TW201921605A - Material for semiconductor element protection and semiconductor device - Google Patents
Material for semiconductor element protection and semiconductor deviceInfo
- Publication number
- TW201921605A TW201921605A TW108104052A TW108104052A TW201921605A TW 201921605 A TW201921605 A TW 201921605A TW 108104052 A TW108104052 A TW 108104052A TW 108104052 A TW108104052 A TW 108104052A TW 201921605 A TW201921605 A TW 201921605A
- Authority
- TW
- Taiwan
- Prior art keywords
- semiconductor element
- epoxy compound
- hardened
- weight
- semiconductor
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/20—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L63/00—Compositions of epoxy resins; Compositions of derivatives of epoxy resins
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/40—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
- C08G59/62—Alcohols or phenols
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/28—Nitrogen-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/34—Silicon-containing compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/28—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
- H01L23/29—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/28—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
- H01L23/31—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Polymers & Plastics (AREA)
- Medicinal Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Power Engineering (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
- Epoxy Resins (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Paints Or Removers (AREA)
Abstract
Description
本發明係關於一種為了保護半導體元件而塗佈於上述半導體元件之表面上使用之半導體元件保護用材料。又,本發明係關於一種使用上述半導體元件保護用材料之半導體裝置。The present invention relates to a material for protecting a semiconductor element, which is applied to the surface of the semiconductor element in order to protect the semiconductor element. The present invention also relates to a semiconductor device using the above-mentioned material for protecting a semiconductor element.
半導體裝置之高性能化不斷發展。伴隨於此,散發自半導體裝置所產生之熱之需要不斷提高。又,於半導體裝置中,半導體元件之電極例如與表面具有電極之其他連接對象構件之電極電性連接。
於半導體裝置中,例如,於半導體元件與其他連接對象構件之間配置環氧樹脂組合物後,藉由使該環氧樹脂組合物硬化而將半導體元件與其他連接對象構件接著及固定。再者,配置於半導體元件與其他連接對象構件之間的上述環氧樹脂組合物之硬化物不同於用以保護半導體元件之表面之材料。
又,於半導體裝置中,有為了密封半導體元件而使用環氧樹脂組合物之情況。
例如,下述專利文獻1~4中揭示有如上所述之環氧樹脂組合物。
下述專利文獻1中揭示有包含環氧樹脂、酚系硬化劑、作為三(2,6-二甲氧基苯基)膦或三(2,4,6-三甲氧基苯基)膦之硬化促進劑、及氧化鋁之環氧樹脂組合物。專利文獻1之實施例中記載有作為粉體之環氧樹脂組合物。關於上述環氧樹脂組合物之用途,專利文獻1中記載有較佳用於IC(Integrated Circuit,積體電路)、LSI(Large Scale Integration,大型積體電路)、電晶體、閘流體、二極體等半導體裝置之密封用、印刷電路板之製造等。
下述專利文獻2中揭示有包含環氧樹脂、酚樹脂硬化劑、硬化促進劑、及無機填充劑之密封用環氧樹脂組合物。專利文獻2之實施例中記載有作為粉體之密封用環氧樹脂組合物。關於上述環氧樹脂組合物之用途,專利文獻2中記載有可用作普通成形材料,但亦可用作半導體裝置之密封材料,特別是可較佳用作薄型、多接腳、長導線、窄焊墊間距、或在有機基板或有機膜等安裝基板上配置有半導體晶片之半導體裝置之密封材料。
下述專利文獻3中揭示有包含雙酚F型液狀環氧樹脂、硬化劑、及無機質填充劑之環氧樹脂組合物。專利文獻3之實施例中記載有作為固體之環氧樹脂組合物(熔融黏度為75℃以上)。關於上述環氧樹脂組合物之用途,專利文獻3中記載有雖亦可用作普通成形材料,但可較佳用作半導體裝置、例如TQFP(Thin Quad Flat Package,薄塑封方型扁平封裝)、TSOP(Thin Small Outline Package,薄型小尺寸封裝)、QFP(Quad Flat Package,方型扁平封裝)等多接腳薄型封裝、特別是使用矩陣框架之半導體裝置之密封材料。
下述專利文獻4中揭示有包含環氧樹脂、酚樹脂硬化劑、高導熱性填充劑、及無機質填充劑之半導體密封用環氧樹脂組合物。專利文獻4之實施例中記載有作為粉體之半導體密封用環氧樹脂組合物。關於上述半導體密封用環氧樹脂組合物之用途,專利文獻4中記載有用作半導體元件等電子零件之密封材料。
又,下述專利文獻5中揭示有一種2液型環氧樹脂組合物,其具有:包含雙酚A型環氧樹脂、骨架內具有可撓性之環氧樹脂之第1劑,及包含酸酐化合物及硬化促進劑之第2劑。關於2液型環氧樹脂組合物之用途,專利文獻5中記載有可用作殼體內填充材料。
[先前技術文獻]
[專利文獻]
[專利文獻1]日本專利特開平5-86169號公報
[專利文獻2]日本專利特開2007-217469號公報
[專利文獻3]日本專利特開平10-176100號公報
[專利文獻4]日本專利特開2005-200533號公報
[專利文獻5]日本專利特開2014-40538號公報The performance of semiconductor devices continues to evolve. Along with this, the need to dissipate heat generated from semiconductor devices is increasing. Moreover, in a semiconductor device, an electrode of a semiconductor element is electrically connected to the electrode of the other connection object member which has an electrode on the surface, for example.
In a semiconductor device, for example, after an epoxy resin composition is arranged between a semiconductor element and another connection target member, the semiconductor device and another connection target member are bonded and fixed by curing the epoxy resin composition. Furthermore, the hardened material of the above-mentioned epoxy resin composition disposed between the semiconductor element and other members to be connected is different from the material used to protect the surface of the semiconductor element.
Moreover, in a semiconductor device, an epoxy resin composition may be used in order to seal a semiconductor element.
For example, the following patent documents 1 to 4 disclose the epoxy resin composition as described above.
The following Patent Document 1 discloses a resin containing an epoxy resin, a phenol-based hardener, and tris (2,6-dimethoxyphenyl) phosphine or tris (2,4,6-trimethoxyphenyl) phosphine. Hardening accelerator and epoxy resin composition of alumina. An example of Patent Document 1 describes an epoxy resin composition as a powder. Regarding the use of the above-mentioned epoxy resin composition, Patent Document 1 describes that it is preferably used for IC (Integrated Circuit), LSI (Large Scale Integration), transistors, thyristors, diodes It is used for sealing semiconductor devices such as semiconductors and printed circuit boards.
The following Patent Document 2 discloses an epoxy resin composition for sealing containing an epoxy resin, a phenol resin hardener, a hardening accelerator, and an inorganic filler. An example of Patent Document 2 describes an epoxy resin composition for sealing as a powder. Regarding the application of the above-mentioned epoxy resin composition, Patent Document 2 describes that it can be used as a general molding material, but can also be used as a sealing material for a semiconductor device. In particular, it can be preferably used as a thin, multi-pin, long lead, A narrow pad pitch or a sealing material for a semiconductor device in which a semiconductor wafer is arranged on a mounting substrate such as an organic substrate or an organic film.
The following Patent Document 3 discloses an epoxy resin composition containing a bisphenol F-type liquid epoxy resin, a hardener, and an inorganic filler. An example of Patent Document 3 describes a solid epoxy resin composition (melt viscosity is 75 ° C. or higher). Regarding the use of the epoxy resin composition, Patent Document 3 describes that although it can also be used as a general molding material, it can be preferably used as a semiconductor device, for example, TQFP (Thin Quad Flat Package), Multi-pin thin packages such as TSOP (Thin Small Outline Package) and QFP (Quad Flat Package), especially sealing materials for semiconductor devices using matrix frames.
The following Patent Document 4 discloses an epoxy resin composition for semiconductor sealing including an epoxy resin, a phenol resin hardener, a highly thermally conductive filler, and an inorganic filler. The example of patent document 4 describes the epoxy resin composition for semiconductor sealing as a powder. Regarding the use of the above-mentioned semiconductor sealing epoxy resin composition, Patent Document 4 describes that it is used as a sealing material for electronic components such as semiconductor elements.
In addition, Patent Document 5 below discloses a two-liquid epoxy resin composition including a first agent containing a bisphenol A epoxy resin, a flexible epoxy resin having a framework, and an acid anhydride Compound 2 and hardening accelerator. Regarding the use of the two-liquid type epoxy resin composition, Patent Document 5 describes that it can be used as a filling material in a casing.
[Prior technical literature]
[Patent Literature]
[Patent Document 1] Japanese Patent Laid-Open No. 5-86169
[Patent Document 2] Japanese Patent Laid-Open No. 2007-217469
[Patent Document 3] Japanese Patent Laid-Open No. 10-176100
[Patent Document 4] Japanese Patent Laid-Open No. 2005-200533
[Patent Document 5] Japanese Patent Laid-Open No. 2014-40538
[發明所欲解決之問題]
具體而言,專利文獻1~4中揭示有作為粉體或固體之環氧樹脂組合物。此種作為粉體或固體之環氧樹脂組合物之塗佈性較低,難以精度良好地配置於特定區域。
又,先前之環氧樹脂組合物之硬化物存在散熱性較低之情況。進而,先前之環氧樹脂組合物之硬化物存在柔軟性較低之情況。若硬化物之柔軟性較低,則存在例如因半導體元件之變形應力,而產生硬化物之剝離之情況。
又,專利文獻1~4中,作為環氧樹脂組合物之具體之用途,主要記載有密封用途。專利文獻5中,作為環氧樹脂組合物之具體之用途,主要記載有殼體內填充材料用途。另一方面,於半導體裝置中,理想的是即便不密封半導體元件,亦可充分保護半導體元件。又,專利文獻1~5中所記載之環氧樹脂組合物一般並未為了保護半導體元件而塗佈於該半導體元件之表面上使用。
又,近年,就裝置之薄度或設計性之觀點而言,要求減少IC驅動器。若減少IC驅動器,則施加於半導體元件之負擔增加,進而易帶來相當多之熱。先前之硬化物由於散熱性較低,故而要求散熱性較高之硬化物。進而,先前之硬化物容易因變形應力而產生剝離。
本發明之目的在於提供一種半導體元件保護用材料,其於半導體裝置中,用於為了保護半導體元件而塗佈於該半導體元件之表面上,於上述半導體元件之表面上形成硬化物。
進而,本發明之目的在於提供一種半導體元件保護用材料,其於上述用途中,塗佈性優異,可獲得散熱性及柔軟性優異之硬化物,可良好地保護半導體元件。又,本發明之目的亦在於提供一種使用上述半導體元件保護用材料之半導體裝置。
[解決問題之技術手段]
於本發明之較廣之態樣中,提供一種半導體元件保護用材料,其係用於為了保護半導體元件而塗佈於上述半導體元件之表面上,於上述半導體元件之表面上形成硬化物者,其不同於配置於半導體元件與其他連接對象構件之間,形成以不使上述半導體元件與上述其他連接對象構件剝離之方式將該等接著及固定之硬化物者,且包含:可撓性環氧化合物、與可撓性環氧化合物不同之環氧化合物、23℃下為液狀之硬化劑、硬化促進劑、及熱導率為10 W/m・K以上且為球狀之無機填料。
於本發明之半導體元件保護用材料之某一特定態樣中,上述硬化劑係烯丙基苯酚酚醛清漆化合物。
於本發明之半導體元件保護用材料之某一特定態樣中,上述可撓性環氧化合物係具有伸烷基二醇基之重複數為9以上之結構單元之聚伸烷基二醇二縮水甘油醚。
於本發明之半導體元件保護用材料之某一特定態樣中,相對於上述可撓性環氧化合物100重量份,與上述可撓性環氧化合物不同之環氧化合物之含量為10重量份以上且100重量份以下。
於本發明之半導體元件保護用材料之某一特定態樣中,上述無機填料係氧化鋁、氮化鋁或碳化矽。
於本發明之半導體元件保護用材料之某一特定態樣中,上述半導體元件保護用材料包含100℃下之重量減少為10重量%以下之矽烷偶合劑、100℃下之重量減少為10重量%以下之鈦酸酯偶合劑或100℃下之重量減少為10重量%以下之鋁酸酯偶合劑。
本發明之半導體元件保護用材料較佳用於為了保護半導體元件而於上述半導體元件之表面上形成硬化物,且於上述硬化物之與上述半導體元件側相反之表面上配置保護膜而獲得半導體裝置。
根據本發明之較廣之態樣,提供一種半導體裝置,其具備半導體元件、及配置於上述半導體元件之第1表面上之硬化物,上述硬化物係藉由使上述半導體元件保護用材料硬化而形成。
於本發明之半導體裝置之某一特定態樣中,上述半導體元件於與上述第1表面側相反之第2表面側具有第1電極,上述半導體元件之第1電極與表面具有第2電極之連接對象構件之上述第2電極電性連接。
於本發明之半導體裝置之某一特定態樣中,於上述硬化物之與上述半導體元件側相反之表面上配置有保護膜。
[發明之效果]
本發明之半導體元件保護用材料由於包含可撓性環氧化合物、與可撓性環氧化合物不同之環氧化合物、23℃下為液狀之硬化劑、硬化促進劑、及熱導率為10 W/m・K以上且為球狀之無機填料,故而塗佈性優異。進而,本發明之半導體元件保護用材料之硬化物之散熱性及柔軟性優異。因此,為了保護半導體元件,而於上述半導體元件之表面上塗佈本發明之半導體元件保護用材料並使之硬化,藉此,可良好地保護上述半導體元件。[Problems to be solved by the invention]
Specifically, Patent Documents 1 to 4 disclose epoxy resin compositions as powders or solids. Such a powder or solid epoxy resin composition has a low coating property, and it is difficult to accurately arrange the epoxy resin composition in a specific region.
