TW201923473A - Galvanometer correction system and method - Google Patents

Galvanometer correction system and method Download PDF

Info

Publication number
TW201923473A
TW201923473A TW107131729A TW107131729A TW201923473A TW 201923473 A TW201923473 A TW 201923473A TW 107131729 A TW107131729 A TW 107131729A TW 107131729 A TW107131729 A TW 107131729A TW 201923473 A TW201923473 A TW 201923473A
Authority
TW
Taiwan
Prior art keywords
galvanometer
horizontal direction
spot
field
scanning system
Prior art date
Application number
TW107131729A
Other languages
Chinese (zh)
Other versions
TWI669578B (en
Inventor
唐江鋒
劉志宇
朱振朋
Original Assignee
大陸商上海微電子裝備(集團)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商上海微電子裝備(集團)股份有限公司 filed Critical 大陸商上海微電子裝備(集團)股份有限公司
Publication of TW201923473A publication Critical patent/TW201923473A/en
Application granted granted Critical
Publication of TWI669578B publication Critical patent/TWI669578B/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70358Scanning exposure, i.e. relative movement of patterned beam and workpiece during imaging
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/709Vibration, e.g. vibration detection, compensation, suppression or isolation

Abstract

Provided in the present invention are a galvanometer correction system and method, which is implemented by means of the following steps: S1: causing the optical axis of a galvanometer to move along a first horizontal direction and a second horizontal direction respectively by means of changing the swinging angle of the galvanometer in a galvanometer scanning system so as to form a plurality of light spots within a field corresponding to the galvanometer, and measuring and recording the position of the plurality of light spots by means of a light spot position measurement device; S2: substituting data measured by the light spot position measurement device in an overlay model within the field to obtain an error parameter within a current galvanometer field; S3: calculating an error amount within a galvanometer field to be compensated according to the error parameter of the current galvanometer field, the error amount within the galvanometer field comprising an error amount in a first horizontal direction and an error amount in a second horizontal direction; S4: correcting the galvanometer scanning system by means of a galvanometer controller according to the error amount in the first horizontal direction and the error amount in the second horizontal direction that are obtained in S3, controlling the corrected galvanometer scanning system to re-scan and re-form a plurality of light spots, detecting and determining the precision of the plurality of re-formed light spots, and repeating steps S1 to S3 if precision is not satisfactory; stopping repetition of the steps and finishing error correction within the field if precision is satisfactory.

Description

一種振鏡矯正系統及方法    Galvanometer correction system and method   

本發明屬於掃描裝置領域,涉及一種振鏡矯正系統及方法。 The invention belongs to the field of scanning devices and relates to a galvanometer correction system and method.

振鏡在使用前以及安裝完成之後均需要經過一定的矯正,然後得到一定的補償量資料,從而在使用的時候能夠更為精準的進行掃描。 Before use and after installation, the galvanometer needs to undergo a certain correction, and then obtain a certain amount of compensation data, so that it can be scanned more accurately during use.

現有的矯正方法中使用的是手動校正,如此就容易出現手動校正過程中的誤差,校正的效果較差。 Manual correction is used in the existing correction methods, so errors in the manual correction process are easy to occur, and the correction effect is poor.

本發明的目的在於提供一種振鏡矯正系統及方法,旨在解決矯正效果差的問題。 The object of the present invention is to provide a galvanometer correction system and method, which aims to solve the problem of poor correction effect.

為解決上述技術問題,本發明提供了一種振鏡矯正系統,包括振鏡掃描系統、振鏡控制器、龍門架、聚焦裝置、檢測採樣系統以及光斑位置測量裝置,所述振鏡掃描系統包括振鏡,所述聚焦裝置用於對經由所述振鏡出射的光束進行聚焦,所述檢測採樣系統用於實現所述光斑位置測量裝置與所述振鏡之間的對準,所述振鏡控制器用於控制所述振鏡的運動以實現在振鏡對應的場內形成多個光斑,所述振鏡掃描系統能夠沿所述龍門架在第一水平方向運動,且能夠跟隨所述龍門架在豎直方向上運動。 In order to solve the above technical problems, the present invention provides a galvanometer correction system including a galvanometer scanning system, a galvanometer controller, a gantry, a focusing device, a detection and sampling system, and a spot position measuring device. The galvanometer scanning system includes Mirror, the focusing device is used to focus the light beam emitted through the galvanometer, the detection and sampling system is used to achieve alignment between the spot position measuring device and the galvanometer, and the galvanometer controls The galvanometer is used to control the movement of the galvanometer to form multiple light spots in the field corresponding to the galvanometer. The galvanometer scanning system can move along the gantry in a first horizontal direction and can follow the gantry in the Move vertically.

可選擇的,所述振鏡矯正系統還包括水冷系統,所述水冷系統用於對所述振鏡掃描系統進行水冷降溫。 Optionally, the galvanometer correction system further includes a water-cooling system, and the water-cooling system is used for water-cooling and cooling the galvanometer scanning system.

可選擇的,所述光斑位置測量裝置為輪廓儀。 Optionally, the spot position measuring device is a profiler.

可選擇的,所述振鏡矯正系統還包括工件台,所述工件台能夠沿水平第二方向運動,其中所述第二水平方向與所述第一水平方向垂直,所述光斑位置測量裝置連接於所述工件台的上部或側部。 Optionally, the galvanometer correction system further includes a workpiece table capable of moving in a second horizontal direction, wherein the second horizontal direction is perpendicular to the first horizontal direction, and the spot position measuring device is connected On the upper or side of the workpiece table.

可選擇的,所述工件台用於帶動所述光斑位置測量裝置移動從而實現對光斑位置的測量。 Optionally, the workpiece stage is used to drive the spot position measuring device to move so as to measure the spot position.

可選擇的,所述龍門架上設置有多個所述振鏡掃描系統。 Optionally, a plurality of the galvanometer scanning systems are provided on the gantry.

可選擇的,所述振鏡矯正系統還包括雷射器設備,用於向所述振鏡掃描系統提供入射光束。 Optionally, the galvanometer correction system further includes a laser device for providing an incident beam to the galvanometer scanning system.

可選擇的,所述聚焦裝置為平場聚焦透鏡(F-theta鏡)。 Optionally, the focusing device is a flat field focusing lens (F-theta lens).

為解決上述技術問題,本發明還提供一種採用上述振鏡矯正系統的振鏡矯正方法,包括如下步驟:S1:通過改變振鏡掃描系統中的振鏡的擺動角度,使得所述振鏡的光軸分別沿第一水平方向和第二水平方向移動,實現在振鏡對應的場內形成多個光斑,光斑位置測量裝置對所述多個光斑的位置進行測量並記錄;S2:將所述光斑位置測量裝置測量得到的資料代入場內套刻模型得到當前振鏡場內誤差參數;S3:根據當前振鏡場內誤差參數計算得到待補償的振鏡場內誤差量,所述振鏡場內誤差量包括第一水平方向誤差量和第二水平方 向誤差量;S4:通過振鏡控制器,根據S3中得出的所述第一水平方向誤差量和所述第二水平方向誤差量對所述振鏡掃描系統進行校正,控制校正後的所述振鏡掃描系統進行重新掃描並重新形成多個光斑,並對重新形成的多個光斑進行檢測以及精度判斷,如精度不滿足則重複S1至S3;如精度滿足則停止重複步驟,完成場內誤差矯正。 In order to solve the above technical problem, the present invention also provides a galvanometer correction method using the galvanometer correction system, including the following steps: S1: By changing the swing angle of the galvanometer in the galvanometer scanning system, the light of the galvanometer is changed. The axes move in the first horizontal direction and the second horizontal direction, respectively, so that a plurality of light spots are formed in the field corresponding to the galvanometer, and the spot position measuring device measures and records the positions of the plurality of light spots; S2: the light spots The data measured by the position measuring device is substituted into the intra-overset model to obtain the current in-field galvanometer error parameter; S3: the amount of in-field galvanometer error to be compensated is calculated based on the current in-field galvanometer parameter. The error amount includes a first horizontal direction error amount and a second horizontal direction error amount; S4: through the galvanometer controller, according to the first horizontal direction error amount and the second horizontal direction error amount obtained in S3, The galvanometer scanning system performs correction, and controls the galvanometer scanning system to perform rescanning and re-formation of multiple light spots, and to re-form the multiple light spots formed. And determining the detection accuracy, as accuracy does not satisfy S1 to S3 are repeated; such accuracy meets the stop step is repeated, to complete the field of error correction.

