TW201919241A - Semiconductor structure and method for forming the same - Google Patents

Semiconductor structure and method for forming the same Download PDF

Info

Publication number
TW201919241A
TW201919241A TW106137898A TW106137898A TW201919241A TW 201919241 A TW201919241 A TW 201919241A TW 106137898 A TW106137898 A TW 106137898A TW 106137898 A TW106137898 A TW 106137898A TW 201919241 A TW201919241 A TW 201919241A
Authority
TW
Taiwan
Prior art keywords
gate trench
semiconductor substrate
forming
dielectric layer
semiconductor structure
Prior art date
Application number
TW106137898A
Other languages
Chinese (zh)
Other versions
TWI658595B (en
Inventor
簡士傑
馬洛宜 庫馬
李家豪
廖志成
Original Assignee
世界先進積體電路股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 世界先進積體電路股份有限公司 filed Critical 世界先進積體電路股份有限公司
Priority to TW106137898A priority Critical patent/TWI658595B/en
Application granted granted Critical
Publication of TWI658595B publication Critical patent/TWI658595B/en
Publication of TW201919241A publication Critical patent/TW201919241A/en

Links

Abstract

The embodiments of the present invention relate to a semiconductor structure. The semiconductor structure includes a semiconductor substrate, a gate trench in the semiconductor substrate, a gate dielectric layer disposed on sidewalls of the gate trench, an extending portion of the gate trench below the gate trench, an insulating stud disposed in the extending portion of the gate trench, a gate electrode disposed in the gate trench and on the insulting stud, a doping well region embedded in the semiconductor substrate on opposite sides of the gate trench, and a source region disposed in the semiconductor substrate on the doping well region.

Description

半導體結構與其形成方法  Semiconductor structure and method of forming same  

本發明之實施例係有關於一種半導體結構,且特別有關於一種功率金氧半場效電晶體(Power MOSFET)之半導體結構。 Embodiments of the present invention relate to a semiconductor structure, and more particularly to a semiconductor structure of a power MOSFET.

半導體裝置已廣泛地使用於各種電子產品中,舉例而言,諸如個人電腦、手機、以及數位相機...等。半導體裝置的製造通常是藉由在半導體基板上依序沉積絕緣層或介電層材料、導電層材料以及半導體基板材料,接著使用微影製程圖案化所形成的各種材料層,藉以在此半導體基板之上形成電路零件及組件。 Semiconductor devices have been widely used in various electronic products such as, for example, personal computers, mobile phones, and digital cameras. The semiconductor device is usually fabricated by sequentially depositing an insulating layer or a dielectric layer material, a conductive layer material, and a semiconductor substrate material on a semiconductor substrate, and then using a lithography process to pattern various material layers, whereby the semiconductor substrate is formed thereon. Circuit parts and components are formed on top.

其中,功率金氧半場效電晶體是一種可廣泛使用在類比電路以及數位電路的場效電晶體,其具有輸入端的功率散逸小、切換速度快等優點,因此在功率元件的發展上備受期待。 Among them, the power MOS half-field effect transistor is a field effect transistor which can be widely used in analog circuits and digital circuits, and has the advantages of small power dissipation at the input end and fast switching speed, and thus is expected in the development of power components. .

功率金氧半場效電晶體的崩潰電壓係為其重要參數之一,然而依照現有的技術,提高崩潰電壓通常會使得電晶體的導通電阻(on resistance)以及臨界電壓(threshold voltage)上升而不利於半導體元件之操作。因此,現今之功率金氧半場 效電晶體仍有許多問題亟需改善。 The breakdown voltage of power MOS field-effect transistor is one of its important parameters. However, according to the prior art, increasing the breakdown voltage usually makes the on resistance and threshold voltage of the transistor rise, which is not conducive to Operation of semiconductor components. Therefore, there are still many problems in today's power MOS field-effect transistors that need to be improved.

本發明之實施例提供一種半導體結構,其包括半導體基板、位於半導體基板中之閘極溝槽、設置於閘極溝槽之側壁上之閘極介電層、位於閘極溝槽之下之閘極溝槽延伸部、設置於閘極溝槽延伸部中之絕緣柱、設置於閘極溝槽中及絕緣柱上之閘極電極、埋置於閘極溝槽兩側之半導體基板中之摻雜井區、設置於摻雜井區上之半導體基板中之源極區。 Embodiments of the present invention provide a semiconductor structure including a semiconductor substrate, a gate trench in the semiconductor substrate, a gate dielectric layer disposed on a sidewall of the gate trench, and a gate under the gate trench a pole trench extension portion, an insulating pillar disposed in the gate trench extension portion, a gate electrode disposed in the gate trench and the insulating pillar, and a semiconductor substrate embedded in both sides of the gate trench a well region, a source region disposed in the semiconductor substrate on the doped well region.

本發明之實施例亦提供一種半導體結構之形成方法,其包括提供半導體基板、形成閘極溝槽於半導體基板中、形成閘極介電層於上述閘極溝槽之側壁上、凹蝕閘極溝槽以形成閘極溝槽延伸部於閘極溝槽之下、形成絕緣柱於閘極溝槽延伸部中、形成閘極電極於閘極溝槽中及絕緣柱之上、形成摻雜井區於閘極溝槽兩側之半導體基板中、形成源極區於摻雜井區上之半導體基板中。 Embodiments of the present invention also provide a method of forming a semiconductor structure, including providing a semiconductor substrate, forming a gate trench in the semiconductor substrate, forming a gate dielectric layer on a sidewall of the gate trench, and etching a gate The trench is formed to form a gate trench extension under the gate trench, form an insulating pillar in the gate trench extension, form a gate electrode in the gate trench and over the insulating pillar, and form a doping well In the semiconductor substrate on both sides of the gate trench, a source region is formed in the semiconductor substrate on the doped well region.

