TW201929030A - Plasma processing apparatus and measurement circuit - Google Patents

Plasma processing apparatus and measurement circuit Download PDF

Info

Publication number
TW201929030A
TW201929030A TW107133956A TW107133956A TW201929030A TW 201929030 A TW201929030 A TW 201929030A TW 107133956 A TW107133956 A TW 107133956A TW 107133956 A TW107133956 A TW 107133956A TW 201929030 A TW201929030 A TW 201929030A
Authority
TW
Taiwan
Prior art keywords
impedance
chamber
calculation unit
phase
plasma
Prior art date
Application number
TW107133956A
Other languages
Chinese (zh)
Other versions
TWI812648B (en
Inventor
樋口龍太
Original Assignee
日商東京威力科創股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商東京威力科創股份有限公司 filed Critical 日商東京威力科創股份有限公司
Publication of TW201929030A publication Critical patent/TW201929030A/en
Application granted granted Critical
Publication of TWI812648B publication Critical patent/TWI812648B/en

Links

Landscapes

  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)
  • Chemical Vapour Deposition (AREA)
  • Treatment Of Fiber Materials (AREA)

Abstract

A plasma processing apparatus 10 includes a chamber 17 in which an internal space is provided and a target object carried into the internal space is processed with plasma in the internal space; a high frequency power source 14 configured to supply a high frequency power for plasma generation within the chamber 17; a matching circuit 15 configured to match an impedance of the plasma within the chamber 17 with an impedance of the high frequency power source 14; a signal synchronizer 20 configured to calculate the impedance of the plasma within the chamber 17; a control amount calculator 12 configured to control a frequency and a magnitude of the high frequency power, and an impedance of the matching circuit 15 based on the impedance calculated by the signal synchronizer 20. Further, the signal synchronizer 20 and the control amount calculator 12 are provided on a single substrate 11.

Description

電漿處理裝置及測定電路Plasma processing device and measuring circuit

本發明的各種態樣及實施形態係關於電漿處理裝置及測定電路。Various aspects and embodiments of the present invention relate to a plasma processing apparatus and a measurement circuit.

在使用電漿的半導體晶圓之蝕刻處理中,關鍵在於將藉由蝕刻而形成的孔或溝控制成所希望的形狀。藉由蝕刻而形成的孔或溝的形狀會受到電漿中的自由基與離子的比率等之影響。電漿中的自由基與離子的比率等例如由供給到電漿的射頻電力之大小或頻率等而受到控制。又,藉由對供給到電漿的射頻電力進行脈衝調變,也可精確控制電漿中的自由基與離子的比率等。In the etching process of a semiconductor wafer using a plasma, the key is to control the holes or trenches formed by etching into a desired shape. The shape of the holes or grooves formed by etching is affected by the ratio of free radicals to ions in the plasma, and the like. The ratio of free radicals to ions in the plasma is controlled by, for example, the magnitude or frequency of radio frequency power supplied to the plasma. In addition, by performing pulse modulation on the RF power supplied to the plasma, the ratio of free radicals to ions in the plasma can also be accurately controlled.

將經脈衝調變的射頻電力施加到電漿的情況,要求配合脈衝調變所導致的急速上升及下降,而快速進行射頻電源與電漿的阻抗匹配。作為快速進行阻抗匹配的手法,討論藉由調整射頻電源的頻率,而快速進行射頻電源與電漿的阻抗匹配。
[先前技術文獻]
[專利文獻]
The application of pulse-modulated RF power to the plasma requires rapid impedance matching between the RF power source and the plasma in conjunction with the rapid rise and fall caused by the pulse modulation. As a method of quickly performing impedance matching, it is discussed to quickly perform impedance matching between the RF power source and the plasma by adjusting the frequency of the RF power source.
[Prior technical literature]
[Patent Literature]

[專利文獻1]日本特開平10-64696號公報
[專利文獻2]日本特開2017-73247號公報
[Patent Document 1] Japanese Patent Application Laid-Open No. 10-64696
[Patent Document 2] Japanese Patent Laid-Open No. 2017-73247

[發明所期望解決的課題][Problems to be Solved by the Invention]

然而,根據加工條件或腔室的狀態,而有電漿失火或者變得不穩定的情況。在以往的電漿處理裝置,射頻電源進行電力控制與匹配頻率的控制,匹配器進行阻抗控制,射頻電源與匹配器並非協同作業而是分別獨立執行處理作業。因此,有射頻電源及匹配器進行的控制互相干涉的情況。因此,引發控制振盪,導致電漿失火或變得不穩定。However, depending on the processing conditions or the state of the chamber, the plasma may misfire or become unstable. In the conventional plasma processing device, the radio frequency power supply performs power control and matching frequency control, and the matcher performs impedance control. The radio frequency power supply and the matcher do not work together but independently perform processing operations. Therefore, the control performed by the radio frequency power supply and the matcher may interfere with each other. As a result, controlled oscillations are induced, causing the plasma to misfire or become unstable.

作為解決上述課題的其中一個手法,例如,考慮對於用於各個控制的感測量施加過濾器,而緩和控制的手法。然而,若利用該手法,依據條件不同,有無法避免控制振盪的情況。進一步,在以往的電漿處理裝置,由於匹配處理需要時間,故藉由周期短暫的脈衝來調變射頻電力的話,有時在脈衝開啟的期間內匹配處理並未結束,導致反射波殘留。因此,在多個電漿處理裝置執行脈衝調變的話,有無法控制反射波的程度,而產生機械誤差的情況。As one of the methods to solve the above-mentioned problems, for example, a method of applying a filter to a sensory measurement for each control to reduce the control is considered. However, if this method is used, depending on the conditions, it may be unavoidable to control the oscillation. Furthermore, in the conventional plasma processing apparatus, since the matching process requires time, if the radio frequency power is modulated by a short-period pulse, the matching process may not be completed during the pulse-on period, resulting in a residual reflected wave. Therefore, when pulse modulation is performed in a plurality of plasma processing apparatuses, the degree of reflected waves cannot be controlled, and mechanical errors may occur.

因此,要求即使在使用藉由周期短暫的脈衝而調變的射頻電力之情況下,也可在短時間完成阻抗的匹配處理,而可使已穩定的電漿迅速點火的電漿處理裝置。
[用於解決課題的手段]
Therefore, even in the case of using radio-frequency power modulated by a short-term pulse, a plasma processing device that can complete impedance matching processing in a short time and can quickly ignite a stable plasma is required.
[Means for solving problems]

本發明的一態樣係電漿處理裝置,其具備:腔室;電力供給部;匹配電路;第1算出部;及控制電路。腔室在內部具有空間,藉由在空間內所生成的電漿而對移入到該空間內的被處理體進行處理。電力供給部供給用於在腔室內生成電漿的射頻電力。匹配電路使腔室內的電漿與電力供給部之間的阻抗匹配。第1算出部算出腔室內的電漿之阻抗。控制電路基於藉由第1算出部所算出的阻抗,而控制供給到腔室內的射頻電力之頻率、射頻電力的大小、及匹配電路的阻抗。又,第1算出部與控制電路被設置在1個基板上。
[發明效果]
One aspect of the present invention is a plasma processing apparatus including a chamber, a power supply unit, a matching circuit, a first calculation unit, and a control circuit. The chamber has a space inside, and the to-be-processed body moved into the space is processed by the plasma generated in the space. The power supply unit supplies radio frequency power for generating plasma in the chamber. The matching circuit matches the impedance between the plasma in the chamber and the power supply unit. The first calculation unit calculates the impedance of the plasma in the chamber. The control circuit controls the frequency of the radio frequency power supplied to the chamber, the magnitude of the radio frequency power, and the impedance of the matching circuit based on the impedance calculated by the first calculation unit. The first calculation unit and the control circuit are provided on a single substrate.
[Inventive effect]

依照本發明的各種態樣及實施形態,則即使在使用藉由周期短暫的脈衝而調變的射頻電力之情況下,也可在短時間完成阻抗的匹配處理,而使已穩定的電漿迅速點火。According to various aspects and embodiments of the present invention, even in the case of using radio frequency power modulated by a short-term pulse, the impedance matching process can be completed in a short time, and the stabilized plasma can be quickly made. ignition.

本發明所揭示的電漿處理裝置在1個實施形態中具備:腔室;電力供給部;匹配電路;第1算出部;及控制電路。腔室在內部具有空間,藉由在空間內所生成的電漿而對移入到該空間內的被處理體進行處理。電力供給部供給用於在腔室內生成電漿的射頻電力。匹配電路使腔室內的電漿與電力供給部之間的阻抗匹配。第1算出部算出腔室內的電漿之阻抗。控制電路基於藉由第1算出部所算出的阻抗,而控制供給到腔室內的射頻電力之頻率、射頻電力的大小、及匹配電路的阻抗。又,第1算出部與控制電路被設置在1個基板上。In one embodiment, the plasma processing apparatus disclosed in the present invention includes a chamber, a power supply unit, a matching circuit, a first calculation unit, and a control circuit. The chamber has a space inside, and the to-be-processed body moved into the space is processed by the plasma generated in the space. The power supply unit supplies radio frequency power for generating plasma in the chamber. The matching circuit matches the impedance between the plasma in the chamber and the power supply unit. The first calculation unit calculates the impedance of the plasma in the chamber. The control circuit controls the frequency of the radio frequency power supplied to the chamber, the magnitude of the radio frequency power, and the impedance of the matching circuit based on the impedance calculated by the first calculation unit. The first calculation unit and the control circuit are provided on a single substrate.

又,本發明所揭示的電漿處理裝置係在1個實施形態可具備:連接到匹配電路與腔室之間的節點、並且測定供給到腔室內的射頻電力之電壓及電流的第1測定部。第1算出部可基於藉由第1測定部所測定的射頻電力之電壓及電流,而算出腔室內的電漿之阻抗。The plasma processing apparatus disclosed in the present invention may include a first measurement unit connected to a node between the matching circuit and the chamber and measuring a voltage and a current of radio frequency power supplied to the chamber in one embodiment. . The first calculation unit can calculate the impedance of the plasma in the chamber based on the voltage and current of the radio-frequency power measured by the first measurement unit.

又,在本發明所揭示的電漿處理裝置之1個實施形態中,第1算出部可具有:第1ADC(Analog to Digital Converter,類比數位轉換器);第2ADC;第2算出部;及第3算出部。第1ADC將供給到腔室內的射頻電力之電壓轉換成數位訊號。第2ADC將供給到腔室內的射頻電力之電流轉換成數位訊號。第2算出部算出被轉換成數位訊號的電壓及電流之個別的相位及振幅。第3算出部基於被轉換成數位訊號的電壓及電流之相位差及振幅比而算出腔室內的電漿之阻抗。In one embodiment of the plasma processing apparatus disclosed in the present invention, the first calculation unit may include a first ADC (Analog to Digital Converter); a second ADC; a second calculation unit; and 3Calculation section. The first ADC converts the voltage of the RF power supplied into the chamber into a digital signal. The second ADC converts the current of the RF power supplied into the chamber into a digital signal. The second calculation unit calculates individual phases and amplitudes of voltages and currents converted into digital signals. The third calculation unit calculates the impedance of the plasma in the chamber based on the phase difference and amplitude ratio of the voltage and current converted into digital signals.

又,在本發明所揭示的電漿處理裝置之1個實施形態中,第1算出部可具有:訊號產生器;第1相位調整部;及第2相位調整部。訊號產生器生成第1ADC及第2ADC的各者所使用的取樣時脈。第1相位調整部基於電壓相對於取樣時脈的相位,而調整輸入到第1ADC的取樣時脈之相位。第2相位調整部基於相對於取樣時脈的電流之相位,而調整輸入到第2ADC的取樣時脈之相位。Furthermore, in one embodiment of the plasma processing apparatus disclosed in the present invention, the first calculation unit may include a signal generator, a first phase adjustment unit, and a second phase adjustment unit. The signal generator generates a sampling clock used by each of the first ADC and the second ADC. The first phase adjustment unit adjusts the phase of the sampling clock input to the first ADC based on the phase of the voltage with respect to the sampling clock. The second phase adjustment unit adjusts the phase of the sampling clock input to the second ADC based on the phase of the current with respect to the sampling clock.

