱偏光元件c4之間,將入射至軸對稱偏光元件c4的左右圓偏項成分間的相位差以施加至電光學調變器的電信號進行外部控制。In FIG. 4, an electro-optic modulator c3-2 and a quarter-wave plate c3-3 as phase control devices are disposed between the polarizing plate c3-1 and the axisymmetric polarizing element c4, and will be incident on the axisymmetric polarizing element. The phase difference between the left and right circular bias terms of c4 is controlled externally by an electric signal applied to the electro-optic modulator.
此外,在圖4所示的態樣的光產生裝置中,相位控制裝置能設於接下來所述的那種位置。
亦即,1)在偏光調節器c3與軸對稱偏光元件c4之間、及軸對稱偏光元件c4與偏光子c5之間,能夠作為相位控制裝置配置半波長板。藉由作為相位控制裝置使半波長板旋轉,來控制2光渦間的相位差。
2)在電光學調變器c3-2與軸對稱偏光元件c4之間配置1/4波長板c3-3,將偏光板c3-1、電光學調變器c3-2、1/4波長板c3-3的光學軸的關係設為45deg、0deg、45deg。藉由這樣配置,向電光學調變器施加電壓,能夠控制2光渦間的相位差。此外,也可以將電光學調變器c3-2與1/4波長板c3-3的組合,配置於軸對稱偏光元件c4與偏光子c5之間,以如圖4所示那樣配置較佳。
3)在偏光板c3-1與軸對稱偏光元件c4之間、及軸對稱偏光元件c4與偏光子c5之間,能夠配置作為相位控制裝置作用的泡克耳斯單元(Pockels cell)。藉由對泡克耳斯單元施加電壓,能夠控制2光渦間的相位差。In addition, in the light generating device in the aspect shown in FIG. 4, the phase control device can be provided at a position described below.
That is, 1) A half-wavelength plate can be arranged as a phase control device between the polarizer c3 and the axisymmetric polarizing element c4, and between the axisymmetric polarizing element c4 and the polaron c5. The phase difference between the two vortices is controlled by rotating the half-wavelength plate as a phase control device.
2) A 1/4 wave plate c3-3 is arranged between the electro-optic modulator c3-2 and the axisymmetric polarizing element c4, and the polarizing plate c3-1, the electro-optical modulator c3-2, and the 1/4 wave plate The relationship between the optical axes of c3-3 is set to 45 deg, 0 deg, and 45 deg. With this arrangement, a voltage is applied to the electro-optical modulator, and the phase difference between the two vortices can be controlled. In addition, a combination of the electro-optic modulator c3-2 and the quarter-wave plate c3-3 may be arranged between the axisymmetric polarizing element c4 and the polaron c5, and the arrangement is preferably as shown in FIG. 4.
3) Between the polarizing plate c3-1 and the axisymmetric polarizing element c4, and between the axisymmetric polarizing element c4 and the polaron c5, a Pockels cell that functions as a phase control device can be arranged. By applying a voltage to the Pockels cell, the phase difference between the two vortices can be controlled.
藉由本發明的光產生裝置得到「以預定距離離間的至少2光束」的「預定距離」雖相依於使用的第1及/或第2光渦產生裝置、使用的第1及/或第2光渦、使用的干擾裝置、使用的相位控制裝置等用於本發明的裝置的構成要素,但預定距離比同調光的直徑還小較佳。
使用同調光生成光渦的情形且光渦的拓撲荷為±1的情形,該光渦的核心徑dV
比該同調光的束腰dG
還小。藉由利用該光渦的核心徑dV
,產生預定距離dV
離間的至少2光束,能夠提供克服繞射極限的問題,且可微細加工的光產生裝置及光產生方法。The "predetermined distance" of "at least two light beams separated by a predetermined distance" obtained by the light generating device of the present invention depends on the first and / or second vortex generating device used, the first and / or second light used Vortex, used interference device, used phase control device and other components of the device of the present invention, but the predetermined distance is preferably smaller than the diameter of co-dimming.
When a vortex is generated using coherent light and the topological load of the vortex is ± 1, the core diameter d V of the vortex is smaller than the beam waist d G of the coherent light. By using the core diameter d V of the vortex to generate at least two light beams with a predetermined distance d V apart, it is possible to provide a light-generating device and a light-generating method capable of overcoming the problem of diffraction limit and capable of being finely processed.