100‧‧‧半導體基板 100‧‧‧Semiconductor substrate

102‧‧‧磊晶區域 102‧‧‧Elobite area

104‧‧‧閘極溝槽 104‧‧ ‧ gate trench

106‧‧‧第一共形介電層 106‧‧‧First conformal dielectric layer

108‧‧‧第二共形介電層 108‧‧‧Second conformal dielectric layer

108A、108B、108C‧‧‧第二共形介電層之部分 108A, 108B, 108C‧‧‧Parts of the second conformal dielectric layer

110‧‧‧閘極溝槽之延伸部 110‧‧‧Extension of the gate trench

112‧‧‧絕緣柱 112‧‧‧Insulation column

114‧‧‧閘極電極 114‧‧‧gate electrode

116‧‧‧摻雜井區 116‧‧‧Doped well area

118‧‧‧源極區 118‧‧‧ source area

120‧‧‧絕緣層 120‧‧‧Insulation

122‧‧‧源極接觸 122‧‧‧Source contact

124‧‧‧汲極接觸 124‧‧‧Bungee contact

126‧‧‧半導體基板之一部分 126‧‧‧One part of the semiconductor substrate

128‧‧‧第一介電層 128‧‧‧First dielectric layer

130‧‧‧第二介電層 130‧‧‧Second dielectric layer

200‧‧‧反向摻雜區 200‧‧‧Back doped area

300‧‧‧降低表面電場摻雜區 300‧‧‧Reducing surface electric field doping

10、20、30‧‧‧半導體結構 10, 20, 30‧‧‧ semiconductor structure

T‧‧‧厚度 T‧‧‧ thickness

以下將配合所附圖式詳述本發明之實施例。應注意的是,各種特徵並未按照比例繪製且僅用以說明例示。事實上,元件的尺寸可能經放大或縮小,以清楚地表現出本發明之實施例的技術特徵。 Embodiments of the present invention will be described in detail below with reference to the drawings. It is noted that the various features are not drawn to scale and are merely illustrative. In fact, the dimensions of the elements may be enlarged or reduced to clearly show the technical features of the embodiments of the present invention.

第1A-1L圖為一系列剖面圖,用以說明本發明一些實施例之半導體結構的製造流程。 1A-1L is a series of cross-sectional views for explaining the manufacturing process of the semiconductor structure of some embodiments of the present invention.

第2-3圖係為本發明一些其他實施例之半導體結構的剖面圖。 2-3 are cross-sectional views of a semiconductor structure in accordance with some other embodiments of the present invention.

以下公開許多不同的實施方法或是例子來實行本發明實施例之不同特徵,以下描述具體的元件及其排列以闡述本發明之實施例。當然這些實施例僅用以例示,且不該以此限定本發明之實施例的範圍。例如,在說明書中提到第一特徵形成於第二特徵之上,其包括第一特徵與第二特徵是直接接觸的實施例,另外也包括於第一特徵與第二特徵之間另外有其他特徵的實施例,亦即,第一特徵與第二特徵並非直接接觸。應可理解的是,額外的操作步驟可實施於所述方法之前、之間或之後,且在所述方法的其他實施例中,可以取代或省略部分的操作步驟。 The various features of the embodiments of the invention are set forth in the description of the embodiments of the invention. The examples are for illustrative purposes only and are not intended to limit the scope of the embodiments of the invention. For example, it is mentioned in the specification that the first feature is formed on the second feature, including an embodiment in which the first feature is in direct contact with the second feature, and additionally includes another feature between the first feature and the second feature. An embodiment of the feature, that is, the first feature is not in direct contact with the second feature. It will be appreciated that additional operational steps may be performed before, during or after the method, and that in other embodiments of the method, portions of the operational steps may be substituted or omitted.

本發明實施例之半導體結構,係於閘極溝槽下形成閘極溝槽延伸部,接著於閘極溝槽延伸部中形成絕緣柱,上述絕緣柱使得半導體結構可在維持較低之導通阻值及臨界電壓的同時提高其崩潰電壓。 The semiconductor structure of the embodiment of the present invention forms a gate trench extension under the gate trench, and then forms an insulating pillar in the gate trench extension portion, the insulating pillar enables the semiconductor structure to maintain a low conduction resistance The value and the threshold voltage increase its breakdown voltage.

第1A圖繪示出本實施例之起始步驟。首先,提供半導體基板100,其可包括磊晶區域102以及其下方之半導體基板100之一部分126。在一些實施例中,半導體基板100之部分126的摻雜濃度(例如:1E18-1E20cm-3)大於磊晶區域102之摻雜濃度(例如:1E15-1E17cm-3)。舉例而言,半導體基板100可包括矽。在一些其他的實施例中,半導體基板100可為其他元素半導體,例如:鍺;化合物半導體,例如:碳化矽(silicon carbide,SiC)、砷化鎵(gallium arsenic,GaAs)、砷化銦(indium arsenide,InAs)或磷化銦(indium phosphide,InP);合金半導體,例如:矽 鍺(Silicon germanium,SiGe)、矽碳化鍺(silicon germanium carbide,SiGeC)、砷磷化鎵(gallium arsenic phosphide,GaAsP)或磷化鎵銦(gallium indium phosphide,GaInP)。半導體基板100可包括磊晶區域102,舉例而言,可使用氣相磊晶法(vapor phase epitaxy,簡稱VPE)、分子束磊晶法(molecular-beam epitaxy,簡稱MBE)、有機金屬氣相沉積法(metal organic chemical vapor deposition,簡稱MOCVD)、上述之組合或其他合適之方法形成磊晶區域102。舉例而言,半導體基板100可為N型基板或P型基板,為了方便起見,本實施例係以在N型半導體基板100中形成N型場效電晶體為例進行說明,但所屬領域具通常知識者應當了解,在一些本發明之其他實施例中,亦可在P型半導體基板中形成P型場效電晶體。 Figure 1A depicts the initial steps of this embodiment. First, a semiconductor substrate 100 is provided that can include an epitaxial region 102 and a portion 126 of the semiconductor substrate 100 therebelow. In some embodiments, the doping concentration of portion 126 of semiconductor substrate 100 (eg, 1E18-1E20 cm −3 ) is greater than the doping concentration of epitaxial region 102 (eg, 1E15-1E17 cm −3 ). For example, the semiconductor substrate 100 may include germanium. In some other embodiments, the semiconductor substrate 100 may be other elemental semiconductors, such as germanium; compound semiconductors, such as: silicon carbide (SiC), gallium arsenic (GaAs), indium arsenide (indium) Arsenide, InAs) or indium phosphide (InP); alloy semiconductors such as: Silicon germanium (SiGe), silicon germanium carbide (SiGeC), gallium arsenic phosphide (GaAsP) Or gallium indium phosphide (GaInP). The semiconductor substrate 100 may include an epitaxial region 102. For example, a vapor phase epitaxy (VPE), a molecular-beam epitaxy (MBE), or an organometallic vapor deposition may be used. The epitaxial region 102 is formed by a metal organic chemical vapor deposition (MOCVD), a combination of the above, or other suitable methods. For example, the semiconductor substrate 100 can be an N-type substrate or a P-type substrate. For the sake of convenience, the present embodiment is described by taking an N-type field effect transistor in the N-type semiconductor substrate 100 as an example. It will be understood by those skilled in the art that in some other embodiments of the invention, a P-type field effect transistor can also be formed in a P-type semiconductor substrate.