又,在本發明所揭示的電漿處理裝置的1個實施形態中,第1算出部可具有:第1放大器;第2放大器;第1增益調整部;及第2增益調整部。第1放大器放大供給到腔室內的射頻電力之電壓,再輸入到第1ADC。第2放大器放大供給到腔室內的射頻電力之電流,再輸入到第2ADC。第1增益調整部基於藉由第2算出部所算出的電壓之振幅,而調整第1放大器的增益。第2增益調整部基於藉由第2算出部所算出的電流之振幅,而調整第2放大器的增益。Furthermore, in one embodiment of the plasma processing apparatus disclosed in the present invention, the first calculation unit may include a first amplifier, a second amplifier, a first gain adjustment unit, and a second gain adjustment unit. The first amplifier amplifies the voltage of the RF power supplied into the chamber, and then inputs the voltage to the first ADC. The second amplifier amplifies the current of the RF power supplied into the chamber, and inputs the current to the second ADC. The first gain adjustment unit adjusts the gain of the first amplifier based on the amplitude of the voltage calculated by the second calculation unit. The second gain adjustment unit adjusts the gain of the second amplifier based on the amplitude of the current calculated by the second calculation unit.

又,本發明所揭示的電漿處理裝置在1個實施形態中可另外具備:第2測定部,其連接到電力供給部與匹配電路之間的節點,並且測定從電力供給部輸出到匹配電路的射頻電力之電壓及電流。第1算出部可另外使用藉由第2測定部所測定的射頻電力之電壓及電流,而算出腔室內的電漿之阻抗。In one embodiment, the plasma processing apparatus disclosed in the present invention may further include a second measurement unit connected to a node between the power supply unit and the matching circuit, and measuring the output from the power supply unit to the matching circuit. Voltage and current of RF power. The first calculation unit may separately calculate the impedance of the plasma in the chamber using the voltage and current of the radio frequency power measured by the second measurement unit.

又,本發明所揭示的測定電路在1個實施形態中被用於電漿處理裝置,用來測定腔室內的電漿之阻抗,該電漿處理裝置具有:腔室,其在內部具有空間,藉由在空間內所生成的電漿而對移入到空間內的被處理體進行處理;電力供給部,其供給用於在腔室內生成電漿的射頻電力;匹配電路,其被設置在腔室與電力供給部之間;及控制電路,其控制由電力供給部供給到腔室內的射頻電力之頻率、射頻電力的大小、及匹配電路的阻抗。測定電路連同控制電路被設置在1個基板上。又,測定電路具有:第1ADC;第2ADC;振幅相位算出部;及阻抗算出部。第1ADC將供給到腔室內的射頻電力之電壓轉換成數位訊號。第2ADC將供給到腔室內的射頻電力之電流轉換成數位訊號。振幅相位算出部算出被轉換成數位訊號的電壓及電流之各者的相位及振幅。阻抗算出部基於被轉換成數位訊號的電壓及電流之相位差及振幅比而算出腔室內的電漿之阻抗。In addition, the measurement circuit disclosed in the present invention is used in a plasma processing apparatus for measuring the impedance of a plasma in a chamber. The plasma processing apparatus includes a chamber having a space inside, The to-be-processed object moved into the space is processed by the plasma generated in the space; the power supply unit supplies radio frequency power for generating plasma in the chamber; the matching circuit is provided in the chamber And a power supply unit; and a control circuit that controls the frequency of the radio frequency power supplied to the chamber by the power supply unit, the magnitude of the radio frequency power, and the impedance of the matching circuit. The measurement circuit and the control circuit are provided on one substrate. The measurement circuit includes a first ADC, a second ADC, an amplitude phase calculation unit, and an impedance calculation unit. The first ADC converts the voltage of the RF power supplied into the chamber into a digital signal. The second ADC converts the current of the RF power supplied into the chamber into a digital signal. The amplitude phase calculation unit calculates the phase and amplitude of each of the voltage and current converted into a digital signal. The impedance calculation unit calculates the impedance of the plasma in the chamber based on the phase difference and amplitude ratio of the voltage and current converted into digital signals.

以下,針對本發明所揭示的電漿處理裝置及測定電路之實施例,基於圖示予以詳細說明。尚且,本發明所揭示的電漿處理裝置及測定電路並未由以下的各實施例所限定。
[實施例1]
Hereinafter, examples of the plasma processing apparatus and the measurement circuit disclosed in the present invention will be described in detail based on the drawings. Moreover, the plasma processing apparatus and the measurement circuit disclosed in the present invention are not limited by the following embodiments.
[Example 1]

[電漿處理裝置10的構成]
圖1為表示實施例1的電漿處理裝置之一例的方塊圖。電漿處理裝置10係例如如同圖1所示,具備:訊號同步處理部20;控制量算出部12;控制訊號生成部13;射頻電源14;匹配電路15;電力感測器16;及腔室17。在本實施例,訊號同步處理部20、控制量算出部12、及控制訊號生成部13被安裝在1個基板11上。
[Configuration of Plasma Processing Apparatus 10]
FIG. 1 is a block diagram showing an example of a plasma processing apparatus according to the first embodiment. The plasma processing apparatus 10 includes, for example, as shown in FIG. 1, a signal synchronization processing unit 20, a control amount calculation unit 12, a control signal generation unit 13, a radio frequency power source 14, a matching circuit 15, a power sensor 16, and a chamber 17. In this embodiment, the signal synchronization processing unit 20, the control amount calculation unit 12, and the control signal generation unit 13 are mounted on a single substrate 11.

射頻電源14具有振盪器140及放大器141。振盪器140配合從控制訊號生成部13輸出的控制訊號而產生射頻訊號。放大器141將振盪器140所產生的射頻訊號之電力以配合從控制訊號生成部13輸出的控制訊號之增益放大。由放大器141所放大的射頻電力經由匹配電路15而供給到腔室17。射頻電源14為電力供給部的一例。The radio frequency power source 14 includes an oscillator 140 and an amplifier 141. The oscillator 140 cooperates with a control signal output from the control signal generating section 13 to generate a radio frequency signal. The amplifier 141 amplifies the power of the radio frequency signal generated by the oscillator 140 to match the gain of the control signal output from the control signal generating section 13. The radio frequency power amplified by the amplifier 141 is supplied to the chamber 17 via the matching circuit 15. The radio frequency power source 14 is an example of a power supply unit.

腔室17在內部具有空間,半導體晶圓等的被處理體被收納在空間內。腔室17內藉由未圖示的排氣裝置而調整成規定的真空度,從未圖示的氣體供給源,處理氣體被供給到腔室17內。然後,從射頻電源14輸出的射頻電力經由匹配電路15而被供給到腔室17,藉此,在腔室17內,處理氣體的電漿被生成,藉由被生成的電漿,對於腔室17內的被處理體施行蝕刻等規定的處理。The chamber 17 has a space therein, and a processing object such as a semiconductor wafer is accommodated in the space. The inside of the chamber 17 is adjusted to a predetermined vacuum degree by an exhaust device (not shown), and a processing gas is supplied into the chamber 17 from a gas supply source (not shown). Then, the radio frequency power output from the radio frequency power source 14 is supplied to the chamber 17 via the matching circuit 15, whereby the plasma of the processing gas is generated in the chamber 17, and the generated plasma is applied to the chamber. The object in 17 is subjected to a predetermined process such as etching.

匹配電路15使射頻電源14的阻抗與包含電漿的腔室17之阻抗匹配。匹配電路15在內部具有電感器及多個可變電容器,配合從控制訊號生成部13輸出的控制訊號,而控制各個可變電容器的電容。尚且,匹配電路15可具有可變更電感的可變電感器。匹配電路15的輸入阻抗會依照腔室17內所生成的電漿之狀態而變動。匹配電路15配合從控制訊號生成部13輸出的控制訊號,而控制各個可變電容器的電容,藉此,使射頻電源14的輸出阻抗與匹配電路15的輸入阻抗匹配。The matching circuit 15 matches the impedance of the RF power source 14 with the impedance of the chamber 17 containing the plasma. The matching circuit 15 has an inductor and a plurality of variable capacitors therein, and controls the capacitance of each variable capacitor in accordance with a control signal output from the control signal generating section 13. In addition, the matching circuit 15 may include a variable inductor whose inductance can be changed. The input impedance of the matching circuit 15 varies according to the state of the plasma generated in the chamber 17. The matching circuit 15 controls the capacitance of each variable capacitor in cooperation with the control signal output from the control signal generating section 13, thereby matching the output impedance of the RF power source 14 with the input impedance of the matching circuit 15.

電力感測器16在從射頻電源14輸出再經由匹配電路15供給到腔室17的射頻電力之傳送路徑中,連接到匹配電路15與腔室17之間的節點。電力感測器16測定經由匹配電路15而供給到腔室17的射頻電力之電壓及電流,然後將電壓及電流的測定結果輸出到訊號同步處理部20。電力感測器16為第1測定部的一例。The power sensor 16 is connected to a node between the matching circuit 15 and the chamber 17 in a transmission path of radio frequency power output from the RF power source 14 and then supplied to the chamber 17 through the matching circuit 15. The power sensor 16 measures the voltage and current of the radio-frequency power supplied to the chamber 17 via the matching circuit 15, and then outputs the measurement results of the voltage and current to the signal synchronization processing unit 20. The power sensor 16 is an example of a first measurement unit.

訊號同步處理部20基於從電力感測器16輸出的射頻電力之電壓及電流的測定結果、及從控制訊號生成部13輸出的控制訊號,而算出包含在腔室17內所生成的電漿之阻抗的腔室17之阻抗。然後,訊號同步處理部20將算出的腔室17之阻抗輸出到控制量算出部12。訊號同步處理部20為第1算出部的一例。The signal synchronization processing unit 20 calculates the voltage of the plasma generated in the chamber 17 based on the measurement results of the voltage and current of the RF power output from the power sensor 16 and the control signal output from the control signal generation unit 13. The impedance of the impedance chamber 17. Then, the signal synchronization processing unit 20 outputs the calculated impedance of the chamber 17 to the control amount calculation unit 12. The signal synchronization processing unit 20 is an example of a first calculation unit.

控制量算出部12基於由訊號同步處理部20所算出的腔室17之阻抗,而算出匹配電路15現在的輸入阻抗。然後,控制量算出部12算出射頻電力的頻率、射頻電力的大小、及匹配電路15內的各個可變電容器之電容等各參數的控制量,使得匹配電路15的輸入阻抗接近目標輸入阻抗(例如50Ω)。The control amount calculation unit 12 calculates the current input impedance of the matching circuit 15 based on the impedance of the chamber 17 calculated by the signal synchronization processing unit 20. Then, the control amount calculation section 12 calculates control amounts of various parameters such as the frequency of the radio frequency power, the magnitude of the radio frequency power, and the capacitance of each variable capacitor in the matching circuit 15 so that the input impedance of the matching circuit 15 approaches the target input impedance (for example, 50Ω).

其中,匹配電路15的輸入阻抗Z1使用射頻電力的頻率、射頻電力的大小、及匹配電路15內的各個可變電容器之電容等參數xn ,藉由例如下述的標準公式(1)來算出。
Z1=f(x1 , x2 , …, xn )…(1)
Among them, the input impedance Z1 of the matching circuit 15 is calculated using the frequency of the radio frequency power, the magnitude of the radio frequency power, and the capacitance of each variable capacitor in the matching circuit 15 such as x n by using the following standard formula (1), for example. .
Z1 = f (x 1 , x 2 ,…, x n )… (1)

尚且,在參數xn 中,作為射頻電力的頻率、射頻電力的大小、及匹配電路15的各個可變電容器之電容以外的參數,例如可包含腔室17內的溫度或壓力、供給到腔室17內的氣體之種類等。Moreover, among the parameters x n , parameters other than the frequency of the RF power, the magnitude of the RF power, and the capacitance of each variable capacitor of the matching circuit 15 may include, for example, the temperature or pressure in the chamber 17 and supply to the chamber. The type of gas in 17 and so on.

控制量算出部12使用上述標準公式(1)來算出各參數xn 的控制量,使得匹配電路15的輸入阻抗接近目標輸入阻抗。在本實施例,控制量算出部12分別算出射頻電力的頻率、射頻電力的大小、及匹配電路15的各者之可變電容器的電容之控制量。然後,控制量算出部12將算出的這些控制量輸出到控制訊號生成部13。The control amount calculation unit 12 uses the above-mentioned standard formula (1) to calculate the control amount of each parameter x n so that the input impedance of the matching circuit 15 approaches the target input impedance. In this embodiment, the control amount calculation section 12 calculates the control amount of the radio frequency power, the magnitude of the radio frequency power, and the capacitance of the variable capacitor of each of the matching circuits 15 respectively. The control amount calculation unit 12 outputs the calculated control amounts to the control signal generation unit 13.

控制訊號生成部13針對從控制量算出部12輸出的射頻電力的頻率、射頻電力的大小、及匹配電路15的各者之可變電容器的電容之控制量,生成各個控制訊號。然後,控制訊號生成部13將生成的控制訊號分別輸出到振盪器140、放大器141、及匹配電路15。控制量算出部12及控制訊號生成部13為控制電路的一例。The control signal generating section 13 generates each control signal for the frequency of the radio frequency power output from the control amount calculation section 12, the magnitude of the radio frequency power, and the control amount of the capacitance of the variable capacitor of each of the matching circuits 15. Then, the control signal generating section 13 outputs the generated control signals to the oscillator 140, the amplifier 141, and the matching circuit 15, respectively. The control amount calculation unit 12 and the control signal generation unit 13 are examples of a control circuit.