Moreover, the hardened | cured material of the conventional epoxy resin composition may have low heat dissipation. Furthermore, the cured product of the conventional epoxy resin composition may have low flexibility. When the flexibility of the hardened material is low, peeling of the hardened material may occur, for example, due to the deformation stress of the semiconductor element.
In addition, Patent Documents 1 to 4 mainly describe sealing applications as specific applications of the epoxy resin composition. In Patent Document 5, a specific application of the epoxy resin composition mainly describes the use of a filler material in a case. On the other hand, in a semiconductor device, it is desirable to sufficiently protect the semiconductor element even if the semiconductor element is not sealed. In addition, the epoxy resin compositions described in Patent Documents 1 to 5 are generally not applied to the surface of a semiconductor element in order to protect the semiconductor element.
Moreover, in recent years, from the viewpoint of device thinness or design, it is required to reduce the number of IC drivers. If the IC driver is reduced, the load imposed on the semiconductor element increases, which in turn tends to bring considerable heat. Since the conventional hardened materials have low heat dissipation properties, hardened materials with high heat dissipation properties are required. Furthermore, the conventional hardened | cured material is easy to peel due to a deformation stress.
An object of the present invention is to provide a material for protecting a semiconductor element, which is used for coating a surface of a semiconductor element to protect the semiconductor element in a semiconductor device, and forming a hardened material on the surface of the semiconductor element.
Furthermore, an object of the present invention is to provide a material for protecting a semiconductor element, which has excellent coating properties in the above-mentioned applications, can obtain a hardened material having excellent heat dissipation properties and flexibility, and can well protect a semiconductor element. Another object of the present invention is to provide a semiconductor device using the above-mentioned material for protecting a semiconductor element.
[Technical means to solve the problem]
In a wider aspect of the present invention, a semiconductor element protection material is provided, which is used for coating a surface of the semiconductor element to protect the semiconductor element, and forming a hardened object on the surface of the semiconductor element, It is different from those that are placed between the semiconductor element and other connection target members, and form a hardened product that adheres and fixes the semiconductor device and the other connection target members so as not to be separated, and includes: a flexible epoxy Compounds, epoxy compounds different from flexible epoxy compounds, liquid hardeners, hardening accelerators at 23 ° C, and spherical inorganic fillers with a thermal conductivity of 10 W / m ・ K or more.
In a specific aspect of the material for protecting a semiconductor device according to the present invention, the hardener is an allylphenol novolak compound.
In a specific aspect of the material for protecting a semiconductor device according to the present invention, the flexible epoxy compound is a polyalkylene glycol di shrink having a structural unit having an alkylene glycol group with a repeating number of 9 or more. Glyceryl ether.
In a specific aspect of the semiconductor element protection material of the present invention, the content of the epoxy compound different from the flexible epoxy compound is 10 parts by weight or more based on 100 parts by weight of the flexible epoxy compound. And 100 parts by weight or less.
In a specific aspect of the semiconductor element protection material of the present invention, the inorganic filler is alumina, aluminum nitride, or silicon carbide.
In a specific aspect of the semiconductor element protection material of the present invention, the semiconductor element protection material includes a silane coupling agent having a weight reduction at 100 ° C of 10% by weight or less, and a weight reduction at 100 ° C of 10% by weight. The following titanate coupling agents or aluminate coupling agents whose weight reduction at 100 ° C is 10% by weight or less.
The semiconductor element protection material of the present invention is preferably used to form a hardened material on the surface of the semiconductor element in order to protect the semiconductor element, and to arrange a protective film on the surface of the hardened object opposite to the semiconductor element side to obtain a semiconductor device. .
According to a broad aspect of the present invention, there is provided a semiconductor device including a semiconductor element and a hardened substance disposed on a first surface of the semiconductor element, the hardened substance being obtained by hardening the semiconductor element protection material. form.
In a specific aspect of the semiconductor device of the present invention, the semiconductor element has a first electrode on a second surface side opposite to the first surface side, and the first electrode and the surface of the semiconductor element are connected with a second electrode. The second electrode of the target member is electrically connected.
In a specific aspect of the semiconductor device of the present invention, a protective film is disposed on a surface of the hardened object opposite to the semiconductor element side.
[Effect of the invention]
The semiconductor element protection material of the present invention contains a flexible epoxy compound, an epoxy compound different from the flexible epoxy compound, a liquid hardener at 23 ° C, a hardening accelerator, and a thermal conductivity of 10 W / m ・ K or more and a spherical inorganic filler, it is excellent in coatability. Furthermore, the hardened | cured material of the semiconductor element protection material of this invention is excellent in the heat radiation property and softness | flexibility. Therefore, in order to protect the semiconductor element, the semiconductor element protection material of the present invention is coated on the surface of the semiconductor element and hardened, whereby the semiconductor element can be well protected.
以下,就本發明進行詳細說明。
本發明之半導體元件保護用材料係用於為了保護半導體元件而塗佈於上述半導體元件之表面上,於上述半導體元件之表面上形成硬化物。本發明之半導體元件保護用材料不同於配置於半導體元件與其他連接對象構件之間,形成以不使上述半導體元件與上述其他連接對象構件剝離之方式將該等接著及固定之硬化物者(材料)。
本發明之半導體元件保護用材料包含:(A)可撓性環氧化合物、(B)與可撓性環氧化合物不同之環氧化合物、(C)23℃下為液狀之硬化劑、(D)硬化促進劑、及(E)熱導率為10 W/m・K以上且為球狀之無機填料。本發明之半導體元件保護用材料為了塗佈於半導體元件之表面上,於23℃下為液狀,於23℃下不為固體。再者,液狀亦包含黏稠之漿料。
本發明之半導體元件保護用材料由於具備上述構成,故而塗佈性優異,可抑制塗佈時之意料之外之流動。上述半導體元件保護用材料可良好地塗佈於半導體元件之表面上。例如,可於半導體元件之欲提高散熱性之部位之表面上選擇性地、精度良好地塗佈上述半導體元件保護用材料。
進而,由於本發明之半導體元件保護用材料具備上述構成,故而硬化物之散熱性優異。因此,藉由於半導體元件之表面上配置硬化物,可自半導體元件之表面經由硬化物充分散發熱。因此,可有效地抑制半導體裝置之熱劣化。