接著,仍如第1A圖所示,形成第一介電層128及第二介電層130於磊晶區域102之上。舉例而言,第一介電層128可包括氧化矽、其他適當之介電材料或上述之組合。可使用化學氣相沉積法(chemical vapor deposition;CVD)、熱氧化法、其他適當之方法或上述之組合形成第一介電層128。舉例而言,第二介電層130可包括氮化矽、其他適當之介電材料或上述之組合。在一些實施例中,可藉由低壓化學氣相沉積法(LPCVD)、電漿化學氣相沉積法(PECVD)、其他合適之方法或上述之組合形成第二介電層130。 Next, as shown in FIG. 1A, the first dielectric layer 128 and the second dielectric layer 130 are formed over the epitaxial region 102. For example, the first dielectric layer 128 can comprise hafnium oxide, other suitable dielectric materials, or a combination thereof. The first dielectric layer 128 may be formed using chemical vapor deposition (CVD), thermal oxidation, other suitable methods, or a combination thereof. For example, the second dielectric layer 130 can include tantalum nitride, other suitable dielectric materials, or a combination thereof. In some embodiments, the second dielectric layer 130 can be formed by low pressure chemical vapor deposition (LPCVD), plasma chemical vapor deposition (PECVD), other suitable methods, or a combination thereof.

在一些實施例中,第一介電層128可為由氧化物所形成之墊氧化物層(pad oxide layer),而第二介電層130可為由氮化物所形成之墊氮化物層(pad nitride layer)。 In some embodiments, the first dielectric layer 128 can be a pad oxide layer formed of an oxide, and the second dielectric layer 130 can be a pad nitride layer formed of a nitride ( Pad nitride layer).

接著,請參照第1B圖,形成閘極溝槽104於半導體基板100之磊晶區域102中。舉例而言,可先形成具有對應上述閘極溝槽104之開口圖案的圖案化光阻及/或圖案化硬罩幕(未繪示)於第一介電層128及第二介電層130上,然後以上述之圖案化光阻及/或圖案化硬罩幕作為蝕刻罩幕進行一或多個蝕刻製程,以於第二介電層130及第一介電層128中形成對應於上述閘極溝槽104之開口。接著,去除上述之圖案化光阻及/或圖案化硬罩幕,然後以第二介電層130及第一介電層128作為蝕刻罩幕進行蝕刻製程,以於磊晶區域102中形成閘極溝槽104。舉例而言,上述蝕刻製程可為乾式蝕刻(例如:異向電漿蝕刻法)、濕式蝕刻或其組合,在一些使用乾式蝕刻之實施例中,有利於形成高深寬比之閘極溝槽104。 Next, referring to FIG. 1B, the gate trench 104 is formed in the epitaxial region 102 of the semiconductor substrate 100. For example, a patterned photoresist and/or a patterned hard mask (not shown) having an opening pattern corresponding to the gate trench 104 may be formed on the first dielectric layer 128 and the second dielectric layer 130. And then performing one or more etching processes by using the patterned photoresist and/or the patterned hard mask as the etching mask to form the second dielectric layer 130 and the first dielectric layer 128 corresponding to the above The opening of the gate trench 104. Then, the patterned photoresist and/or the patterned hard mask are removed, and then the second dielectric layer 130 and the first dielectric layer 128 are used as an etching mask to perform an etching process to form a gate in the epitaxial region 102. Pole trench 104. For example, the etching process may be dry etching (eg, anisotropic plasma etching), wet etching, or a combination thereof. In some embodiments using dry etching, it is advantageous to form a gate trench having a high aspect ratio. 104.

接著,請參照第1C圖,形成第一共形介電層106於閘極溝槽104之中且覆蓋閘極溝槽104之側壁及底部。舉例而言,第一共形介電層106可包括氧化矽、氮氧化矽、氧化鑭(La2O3)、氧化鋁(Al2O3)、氧化鉿(HfO2)、氧氮化鉿(HfON)、氧化鋯(ZrO2),氧化鉭矽(tantalum silicon oxide;TaSiOx)、其他適當之材料或上述之組合。可使用原子層沉積技術(atomic-layer deposition;ALD)、分子束沉積技術(molecular beam deposition;MBD)、化學氣相沉積法(chemical vapor deposition;CVD)、熱氧化法、其他適當之方法或上述之組合形成第一共形介電層106。應注意的是,覆蓋閘極溝槽104側壁之第一共形介電層106於後續將充當為半導體結構之閘極介電層,其可依照場效電晶體所需之特性選擇一適當之厚度T(例 如:50-800Å)。 Next, referring to FIG. 1C, the first conformal dielectric layer 106 is formed in the gate trench 104 and covers the sidewalls and the bottom of the gate trench 104. For example, the first conformal dielectric layer 106 may include hafnium oxide, hafnium oxynitride, lanthanum oxide (La 2 O 3 ), aluminum oxide (Al 2 O 3 ), hafnium oxide (HfO 2 ), hafnium oxynitride. (HfON), zirconium oxide (ZrO 2 ), tantalum silicon oxide (TaSiO x ), other suitable materials, or a combination thereof. Atomic layer deposition (ALD), molecular beam deposition (MBD), chemical vapor deposition (CVD), thermal oxidation, other suitable methods, or the like may be used. The combination forms a first conformal dielectric layer 106. It should be noted that the first conformal dielectric layer 106 covering the sidewalls of the gate trenches 104 will subsequently serve as a gate dielectric layer for the semiconductor structure, which may be selected in accordance with the desired characteristics of the field effect transistor. Thickness T (for example: 50-800 Å).