<曝光裝置>及<曝光方法>、還有<曝光系統>及<光阻製造方法>
本案提供一種曝光裝置,具有利用藉由上述光產生裝置及/或光產生方法得到的預定距離dV
離間的至少2光束進行曝光的曝光機構。
又,本案提供一種曝光方法,具有利用藉由上述光產生裝置及/或光產生方法得到的預定距離dV
離間的至少2光束進行曝光的曝光工程。
再來,本案為具有上述曝光裝置及光阻的曝光系統,提供在光阻形成將預定距離作為線寬的暗線的曝光系統。
又本案提供具有上述曝光方法的曝光光阻的製造方法。<Exposure device> and <Exposure method>, <Exposure system> and <Photoresist manufacturing method>
The present invention provides an exposure device having an exposure mechanism that performs exposure using at least two light beams with a predetermined distance d V spaced by the light generating device and / or the light generating method.
The present invention also provides an exposure method including an exposure process for exposing using at least two light beams with a predetermined distance d V distance obtained by the light generating device and / or the light generating method.
Further, this case is an exposure system having the above-mentioned exposure device and photoresist, and provides an exposure system that forms a dark line with a predetermined distance as a line width in the photoresist.
The present invention also provides a method for manufacturing an exposure photoresist having the above-mentioned exposure method.
本發明的曝光裝置,具有:上述光產生裝置;及
利用從該光產生裝置產生的以預定距離離間的至少2光束,進行曝光的曝光機構。
曝光機構具備掃描以預定距離離間的至少2光束的掃描裝置也可以。
掃描裝置若具有能夠掃描以預定距離離間的至少2光束的機能的話,並沒有特別限定,例如可以是電流掃描儀、MEMS掃描器、多邊形掃描器等,但不限定於其等。又,不只是掃描光束側,將被曝光體側(例如光阻側)2維掃描的掃描裝置也可以。An exposure apparatus according to the present invention includes: the above-mentioned light generating device; and an exposure mechanism that performs exposure using at least two light beams that are separated by a predetermined distance from the light generating device.
The exposure mechanism may include a scanning device that scans at least two light beams spaced apart by a predetermined distance.
The scanning device is not particularly limited as long as it has a function of scanning at least two light beams separated by a predetermined distance. For example, the scanning device may be a current scanner, a MEMS scanner, a polygon scanner, or the like, but is not limited to these. It is also possible to use a scanning device that scans not only the beam side but also the object to be exposed (for example, the photoresist side) in two dimensions.
又,曝光機構具有使以預定距離離間的至少2光束成像於被曝光體的光學系統也可以。作為該光學系統,可以是所謂的fθ透鏡、遠心透鏡、對物透鏡等,但不限定於其等。
曝光方法能藉由上述光產生裝置及/或光產生方法;及
利用從該光產生裝置產生的以預定距離離間的至少2光束,進行曝光的曝光機構;來達成。The exposure mechanism may include an optical system for imaging at least two light beams spaced apart by a predetermined distance on the object to be exposed. The optical system may be a so-called fθ lens, a telecentric lens, an objective lens, or the like, but is not limited thereto.
The exposure method can be achieved by the above-mentioned light generating device and / or light generating method; and an exposure mechanism that performs exposure using at least two light beams spaced apart by a predetermined distance generated from the light generating device;
藉由本發明的曝光裝置及曝光方法,將上述至少2光束的離間的預定距離作為暗線曝光。
該暗線的線寬,能夠設為第1光渦的核心徑dV1
及/或第2光渦的核心徑dV2
。第1光渦及/或第2光渦從同調光形成時,第1光渦的核心徑dV1
及/或第2光渦的核心徑dV2
能夠比該同調光的束腰dG
還小。
因此,本發明的曝光裝置及曝光方法,藉由利用該暗線的寬度,相較於利用從前的同調光的束腰dG
的加工,能夠進行更微細的加工。With the exposure apparatus and exposure method of the present invention, the predetermined distance between the at least two light beams is exposed as a dark line.
The line width of the dark line can be the core diameter d V1 of the first vortex and / or the core diameter d V2 of the second vortex. When the first light vortex and / or the second light vortex are formed from coherent light, the core diameter d V1 of the first vortex and / or the core diameter d V2 of the second vortex can be smaller than the beam waist d G of the coherent light. .
Therefore, the exposure apparatus and the exposure method of the present invention can use the width of the dark line to perform a finer processing than the processing using the previously used co-adjusted beam waist d G.
本發明的曝光系統具有:上述曝光裝置;及光阻。
又,本發明的曝光光阻的製造方法具有:利用由上述光產生方法得到的至少2光束將光阻曝光的曝光工程;得到將前述至少2光束離間的距離作為暗線曝光的光阻。
光阻在本發明的曝光系統或曝光光阻製造方法中,能夠藉由使用的手法決定。此外,藉由本發明的曝光裝置及曝光方法、以及曝光系統或曝光光阻的製造方法,因為將上述至少2光束的離間的預定距離作為暗線曝光,光阻是負型也可以。
此外,光阻的特性,特別是感光度,能夠相依於使用的第1及第2光渦、用來使該光渦產生的同調光等適宜設定。The exposure system of the present invention includes: the exposure device; and a photoresist.