可選擇的,所述S2中的場內套刻模型如下:△x=Mxx-Ryy+Tx Optionally, the intra-field overlay model in S2 is as follows: △ x = Mx . x - Ry . y + Tx

y=Myy+Rxx+Ty y = My . y + Rx . x + Ty

其中,△x、△y:光斑在水平向實際成像位置與名義位置在所述第一水平方向和所述第二水平方向的偏差;xy:由所述振鏡控制器所設定的光斑的名義位置;TxTy:振鏡場內光斑的實際成像位置與名義位置在所述第一水平方向和所述第二水平方向的平移;MxMy:振鏡場內光斑的實際成像大小相對於光斑的名義成像大小在所述第一水平方向和所述第二水平方向的倍率;RxRy:振鏡場內光斑的實際成像位置與名義位置在所述第一水平方向和所述第二水平方向的旋轉;測試中共測量n=M×N個光斑,其中M、N是自然數,對於n個光斑,將所述場內套刻模型變換為矩陣形式: Among them, △ x and △ y : deviations between the actual imaging position of the light spot in the horizontal direction and the nominal position in the first horizontal direction and the second horizontal direction; x , y : light spots set by the galvanometer controller Tx , Ty : translation of the actual imaging position and nominal position of the spot in the galvanometer field in the first horizontal direction and the second horizontal direction; Mx , My : actual imaging size of the spot in the galvanometer field The magnification of the nominal imaging size relative to the spot in the first horizontal direction and the second horizontal direction; Rx , Ry : the actual imaging position and nominal position of the spot in the galvanometer field are in the first horizontal direction and Rotation in the second horizontal direction; n = M × N light spots were measured in the test, where M and N are natural numbers. For n light spots, the intra-field overlay model is transformed into a matrix form:

利用最小平方法擬合,得到當前振鏡場內誤差Tx,Ty,Mx,My,Rx,RyThe least square method is used to obtain the current errors Tx , Ty , Mx , My , Rx , Ry in the galvanometer field.

可選擇的,所述S3中的第一水平方向誤差量和第二水平方向誤差量包括所述振鏡的光軸在每個光斑的名義位置處的補償量,表示為:DeltaX(y)=△x-Tx-0.5.(Rx+Ry).y Optionally, the first horizontal direction error amount and the second horizontal direction error amount in S3 include a compensation amount of the optical axis of the galvanometer at a nominal position of each spot, and are expressed as: DeltaX ( y ) = △ x - Tx -0.5. ( Rx + Ry ). y

DeltaY(x)=△y-Ty-0.5.(Rx+Ry).x DeltaY ( x ) = △ y - Ty -0.5. ( Rx + Ry ). x .

可選擇的,所述振鏡掃描系統在每一特定測量位置均進行多次光斑位置測量,並對多個光斑位置資料取均值,用於S3中的計算。 Alternatively, the galvanometer scanning system performs multiple spot position measurements at each specific measurement position, and averages multiple spot position data for calculation in S3.

可選擇的,所述振鏡矯正方法還包括以下步驟:S5:保持所述振鏡掃描系統的振鏡的光軸的場內位置不變,所述振鏡掃描系統在所述龍門架上進行所述第一水平方向運動,每步進一次,由所述振鏡掃描系統投射多次光斑,並利用所述光斑位置測量裝置測量各個步進位置下各次投射的光斑在所述龍門架的零位坐標系下的位置x i,j ,y i,j ,其中i=1,2,...,n為步進的次數,j=1,2,...,m為每個步進位置處投射光斑的次數;S6:保持所述振鏡掃描系統的位置不變,使所述振鏡的光軸沿 所述第一水平方向,在各個測量位置進行場內光斑投射,利用所述光斑位置測量裝置測量各個測量位置下投射的各個光斑在所述龍門架的零位坐標系下的水平向位置x' i,j ,y' i,j ,其中i=1,2,...,n為測量位置的個數,j=1,2,...,m為在每個測量位置處投射的光斑的個數;S7:S6中光斑的名義位置與S5中的名義位置相同,均分別為x_nom i ,y_nom i ,S5和S6中對所述振鏡掃描系統在每個位置處均進行m次曝光,並對每一處的光斑的採樣資料求均值: Optionally, the galvanometer correction method further includes the following steps: S5: The position of the optical axis of the galvanometer of the galvanometer scanning system is maintained unchanged, and the galvanometer scanning system is performed on the gantry. For the first horizontal movement, each step is projected by the galvanometer scanning system multiple times, and the spot position measuring device is used to measure the light spot projected at each step position on the gantry. Position x i , j , y i , j in the zero coordinate system, where i = 1,2, ..., n is the number of steps and j = 1,2, ..., m is each step The number of times the spot is projected at the advanced position; S6: Keep the position of the galvanometer scanning system unchanged, so that the optical axis of the galvanometer is in the first horizontal direction to perform spot projection in the field at various measurement positions. The spot position measuring device measures the horizontal positions x ' i , j , y' i , j of each spot projected at each measurement position under the zero coordinate system of the gantry, where i = 1,2, .. ., n is the number of measurement positions, j = 1,2, ..., m is the number of light spots projected at each measurement position; S7: S6 The nominal position is the same as the nominal position in S5, which are respectively x_nom i , y_nom i . In S5 and S6, the galvanometer scanning system performs m exposures at each position, and samples the light spot at each position. Data average:

將以上的採樣資料代入以下公式進行最小平方法擬合,得到振鏡安裝旋轉量為k The above sampling data is substituted into the following formula to perform the least square method fitting, and the galvanometer installation rotation amount is k :

其中,b為常數;S8:通過振鏡控制器,根據S7中得出的振鏡安裝旋轉量對所述振鏡掃描系統進行校正,控制矯正後的所述振鏡掃描系統進行重新掃描並重新形成多個光斑,並對重新形成的多個光斑進行檢測以及精度判斷,如精度不滿足則重複S5至S7,如精度滿足則停止重複步驟,完成安裝旋轉矯正。 Among them, b is a constant; S8: The galvanometer controller is used to correct the galvanometer scanning system according to the galvanometer installation rotation amount obtained in S7, and the corrected galvanometer scanning system is rescanned and restarted. A plurality of light spots are formed, and the newly formed light spots are detected and judged for accuracy. If the accuracy is not satisfied, repeat S5 to S7. If the accuracy is satisfied, stop repeating the steps to complete the installation rotation correction.