進而,本發明之半導體元件保護用材料之硬化物之柔軟性亦優異。因此,難以因半導體元件之變形應力等而產生半導體元件之損傷,進而可難以自半導體元件之表面剝離硬化物。
因此,為了保護半導體元件,而將本發明之半導體元件保護用材料塗佈於上述半導體元件之表面上並使之硬化,藉此,可良好地保護上述半導體元件。
又,上述半導體元件保護用材料之硬化物之耐熱性亦優異,難以產生龜裂。進而,上述半導體元件保護用材料之硬化物之尺寸穩定性亦優異。
又,就提高半導體元件保護用材料對半導體元件之表面之潤濕性,進一步提高硬化物之柔軟性,進而進一步提高硬化物之耐濕性之觀點而言,上述半導體元件保護用材料較佳為包含(F)偶合劑。
以下,說明可用於上述半導體元件保護用材料之各成分之詳細情況。
((A)可撓性環氧化合物)
藉由使用(A)可撓性環氧化合物,可提高硬化物之柔軟性。可僅使用1種(A)可撓性環氧化合物,亦可將2種以上併用。
作為(A)可撓性環氧化合物,可列舉:聚伸烷基二醇二縮水甘油醚、聚丁二烯二縮水甘油醚、硫醚改性環氧樹脂、及聚環氧烷改性雙酚A型環氧樹脂等。就進一步提高硬化物之柔軟性之觀點而言,較佳為聚伸烷基二醇二縮水甘油醚。
就進一步提高硬化物之柔軟性之觀點而言,上述聚伸烷基二醇二縮水甘油醚較佳為具有伸烷基二醇基之重複數為9以上之結構單元。伸烷基之重複數之上限並無特別限定。伸烷基之重複數可為30以下。上述伸烷基之碳數較佳為2以上,較佳為5以下。
作為上述聚伸烷基二醇二縮水甘油醚,可列舉:聚乙二醇二縮水甘油醚、聚丙二醇二縮水甘油醚及聚四亞甲基二醇二縮水甘油醚等。
上述半導體元件保護用材料100重量%中,(A)可撓性環氧化合物之含量較佳為3重量%以上,更佳為5重量%以上,且較佳為10重量%以下,更佳為8重量%以下。若(A)可撓性環氧化合物之含量為上述下限以上,則硬化物之柔軟性進一步提高。若(A)可撓性環氧化合物之含量為上述上限以下,則半導體元件保護用材料之塗佈性進一步提高。
((B)與可撓性環氧化合物不同之環氧化合物)
(B)與可撓性環氧化合物不同之環氧化合物不具有可撓性。藉由同時使用(A)可撓性環氧化合物及(B)環氧化合物,半導體元件保護用材料之硬化物之耐濕性提高,可降低對保護膜之貼附性。可僅使用1種(B)環氧化合物,亦可將2種以上併用。
作為(B)環氧化合物,可列舉:具有雙酚骨架之環氧化合物、具有二環戊二烯骨架之環氧化合物、具有萘骨架之環氧化合物、具有金剛烷骨架之環氧化合物、具有茀骨架之環氧化合物、具有聯苯骨架之環氧化合物、具有雙(縮水甘油氧基苯基)甲烷骨架之環氧化合物、具有二苯并吡喃骨架之環氧化合物、具有蒽骨架之環氧化合物、及具有芘骨架之環氧化合物等。亦可使用該等之氫化物或改性物。較佳為(B)環氧化合物不為聚伸烷基二醇二縮水甘油醚。
就本發明之效果進一步優異而言,(B)環氧化合物較佳為具有雙酚骨架之環氧化合物(雙酚型環氧化合物)。
作為上述具有雙酚骨架之環氧化合物,例如可列舉:具有雙酚A型、雙酚F型或雙酚S型之雙酚骨架之環氧單體等。
作為上述具有二環戊二烯骨架之環氧化合物,可列舉:二氧化二環戊二烯及具有二環戊二烯骨架之苯酚酚醛清漆環氧單體等。
作為上述具有萘骨架之環氧化合物,可列舉:1-縮水甘油基萘、2-縮水甘油基萘、1,2-二縮水甘油基萘、1,5-二縮水甘油基萘、1,6-二縮水甘油基萘、1,7-二縮水甘油基萘、2,7-二縮水甘油基萘、三縮水甘油基萘、及1,2,5,6-四縮水甘油基萘等。
作為上述具有金剛烷骨架之環氧化合物,可列舉:1,3-雙(4-縮水甘油氧基苯基)金剛烷、及2,2-雙(4-縮水甘油氧基苯基)金剛烷等。
作為上述具有茀骨架之環氧化合物,可列舉:9,9-雙(4-縮水甘油氧基苯基)茀、9,9-雙(4-縮水甘油氧基-3-甲基苯基)茀、9,9-雙(4-縮水甘油氧基-3-氯苯基)茀、9,9-雙(4-縮水甘油氧基-3-溴苯基)茀、9,9-雙(4-縮水甘油氧基-3-氟苯基)茀、9,9-雙(4-縮水甘油氧基-3-甲氧基苯基)茀、9,9-雙(4-縮水甘油氧基-3,5-二甲基苯基)茀、9,9-雙(4-縮水甘油氧基-3,5-二氯苯基)茀、及9,9-雙(4-縮水甘油氧基-3,5-二溴苯基)茀等。
作為上述具有聯苯骨架之環氧化合物,可列舉:4,4'-二縮水甘油基聯苯、及4,4'-二縮水甘油基-3,3',5,5'-四甲基聯苯等。
作為上述具有雙(縮水甘油氧基苯基)甲烷骨架之環氧化合物,可列舉:1,1'-雙(2,7-縮水甘油氧基萘基)甲烷、1,8'-雙(2,7-縮水甘油氧基萘基)甲烷、1,1'-雙(3,7-縮水甘油氧基萘基)甲烷、1,8'-雙(3,7-縮水甘油氧基萘基)甲烷、1,1'-雙(3,5-縮水甘油氧基萘基)甲烷、1,8'-雙(3,5-縮水甘油氧基萘基)甲烷、1,2'-雙(2,7-縮水甘油氧基萘基)甲烷、1,2'-雙(3,7-縮水甘油氧基萘基)甲烷、及1,2'-雙(3,5-縮水甘油氧基萘基)甲烷等。
作為上述具有二苯并吡喃骨架之環氧化合物,可列舉:1,3,4,5,6,8-六甲基-2,7-雙-環氧乙烷基甲氧基-9-苯基-9H-二苯并吡喃等。
上述半導體元件保護用材料100重量%中,(A)可撓性環氧化合物與(B)環氧化合物之合計之含量較佳為5重量%以上,更佳為8重量%以上,且較佳為15重量%以下,更佳為12重量%以下。若(A)可撓性環氧化合物與(B)環氧化合物之合計之含量為上述下限以上及上述上限以下,則半導體元件保護用材料之塗佈性、硬化物之柔軟性、耐濕性、硬化物對半導體元件之接著性進一步變良好,可進一步抑制對保護膜之貼附。
相對於(A)可撓性環氧化合物100重量份,(B)環氧化合物之含量較佳為10重量份以上,更佳為20重量份以上,且較佳為100重量份以下,更佳為90重量份以下。若(B)環氧化合物之含量為上述下限以上,則半導體元件保護用材料之塗佈性進一步提高,硬化物對半導體元件之接著性進一步提高。若(B)環氧化合物之含量為上述上限以下,則硬化物之柔軟性進一步提高。
((C)23℃下為液狀之硬化劑)
(C)硬化劑於23℃下為液狀。因此,半導體元件保護用材料之塗佈性提高。又,半導體元件保護用材料對半導體元件之表面之潤濕性提高。可僅使用1種(C)硬化劑,亦可將2種以上併用。
作為(C)硬化劑,可列舉:胺化合物(胺硬化劑)、咪唑化合物(咪唑硬化劑)、酚化合物(酚硬化劑)及酸酐(酸酐硬化劑)等。但於使用該等硬化劑之情形時,選擇23℃下為液狀之硬化劑。(C)硬化劑亦可不為咪唑化合物。
就進一步抑制硬化物中之空隙之產生,進一步提高硬化物之耐熱性之觀點而言,(C)硬化劑較佳為酚化合物。
就進一步提高半導體元件保護用材料之塗佈性,進一步抑制硬化物中之空隙之產生,進一步提高硬化物之耐熱性之觀點而言,(C)硬化劑較佳為具有烯丙基,上述酚化合物較佳為具有烯丙基。
作為上述酚化合物,可列舉:苯酚酚醛清漆、鄰甲酚酚醛清漆、對甲酚酚醛清漆、第三丁基苯酚酚醛清漆、二環戊二烯甲酚、聚對乙烯基苯酚、雙酚A型酚醛清漆、苯二甲基改性酚醛清漆、十氫萘改性酚醛清漆、聚(二鄰羥基苯基)甲烷、聚(二間羥基苯基)甲烷、及聚(二對羥基苯基)甲烷等。
相對於(A)可撓性環氧化合物與(B)環氧化合物之合計100重量份,(C)硬化劑之含量較佳為10重量份以上,更佳為20重量份以上,進而較佳為30重量份以上,且較佳為100重量份以下,更佳為90重量份以下,進而較佳為80重量份以下。若(C)硬化劑之含量為上述下限以上,則可使半導體元件保護用材料良好地硬化。若(C)硬化劑之含量為上述上限以下,則硬化物內之無助於硬化之(C)硬化劑之殘餘量變少。
((D)硬化促進劑)
藉由使用(D)硬化促進劑,可加快硬化速度,有效率地使半導體元件保護用材料硬化。可僅使用1種(D)硬化促進劑,亦可將2種以上併用。
作為(D)硬化促進劑,可列舉:咪唑化合物、磷化合物、胺化合物、及有機金屬化合物等。其中,就本發明之效果進一步優異而言,較佳為咪唑化合物。
作為上述咪唑化合物,可列舉:2-十一烷基咪唑、2-十七烷基咪唑、2-甲咪唑、2-乙基-4-甲咪唑、2-苯咪唑、2-苯基-4-甲咪唑、1-苄基-2-甲咪唑、1-苄基-2-苯咪唑、1,2-二甲咪唑、1-氰乙基-2-甲咪唑、1-氰乙基-2-乙基-4-甲咪唑、1-氰乙基-2-十一烷基咪唑、1-氰乙基-2-苯咪唑、偏苯三酸1-氰乙基-2-十一烷基咪唑鎓、偏苯三酸1-氰乙基-2-苯基咪唑鎓、2,4-二胺基-6-[2'-甲基咪唑基-(1')]-乙基對稱三、2,4-二胺基-6-[2'-十一烷基咪唑基-(1')]-乙基對稱三、2,4-二胺基-6-[2'-乙基-4'-甲基咪唑基-(1')]-乙基對稱三、2,4-二胺基-6-[2'-甲基咪唑基-(1')]-乙基對稱三異三聚氰酸加成物、2-苯咪唑異三聚氰酸加成物、2-甲咪唑異三聚氰酸加成物、2-苯基-4,5-二羥基甲咪唑及2-苯基-4-甲基-5-二羥基甲咪唑等。又,可使用公知之咪唑系潛伏性硬化劑。作為具體例,可列舉:PN23、PN40、PN-H(商品名,均為Ajinomoto Fine-Techno公司製造)。又,可列舉:亦稱為微膠囊化咪唑之與胺化合物之環氧樹脂加成物之羥基進行加成反應所得之硬化促進劑,例如可列舉:Novacure HX-3088、Novacure HX-3941、HX-3742、HX-3722(商品名,均為Asahi Kasei E-materials公司製造)等。進而,亦可使用包藏咪唑。作為具體例,可列舉:TIC-188(商品名,日本曹達公司製造)。
作為上述磷化合物,可列舉:三苯基膦等。
作為上述胺化合物,可列舉:2,4,6-三(二甲胺基甲基)苯酚、二乙胺、三乙胺、二伸乙基四胺、三伸乙基四胺及4,4-二甲胺基吡啶等。
作為上述有機金屬化合物,可列舉:環烷酸鋅、環烷酸鈷、辛酸錫、辛酸鈷、雙乙醯丙酮鈷(II)及三乙醯丙酮鈷(III)等。
相對於(A)可撓性環氧化合物與(B)環氧化合物之合計100重量份,(D)硬化促進劑之含量較佳為0.1重量份以上,更佳為0.5重量份以上,且較佳為10重量份以下,更佳為8重量份以下。若(D)硬化促進劑之含量為上述下限以上,則可使半導體元件保護用材料良好地硬化。若(D)硬化促進劑之含量為上述上限以下,則硬化物內之無助於硬化之(D)硬化促進劑之殘餘量變少。
((E)熱導率為10 W/m・K以上且為球狀之無機填料)
藉由使用(E)熱導率為10 W/m・K以上且為球狀之無機填料,可將半導體元件保護用材料之塗佈性維持得較高,且將硬化物之柔軟性維持得較高,並且提高硬化物之散熱性。若(E)無機填料之熱導率為10 W/m・K以上且為球狀,則並無特別限定。可僅使用1種(E)無機填料,亦可將2種以上併用。
就進一步提高硬化物之散熱性之觀點而言,(E)無機填料之熱導率較佳為10 W/m・K以上,更佳為15 W/m・K以上,進而較佳為20 W/m・K以上。(E)無機填料之熱導率之上限並無特別限定。熱導率為300 W/m・K左右之無機填料已廣為人知,又,容易得到熱導率為200 W/m・K左右之無機填料。
就有效地提高硬化物之散熱性之觀點而言,(E)無機填料較佳為氧化鋁、氮化鋁或碳化矽。於使用該等較佳之無機填料之情形時,可僅使用1種該等無機填料,亦可將2種以上併用。作為(E)無機填料,亦可適當使用除上述以外之無機填料。
(E)無機填料為球狀。所謂球狀係指縱橫比(長徑/短徑)為1以上且2以下。
(E)無機填料之平均粒徑較佳為0.1 μm以上,且較佳為150 μm以下。若(E)無機填料之平均粒徑為上述下限以上,則可以高密度容易地填充(E)無機填料。若(E)無機填料之平均粒徑為上述上限以下,則半導體元件保護用材料之塗佈性進一步提高。
所謂上述「平均粒徑」係根據藉由雷射繞射式粒度分佈測定裝置所測定之以體積平均計之粒度分佈測定結果求出之平均粒徑。
上述半導體元件保護用材料100重量%中,(E)無機填料之含量較佳為60重量%以上,更佳為70重量%以上,進而較佳為80重量%以上,特佳為82重量%以上,且較佳為92重量%以下,更佳為90重量%以下。若(E)無機填料之含量為上述下限以上,則硬化物之散熱性進一步提高。若(E)無機填料之含量為上述上限以下,則半導體元件保護用材料之塗佈性進一步提高。
((F)偶合劑)
上述半導體元件保護用材料較佳為包含(F)偶合劑。藉由使用(F)偶合劑,半導體元件保護用材料之硬化物之耐濕性進一步提高。可僅使用1種(F)偶合劑,亦可將2種以上併用。
上述半導體元件保護用材料100重量%中,(F)偶合劑之含量較佳為0.1重量%以上,更佳為0.3重量%以上,且較佳為2重量%以下,更佳為1重量%以下。若(F)偶合劑之含量為上述下限以上,則半導體元件保護用材料之硬化物之耐濕性進一步提高。若(F)偶合劑之含量為上述上限以下,則半導體元件保護用材料之塗佈性進一步提高。
上述(F)偶合劑較佳為包含100℃下之重量減少為10重量%以下之矽烷偶合劑、100℃下之重量減少為10重量%以下之鈦酸酯偶合劑或100℃下之重量減少為10重量%以下之鋁酸酯偶合劑。於使用該等較佳之矽烷偶合劑之情形時,可僅使用1種該等矽烷偶合劑,亦可將2種以上併用。
若100℃下之重量減少為10重量%以下,則可抑制硬化中(F)偶合劑之揮發,對半導體元件之潤濕性進一步提高,硬化物之散熱性進一步提高。
再者,100℃下之重量減少可藉由使用紅外線水分計(Kett Electric Laboratory公司製造之「FD-720」),以50℃/分鐘之升溫速度升溫至100℃,測定10分鐘後之重量減少而求出。
(其他成分)
上述半導體元件保護用材料視需要可包含:巴西棕櫚蠟等天然蠟、聚乙烯蠟等合成蠟、硬脂酸或硬脂酸鋅等高級脂肪酸及其金屬鹽類或石蠟等脫模劑;碳黑、鐵丹等著色劑;溴化環氧樹脂、三氧化二銻、氫氧化鋁、氫氧化鎂、硼酸鋅、鉬酸鋅、膦腈等阻燃劑;氧化鉍水合物等無機離子交換體;聚矽氧油、聚矽氧橡膠等低應力化成分;抗氧化劑等各種添加劑。
上述半導體元件保護用材料較佳為包含聚乙烯蠟等合成蠟。上述半導體元件保護用材料100重量%中,聚乙烯蠟等合成蠟之含量較佳為0.1重量%以上,更佳為0.2重量%以上,且較佳為2重量%以下,更佳為1重量%以下。
(半導體元件保護用材料之其他詳情及半導體裝置)
上述半導體元件保護用材料係為了保護半導體元件而塗佈於上述半導體元件之表面上使用。上述半導體元件保護用材料不同於配置於半導體元件與其他連接對象構件之間,形成以不使上述半導體元件與上述其他連接對象構件剝離之方式將該等接著及固定之硬化物者。上述半導體元件保護用材料較佳為覆蓋半導體元件之表面之被覆材料。上述半導體元件保護用材料較佳為不塗佈於半導體元件之側面上。上述半導體元件保護用材料較佳為與用以密封上述半導體元件之材料不同,較佳為並非用以密封上述半導體元件之密封劑。上述半導體元件保護用材料較佳為並非底部填充劑材料。較佳為上述半導體元件於第2表面側具有第1電極,上述半導體元件保護用材料係塗佈於上述半導體元件之與上述第2表面側相反之第1表面上使用。上述半導體元件保護用材料於半導體裝置中,可較佳地用於為了保護半導體元件而於上述半導體元件之表面上形成硬化物。上述半導體元件保護用材料可較佳地用於為了保護半導體元件而於上述半導體元件之表面上形成硬化物,且可較佳地用於在上述硬化物之與上述半導體元件側相反之表面上配置保護膜而獲得半導體裝置。
作為塗佈上述半導體元件保護用材料之方法,可列舉:利用分注器之塗佈方法、利用網版印刷之塗佈方法、及利用噴墨裝置之塗佈方法等。上述半導體元件保護用材料較佳為藉由利用分注器、網版印刷、真空網版印刷或噴墨裝置之塗佈方法塗佈使用。就容易塗佈,且於硬化物中更加難以產生空隙之觀點而言,上述半導體元件保護用材料較佳為藉由分注器塗佈使用。
本發明之半導體裝置具備半導體元件、及配置於上述半導體元件之第1表面上之硬化物。於本發明之半導體裝置中,上述硬化物係藉由使上述半導體元件保護用材料硬化而形成。
較佳為上述半導體元件保護用材料係用於為了保護半導體元件而於上述半導體元件之表面上形成硬化物,且於上述硬化物之與上述半導體元件側相反之表面上配置保護膜而獲得半導體裝置,或用於獲得為了保護半導體元件而於上述半導體元件之表面上形成硬化物,且上述硬化物之與上述半導體元件側相反之表面外露之半導體裝置。上述保護膜可於電子零件等之使用前使用,亦可於電子零件等之使用時剝離。
圖1係表示使用本發明之第1實施形態之半導體元件保護用材料之半導體裝置之局部切開前視剖視圖。
圖1所示之半導體裝置1具備半導體元件2及配置於半導體元件2之第1表面2a上之硬化物3。硬化物3係藉由使上述半導體元件保護用材料硬化而形成。硬化物3配置於半導體元件2之第1表面2a上之部分區域。