The method for manufacturing an exposure photoresistor of the present invention includes: an exposure process for exposing the photoresist using at least two light beams obtained by the light generating method; and obtaining a photoresist that uses the distance between the at least two light beams as a dark line.
Photoresist In the exposure system or the method for manufacturing an exposure photoresistor of the present invention, it can be determined by the method used. In addition, according to the exposure apparatus and the exposure method of the present invention, and the method of manufacturing an exposure system or an exposure photoresistor, since the predetermined distance between the at least two beams is used as dark line exposure, the photoresistance may be negative.
In addition, the characteristics of the photoresist, particularly the sensitivity, can be appropriately set depending on the first and second vortexes used, and the coherent light generated by the vortex.
本發明的曝光裝置及曝光方法、及曝光系統或曝光光阻的製造方法,能夠應用於從前的光阻製造方法中使用的手法。
本發明的曝光裝置及曝光方法、以及曝光系統或曝光光阻的製造方法,因為將上述至少2光束的離間的預定距離作為暗線曝光,應用於所謂的剝離法較佳。
又,本發明的曝光裝置及曝光方法、及曝光系統或曝光光阻的製造方法,藉由使用的掃描裝置,將「暗線」作為直線或作為曲線都可以進行加工。
以下,關於本發明,雖利用實施例具體地說明,但本發明並不只限於該實施例限定者。
[實施例1]The exposure apparatus and method of the present invention, and the method of manufacturing an exposure system or an exposure photoresist can be applied to a method used in a conventional photoresist production method.
The exposure apparatus and method of the present invention, and the method of manufacturing an exposure system or an exposure photoresist are preferably applied to a so-called peeling method by using the predetermined distance between the at least two light beams as a dark line.
In addition, the exposure apparatus and exposure method of the present invention, and the manufacturing method of the exposure system or exposure photoresist can be processed by using the "dark line" as a straight line or a curve by the scanning device used.
Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited only to those examples.
[Example 1]
將本發明的光產生裝置及具有該光產生裝置的曝光裝置具現化的光學系統1示於圖5。此外,與圖5所示的光學系統1的光產生裝置有關的裝置,與圖4所示的光產生裝置的態樣類似。
光學系統1具備:雷射3(He-Cd雷射IK3501R-G,(株)金門光波製)、擴束器4、偏光子5(圖5中也記載成「P1
」)、軸對稱偏光元件6(光子結晶製,Photonic Lattice社製。圖5中也記載成「AHP」)、偏光子7(圖5中也記載成「P2
」)、圓形開口8(φ=8mm)(圖5中也記載成「Aperture」)、電流掃描儀9、fθ透鏡10(焦距56mm、NA=0.043)。An optical system 1 embodying the light generating device and the exposure device having the light generating device of the present invention is shown in FIG. 5. In addition, a device related to the light generating device of the optical system 1 shown in FIG. 5 is similar to the state of the light generating device shown in FIG. 4.
Optical system 1 includes a laser 3 (He-Cd laser IK3501R-G, manufactured by Kinmen Corporation), a beam expander 4, a polarizer 5 (also described as "P 1 " in Fig. 5), and axisymmetric polarized light. Element 6 (manufactured by Photonic Crystal, manufactured by Photonic Lattice. Also described as "AHP" in Figure 5), polarizer 7 (also described as "P 2 " in Figure 5), circular opening 8 (φ = 8mm) (Figure 5 is also described as "Aperture"), current scanner 9, fθ lens 10 (focal length 56mm, NA = 0.043).
從雷射3射出的波長325nm的紫外光由擴束器4擴大,向由偏光子5、軸對稱偏光元件6、偏光子7的3元件構成的光產生裝置入射。
向裝置入射的紫外光,由偏光子5變化成線偏光。該線偏光可以視為振幅互為相等的右旋及左旋的圓偏光的重合。
線偏光,亦即振幅相等的右旋及左旋的圓偏光成分,接著向軸對稱偏光元件6以同軸入射。軸對稱偏光元件6為光學軸方位在元件剖面內分佈成放射狀的特殊半波長板。軸對稱偏光元件6具有將入射的圓偏光因應其旋轉方向變換成互為相反符號的光渦的機能。
軸對稱偏光元件6(光子結晶製,Photonic Lattice社製),具有快軸方位在元件剖面內相對於方位方向以1周2π旋轉的機能,將入射的左右圓偏光變換成l(拓撲荷)=±2的光渦。The ultraviolet light having a wavelength of 325 nm emitted from the laser 3 is expanded by the beam expander 4 and is incident on a light generating device composed of three elements of a polarizer 5, an axisymmetric polarizer 6, and a polarizer 7.