其中,在腔室17內,從電漿點火前到點火後電漿穩定為止的期間,配合電漿的狀態,電漿的阻抗會變動。因此,使用上述標準公式(1),使匹配電路15的輸入阻抗一口氣變化成目標輸入阻抗的話,會有成為過度控制,而使控制振盪產生的情況。因此,在本實施例,史密斯圖上會定義匹配電路15的輸入阻抗到達目標輸入阻抗為止的規定之軌跡。然後,控制量算出部12在該軌跡上會找出使匹配電路15現在的輸入阻抗接近目標輸入阻抗之阻抗。然後,控制量算出部12會使用上述標準公式(1)算出各參數的控制量,以便將匹配電路15現在的輸入阻抗設成已找出的阻抗。藉此,控制量算出部12會抑制控制振盪,同時使射頻電源14的輸出阻抗與匹配電路15的輸入阻抗在短時間內匹配。However, the impedance of the plasma varies depending on the state of the plasma in the chamber 17 from before the plasma is ignited to when the plasma is stable after the ignition. Therefore, using the above-mentioned standard formula (1), if the input impedance of the matching circuit 15 is changed to the target input impedance at one go, the control may be excessively controlled and control oscillation may occur. Therefore, in this embodiment, a predetermined trajectory until the input impedance of the matching circuit 15 reaches the target input impedance is defined on the Smith chart. Then, the control amount calculation unit 12 finds the impedance on the trajectory that brings the current input impedance of the matching circuit 15 close to the target input impedance. Then, the control amount calculation unit 12 calculates the control amount of each parameter using the above-mentioned standard formula (1), so as to set the current input impedance of the matching circuit 15 to the found impedance. Thereby, the control amount calculation unit 12 suppresses the control oscillation, and at the same time, matches the output impedance of the radio frequency power source 14 and the input impedance of the matching circuit 15 in a short time.

又,控制量算出部12以沿著在史密斯圖上已預先定義的軌跡之方式,來控制匹配電路15的輸入阻抗,因此,即使在相異的電漿處理裝置10,也能夠以同樣的方式使匹配電路15的輸入阻抗變化。因此,在相異的電漿處理裝置10之間,可降低匹配處理所需要的時間之差異。In addition, the control amount calculation unit 12 controls the input impedance of the matching circuit 15 along a trajectory that has been defined in advance on the Smith chart. Therefore, even in a different plasma processing apparatus 10, the same method can be used. The input impedance of the matching circuit 15 is changed. Therefore, the difference in the time required for the matching process can be reduced between the different plasma processing apparatuses 10.

又,控制量算出部12共用由訊號同步處理部20所算出的腔室17之阻抗,而算出射頻電力的頻率、射頻電力的大小、及匹配電路15的各者之可變電容器的電容等控制量。藉此,控制量算出部12可基於在相同的時序所測定的腔室17之阻抗,而調整匹配電路15的輸入阻抗。因此,可抑制控制振盪,而可使電漿穩定生成。Further, the control amount calculation unit 12 shares the impedance of the chamber 17 calculated by the signal synchronization processing unit 20, and calculates the control of the frequency of the radio frequency power, the magnitude of the radio frequency power, and the capacitance of the variable capacitor of each of the matching circuits 15. the amount. Thereby, the control amount calculation unit 12 can adjust the input impedance of the matching circuit 15 based on the impedance of the chamber 17 measured at the same timing. Therefore, control oscillation can be suppressed, and plasma generation can be stabilized.

又,控制量算出部12使用上述的標準公式(1),而算出射頻電力的頻率、射頻電力的大小、及匹配電路15的各者之可變電容器的電容等參數之控制量。因此,相較於將各參數個別算出的情況,可抑制控制振盪。藉此,可使匹配電路15的輸入阻抗在短時間內收斂到目標輸入阻抗。In addition, the control amount calculation unit 12 calculates control amounts of parameters such as the frequency of the RF power, the magnitude of the RF power, and the capacitance of the variable capacitor of each of the matching circuits 15 using the above-mentioned standard formula (1). Therefore, compared with a case where each parameter is calculated individually, control oscillation can be suppressed. Thereby, the input impedance of the matching circuit 15 can be converged to the target input impedance in a short time.

又,在本實施例,訊號同步處理部20、控制量算出部12、及控制訊號生成部13被安裝在1個基板11上,因此,相較於訊號同步處理部20、控制量算出部12、及控制訊號生成部13被安裝在彼此相異的基板上之情況,基板間的通信變成不需要。藉此,可減少伴隨基板間的通信所導致的控制訊號之延遲,控制量算出部12及控制訊號生成部13基於從訊號同步處理部20所輸出的訊號,而可執行更高速的控制。因此,可加速調整匹配電路15的輸入阻抗之處理作業。Furthermore, in this embodiment, the signal synchronization processing section 20, the control amount calculation section 12, and the control signal generation section 13 are mounted on a single substrate 11. Therefore, compared with the signal synchronization processing section 20 and the control amount calculation section 12, When the control signal generation unit 13 is mounted on a substrate different from each other, communication between the substrates becomes unnecessary. Thereby, it is possible to reduce the delay of the control signal due to the communication between the substrates, and the control amount calculation unit 12 and the control signal generation unit 13 can perform higher-speed control based on the signal output from the signal synchronization processing unit 20. Therefore, the processing operation of adjusting the input impedance of the matching circuit 15 can be accelerated.

[訊號同步處理部20的構成]
圖2為表示訊號同步處理部20的一例之方塊圖。訊號同步處理部20具有:振幅相位算出部21、振幅相位算出部22、PLL(Phase Locked Loop,鎖相迴路)23、相位差算出部24、及阻抗算出部25。
[Configuration of Signal Synchronization Processing Unit 20]
FIG. 2 is a block diagram showing an example of the signal synchronization processing section 20. The signal synchronization processing unit 20 includes an amplitude phase calculation unit 21, an amplitude phase calculation unit 22, a PLL (Phase Locked Loop) 23, a phase difference calculation unit 24, and an impedance calculation unit 25.

PLL23配合從控制訊號生成部13輸出的控制訊號而生成頻率的時脈訊號。從控制訊號生成部13輸出的控制訊號為用來設定頻率的數位値。然後,PLL23將生成的時脈訊號分別輸出到振幅相位算出部21及振幅相位算出部22。PLL23為訊號產生器的一例。The PLL 23 generates a clock signal having a frequency in accordance with a control signal output from the control signal generating section 13. The control signal output from the control signal generating section 13 is a digital chirp for setting a frequency. Then, the PLL 23 outputs the generated clock signals to the amplitude phase calculation unit 21 and the amplitude phase calculation unit 22, respectively. PLL23 is an example of a signal generator.

振幅相位算出部21算出從電力感測器16輸出的電壓之振幅及相位,再將算出的電壓相位之値朝向相位差算出部24輸出,將算出的電壓振幅之値朝向阻抗算出部25輸出。振幅相位算出部21具有:放大器210;ADC211;位移部212;移相器213;乘法器214;乘法器215;LPF(Low Pass Filter,低通濾波器)216;LPF217;振幅算出部218;及相位算出部219。The amplitude and phase calculation unit 21 calculates the amplitude and phase of the voltage output from the power sensor 16, outputs the calculated voltage phase to the phase difference calculation unit 24, and outputs the calculated voltage amplitude to the impedance calculation unit 25. The amplitude and phase calculation unit 21 includes: an amplifier 210; an ADC 211; a displacement unit 212; a phase shifter 213; a multiplier 214; a multiplier 215; Phase calculation unit 219.

放大器210以振幅算出部218所指示的增益,放大從電力感測器16輸出的電壓之振幅。ADC211將由放大器210所放大的類比訊號之電壓的波形,在從位移部212輸出的時脈訊號之時序轉換成數位訊號。位移部212將從PLL23輸出的時脈訊號之相位,配合從相位算出部219輸出的控制値而予以位移。放大器210為第1放大器的一例,ADC211為第1ADC的一例,位移部212為第1相位調整部的一例。The amplifier 210 amplifies the amplitude of the voltage output from the power sensor 16 with a gain instructed by the amplitude calculation unit 218. The ADC 211 converts the waveform of the voltage of the analog signal amplified by the amplifier 210 into a digital signal at the timing of the clock signal output from the displacement unit 212. The shift unit 212 shifts the phase of the clock signal output from the PLL 23 in accordance with the control signal output from the phase calculation unit 219. The amplifier 210 is an example of a first amplifier, the ADC 211 is an example of a first ADC, and the displacement section 212 is an example of a first phase adjustment section.

乘法器214將從ADC211輸出的訊號,與從位移部212輸出的時脈訊號之頻率的1/2之頻率的時脈訊號相乘,再將相乘結果朝向LPF216輸出。從乘法器214輸出的相乘結果為從電力感測器16輸出的電壓之訊號的I(In phase,同相)分量。LPF216去除從乘法器214輸出的相乘結果之高頻分量,再將已去除高頻分量的訊號朝向振幅算出部218及相位算出部219分別輸出。The multiplier 214 multiplies the signal output from the ADC 211 by a clock signal having a frequency of 1/2 of the frequency of the clock signal output from the displacement unit 212, and then outputs the multiplied result toward the LPF 216. The multiplication result output from the multiplier 214 is an I (In phase) component of the voltage signal output from the power sensor 16. The LPF 216 removes the high-frequency components of the multiplication result output from the multiplier 214, and outputs the signals from which the high-frequency components have been removed to the amplitude calculation unit 218 and the phase calculation unit 219, respectively.

移相器213使從位移部212輸出的時脈訊號之相位位移90度。乘法器215將從ADC211輸出的訊號,與從移相器213輸出的時脈訊號之頻率的1/2之頻率的時脈訊號相乘,再將相乘結果朝向LPF217輸出。從乘法器215輸出的相乘結果為從電力感測器16輸出的電壓之訊號的Q(Quadrature phase,正交相位)分量。LPF217去除從乘法器215輸出的相乘結果之高頻分量,再將已去除高頻分量的訊號朝向振幅算出部218及相位算出部219分別輸出。The phase shifter 213 shifts the phase of the clock signal output from the shifting section 212 by 90 degrees. The multiplier 215 multiplies the signal output from the ADC 211 by a clock signal having a frequency of 1/2 of the frequency of the clock signal output from the phase shifter 213, and then outputs the multiplied result toward the LPF 217. The multiplication result output from the multiplier 215 is the Q (Quadrature phase, quadrature phase) component of the voltage signal output from the power sensor 16. The LPF 217 removes the high-frequency components of the multiplication result output from the multiplier 215, and outputs the signals from which the high-frequency components have been removed to the amplitude calculation unit 218 and the phase calculation unit 219, respectively.

相位算出部219基於從LPF216輸出的電壓之I分量的訊號之大小,以及從LPF217輸出的電壓之Q分量的訊號之大小,而算出電壓的相位。相位算出部219例如基於CORDIC(Coordinate Rotation Digital Computer,座標旋轉數位電腦)演算法,而算出電壓的相位。然後,相位算出部219保持算出的相位。The phase calculation unit 219 calculates the phase of the voltage based on the magnitude of the signal of the I component of the voltage output from the LPF 216 and the magnitude of the signal of the Q component of the voltage output from the LPF 217. The phase calculation unit 219 calculates the phase of the voltage based on a CORDIC (Coordinate Rotation Digital Computer) algorithm, for example. Then, the phase calculation unit 219 holds the calculated phase.