半導體元件2於與第1表面2a側相反之第2表面2b側具有第1電極2A。半導體裝置1進而具備連接對象構件4。連接對象構件4於表面4a具有第2電極4A。半導體元件2與連接對象構件4係經由其他硬化物5(連接部)接著及固定。半導體元件2之第1電極2A與連接對象構件4之第2電極4A相對向,利用導電性粒子6電性連接。亦可藉由使第1電極2A與第2電極4A相接觸而電性連接。硬化物3配置於半導體元件2之與配置有第1電極2A側相反之側之第1表面2a上。
於硬化物3之與半導體元件2側相反之表面上配置有保護膜7。藉此,不僅可藉由硬化物3提高散熱性及半導體元件之保護性,亦可藉由保護膜7進一步提高半導體元件之保護性。由於硬化物3係具有上述組成而獲得,故而可抑制硬化物3對保護膜7之貼附。
作為上述連接對象構件,可列舉:玻璃基板、環氧玻璃基板、可撓性印刷基板、及聚醯亞胺基板等。
於半導體元件之表面上,半導體元件保護用材料之硬化物之厚度較佳為400 μm以上,更佳為500 μm以上,且較佳為2000 μm以下,更佳為1900 μm以下。半導體元件保護用材料之硬化物之厚度可薄於半導體元件之厚度。
圖2係表示使用本發明之第2實施形態之半導體元件保護用材料之半導體裝置之局部切開前視剖視圖。
圖2所示之半導體裝置1X具備半導體元件2及配置於半導體元件2之第1表面2a上之硬化物3X。硬化物3X係藉由使上述半導體元件保護用材料硬化而形成。硬化物3X配置於半導體元件2之第1表面2a上之整個區域。於硬化物3X之與半導體元件2側相反之表面上未配置保護膜。硬化物3X之與半導體元件2側相反之表面外露。
於上述半導體裝置中,較佳為於上述硬化物之與上述半導體元件側相反之表面上配置有保護膜,或,上述硬化物之與上述半導體元件側相反之表面外露。
再者,圖1、2所示之結構僅為半導體裝置之一例,可對半導體元件保護用材料之硬化物之配置結構等進行適當變化。
半導體元件保護用材料之硬化物之熱導率並無特別限定,較佳為1.8 W/m・K以上。
以下,藉由列舉本發明之具體之實施例及比較例,對本發進行闡明。再者,本發明並不限定於以下實施例。
使用以下材料。
(A)可撓性環氧化合物
EX-821(n=4)(長瀨化成公司製造,聚乙二醇二縮水甘油醚,環氧當量:185)
EX-830(n=9)(長瀨化成公司製造,聚乙二醇二縮水甘油醚,環氧當量:268)
EX-931(n=11)(長瀨化成公司製造,聚丙二醇二縮水甘油醚,環氧當量:471)
EX-861(n=22)(長瀨化成公司製造,聚乙二醇二縮水甘油醚,環氧當量:551)
PB3600(大賽璐公司製造,聚丁二烯改性環氧樹脂)
(B)與可撓性環氧化合物不同之環氧化合物
jER828(三菱化學公司製造,雙酚A型環氧樹脂,環氧當量:188)
jER834(三菱化學公司製造,雙酚A型環氧樹脂,軟化點:30℃,環氧當量:255)
(C)23℃下為液狀之硬化劑
FUJICURE 7000(富士化成公司製造,23℃下為液狀,胺化合物)
MEH-8005(明和化成公司製造,23℃下為液狀,烯丙基苯酚酚醛清漆化合物)
(C')其他硬化劑
TD-2131(DIC公司製造,23℃下為固體狀,苯酚酚醛清漆化合物)
(D)硬化促進劑
SA-102(San-Apro公司製造,DBU(diazabicycloundecene,二氮雜雙環十一烯)辛酸鹽)
(E)熱導率為10 W/m・K以上且為球狀之無機填料
FAN-f05(古河電子公司製造,氮化鋁,熱導率:100 W/m・K,球狀,平均粒徑:6 μm)
FAN-f50(古河電子公司製造,氮化鋁,熱導率:100 W/m・K,球狀,平均粒徑:30 μm)
CB-P05(昭和電工公司製造,氧化鋁,熱導率:20 W/m・K,球狀,平均粒徑:4 μm)
CB-P40(昭和電工公司製造,氧化鋁,熱導率:20 W/m・K,球狀,平均粒徑:44 μm)
SSC-A15(信濃電氣精煉公司製造,氮化矽,熱導率:100 W/m・K,球狀,平均粒徑:19 μm)
SSC-A30(信濃電氣精煉公司製造,氮化矽,熱導率:100 W/m・K,球狀,平均粒徑:34 μm)
(E')其他無機填料
HS-306(Micron公司製造,氧化矽,熱導率:2 W/m・K,球狀,平均粒徑:2.5 μm)
HS-304(Micron公司製造,氧化矽,熱導率:2 W/m・K,球狀,平均粒徑:25 μm)
(F)偶合劑
KBM-403(信越化學工業公司製造,3-甘油氧基丙基三甲氧基矽烷,100℃下之重量減少:超過10重量%)
A-LINK599(momentive公司製造,3-辛醯基硫代-1-丙基三乙氧基矽烷,100℃下之重量減少:10重量%以下)
TOG(IPA CUT)(日本曹達公司製造,異丙氧基辛二醇鈦,100℃下之重量減少:10重量%以下)
AL-M(Ajinomoto Fine-Techno公司製造,乙醯烷氧基二異丙醇鋁,100℃下之重量減少:10重量%以下)
(其他成分)
Hi-Wax 200PF(三井化學公司製造,聚乙烯蠟)
(實施例1)
將EX-821(n=4) 6.5重量份、jER828 2.5重量份、FUJICURE 7000 5重量份、SA-102 0.5重量份、CB-P05 42.5重量份、CB-P40 42.5重量份、及Hi-Wax 200PF 0.5重量份混合,進行消泡,而獲得半導體元件保護用材料。
(實施例2~15及比較例1~4)
除如下述表1、2所示變更調配成分之種類及調配量以外,以與實施例1相同之方式獲得半導體元件保護用材料。
(評價)
(1)25℃下之黏度之測定
使用B型黏度計(東機產業公司製造之「TVB-10型」),測定半導體元件保護用材料於25℃下且10 rpm下之黏度(mPa・s)。
(2)熱導率
將所獲得之半導體元件保護用材料以150℃加熱2小時使其硬化,獲得100 mm×100 mm×厚度50 μm之硬化物。將該硬化物作為評價樣品。
使用京都電子工業公司製造之熱導率計「迅速熱導率計QTM-500」,測定所獲得之評價樣品之熱導率。
(3)塗佈性
將所獲得之半導體元件保護用材料以成為直徑5 mm、高度2 mm之方式直接自分注器裝置(Musashi Engineering公司製造之「SHOTMASTER-300」)噴出至聚醯亞胺膜後,將半導體元件保護用材料以150℃加熱2小時使其硬化。根據硬化後之半導體元件保護用材料之形狀,以下述標準判定塗佈性。
[塗佈性之判定標準]
○:直徑為5.3 mm以上,高度未達1.8 mm(有流動性)
△:直徑超過5 mm且未達5.3 mm,高度超過1.8 mm且未達2 mm(稍有流動性)
×:直徑為5 mm,高度為2 mm未變(無流動性)
(4)耐濕性
將所獲得之半導體元件保護用材料以150℃加熱2小時使其硬化,獲得100 mm×100 mm×厚度50 μm之硬化物。將該硬化物作為評價樣品。
利用DSM-8104(日置電機公司製造,數位超絕緣/微電流計)、平板試樣用電極 SME-8310(日置電機公司製造),對所獲得之評價樣品測定體積電阻率。
繼而,利用高度加速壽命試驗裝置EHS-211(愛斯佩克公司製造)進行壓力鍋試驗。於121℃、濕度100%RH及2 atm之條件下放置24小時,繼而於23℃及濕度50%RH之環境下放置24小時後,測定體積電阻率。計算壓力鍋試驗前後之體積電阻率之降低率,以下述標準判定耐濕性。
[耐濕性之判定標準]
○:試驗前後之體積電阻率之降低率為10%以下
△:試驗前後之體積電阻率之降低率超過10%且為20%以下
×:試驗前後之體積電阻率之降低率超過20%
(5)接著力(晶片剪切強度)
於聚醯亞胺基板上,以接著面積成為3 mm×3 mm之方式塗佈半導體元件保護用材料,載置1.5 mm見方之Si晶片,獲得試驗樣品。
將所獲得之試驗樣品以150℃加熱2小時,使半導體元件保護用材料硬化。繼而,使用晶片剪切強度測試機(Arctek公司製造之「DAGE 4000」),以300 μm/秒之速度評價25℃下之晶片剪切強度。
[晶片剪切強度之判定標準]
○:晶片剪切強度為10 N以上
△:晶片剪切強度為6 N以上且未達10 N
△△:晶片剪切強度為5 N以上且未達6 N
×:晶片剪切強度未達5 N
(6)觸黏性(保護膜貼附性)
將所獲得之半導體元件保護用材料以150℃加熱2小時使其硬化,獲得100 mm×100 mm×厚度50 μm之硬化物。將該硬化物作為評價樣品。
將所獲得之評價樣品於23℃及濕度50%RH之環境下放置24小時。放置24小時後,立即使用觸黏性測試機TA-500(UBM公司製造),對評價樣品之表面之黏著性測定觸黏性。
[觸黏性之判定標準]
○:應力未達50 gf/cm2
△:應力為50 gf/cm2
以上且未達100 gf/cm2
×:應力為100 gf/cm2
以上
(7)膜翹曲
將所獲得之半導體元件保護用材料以成為縱20 mm、橫100 mm、高10 mm之方式直接自分注器裝置(Musashi Engineering公司製造之「SHOTMASTER-300」)噴出至聚醯亞胺膜後,將半導體元件保護用材料以150℃加熱2小時使其硬化。硬化後利用目視確認聚醯亞胺膜之翹曲,以下述標準判定膜翹曲。
[膜翹曲之判定標準]
○:無聚醯亞胺膜之翹曲
×:產生聚醯亞胺膜之翹曲
(8)耐熱性
將所獲得之半導體元件保護用材料以150℃加熱2小時使其硬化,獲得100 mm×100 mm×厚度50 μm之硬化物。將該硬化物作為評價樣品。
利用DSM-8104(日置電機公司製造,數位超絕緣/微電流計)、平板試樣用電極SME-8310(日置電機公司製造)進行所獲得之評價樣品之體積電阻率之測定。
繼而,於180℃下放置100小時,繼而於23℃及濕度50%RH之環境下放置24小時後,測定體積電阻率。計算耐熱試驗前後之體積電阻率之降低率,以下述標準判定耐熱性。
[耐熱性之判定標準]
○:試驗前後之體積電阻率之降低率為10%以下
△:試驗前後之體積電阻率之降低率超過10%且為20%以下
×:試驗前後之體積電阻率之降低率超過20%
將組成及結果示於下述表1、2。
[表1]
[表2]
The material for protecting a semiconductor element according to the present invention is used for coating a surface of the semiconductor element in order to protect the semiconductor element, and forming a cured product on the surface of the semiconductor element. The semiconductor element protection material of the present invention is different from a material that is disposed between a semiconductor element and another connection target member, and forms a hardened material that adheres and fixes the semiconductor element and the other connection target member so as not to peel off. ).
The semiconductor element protection material of the present invention includes: (A) a flexible epoxy compound, (B) an epoxy compound different from the flexible epoxy compound, (C) a liquid hardener at 23 ° C, ( D) a hardening accelerator, and (E) a spherical inorganic filler having a thermal conductivity of 10 W / m ・ K or more. The material for protecting a semiconductor element of the present invention is applied to the surface of a semiconductor element, is liquid at 23 ° C, and is not solid at 23 ° C. Moreover, the liquid state also contains a thick slurry.
Since the material for protecting a semiconductor element of the present invention has the above-mentioned structure, it has excellent coatability and can suppress unexpected flow during coating. The above-mentioned material for protecting a semiconductor element can be well coated on the surface of a semiconductor element. For example, the above-mentioned material for protecting a semiconductor element can be selectively and accurately coated on the surface of a portion of a semiconductor element where heat dissipation is desired.
Furthermore, since the semiconductor element protection material of the present invention has the above-mentioned structure, the cured product has excellent heat dissipation properties. Therefore, by disposing the hardened material on the surface of the semiconductor element, heat can be sufficiently dissipated from the surface of the semiconductor element through the hardened material. Therefore, thermal degradation of the semiconductor device can be effectively suppressed.
Furthermore, the hardened | cured material of the semiconductor element protection material of this invention is also excellent in flexibility. Therefore, it is difficult to cause damage to the semiconductor element due to deformation stress or the like of the semiconductor element, and it is further difficult to peel the hardened material from the surface of the semiconductor element.
Therefore, in order to protect the semiconductor element, the material for protecting a semiconductor element of the present invention is applied to the surface of the semiconductor element and cured, thereby protecting the semiconductor element well.
