TW201919348A - Signal receiving apparatus and signal processing method thereof - Google Patents

Signal receiving apparatus and signal processing method thereof Download PDF

Info

Publication number
TW201919348A
TW201919348A TW106139368A TW106139368A TW201919348A TW 201919348 A TW201919348 A TW 201919348A TW 106139368 A TW106139368 A TW 106139368A TW 106139368 A TW106139368 A TW 106139368A TW 201919348 A TW201919348 A TW 201919348A
Authority
TW
Taiwan
Prior art keywords
scaling
circuit
signal
signal processing
ratio
Prior art date
Application number
TW106139368A
Other languages
Chinese (zh)
Inventor
陳家偉
鄭凱文
廖懿穎
童泰來
Original Assignee
晨星半導體股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 晨星半導體股份有限公司 filed Critical 晨星半導體股份有限公司
Priority to TW106139368A priority Critical patent/TW201919348A/en
Publication of TW201919348A publication Critical patent/TW201919348A/en

Links

Abstract

A signal receiving apparatus including a scaling circuit, an iterative decoder, and a control circuit is provided. According to a scaling ratio, the scaling circuit changes the scale of an input signal, so as to correspondingly generate a scaled signal. The iterative decoder performs an iterative decoding process on the scaled signal. Based on the total number of iterations that the iterative decoder performed on N data segments in the scaled signal, the control circuit generates an modified scaling ratio for the scaling circuit, wherein N represents a predetermined positive integer.

Description

信號接收裝置及其信號處理方法Signal receiving device and signal processing method thereof

本發明與信號接收裝置相關,並且尤其與在遞迴式解碼器前端設有縮放電路的信號接收裝置相關。The invention relates to a signal receiving device and, in particular, to a signal receiving device provided with a scaling circuit at the front end of the recursive decoder.

隨著通訊技術的進步,數位影像廣播的發展漸趨成熟。目前在非洲與亞洲地區,數位電視廣播(digital video broadcasting, DVB)是最主流的數位影像廣播標準。圖一呈現第二代數位電視衛星廣播(digital video broadcasting – satellite – second generation, DVB-S2)接收端的概略功能方塊圖,其中包含調諧器101、類比-數位轉換器102、時序/相位回復電路103、等化器104、解調電路105、對數概似比值(log-likelihood ratio, LLR)縮放電路106、低密度同位檢查(low density parity check, LDPC)解碼器107、博斯-喬赫里(BCH)解碼器108、輸出處理器109,以及控制電路110。With the advancement of communication technology, the development of digital video broadcasting has gradually matured. Currently in Africa and Asia, digital video broadcasting (DVB) is the most popular digital video broadcasting standard. FIG. 1 is a schematic functional block diagram of a receiver of a second-generation digital-satellite-satellite broadcast (DVB-S2), including a tuner 101, an analog-to-digital converter 102, and a timing/phase recovery circuit 103. , equalizer 104, demodulation circuit 105, log-likelihood ratio (LRR) scaling circuit 106, low density parity check (LDPC) decoder 107, Bosch-Johri ( BCH) decoder 108, output processor 109, and control circuit 110.

低密度同位檢查解碼器107所接收的信號(在圖中以符號Y表示)為具有固定位元長度的數位信號。對數概似比值縮放電路106負責調整其輸入信號(在圖中以符號X表示)的大小,使得信號Y盡可能具有與該固定位元長度相稱的量化解析度。實務上,對數概似比值縮放電路106是根據一個特定的縮放比例來縮放信號Y,且該縮放比例會直接影響信號Y的品質。更具體地說,採用過大的縮放比例會造成信號Y中一部分原本非對應於飽和值的資訊被放大為飽和值。相對地,若此縮放比例太小,將導致信號Y的量化解析度不足以與前述固定位元長度相稱,因而使後續電路正確解碼的機率降低。The signal received by the low density parity check decoder 107 (indicated by the symbol Y in the figure) is a digital signal having a fixed bit length. The log-like likelihood ratio scaling circuit 106 is responsible for adjusting the size of its input signal (represented by the symbol X in the figure) such that the signal Y has as much quantized resolution as possible commensurate with the length of the fixed bit. In practice, the log-like ratio scaling circuit 106 scales the signal Y according to a particular scaling ratio, and the scaling directly affects the quality of the signal Y. More specifically, using an excessively large scaling ratio causes a portion of the signal Y that is not originally corresponding to the saturation value to be amplified to a saturation value. In contrast, if the scaling is too small, the quantization resolution of the signal Y will be insufficient to match the length of the aforementioned fixed bit, thereby reducing the probability of correct decoding of subsequent circuits.