然後,相位算出部219針對從PLL23輸出的時脈訊號之相位,而算出相位的控制値,使算出的相位成為規定値(例如0度)。然後,相位算出部219將算出的控制値朝向位移部212輸出。藉此,位移部212會使朝向移相器213及乘法器214輸出的時脈訊號之相位產生位移,藉由從LPF216及LPF217輸出的訊號而找出的電壓之相位會成為規定値。電壓的相位成為規定値的情況,相位算出部219將所保持之電壓的相位之値朝向相位差算出部24輸出,並且指示振幅算出部218輸出電壓的振幅。其中,電壓的相位成為規定値之情況,代表藉由位移部212而使相位位移的時脈訊號之相位與電壓之相位同步。利用位移部212而使相位位移的時脈訊號之相位與電壓之相位同步,藉此,可精確算出電壓的振幅。以下,將利用位移部212而使相位位移的時脈訊號之相位與電壓之相位同步的情況,記載為電壓的振幅算出結果與相位算出結果為同步的情況。Then, the phase calculation unit 219 calculates a phase control 値 for the phase of the clock signal output from the PLL 23 so that the calculated phase becomes a predetermined 値 (for example, 0 degrees). Then, the phase calculation unit 219 outputs the calculated control chirp toward the displacement unit 212. As a result, the shift unit 212 shifts the phase of the clock signals outputted to the phase shifter 213 and the multiplier 214, and the phase of the voltage found by the signals output from the LPF 216 and LPF 217 becomes a predetermined value. When the phase of the voltage becomes a predetermined value, the phase calculation unit 219 outputs the phase of the held voltage to the phase difference calculation unit 24 and instructs the amplitude calculation unit 218 to output the amplitude of the voltage. Here, the case where the phase of the voltage becomes a predetermined value represents that the phase of the clock signal whose phase is shifted by the displacement unit 212 is synchronized with the phase of the voltage. The phase of the clock signal whose phase is shifted is synchronized with the phase of the voltage by the displacement unit 212, whereby the amplitude of the voltage can be accurately calculated. Hereinafter, a case where the phase of the clock signal whose phase is shifted by the displacement unit 212 is synchronized with the phase of the voltage will be described as a case where the voltage amplitude calculation result and the phase calculation result are synchronized.

振幅算出部218監視從LPF216及LPF217輸出的各個訊號之振幅,並且以振幅較大一方的訊號成為規定範圍內的振幅之方式,調整用於指示放大器210的增益。又,振幅算出部218在接受相位算出部219的指示而輸出振幅的情況,會將從LPF216及LPF217輸出的各個訊號之中,振幅較大一方之訊號的振幅之値,作為電壓的振幅之値朝向阻抗算出部25輸出。振幅算出部218及相位算出部219為第2算出部的一例。The amplitude calculation unit 218 monitors the amplitude of each signal output from the LPF 216 and the LPF 217, and adjusts the gain of the instruction amplifier 210 so that the signal having the larger amplitude becomes the amplitude within a predetermined range. When the amplitude calculation unit 218 outputs an amplitude upon receiving an instruction from the phase calculation unit 219, among the signals output from LPF216 and LPF217, the amplitude of the larger amplitude signal is used as the amplitude of the voltage amplitude. Output to the impedance calculation unit 25. The amplitude calculation unit 218 and the phase calculation unit 219 are examples of a second calculation unit.

振幅相位算出部22算出從電力感測器16輸出的電流之振幅及相位,再將算出的電流之相位朝向相位差算出部24輸出,並且算出的電流之振幅朝向阻抗算出部25輸出。振幅相位算出部22具有:放大器220;ADC221;位移部222;移相器223;乘法器224;乘法器225;LPF226;LPF227;振幅算出部228;及相位算出部229。The amplitude and phase calculation unit 22 calculates the amplitude and phase of the current output from the power sensor 16, outputs the calculated current phase to the phase difference calculation unit 24, and outputs the calculated current amplitude to the impedance calculation unit 25. The amplitude phase calculation unit 22 includes an amplifier 220, an ADC 221, a displacement unit 222, a phase shifter 223, a multiplier 224, a multiplier 225, an LPF 226, an LPF 227, an amplitude calculation unit 228, and a phase calculation unit 229.

放大器220以從振幅算出部228所指示的增益,放大從電力感測器16輸出的電流之振幅。ADC221將藉由放大器220放大的類比訊號之電流的波形,在從位移部222輸出的時脈訊號之時序轉換成數位訊號。位移部222將從PLL23輸出的時脈訊號之相位,配合從相位算出部229輸出的控制値而予以位移。放大器220為第2放大器的一例,ADC221為第2ADC的一例,位移部222為第2相位調整部的一例。The amplifier 220 amplifies the amplitude of the current output from the power sensor 16 with a gain instructed from the amplitude calculation unit 228. The ADC 221 converts the waveform of the current of the analog signal amplified by the amplifier 220 into a digital signal at the timing of the clock signal output from the displacement section 222. The shift unit 222 shifts the phase of the clock signal output from the PLL 23 in accordance with the control signal output from the phase calculation unit 229. The amplifier 220 is an example of a second amplifier, the ADC 221 is an example of a second ADC, and the displacement section 222 is an example of a second phase adjustment section.

乘法器224將從ADC221輸出的訊號,與從位移部222輸出的時脈訊號之頻率的1/2之頻率的時脈訊號相乘,再將相乘結果朝向LPF226輸出。從乘法器224輸出的相乘結果為從電力感測器16輸出的電流之訊號的I分量。LPF226去除從乘法器224輸出的相乘結果之高頻分量,將已去除高頻分量的訊號朝向振幅算出部228及相位算出部229分別輸出。The multiplier 224 multiplies the signal output from the ADC 221 by a clock signal having a frequency which is 1/2 of the frequency of the clock signal output from the displacement unit 222, and then outputs the multiplied result toward the LPF 226. The multiplication result output from the multiplier 224 is the I component of the signal of the current output from the power sensor 16. The LPF 226 removes high-frequency components of the multiplication result output from the multiplier 224, and outputs signals from which the high-frequency components have been removed to the amplitude calculation unit 228 and the phase calculation unit 229, respectively.

移相器223將從位移部222輸出的時脈訊號之相位位移90度。乘法器225將從ADC221輸出的訊號,與從移相器223輸出的時脈訊號之頻率的1/2之頻率的時脈訊號相乘,再將相乘結果朝向LPF227輸出。從乘法器225輸出的相乘結果為從電力感測器16輸出的電流之訊號的Q分量。LPF227去除從乘法器225輸出的相乘結果之高頻分量,再將已去除高頻分量的訊號朝向振幅算出部228及相位算出部229分別輸出。The phase shifter 223 shifts the phase of the clock signal output from the shifting section 222 by 90 degrees. The multiplier 225 multiplies the signal output from the ADC 221 by a clock signal having a frequency of 1/2 of the frequency of the clock signal output from the phase shifter 223, and then outputs the multiplication result toward the LPF 227. The multiplication result output from the multiplier 225 is the Q component of the signal of the current output from the power sensor 16. The LPF 227 removes the high-frequency components of the multiplication result output from the multiplier 225, and outputs the signals from which the high-frequency components have been removed to the amplitude calculation unit 228 and the phase calculation unit 229, respectively.

相位算出部229基於從LPF226輸出的電流之I分量的訊號之大小、及從LPF227輸出的電流之Q分量的訊號之大小,而算出電流的相位。相位算出部229例如基於CORDIC演算法,而算出電流的相位。然後,相位算出部229保持算出的相位。The phase calculation unit 229 calculates the phase of the current based on the magnitude of the signal of the I component of the current output from the LPF 226 and the magnitude of the signal of the Q component of the current output from the LPF 227. The phase calculation unit 229 calculates the phase of the current based on, for example, a CORDIC algorithm. Then, the phase calculation unit 229 holds the calculated phase.

然後,相位算出部229針對從PLL23輸出的時脈訊號之相位,而算出相位之控制値,使算出的相位成為規定値(例如0度)。然後,相位算出部229將算出的控制値朝向位移部222輸出。藉此,位移部222會使朝向移相器223及乘法器224輸出的時脈訊號之相位產生位移,藉由從LPF226及LPF227輸出的訊號而找出的電流之相位會成為規定値。電流的相位成為規定値的情況,相位算出部229將所保持之電流的相位之値朝向相位差算出部24輸出,並且指示振幅算出部228輸出電流的振幅。其中,電流的相位成為規定値之情況,代表藉由位移部222而使相位位移的時脈訊號之相位與電流之相位同步。利用位移部222而使相位位移的時脈訊號之相位與電流之相位同步,藉此,可精確算出電流的振幅。以下,將利用位移部222而使相位位移的時脈訊號之相位與電流之相位同步的情況,記載為電流的振幅算出結果與相位算出結果為同步的情況。Then, the phase calculation unit 229 calculates a phase control 値 for the phase of the clock signal output from the PLL 23 so that the calculated phase becomes a predetermined 値 (for example, 0 degrees). Then, the phase calculation unit 229 outputs the calculated control chirp toward the displacement unit 222. As a result, the shift section 222 shifts the phase of the clock signals outputted to the phase shifter 223 and the multiplier 224, and the phase of the current found by the signals output from the LPF226 and LPF227 becomes a predetermined value. When the phase of the current is a predetermined value, the phase calculation unit 229 outputs the phase of the held current to the phase difference calculation unit 24 and instructs the amplitude calculation unit 228 to output the amplitude of the current. Here, the case where the phase of the current becomes a predetermined value represents that the phase of the clock signal whose phase is shifted by the displacement section 222 is synchronized with the phase of the current. The phase of the clock signal whose phase is shifted is synchronized with the phase of the current by the displacement unit 222, whereby the amplitude of the current can be accurately calculated. Hereinafter, the case where the phase of the clock signal whose phase is shifted by the displacement unit 222 is synchronized with the phase of the current will be described as a case where the amplitude calculation result of the current and the phase calculation result are synchronized.

振幅算出部228監視從LPF226及LPF227輸出的各個訊號之振幅,並且以振幅較大一方的訊號成為規定範圍內的振幅之方式,調整用於指示放大器220的增益。又,振幅算出部228在接受相位算出部229的指示而輸出振幅的情況,會將從LPF226及LPF227輸出的各個訊號之中,振幅較大一方之訊號的振幅之値,作為電流的振幅之値朝向阻抗算出部25輸出。振幅算出部228及相位算出部229為第2算出部的一例。The amplitude calculation unit 228 monitors the amplitude of each signal output from the LPF 226 and the LPF 227, and adjusts the gain of the instruction amplifier 220 so that the signal having the larger amplitude becomes an amplitude within a predetermined range. When the amplitude calculation unit 228 outputs an amplitude upon receiving an instruction from the phase calculation unit 229, among the signals output from LPF226 and LPF227, the amplitude of the larger amplitude signal is used as the amplitude of the current amplitude. Output to the impedance calculation unit 25. The amplitude calculation unit 228 and the phase calculation unit 229 are examples of a second calculation unit.

相位差算出部24基於從振幅相位算出部21輸出的電壓之相位、及從振幅相位算出部22輸出的電流之相位,而算出電壓與電流之相位差。然後,相位差算出部24將算出的相位差朝向阻抗算出部25輸出。The phase difference calculation unit 24 calculates a phase difference between the voltage and the current based on the phase of the voltage output from the amplitude phase calculation unit 21 and the phase of the current output from the amplitude phase calculation unit 22. Then, the phase difference calculation unit 24 outputs the calculated phase difference to the impedance calculation unit 25.

阻抗算出部25基於從振幅相位算出部21輸出的電壓之振幅、及從振幅相位算出部22輸出的電流之振幅,而算出電壓及電流的振幅比。然後,阻抗算出部25基於算出的振幅比、及從相位差算出部24輸出的相位差,而算出阻抗。然後,阻抗算出部25將算出的阻抗朝向控制量算出部12輸出。The impedance calculation unit 25 calculates an amplitude ratio of the voltage and the current based on the amplitude of the voltage output from the amplitude and phase calculation unit 21 and the amplitude of the current output from the amplitude and phase calculation unit 22. Then, the impedance calculation unit 25 calculates the impedance based on the calculated amplitude ratio and the phase difference output from the phase difference calculation unit 24. Then, the impedance calculation unit 25 outputs the calculated impedance to the control amount calculation unit 12.

其中,在本實施例的振幅相位算出部21中,相位算出部219以算出的電壓之相位成為規定値(例如0度)的方式,朝向位移部212回饋控制値。藉此,可使從LPF216及LPF217輸出的電壓之相位契合規定値,而可提升在振幅算出部218所檢測的電壓之振幅的精確度。在振幅相位算出部22也同樣可提升在振幅算出部228所檢測的電流之振幅的精確度。藉此,可提升藉由訊號同步處理部20而算出的阻抗之精確度。However, in the amplitude and phase calculation unit 21 of this embodiment, the phase calculation unit 219 feeds back the control signal 朝向 toward the displacement unit 212 so that the phase of the calculated voltage becomes a predetermined value (for example, 0 degrees). Thereby, the phases of the voltages output from the LPF 216 and the LPF 217 can be made to conform to a predetermined range, and the accuracy of the amplitude of the voltage detected by the amplitude calculation unit 218 can be improved. Similarly, the amplitude and phase calculation unit 22 can improve the accuracy of the amplitude of the current detected by the amplitude calculation unit 228. Thereby, the accuracy of the impedance calculated by the signal synchronization processing unit 20 can be improved.