Moreover, the hardened | cured material of the said semiconductor element protection material is also excellent in heat resistance, and it is hard to generate | occur | produce a crack. Furthermore, the hardened | cured material of the said semiconductor element protection material is also excellent in dimensional stability.
From the viewpoint of improving the wettability of the semiconductor element protection material to the surface of the semiconductor element, further improving the flexibility of the hardened material, and further improving the moisture resistance of the hardened material, the semiconductor material protection material is preferably Contains (F) coupling agent.
Hereinafter, details of each component which can be used for the said semiconductor element protection material are demonstrated.
((A) Flexible epoxy compound)
By using a flexible epoxy compound (A), the softness | flexibility of hardened | cured material can be improved. Only one (A) flexible epoxy compound may be used, or two or more kinds may be used in combination.
Examples of the (A) flexible epoxy compound include polyalkylene glycol diglycidyl ether, polybutadiene diglycidyl ether, a thioether-modified epoxy resin, and a polyalkylene oxide-modified diene. Phenol A type epoxy resin, etc. From the viewpoint of further improving the flexibility of the cured product, polyalkylene glycol diglycidyl ether is preferred.
From the viewpoint of further improving the flexibility of the cured product, the polyalkylene glycol diglycidyl ether is preferably a structural unit having a repeat number of an alkylene glycol group of 9 or more. The upper limit of the number of repeats of the alkylene group is not particularly limited. The repeating number of the alkylene group may be 30 or less. The carbon number of the above-mentioned alkylene group is preferably 2 or more, and more preferably 5 or less.
Examples of the polyalkylene glycol diglycidyl ether include polyethylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, and polytetramethylene glycol diglycidyl ether.
The content of (A) the flexible epoxy compound in 100% by weight of the semiconductor element protection material is preferably 3% by weight or more, more preferably 5% by weight or more, and preferably 10% by weight or less, and more preferably 8% by weight or less. When the content of the (A) flexible epoxy compound is at least the above lower limit, the flexibility of the cured product is further improved. When the content of the flexible epoxy compound (A) is equal to or less than the above-mentioned upper limit, the coatability of the material for protecting a semiconductor element is further improved.
((B) An epoxy compound different from a flexible epoxy compound)
(B) An epoxy compound different from a flexible epoxy compound does not have flexibility. By using (A) a flexible epoxy compound and (B) an epoxy compound together, the moisture resistance of the hardened | cured material of the semiconductor element protection material improves, and the adhesiveness to a protective film can be reduced. Only one (B) epoxy compound may be used, or two or more of them may be used in combination.
Examples of the (B) epoxy compound include: an epoxy compound having a bisphenol skeleton; an epoxy compound having a dicyclopentadiene skeleton; an epoxy compound having a naphthalene skeleton; an epoxy compound having an adamantane skeleton; Epoxy compound with fluorene skeleton, epoxy compound with biphenyl skeleton, epoxy compound with bis (glycidyloxyphenyl) methane skeleton, epoxy compound with dibenzopyran skeleton, ring with anthracene skeleton Oxygen compounds, and epoxy compounds having a fluorene skeleton. These hydrides or modifications may also be used. The (B) epoxy compound is preferably not a polyalkylene glycol diglycidyl ether.
In terms of further excellent effects of the present invention, the (B) epoxy compound is preferably an epoxy compound (bisphenol type epoxy compound) having a bisphenol skeleton.
Examples of the epoxy compound having a bisphenol skeleton include epoxy monomers having a bisphenol skeleton of a bisphenol A type, a bisphenol F type, or a bisphenol S type.
Examples of the epoxy compound having a dicyclopentadiene skeleton include dicyclopentadiene dioxide and a phenol novolac epoxy monomer having a dicyclopentadiene skeleton.
Examples of the epoxy compound having a naphthalene skeleton include 1-glycidylnaphthalene, 2-glycidylnaphthalene, 1,2-diglycidylnaphthalene, 1,5-diglycidylnaphthalene, and 1,6 -Diglycidylnaphthalene, 1,7-diglycidylnaphthalene, 2,7-diglycidylnaphthalene, triglycidylnaphthalene, and 1,2,5,6-tetraglycidylnaphthalene.
Examples of the epoxy compound having an adamantane skeleton include 1,3-bis (4-glycidyloxyphenyl) adamantane and 2,2-bis (4-glycidyloxyphenyl) adamantane Wait.
Examples of the epoxy compound having a fluorene skeleton include 9,9-bis (4-glycidyloxyphenyl) fluorene and 9,9-bis (4-glycidyloxy-3-methylphenyl). , 9,9-bis (4-glycidyloxy-3-chlorophenyl) 茀, 9,9-bis (4-glycidyloxy-3-bromophenyl) 茀, 9,9-bis ( 4-glycidyloxy-3-fluorophenyl) fluorene, 9,9-bis (4-glycidyloxy-3-methoxyphenyl) fluorene, 9,9-bis (4-glycidyloxy -3,5-dimethylphenyl) fluorene, 9,9-bis (4-glycidyloxy-3,5-dichlorophenyl) fluorene, and 9,9-bis (4-glycidyloxy) -3,5-dibromophenyl) fluorene and the like.
Examples of the above-mentioned epoxy compound having a biphenyl skeleton include 4,4'-diglycidyl biphenyl and 4,4'-diglycidyl-3,3 ', 5,5'-tetramethyl Biphenyl, etc.
Examples of the epoxy compound having a bis (glycidyloxyphenyl) methane skeleton include 1,1'-bis (2,7-glycidyloxynaphthyl) methane, and 1,8'-bis (2 , 7-glycidyloxynaphthyl) methane, 1,1'-bis (3,7-glycidyloxynaphthyl) methane, 1,8'-bis (3,7-glycidyloxynaphthyl) Methane, 1,1'-bis (3,5-glycidyloxynaphthyl) methane, 1,8'-bis (3,5-glycidyloxynaphthyl) methane, 1,2'-bis (2 , 7-glycidyloxynaphthyl) methane, 1,2'-bis (3,7-glycidyloxynaphthyl) methane, and 1,2'-bis (3,5-glycidyloxynaphthyl) ) Methane, etc.
Examples of the epoxy compound having a dibenzopyran skeleton include: 1,3,4,5,6,8-hexamethyl-2,7-bis-oxiranylmethoxy-9- Phenyl-9H-dibenzopyran and the like.
The content of the total of (A) the flexible epoxy compound and (B) the epoxy compound in 100% by weight of the semiconductor element protection material is preferably 5% by weight or more, more preferably 8% by weight or more, and more preferably It is 15% by weight or less, and more preferably 12% by weight or less. When the total content of (A) the flexible epoxy compound and (B) the epoxy compound is equal to or more than the aforementioned lower limit and equal to or lower than the aforementioned upper limit, the coating property of the semiconductor element protection material, the flexibility of the cured material, and the moisture resistance 2. The adhesion of the hardened material to the semiconductor device is further improved, and the adhesion to the protective film can be further suppressed.