如圖一所示,一種典型的電路配置是由控制電路110根據此接收端之輸入信號的調變類型與碼率(code rate)進行查表來得到該縮放比例,提供給對數概似比值縮放電路106使用。這種做法的缺點在於僅考量調變類型與碼率,未將其他因素(例如信號由傳送端遞送至接收端所經過的通道狀況)納入考量,因此有時候並不能為對數概似比值縮放電路106找出最適當的縮放比例。As shown in FIG. 1, a typical circuit configuration is obtained by the control circuit 110 according to the modulation type and code rate of the input signal of the receiving end to obtain the scaling ratio, and the logarithmic approximate ratio scaling is provided. Circuitry 106 is used. The disadvantage of this approach is that only the modulation type and the code rate are considered, and other factors (such as the channel conditions through which the signal is transmitted from the transmitting end to the receiving end) are not taken into consideration, so sometimes it is not possible to scale the circuit for the logarithmic approximate ratio. 106 find the most appropriate scaling.

為解決上述問題,本發明提出一種新的信號接收裝置及其信號處理方法。In order to solve the above problems, the present invention proposes a new signal receiving apparatus and a signal processing method thereof.

根據本發明之一實施例為一種信號接收裝置,其中包含一縮放電路、一遞迴式解碼器以及一控制電路。該縮放電路係用以根據一縮放比例縮放一輸入信號,以產生相對應之一縮放後信號。該遞迴式解碼器係用以對該縮放後信號施以一遞迴式解碼程序。該控制電路係用以根據該遞迴式解碼器施於該縮放後信號中N個資料區段之一總遞迴次數產生一修改後縮放比例,供該縮放電路使用,其中符號N代表一正整數且為一預設值。According to an embodiment of the invention, a signal receiving apparatus includes a scaling circuit, a recursive decoder, and a control circuit. The scaling circuit is configured to scale an input signal according to a scaling to generate a corresponding one of the scaled signals. The recursive decoder is configured to apply a recursive decoding procedure to the scaled signal. The control circuit is configured to generate a modified scaling ratio according to the total number of retransmissions of one of the N data segments applied by the recursive decoder for the scaling circuit, wherein the symbol N represents a positive An integer is a preset value.

根據本發明之另一實施例為一種應用於信號接收裝置之信號處理方法,包含下列步驟:(a)根據一縮放比例縮放一輸入信號,以產生相對應之一縮放後信號;(b)對該縮放後信號施以一遞迴式解碼程序;以及(c)根據步驟(b)施於該縮放後信號中N個資料區段之一總遞迴次數產生一修改後縮放比例,其中符號N代表一正整數且為一預設值。Another embodiment of the present invention is a signal processing method applied to a signal receiving apparatus, comprising the steps of: (a) scaling an input signal according to a scaling ratio to generate a corresponding one of the scaled signals; (b) The scaled signal is subjected to a recursive decoding procedure; and (c) a modified scale is generated according to the total number of recursive times of one of the N data sections applied to the scaled signal according to step (b), wherein the symbol N Represents a positive integer and is a preset value.

關於本發明的優點與精神可以藉由以下發明詳述及所附圖式得到進一步的瞭解。The advantages and spirit of the present invention will be further understood from the following detailed description of the invention.

根據本發明之一實施例為一種信號接收裝置,其功能方塊圖係繪示於圖二。信號接收裝置200包含一縮放電路201、一遞迴式(iterative)解碼器202以及一控制電路203。於實際應用中,信號接收裝置200可被整合在各種於遞迴式解碼器前端設置有縮放電路的信號接收系統,例如但不限於圖一所示之第二代數位電視衛星廣播(DVB-S2)接收端。An embodiment of the present invention is a signal receiving apparatus, and a functional block diagram thereof is shown in FIG. The signal receiving device 200 includes a scaling circuit 201, an iterative decoder 202, and a control circuit 203. In practical applications, the signal receiving apparatus 200 can be integrated in various signal receiving systems provided with a scaling circuit at the front end of the reciprocating decoder, such as but not limited to the second generation digital television broadcasting (DVB-S2) shown in FIG. )Receiving end.

縮放電路201係用以根據一縮放比例縮放其輸入信號,以產相對應的縮放後信號。舉例而言,縮放電路201可為但不限於圖一所示之對數概似比值(LLR)縮放電路106。The scaling circuit 201 is operative to scale its input signal according to a scaling to produce a corresponding scaled signal. For example, scaling circuit 201 can be, but is not limited to, a log likelihood ratio (LLR) scaling circuit 106 as shown in FIG.

遞迴式解碼器202係用以對該縮放後信號施以一遞迴式解碼程序。舉例而言,遞迴式解碼器202可為但不限於圖一所示之低密度同位檢查(LDPC)解碼器107或是一渦輪碼(turbo code)解碼器。一般而言,若是接收到品質較理想的縮放後信號,遞迴式解碼器202進行較少次的遞迴解碼便可取得解碼結果。相對地,若是接收到帶有較多錯誤的縮放後信號,則遞迴式解碼器202必須進行較多次的遞迴解碼始能取得解碼結果。由此可知,遞迴式解碼器202針對一批縮放後信號進行遞迴解碼的次數能反映出該批縮放後信號的品質。The recursive decoder 202 is configured to apply a recursive decoding procedure to the scaled signal. For example, the recursive decoder 202 can be, but is not limited to, a low density parity check (LDPC) decoder 107 or a turbo code decoder as shown in FIG. In general, if a scaled signal of a better quality is received, the recursive decoder 202 performs a number of recursive decodings to obtain a decoding result. In contrast, if a scaled signal with more errors is received, the recursive decoder 202 must perform more than one recursive decoding to obtain the decoding result. It can be seen that the number of times that the recursive decoder 202 performs recursive decoding on a batch of scaled signals can reflect the quality of the batch of scaled signals.