又,振幅算出部218監視從LPF216及LPF217輸出的各個訊號之振幅,並且以振幅較大一方的訊號成為規定範圍內的振幅之方式,調整用於指示放大器210的增益。藉此,即使為在與50Ω等規定的阻抗相異的阻抗之情況下利用電力感測器16所測定的電壓,也可自動調整電壓的範圍,因此,可更正確算出電壓的振幅。振幅算出部228也同樣以振幅較大一方的訊號成為規定範圍內的振幅之方式,而調整用於指示放大器220的增益。藉此,即使為在與50Ω等規定的阻抗相異的阻抗之情況下利用電力感測器16所測定的電流,也可自動調整電流的範圍,因此,可更正確算出電流的振幅。Further, the amplitude calculation unit 218 monitors the amplitude of each signal output from the LPF 216 and the LPF 217, and adjusts the gain of the instruction amplifier 210 so that the signal having the larger amplitude becomes an amplitude within a predetermined range. Thereby, the voltage range can be automatically adjusted even when the voltage measured by the power sensor 16 is used in a case where the impedance is different from a predetermined impedance such as 50 Ω. Therefore, the voltage amplitude can be calculated more accurately. Similarly, the amplitude calculation unit 228 adjusts the gain of the instruction amplifier 220 so that the signal having the larger amplitude becomes the amplitude within a predetermined range. Thereby, the range of the current can be automatically adjusted even when the current measured by the power sensor 16 is used in the case where the impedance is different from a predetermined impedance such as 50 Ω, so that the amplitude of the current can be calculated more accurately.

又,藉由1個PLL23而生成的時脈訊號被共用於訊號同步處理部20內的各個部分,因此,可減少訊號同步處理部20內的各方塊之時序的不一致,而可更精確算出電壓及電流的振幅及相位。藉此,可提升阻抗的算出精確度。In addition, the clock signal generated by one PLL 23 is used in common in each part of the signal synchronization processing section 20, so that the timing inconsistency of each block in the signal synchronization processing section 20 can be reduced, and the voltage can be calculated more accurately And the amplitude and phase of the current. This improves the accuracy of the impedance calculation.

又,PLL23基於從控制訊號生成部13已輸出的控制値而生成時脈訊號,因此,可生成與從射頻電源14輸出的射頻電力之頻率之間的頻率不一致程度較少的時脈訊號。因此,可精確算出電壓及電流的振幅及相位。藉此,可提升阻抗的算出精確度。In addition, the PLL 23 generates a clock signal based on the control signal that has been output from the control signal generating unit 13. Therefore, it is possible to generate a clock signal with less degree of frequency inconsistency with the frequency of the RF power output from the RF power source 14. Therefore, the amplitude and phase of the voltage and current can be accurately calculated. This improves the accuracy of the impedance calculation.

圖3為表示實施例1的電漿處理裝置10之等效電路的一例之圖。在本實施例,電力感測器16在從射頻電源14輸出再經由匹配電路15而供給到腔室17的射頻電力之傳送路徑,被連接到匹配電路15與腔室17之間的節點。因此,訊號同步處理部20基於藉由電力感測器16所得到的測定値,可測定包含電漿的腔室17之阻抗。FIG. 3 is a diagram showing an example of an equivalent circuit of the plasma processing apparatus 10 according to the first embodiment. In this embodiment, the power sensor 16 is connected to a node between the matching circuit 15 and the cavity 17 in a transmission path of the RF power output from the RF power source 14 and then supplied to the cavity 17 through the matching circuit 15. Therefore, the signal synchronization processing unit 20 can measure the impedance of the chamber 17 including the plasma based on the measurement value obtained by the power sensor 16.

其中,例如如同圖4所示,電力感測器被連接到射頻電源14與匹配電路15之間的節點時,基於電力感測器所得到的測定値而測定的阻抗會成為匹配電路15的阻抗以及包含電漿的腔室17之阻抗的合成阻抗。圖4為表示比較例1的電漿處理裝置10之等效電路的一例之圖。Among them, for example, as shown in FIG. 4, when the power sensor is connected to a node between the RF power source 14 and the matching circuit 15, the impedance measured based on the measurement 得到 obtained by the power sensor becomes the impedance of the matching circuit 15. And the combined impedance of the impedance of the chamber 17 containing the plasma. FIG. 4 is a diagram showing an example of an equivalent circuit of the plasma processing apparatus 10 of Comparative Example 1. FIG.

因此,在圖4之例,基於已測定的阻抗,而分別推算匹配電路15的阻抗以及包含電漿的腔室17之阻抗。由於正確推算各個阻抗並不容易,因此,推定結果包含一定程度的誤差。在圖4所示的比較例1之電漿處理裝置10,誤差要因有2個,也就是匹配電路15的阻抗及包含電漿的腔室17之阻抗。Therefore, in the example of FIG. 4, based on the measured impedance, the impedance of the matching circuit 15 and the impedance of the chamber 17 including the plasma are estimated separately. Because it is not easy to estimate each impedance correctly, the estimation result contains a certain degree of error. In the plasma processing apparatus 10 of Comparative Example 1 shown in FIG. 4, there are two errors, that is, the impedance of the matching circuit 15 and the impedance of the chamber 17 containing the plasma.

對此,在本實施例的電漿處理裝置10,如圖3所示,基於電力感測器16的測定値,而算出包含電漿的腔室17之阻抗。然後,基於匹配電路15的電路模型,而推算匹配電路15現在的輸入阻抗。僅管正確推算匹配電路15現在的輸入阻抗並不容易,然而誤差要因僅有1個,也就是匹配電路15的阻抗。因此,相較於圖4所示的比較例1之電漿處理裝置10,可減少誤差要因。In contrast, in the plasma processing apparatus 10 of this embodiment, as shown in FIG. 3, the impedance of the chamber 17 containing the plasma is calculated based on the measurement 値 of the power sensor 16. Then, the current input impedance of the matching circuit 15 is estimated based on the circuit model of the matching circuit 15. Although it is not easy to correctly calculate the current input impedance of the matching circuit 15, there is only one error factor, that is, the impedance of the matching circuit 15. Therefore, compared with the plasma processing apparatus 10 of the comparative example 1 shown in FIG. 4, an error factor can be reduced.

又,匹配電路15的構造比起腔室17的構造更為單純,因此,在推算匹配電路15的阻抗方面,比起推算包含電漿的腔室17之阻抗,誤差更少。因此,本實施例的電漿處理裝置10比起比較例1的電漿處理裝置10,可更精確算出匹配電路15的阻抗及包含電漿之腔室17的阻抗。The structure of the matching circuit 15 is simpler than the structure of the chamber 17. Therefore, the estimation of the impedance of the matching circuit 15 has fewer errors than the estimation of the impedance of the chamber 17 including the plasma. Therefore, the plasma processing apparatus 10 of this embodiment can calculate the impedance of the matching circuit 15 and the impedance of the chamber 17 containing the plasma more accurately than the plasma processing apparatus 10 of Comparative Example 1.

[匹配處理]
圖5為表示阻抗的匹配處理之一例的流程圖。電漿處理裝置10在腔室17內生成電漿時,執行本流程圖所示的匹配處理。
[Match processing]
FIG. 5 is a flowchart showing an example of impedance matching processing. When the plasma processing apparatus 10 generates a plasma in the chamber 17, the matching processing shown in this flowchart is performed.

首先,電力感測器16測定經由匹配電路15而供給到腔室17的射頻電力之電壓及電流(S10)。然後,電力感測器16將電壓及電流的測定結果朝向訊號同步處理部20輸出。First, the power sensor 16 measures the voltage and current of radio frequency power supplied to the chamber 17 via the matching circuit 15 (S10). Then, the power sensor 16 outputs the measurement results of the voltage and current to the signal synchronization processing unit 20.

然後,訊號同步處理部20基於從電力感測器16輸出的射頻電力之電壓及電流的測定結果、及從控制訊號生成部13輸出的控制訊號,而算出在腔室17內生成的包含電漿的阻抗之腔室17的阻抗(S11)。然後,訊號同步處理部20將算出的腔室17之阻抗朝向控制量算出部12輸出。Then, the signal synchronization processing unit 20 calculates the plasma-containing plasma generated in the chamber 17 based on the measurement results of the voltage and current of the RF power output from the power sensor 16 and the control signal output from the control signal generation unit 13. The impedance of the chamber 17 (S11). Then, the signal synchronization processing unit 20 outputs the calculated impedance of the chamber 17 to the control amount calculation unit 12.

然後,控制量算出部12基於由訊號同步處理部20算出的腔室17之阻抗,而算出匹配電路15現在的輸入阻抗。然後,控制量算出部12判定匹配電路15現在的輸入阻抗之値是否為距離目標値為規定範圍內之値(S12)。匹配電路15現在的輸入阻抗之値為距離目標値為規定範圍內之値的情況(S12:Yes),本流程圖所示的匹配處理會結束。Then, the control amount calculation unit 12 calculates the current input impedance of the matching circuit 15 based on the impedance of the chamber 17 calculated by the signal synchronization processing unit 20. Then, the control amount calculation unit 12 determines whether or not the current input impedance of the matching circuit 15 is a distance target 値 within a predetermined range (S12). In the case where the current input impedance of the matching circuit 15 is a distance from the target and is within a predetermined range (S12: Yes), the matching processing shown in this flowchart ends.

另外,匹配電路15現在的輸入阻抗之値不為距離目標値規定範圍內之値的情況(S12:No),控制量算出部12會算出射頻電力的頻率、射頻電力的大小、及匹配電路15內中各個可變電容器的電容,使匹配電路15的輸入阻抗接近目標輸入阻抗(S13)。然後,控制量算出部12將算出的這些控制量朝向控制訊號生成部13輸出。In addition, when the current input impedance of the matching circuit 15 is not within a predetermined range from the target (S12: No), the control amount calculation unit 12 calculates the frequency of the RF power, the magnitude of the RF power, and the matching circuit 15 The capacitance of each of the variable capacitors makes the input impedance of the matching circuit 15 close to the target input impedance (S13). Then, the control amount calculation unit 12 outputs the calculated control amounts to the control signal generation unit 13.

然後,控制訊號生成部13針對從控制量算出部12輸出之射頻電力的頻率、射頻電力的大小、及匹配電路15中各個可變電容器的電容之控制量,而分別生成控制訊號(S14)。然後,控制訊號生成部13將生成的控制訊號朝向振盪器140、放大器141、及匹配電路15分別輸出(S15)。然後,再次執行步驟S10所示的處理。Then, the control signal generating section 13 generates a control signal for the frequency of the RF power output from the control amount calculating section 12, the magnitude of the RF power, and the control amount of the capacitance of each variable capacitor in the matching circuit 15 (S14). Then, the control signal generation unit 13 outputs the generated control signals to the oscillator 140, the amplifier 141, and the matching circuit 15 (S15). Then, the processing shown in step S10 is executed again.

其中,在射頻電力的頻率、射頻電力的大小、及匹配電路15中各個可變電容器的電容之控制量不受其他參數的控制量影響而是分別獨立算出的情況,這些參數的控制量被同時套用的話,可能會產生控制振盪。因此,在任何的參數之控制量被套用的情況,其他參數的控制會被固定。Among them, when the frequency of the RF power, the size of the RF power, and the control amount of the capacitance of each variable capacitor in the matching circuit 15 are not affected by the control amounts of other parameters, but are calculated independently, the control amounts of these parameters are simultaneously When applied, control oscillations may occur. Therefore, in the case where the control amount of any parameter is applied, the control of other parameters will be fixed.

具體而言,例如如同圖6所示,從時刻0到時刻t為止的期間,射頻電力的大小之控制量被套用,射頻電力的頻率或者匹配電路15的阻抗被固定。又,從時刻t1 到時刻t2 為止的期間及從時刻t3 到時刻t4 為止的期間,射頻電力的頻率之控制量被套用,射頻電力的大小或者匹配電路15的阻抗被固定。又,從時刻t2 到時刻t3 為止的期間及從時刻t4 到時刻t5 為止的期間,匹配電路15的阻抗之控制量被套用,射頻電力的頻率或者大小被固定。圖6為表示比較例2的匹配處理之一例的圖。在這個情況的史密斯圖上,匹配電路15的輸入阻抗之軌跡為例如如同圖7所示。圖7為表示比較例2的匹配電路15之輸入阻抗的變化之一例的圖。Specifically, for example, as shown in FIG. 6, during the period from time 0 to time t, the amount of control of the amount of radio frequency power is applied, and the frequency of the radio frequency power or the impedance of the matching circuit 15 is fixed. In the period from time t 1 to time t 2 and the period from time t 3 to time t 4 , the amount of control of the frequency of the radio frequency power is applied, and the magnitude of the radio frequency power or the impedance of the matching circuit 15 is fixed. In the period from time t 2 to time t 3 and the period from time t 4 to time t 5 , the control amount of the impedance of the matching circuit 15 is applied, and the frequency or magnitude of the RF power is fixed. FIG. 6 is a diagram showing an example of a matching process in Comparative Example 2. FIG. In the Smith chart in this case, the locus of the input impedance of the matching circuit 15 is, for example, as shown in FIG. 7. FIG. 7 is a diagram showing an example of changes in the input impedance of the matching circuit 15 of Comparative Example 2. FIG.