The ultraviolet light incident on the device is changed into polarized light by the polarizer 5. This linearly polarized light can be regarded as the coincidence of right-handed and left-handed circularly polarized light having equal amplitudes.
The linearly polarized light, that is, the right-handed and left-handed circularly polarized light components having the same amplitude, is then incident coaxially to the axisymmetric polarizing element 6. The axisymmetric polarizing element 6 is a special half-wave plate whose optical axis orientation is distributed radially in the element cross section. The axisymmetric polarizing element 6 has a function of converting incident circularly polarized light into vortexes having mutually opposite signs depending on the rotation direction thereof.
The axisymmetric polarizing element 6 (manufactured by Photonic Crystal, manufactured by Photonic Lattice) has the function of fast axis azimuth rotation within the element cross section with respect to the azimuth direction by 2π per cycle, and transforms the incident left and right circular polarized light into l (topological charge) = ± 2 vortex.
以軸對稱偏光元件6生成的l=±2的左右圓偏光成分,藉由偏光子7被對齊於相互偏光方向,互相干涉。
將從由偏光子5、軸對稱偏光元件6、偏光子7的3元件構成的光產生裝置射出的光,在圓形開口8作為直徑5mm的強度分佈均勻的束取出,入射至電流掃描儀9。電流掃描儀9的射出側設有fθ透鏡10。在該fθ透鏡10的焦點面,形成作為l=±2的光渦的同軸干涉圖案具有4個亮點的束,該束為將該4個亮點作為四角形的頂點時,在該四角形的各邊形成於頂點間的暗部的束(圖5中記載為「Four petaled pattern」的束)。The left and right circularly polarized components of l = ± 2 generated by the axisymmetric polarizing element 6 are aligned in mutually polarized directions by polarizers 7 and interfere with each other.
The light emitted from the light generating device consisting of the polarizer 5, the axisymmetric polarizer 6, and the polarizer 7 is taken out in a circular opening 8 as a beam having a uniform intensity distribution with a diameter of 5 mm, and is incident on the current scanner 9 . An fθ lens 10 is provided on the emission side of the current scanner 9. On the focal surface of the fθ lens 10, a beam having four bright spots is formed as a coaxial interference pattern of an vortex of l = ± 2. When the four bright spots are used as vertices of a quadrangle, the beam is formed on each side of the quadrangle. A bundle of dark portions between the vertices (a bundle described as "Four petaled pattern" in FIG. 5).
藉由將準備的負型光阻的基板11設置於焦點面,以電流掃描儀9進行束掃描,將暗部作為未感光區域的細線圖案進行描繪。入射至電流掃描儀前的雷射光的射束直徑為5mm。
曝光強度IV
及掃描速度vV
為IV
=460μW及vV
=0.002m /s。The prepared negative photoresist substrate 11 is set on the focal plane, beam scanning is performed with the current scanner 9, and the dark portion is drawn as a thin line pattern of the non-photosensitive area. The beam diameter of the laser light incident in front of the current scanner is 5 mm.
The exposure intensity I V and the scanning speed v V are I V = 460 μW and v V = 0.002 m / s.
(比較例1)
為了進行比較,將由偏光子5、軸對稱偏光元件6、偏光子7這3元件構成的光產生裝置去除,與高斯光的情形進行一樣的曝光實驗。高斯光的情形使用正型光阻的基板。此外,曝光強度IG
及掃描速度vG
為IG
=60μW及vG
=0.001m/s。(Comparative example 1)
For the purpose of comparison, the light generating device consisting of the three elements of the polarizer 5, the axisymmetric polarizer 6, and the polarizer 7 was removed, and the same exposure experiment was performed as in the case of Gaussian light. In the case of Gaussian light, a substrate with a positive photoresist is used. The exposure intensity I G and the scanning speed v G are I G = 60 μW and v G = 0.001 m / s.