The content of (B) the epoxy compound is preferably 10 parts by weight or more, more preferably 20 parts by weight or more, and preferably 100 parts by weight or less, with respect to 100 parts by weight of the flexible epoxy compound (A). It is 90 parts by weight or less. When the content of the (B) epoxy compound is at least the above lower limit, the coatability of the semiconductor element protection material is further improved, and the adhesion of the cured product to the semiconductor element is further improved. When the content of the (B) epoxy compound is equal to or less than the above-mentioned upper limit, the flexibility of the cured product is further improved.
((C) Liquid hardener at 23 ° C)
(C) The hardener is liquid at 23 ° C. Therefore, the applicability of the material for protecting a semiconductor element is improved. Moreover, the wettability of the surface of a semiconductor element with the semiconductor element protection material improves. Only one (C) curing agent may be used, or two or more of them may be used in combination.
Examples of the (C) curing agent include amine compounds (amine curing agents), imidazole compounds (imidazole curing agents), phenol compounds (phenol curing agents), and acid anhydrides (acid anhydride curing agents). When using these hardeners, choose a hardener that is liquid at 23 ° C. (C) The hardener may not be an imidazole compound.
From the viewpoint of further suppressing the generation of voids in the cured product and further improving the heat resistance of the cured product, the (C) curing agent is preferably a phenol compound.
From the viewpoint of further improving the coatability of the material for protecting semiconductor devices, further suppressing the generation of voids in the cured material, and further improving the heat resistance of the cured material, the (C) curing agent preferably has an allyl group, and the phenol The compound preferably has an allyl group.
Examples of the phenol compound include phenol novolac, o-cresol novolac, p-cresol novolac, third butylphenol novolac, dicyclopentadiene cresol, poly-p-vinylphenol, and bisphenol A type Novolac, xylylene modified novolac, decalin modified novolac, poly (di-o-hydroxyphenyl) methane, poly (di-hydroxyphenyl) methane, and poly (di-p-hydroxyphenyl) methane Wait.
The content of (C) the hardener is preferably 10 parts by weight or more, more preferably 20 parts by weight or more, and more preferably 100 parts by weight of the total of (A) the flexible epoxy compound and (B) the epoxy compound. It is 30 parts by weight or more, and preferably 100 parts by weight or less, more preferably 90 parts by weight or less, and even more preferably 80 parts by weight or less. When the content of the (C) curing agent is at least the above lower limit, the material for protecting a semiconductor element can be cured well. When the content of the (C) curing agent is equal to or less than the above-mentioned upper limit, the remaining amount of the (C) curing agent in the cured product that does not contribute to curing becomes small.
((D) Hardening accelerator)
By using (D) a hardening accelerator, a hardening speed can be accelerated and a semiconductor element protection material can be hardened efficiently. Only one (D) hardening accelerator may be used, or two or more may be used in combination.
Examples of the (D) hardening accelerator include an imidazole compound, a phosphorus compound, an amine compound, and an organometallic compound. Among these, an imidazole compound is preferable because the effect of the present invention is further excellent.
Examples of the imidazole compound include 2-undecylimidazole, 2-heptadecylimidazole, 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-benzimidazole, and 2-phenyl-4 -Methylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-benzimidazole, 1,2-dimethylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2 -Ethyl-4-methylimidazole, 1-cyanoethyl-2-undecylimidazole, 1-cyanoethyl-2-benzimidazole, trimellitic acid 1-cyanoethyl-2-undecyl Imidazolium, trimellitic acid 1-cyanoethyl-2-phenylimidazolium, 2,4-diamino-6- [2'-methylimidazolyl- (1 ')]-ethylsymmetric tris , 2,4-diamino-6- [2'-undecylimidazolyl- (1 ')]-ethylsymmetric tris , 2,4-diamino-6- [2'-ethyl-4'-methylimidazolyl- (1 ')]-ethylsymmetric tris , 2,4-diamino-6- [2'-methylimidazolyl- (1 ')]-ethylsymmetric tris Isotrimeric cyanic acid adduct, 2-benzimidazole isotricyanic acid adduct, 2-methylimidazole isotricyanic acid adduct, 2-phenyl-4,5-dihydroxymetamidazole and 2 -Phenyl-4-methyl-5-dihydroxymetamidazole and the like. A known imidazole-based latent sclerosing agent can be used. Specific examples include PN23, PN40, and PN-H (trade names, all manufactured by Ajinomoto Fine-Techno). Examples include hardening accelerators obtained by the addition reaction of hydroxyl groups of epoxy resin adducts with amine compounds, which are also referred to as microencapsulated imidazoles. For example, Novacure HX-3088, Novacure HX-3941, HX -3742, HX-3722 (trade names, all manufactured by Asahi Kasei E-materials), etc. Furthermore, imidazole can also be used. As a specific example, TIC-188 (trade name, manufactured by Soda Co., Ltd.) is mentioned.
Examples of the phosphorus compound include triphenylphosphine and the like.
Examples of the amine compound include 2,4,6-tris (dimethylaminomethyl) phenol, diethylamine, triethylamine, diethylene tetramine, triethylene tetramine, and 4,4 -Dimethylaminopyridine and the like.
Examples of the organometallic compound include zinc naphthenate, cobalt naphthenate, tin octoate, cobalt octoate, cobalt (II) acetoacetone and cobalt (III) triacetate.
The content of (D) the hardening accelerator is preferably 0.1 parts by weight or more, more preferably 0.5 parts by weight or more, based on 100 parts by weight of the total of (A) the flexible epoxy compound and (B) the epoxy compound. It is preferably 10 parts by weight or less, and more preferably 8 parts by weight or less. When the content of the (D) hardening accelerator is at least the above lower limit, the material for protecting a semiconductor element can be hardened well. When the content of the (D) hardening accelerator is equal to or less than the above-mentioned upper limit, the remaining amount of the (D) hardening accelerator in the hardened material, which does not contribute to hardening, becomes small.
((E) Spherical inorganic filler with a thermal conductivity of 10 W / m ・ K or more)
By using (E) a spherical inorganic filler having a thermal conductivity of 10 W / m ・ K or more, the coating property of the semiconductor element protection material can be maintained high, and the softness of the hardened material can be maintained. Higher, and improve the heat dissipation of hardened materials. The thermal conductivity of the (E) inorganic filler is not particularly limited as long as it is 10 W / m / K or more and is spherical. Only one (E) inorganic filler may be used, or two or more of them may be used in combination.
From the viewpoint of further improving the heat dissipation of the hardened material, the thermal conductivity of the (E) inorganic filler is preferably 10 W / m ・ K or more, more preferably 15 W / m ・ K or more, and even more preferably 20 W. / m ・ K or more. (E) The upper limit of the thermal conductivity of the inorganic filler is not particularly limited. Inorganic fillers having a thermal conductivity of about 300 W / m ・ K are widely known, and it is easy to obtain inorganic fillers having a thermal conductivity of about 200 W / m ・ K.
From the viewpoint of effectively improving the heat dissipation property of the cured product, the (E) inorganic filler is preferably alumina, aluminum nitride, or silicon carbide. When using these preferable inorganic fillers, only one kind of these inorganic fillers may be used, or two or more kinds may be used in combination. As the (E) inorganic filler, an inorganic filler other than the above may be appropriately used.
(E) The inorganic filler is spherical. The term “spherical” means that the aspect ratio (long diameter / short diameter) is 1 or more and 2 or less.
(E) The average particle diameter of the inorganic filler is preferably 0.1 μm or more, and preferably 150 μm or less. When the average particle diameter of the (E) inorganic filler is at least the above lower limit, the (E) inorganic filler can be easily filled at a high density. When the average particle diameter of the (E) inorganic filler is equal to or less than the above-mentioned upper limit, the coatability of the material for protecting a semiconductor element is further improved.
The "average particle diameter" is an average particle diameter determined based on a volume average particle size distribution measurement result measured by a laser diffraction type particle size distribution measuring device.
The content of the (E) inorganic filler in 100% by weight of the semiconductor element protection material is preferably 60% by weight or more, more preferably 70% by weight or more, still more preferably 80% by weight or more, and particularly preferably 82% by weight or more. It is preferably 92% by weight or less, and more preferably 90% by weight or less. When the content of the (E) inorganic filler is at least the above-mentioned lower limit, the heat radiation property of the cured product is further improved. When the content of the (E) inorganic filler is equal to or less than the above upper limit, the coatability of the material for protecting a semiconductor element is further improved.
((F) Coupling agent)
It is preferable that the said semiconductor element protection material contains (F) coupling agent. By using a (F) coupling agent, the moisture resistance of the hardened | cured material of the semiconductor element protection material is further improved. Only one (F) coupling agent may be used, or two or more kinds may be used in combination.
The content of the (F) coupling agent in 100% by weight of the semiconductor element protection material is preferably 0.1% by weight or more, more preferably 0.3% by weight or more, and preferably 2% by weight or less, and more preferably 1% by weight or less. . When the content of the (F) coupling agent is at least the above lower limit, the moisture resistance of the hardened material of the semiconductor element protection material is further improved. When the content of the (F) coupling agent is equal to or less than the above upper limit, the coatability of the material for protecting a semiconductor element is further improved.
The aforementioned (F) coupling agent preferably contains a silane coupling agent having a weight reduction at 100 ° C of 10% by weight or less, a titanate coupling agent having a weight reduction at 100 ° C of 10% or less, or a weight reduction at 100 ° C. It is an aluminate coupling agent of 10% by weight or less. When using these preferred silane coupling agents, only one of these silane coupling agents may be used, or two or more of them may be used in combination.
If the weight reduction at 100 ° C is 10% by weight or less, the volatilization of the (F) coupling agent during curing can be suppressed, the wettability of the semiconductor device is further improved, and the heat dissipation of the cured product is further improved.
The weight reduction at 100 ° C can be increased to 100 ° C at a heating rate of 50 ° C / min by using an infrared moisture meter ("FD-720" manufactured by Kett Electric Laboratory), and the weight reduction after 10 minutes can be measured Find it out.
(Other ingredients)
The above-mentioned semiconductor element protection material may include, if necessary, natural waxes such as carnauba wax, synthetic waxes such as polyethylene wax, higher fatty acids such as stearic acid or zinc stearate, and release agents such as metal salts or paraffin; carbon black , Titanium and other colorants; Brominated epoxy resins, antimony trioxide, aluminum hydroxide, magnesium hydroxide, zinc borate, zinc molybdate, phosphazene and other flame retardants; inorganic ion exchangers such as bismuth oxide hydrate; Low-stress components such as silicone oil and silicone rubber; various additives such as antioxidants.
The semiconductor element protection material preferably contains a synthetic wax such as polyethylene wax. The content of the synthetic wax such as polyethylene wax in 100% by weight of the semiconductor element protection material is preferably 0.1% by weight or more, more preferably 0.2% by weight or more, and preferably 2% by weight or less, and more preferably 1% by weight. the following.
(Other details of semiconductor element protection materials and semiconductor devices)
The semiconductor element protection material is used by being coated on the surface of the semiconductor element in order to protect the semiconductor element. The semiconductor element protection material is different from a hardened material that is disposed between the semiconductor element and the other connection target member and is bonded and fixed so that the semiconductor element is not separated from the other connection target member. The semiconductor element protection material is preferably a covering material that covers the surface of the semiconductor element. The semiconductor element protection material is preferably not coated on the side surface of the semiconductor element. The material for protecting the semiconductor element is preferably different from the material used to seal the semiconductor element, and is preferably not a sealant for sealing the semiconductor element. The semiconductor element protection material is preferably not an underfill material. Preferably, the semiconductor element has a first electrode on a second surface side, and the semiconductor element protection material is coated on a first surface of the semiconductor element opposite to the second surface side and used. The semiconductor element protection material is preferably used in a semiconductor device to form a hardened material on the surface of the semiconductor element in order to protect the semiconductor element. The semiconductor element protection material is preferably used to form a hardened material on the surface of the semiconductor element in order to protect the semiconductor element, and is preferably used to be disposed on the surface of the hardened object opposite to the semiconductor element side. Protective film to obtain a semiconductor device.