如先前所述,縮放電路201所採用的縮放比例會影響縮放後信號的量化解析度。顯然,不恰當的縮放比例會降低縮放後信號的品質。因此,在信號接收裝置200中,遞迴式解碼器202施於縮放後信號的遞迴次數被拿來當作檢視該縮放比例是否恰當的指標。遞迴次數愈少,縮放比例愈理想。如圖二所示,遞迴式解碼器202會將一遞迴資訊反饋給控制電路203,供控制電路203據此調整縮放電路201採用的縮放比例。As previously described, the scaling employed by scaling circuit 201 affects the quantized resolution of the scaled signal. Obviously, an inappropriate scaling will reduce the quality of the scaled signal. Therefore, in the signal receiving apparatus 200, the number of times the recursive signal is applied to the scaled signal by the recursive decoder 202 is taken as an index for checking whether or not the scaling is appropriate. The fewer the number of recursions, the better the scaling. As shown in FIG. 2, the recursive decoder 202 feeds back a recursive information to the control circuit 203 for the control circuit 203 to adjust the scaling used by the scaling circuit 201 accordingly.

圖三呈現控制電路203的一種詳細實施範例。在這個範例中,控制電路203包含一查找電路203A、一記憶體203B、一累計電路203C、一增減電路203D,以及一比較電路203E,以下分述各電路的功能。FIG. 3 presents a detailed implementation example of control circuit 203. In this example, the control circuit 203 includes a lookup circuit 203A, a memory 203B, an accumulation circuit 203C, an increase and decrease circuit 203D, and a comparison circuit 203E. The functions of the circuits are described below.

記憶體203B中設有至少兩個暫存器,分別用來儲存「目前縮放比例R」和「參考累計值S」。首先,查找電路203A可根據信號接收裝置200之輸入信號的調變類型與碼率進行查表,藉此得到一初始縮放比例R0 ,寫入記憶體203B中的「目前縮放比例R」暫存器。實務上,查找電路203A中的查找表內容可以是電路設計者預先經由模擬實驗找出的數值,其產生方式為本發明所屬技術領域中具有通常知識者所知,於此不贅述。The memory 203B is provided with at least two temporary registers for storing the "current scaling ratio R" and the "reference cumulative value S", respectively. First, the search circuit 203A can perform a lookup according to the modulation type and the code rate of the input signal of the signal receiving device 200, thereby obtaining an initial scaling ratio R 0 , and temporarily storing the “current scaling ratio R” in the memory 203B. Device. In practice, the lookup table content in the lookup circuit 203A may be a value that the circuit designer finds in advance through a simulation experiment, and the manner of generation thereof is known to those of ordinary skill in the art to which the present invention pertains, and details are not described herein.

縮放電路201係採用「目前縮放比例R」暫存器儲存的數值來產生縮放後信號。因此,縮放電路201首先會採用初始縮放比例R0 來產生縮放後信號,而遞迴式解碼器202隨後將對該縮放後信號施以遞迴式解碼程序。控制電路203會取得遞迴式解碼器202施於該縮放後信號中N個資料區段之一總遞迴次數,其中符號N代表一正整數且為電路設計者預先決定之一數值。舉例而言,N個資料區段可以是對應於N個視訊框。遞迴式解碼器202可以在每一次要進行新的遞迴程序時通知累計電路203C進行累計,或是在完成特定份量的解碼工作(例如對應於一個完整視訊框的解碼程序)後告知累計電路203C這段時間內的總遞迴次數。於一實施例中,累計電路203C被設計為累計遞迴式解碼器202為複數個(例如連續三個)視訊框解碼的過程所進行的總遞迴次數。累計電路203C會將每次完成一段累計後的結果(以下稱最新累計值)寫入記憶體203B中的「參考累計值S」暫存器。在縮放電路201採用初始縮放比例R0 一段時間之後,累計電路203C所產生的最新累計值便可做為「參考累計值S」的初始值S0The scaling circuit 201 uses the values stored in the "current scaling R" register to generate the scaled signal. Thus, scaling circuit 201 first uses the initial scaling R 0 to produce the scaled signal, and recursive decoder 202 will then apply the recursive decoding procedure to the scaled signal. The control circuit 203 obtains the total number of times of retransmission of one of the N data sectors in the scaled signal by the recursive decoder 202, wherein the symbol N represents a positive integer and is predetermined by the circuit designer. For example, the N data sections may correspond to N video frames. The recursive decoder 202 may notify the accumulating circuit 203C to accumulate each time a new recursive procedure is to be performed, or notify the accumulating circuit after completing a certain amount of decoding work (eg, a decoding procedure corresponding to one complete video frame). 203C The total number of recursions during this time. In one embodiment, the accumulation circuit 203C is designed to count the total number of recursive times that the recursive decoder 202 performs for a plurality of (eg, three consecutive) video frame decoding processes. The accumulation circuit 203C writes the result of the completion of each accumulation (hereinafter referred to as the latest accumulated value) into the "reference cumulative value S" register in the memory 203B. After the scaling circuit 201 adopts the initial scaling ratio R 0 for a while, the latest accumulated value generated by the integrating circuit 203C can be used as the initial value S 0 of the "reference cumulative value S".