實施例1及比較例1這兩者都在曝光後,以顯像液(NMD-3,東京應化工業)顯像、以濺鍍將金蒸鍍、以剝離液(剝離液106,東京應化工業)進行剝離,形成金屬構造。
將以實施例1及比較例1得到的金屬構造的顯微鏡影像分別表示於圖6(a)及圖6(b)。
從圖6(a)及圖6(b),可以得知形成的金屬細線的寬度,在實施例1(使用光渦的情形)為約2.2μm、在比較例1(使用高斯光的情形)中為19μm。此外,線寬作為影像輝度的半高寬求出。
從該結果,得知藉由使用光渦的同軸干涉圖案,能夠形成與高斯光相比在相同開口數的條件下形成1/8~1/9倍左右細的金屬細線。Both Example 1 and Comparative Example 1 were developed with a developing solution (NMD-3, Tokyo Chemical Industry Co., Ltd.) after exposure, gold was deposited by sputtering, and a stripping solution (stripping solution 106, Tokyo (Chemical industry) to peel off to form a metal structure.
Microscope images of the metal structure obtained in Example 1 and Comparative Example 1 are shown in Figs. 6 (a) and 6 (b), respectively.
From FIG. 6 (a) and FIG. 6 (b), it can be seen that the width of the formed thin metal wire is about 2.2 μm in Example 1 (when a vortex is used) and Comparative Example 1 (when Gaussian light is used). It is 19 μm. In addition, the line width was calculated as the full width at half maximum of the image luminance.
From this result, it was found that by using the coaxial interference pattern of the vortex, it is possible to form a thin metal wire that is about 1/8 to 1/9 times thinner than the Gaussian light under the same number of openings.
(實施例2)
使用與實施例1相同的裝置,使曝光強度在280μW~440μW之間變化,與實施例1一樣形成金屬構造,測定其線寬。
(比較例2)
使用與比較例1相同的裝置,使曝光強度在40μW~460μW之間變化,與比較例1一樣形成金屬構造,測定其線寬。(Example 2)
Using the same device as in Example 1, the exposure intensity was changed between 280 μW and 440 μW. A metal structure was formed in the same manner as in Example 1, and the line width was measured.
(Comparative example 2)
Using the same device as Comparative Example 1, the exposure intensity was changed between 40 μW and 460 μW, and a metal structure was formed in the same manner as in Comparative Example 1, and the line width was measured.
實施例1及實施例2的結果,即將橫軸作為曝光強度並將縱軸作為形成的金屬構造的線寬的圖形表示於圖7(a)、將比較例1及比較例2的結果,即將橫軸作為曝光強度並將縱軸作為形成的金屬構造的線寬的圖形表示於圖7(b)。
從圖7(a)及圖7(b),得知在相同開口數的條件下,利用光渦的同軸干涉圖案的實施例1及實施例2,與高斯光(比較例1及比較例2)相比,能夠形成更微細的構造。
又,從圖7(a)得知藉由提高曝光強度,能夠使加工線寬細線化。得知例如藉由將曝光強度從280μW變更成460μW,將加工線寬從約3.7μm細線化成約2.2μm。The results of Example 1 and Example 2 are shown in FIG. 7 (a) as a graph of the horizontal axis as the exposure intensity and the vertical axis as the line width of the formed metal structure. The results of Comparative Example 1 and Comparative Example 2 are A graph in which the horizontal axis is the exposure intensity and the vertical axis is the line width of the formed metal structure is shown in FIG. 7 (b).
From Fig. 7 (a) and Fig. 7 (b), under the condition of the same number of openings, it is known that Example 1 and Example 2 using the coaxial interference pattern of the vortex and Gaussian light (Comparative Example 1 and Comparative Example 2) ), It is possible to form a finer structure.
It is also known from FIG. 7 (a) that the processing line width can be made thinner by increasing the exposure intensity. It was found that, for example, by changing the exposure intensity from 280 μW to 460 μW, the processing line width was changed from a thin line of about 3.7 μm to about 2.2 μm.
(實施例3)
使用與實施例1相同的光學系統1,再使用具備半波長板12的光學系統2。
半波長板12設於偏光子5與軸對稱偏光元件6之間,將以偏光子5變化的線偏光的偏光方位,能以半波長板12進行旋轉。亦即,半波長板12作為相位控制裝置作用。
又,藉由控制半波長板12及電流掃描儀9,完成圖8所示的明部2點及夾於其中的暗部的設定存在為4設定存在的描繪。
在圖8中,4設定雖為離間的狀態,但能夠藉由將半波長板12及電流掃描儀9更精密控制,在圖8中,能夠形成以「Unexposed curved region(未曝光曲線區域)」表示的曲暗線。(Example 3)
The same optical system 1 as in Example 1 was used, and an optical system 2 including a half-wavelength plate 12 was used.
The half-wavelength plate 12 is provided between the polarizer 5 and the axisymmetric polarizing element 6. The polarization direction of the linearly polarized light changed by the polarizer 5 can be rotated by the half-wavelength plate 12. That is, the half-wavelength plate 12 functions as a phase control device.