與現有技術相比,本發明提供了一種振鏡矯正系統及 方法,在進行矯正的時候,通過對振鏡掃描系統在特定的測量位置(由振鏡的光軸位置決定,可理解為名義位置)利用振鏡的偏轉角度在所述測量位置對應的場內形成多個光斑,對所述多個光斑的實測位置與名義位置之間的關係進行計算,從而獲得對振鏡掃描系統的場內誤差補償量,並且在計算出補償量之後代回核算,從而驗證補償量的正確性,本發明還利用類似的測量、計算、核算過程來對振鏡的安裝旋轉誤差進行校正,如此不僅杜絕了矯正時候存在的誤差,同時通過驗證之後還能夠保證補償量的準確性,實用性強。 Compared with the prior art, the present invention provides a galvanometer correction system and method. During the correction, the galvanometer scanning system is determined at a specific measurement position (determined by the position of the optical axis of the galvanometer, which can be understood as the nominal position. ) Use the deflection angle of the galvanometer to form multiple light spots in the field corresponding to the measurement position, and calculate the relationship between the measured positions and the nominal positions of the multiple light spots, so as to obtain the field of the galvanometer scanning system. The error compensation amount is calculated after the compensation amount is calculated, thereby verifying the correctness of the compensation amount. The present invention also uses a similar measurement, calculation, and accounting process to correct the installation rotation error of the galvanometer, which not only eliminates the The errors existing in the correction can be guaranteed, and the accuracy of the compensation amount can be guaranteed after verification, which is highly practical.

1‧‧‧振鏡掃描系統 1‧‧‧ galvanometer scanning system

2‧‧‧振鏡控制器 2‧‧‧ Galvanometer Controller

3‧‧‧雷射器設備 3‧‧‧laser equipment

4‧‧‧龍門架 4‧‧‧ Gantry

5‧‧‧平場聚焦透鏡(F-theta鏡) 5‧‧‧ flat-field focusing lens (F-theta lens)

6‧‧‧檢測採樣系統 6‧‧‧ Detection and sampling system

7‧‧‧光斑位置測量裝置 7‧‧‧Spot position measuring device

8‧‧‧水冷系統 8‧‧‧ water cooling system

9‧‧‧工件台 9‧‧‧Workbench

10‧‧‧第一校正光斑 10‧‧‧First correction spot

11‧‧‧第二校正光斑 11‧‧‧second correction spot

12‧‧‧第三校正光斑 12‧‧‧ third correction spot

13‧‧‧第四校正光斑 13‧‧‧ Fourth correction spot

圖1是本發明中的矯正方法示意圖;圖2是本發明中的校正系統的示意圖;圖3是本發明中補償量回饋的示意圖;圖4是本發明中振鏡掃描系統在S1中的打點示意圖;圖5是本發明中振鏡掃描系統在S5和S6的打點示意圖;圖6是本發明中光斑位置測量裝置位於工件台側部時候的結構圖;圖7是本發明實施例中光斑位置在x向和y向的偏差的計算理論值;圖8是本發明實施例中將F-theta計算數值導入到補償量中之後實測所得到的光斑畸變量;圖9是本發明實施例中光斑位置經過校準後實際畸變曲線;圖10是在龍門架上連接有多個振鏡掃描系統的結構示意圖。 1 is a schematic diagram of a correction method in the present invention; FIG. 2 is a schematic diagram of a correction system in the present invention; FIG. 3 is a schematic diagram of compensation amount feedback in the present invention; and FIG. Schematic diagram; Figure 5 is a schematic diagram of the galvanometer scanning system of the present invention at S5 and S6; Figure 6 is a structural diagram of the spot position measuring device of the present invention is located on the side of the workpiece table; Figure 7 is the spot position in the embodiment of the present invention The calculated theoretical value of the deviation in the x-direction and the y-direction; FIG. 8 is a spot distortion variable measured after the F-theta calculation value is imported into the compensation amount in the embodiment of the present invention; FIG. 9 is a light spot in the embodiment of the present invention The actual distortion curve after the position is calibrated; FIG. 10 is a schematic structural diagram of a plurality of galvanometer scanning systems connected to a gantry.

以下結合附圖和具體實施例對本發明提出的一種振鏡矯正系統及方法作進一步詳細說明。根據下面說明和申請專利範圍,本發明的優點和特徵將更清楚。需說明的是,附圖均採用非常簡化的形式且均使用非精準的比例,僅用以方便、明晰地輔助說明本發明實施例的目的。 A galvanometer correction system and method provided by the present invention will be further described in detail below with reference to the accompanying drawings and specific embodiments. The advantages and features of the present invention will become clearer from the following description and the scope of patent application. It should be noted that the drawings are in a very simplified form and all use inaccurate proportions, which are only used to facilitate and clearly assist the description of the embodiments of the present invention.

振鏡是雷射加工工藝中的常用部件之一,可以與雷射器設備、F-theta鏡等聯合使用以實現對待加工工件的雷射掃描。振鏡通常具有平面表面且能關於其中心軸在一定角度範圍內擺動,振鏡的作用,例如是使雷射器設備發出的雷射光束按照預定的路徑進行往復運動。然而,由於工作環境、安裝精度等因素,可能導致振鏡的實際工作性能未能達到期望的要求,因而有必要對振鏡進行矯正。 Galvanometer is one of the commonly used parts in laser processing technology. It can be used in combination with laser equipment, F-theta mirror, etc. to achieve laser scanning of the workpiece to be processed. The galvanometer usually has a flat surface and can swing within a certain range of angles with respect to its central axis. The function of the galvanometer is, for example, to reciprocate the laser beam emitted by the laser device along a predetermined path. However, due to factors such as the working environment and installation accuracy, the actual working performance of the galvanometer may not meet the expected requirements, so it is necessary to correct the galvanometer.

為此,本發明提出一種振鏡矯正系統及方法,在一具體實施例中,以用於雷射加工工藝中的振鏡為例進行說明,因而在下述實施例中將光源設備描述為雷射器設備,將聚焦裝置描述為F-theta鏡。然而本領域技術人員應當理解,也可以採用其它的光源設備和/或其它的聚焦裝置來實現振鏡的矯正,本發明不應以此為限。 To this end, the present invention provides a galvanometer correction system and method. In a specific embodiment, a galvanometer used in a laser processing process is described as an example. Therefore, a light source device is described as a laser in the following embodiments. Device, describing the focusing device as an F-theta lens. However, those skilled in the art should understand that other light source equipment and / or other focusing devices can also be used to achieve galvanometer correction, and the present invention should not be limited to this.