Examples of the method for coating the above-mentioned semiconductor element protection material include a coating method using a dispenser, a coating method using screen printing, and a coating method using an inkjet device. The semiconductor element protection material is preferably applied by a coating method using a dispenser, screen printing, vacuum screen printing, or an inkjet device. From the viewpoint of being easy to apply and making it difficult to generate voids in the hardened material, the semiconductor element protection material is preferably applied by a dispenser.
The semiconductor device of the present invention includes a semiconductor element and a hardened material disposed on the first surface of the semiconductor element. In the semiconductor device of the present invention, the cured product is formed by curing the material for protecting a semiconductor element.
The semiconductor element protection material is preferably used to obtain a semiconductor device by forming a hardened material on the surface of the semiconductor element in order to protect the semiconductor element, and arranging a protective film on the surface of the hardened object opposite to the semiconductor element side. Or to obtain a semiconductor device in which a cured object is formed on the surface of the semiconductor element in order to protect the semiconductor element, and the surface of the cured object opposite to the semiconductor element side is exposed. The protective film can be used before the use of electronic parts and the like, and can also be peeled off when the electronic parts are used.
FIG. 1 is a partially cutaway front cross-sectional view showing a semiconductor device using the semiconductor element protection material according to the first embodiment of the present invention.
The semiconductor device 1 shown in FIG. 1 includes a semiconductor element 2 and a hardened body 3 disposed on the first surface 2 a of the semiconductor element 2. The hardened | cured material 3 is formed by hardening | curing the said semiconductor element protection material. The cured product 3 is disposed on a partial region of the first surface 2 a of the semiconductor element 2.
The semiconductor element 2 has a first electrode 2A on a second surface 2b side opposite to the first surface 2a side. The semiconductor device 1 further includes a connection target member 4. The connection target member 4 has a second electrode 4A on the surface 4a. The semiconductor element 2 and the connection target member 4 are bonded and fixed via another hardened material 5 (connection portion). The first electrode 2A of the semiconductor element 2 is opposed to the second electrode 4A of the connection target member 4 and is electrically connected by the conductive particles 6. The first electrode 2A and the second electrode 4A may be electrically connected by being brought into contact with each other. The cured product 3 is disposed on the first surface 2a of the semiconductor element 2 on the side opposite to the side where the first electrode 2A is disposed.
A protective film 7 is disposed on the surface of the cured object 3 opposite to the semiconductor element 2 side. Thereby, not only the heat radiation property and the protection property of the semiconductor element can be improved by the cured material 3, but also the protection property of the semiconductor element can be further improved by the protective film 7. Since the hardened | cured material 3 is obtained by having the said composition, adhesion of the hardened | cured material 3 to the protective film 7 can be suppressed.
Examples of the connection target member include a glass substrate, an epoxy glass substrate, a flexible printed circuit board, and a polyimide substrate.
On the surface of the semiconductor element, the thickness of the hardened material of the semiconductor element protection material is preferably 400 μm or more, more preferably 500 μm or more, and more preferably 2000 μm or less, and more preferably 1900 μm or less. The thickness of the hardened material of the semiconductor element protection material may be thinner than the thickness of the semiconductor element.
Fig. 2 is a partially cutaway front cross-sectional view showing a semiconductor device using a semiconductor element protection material according to a second embodiment of the present invention.
The semiconductor device 1X shown in FIG. 2 includes a semiconductor element 2 and a hardened material 3X disposed on the first surface 2 a of the semiconductor element 2. The cured material 3X is formed by curing the above-mentioned material for protecting a semiconductor element. The hardened object 3X is disposed over the entire area of the first surface 2 a of the semiconductor element 2. A protective film is not disposed on the surface of the cured object 3X opposite to the semiconductor element 2 side. The surface of the cured object 3X opposite to the side of the semiconductor element 2 is exposed.
In the semiconductor device, it is preferable that a protective film is disposed on a surface of the cured object opposite to the semiconductor element side, or a surface of the cured object opposite to the semiconductor element side is exposed.
In addition, the structure shown in FIGS. 1 and 2 is only an example of a semiconductor device, and an arrangement structure of a hardened material of a material for protecting a semiconductor element may be appropriately changed.
The thermal conductivity of the hardened material of the semiconductor element protection material is not particularly limited, but is preferably 1.8 W / m ・ K or more.
Hereinafter, the present invention will be explained by citing specific examples and comparative examples of the present invention. The present invention is not limited to the following examples.
Use the following materials.
(A) Flexible epoxy compound
EX-821 (n = 4) (manufactured by Nagase Chemical Co., Ltd., polyethylene glycol diglycidyl ether, epoxy equivalent: 185)
EX-830 (n = 9) (manufactured by Nagase Chemical Co., Ltd., polyethylene glycol diglycidyl ether, epoxy equivalent: 268)
EX-931 (n = 11) (manufactured by Nagase Chemicals, polypropylene glycol diglycidyl ether, epoxy equivalent: 471)
EX-861 (n = 22) (manufactured by Nagase Chemical Co., Ltd., polyethylene glycol diglycidyl ether, epoxy equivalent: 551)
PB3600 (manufactured by Daicel, polybutadiene-modified epoxy resin)
(B) An epoxy compound different from a flexible epoxy compound
jER828 (manufactured by Mitsubishi Chemical Corporation, bisphenol A epoxy resin, epoxy equivalent: 188)
jER834 (manufactured by Mitsubishi Chemical Corporation, bisphenol A epoxy resin, softening point: 30 ° C, epoxy equivalent: 255)
(C) Liquid hardener at 23 ° C
FUJICURE 7000 (Fuji Chemical Co., Ltd., liquid at 23 ° C, amine compound)
MEH-8005 (made by Meiwa Chemical Co., Ltd., liquid at 23 ° C, allylphenol novolac compound)
(C ') Other hardeners
TD-2131 (manufactured by DIC, solid at 23 ° C, phenol novolac compound)
(D) Hardening accelerator
SA-102 (manufactured by San-Apro, DBU (diazabicycloundecene, diazabicycloundecene) octanoate)
(E) Spherical inorganic filler with a thermal conductivity of 10 W / m ・ K or more
FAN-f05 (manufactured by Furukawa Electronics, aluminum nitride, thermal conductivity: 100 W / m ・ K, spherical, average particle size: 6 μm)
FAN-f50 (manufactured by Furukawa Electronics, aluminum nitride, thermal conductivity: 100 W / m ・ K, spherical, average particle size: 30 μm)
CB-P05 (manufactured by Showa Denko, alumina, thermal conductivity: 20 W / m ・ K, spherical, average particle size: 4 μm)
CB-P40 (manufactured by Showa Denko, alumina, thermal conductivity: 20 W / m ・ K, spherical, average particle size: 44 μm)
SSC-A15 (manufactured by Shinano Electric Refining Co., Ltd., silicon nitride, thermal conductivity: 100 W / m ・ K, spherical, average particle size: 19 μm)
SSC-A30 (manufactured by Shinano Electric Refining Co., Ltd., silicon nitride, thermal conductivity: 100 W / m ・ K, spherical, average particle size: 34 μm)
(E ') Other inorganic fillers
HS-306 (manufactured by Micron, silicon oxide, thermal conductivity: 2 W / m ・ K, spherical, average particle size: 2.5 μm)
HS-304 (manufactured by Micron, silicon oxide, thermal conductivity: 2 W / m ・ K, spherical, average particle size: 25 μm)
(F) Coupling agent
KBM-403 (made by Shin-Etsu Chemical Industry Co., Ltd., 3-glyceryloxypropyltrimethoxysilane, weight reduction at 100 ° C: more than 10% by weight)
A-LINK599 (manufactured by Momentive, 3-octylthio-1-propyltriethoxysilane, weight reduction at 100 ° C: 10% by weight or less)
TOG (IPA CUT) (manufactured by Soda Co., Ltd., titanium isopropyloxyoctanediol, weight reduction at 100 ° C: 10% by weight or less)
AL-M (manufactured by Ajinomoto Fine-Techno, aluminum acetoxy aluminum diisopropoxide, weight reduction at 100 ° C: 10% by weight or less)
(Other ingredients)
Hi-Wax 200PF (made by Mitsui Chemicals, polyethylene wax)
(Example 1)
EX-821 (n = 4) 6.5 parts by weight, jER828 2.5 parts by weight, FUJICURE 7000 5 parts by weight, SA-102 0.5 parts by weight, CB-P05 42.5 parts by weight, CB-P40 42.5 parts by weight, and Hi-Wax 200PF 0.5 parts by weight were mixed and defoamed to obtain a material for protecting a semiconductor element.
(Examples 2 to 15 and Comparative Examples 1 to 4)
A material for protecting a semiconductor element was obtained in the same manner as in Example 1 except that the types and blending amounts of the blending components were changed as shown in Tables 1 and 2 below.
(Evaluation)
(1) Measurement of viscosity at 25 ° C Use a B-type viscometer ("TVB-10" manufactured by Toki Sangyo Co., Ltd.) to measure the viscosity (mPa ・ s) of a semiconductor element protection material at 25 ° C and 10 rpm ).
(2) Thermal conductivity The obtained semiconductor element protection material was heated at 150 ° C. for 2 hours to be hardened to obtain a hardened material having a thickness of 100 mm × 100 mm × 50 μm. This hardened | cured material was made into the evaluation sample.
A thermal conductivity meter "Rapid Thermal Conductivity Meter QTM-500" manufactured by Kyoto Electronics Industries was used to measure the thermal conductivity of the obtained evaluation samples.
(3) Coating property The obtained semiconductor element protection material was directly sprayed onto a polyimide film from a dispenser device ("SHOTMASTER-300" manufactured by Musashi Engineering) so as to have a diameter of 5 mm and a height of 2 mm. Thereafter, the material for protecting a semiconductor element was heated at 150 ° C. for 2 hours to be cured. Based on the shape of the hardened semiconductor element protection material, applicability was judged by the following criteria.
[Judgment criteria for coating properties]
○: The diameter is 5.3 mm or more, and the height is less than 1.8 mm (with fluidity)
△: The diameter is more than 5 mm and less than 5.3 mm, and the height is more than 1.8 mm and less than 2 mm (slight fluidity)
×: 5 mm diameter, 2 mm height unchanged (no flow)
(4) Moisture resistance The obtained material for protecting a semiconductor element was heated at 150 ° C for 2 hours to harden to obtain a hardened material having a thickness of 100 mm × 100 mm × 50 μm. This hardened | cured material was made into the evaluation sample.
The volume resistivity of the obtained evaluation samples was measured using DSM-8104 (manufactured by Hitachi Electric Co., Ltd., digital super-insulation / micro galvanometer) and electrode SME-8310 (manufactured by Hitachi Electric Co., Ltd.) for flat sample.
Then, a pressure cooker test was performed using a highly accelerated life tester EHS-211 (manufactured by Espek Corporation). After standing at 121 ° C., humidity of 100% RH and 2 atm for 24 hours, and then at 24 ° C. and humidity of 50% RH for 24 hours, the volume resistivity was measured. Calculate the reduction rate of volume resistivity before and after the pressure cooker test, and judge the moisture resistance according to the following criteria.
[Judgment Criteria for Moisture Resistance]
○: The volume resistivity reduction rate before and after the test is 10% or less △: The volume resistivity reduction rate before and after the test is more than 10% and 20% or less ×: The volume resistivity reduction rate before and after the test is more than 20%
(5) Adhesion (wafer shear strength)
A semiconductor element protection material was coated on a polyimide substrate so that the area became 3 mm × 3 mm, and a 1.5 mm square Si wafer was placed to obtain a test sample.