在累計電路203C產生「參考累計值S」的初始值S0 後,增減電路203D便可嘗試性地產生一個不同於初始縮放比例R0 的修改後縮放比例R1 ,寫入記憶體203B中的「目前縮放比例R」暫存器,供縮放電路201使用。舉例而言,增減電路203D可令修改後縮放比例R1 為初始縮放比例R0 的90%或是110%。接著,在縮放電路201採用修改後縮放比例R1 運作一段時間以後,累計電路203C便會產生對應於修改後縮放比例R1 的最新累計值S1 。為令比較基礎一致,若參考累計值S0 是對應於三個視訊框之解碼程序的總遞迴次數,則最新累計值S1 也會是對應於三個視訊框之解碼程序的總遞迴次數,亦即令前述N個資料區段被固定為對應於三個視訊框。After the accumulation circuit 203C generates the initial value S 0 of the "reference cumulative value S", the increase/decrease circuit 203D can tentatively generate a modified scaling ratio R 1 different from the initial scaling ratio R 0 , and write it into the memory 203B. The "current scaling R" register is used by the scaling circuit 201. For example, the increase and decrease circuit 203D can make the modified scaling ratio R 1 90% or 110% of the initial scaling ratio R 0 . After then, after using scaling circuit 201 changes the scale factor R 1 a period of operation, it will produce a corresponding integrating circuit 203C latest accumulated value of the scaling ratio of R 1 to the modified S 1. In order to make the comparison basis consistent, if the reference cumulative value S 0 is the total number of recursive times corresponding to the decoding procedures of the three video frames, the latest accumulated value S 1 will also be the total retransmission of the decoding program corresponding to the three video frames. The number of times, that is, the aforementioned N data sections are fixed to correspond to three video frames.

比較電路203E負責比較累計電路203C產生的最新累計值S1 與記憶體203B儲存的參考累計值S0 。以修改後縮放比例R1 小於初始縮放比例R0 的假設來說明,若最新累計值S1 小於參考累計值S0 ,表示採用低於初始縮放比例R0 的修改後縮放比例R1 能夠提高縮放後信號的品質。相對地,若最新累計值S1 大於參考累計值S0 ,表示修改後縮放比例R1 並不比初始縮放比例R0 理想。The comparison circuit 203E is responsible for comparing the latest accumulated value S 1 generated by the accumulation circuit 203C with the reference cumulative value S 0 stored by the memory 203B. The assumption that the modified scaling ratio R 1 is smaller than the initial scaling ratio R 0 indicates that if the latest accumulated value S 1 is smaller than the reference cumulative value S 0 , it means that the modified scaling ratio R 1 lower than the initial scaling ratio R 0 can be used to increase the scaling. The quality of the post signal. In contrast, if the latest accumulated value S 1 is greater than the reference cumulative value S 0 , it indicates that the modified scaling ratio R 1 is not ideal than the initial scaling ratio R 0 .

接著,增減電路203D會根據上述比較結果選擇性地增減目前縮放比例,再次產生一個新的修改後縮放比例R2 ,寫入記憶體203B中的「目前縮放比例R」暫存器,供縮放電路201使用。更具體地說,增減電路203D可依循前一次的修改方向(縮小或是放大)繼續進行修改。以修改後縮放比例R1 小於初始縮放比例R0 ,且最新累計值S1 小於參考累計值S0 的情況為例,增減電路203D可繼續往降低縮放比例的方向修改,也就是令新的修改後縮放比例R2 小於修改後縮放比例R1 。相對地,若修改後縮放比例R1 小於初始縮放比例R0 ,且最新累計值S1 大於參考累計值S0 ,則增減電路203D可朝著相反的修改方向修改縮放比例,亦即改為令新的修改後縮放比例R2 大於修改後縮放比例R1Then, the increase/decrease circuit 203D selectively increases or decreases the current zoom ratio according to the comparison result, and generates a new modified scale R 2 again , and writes the “current scale R” register in the memory 203B for The scaling circuit 201 is used. More specifically, the increase/decrease circuit 203D can continue to modify according to the previous modification direction (reduction or enlargement). For example, in the case where the modified scaling ratio R 1 is smaller than the initial scaling ratio R 0 and the latest accumulated value S 1 is smaller than the reference cumulative value S 0 , the increase/decrease circuit 203D can continue to modify the direction in which the scaling is reduced, that is, to make a new one. The modified scaling R 2 is smaller than the modified scaling R 1 . In contrast, if the modified scaling ratio R 1 is smaller than the initial scaling ratio R 0 and the latest accumulated value S 1 is greater than the reference cumulative value S 0 , the increase/decrease circuit 203D can modify the scaling ratio in the opposite modification direction, that is, Let the new modified scale R 2 be greater than the modified scale R 1 .