如此一來,在各參數的控制量不受其他參數的控制量影響而是分別被獨立算出的情況,難以同時套用各參數的控制量,因此,阻抗的匹配處理所需要的時間會變長。又,若參數的數量變多,則阻抗的匹配處理所需要的時間會變得更長。In this way, in the case where the control amount of each parameter is independently calculated without being affected by the control amount of other parameters, it is difficult to apply the control amount of each parameter at the same time. Therefore, the time required for the impedance matching process becomes longer. If the number of parameters increases, the time required for the impedance matching process becomes longer.

相較之下,在本實施例的電漿處理裝置10,射頻電力的頻率、射頻電力的大小、及匹配電路15中各個可變電容器的電容等各參數的控制量係基於上述標準公式(1),考慮與其他參數之間的平衡而予以決定。因此,即使同時套用各參數的控制量,產生控制振盪的可能性也偏低。因此,例如如同圖8所示,可同時套用多個參數的控制量,而可使阻抗的匹配處理所需要的時間遠短於比較例2的電漿處理裝置10。圖8為表示實施例1的匹配處理之一例的圖。在這個情況的史密斯圖上,匹配電路15的輸入阻抗之軌跡例如如同圖9所示的實線。圖9為表示匹配電路15的輸入阻抗之變化的一例之圖。In contrast, in the plasma processing apparatus 10 of this embodiment, the control amounts of the parameters such as the frequency of the RF power, the size of the RF power, and the capacitance of each variable capacitor in the matching circuit 15 are based on the above-mentioned standard formula (1 ), Considering the balance with other parameters. Therefore, even if the control amount of each parameter is applied at the same time, the possibility of control oscillation is low. Therefore, for example, as shown in FIG. 8, the control amounts of a plurality of parameters can be applied simultaneously, and the time required for the impedance matching process can be made much shorter than that of the plasma processing apparatus 10 of Comparative Example 2. 8 is a diagram showing an example of a matching process in the first embodiment. In the Smith chart in this case, the locus of the input impedance of the matching circuit 15 is, for example, a solid line as shown in FIG. 9. FIG. 9 is a diagram showing an example of changes in the input impedance of the matching circuit 15.

其中,相對於由電力感測器16所測定的電壓之相位,從相位位移部212輸出的時脈訊號之相位延遲的情況,振幅算出結果與相位算出結果並未同步。因此,例如如同圖9的虛線所示,匹配電路15的輸入阻抗依照從所期望的軌跡(例如,圖9中附加四角的實線之軌跡)偏離的軌跡變化。相位延遲較小的情況(例如相對於數MHz~數十MHz的射頻電力,例如為1μ秒左右的情況),匹配電路15的輸入阻抗例如依照圖9中附加三角的虛線所示的軌跡變化。又,相位延遲比較大的情況(例如相對於數MHz~數十MHz的射頻電力,例如為10μ秒左右的情況),匹配電路15的輸入阻抗例如依照圖9中附加圓形的虛線所示的軌跡變化。如此一來,相對於由電力感測器16所測定的電壓之相位,從相位位移部212輸出的時脈訊號之相位延遲愈大,則由訊號同步處理部20算出的阻抗之誤差愈大。藉此,匹配電路15的輸入阻抗之變化的軌跡與所期望的軌跡之間的偏離愈大。因此,變得難以穩定控制電漿。However, the phase of the clock signal output from the phase shift unit 212 is delayed relative to the phase of the voltage measured by the power sensor 16, and the amplitude calculation result and the phase calculation result are not synchronized. Therefore, for example, as indicated by the dotted line in FIG. 9, the input impedance of the matching circuit 15 changes according to a trajectory that deviates from a desired trajectory (for example, a trajectory with a solid line with four corners added in FIG. 9). In the case where the phase delay is small (for example, in the case of radio frequency power of several MHz to several tens of MHz, for example, about 1 μs), the input impedance of the matching circuit 15 changes, for example, in accordance with the trajectory shown by the dotted triangle in FIG. In the case where the phase delay is relatively large (for example, when the radio frequency power is several tens to several tens of MHz, for example, it is about 10 μs), the input impedance of the matching circuit 15 is, for example, as shown by a circular dotted line in FIG. 9. Track changes. In this way, the larger the phase delay of the clock signal output from the phase shifting section 212 with respect to the phase of the voltage measured by the power sensor 16, the larger the error of the impedance calculated by the signal synchronization processing section 20 becomes. Thereby, the deviation between the trajectory of the change in the input impedance of the matching circuit 15 and the desired trajectory becomes larger. Therefore, it becomes difficult to stably control the plasma.

相較之下,在本實施例的振幅相位算出部21,相位算出部219將算出的相位朝向相位位移部212回饋。藉此,振幅相位算出部21可調整相對於由電力感測器16所測定的電壓之相位,從相位位移部212輸出的時脈訊號之相位的延遲,並且可使振幅算出結果及相位算出結果同步。振幅相位算出部22也可發揮同樣的功能。藉此,訊號同步處理部20可精確算出由電力感測器16所測定的電壓及電流之振幅及相位。然後,電漿處理裝置10可配合腔室17內的電漿之阻抗的變化,而精確控制,使得匹配電路15的輸入阻抗之變化成為所期望的軌跡。藉此,可穩定控制電漿。In contrast, in the amplitude phase calculation unit 21 of this embodiment, the phase calculation unit 219 returns the calculated phase to the phase shift unit 212. This allows the amplitude and phase calculation unit 21 to adjust the phase delay of the phase of the clock signal output from the phase shift unit 212 with respect to the phase of the voltage measured by the power sensor 16 and enables the amplitude calculation result and the phase calculation result. Synchronize. The amplitude phase calculation unit 22 can also perform the same function. Thereby, the signal synchronization processing unit 20 can accurately calculate the amplitude and phase of the voltage and current measured by the power sensor 16. Then, the plasma processing apparatus 10 can precisely control the change of the impedance of the plasma in the chamber 17 so that the change of the input impedance of the matching circuit 15 becomes a desired trajectory. Thereby, the plasma can be stably controlled.

又,在本實施例,由於可同時套用各參數的控制量,因此,可縮短阻抗的匹配處理所需要的時間。尚且,由於可同時套用各參數的控制量,因此,即使參數的個數偏多,阻抗的匹配處理所需要的時間大致不變。Furthermore, in this embodiment, since the control amounts of the parameters can be applied at the same time, the time required for the impedance matching process can be shortened. In addition, since the control amount of each parameter can be applied at the same time, even if the number of parameters is too large, the time required for impedance matching processing is substantially unchanged.

以上,說明實施例1。如同上述說明所闡述,若依照本實施例的電漿處理裝置10,則在短時間內可使阻抗的匹配處理結束,而可使已穩定的電漿迅速點火。
[實施例2]
The first embodiment has been described above. As explained in the above description, if the plasma processing apparatus 10 according to the present embodiment, the impedance matching process can be ended in a short time, and the stabilized plasma can be quickly ignited.
[Example 2]

在實施例1,基於藉由連接到匹配電路15與腔室17之間的節點之電力感測器16所測定的射頻電力之電壓及電流,推算出匹配電路15現在的阻抗。相較之下,在實施例2,另外也使用連接到射頻電源14與匹配電路15之間的節點之電力感測器18,推算匹配電路15現在的阻抗。藉此,可更精確推算匹配電路15現在的阻抗,而可更快速執行阻抗的匹配處理。In the first embodiment, the current impedance of the matching circuit 15 is estimated based on the voltage and current of the radio frequency power measured by the power sensor 16 connected to the node between the matching circuit 15 and the chamber 17. In comparison, in Embodiment 2, the power sensor 18 connected to the node between the RF power source 14 and the matching circuit 15 is also used to estimate the current impedance of the matching circuit 15. Thereby, the current impedance of the matching circuit 15 can be more accurately estimated, and the impedance matching process can be performed more quickly.

[電漿處理裝置10]
圖10為表示實施例2的電漿處理裝置10之一例的方塊圖。電漿處理裝置10例如如同圖10所示具備:訊號同步處理部20-1;訊號同步處理部20-2;控制量算出部12;控制訊號生成部13;射頻電源14;匹配電路15;電力感測器16;腔室17;及電力感測器18。在本實施例,訊號同步處理部20-1、訊號同步處理部20-2、控制量算出部12、及控制訊號生成部13被安裝在1個基板11上。尚且,在下文中,當不區別訊號同步處理部20-1及20-2而採用通稱時,僅記載為訊號同步處理部20。又,在圖10所示的電漿處理裝置10之各方塊中,附加與圖1所示的方塊相同符號的方塊係除了以下所說明的部分,與圖1所說明的方塊具有同樣的功能,故省略重複的說明。
[Plasma processing device 10]
FIG. 10 is a block diagram showing an example of a plasma processing apparatus 10 according to the second embodiment. The plasma processing apparatus 10 includes, for example, as shown in FIG. 10: a signal synchronization processing unit 20-1; a signal synchronization processing unit 20-2; a control amount calculation unit 12; a control signal generation unit 13; a radio frequency power source 14; a matching circuit 15; The sensor 16; the chamber 17; and the power sensor 18. In this embodiment, the signal synchronization processing unit 20-1, the signal synchronization processing unit 20-2, the control amount calculation unit 12, and the control signal generation unit 13 are mounted on a single substrate 11. In addition, in the following, when the general term is used without distinguishing between the signal synchronization processing units 20-1 and 20-2, only the signal synchronization processing unit 20 will be described. In addition, in each block of the plasma processing apparatus 10 shown in FIG. 10, the blocks with the same symbols as those shown in FIG. 1 have the same functions as the blocks described in FIG. 1, except for the parts described below. Therefore, repeated description is omitted.

電力感測器16將電壓及電流的測定結果朝向訊號同步處理部20-1輸出。電力感測器18在射頻電源14與匹配電路15之間的射頻電力之傳送路徑中被連接到射頻電源14與匹配電路15之間的節點。電力感測器18測定從射頻電源14輸出的射頻電力之電壓及電流,再將電壓及電流的測定結果朝向訊號同步處理部20-2輸出。電力感測器18為第2測定部的一例。The power sensor 16 outputs the measurement results of the voltage and current to the signal synchronization processing unit 20-1. The power sensor 18 is connected to a node between the radio frequency power source 14 and the matching circuit 15 in a radio frequency power transmission path between the radio frequency power source 14 and the matching circuit 15. The power sensor 18 measures the voltage and current of the radio frequency power output from the radio frequency power source 14, and outputs the measurement results of the voltage and current to the signal synchronization processing unit 20-2. The power sensor 18 is an example of a second measurement unit.

訊號同步處理部20-1基於從電力感測器16輸出的射頻電力之電壓及電流的測定結果、及從控制訊號生成部13輸出的控制訊號,而算出包含在腔室17內生成的電漿之阻抗的腔室17之阻抗。然後,訊號同步處理部20-1將算出的腔室17之阻抗朝向控制量算出部12輸出。The signal synchronization processing unit 20-1 calculates the plasma generated in the chamber 17 based on the measurement results of the voltage and current of the RF power output from the power sensor 16 and the control signal output from the control signal generation unit 13. Impedance of the chamber 17. Then, the signal synchronization processing unit 20-1 outputs the calculated impedance of the chamber 17 to the control amount calculation unit 12.

訊號同步處理部20-2基於從電力感測器18輸出的射頻電力之電壓及電流的測定結果、及從控制訊號生成部13輸出的控制訊號,而算出匹配電路15與腔室17的合成阻抗。然後,訊號同步處理部20-2將算出的合成阻抗朝向控制量算出部12輸出。訊號同步處理部20-1及20-2之各者的內部構成係與使用圖2所說明的實施例1之訊號同步處理部20的構成相同,故省略詳細的說明。The signal synchronization processing unit 20-2 calculates the combined impedance of the matching circuit 15 and the chamber 17 based on the measurement results of the voltage and current of the RF power output from the power sensor 18 and the control signal output from the control signal generation unit 13. . Then, the signal synchronization processing unit 20-2 outputs the calculated combined impedance to the control amount calculation unit 12. The internal configuration of each of the signal synchronization processing units 20-1 and 20-2 is the same as the configuration of the signal synchronization processing unit 20 of the first embodiment described with reference to FIG. 2, and therefore detailed descriptions are omitted.

控制量算出部12基於由訊號同步處理部20-1所算出的腔室17之阻抗、及由訊號同步處理部20-2所算出的合成阻抗,而算出匹配電路15現在的輸入阻抗。The control amount calculation unit 12 calculates the current input impedance of the matching circuit 15 based on the impedance of the chamber 17 calculated by the signal synchronization processing unit 20-1 and the combined impedance calculated by the signal synchronization processing unit 20-2.