The obtained test sample was heated at 150 ° C. for 2 hours to harden the material for protecting a semiconductor element. Then, using a wafer shear strength tester ("DAGE 4000" manufactured by Arctek Corporation), the wafer shear strength at 25 ° C was evaluated at a speed of 300 µm / sec.
[Criterion of Wafer Shear Strength]
○: Wafer shear strength is 10 N or more △: Wafer shear strength is 6 N or more and less than 10 N
△△: Wafer shear strength is 5 N or more and less than 6 N
×: Wafer shear strength is less than 5 N
(6) Tackiness (adhesiveness of protective film)
The obtained material for protecting a semiconductor element was heated at 150 ° C. for 2 hours to be hardened to obtain a hardened material having a thickness of 100 mm × 100 mm × 50 μm. This hardened | cured material was made into the evaluation sample.
The obtained evaluation sample was left in an environment of 23 ° C. and a humidity of 50% RH for 24 hours. Immediately after being left for 24 hours, the tackiness of the surface of the evaluation sample was measured using a tackiness tester TA-500 (manufactured by UBM).
[Judging criteria for tackiness]
○: Stress is less than 50 gf / cm 2
△: Stress is 50 gf / cm 2 or more and less than 100 gf / cm 2
×: Stress is 100 gf / cm 2 or more
(7) Film warp The obtained semiconductor element protection material was sprayed directly from a dispenser device ("SHOTMASTER-300" manufactured by Musashi Engineering) so that it became 20 mm in length, 100 mm in width, and 10 mm in height. After the imine film, the material for protecting a semiconductor element was heated at 150 ° C for 2 hours to harden it. After curing, the warpage of the polyimide film was visually confirmed, and the warpage of the film was judged by the following criteria.
[Criterion of film warpage]
○: No warpage of polyimide film ×: Warpage of polyimide film occurred
(8) Heat resistance The obtained material for protecting a semiconductor element was heated at 150 ° C. for 2 hours to be hardened to obtain a hardened material having a thickness of 100 mm × 100 mm × 50 μm. This hardened | cured material was made into the evaluation sample.
The volume resistivity of the obtained evaluation samples was measured using DSM-8104 (manufactured by Hitachi Denki Co., Ltd., digital super-insulation / micro galvanometer) and electrode for flat sample SME-8310 (manufactured by Hitachi Denki Co., Ltd.).
Then, it was left to stand at 180 ° C for 100 hours, and then left to stand at 23 ° C and 50% RH for 24 hours, and then the volume resistivity was measured. The reduction rate of the volume resistivity before and after the heat resistance test was calculated, and the heat resistance was determined according to the following criteria.
[Judgment criteria for heat resistance]
○: The volume resistivity reduction rate before and after the test is 10% or less △: The volume resistivity reduction rate before and after the test is more than 10% and 20% or less ×: The volume resistivity reduction rate before and after the test is more than 20%
The composition and results are shown in Tables 1 and 2 below.
[Table 1]
[Table 2]
1‧‧‧半導體裝置1‧‧‧ semiconductor device
1X‧‧‧半導體裝置 1X‧‧‧Semiconductor device
2‧‧‧半導體元件 2‧‧‧Semiconductor
2a‧‧‧第1表面 2a‧‧‧First surface
2b‧‧‧第2表面 2b‧‧‧ 2nd surface
2A‧‧‧第1電極 2A‧‧‧The first electrode
3‧‧‧硬化物 3‧‧‧hardened
3X‧‧‧硬化物 3X‧‧‧hardened
4‧‧‧連接對象構件 4‧‧‧ Connected Object Component
4a‧‧‧表面 4a‧‧‧ surface
4A‧‧‧第2電極 4A‧‧‧Second electrode
5‧‧‧其他硬化物 5‧‧‧ Other hardened materials
6‧‧‧導電性粒子 6‧‧‧ conductive particles
7‧‧‧保護膜 7‧‧‧ protective film
圖1係表示使用本發明之第1實施形態之半導體元件保護用材料之半導體裝置之局部切開前視剖視圖。FIG. 1 is a partially cutaway front cross-sectional view showing a semiconductor device using the semiconductor element protection material according to the first embodiment of the present invention.
圖2係表示使用本發明之第2實施形態之半導體元件保護用材料之半導體裝置之局部切開前視剖視圖。 Fig. 2 is a partially cutaway front cross-sectional view showing a semiconductor device using a semiconductor element protection material according to a second embodiment of the present invention.
Claims (10)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014147608 | 2014-07-18 | ||
JP2014-147608 | 2014-07-18 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201921605A true TW201921605A (en) | 2019-06-01 |
TWI704649B TWI704649B (en) | 2020-09-11 |
Family
ID=55078557
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108104052A TWI704649B (en) | 2014-07-18 | 2015-07-17 | Material for protecting semiconductor element and semiconductor device |
TW104123309A TWI598401B (en) | 2014-07-18 | 2015-07-17 | Semiconductor element protection material and semiconductor device |
TW106123589A TWI653714B (en) | 2014-07-18 | 2015-07-17 | Material for protecting semiconductor element and semiconductor device |
TW109126737A TWI754342B (en) | 2014-07-18 | 2015-07-17 | Semiconductor element protection material and semiconductor device |
Family Applications After (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW104123309A TWI598401B (en) | 2014-07-18 | 2015-07-17 | Semiconductor element protection material and semiconductor device |
TW106123589A TWI653714B (en) | 2014-07-18 | 2015-07-17 | Material for protecting semiconductor element and semiconductor device |
TW109126737A TWI754342B (en) | 2014-07-18 | 2015-07-17 | Semiconductor element protection material and semiconductor device |
Country Status (5)
Country | Link |
---|---|
JP (1) | JPWO2016010067A1 (en) |
KR (3) | KR102383397B1 (en) |
CN (1) | CN105849187A (en) |
TW (4) | TWI704649B (en) |
WO (1) | WO2016010067A1 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102460328B1 (en) * | 2015-08-17 | 2022-10-28 | 세키스이가가쿠 고교가부시키가이샤 | Semiconductor device, and semiconductor element protection material |
KR102611441B1 (en) * | 2017-01-03 | 2023-12-07 | 주식회사 아모센스 | Electrically insulated and heat radiated coating composition and electrically insulated and heat radiated commodities with the same |
KR101756824B1 (en) * | 2017-01-03 | 2017-07-11 | 주식회사 아모센스 | Electrically insulated and heat radiated coating composition and electrically insulated and heat radiated commodities with the same |
JP6678809B2 (en) * | 2017-02-24 | 2020-04-08 | 三菱電機株式会社 | Thermal conductive resin composition, cured product thereof, thermal conductive sheet and method for producing the same |
WO2020158259A1 (en) * | 2019-02-01 | 2020-08-06 | 富士フイルム株式会社 | Composition for forming thermally conductive material, and thermally conductive material |
WO2023140644A1 (en) * | 2022-01-20 | 2023-07-27 | (주)에버텍엔터프라이즈 | Modified epoxy resin for semiconductor device encapsulation, method for manufacturing same, and liquid resin composition for semiconductor device encapsulation exhibiting low warpage containing same |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2817474B2 (en) | 1991-09-25 | 1998-10-30 | 信越化学工業株式会社 | Epoxy resin composition and cured product |
JP3821173B2 (en) | 1996-12-19 | 2006-09-13 | 信越化学工業株式会社 | Epoxy resin composition |
JP2005200533A (en) | 2004-01-15 | 2005-07-28 | Kyocera Chemical Corp | Epoxy resin composition for sealing semiconductor and resin-sealed semiconductor device |
JP2006023295A (en) * | 2004-06-10 | 2006-01-26 | Canon Inc | Birefringence-measuring method and birefringence measuring apparatus using the same |
JP2006232950A (en) * | 2005-02-23 | 2006-09-07 | Matsushita Electric Works Ltd | Sealing liquid epoxy resin composition, semiconductor device, and method for producing the same |
JP2007217469A (en) | 2006-02-14 | 2007-08-30 | Kyocera Chemical Corp | Sealing epoxy resin composition and semiconductor device sealed therewith |
US7838577B2 (en) * | 2007-07-19 | 2010-11-23 | Sekisui Chemical Co., Ltd. | Adhesive for electronic component |
PT2221666E (en) * | 2007-11-12 | 2013-10-31 | Hitachi Chemical Co Ltd | Positive-type photosensitive resin composition, method for production of resist pattern, and semiconductor device |
MY152342A (en) * | 2008-12-10 | 2014-09-15 | Sumitomo Bakelite Co | Granular epoxy resin composition for encapsulating semiconductor, semiconductor device using the same and method for producing semiconductor device |
JP5721416B2 (en) * | 2010-12-13 | 2015-05-20 | 積水化学工業株式会社 | Thermally conductive adhesive |
JP2012201696A (en) | 2011-03-23 | 2012-10-22 | Panasonic Corp | Liquid epoxy resin composition for electronic component and electronic device using the same |
JP5860151B2 (en) * | 2012-07-31 | 2016-02-16 | 旭化成イーマテリアルズ株式会社 | Epoxy resin composition, epoxy resin, and cured product |
JP2014040538A (en) | 2012-08-23 | 2014-03-06 | Hitachi Chemical Co Ltd | Epoxy resin composition of double-liquid type |
-
2015
- 2015-07-15 CN CN201580003215.1A patent/CN105849187A/en active Pending
- 2015-07-15 KR KR1020217032674A patent/KR102383397B1/en active IP Right Grant
- 2015-07-15 KR KR1020177029699A patent/KR102313846B1/en active IP Right Grant
- 2015-07-15 WO PCT/JP2015/070248 patent/WO2016010067A1/en active Application Filing
- 2015-07-15 JP JP2015535270A patent/JPWO2016010067A1/en active Pending
- 2015-07-15 KR KR1020167016198A patent/KR101808472B1/en active IP Right Grant
- 2015-07-17 TW TW108104052A patent/TWI704649B/en active
- 2015-07-17 TW TW104123309A patent/TWI598401B/en active
- 2015-07-17 TW TW106123589A patent/TWI653714B/en active
- 2015-07-17 TW TW109126737A patent/TWI754342B/en active
Also Published As
Publication number | Publication date |
---|---|
JPWO2016010067A1 (en) | 2017-04-27 |
TW202105621A (en) | 2021-02-01 |
KR20170013195A (en) | 2017-02-06 |
KR20210127793A (en) | 2021-10-22 |
TWI704649B (en) | 2020-09-11 |
TWI598401B (en) | 2017-09-11 |
CN105849187A (en) | 2016-08-10 |
WO2016010067A1 (en) | 2016-01-21 |
TW201735273A (en) | 2017-10-01 |
KR102383397B1 (en) | 2022-04-08 |
TWI754342B (en) | 2022-02-01 |
KR101808472B1 (en) | 2017-12-12 |
TWI653714B (en) | 2019-03-11 |
KR102313846B1 (en) | 2021-10-18 |
KR20170118261A (en) | 2017-10-24 |
TW201609945A (en) | 2016-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6731906B2 (en) | Materials for semiconductor device and semiconductor element protection | |
TWI653714B (en) | Material for protecting semiconductor element and semiconductor device | |
TWI682958B (en) | Curable composition, method for producing curable composition, and semiconductor device | |
JP2017041633A (en) | Semiconductor device and semiconductor element protective material | |
JP2017039802A (en) | Material for protecting semiconductor element and semiconductor device | |
JP2016023219A (en) | Two-liquid mixing type first and second liquids for protecting semiconductor element, and semiconductor device | |
JP5766867B1 (en) | Semiconductor element protecting material and semiconductor device | |
JPWO2018198992A1 (en) | Liquid sealing resin composition, electronic component device, and method of manufacturing electronic component device | |
JP2017039800A (en) | Material for protecting semiconductor element and semiconductor device | |
JP2019123774A (en) | Material for protecting semiconductor element, and semiconductor device | |
JP2017039801A (en) | Material for protecting semiconductor element and semiconductor device | |
JP2017039799A (en) | Material for protecting semiconductor element and semiconductor device | |
JP2017039804A (en) | Cured body and semiconductor device |