In addition, by controlling the half-wavelength plate 12 and the current scanner 9, the drawing of the presence of 2 points in the bright portion and the presence of the dark portions sandwiched therebetween as shown in FIG. 8 is completed by 4 settings.
In FIG. 8, although 4 is set to be in a separated state, the half-wavelength plate 12 and the current scanner 9 can be controlled more precisely. In FIG. 8, an “Unexposed curved region” can be formed. Represented by curved dark lines.
a1‧‧‧光產生裝置a1‧‧‧light generating device
a2‧‧‧雷射 a2‧‧‧laser
a3‧‧‧束分光鏡 a3‧‧‧ Beam Beamsplitter
a4‧‧‧相位調變器 a4‧‧‧phase modulator
a5‧‧‧第1空間光調變器 a5‧‧‧The first spatial light modulator
a6‧‧‧第2空間光調變器 a6‧‧‧The second spatial light modulator
a7‧‧‧束分光鏡 a7‧‧‧ Beam Beamsplitter
a11‧‧‧光產生裝置 a11‧‧‧light generating device
a12‧‧‧第1螺旋型相位板 a12‧‧‧The first spiral phase plate
a13‧‧‧第2螺旋型相位板 a13‧‧‧Second spiral phase plate
a15、a16‧‧‧反射鏡 a15, a16‧‧‧Mirror
b1‧‧‧光產生裝置 b1‧‧‧light generating device
b2‧‧‧雷射 b2‧‧‧laser
b3‧‧‧束分光鏡 b3‧‧‧ Beam Beamsplitter
b4‧‧‧相位調變器 b4‧‧‧phase modulator
b5‧‧‧第1空間光調變器 b5‧‧‧The first spatial light modulator
b6‧‧‧第2空間光調變器 b6‧‧‧ 2nd spatial light modulator
c1‧‧‧光產生裝置 c1‧‧‧light generating device
c2‧‧‧雷射 c2‧‧‧laser
c3‧‧‧偏光調節器 c3‧‧‧Polarizer
c4‧‧‧軸對稱偏光元件 c4‧‧‧ axisymmetric polarizing element
c5‧‧‧偏光子 c5‧‧‧polarized photon
c3-1‧‧‧偏光板 c3-1‧‧‧Polarizer
c3-2‧‧‧電光學調變器(EOM) c3-2‧‧‧ Electro-Optic Modulator (EOM)
c3-3‧‧‧1/4波長板 c3-3‧‧‧1 / 4 wave plate
1‧‧‧光學系統 1‧‧‧ optical system
3‧‧‧雷射 3‧‧‧laser
4‧‧‧擴束器 4‧‧‧ Beam Expander
5‧‧‧偏光子 5‧‧‧ polarized photon
6‧‧‧軸對稱偏光元件 6‧‧‧ axisymmetric polarizing element
7‧‧‧偏光子 7‧‧‧ polarized photons
8‧‧‧圓形開口 8‧‧‧ round opening
9‧‧‧電流掃描儀 9‧‧‧Current Scanner
10‧‧‧fθ透鏡 10‧‧‧fθ lens
11‧‧‧基板 11‧‧‧ substrate
12‧‧‧半波長板 12‧‧‧ Half Wave Plate
[圖1]表示作為第1及第2光渦產生裝置使用空間光調變器時,採用馬赫-曾德爾干涉計(Mach-Zehnder interferometer)的態樣的光產生裝置的態樣的示意圖。[Fig. 1] A schematic diagram showing an aspect of a light generating device using a state of a Mach-Zehnder interferometer when a spatial light modulator is used as the first and second vortex generating devices.
[圖2]表示作為第1及第2光渦產生裝置使用螺旋型相位板時,採用馬赫-曾德爾干涉計的態樣的光產生裝置的態樣的示意圖。 [Fig. 2] Fig. 2 is a schematic diagram showing an aspect of a light generating device adopting a form of a Mach-Zehnder interferometer when a spiral phase plate is used as the first and second vortex generating devices.
[圖3]表示作為第1及第2光渦產生裝置使用空間光調變器時,採用邁克生干涉計(Michelson interferometer)的態樣的光產生裝置的態樣的示意圖。 FIG. 3 is a schematic diagram showing an aspect of a light generating device using a Michelson interferometer as a first and second vortex generating device when a spatial light modulator is used.
[圖4]表示作為第1及第2光渦產生裝置使用軸對稱偏光元件時的光產生裝置的態樣的示意圖。 Fig. 4 is a schematic diagram showing a state of a light generating device when an axisymmetric polarizing element is used as the first and second vortex generating devices.