接著,仍如第1C圖所示,形成第二共形介電層108於第一共形介電層106之上,其可具有位於第二介電層130上之部分108A、位於閘極溝槽104之側壁上之部分108B以及位於閘極溝槽104之底部之部分108C。在一些實施例中,第二共形介電層108之厚度T’可為3至10μm。舉例而言,第二共形介電層108可包括氮化矽、氮氧化矽或其他適當之材料。在一些實施例中,可藉由低壓化學氣相沉積法(LPCVD)、電漿化學氣相沉積法(PECVD)、其他合適之方法或上述之組合形成第二共形介電層108。 Next, as shown in FIG. 1C, a second conformal dielectric layer 108 is formed over the first conformal dielectric layer 106, which may have a portion 108A on the second dielectric layer 130, located in the gate trench. Portion 108B on the sidewall of trench 104 and portion 108C at the bottom of gate trench 104. In some embodiments, the second conformal dielectric layer 108 may have a thickness T' of 3 to 10 μm. For example, the second conformal dielectric layer 108 can comprise tantalum nitride, hafnium oxynitride, or other suitable material. In some embodiments, the second conformal dielectric layer 108 can be formed by low pressure chemical vapor deposition (LPCVD), plasma chemical vapor deposition (PECVD), other suitable methods, or a combination thereof.

接著,如第1D圖所示,進行蝕刻製程(例如:乾蝕刻製程)以移除第二共形介電層108之部分108A以及部分108C並露出覆蓋閘極溝槽104之底部的第一共形介電層106之一部分。如第1D圖所示,上述蝕刻製程實質上不移除或僅少量移除第二共形介電層108之部分108B,因此於上述蝕刻製程之後,閘極溝槽104之側壁上仍殘留有第二共形介電層108之部分108B。在一些實施例中,第二共形介電層108可包括不同於第一共形介電層106之材料(例如:第一共形介電層為氧化物而第二共形介電層為氮化物),因此於後續之蝕刻步驟中,可使用殘留之第二共形介電層108之部分108B作為蝕刻罩幕蝕刻第一共形介電層106及半導體基板100以形成閘極溝槽延伸部110(如第1E圖所示),於後文將詳細敘述。 Next, as shown in FIG. 1D, an etching process (eg, a dry etching process) is performed to remove portions 108A and portions 108C of the second conformal dielectric layer 108 and expose the first total of the bottom portions of the gate trenches 104. A portion of the dielectric layer 106. As shown in FIG. 1D, the etching process does not substantially remove or remove only a portion 108B of the second conformal dielectric layer 108. Therefore, after the etching process, the sidewalls of the gate trench 104 remain. Portion 108B of second conformal dielectric layer 108. In some embodiments, the second conformal dielectric layer 108 can comprise a different material than the first conformal dielectric layer 106 (eg, the first conformal dielectric layer is an oxide and the second conformal dielectric layer is Nitride), so in the subsequent etching step, the first conformal dielectric layer 106 and the semiconductor substrate 100 may be etched using the remaining portion 108B of the second conformal dielectric layer 108 as an etch mask to form a gate trench. The extension portion 110 (shown in Fig. 1E) will be described in detail later.

接著,請參照第1E圖,凹蝕閘極溝槽104以形成閘極溝槽延伸部110於閘極溝槽104之下。承前述,在一些實施例 中,可使用殘留之第二共形介電層108之部分108B作為蝕刻罩幕進行一或多個蝕刻製程,以依序蝕刻位於閘極溝槽104底部的第一共形介電層106及半導體基板100之磊晶區域102而形成閘極溝槽延伸部110,因此不需要額外的光罩而可節省成本。舉例而言,上述蝕刻製程可為乾式蝕刻(例如:異向電漿蝕刻法)、濕式蝕刻或其組合。在一些實施例中,如第1E圖所示,閘極溝槽之延伸部110之寬度小於閘極溝槽104之寬度。 Next, referring to FIG. 1E, the gate trench 104 is recessed to form a gate trench extension 110 below the gate trench 104. As described above, in some embodiments, the portion 108B of the remaining second conformal dielectric layer 108 can be used as an etch mask to perform one or more etching processes to sequentially etch the first portion at the bottom of the gate trench 104. The conformal dielectric layer 106 and the epitaxial regions 102 of the semiconductor substrate 100 form the gate trench extensions 110, thereby eliminating the need for an additional mask and saving cost. For example, the etching process described above may be dry etching (eg, anisotropic plasma etching), wet etching, or a combination thereof. In some embodiments, as shown in FIG. 1E, the width of the extension 110 of the gate trench is less than the width of the gate trench 104.

接著,請參照第1F圖,形成絕緣柱112於閘極溝槽之延伸部110中。舉例而言,絕緣柱112可包括氧化物、氮化物、氮氧化物、其他適當之材料或上述之組合。在一些實施例中,進行局部氧化製程(Local Oxidation)以形成氧化物絕緣柱112於閘極溝槽之延伸部110中。舉例而言,在進行上述局部氧化製程時,可使用殘留之第二共形介電層108之部分108B作為氧化罩幕,以防止第一共形介電層106之厚度因氧化而產生實質上的改變而無法維持依照場效電晶體所需之特性所選擇之適當厚度。 Next, referring to FIG. 1F, the insulating pillar 112 is formed in the extending portion 110 of the gate trench. For example, the insulating pillars 112 can include oxides, nitrides, oxynitrides, other suitable materials, or combinations thereof. In some embodiments, a local Oxidation process is performed to form an oxide insulating pillar 112 in the extension 110 of the gate trench. For example, in performing the above partial oxidation process, a portion 108B of the remaining second conformal dielectric layer 108 can be used as an oxide mask to prevent the thickness of the first conformal dielectric layer 106 from being substantially oxidized. The change does not maintain the proper thickness selected in accordance with the desired characteristics of the field effect transistor.

接著,請參照第1G圖,進行蝕刻製程以移除第二介電層130、第二共形介電層108、第一介電層128以及閘極溝槽104外之第一共形介電層106。舉例而言,上述蝕刻製程可為乾式蝕刻(例如:異向電漿蝕刻法)、濕式蝕刻或其組合。在一些實施例中,可以濕式蝕刻製程移除第二共形介電層108,並以乾式蝕刻製程移除第二介電層130、第一介電層128以及閘極溝槽104外之第一共形介電層106。在一些其他的實施例中,也可使用化學機械研磨製程(Chemical Mechanical Polishing, CMP),且在閘極溝槽104中可填入光阻等可移除之材料以保護閘極溝槽104中之第一共形介電層106以及閘極溝槽之延伸部110中之絕緣柱112。 Next, referring to FIG. 1G, an etching process is performed to remove the first dielectric layer 130, the second conformal dielectric layer 108, the first dielectric layer 128, and the first conformal dielectric outside the gate trench 104. Layer 106. For example, the etching process described above may be dry etching (eg, anisotropic plasma etching), wet etching, or a combination thereof. In some embodiments, the second conformal dielectric layer 108 can be removed by a wet etch process and removed from the second dielectric layer 130, the first dielectric layer 128, and the gate trench 104 by a dry etch process. First conformal dielectric layer 106. In some other embodiments, a chemical mechanical polishing (CMP) may also be used, and a removable material such as a photoresist may be filled in the gate trench 104 to protect the gate trench 104. The first conformal dielectric layer 106 and the insulating pillars 112 in the extension 110 of the gate trench.