圖11為表示實施例2的電漿處理裝置10之等效電路的一例之圖。例如如同圖11所示,訊號同步處理部20-1可基於由電力感測器16所測定的電壓及電流而算出腔室17的阻抗Z2。訊號同步處理部20-2可基於由電力感測器18所測定的電壓及電流而算出匹配電路15的阻抗Z1與腔室17的阻抗Z2之合成阻抗。然後,控制量算出部12可從匹配電路15的阻抗Z1與腔室17的阻抗Z2之合成阻抗,扣除腔室17的阻抗Z2,而算出匹配電路15的阻抗Z1。FIG. 11 is a diagram showing an example of an equivalent circuit of the plasma processing apparatus 10 according to the second embodiment. For example, as shown in FIG. 11, the signal synchronization processing unit 20-1 can calculate the impedance Z2 of the chamber 17 based on the voltage and current measured by the power sensor 16. The signal synchronization processing unit 20-2 can calculate the combined impedance of the impedance Z1 of the matching circuit 15 and the impedance Z2 of the chamber 17 based on the voltage and current measured by the power sensor 18. Then, the control amount calculation unit 12 can calculate the impedance Z1 of the matching circuit 15 by subtracting the impedance Z2 of the chamber 17 from the combined impedance of the impedance Z1 of the matching circuit 15 and the impedance Z2 of the chamber 17.

其中,訊號同步處理部20-1基於由電力感測器16所測定的電壓及電流而算出腔室17的阻抗Z2,訊號同步處理部20-2基於由電力感測器18所測定的電壓及電流而算出匹配電路15與腔室17的合成阻抗。因此,相較於使用電路模型等來推算阻抗的情況,可更精確算出阻抗Z2及合成阻抗。特別是,在本實施例,由於使用具有使用圖2所說明的內部構成之訊號同步處理部20-1及20-2,因此,可十分精確算出阻抗Z2及合成阻抗。Among them, the signal synchronization processing unit 20-1 calculates the impedance Z2 of the chamber 17 based on the voltage and current measured by the power sensor 16, and the signal synchronization processing unit 20-2 is based on the voltage and current measured by the power sensor 18. The current is used to calculate the combined impedance of the matching circuit 15 and the chamber 17. Therefore, the impedance Z2 and the combined impedance can be calculated more accurately than when the impedance is estimated using a circuit model or the like. In particular, in this embodiment, since the signal synchronization processing units 20-1 and 20-2 having the internal structure described using FIG. 2 are used, the impedance Z2 and the combined impedance can be calculated very accurately.

又,在本實施例,由於能夠十分精確算出阻抗Z2及合成阻抗,因此,可藉由從合成阻抗扣除腔室17的阻抗Z2,而十分精確算出匹配電路15的阻抗Z1。In this embodiment, since the impedance Z2 and the combined impedance can be calculated very accurately, the impedance Z1 of the matching circuit 15 can be calculated very accurately by subtracting the impedance Z2 of the chamber 17 from the combined impedance.

[硬體]
上述的實施例1之訊號同步處理部20、控制量算出部12、及控制訊號生成部13係被構成在1個基板11上,並且例如由圖12所示的電腦30予以執行。圖12為表示執行訊號同步處理部20、控制量算出部12、及控制訊號生成部13之功能的電腦30之硬體的一例之圖。
[Hardware]
The signal synchronization processing unit 20, the control amount calculation unit 12, and the control signal generation unit 13 of the first embodiment described above are configured on a single substrate 11 and are executed by a computer 30 shown in FIG. 12, for example. FIG. 12 is a diagram showing an example of hardware of a computer 30 that executes the functions of the signal synchronization processing section 20, the control amount calculation section 12, and the control signal generation section 13.

電腦30為例如如同圖12所示具有:記憶體31;處理器32;及輸入輸出介面33。輸入輸出介面33係在射頻電源14、匹配電路15、電力感測器16、及電力感測器18之間收發訊號。在記憶體31,例如儲存用來執行訊號同步處理部20、控制量算出部12、及控制訊號生成部13之功能的各種程式或資料等。處理器32從記憶體31讀取程式,再執行已讀取的程式,藉此,例如執行訊號同步處理部20、控制量算出部12、及控制訊號生成部13的各功能。The computer 30 has, for example, a memory 31, a processor 32, and an input / output interface 33 as shown in FIG. The input / output interface 33 transmits and receives signals between the RF power source 14, the matching circuit 15, the power sensor 16, and the power sensor 18. The memory 31 stores, for example, various programs or data for executing the functions of the signal synchronization processing unit 20, the control amount calculation unit 12, and the control signal generation unit 13. The processor 32 reads a program from the memory 31 and then executes the read program, thereby executing, for example, each function of the signal synchronization processing section 20, the control amount calculation section 12, and the control signal generation section 13.

尚且,記憶體31內的程式或資料等未必須要一開始即全部被儲存在記憶體31內。例如,可將程式或資料等儲存在插入到電腦30的記憶體卡等可移動式記錄媒體,電腦30再從這類型的可移動式記錄媒體適當取得程式或資料等而予以執行。又,可從儲存程式或資料等其他的電腦或者伺服器裝置等,經由無線通信回線、公衆回線、網路、LAN、WAN等,使電腦30適當取得程式而予以執行。Moreover, the programs, data, etc. in the memory 31 need not be stored in the memory 31 in the first place. For example, a program or data may be stored in a removable recording medium such as a memory card inserted in the computer 30, and the computer 30 may obtain the program or data from this type of removable recording medium and execute the program or data as appropriate. In addition, the computer 30 may appropriately obtain a program from a computer or server device, such as a stored program or data, via a wireless communication line, a public line, a network, a LAN, or a WAN, and execute the program.

[其他]
尚且,本發明並未限定於上述的實施形態,在該要旨的範圍內能夠有各種變形。
[other]
The present invention is not limited to the embodiments described above, and various modifications can be made within the scope of the gist.

例如,在上述的實施例1,以由1個射頻電源14所生成的射頻電力供給到腔室17的情況為例予以說明,但揭示的技術並不限於此,也可為由多個射頻電源14所生成的不同頻率之射頻電力供給到腔室17。此時,在電漿處理裝置10,針對生成不同頻率的射頻電力之各個射頻電源14,分別設置1個訊號同步處理部20、控制量算出部12、控制訊號生成部13、匹配電路15、及電力感測器16。For example, in the first embodiment described above, the case where the radio frequency power generated by one radio frequency power source 14 is supplied to the chamber 17 is taken as an example for description, but the disclosed technology is not limited to this, and a plurality of radio frequency power sources may be used. 14 generates radio frequency power of different frequencies to the chamber 17. At this time, in the plasma processing apparatus 10, for each radio frequency power source 14 that generates radio frequency power of different frequencies, a signal synchronization processing section 20, a control amount calculation section 12, a control signal generation section 13, a matching circuit 15, and Power sensor 16.

在實施例2也相同,由多個射頻電源14所生成的不同頻率之射頻電力供給到腔室17的情況,在電漿處理裝置10,針對生成不同頻率的射頻電力之各個射頻電源14,分別設置1個訊號同步處理部20-1、訊號同步處理部20-2、控制量算出部12、控制訊號生成部13、匹配電路15、電力感測器16、及電力感測器18。The same is true in the second embodiment, in the case where radio frequency power of different frequencies generated by a plurality of radio frequency power sources 14 is supplied to the chamber 17, in the plasma processing device 10, for each radio frequency power source 14 that generates radio frequency power of different frequencies, respectively, A signal synchronization processing unit 20-1, a signal synchronization processing unit 20-2, a control amount calculation unit 12, a control signal generation unit 13, a matching circuit 15, a power sensor 16, and a power sensor 18 are provided.

又,在上述的各實施例,為了便於理解實施例的訊號同步處理部20,訊號同步處理部20所具有的各個處理方塊係配合主要的處理內容而按照功能類別予以區分。因此,揭示的技術並不會依照處理方塊的區分方法或區分方法的名稱而受到限制。又,上述的各實施例之訊號同步處理部20分別具有的各處理方塊可配合處理內容而細分成更多的處理方塊,也可將多個處理方塊統整為1個處理方塊。又,由各個處理方塊所執行的處理可藉由軟體處理而予以實現,也可藉由ASIC(Application Specific Integrated Circuit,特定應用積體電路)等專用的硬體予以實現。Moreover, in each of the above-mentioned embodiments, in order to facilitate understanding of the signal synchronization processing unit 20 of the embodiment, each processing block included in the signal synchronization processing unit 20 is differentiated according to the functional category in accordance with the main processing content. Therefore, the disclosed technology is not limited by the method of distinguishing the processing block or the name of the method of distinguishing. In addition, each processing block provided by the signal synchronization processing unit 20 of each of the above embodiments may be subdivided into more processing blocks in accordance with the processing content, or a plurality of processing blocks may be integrated into one processing block. In addition, the processing executed by each processing block may be implemented by software processing, or may be implemented by dedicated hardware such as an ASIC (Application Specific Integrated Circuit).

10‧‧‧電漿處理裝置10‧‧‧ Plasma treatment device

11‧‧‧基板 11‧‧‧ substrate

12‧‧‧控制量算出部 12‧‧‧Control amount calculation section

13‧‧‧控制訊號生成部 13‧‧‧Control signal generation unit

14‧‧‧射頻電源 14‧‧‧RF Power

140‧‧‧振盪器 140‧‧‧ Oscillator

141‧‧‧放大器 141‧‧‧amplifier

15‧‧‧匹配電路 15‧‧‧ matching circuit

16‧‧‧電力感測器 16‧‧‧ Power Sensor

17‧‧‧腔室 17‧‧‧ chamber

18‧‧‧電力感測器 18‧‧‧ Power Sensor

20‧‧‧訊號同步處理部 20‧‧‧Signal synchronization

21‧‧‧振幅相位算出部 21‧‧‧Amplitude and phase calculation unit

210‧‧‧放大器 210‧‧‧ amplifier

211‧‧‧ADC 211‧‧‧ADC

212‧‧‧位移部 212‧‧‧Displacement

213‧‧‧移相器 213‧‧‧ Phaser

214‧‧‧乘法器 214‧‧‧Multiplier

215‧‧‧乘法器 215‧‧‧Multiplier

216‧‧‧LPF 216‧‧‧LPF

217‧‧‧LPF 217‧‧‧LPF

218‧‧‧振幅算出部 218‧‧‧Amplitude calculation section

219‧‧‧相位算出部 219‧‧‧phase calculation unit

22‧‧‧振幅相位算出部 22‧‧‧ Amplitude and Phase Calculation Unit

220‧‧‧放大器 220‧‧‧amplifier

221‧‧‧ADC 221‧‧‧ADC

222‧‧‧位移部 222‧‧‧Displacement

223‧‧‧移相器 223‧‧‧ Phase Shifter

224‧‧‧乘法器 224‧‧‧Multiplier

225‧‧‧乘法器 225‧‧‧Multiplier

226‧‧‧LPF 226‧‧‧LPF

227‧‧‧LPF 227‧‧‧LPF

228‧‧‧振幅算出部 228‧‧‧Amplitude calculation section

229‧‧‧相位算出部 229‧‧‧phase calculation unit

23‧‧‧PLL 23‧‧‧PLL

24‧‧‧相位差算出部 24‧‧‧ Phase difference calculation section

25‧‧‧阻抗算出部 25‧‧‧Impedance calculation unit

【圖1】圖1為表示實施例1的電漿處理裝置之一例的方塊圖。[Fig. 1] Fig. 1 is a block diagram showing an example of a plasma processing apparatus of Example 1. [Fig.

【圖2】圖2為表示訊號同步處理部之一例的方塊圖。 [Fig. 2] Fig. 2 is a block diagram showing an example of a signal synchronization processing section.

【圖3】圖3為表示實施例1之電漿處理裝置的等效電路之一例的圖。 3 is a diagram showing an example of an equivalent circuit of the plasma processing apparatus of the first embodiment.

【圖4】圖4為表示比較例1之電漿處理裝置的等效電路之一例的圖。 FIG. 4 is a diagram showing an example of an equivalent circuit of a plasma processing apparatus of Comparative Example 1. FIG.

【圖5】圖5為表示阻抗的匹配處理之一例的流程圖。 FIG. 5 is a flowchart showing an example of impedance matching processing.

【圖6】圖6為表示比較例2的匹配處理之一例的圖。 FIG. 6 is a diagram showing an example of a matching process of Comparative Example 2. FIG.