[圖5]表示將在實施例1使用的本發明的光產生裝置及曝光裝置具現化的光學系統1的概略圖。 5 is a schematic diagram showing an optical system 1 in which a light generating device and an exposure device of the present invention used in Example 1 are realized.
[圖6]表示在實施例1得到的細線構造((a))及在比較例1得到的細線構造((b))的顯微鏡像。 6 A microscope image showing a thin line structure ((a)) obtained in Example 1 and a thin line structure ((b)) obtained in Comparative Example 1.
[圖7]表示在實施例1及實施例2得到的曝光強度與細線的線寬的關係((a))及在比較例1及比較例2得到的曝光強度與細線的線寬的關係((b))的圖形。 7 shows the relationship between the exposure intensity obtained in Example 1 and Example 2 and the line width of the thin line ((a)) and the relationship between the exposure intensity obtained in Comparative Example 1 and Comparative Example 2 and the line width of the thin line ( (b)).
[圖8]表示使用具備半波長板12的實施例3的光學系統2得到的暗曲線區域的顯微鏡像。 FIG. 8 shows a microscope image of a dark curve area obtained using the optical system 2 of Example 3 including the half-wavelength plate 12.
Claims (27)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-221298 | 2017-11-16 | ||
JP2017221298 | 2017-11-16 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201932921A true TW201932921A (en) | 2019-08-16 |
TWI805647B TWI805647B (en) | 2023-06-21 |
Family
ID=66539536
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW107140518A TWI805647B (en) | 2017-11-16 | 2018-11-15 | Light generating device, exposure device equipped with light generating device, exposure system, light generating method, and manufacturing method of exposure photoresist |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP7199669B2 (en) |
KR (1) | KR102688206B1 (en) |
CN (1) | CN111356957B (en) |
TW (1) | TWI805647B (en) |
WO (1) | WO2019098262A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110836726A (en) * | 2019-11-14 | 2020-02-25 | 深圳大学 | Device and method for detecting order of any singular point light beam |
CN110955119A (en) * | 2019-12-03 | 2020-04-03 | 浙江大学 | Vortex light far-field super-resolution repeated photoetching method |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111221132B (en) * | 2019-11-20 | 2021-10-26 | 中国科学院光电技术研究所 | Method and device for measuring vortex beam topological charge number by fan-shaped sub-aperture micro-lens array |
CN112286014B (en) * | 2020-12-01 | 2023-07-11 | 之江实验室 | Super-resolution laser printing device based on columnar vector polarized light |
CN112612141B (en) * | 2020-12-31 | 2024-07-02 | 华中科技大学 | Optical system for shaping light beam |
CN114785422B (en) * | 2022-04-15 | 2024-01-19 | 西安理工大学 | System for radial polarized vortex beam interference is transmitted under water |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6811933B2 (en) * | 2002-07-01 | 2004-11-02 | Marc David Levenson | Vortex phase shift mask for optical lithography |
JP4950411B2 (en) * | 2003-07-01 | 2012-06-13 | 大日本印刷株式会社 | Vortex phase shift mask for optical lithography |
US8057963B2 (en) * | 2004-06-10 | 2011-11-15 | Lsi Corporation | Maskless vortex phase shift optical direct write lithography |
CN100480863C (en) * | 2004-08-25 | 2009-04-22 | 精工爱普生株式会社 | Method for manufacturing a microstructure, exposure device, and electronic apparatus |
JP4587170B2 (en) * | 2005-01-20 | 2010-11-24 | キヤノン株式会社 | Exposure apparatus and device manufacturing method |
JP5017659B2 (en) | 2005-07-26 | 2012-09-05 | 国立大学法人北海道大学 | Optical vortex generator, micro object operating device, astronomical exploration device, and polarized vortex transducer |
WO2009066755A1 (en) | 2007-11-22 | 2009-05-28 | National University Corporation Tokyo University Of Agriculture And Technology | Vortex producing device, body controller, and vortex producing method |
JP2009300486A (en) * | 2008-06-10 | 2009-12-24 | Ricoh Co Ltd | Optical equipment and optical apparatus |
TWI409434B (en) * | 2009-03-10 | 2013-09-21 | Univ Nat Cheng Kung | Interferometer and interference method for generating stable vortex beam |
JP6103597B2 (en) * | 2011-06-07 | 2017-03-29 | 国立大学法人 千葉大学 | Optical vortex laser oscillation method and optical vortex laser oscillation apparatus |
IN2012DE00869A (en) * | 2012-03-24 | 2015-07-17 | Director General Defence Res & Dev Org | |
CN104516111A (en) * | 2014-12-23 | 2015-04-15 | 钱义先 | System and method for coherently superposing and synthesizing multiple Airy beams to obtain high-energy bottle beams |
CN105115607B (en) * | 2015-08-10 | 2017-12-01 | 河南科技大学 | Utilize the device and method for intersecting two-slit interference measurement vortex beams topology charge values |