接著,請參照第1H圖,形成閘極電極114於閘極溝槽104中。舉例而言,閘極電極114可包括多晶矽、金屬材料及/或其矽化物、其他適當之導電材料或上述之組合。在一些實施例中,可藉由化學氣相沉積法、濺鍍法(sputtering)、電鍍、電阻加熱蒸鍍法、電子束蒸鍍法(electron beam evaporation,EB)、或其他適合的沉積方式填入適當之導電材料於閘極溝槽104中以形成閘極電極114。另外,在沉積導電材料後,可視需求進行化學機械研磨製程或回蝕刻製程,以移除閘極溝槽104外之多餘的導電材料。 Next, referring to FIG. 1H, the gate electrode 114 is formed in the gate trench 104. For example, the gate electrode 114 can comprise polysilicon, a metallic material, and/or a germanide thereof, other suitable electrically conductive materials, or combinations thereof. In some embodiments, it may be filled by chemical vapor deposition, sputtering, electroplating, resistance heating evaporation, electron beam evaporation (EB), or other suitable deposition methods. A suitable conductive material is implanted into the gate trench 104 to form the gate electrode 114. In addition, after depositing the conductive material, a chemical mechanical polishing process or an etch back process may be performed as needed to remove excess conductive material outside the gate trenches 104.

接著,如第1I圖所示,形成摻雜井區116於閘極溝槽104兩側之半導體基板100中。於本實施例中,後續所形成之半導體結構10係為N型場效電晶體,因此摻雜井區116可為P型摻雜區。舉例而言,可佈植硼離子、銦離子或二氟化硼離子(BF2 +)於閘極溝槽104兩側之半導體基板100中以形成摻雜濃度為1E15-1E18cm-3之P型摻雜井區116。在另一些實施例中,後續所形成之半導體結構係為P型場效電晶體,因此摻雜井區116可為N型摻雜區。舉例而言可佈植磷離子或砷離子於閘極溝槽104兩側之半導體基板100中以形成摻雜濃度為1E15-1E18cm-3之N型摻雜井區116。 Next, as shown in FIG. 1I, doped well regions 116 are formed in the semiconductor substrate 100 on both sides of the gate trenches 104. In the present embodiment, the subsequently formed semiconductor structure 10 is an N-type field effect transistor, and thus the doping well region 116 may be a P-type doped region. For example, boron ions, indium ions or boron difluoride ions (BF 2 + ) may be implanted in the semiconductor substrate 100 on both sides of the gate trench 104 to form a P-type doping concentration of 1E15-1E18 cm -3 . Doped well region 116. In other embodiments, the subsequently formed semiconductor structure is a P-type field effect transistor, and thus the doped well region 116 can be an N-type doped region. For example, phosphorus ions or arsenic ions may be implanted in the semiconductor substrate 100 on both sides of the gate trench 104 to form an N-type doping well region 116 having a doping concentration of 1E15-1E18 cm -3 .

接著,形成源極區118於摻雜井區116上之半導體基板100中以形成半導體結構10。於本實施例中,半導體結構 10係為N型場效電晶體,因此源極區118可為N型摻雜區。舉例而言,可佈植磷離子或砷離子於摻雜井區116上之半導體基板100中以形成摻雜濃度為1E19-1E21Ecm-3之N型源極區118。在另一些實施例中,所形成之半導體結構係為P型場效電晶體,因此源極區118可為P型摻雜區。舉例而言可佈植硼離子、銦離子或二氟化硼離子(BF2 +)於摻雜井區116上之半導體基板100中以形成摻雜濃度為1E19-1E21cm-3之P型源極區118。 Next, a source region 118 is formed in the semiconductor substrate 100 on the doped well region 116 to form the semiconductor structure 10. In the present embodiment, the semiconductor structure 10 is an N-type field effect transistor, and thus the source region 118 can be an N-type doped region. For example, phosphorous or arsenic ions may be implanted in the semiconductor substrate 100 on the well region 116 to form an N-type source region 118 having a doping concentration of 1E19-1E21Ecm -3 . In other embodiments, the semiconductor structure formed is a P-type field effect transistor, and thus the source region 118 can be a P-type doped region. For example, boron ions, indium ions or boron difluoride ions (BF 2 + ) may be implanted in the semiconductor substrate 100 on the doped well region 116 to form a P-type source having a doping concentration of 1E19-1E21 cm -3 . District 118.

如第1I圖所示,本發明實施例之半導體結構10包括形成於閘極電極114下方之絕緣柱112,而可在不影響其導通阻值及臨界電壓的情況下提高其崩潰電壓。 As shown in FIG. 1I, the semiconductor structure 10 of the embodiment of the present invention includes an insulating pillar 112 formed under the gate electrode 114 to increase its breakdown voltage without affecting its conduction resistance and threshold voltage.

接著,如第1J圖所示,可視情況形成絕緣層120及源極接觸122於半導體基板100之上。在一些實施例中,源極接觸122可電性連接源極118及摻雜井區116而可避免寄生雙極性電晶體產生影響裝置性能之導通行為。舉例而言,源極接觸122可包括金屬材料(例如:鎢、鋁或銅)或其他適當之導電材料。 Next, as shown in FIG. 1J, the insulating layer 120 and the source contact 122 may be formed on the semiconductor substrate 100 as appropriate. In some embodiments, the source contact 122 can be electrically connected to the source 118 and the doped well region 116 to prevent parasitic bipolar transistors from producing conduction behavior that affects device performance. For example, source contact 122 can comprise a metallic material (eg, tungsten, aluminum, or copper) or other suitable electrically conductive material.