在比較電路203E完成對於最新累計值S1 與參考累計值S0 的比較之後,累計電路203C便會將最新累計值S1 存入記憶體203B中的「參考累計值S」暫存器,覆寫掉原本儲存在其中的累計值S0 。依此類推,隨後在累計電路203C產生新的累計值S2 之後,比較電路203E是以累計值S1 做為累計值S2 的比較對象,而增減電路203D會繼續根據新的比較結果來決定新的修改後縮放比例R3 應該高於或低於修改後縮放比例R2After the comparison circuit 203E completes the comparison of the latest integrated value S 1 and the reference integrated value S 0 , the accumulation circuit 203C stores the latest accumulated value S 1 in the "reference cumulative value S" register in the memory 203B, Write the accumulated value S 0 that was originally stored in it. And so on, after the accumulation circuit 203C generates a new integrated value S 2 , the comparison circuit 203E compares the cumulative value S 1 as the integrated value S 2 , and the increase/decrease circuit 203D continues to follow the new comparison result. It is decided that the new modified scale R 3 should be higher or lower than the modified scale R 2 .

理論上,若以縮放比例R為橫軸、累計值S為縱軸,這兩個參數的相對關係會近似於一條開口朝上的拋物線,如圖四所示。若初始縮放比例R0 並非對應於拋物線的底部區間,在經過一次或數次修正之後,增減電路203D便可令修正後縮放比例逐漸趨近該底部區間,找出能令累計值S最小化的縮放比例R。Theoretically, if the scaling ratio R is the horizontal axis and the cumulative value S is the vertical axis, the relative relationship between the two parameters will approximate a parabola with an opening upward, as shown in FIG. If the initial scaling ratio R 0 does not correspond to the bottom interval of the parabola, after one or several corrections, the increasing/decreasing circuit 203D can gradually make the corrected scaling ratio approach the bottom interval, and find that the cumulative value S can be minimized. The scale of R.

須說明的是,本發明其他實施例中,亦可不包含上述實施例中的查找電路203A與其查找表。初始縮放比例R0 的產生方式不限於根據調變類型與碼率來查表。舉例而言,初始縮放比例R0 可以是預先儲存在「目前縮放比例R」暫存器中的一個特定數值。事實上,即使採用一個無關於調變類型與碼率的初始縮放比例R0 ,在經過一次或數次修正之後找出的修正後縮放比例同樣可以趨近於最佳縮放比例。It should be noted that, in other embodiments of the present invention, the lookup circuit 203A and the lookup table in the above embodiment may not be included. The manner in which the initial scaling ratio R 0 is generated is not limited to look up the table according to the modulation type and the code rate. For example, the initial scaling R 0 may be a specific value pre-stored in the "current scaling R" register. In fact, even with an initial scaling R 0 that is independent of the modulation type and code rate, the corrected scaling ratio found after one or several corrections can also approach the optimal scaling.

由以上說明可看出,不同於僅考量調變類型與碼率的先前技術,控制電路203會根據遞迴資訊反映出的實際信號狀況來動態調整縮放電路201使用的縮放比例。經實驗證明,藉此所找出的縮放比例能有效提升縮放後信號的品質、提高後續電路正確解碼的機率。As can be seen from the above description, unlike the prior art which only considers the modulation type and the code rate, the control circuit 203 dynamically adjusts the scaling used by the scaling circuit 201 based on the actual signal condition reflected by the recursive information. It has been proved by experiments that the scale obtained by this can effectively improve the quality of the signal after scaling and improve the probability of correct decoding of subsequent circuits.

本發明的範疇並未限定於特定儲存機制;記憶體203B可為一揮發性或非揮發性記憶體裝置,例如隨機存取半導體記憶體或快閃記憶體。此外,控制電路203中的其他電路可利用多種控制和處理平台實現,包含固定式的和可程式化的邏輯電路,例如可程式化邏輯閘陣列、針對特定應用的積體電路、微控制器、微處理器、數位信號處理器。此外,控制電路203亦可被設計為透過執行記憶體203B中所儲存之處理器指令,來完成其任務。The scope of the present invention is not limited to a particular storage mechanism; the memory 203B can be a volatile or non-volatile memory device such as a random access semiconductor memory or a flash memory. In addition, other circuits in control circuit 203 can be implemented using a variety of control and processing platforms, including fixed and programmable logic circuits, such as programmable logic gate arrays, integrated circuits for specific applications, microcontrollers, Microprocessor, digital signal processor. In addition, the control circuit 203 can also be designed to perform its tasks by executing processor instructions stored in the memory 203B.