如圖1至圖3所示,根據一具體實施例的振鏡矯正系統包括振鏡掃描系統1、振鏡控制器2、雷射器設備3、龍門架4、F-theta鏡5、檢測採樣系統6以及光斑位置測量裝置7,所述F-theta鏡5用於對振鏡掃描系統1出射的光束聚焦,所述檢測採樣系統6用於實現光斑位置測量裝置7與振鏡掃描系統1之間的對準,例如可通過檢測採樣系統6對工件台9所承載的基板上的對準標記的位 置進行採樣,獲得光斑位置測量裝置7相對於基板的第一位置關係,再根據檢測採樣系統6相對於振鏡掃描系統1的第二位置關係(其為已知量)得出光斑位置測量裝置7相對於振鏡掃描系統1的位置關係,從而實現對準。所述振鏡控制器2控制振鏡掃描系統1進行掃描,使得振鏡掃描系統1中的振鏡在一個或多個特定的測量位置(由振鏡的光軸位置決定,可理解為名義位置)利用雷射器設備3發出的光源和振鏡的偏轉角度形成一個或多個光斑,所述振鏡掃描系統1安裝在龍門架4上,且可沿龍門架4進行x方向運動,也可隨龍門架4進行z方向運動,其中z是豎直方向。振鏡例如以中心軸沿y向延伸的方式安裝在龍門架4上,其中,x向和y向是水平面內相互垂直的兩個方向。 As shown in FIG. 1 to FIG. 3, a galvanometer correction system according to a specific embodiment includes a galvanometer scanning system 1, a galvanometer controller 2, a laser device 3, a gantry 4, an F-theta mirror 5, and detection sampling. System 6 and spot position measuring device 7, the F-theta mirror 5 is used to focus the light beam emitted from the galvanometer scanning system 1, and the detection and sampling system 6 is used to implement the spot position measuring device 7 and the galvanometer scanning system 1. For example, the position of the alignment mark on the substrate carried by the workpiece table 9 can be sampled by the detection and sampling system 6 to obtain the first positional relationship of the spot position measuring device 7 with respect to the substrate. 6 The second positional relationship (which is a known quantity) relative to the galvanometer scanning system 1 results in the positional relationship of the spot position measuring device 7 relative to the galvanometer scanning system 1 to achieve alignment. The galvanometer controller 2 controls the galvanometer scanning system 1 to scan, so that the galvanometer in the galvanometer scanning system 1 is at one or more specific measurement positions (determined by the position of the optical axis of the galvanometer, which can be understood as the nominal position ) The light source and the deflection angle of the galvanometer are used to form one or more light spots. The galvanometer scanning system 1 is installed on the gantry 4 and can move along the gantry 4 in the x direction. The z-direction movement is performed with the gantry 4, where z is a vertical direction. The galvanometer is mounted on the gantry 4 such that the central axis extends in the y direction, where the x direction and the y direction are two directions perpendicular to each other in the horizontal plane.

振鏡校正包括振鏡場內誤差校正和振鏡安裝旋轉校正。 Galvanometer correction includes in-field error correction and galvanometer installation rotation correction.

振鏡場內誤差校正,包括以下步驟:S1:振鏡掃描系統1的振鏡的擺動角度使得振鏡光軸(即通過振鏡出射的光線的光軸)在x向和y向依次打點,即振鏡光軸與xy平面形成交點,實現在振鏡對應的場內形成多個光斑,光斑位置測量裝置7對振鏡掃描系統1產生的所有光斑的位置進行測量並記錄,其中如圖4所示,在x向掃描得到若干個第一校正光斑10,在y向掃描得到若干個第二校正光斑11;S2:將位置測量裝置7測量得到的第一校正光斑10和第二校正光斑11的位置資料代入場內套刻模型得到當前振鏡的場內誤差參數;S3:計算得到所述振鏡的x向和y向補償量,以補償振鏡的場 內誤差;S4:振鏡控制器2根據S3中得出的x向和y向補償量對所述振鏡掃描系統1進行補償,並採用補償後的振鏡掃描系統1重新掃描並形成光斑(即重複S1),並對重新形成的光斑進行檢測以及精度判斷(即重複S2),如精度不滿足,則再次計算補償量(即重複S3)。上述S1至S3可多次重複,直至精度滿足要求,則停止重複步驟,完成場內誤差矯正。 The correction of the galvanometer field error includes the following steps: S1: The swing angle of the galvanometer of the galvanometer scanning system 1 causes the optical axis of the galvanometer (that is, the optical axis of the light emitted through the galvanometer) to sequentially dot in the x direction and the y direction. That is, the optical axis of the galvanometer and the xy plane form an intersection point, so that a plurality of light spots are formed in the field corresponding to the galvanometer. The spot position measuring device 7 measures and records the positions of all light spots generated by the galvanometer scanning system 1. As shown, a plurality of first correction spots 10 are obtained in the x-direction scanning, and a plurality of second correction spots 11 are obtained in the y-direction scanning; S2: the first correction spots 10 and the second correction spots 11 measured by the position measuring device 7 The position data of the camera is substituted into the in-field overlay model to obtain the in-field error parameters of the current galvanometer; S3: the x- and y-direction compensation amounts of the galvanometer are calculated to compensate the in-field error of the galvanometer; S4: galvanometer control The scanner 2 compensates the galvanometer scanning system 1 according to the x-direction and y-direction compensation amounts obtained in S3, and uses the compensated galvanometer scanning system 1 to rescan and form a light spot (ie, repeat S1), Detection and accuracy judgment of the formed light spot (Ie repeat S2), if the accuracy is not satisfied, calculate the compensation amount again (ie repeat S3). The above S1 to S3 can be repeated multiple times until the accuracy meets the requirements, then the repeating steps are stopped to complete the field error correction.

其中,所述S2中的場內套刻模型如下:△x=Mxx-Ryy+Txy=Myy+Rxx+Ty........................(2-1) The in-field overlay model in S2 is as follows: △ x = Mx . x - Ry . y + Txy = My . y + Rx . x + Ty .............. (2-1)

上式中,△x、△y:光斑在水平向實際成像位置(即位置測量裝置7測量得到的位置)與名義位置(即振鏡控制器2設定的位置)在x向和y向的偏差;xy:由振鏡控制器所設定的光斑的名義位置;TxTy:振鏡場內光斑的實際成像位置相對於名義位置在x向和y向的平移;MxMy:振鏡場內光斑的實際成像大小相對於光斑的名義成像大小在x向和y向的放大倍率;RxRy:振鏡場內光斑的實際成像位置相對於名義位置在x向和y向的旋轉;測試中共測量n=M×N個光斑,其中M、N是自然數,對於n個光斑,將(2-1)變換為矩陣形式: In the above formula, △ x and △ y are the deviations of the actual imaging position of the light spot in the horizontal direction (that is, the position measured by the position measuring device 7) and the nominal position (that is, the position set by the galvanometer controller 2) in the x and y directions. ; X , y : the nominal position of the spot set by the galvanometer controller; Tx , Ty : the actual imaging position of the spot in the galvanometer field is translated in the x and y directions relative to the nominal position; Mx , My : the galvanometer Magnification of the actual imaging size of the spot in the field with respect to the nominal imaging size of the spot in the x and y directions; Rx , Ry : rotation of the actual imaging position of the spot in the galvanometer field relative to the nominal position in the x and y directions; In the test, a total of n = M × N light spots are measured, where M and N are natural numbers. For n light spots, (2-1) is transformed into a matrix form:

利用最小平方法擬合,得到當前振鏡的場內誤差Tx,Ty,Mx,My,Rx,RyThe least square method is used for fitting to obtain the in-field errors Tx , Ty , Mx , My , Rx , Ry of the current galvanometer.

所述S3中的振鏡補償量如下,即振鏡掃描系統的光軸在每個x,y位置處的補償量為:DeltaX(y)=△x-Tx-0.5.(Rx+Ry).y DeltaY(x)=△y-Ty-0.5.(Rx+Ry).x.....................(2-3)。 The compensation amount of the galvanometer in S3 is as follows, that is, the compensation amount of the optical axis of the galvanometer scanning system at each x , y position is: DeltaX ( y ) = △ x - Tx -0.5. ( Rx + Ry ). y DeltaY ( x ) = △ y - Ty -0.5. ( Rx + Ry ). x ..................... (2-3).

所述振鏡掃描系統1在x向和y向上每一個測量位置處均先後形成若干個光斑,並對若干個光斑的位置資料取均值,用於S3中的計算。 The galvanometer scanning system 1 successively forms several light spots at each measurement position in the x direction and the y direction, and averages the position data of the several light spots for calculation in S3.