應注意的是,於絕緣柱112下之半導體基板100可充當半導體結構10之汲極區。另外,如第1J圖所示,亦可視情況形成汲極接觸124於半導體基板100之下。舉例而言,汲極接觸124可包括金屬材料(例如:鎢、鋁或銅)或其他適當之導電材料。 It should be noted that the semiconductor substrate 100 under the insulating pillars 112 can serve as the drain region of the semiconductor structure 10. Further, as shown in FIG. 1J, the drain contact 124 may be formed under the semiconductor substrate 100 as appropriate. For example, the drain contact 124 can comprise a metallic material (eg, tungsten, aluminum, or copper) or other suitable electrically conductive material.

另外,雖然於本實施例中,絕緣柱112係形成於閘極溝槽之延伸部110中,然而在一些其他的實施例中,如第1K圖所示,絕緣柱112可更形成於閘極溝槽104之底部,而可進一步紓解電場,延伸空乏區面積,進而提高元件之崩潰電壓。 In addition, although in the present embodiment, the insulating pillars 112 are formed in the extension portion 110 of the gate trench, in some other embodiments, as shown in FIG. 1K, the insulating pillars 112 may be formed on the gate. The bottom of the trench 104 can further decompose the electric field and extend the area of the depletion region, thereby increasing the breakdown voltage of the device.

此外,雖然於本實施例中閘極溝槽104及閘極溝槽之延伸部110各自具有實質上筆直的側壁,然而在一些其他的實施例中,可適當地控制蝕刻參數,使得閘極溝槽104及閘極溝槽之延伸部110各自可具有向下漸縮之弧形側壁(如第1L圖所示),而可避免電場分布不均勻之問題。 In addition, although the gate trenches 104 and the gate trench extensions 110 each have substantially straight sidewalls in this embodiment, in some other embodiments, the etch parameters may be appropriately controlled such that the gate trenches The grooves 104 and the extensions 110 of the gate trenches may each have a curved sidewall that tapers downward (as shown in FIG. 1L) to avoid the problem of uneven distribution of the electric field.

下文描述本發明之實施例的各種變化例。為方便說明起見,類似的元件符號將用於標示類似的元件。此外,在不同實施例中可能使用重複的標號或標示,這些重複僅為了簡單清楚地敘述本發明之實施例,不代表所討論的不同實施例及/或結構之間必然有特定的關係。 Various variations of embodiments of the invention are described below. For the sake of explanation, similar component symbols will be used to identify similar components. In addition, the various embodiments may be used in the various embodiments of the present invention, and are not intended to be a specific relationship between the various embodiments and/or structures discussed.

接著,請參照第2圖,其繪示出本發明另一實施例之半導體結構20。半導體結構20與半導體結構10之差異在於其更包括圍繞絕緣柱112之反向摻雜區200,而可進一步提高崩潰電壓。上述反向摻雜區200可具有與半導體基板100相同之導電型態,且其摻雜濃度低於半導體基板100之磊晶區域102(例如:半導體基板100之磊晶區域102之摻雜濃度與反向摻雜區200之摻雜濃度之比值為2-8,較佳為4-6)。舉例而言,可於閘極溝槽之延伸部110形成之後(如第1E圖所示)、絕緣柱112形成之前,以殘留之第二共形介電層108之部分108B以及第二介電層130作為罩幕進行佈植製程以形成反向摻雜區200。在一些半導體結構20係為N型場效電晶體之實施例中,可佈植P型摻質(例如:硼離子、銦離子或二氟化硼離子(BF2 +))於絕緣柱112周圍之N型半導體基板100之磊晶區域102之一部分中,使得絕緣柱112周圍之N型半導體基板100之磊晶區域102之部分之摻雜濃度降 低而形成反向摻雜區200。在一些半導體結構20係為P型場效電晶體之實施例中,可佈植N型摻質(例如:磷離子或砷離子)於絕緣柱112周圍之P型半導體基板100之磊晶區域102之一部分中,使得絕緣柱112周圍之P型半導體基板100之磊晶區域102之部分之摻雜濃度降低而形成反向摻雜區200。 Next, please refer to FIG. 2, which illustrates a semiconductor structure 20 in accordance with another embodiment of the present invention. The semiconductor structure 20 differs from the semiconductor structure 10 in that it further includes a counter doped region 200 surrounding the insulating pillars 112 to further increase the breakdown voltage. The reverse doping region 200 may have the same conductivity type as the semiconductor substrate 100, and its doping concentration is lower than the epitaxial region 102 of the semiconductor substrate 100 (for example, the doping concentration of the epitaxial region 102 of the semiconductor substrate 100 is The doping concentration of the counter doped region 200 has a ratio of 2-8, preferably 4-6). For example, after the formation of the extension trench 110 of the gate trench (as shown in FIG. 1E), before the formation of the insulating pillar 112, the portion 108B of the second conformal dielectric layer 108 and the second dielectric remain. Layer 130 is used as a mask to carry out the implant process to form counter doped regions 200. In some embodiments in which the semiconductor structure 20 is an N-type field effect transistor, a P-type dopant (eg, boron ion, indium ion, or boron difluoride ion (BF 2 + )) can be implanted around the insulating pillar 112. In a portion of the epitaxial region 102 of the N-type semiconductor substrate 100, the doping concentration of a portion of the epitaxial region 102 of the N-type semiconductor substrate 100 around the insulating pillar 112 is lowered to form the counter doped region 200. In some embodiments in which the semiconductor structure 20 is a P-type field effect transistor, an epitaxial region 102 of the P-type semiconductor substrate 100 surrounding the insulating pillar 112 may be implanted with an N-type dopant (eg, phosphorus or arsenic ions). In a portion thereof, the doping concentration of a portion of the epitaxial region 102 of the P-type semiconductor substrate 100 around the insulating pillar 112 is lowered to form the counter doped region 200.