根據本發明之另一實施例為一種應用於信號接收裝置之信號處理方法,其流程圖係繪示於圖五。首先,步驟S501為一初始化步驟,用以產生一個目前縮放比例。步驟S502則是根據目前縮放比例縮放一輸入信號,以產生相對應之一縮放後信號。其次,步驟S503為對該縮放後信號施以一遞迴式解碼程序。接著,步驟S504為根據步驟S503施於該縮放後信號中N個資料區段之一遞迴次數產生一修正後縮放比例,並將該修正後縮放比例設定為新的目前縮放比例,其中符號N代表一正整數且為一預設值。隨後,步驟S502會被重新執行。Another embodiment of the present invention is a signal processing method applied to a signal receiving apparatus, and a flow chart thereof is shown in FIG. First, step S501 is an initialization step for generating a current zoom ratio. Step S502 is to scale an input signal according to the current scaling to generate a corresponding one of the scaled signals. Next, step S503 is to apply a recursive decoding procedure to the scaled signal. Next, in step S504, a corrected scaling is generated according to the number of times of returning one of the N data segments in the scaled signal according to step S503, and the corrected scaling is set to a new current scaling, wherein the symbol N Represents a positive integer and is a preset value. Subsequently, step S502 is re-executed.

圖五進一步呈現可應用於信號處理方法500的詳細實施步驟。首先,步驟S601為取得一初始縮放比例。步驟S602為將該初始縮放比例設定為目前縮放比例。步驟S603為根據目前縮放比例取得最新遞迴次數。步驟S604為將最新遞迴次數設定為參考遞迴次數。步驟S605為產生小於目前縮放比例的修正後縮放比例,做為新的目前縮放比例。步驟S606為根據目前縮放比例取得最新遞迴次數。步驟S607為判斷最新遞迴次數是否小於參考遞迴次數。若步驟S607之判斷結果為是,則步驟S604及其後續步驟會被重新執行。若步驟S607之判斷結果為否,則步驟S608會被執行,亦即將最新遞迴次數設定為參考遞迴次數。隨後的步驟S609為產生大於目前縮放比例的修正後縮放比例,做為新的目前縮放比例。步驟S610為根據目前縮放比例取得最新遞迴次數。步驟S611為判斷最新遞迴次數是否小於參考遞迴次數。若步驟S611之判斷結果為是,則步驟S608及其後續步驟會被重新執行。若步驟S611之判斷結果為否,則步驟S604及其後續步驟會被重新執行。FIG. 5 further presents detailed implementation steps that may be applied to signal processing method 500. First, step S601 is to obtain an initial scaling. Step S602 is to set the initial zoom ratio to the current zoom ratio. Step S603 is to obtain the latest number of recursive times according to the current zoom ratio. Step S604 is to set the latest number of recursive times as the number of reference retransmissions. Step S605 is to generate a corrected zoom ratio that is smaller than the current zoom ratio as a new current zoom ratio. Step S606 is to obtain the latest number of recursive times according to the current zoom ratio. Step S607 is to determine whether the latest number of recursions is less than the number of reference recursions. If the decision result in the step S607 is YES, the step S604 and its subsequent steps are re-executed. If the result of the determination in the step S607 is no, the step S608 is executed, that is, the latest number of retransmissions is set as the number of reference retransmissions. Subsequent step S609 is to generate a corrected zoom ratio that is greater than the current zoom ratio as a new current zoom ratio. Step S610 is to obtain the latest number of recursive times according to the current zoom ratio. Step S611 is to determine whether the latest number of recursions is less than the number of reference recursions. If the decision result in the step S611 is YES, the step S608 and its subsequent steps are re-executed. If the decision result in the step S611 is NO, the step S604 and its subsequent steps are re-executed.

步驟S601~S603及初次進行的S604~S605可被視為對應於圖五中的步驟S501。步驟S606係對應於圖五中的步驟S502~S503。步驟S607及隨後可能被執行的S604~S605則是對應於圖五中的步驟S504。相似地,步驟S610也是對應於圖五中的步驟S502~S503,而步驟S611及隨後可能被執行的S608~S609也是對應於圖五中的步驟S504。Steps S601 to S603 and the first performed S604 to S605 can be regarded as corresponding to step S501 in FIG. Step S606 corresponds to steps S502 to S503 in FIG. Step S607 and S604~S605, which may be subsequently executed, correspond to step S504 in FIG. Similarly, step S610 also corresponds to steps S502 to S503 in FIG. 5, and step S611 and subsequent S608 to S609 may also be performed corresponding to step S504 in FIG.

本發明所屬技術領域中具有通常知識者可理解,在圖六中,某些步驟的順序或其中之判斷邏輯的組合方式可被等效調換,並且不會影響該信號處理方法的整體效果。此外,先前在介紹信號接收裝置200時描述的各種操作變化亦可應用至圖五、圖六中的信號處理方法,其細節不再贅述。It will be understood by those of ordinary skill in the art that, in FIG. 6, the order of certain steps or combinations of decision logic therein may be equivalently interchanged without affecting the overall effect of the signal processing method. In addition, various operational changes previously described in the introduction of the signal receiving apparatus 200 can also be applied to the signal processing methods in FIG. 5 and FIG. 6, and details thereof will not be described again.

藉由以上實施例之詳述,係希望能更加清楚描述本發明之特徵與精神,而並非以上述所揭露的實施例來對本發明之範疇加以限制。相反地,其目的是希望能涵蓋各種改變及具相等性的安排於本發明所欲申請之專利範圍的範疇內。The features and spirit of the present invention are intended to be more apparent from the detailed description of the embodiments. On the contrary, the intention is to cover various modifications and equivalents within the scope of the invention as claimed.