振鏡安裝旋轉校正,包括以下步驟:S5:保持振鏡掃描系統1的光軸的場內位置不變,即通過使得振鏡保持在一個固定的擺動角度使得振鏡的光軸與xy平面的夾角保持不變,振鏡掃描系統1在龍門架4上進行x向運動,每步進一次,振鏡掃描系統1投射一次光斑,並利用光斑位置測量裝置7測量單個測量位置下單次投射所產生的光斑在龍門架4零位坐標系下的位置x i,j ,y i,j ,其中i=1,2,...,n為曝光標記的個數,在每個測量位置可多次重複光斑投射,從而利用光斑位置測量裝置7獲得該測量位置處的多個 測量值,以j表示測量次數,j=1,2,...,m。其中如圖5所示,在x向打點得到若干個處於同一條水平線上的第三校正光斑12;S6:再保持振鏡掃描系統1的位置不變,通過振鏡的擺動實現振鏡的光軸沿x方向掃描,從而在x方向上形成多個光斑,利用光斑位置測量裝置7測量振鏡掃描系統1在上述擺動過程中形成的每個光斑在龍門架4零位坐標系下的水平向位置x' i,j ,y' i,j ,其中i為振鏡形成不同位置的光斑的個數,j為在每個光斑位置下利用光斑位置測量裝置7的測量次數,得到若干個第四校正光斑13;S7:S6中光斑的名義位置與S5中的名義位置相同,均分別為x_nom i ,y_nom i ,S5和S6中對振鏡掃描系統1在每個測量位置處均進行m次光斑投射,並對每一處的光斑的採樣資料求均值: The galvanometer installation rotation correction includes the following steps: S5: Keep the position of the optical axis of the galvanometer scanning system 1 unchanged, that is, by keeping the galvanometer at a fixed swing angle, the optical axis of the galvanometer and the xy plane The included angle remains the same. The galvo scanning system 1 performs an x-direction movement on the gantry 4. Each step, the galvo scanning system 1 projects a light spot, and uses a light spot position measuring device 7 to measure a single projection position at a single measurement position. The position of the generated light spot under the zero coordinate system of gantry 4 x i , j , y i , j , where i = 1, 2, ..., n is the number of exposure marks, which can be increased at each measurement position The spot projection is repeated twice, so that a plurality of measurement values at the measurement position are obtained by the spot position measuring device 7, and the number of measurements is represented by j, j = 1, 2, ..., m . As shown in FIG. 5, in the x-direction, several third correction spots 12 on the same horizontal line are obtained; S6: the position of the galvanometer scanning system 1 is kept unchanged, and the light of the galvanometer is realized by the vibration of the galvanometer. The axis scans in the x direction to form a plurality of light spots in the x direction. The light spot position measuring device 7 is used to measure the horizontal direction of each light spot formed by the galvanometer scanning system 1 during the above-mentioned swing process in the zero coordinate system of the gantry 4 Positions x ' i , j , y' i , j , where i is the number of light spots formed by the galvanometer at different positions, and j is the number of measurements by the light spot position measuring device 7 at each light spot position to obtain several fourths Correction spot 13; S7: The nominal position of the spot in S6 is the same as the nominal position in S5, and they are x_nom i , y_nom i , respectively. In S5 and S6, the galvanometer scanning system 1 performs m times of spots at each measurement position. Projection, and average the sampled data of each spot:

將以上的採樣資料代入以下公式進行最小平方法擬合,得到振鏡安裝旋轉量為k The above sampling data is substituted into the following formula to perform the least square method fitting, and the galvanometer installation rotation amount is k :

其中,b是常數。 Where b is a constant.

S8:將S7中得出的振鏡安裝旋轉量代回到振鏡控制器2中,用於控制所述振鏡掃描系統進行重新掃描並形成光斑,並對重新形 成的光斑進行檢測以及精度判斷,如精度不滿足,重複S5至S7,滿足則停止,完成安裝旋轉矯正。 S8: Substitute the galvanometer installation rotation amount obtained in S7 back to the galvanometer controller 2 for controlling the galvanometer scanning system to re-scan and form a light spot, and detect and accurately judge the newly formed light spot. If the accuracy is not satisfied, repeat S5 to S7, stop if it is satisfied, and complete the installation of rotation correction.

如圖7所示,為本實施例中振鏡系統在x向和y向的理論計算校準偏差曲線圖,其中圖8為將已知的F-theta偏差值代入進行計算之後,在x向和y向的理論校準偏差曲線圖,而圖9則為本實施例中的光斑的實際偏差圖,從圖中能夠看出,在進行校正調節之後光斑在x向和y向均可以達到一定的精度,而實際精度就需要根據實際情況進行設定和校準。 As shown in FIG. 7, in this embodiment, the galvanometer system theoretically calculates a calibration deviation curve in the x-direction and the y-direction. FIG. 8 is a calculation in which a known F-theta deviation value is substituted, and The theoretical calibration deviation curve of the y direction, and FIG. 9 is the actual deviation chart of the light spot in this embodiment. As can be seen from the figure, the light spot can reach a certain accuracy in both the x direction and the y direction after the correction adjustment is performed. , And the actual accuracy needs to be set and calibrated according to the actual situation.

較佳的,所述光斑位置測量裝置7為輪廓儀;還包括水冷系統8,所述水冷系統用於對振鏡掃描系統1進行水冷降溫,所述水冷系統8的水冷溫度為20℃-24℃,本實施例較佳為22℃。 Preferably, the spot position measuring device 7 is a profiler; and further includes a water cooling system 8 for cooling the galvanometer scanning system 1 with water, and the water cooling temperature of the water cooling system 8 is 20 ° C-24 ℃, this embodiment is preferably 22 ℃.

本實施例所述的振鏡矯正系統還包括有工件台9,所述工件台9在y向運動,可以實現振鏡掃描系統1相對於工件台9上的工件在y方向的相對運動。所述光斑位置測量裝置7可選擇的連接於所述工件台9的上部或側部,當光斑位置測量裝置7位於工件台9側部的時候,如圖6所示,既能實現校正振鏡系統又不影響到振鏡校正後振鏡掃描系統1對工件台9上的工件進行雷射加工,實用性強。 The galvanometer correction system described in this embodiment further includes a workpiece table 9 that moves in the y-direction, and can realize relative movement of the galvanometer scanning system 1 relative to the workpiece on the workpiece table 9 in the y-direction. The spot position measuring device 7 is optionally connected to the upper or side of the work table 9. When the spot position measuring device 7 is located on the side of the work table 9, as shown in FIG. 6, both the galvanometer can be corrected The system does not affect the galvanometer scanning system 1 to perform laser processing on the workpiece on the workpiece table 9 after the galvanometer is calibrated, and the practicability is strong.

所述龍門架4上還可以設置若干個振鏡掃描系統1,如圖10所示,如此就能夠同時進行多組振鏡掃描系統1的加工,其中若干個振鏡掃描系統1可以是與同一個雷射器設備3連接,也可以分別與雷射器設備3進行連接,同樣,不同的振鏡掃描系統1可以與同一個振鏡控制器2連接,也可以分別與不同的振鏡控制器2連接,根據實際情況進行調節。 The gantry 4 can also be provided with a plurality of galvanometer scanning systems 1, as shown in FIG. 10, so that multiple groups of galvanometer scanning systems 1 can be processed at the same time. Among them, several galvanometer scanning systems 1 can be the same as the same. One laser device 3 can be connected to the laser device 3, and different galvanometer scanning systems 1 can be connected to the same galvanometer controller 2 or different galvanometer controllers. 2 connection, adjust according to the actual situation.