接下來,請參照第3圖,其繪示出本發明又一實施例之半導體結構30。半導體結構30與半導體結構10之差異在於其更包括形成於絕緣柱112兩側之半導體基板100中之降低表面電場(reduced surface field)摻雜區300,因此可進一步提高崩潰電壓。上述降低表面電場摻雜區300可具有與半導體基板100相反之導電型態。舉例而言,可在形成源極接觸122的步驟之前,將摻質佈植於絕緣柱112兩側之半導體基板100中以形成降低表面電場摻雜區300。在一些半導體結構30係為N型場效電晶體之實施例中,可佈植P型摻質(例如:硼離子、銦離子或二氟化硼離子(BF2 +))於絕緣柱112兩側之N型半導體基板100中以形成P型降低表面電場摻雜區300。在一些半導體結構30係為P型場效電晶體之實施例中,可佈植N型摻質(例如:磷離子或砷離子)於絕緣柱112兩側之P型半導體基板100中以形成N型降低表面電場摻雜區300。 Next, please refer to FIG. 3, which illustrates a semiconductor structure 30 in accordance with yet another embodiment of the present invention. The semiconductor structure 30 differs from the semiconductor structure 10 in that it further includes a reduced surface field doped region 300 formed in the semiconductor substrate 100 on both sides of the insulating pillar 112, so that the breakdown voltage can be further increased. The reduced surface electric field doping region 300 may have a conductivity type opposite to that of the semiconductor substrate 100. For example, dopants may be implanted in the semiconductor substrate 100 on both sides of the insulating pillars 112 to form a reduced surface electric field doping region 300 prior to the step of forming the source contacts 122. In some embodiments in which the semiconductor structure 30 is an N-type field effect transistor, a P-type dopant (eg, boron ion, indium ion, or boron difluoride ion (BF 2 + )) may be implanted on the insulating pillar 112. The P-type reduced surface electric field doped region 300 is formed in the side N-type semiconductor substrate 100. In some embodiments in which the semiconductor structure 30 is a P-type field effect transistor, an N-type dopant (eg, phosphorus or arsenic ions) may be implanted in the P-type semiconductor substrate 100 on both sides of the insulating pillar 112 to form N. The type reduces the surface electric field doping region 300.

綜合上述,本發明實施例之半導體結構係於閘極電極下形成絕緣柱,而可提高其崩潰電壓。另外,本發明實施例之半導體結構,可更包括前述之反向摻雜區及/或降低表面電場摻雜區以更進一步提高其崩潰電壓。 In summary, the semiconductor structure of the embodiment of the present invention forms an insulating pillar under the gate electrode, and the breakdown voltage thereof can be increased. In addition, the semiconductor structure of the embodiment of the present invention may further include the foregoing reverse doped region and/or reduced surface electric field doped region to further increase the breakdown voltage thereof.

前述內文概述了許多實施例的特徵,使本技術領 域中具有通常知識者可以從各個方面更佳地了解本發明之實施例。本技術領域中具有通常知識者應可理解,且可輕易地以本發明之實施例為基礎來設計或修飾其他製程及結構,並以此達到相同的目的及/或達到與在此介紹的實施例等相同之優點。本技術領域中具有通常知識者也應了解這些相等的結構並未背離本發明之實施例的發明精神與範圍。任何所屬技術領域中具有通常知識者,在不脫離本發明實施例之精神和範圍內,當可作任意之更動與潤飾,因此本發明實施例之保護範圍當視後附之申請專利範圍所界定者為準。 The foregoing is a summary of the embodiments of the present invention, and the embodiments of the invention may be better understood by those skilled in the art. Those skilled in the art will understand that other processes and structures can be readily designed or modified based on embodiments of the present invention to achieve the same objectives and/or achieve implementations as described herein. The same advantages as the example. It should be understood by those of ordinary skill in the art that the present invention is not limited by the spirit and scope of the invention. The scope of protection of the embodiments of the present invention is defined by the scope of the appended claims, as defined by the appended claims, without departing from the spirit and scope of the embodiments of the invention. Subject to it.

Claims (18)