【圖7】圖7為表示比較例2的匹配電路之輸入阻抗的變化之一例的圖。 FIG. 7 is a diagram showing an example of changes in input impedance of a matching circuit of Comparative Example 2. FIG.

【圖8】圖8為表示實施例1的匹配處理之一例的圖。 FIG. 8 is a diagram showing an example of a matching process in the first embodiment.

【圖9】圖9為表示匹配電路之輸入阻抗的變化之一例的圖。 [Fig. 9] Fig. 9 is a diagram showing an example of changes in input impedance of a matching circuit.

【圖10】圖10為表示實施例2的電漿處理裝置之一例的方塊圖。 [Fig. 10] Fig. 10 is a block diagram showing an example of a plasma processing apparatus according to a second embodiment.

【圖11】圖11為表示實施例2之電漿處理裝置的等效電路之一例的圖。 [Fig. 11] Fig. 11 is a diagram showing an example of an equivalent circuit of a plasma processing apparatus according to a second embodiment.

【圖12】圖12為表示實現訊號同步處理部、控制量算出部、及控制訊號生成部的功能之電腦的硬體之一例的圖。 [Fig. 12] Fig. 12 is a diagram showing an example of hardware of a computer that realizes the functions of a signal synchronization processing unit, a control amount calculation unit, and a control signal generation unit.

Claims (7)

一種電漿處理裝置,具備: 腔室,其在內部具有空間,藉由在前述空間內所生成的電漿而對移入到前述空間內的被處理體進行處理; 電力供給部,其供給用於在前述腔室內生成電漿的射頻電力; 匹配電路,其使前述腔室內的電漿與前述電力供給部之間的阻抗匹配; 第1算出部,其算出前述腔室內的電漿之阻抗;及 控制電路,其基於由前述第1算出部所算出的阻抗,而控制供給到前述腔室內的射頻電力之頻率、射頻電力的大小、及前述匹配電路的阻抗, 前述第1算出部及前述控制電路被設置在1個基板上。A plasma processing device includes: The chamber has a space inside, and processes the object to be moved into the space by the plasma generated in the space; A power supply unit that supplies radio frequency power for generating plasma in the chamber; A matching circuit that matches the impedance between the plasma in the cavity and the power supply unit; A first calculation unit that calculates the impedance of the plasma in the chamber; and A control circuit for controlling the frequency of the radio frequency power supplied to the chamber, the magnitude of the radio frequency power, and the impedance of the matching circuit based on the impedance calculated by the first calculation unit, The first calculation unit and the control circuit are provided on a single substrate. 如請求項1的電漿處理裝置,另外具備: 第1測定部,其被連接到前述匹配電路與前述腔室之間的節點,並且測定供給到前述腔室內的前述射頻電力之電壓及電流, 前述第1算出部基於由前述第1測定部所測定的前述射頻電力之電壓及電流,而算出前述腔室內的電漿之阻抗。If the plasma processing device of claim 1 further includes: A first measurement unit connected to a node between the matching circuit and the chamber, and measuring a voltage and a current of the radio frequency power supplied to the chamber, The first calculation unit calculates the impedance of the plasma in the chamber based on the voltage and current of the radio frequency power measured by the first measurement unit. 如請求項1或2的電漿處理裝置,其中 前述第1算出部具有: 第1ADC(Analog to Digital Converter,類比數位轉換器),其將供給到前述腔室內的射頻電力之電壓轉換成數位訊號; 第2ADC,其將供給到前述腔室內的射頻電力之電流轉換成數位訊號; 第2算出部,其算出轉換成數位訊號的前述電壓及前述電流之各者的相位及振幅; 第3算出部,其基於轉換成數位訊號的前述電壓及前述電流之相位差及振幅比而算出前述腔室內的電漿之阻抗。A plasma processing apparatus as claimed in claim 1 or 2, wherein The first calculation unit includes: The first ADC (Analog to Digital Converter) converts the voltage of the RF power supplied into the cavity into a digital signal; A second ADC that converts a current of radio frequency power supplied into the chamber into a digital signal; A second calculation unit that calculates a phase and an amplitude of each of the voltage and the current converted into a digital signal; The third calculation unit calculates the impedance of the plasma in the chamber based on the phase difference and amplitude ratio of the voltage and the current converted into a digital signal. 如請求項3的電漿處理裝置,其中 前述第1算出部具備: 訊號產生器,其生成用於前述第1ADC及前述第2ADC的各者之取樣時脈; 第1相位調整部,其基於相對於前述取樣時脈的前述電壓的相位,而調整輸入到前述第1ADC的前述取樣時脈之相位;及 第2相位調整部,其基於相對於前述取樣時脈的前述電流的相位,而調整輸入到前述第2ADC的前述取樣時脈之相位。The plasma processing apparatus of claim 3, wherein The first calculation unit includes: A signal generator that generates sampling clocks for each of the first ADC and the second ADC; A first phase adjustment unit that adjusts a phase of the sampling clock input to the first ADC based on a phase of the voltage with respect to the sampling clock; and The second phase adjustment unit adjusts the phase of the sampling clock input to the second ADC based on the phase of the current with respect to the sampling clock. 如請求項3或4的電漿處理裝置,其中 前述第1算出部具有: 第1放大器,其放大供給到前述腔室內的前述射頻電力之電壓,再輸入到前述第1ADC; 第2放大器,其放大供給到前述腔室內的前述射頻電力之電流,再輸入到前述第2ADC; 第1增益調整部,其基於由前述第2算出部所算出的前述電壓之振幅,而調整前述第1放大器的增益;及 第2增益調整部,其基於由前述第2算出部所算出的前述電流之振幅,而調整前述第2放大器的增益。A plasma processing device as claimed in item 3 or 4, wherein The first calculation unit includes: A first amplifier that amplifies the voltage of the radio frequency power supplied to the chamber, and then inputs the voltage to the first ADC; A second amplifier that amplifies the current of the radio frequency power supplied into the chamber, and then inputs the current to the second ADC; A first gain adjustment unit that adjusts the gain of the first amplifier based on the amplitude of the voltage calculated by the second calculation unit; and The second gain adjustment unit adjusts the gain of the second amplifier based on the amplitude of the current calculated by the second calculation unit. 如請求項1至5任一項的電漿處理裝置,另外具備: 第2測定部,其被連接到前述電力供給部與前述匹配電路之間的節點,並且測定從前述電力供給部朝向前述匹配電路輸出的射頻電力之電壓及電流, 前述第1算出部另外使用由前述第2測定部所測定的射頻電力之電壓及電流,而算出前述腔室內的電漿之阻抗。If the plasma processing device of any one of claims 1 to 5, further includes: A second measurement unit connected to a node between the power supply unit and the matching circuit, and measuring a voltage and a current of radio frequency power output from the power supply unit toward the matching circuit, The first calculation unit calculates the impedance of the plasma in the chamber using the voltage and current of the radio frequency power measured by the second measurement unit. 一種測定電路,其用於電漿處理裝置,用來測定前述腔室內的電漿之阻抗,該電漿處理裝置具有: 腔室,其在內部具有空間,並且藉由在前述空間內生成的電漿而處理移入到前述空間內的被處理體; 電力供給部,其供給用於在前述腔室內生成電漿的射頻電力; 匹配電路,其被設置在前述腔室與前述電力供給部之間;及 控制電路,其控制由前述電力供給部供給到前述腔室內的射頻電力之頻率、射頻電力的大小、及前述匹配電路的阻抗, 該測定電路連同前述控制電路被設置在1個基板上,並且具有: 第1ADC,其將供給到前述腔室內的射頻電力之電壓轉換成數位訊號; 第2ADC,其將供給到前述腔室內的射頻電力之電流轉換成數位訊號; 振幅相位算出部,其算出已轉換成數位訊號的前述電壓及前述電流之各者的振幅及相位;及 阻抗算出部,其基於已轉換成數位訊號的前述電壓及前述電流之相位差及振幅比而算出前述腔室內的電漿之阻抗。A measuring circuit is used in a plasma processing device for measuring the impedance of the plasma in the cavity. The plasma processing device has: A chamber having a space inside and processing a body to be moved into the space by a plasma generated in the space; A power supply unit that supplies radio frequency power for generating plasma in the chamber; A matching circuit provided between the chamber and the power supply section; and A control circuit that controls the frequency of the RF power supplied to the chamber by the power supply unit, the magnitude of the RF power, and the impedance of the matching circuit, This measurement circuit is provided on one substrate together with the aforementioned control circuit, and has: A first ADC that converts a voltage of radio frequency power supplied into the cavity into a digital signal; A second ADC that converts a current of radio frequency power supplied into the chamber into a digital signal; An amplitude and phase calculation unit that calculates the amplitude and phase of each of the voltage and the current that have been converted into digital signals; and The impedance calculation unit calculates the impedance of the plasma in the chamber based on the phase difference and amplitude ratio of the voltage and the current that have been converted into digital signals.
TW107133956A 2017-10-10 2018-09-27 Plasma processing apparatus and measurement circuit TWI812648B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017196786 2017-10-10
JP2017-196786 2017-10-10
JP2018-136326 2018-07-20
JP2018136326A JP7209483B2 (en) 2017-10-10 2018-07-20 Plasma processing equipment and measurement circuit

Publications (2)

Publication Number Publication Date
TW201929030A true TW201929030A (en) 2019-07-16
TWI812648B TWI812648B (en) 2023-08-21

Family

ID=66441633

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107133956A TWI812648B (en) 2017-10-10 2018-09-27 Plasma processing apparatus and measurement circuit

Country Status (2)

Country Link
JP (1) JP7209483B2 (en)
TW (1) TWI812648B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7442305B2 (en) 2019-11-26 2024-03-04 東京エレクトロン株式会社 Control system, control method, control program, and processing system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6155199A (en) * 1998-03-31 2000-12-05 Lam Research Corporation Parallel-antenna transformer-coupled plasma generation system
US7477711B2 (en) * 2005-05-19 2009-01-13 Mks Instruments, Inc. Synchronous undersampling for high-frequency voltage and current measurements
JP5498217B2 (en) * 2010-03-24 2014-05-21 株式会社ダイヘン High frequency measuring device and calibration method of high frequency measuring device
US20130277333A1 (en) * 2012-04-24 2013-10-24 Applied Materials, Inc. Plasma processing using rf return path variable impedance controller with two-dimensional tuning space
JP6312405B2 (en) * 2013-11-05 2018-04-18 東京エレクトロン株式会社 Plasma processing equipment
WO2015151148A1 (en) * 2014-03-31 2015-10-08 Sppテクノロジーズ株式会社 High-frequency power system and plasma processing apparatus provided therewith
US9263350B2 (en) * 2014-06-03 2016-02-16 Lam Research Corporation Multi-station plasma reactor with RF balancing
US9947514B2 (en) * 2015-09-01 2018-04-17 Mks Instruments, Inc. Plasma RF bias cancellation system
JP6541540B2 (en) * 2015-10-06 2019-07-10 東京エレクトロン株式会社 Method for impedance matching of plasma processing apparatus

Also Published As

Publication number Publication date
JP7209483B2 (en) 2023-01-20
TWI812648B (en) 2023-08-21
JP2019071270A (en) 2019-05-09

Similar Documents

Publication Publication Date Title
US10903049B2 (en) Plasma processing apparatus and measurement circuit
TWI673756B (en) Rf generator, system and method of generating rf signals for cancelling rf bias in a plasma system
JP6910320B2 (en) Microwave output device and plasma processing device
JP6420528B2 (en) Condition-based power and frequency adjustment
KR102364528B1 (en) Intercycle control system for plasma power delivery system and method of operation thereof
TWI583142B (en) Compensation of oscillator frequency pulling
JP6400272B2 (en) Power and frequency adjustment based on impedance
US20210249228A1 (en) Inter-period control system for plasma power delivery system and method of operating same
TWI812648B (en) Plasma processing apparatus and measurement circuit
KR20180103008A (en) High frequency generator and plasma processing apparatus
US20230207263A1 (en) High-frequency power supply apparatus
US20230207270A1 (en) High-frequency power supply device
US20230094385A1 (en) Radio-frequency power supply apparatus
US7532696B2 (en) Calibration device for a phased locked loop synthesiser
JP2020181650A (en) Method for deciding correction function
JP2021513183A (en) RF adjustment voltage in the bias process
US20230207268A1 (en) High-frequency power supply device
US20240222083A1 (en) Method of controlling high-frequency power supply system
US20220115208A1 (en) Plasma processing apparatus and plasma processing method
JP2023097863A (en) High frequency power system
JP6396158B2 (en) Frequency information detection device and high frequency power supply device
JP2020181651A (en) Method for deciding correction function
JP2024095374A (en) High Frequency Power Supply System
JP2024095372A (en) Method for controlling high frequency power supply system
JP2024095370A (en) High Frequency Power Supply System