在對不同類的振鏡系統進行校正的時候,可以在每一類振鏡系統中選擇其中之一進行校正並得到補償資料,然後再得到補償資料並回饋到振鏡控制器2中之後,對同一類中的其它振鏡系統直接進行驗證即可,如此就能夠在實際操作過程中大大的減小校正振鏡的勞動強度以及校正時間。 When correcting different types of galvanometer systems, you can choose one of each type of galvanometer system for calibration and get compensation data, and then get the compensation data and feed it back to the galvanometer controller 2. The other galvanometer systems in this class can be directly verified, so that the labor intensity and calibration time of correcting the galvanometer can be greatly reduced in the actual operation process.

綜上所述,本發明提供的一種振鏡矯正系統及方法,在對振鏡掃描系統進行矯正的時候,振鏡掃描系統中的振鏡在一個或多個特定的測量位置利用雷射器設備發出的光源和振鏡的偏轉角度形成第一校正光斑和第二校正光斑,並將形成的光斑的位置與名義位置之間進行計算,從而對實際光斑位置與名義位置之間形成一個實際的補償關係,這樣就杜絕了人手矯正以及調節過程中存在的誤差,調節效果好,並且由於每個光斑都是通過若干個光斑求平均值後得到的,這樣還減少了偶然誤差,使得補償量的數字能夠使得實際光斑位置更加接近名義位置;該補償量是總體的振鏡掃描系統的補償量,而同樣通過第三校正光斑和第四校正光斑對鏡片的安裝旋轉也進行了補償計算之後,就能夠得到更佳的補償量,同理,由於鏡片偏轉的補償計算中也是將m個光斑的位置進行了平均化之後再與名義位置之間進行計算,如此也能夠減少偶然誤差。 In summary, the galvanometer correction system and method provided by the present invention, when the galvanometer scanning system is corrected, the galvanometer in the galvanometer scanning system uses a laser device at one or more specific measurement positions. The deflection angle of the emitted light source and the galvanometer forms the first correction spot and the second correction spot, and calculates the position between the formed spot and the nominal position, thereby forming an actual compensation between the actual spot position and the nominal position. This eliminates errors in the manual correction and adjustment process, and the adjustment effect is good, and because each light spot is obtained by averaging several light spots, this also reduces accidental errors and makes the number of compensation amounts It can make the actual spot position closer to the nominal position; the compensation amount is the compensation amount of the overall galvanometer scanning system, and after the third and fourth correction spots are also used to compensate the installation rotation of the lens, the A better compensation amount is obtained. Similarly, the position of m light spots is also calculated in the compensation calculation of lens deflection. After averaging and calculating with the nominal position, it can also reduce accidental errors.

振鏡掃描系統在工作的過程中會溫度升高,從而容易引起溫飄而導致光斑位置測量裝置,即輪廓儀對光斑的感應不準,如此通過水冷系統對振鏡掃描系統進行水冷之後就能夠較好的使得振鏡掃描系統保持一個較為合適感應的溫度,本實施例取22℃,在溫度恒定的前提下,溫飄帶來的誤差可以減小到最小,如此使得補償量的計算就能夠更為準確。 The galvanometer scanning system will increase in temperature during the working process, which will easily cause temperature drift and lead to the spot position measurement device, that is, the profiler's insensitivity to the light spot. In this way, the galvanometer scanning system can be water-cooled by the water cooling system. It is better to make the galvanometer scanning system maintain a more suitable sensing temperature. In this embodiment, 22 ° C is used. Under the premise of constant temperature, the error caused by temperature drift can be minimized, so that the calculation of the compensation amount can be more For accuracy.

需要說明的是,本說明書中各個實施例採用遞進的方式描述,每個實施例重點說明的都是與其他實施例的不同之處,各個實施例之間相同相似部分互相參見即可。對於實施例公開的測試方法而言,由於其採用的測試裝置與實施例公開的裝置部分相對應,所以對其中涉及的測試裝置描述的比較簡單,相關之處參見裝置部分說明即可。 It should be noted that each embodiment in this specification is described in a progressive manner. Each embodiment focuses on the differences from other embodiments, and the same or similar parts between the various embodiments may refer to each other. As for the test method disclosed in the embodiment, since the test device adopted by the embodiment corresponds to the device portion disclosed in the embodiment, the description of the test device involved therein is relatively simple. For the relevant part, refer to the description of the device portion.

上述描述僅是對本發明較佳實施例的描述,並非對本發明範圍的任何限定,本發明領域的普通技術人員根據上述揭示內容做的任何變更、修飾,均屬於申請專利範圍的保護範圍。 The above description is only a description of the preferred embodiments of the present invention, and does not limit the scope of the present invention in any way. Any changes and modifications made by those skilled in the art in accordance with the above disclosure are within the protection scope of the patent application.

Claims (13)