101‧‧‧調諧器101‧‧‧ Tuner

102‧‧‧類比-數位轉換器102‧‧‧ Analog-Digital Converter

103‧‧‧時序/相位回復電路103‧‧‧Time/Phase Recovery Circuit

104‧‧‧等化器104‧‧‧ Equalizer

105‧‧‧解調電路105‧‧‧Demodulation circuit

106‧‧‧對數概似比值縮放電路106‧‧‧ Logarithmic Likelihood Ratio Scaling Circuit

107‧‧‧低密度同位檢查解碼器107‧‧‧Low density parity check decoder

108‧‧‧博斯-喬赫里解碼器108‧‧ Bosch-Johri decoder

109‧‧‧輸出處理器109‧‧‧Output processor

110‧‧‧控制電路110‧‧‧Control circuit

200‧‧‧信號接收裝置200‧‧‧Signal receiving device

201‧‧‧縮放電路201‧‧‧Scaling circuit

202‧‧‧遞迴式解碼器202‧‧‧Reciprocal decoder

203‧‧‧控制電路203‧‧‧Control circuit

203A‧‧‧查找電路203A‧‧‧Search circuit

203B‧‧‧記憶體203B‧‧‧ memory

203C‧‧‧累計電路203C‧‧‧Accumulating circuit

203D‧‧‧增減電路203D‧‧‧ increase and decrease circuit

203E‧‧‧比較電路203E‧‧‧Comparative circuit

400‧‧‧信號處理方法400‧‧‧Signal Processing Method

S501~S504‧‧‧流程步驟S501~S504‧‧‧ Process steps

S601~S611‧‧‧流程步驟S601~S611‧‧‧ Process steps

圖一呈現一第二代數位電視衛星廣播接收端的概略功能方塊圖。 圖二為根據本發明之一實施例中的信號接收裝置之功能方塊圖。 圖三呈現根據本發明之控制電路的一種詳細實施範例。 圖四呈現縮放比例R與累計值S的相對關係。 圖五為根據本發明之一實施例中的信號處理方法之流程圖。 圖六進一步呈現可應用於根據本發明之信號處理方法的詳細實施步驟。Figure 1 presents a schematic functional block diagram of a second generation digital television satellite broadcast receiver. Figure 2 is a functional block diagram of a signal receiving apparatus in accordance with an embodiment of the present invention. Figure 3 presents a detailed embodiment of a control circuit in accordance with the present invention. Figure 4 shows the relative relationship between the scaling ratio R and the cumulative value S. Figure 5 is a flow chart of a signal processing method in accordance with an embodiment of the present invention. Figure 6 further presents detailed implementation steps that can be applied to the signal processing method in accordance with the present invention.

須說明的是,本發明的圖式包含呈現多種彼此關聯之功能性模組的功能方塊圖。該等圖式並非細部電路圖,且其中的連接線僅用以表示信號流。功能性元件及/或程序間的多種互動關係不一定要透過直接的電性連結始能達成。此外,個別元件的功能不一定要如圖式中繪示的方式分配,且分散式的區塊不一定要以分散式的電子元件實現。It should be noted that the drawings of the present invention include functional block diagrams that present a plurality of functional modules associated with each other. These figures are not detailed circuit diagrams, and the connecting lines therein are only used to represent the signal flow. Multiple interactions between functional components and/or procedures do not have to be achieved through direct electrical connections. In addition, the functions of the individual components are not necessarily allotted in the manner illustrated in the drawings, and the decentralized blocks are not necessarily implemented in the form of decentralized electronic components.

Claims (8)