CN105445943B (en) * | 2015-12-24 | 2018-04-13 | 河南科技大学 | A kind of generation device and production method of fractional order perfection vortex beams |
CN106353898B (en) * | 2016-10-25 | 2023-07-28 | 深圳大学 | Optical vortex generating system |
-
2018
- 2018-11-15 CN CN201880074305.3A patent/CN111356957B/en active Active
- 2018-11-15 WO PCT/JP2018/042230 patent/WO2019098262A1/en active Application Filing
- 2018-11-15 JP JP2019554272A patent/JP7199669B2/en active Active
- 2018-11-15 KR KR1020207015285A patent/KR102688206B1/en active IP Right Grant
- 2018-11-15 TW TW107140518A patent/TWI805647B/en active
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110836726A (en) * | 2019-11-14 | 2020-02-25 | 深圳大学 | Device and method for detecting order of any singular point light beam |
WO2021093259A1 (en) * | 2019-11-14 | 2021-05-20 | 深圳大学 | Arbitrary singularity beam order detection device and method |
CN110955119A (en) * | 2019-12-03 | 2020-04-03 | 浙江大学 | Vortex light far-field super-resolution repeated photoetching method |
Also Published As
Publication number | Publication date |
---|---|
JPWO2019098262A1 (en) | 2020-12-03 |
TWI805647B (en) | 2023-06-21 |
CN111356957A (en) | 2020-06-30 |
KR20200087781A (en) | 2020-07-21 |
WO2019098262A1 (en) | 2019-05-23 |
CN111356957B (en) | 2022-10-11 |
JP7199669B2 (en) | 2023-01-06 |
KR102688206B1 (en) | 2024-07-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI805647B (en) | Light generating device, exposure device equipped with light generating device, exposure system, light generating method, and manufacturing method of exposure photoresist | |
Ansari et al. | A spin‐encoded all‐dielectric metahologram for visible light | |
JP4389791B2 (en) | Fine structure manufacturing method and exposure apparatus | |
Karpeev et al. | Generation of a controlled double-ring-shaped radially polarized spiral laser beam using a combination of a binary axicon with an interference polarizer | |
US9036133B2 (en) | Lithographic fabrication of general periodic structures by exposing a photosensitive layer to a range of lateral intensity distributions | |
US6972906B2 (en) | Space-variant subwavelength polarization grating and applications thereof | |
TW201230146A (en) | Polarization changing device, optical illumination apparatus, light-exposure apparatus and light-exposure method | |
TW201234051A (en) | Light beam converter, optical illuminating apparatus, exposure device, and exposure method | |
Hung Jr et al. | Employing refractive beam shaping in a Lloyd's interference lithography system for uniform periodic nanostructure formation | |
CN109283673B (en) | Device and method for realizing three-dimensional controllability of optical focal field spin direction | |
Karpeev et al. | Generation of nonuniformly polarised vortex Bessel beams by an interference polariser | |
Zhang et al. | Polarization-insensitive colorful meta-holography employing anisotropic nanostructures | |
CN107728236A (en) | Produce super the structure surface element and production method of nanoscale longitudinal direction hot spot chain | |
Mohammed et al. | Efficiency-enhanced reflective nanosieve holograms | |
KR102446874B1 (en) | Axicon device based on metasurface, optical device having the same and manufacturing method thereof | |
Desai et al. | Generation of V-point polarization singularity array by Dammann gratings | |
JP2006339359A (en) | Method of manufacturing fine structure, and electronic apparatus | |
CN117008379A (en) | Liquid crystal two-dimensional polarization grating, preparation method and light beam array generation system | |
JP4894899B2 (en) | Manufacturing method of fine structure | |
Ni et al. | Ultra-sensitive experimental detection of chiral meso-structures by orbital angular momentum of light | |
Zhao et al. | Cylindrical metalens for multidimensional control of terahertz waves | |
Huang et al. | Broadband generation of rational-order optical vortices using a bilateral meta-grating | |
WO2024051801A1 (en) | Curved fork-shaped grating structure, and curved fork-shaped grating and preparation method therefor | |
Chen et al. | Preparation of Graded Photonic Structure by using multi-beam interfering method based on dual-parameter hexagonal prism | |
US12007695B2 (en) | Rapid large-scale fabrication of metasurfaces with complex unit cells |