一種振鏡矯正系統,其特徵在於,包括振鏡掃描系統、振鏡控制器、龍門架、聚焦裝置、檢測採樣系統以及光斑位置測量裝置,所述振鏡掃描系統包括振鏡,所述聚焦裝置用於對經由所述振鏡出射的光束進行聚焦,所述檢測採樣系統用於實現所述光斑位置測量裝置與所述振鏡之間的對準,所述振鏡控制器用於控制所述振鏡的運動以實現在振鏡對應的場內形成多個光斑,所述振鏡掃描系統能夠沿所述龍門架在第一水平方向運動,且能夠跟隨所述龍門架在豎直方向上運動。     A galvanometer correction system is characterized by comprising a galvanometer scanning system, a galvanometer controller, a gantry, a focusing device, a detection and sampling system, and a spot position measuring device. The galvanometer scanning system includes a galvanometer and the focusing device. The galvanometer is used to focus the light beam emitted through the galvanometer, the detection and sampling system is used to achieve alignment between the spot position measuring device and the galvanometer, and the galvanometer controller is used to control the vibration The movement of the mirror is to form a plurality of light spots in a field corresponding to the galvanometer. The galvanometer scanning system can move along the gantry in a first horizontal direction and can follow the gantry to move in a vertical direction.     如請求項1之振鏡矯正系統,其中,還包括水冷系統,所述水冷系統用於對所述振鏡掃描系統進行水冷降溫。     The galvanometer correction system according to claim 1, further comprising a water cooling system, which is used for cooling the galvanometer scanning system with water.     如請求項1之振鏡矯正系統,其中,所述光斑位置測量裝置為輪廓儀。     The galvanometer correction system according to claim 1, wherein the spot position measuring device is a profiler.     如請求項1之振鏡矯正系統,其中,還包括工件台,所述工件台能夠沿水平第二方向運動,其中所述第二水平方向與所述第一水平方向垂直,所述光斑位置測量裝置連接於所述工件台的上部或側部。     The galvanometer correction system according to claim 1, further comprising a workpiece table capable of moving in a horizontal second direction, wherein the second horizontal direction is perpendicular to the first horizontal direction, and the spot position is measured. The device is connected to an upper part or a side part of the workpiece table.     如請求項4之振鏡矯正系統,其中,所述工件台用於帶動所述光斑位置測量裝置移動從而實現對光斑位置的測量。     The galvanometer correction system according to claim 4, wherein the workpiece stage is used to drive the spot position measuring device to move to realize the measurement of the spot position.     如請求項1之振鏡矯正系統,其中,所述龍門架上設置有多個所述振鏡掃描系統。     The galvanometer correction system according to claim 1, wherein a plurality of the galvanometer scanning systems are provided on the gantry.     如請求項1之振鏡矯正系統,其中,還包括雷射器設備,用於向所述振鏡掃描系統提供入射光束。     The galvanometer correction system according to claim 1, further comprising a laser device for providing an incident beam to the galvanometer scanning system.     如請求項1之振鏡矯正系統,其中,所述聚焦裝置為平場聚焦 透鏡(F-theta鏡)。     The galvanometer correction system according to claim 1, wherein the focusing device is a flat field focusing lens (F-theta lens).     一種採用請求項1至8中任一項之振鏡矯正系統的振鏡矯正方法,其特徵在於,包括如下步驟:S1:通過改變振鏡掃描系統中的振鏡的擺動角度,使得所述振鏡的光軸分別沿第一水平方向和第二水平方向移動,實現在振鏡對應的場內形成多個光斑,光斑位置測量裝置對所述多個光斑的位置進行測量並記錄;S2:將所述光斑位置測量裝置測量得到的資料代入場內套刻模型得到當前振鏡場內誤差參數;S3:根據當前振鏡場內誤差參數計算得到待補償的振鏡場內誤差量,所述振鏡場內誤差量包括第一水平方向誤差量和第二水平方向誤差量;S4:通過振鏡控制器,根據S3中得出的所述第一水平方向誤差量和所述第二水平方向誤差量對所述振鏡掃描系統進行校正,控制校正後的所述振鏡掃描系統進行重新掃描並重新形成多個光斑,並對重新形成的多個光斑進行檢測以及精度判斷,如精度不滿足則重複S1至S3;如精度滿足則停止重複步驟,完成場內誤差矯正。     A galvanometer correction method using the galvanometer correction system of any one of claims 1 to 8 is characterized in that it includes the following steps: S1: By changing the swing angle of the galvanometer in the galvanometer scanning system, the vibration The optical axis of the mirror is moved in the first horizontal direction and the second horizontal direction, respectively, so that a plurality of light spots are formed in the field corresponding to the galvanometer, and the spot position measuring device measures and records the positions of the multiple light spots; S2: The data measured by the light spot position measuring device is substituted into the intra-overset model to obtain the current in-field galvanometer error parameter; S3: the amount of in-field galvanometer error to be compensated is calculated according to the current in-field galvanometer parameter, and the vibration The error amount in the mirror field includes a first horizontal direction error amount and a second horizontal direction error amount; S4: through the galvanometer controller, according to the first horizontal direction error amount and the second horizontal direction error obtained in S3 Correct the galvanometer scanning system, control the corrected galvanometer scanning system to rescan and re-form multiple light spots, and detect the newly formed multiple light spots Analyzing and precision, such precision is not satisfied S1 to S3 are repeated; such accuracy meets the stop step is repeated, to complete the field of error correction.     如請求項9之振鏡矯正方法,其中,所述S2中的場內套刻模型如下:△ x= Mxx- Ryy+ Txy= Myy+ Rxx+ Ty其中,△ x、△ y:光斑在水平向實際成像位置與名義位置在所述第一水平方向和所述第二水平方向的偏差; xy:由所述振鏡控制器所設定的光斑的名義位置; TxTy:振鏡場內光斑的實際成像位置與名義位置在所述第一水平方向和所述第二水平方向的平移; MxMy:振鏡場內光斑的實際成像大小相對於光斑的名義成像大小在所述第一水平方向和所述第二水平方向的倍率; RxRy:振鏡場內光斑的實際成像位置與名義位置在所述第一水平方向和所述第二水平方向的旋轉;測試中共測量n=M×N個光斑,其中M、N是自然數,對於n個光斑,將所述場內套刻模型變換為矩陣形式: 利用最小平方法擬合,得到當前振鏡場內誤差 Tx, Ty, Mx, My, Rx, RyFor example, the galvanometer correction method of item 9, wherein the in-field overcut model in S2 is as follows: △ x = Mx . x - Ry . y + Txy = My . y + Rx . x + Ty , △ x , △ y : the deviation between the actual imaging position of the light spot in the horizontal direction and the nominal position in the first horizontal direction and the second horizontal direction; x , y : by the galvanometer controller Set the nominal position of the spot; Tx , Ty : translation of the actual imaging position and nominal position of the spot in the galvanometer field in the first horizontal direction and the second horizontal direction; Mx , My : the The magnification of the actual imaging size relative to the nominal imaging size of the light spot in the first horizontal direction and the second horizontal direction; Rx , Ry : the actual imaging position and nominal position of the light spot in the galvanometer field are in the first horizontal direction And the rotation in the second horizontal direction; a total of n = M × N light spots are measured in the test, where M and N are natural numbers, and for the n light spots, the intra-field overlay model is transformed into a matrix form: The least square method is used to obtain the current errors Tx , Ty , Mx , My , Rx , Ry in the galvanometer field. 如請求項10之振鏡矯正方法,其中,所述S3中的第一水平方向誤差量和第二水平方向誤差量包括所述振鏡的光軸在每個光斑的名義位置處的補償量,表示為: DeltaX( y)=△ x- Tx-0.5.( Rx+ Ry). y DeltaY( x)=△ y- Ty-0.5.( Rx+ Ry). xThe galvanometer correction method of claim 10, wherein the first horizontal error amount and the second horizontal error amount in S3 include a compensation amount of the optical axis of the galvanometer at a nominal position of each light spot, Expressed as: DeltaX ( y ) = △ x - Tx -0.5. ( Rx + Ry ). y DeltaY ( x ) = △ y - Ty -0.5. ( Rx + Ry ). x . 如請求項11之振鏡矯正方法,其中,所述振鏡掃描系統在每一特定測量位置均進行多次光斑位置測量,並對多個光斑位置資料取均值,用於S3中的計算。     For example, the galvanometer correction method according to item 11, wherein the galvanometer scanning system performs multiple spot position measurements at each specific measurement position, and averages multiple spot position data for calculation in S3.     如請求項11之振鏡矯正方法,其中,還包括以下步驟:S5:保持所述振鏡掃描系統的振鏡的光軸的場內位置不變,所述振鏡掃描系統在所述龍門架上進行所述第一水平方向運動,每步進一次,由所述振鏡掃描系統投射多次光斑,並利用所述光斑位置測量裝置測量各個步進位置下各次投射的光斑在所述龍門架的零位坐標系下的位置 x i,j , y i,j ,其中 i= 1,2,...,n為步進的次數, j= 1,2,...,m為每個步進位置處投射光斑的次數;S6:保持所述振鏡掃描系統的位置不變,使所述振鏡的光軸沿所述第一水平方向,在各個測量位置進行場內光斑投射,利用所述光斑位置測量裝置測量各個測量位置下投射的各個光斑在所述龍門架的零位坐標系下的水平向位置 x' i,j , y' i,j ,其中 i= 1,2,...,n為測量位置的個數, j= 1,2,...,m為在每個測量位置處投射的光斑的個數;S7:S6中光斑的名義位置與S5中的名義位置相同,均分別為 x_nom i , y_nom i ,S5和S6中對所述振鏡掃描系統在每個位置處均進行m次曝光,並對每一處的光斑的採樣資料求均值: 將以上的採樣資料代入以下公式進行最小平方法擬合,得到振鏡安裝旋轉量為 k 其中,b為常數;S8:通過振鏡控制器,根據S7中得出的振鏡安裝旋轉量對所述振鏡掃描系統進行校正,控制矯正後的所述振鏡掃描系統進行重新掃描並重新形成多個光斑,並對重新形成的多個光斑進行檢測以及精度判斷,如精度不滿足則重複S5至S7,如精度滿足則停止重複步驟,完成安裝旋轉矯正。 If the galvanometer correction method of item 11 is further included, the method further includes the following steps: S5: Keep the position of the optical axis of the galvanometer of the galvanometer scanning system unchanged in the field, and the galvanometer scanning system is on the gantry. The first horizontal direction movement is performed, and each step is performed by the galvanometer scanning system to project a plurality of light spots, and the light spot position measuring device is used to measure each light spot projected at each step position on the gantry The positions x i , j , y i , j in the zero coordinate system of the frame, where i = 1,2, ..., n is the number of steps and j = 1,2, ..., m is each The number of times the spot is projected at each step position; S6: keeping the position of the galvanometer scanning system unchanged, so that the optical axis of the galvanometer is in the first horizontal direction to perform spot projection in the field at each measurement position, Using the spot position measuring device to measure the horizontal positions x ' i , j , y' i , j of each spot projected at each measurement position under the zero coordinate system of the gantry, where i = 1,2, ..., n is the number of measurement locations, j = 1,2, ..., m is the number of measurements at each projected light spot; S7: S6 in Name of the same nominal position and the position of the spot S5 are respectively x_nom i, y_nom i, S5 and S6, the galvanometer scanning system are m times exposure at each position, and every spot Average the sampled data: The above sampling data is substituted into the following formula to perform the least square method fitting, and the galvanometer installation rotation amount is k : Among them, b is a constant; S8: The galvanometer controller is used to correct the galvanometer scanning system according to the galvanometer installation rotation amount obtained in S7, and the corrected galvanometer scanning system is rescanned and restarted. A plurality of light spots are formed, and the newly formed light spots are detected and judged for accuracy. If the accuracy is not satisfied, repeat S5 to S7. If the accuracy is satisfied, stop repeating the steps to complete the installation rotation correction.
TW107131729A 2017-09-08 2018-09-10 Vibrating mirror correction method TWI669578B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710807754.1A CN109471333B (en) 2017-09-08 2017-09-08 Galvanometer correction system and method
??201710807754.1 2017-09-08