一種信號處理裝置,適用於一信號接收系統,該信號處理裝置包含: 一縮放電路,用以根據一縮放比例縮放一輸入信號,以產生相對應之一縮放後信號; 一遞迴式解碼器,用以對該縮放後信號施以一遞迴式解碼程序;以及 一控制電路,用以根據該遞迴式解碼器施於該縮放後信號中N個資料區段之一總遞迴次數,產生一修改後縮放比例供該縮放電路使用,其中符號N代表一正整數且為一預設值。A signal processing device is applicable to a signal receiving system, the signal processing device comprising: a scaling circuit for scaling an input signal according to a scaling ratio to generate a corresponding one of the scaled signals; a recursive decoder, And a control circuit for generating a total number of retransmission times of one of the N data segments in the scaled signal according to the recursive decoder A modified scale is used by the scaling circuit, where the symbol N represents a positive integer and is a predetermined value. 如申請專利範圍第1項所述之信號處理裝置,其中該N個資料區段係對應於N個視訊框。The signal processing device of claim 1, wherein the N data segments correspond to N video frames. 如申請專利範圍第1項所述之信號處理裝置,其中該縮放電路為一對數概似比值(log-likelihood ratio, LLR)縮放電路。The signal processing device of claim 1, wherein the scaling circuit is a log-likelihood ratio (LLR) scaling circuit. 如申請專利範圍第1項所述之信號處理裝置,其中該控制電路包含: 一記憶體,用以暫存一目前縮放比例與一參考累計值; 一累計電路,用以根據該遞迴式解碼器提供之一遞迴資訊產生該總遞迴次數; 一比較電路,用以比較該總遞迴次數與該記憶體所暫存之該參考累計值,以產生一比較結果;以及 一增減電路,用以根據該比較結果與該記憶體所暫存之該目前縮放比例產生該修改後縮放比例。The signal processing device of claim 1, wherein the control circuit comprises: a memory for temporarily storing a current scaling ratio and a reference accumulated value; and an accumulating circuit for decoding according to the recursive decoding Providing one of the recursive information to generate the total number of retransmissions; a comparison circuit for comparing the total number of retransmissions with the reference accumulated value temporarily stored in the memory to generate a comparison result; and an increasing or decreasing circuit And generating the modified scaling according to the comparison result and the current scaling ratio temporarily stored by the memory. 一種應用於信號接收裝置之信號處理方法,包含: (a)根據一縮放比例縮放一輸入信號,以產生相對應之一縮放後信號; (b)對該縮放後信號施以一遞迴式解碼程序;以及 (c)根據步驟(b)施於該縮放後信號中N個資料區段之一總遞迴次數,產生一修改後縮放比例,其中符號N代表一正整數且為一預設值。A signal processing method applied to a signal receiving apparatus, comprising: (a) scaling an input signal according to a scaling to generate a corresponding one of the scaled signals; (b) applying a recursive decoding to the scaled signal a program; and (c) applying a modified number of times of one of the N data segments in the scaled signal according to step (b), wherein the modified symbol represents a positive integer and is a preset value . 如申請專利範圍第5項所述之信號處理方法,其中該N個資料區段係對應於N個視訊框。The signal processing method of claim 5, wherein the N data segments correspond to N video frames. 如申請專利範圍第5項所述之信號處理方法,其中步驟(a)係執行一對數概似比值縮放程序。The signal processing method of claim 5, wherein the step (a) is to perform a one-to-seven approximate ratio scaling procedure. 如申請專利範圍第5項所述之信號處理方法,其中步驟(c)包含: 比較該總遞迴次數與一參考累計值,以產生一比較結果;以及 根據該比較結果與一目前縮放比例,產生該修改後縮放比例。The signal processing method of claim 5, wherein the step (c) comprises: comparing the total number of times of retransmission with a reference accumulated value to generate a comparison result; and according to the comparison result and a current scaling ratio, This modified scale is generated.
TW106139368A 2017-11-14 2017-11-14 Signal receiving apparatus and signal processing method thereof TW201919348A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106139368A TW201919348A (en) 2017-11-14 2017-11-14 Signal receiving apparatus and signal processing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106139368A TW201919348A (en) 2017-11-14 2017-11-14 Signal receiving apparatus and signal processing method thereof

Publications (1)

Publication Number Publication Date
TW201919348A true TW201919348A (en) 2019-05-16

Family

ID=67347829

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106139368A TW201919348A (en) 2017-11-14 2017-11-14 Signal receiving apparatus and signal processing method thereof

Country Status (1)

Country Link
TW (1) TW201919348A (en)

Similar Documents

Publication Publication Date Title
CN109075799B (en) Coding and decoding method and device for Polar codes
CN107425856B (en) Low density parity check decoder and method for saving power thereof
US8347194B2 (en) Hierarchical decoding apparatus
US7853854B2 (en) Iterative decoding of a frame of data encoded using a block coding algorithm
JP5534528B2 (en) Apparatus and method for decoding signals
US7929646B2 (en) Map decoder with bidirectional sliding window architecture
US8806309B2 (en) Method for controlling message-passing algorithm based decoding operation by referring to statistics data of syndromes of executed iterations and related control apparatus thereof
US10084481B2 (en) GLDPC soft decoding with hard decision inputs
US7805642B1 (en) Low power iterative decoder using input data pipelining and voltage scaling
JP2006515483A (en) Soft information scaling for iterative decoding
JP2010158015A (en) Broadcast receiver and method for optimizing scale factor for log-likelihood mapper
US9628112B2 (en) Apparatus and method for length and rate variable LDPC encoder and decoder using shortening set allocator
CN109873684B (en) Signal receiving device and signal processing method thereof
US8627187B2 (en) Decoding of recursive convolutional codes by means of a decoder for non-recursive convolutional codes
TW201919348A (en) Signal receiving apparatus and signal processing method thereof
GB2403106A (en) a turbo type decoder which performs decoding iterations on sub-blocks to improve convergence
US8582685B2 (en) Apparatus and method for encoding a signal
US9906327B2 (en) Receiving device, receiving method, and program
US10020825B1 (en) Method and apparatus for turbo decoder dynamic iteration control
US20210058098A1 (en) Iterative Decoding Circuit and Decoding Method
US20090327834A1 (en) Device having turbo decoding capabilities and a method for turbo decoding
US20150318873A1 (en) Iterative decoder with configurable pool of decoding stages
TWI650954B (en) Decoding method for convolution code decoding device in communication system and related determining module
US10320417B2 (en) Decoding method and related apparatus
TWI569589B (en) Viterbi decoding apparatus and viterbi decoding method