Publications (2)

Publication Number Publication Date
TW201923473A true TW201923473A (en) 2019-06-16
TWI669578B TWI669578B (en) 2019-08-21

Family

ID=65633518

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107131729A TWI669578B (en) 2017-09-08 2018-09-10 Vibrating mirror correction method

Country Status (5)

Country Link
JP (1) JP6967140B2 (en)
KR (1) KR102392452B1 (en)
CN (1) CN109471333B (en)
TW (1) TWI669578B (en)
WO (1) WO2019047938A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110487180B (en) * 2019-08-12 2020-12-25 上海理工大学 Thermal drift measurement method for scanning galvanometer type laser processing system
US20220389270A1 (en) * 2019-11-05 2022-12-08 Nok Corporation Aqueous surface-treating agent
CN110940490B (en) * 2019-12-13 2021-05-04 湖南省鹰眼在线电子科技有限公司 Laser spot scanning precision detection method and device of laser processing equipment
CN111290218B (en) * 2020-01-20 2022-08-23 江苏迪盛智能科技有限公司 Installing and debugging mechanism with DMD modular design and LDI equipment
CN113369680B (en) * 2020-02-25 2022-06-10 广东汉邦激光科技有限公司 Laser calibration device and laser calibration method
CN112092361B (en) * 2020-07-28 2022-06-07 湖南华曙高科技股份有限公司 Real-time detection method and system for scanning unit used for manufacturing three-dimensional object
CN115717859B (en) * 2022-11-16 2023-09-29 南京博视医疗科技有限公司 Laser calibration method and device for point scanning optical system

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2630025B2 (en) * 1990-06-21 1997-07-16 日本電気株式会社 Laser trimming method and apparatus
JP2690466B2 (en) * 1995-01-11 1997-12-10 住友電気工業株式会社 Laser beam spinner
JP2008279471A (en) * 2007-05-08 2008-11-20 Sony Corp Laser beam machining apparatus, laser beam machining method, tft (thin film transistor) substrate and defect correction method of tft substrate
JP4297952B2 (en) * 2007-05-28 2009-07-15 三菱電機株式会社 Laser processing equipment
JP5519123B2 (en) * 2008-06-10 2014-06-11 株式会社片岡製作所 Laser processing machine
CN101513693A (en) * 2009-03-17 2009-08-26 深圳市大族激光科技股份有限公司 Oscillating mirror correcting system and correcting method thereof
KR20100116432A (en) * 2009-04-22 2010-11-01 주식회사 필옵틱스 System for correcting aberration of galvanometer
CN102538663B (en) * 2010-12-13 2014-03-12 中国科学院沈阳自动化研究所 Two-dimensional position tracking and measuring device and measuring method thereof
JP5943669B2 (en) * 2012-03-26 2016-07-05 ビアメカニクス株式会社 Galvano scanner and laser processing device
CN103913294B (en) * 2014-03-20 2016-02-24 西安交通大学 A kind of cross curve increment scaling method for laser galvanometer system
CN105527796B (en) * 2014-09-28 2018-03-13 上海微电子装备(集团)股份有限公司 Planer-type equipment and control method
CN104730708A (en) * 2015-04-10 2015-06-24 长春理工大学 Airborne laser communication boundary layer effect optical compensation method
CN106271122B (en) * 2015-05-29 2019-01-18 上海微电子装备(集团)股份有限公司 A kind of vertical control device and method of laser package equipment
CN106553338A (en) * 2015-09-18 2017-04-05 广东汉邦激光科技有限公司 Laser 3D printing machine and its vibration mirror scanning calibration system and method
CN106956430B (en) * 2017-03-29 2019-07-30 深圳市大业激光成型技术有限公司 Its 3D printer system of a kind of calibrating installation of galvanometer scanning system and application

Also Published As

Publication number Publication date
CN109471333A (en) 2019-03-15
CN109471333B (en) 2020-05-01
JP2020536738A (en) 2020-12-17
JP6967140B2 (en) 2021-11-17
WO2019047938A1 (en) 2019-03-14
TWI669578B (en) 2019-08-21
KR102392452B1 (en) 2022-04-29
KR20200046107A (en) 2020-05-06

Similar Documents

Publication Publication Date Title
TWI669578B (en) Vibrating mirror correction method
EP2769800B1 (en) Laser processing machine
CN103913294B (en) A kind of cross curve increment scaling method for laser galvanometer system
EP3091405B1 (en) Method, device and system for improving system accuracy of x-y motion platform
CN103157909B (en) Laser processing error correction method and processor
WO2018059358A1 (en) Optical measurement device and method
CN101909827A (en) Scan head calibration system and method
CN210451366U (en) Galvanometer correction system
KR102364166B1 (en) Apparatus for automatically correcting the position of laser scanning system
CN110193670B (en) OLED cutting equipment compensation system and method
TW201807376A (en) Substrate measuring device and laser processing system
CN111009013A (en) Galvanometer calibration method for scribing machine
TW201900316A (en) Laser processing device
JPH0122977B2 (en)
CN117139832A (en) Quick correction method and system for vibrating mirror
US9718146B2 (en) System and method for calibrating laser processing machines
JP2009074849A (en) Inspection method of line width measuring device
CN113492600B (en) Laser marking device and automatic focusing method of laser marking device
US20220406636A1 (en) Monitor wafer measuring method and measuring apparatus
WO2019203377A1 (en) Automatic position correction device for laser scanning equipment
JP3372916B2 (en) Reduction projection exposure equipment
CN113050393B (en) Method for calibrating horizontal position of motion table in photoetching equipment
CN110926367B (en) Long-range optical surface shape detection device and detection method
US20230249410A1 (en) Automatic calibration of a laser processing system using a non-integrated telecentric optical detector with limited degrees of freedom
KR101129643B1 (en) Movement tracking method of marking apparatus