一種半導體結構,包括:一半導體基板;一閘極溝槽,位於該半導體基板中;一閘極介電層,設置於該閘極溝槽之側壁上;一閘極溝槽延伸部,位於該閘極溝槽之下;一絕緣柱,設置於該閘極溝槽延伸部中;一閘極電極,設置於該閘極溝槽中及該絕緣柱之上;一摻雜井區,埋置於該閘極溝槽兩側之半導體基板中;及一源極區,設置於該摻雜井區上之半導體基板中。  A semiconductor structure includes: a semiconductor substrate; a gate trench in the semiconductor substrate; a gate dielectric layer disposed on a sidewall of the gate trench; and a gate trench extension portion located at the gate Under the gate trench; an insulating pillar disposed in the gate trench extension; a gate electrode disposed in the gate trench and above the insulating pillar; a doped well region, embedded And a source region disposed on the semiconductor substrate on the sides of the gate trench; and a source region disposed in the semiconductor substrate on the doped well region.   如申請專利範圍第1項所述之半導體結構,更包括:一汲極區,設置於該絕緣柱下之半導體基板之中。  The semiconductor structure of claim 1, further comprising: a drain region disposed in the semiconductor substrate under the insulating pillar.   如申請專利範圍第1項所述之半導體結構,其中該閘極溝槽延伸部之寬度小於該閘極溝槽之寬度。  The semiconductor structure of claim 1, wherein the width of the gate trench extension is less than the width of the gate trench.   如申請專利範圍第1項所述之半導體結構,其中該半導體基板、該源極區具有一第一導電型態,該摻雜井區具有相反於該第一導電型態之一第二導電型態。  The semiconductor structure of claim 1, wherein the semiconductor substrate and the source region have a first conductivity type, and the doped well region has a second conductivity type opposite to the first conductivity type. state.   如申請專利範圍第4項所述之半導體結構,其中該第一導電型態為n型,該第二導電型態為p型。  The semiconductor structure of claim 4, wherein the first conductivity type is an n-type and the second conductivity type is a p-type.   如申請專利範圍第4項所述之半導體結構,更包括:一降低表面電場(reduced surface field)摻雜區,形成於該絕緣柱兩側之半導體基板中且具有該第二導電型態。  The semiconductor structure of claim 4, further comprising: a reduced surface field doped region formed in the semiconductor substrate on both sides of the insulating pillar and having the second conductivity type.   如申請專利範圍第4項所述之半導體結構,更包括:一反向摻雜區,形成於該半導體基板之中且圍繞該絕緣 柱,其中該反向摻雜區具有相同於該半導體基板之第一導電型態。  The semiconductor structure of claim 4, further comprising: a reverse doped region formed in the semiconductor substrate and surrounding the insulating pillar, wherein the reverse doped region has the same as the semiconductor substrate The first conductivity type.   如申請專利範圍第7項所述之半導體結構,其中該反向摻雜區之摻雜濃度低於該半導體基板之摻雜濃度。  The semiconductor structure of claim 7, wherein the doping concentration of the counter doped region is lower than the doping concentration of the semiconductor substrate.   如申請專利範圍第1項所述之半導體結構,其中該絕緣柱包括氧化物、氮化物、氮氧化物或上述之組合。  The semiconductor structure of claim 1, wherein the insulating pillar comprises an oxide, a nitride, an oxynitride or a combination thereof.   如申請專利範圍第1項所述之半導體結構,其中該絕緣柱更設於該閘極溝槽之底部。  The semiconductor structure of claim 1, wherein the insulating pillar is disposed at a bottom of the gate trench.   一種半導體結構之形成方法,包括:提供一半導體基板;形成一閘極溝槽於該半導體基板中;形成一閘極介電層於該閘極溝槽之側壁上;凹蝕該閘極溝槽以形成一閘極溝槽延伸部於該閘極溝槽之下;形成一絕緣柱於該閘極溝槽延伸部中;形成一閘極電極於該閘極溝槽中及該絕緣柱之上;形成一摻雜井區於該閘極溝槽兩側之半導體基板中;及形成一源極區於該摻雜井區上之半導體基板中。  A method for forming a semiconductor structure, comprising: providing a semiconductor substrate; forming a gate trench in the semiconductor substrate; forming a gate dielectric layer on sidewalls of the gate trench; etching the gate trench Forming a gate trench extension under the gate trench; forming an insulating pillar in the gate trench extension; forming a gate electrode in the gate trench and above the insulating pillar Forming a doped well region in the semiconductor substrate on both sides of the gate trench; and forming a source region in the semiconductor substrate on the doped well region.   如申請專利範圍第11項所述之半導體結構之形成方法,其中形成該閘極溝槽延伸部之步驟包括:形成一第一共形介電層,其中該第一共形介電層覆蓋該閘極溝槽之側壁及底部;形成一第二共形介電層於該第一共形介電層之上,其中該第二共形介電層暴露出覆蓋該閘極溝槽底部之第一共形介 電層之一部份;以及使用該第二共形介電層作為蝕刻罩幕蝕刻該第一共形介電層及該半導體基板以形成該閘極溝槽延伸部於該閘極溝槽之下。  The method of forming a semiconductor structure according to claim 11, wherein the step of forming the gate trench extension comprises: forming a first conformal dielectric layer, wherein the first conformal dielectric layer covers the a sidewall and a bottom of the gate trench; forming a second conformal dielectric layer over the first conformal dielectric layer, wherein the second conformal dielectric layer exposes a portion covering the bottom of the gate trench a portion of a conformal dielectric layer; and etching the first conformal dielectric layer and the semiconductor substrate using the second conformal dielectric layer as an etch mask to form the gate trench extension Below the pole groove.   如申請專利範圍第12項所述之半導體結構之形成方法,其中該絕緣柱包括氧化物、氮化物、氮氧化物或上述之組合。  The method of forming a semiconductor structure according to claim 12, wherein the insulating pillar comprises an oxide, a nitride, an oxynitride or a combination thereof.   如申請專利範圍第13項所述之半導體結構之形成方法,其中形成該氧化物之步驟包括:以該第二共形介電層作為一罩幕進行一局部氧化製程(Local Oxidation)。  The method for forming a semiconductor structure according to claim 13, wherein the step of forming the oxide comprises: performing a local Oxidation process using the second conformal dielectric layer as a mask.   如申請專利範圍第12項所述之半導體結構之形成方法,更包括:於形成該絕緣柱之後、形成該閘極電極之前移除該第二共形介電層。  The method for forming a semiconductor structure according to claim 12, further comprising: removing the second conformal dielectric layer after forming the insulating pillar and before forming the gate electrode.   如申請專利範圍第12項所述之半導體結構之形成方法,更包括:形成一反向摻雜區於該半導體基板之中且圍繞該絕緣柱,其中該反向摻雜區具有相同於該半導體基板之一第一導電型態,且該反向摻雜區之摻雜濃度低於該半導體基板之摻雜濃度。  The method for forming a semiconductor structure according to claim 12, further comprising: forming a counter doped region in the semiconductor substrate and surrounding the insulating pillar, wherein the counter doped region has the same semiconductor One of the substrates is in a first conductivity type, and the doping concentration of the counter doping region is lower than a doping concentration of the semiconductor substrate.   如申請專利範圍第16項所述之半導體結構之形成方法,其中形成該反向摻雜區之步驟包括:使用該第二共形介電層作為罩幕進行一佈植製程,以將一摻質佈植於該半導體基板圍繞該絕緣柱之一部份; 其中該摻質具有與該半導體基板之第一導電型態相反之一第二導電型態,使得該半導體基板圍繞該絕緣柱之部份之摻雜濃度降低以形成該反向摻雜區。  The method for forming a semiconductor structure according to claim 16, wherein the step of forming the reverse doped region comprises: performing a implantation process using the second conformal dielectric layer as a mask to Having the semiconductor substrate surrounding a portion of the insulating pillar; wherein the dopant has a second conductivity type opposite to the first conductivity type of the semiconductor substrate such that the semiconductor substrate surrounds the insulating pillar The doping concentration of the portion is lowered to form the counter doped region.   如申請專利範圍第17項所述之半導體結構之形成方法,其中於形成該絕緣柱之前進行該佈植製程。  The method of forming a semiconductor structure according to claim 17, wherein the implanting process is performed prior to forming the insulating pillar.  
TW106137898A 2017-11-02 2017-11-02 Semiconductor structure and method for forming the same TWI658595B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106137898A TWI658595B (en) 2017-11-02 2017-11-02 Semiconductor structure and method for forming the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106137898A TWI658595B (en) 2017-11-02 2017-11-02 Semiconductor structure and method for forming the same

Publications (2)

Publication Number Publication Date
TWI658595B TWI658595B (en) 2019-05-01
TW201919241A true TW201919241A (en) 2019-05-16

Family

ID=67347684

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106137898A TWI658595B (en) 2017-11-02 2017-11-02 Semiconductor structure and method for forming the same

Country Status (1)

Country Link
TW (1) TWI658595B (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI567830B (en) * 2015-07-31 2017-01-21 帥群微電子股份有限公司 Trench power transistor structure and manufacturing method thereof
TWI601291B (en) * 2015-10-07 2017-10-01 世界先進積體電路股份有限公司 Semiconductor devices and methods for forming the same

Also Published As

Publication number Publication date
TWI658595B (en) 2019-05-01

Similar Documents

Publication Publication Date Title
US9029218B2 (en) Tunneling field-effect transistor with direct tunneling for enhanced tunneling current
CN106206697B (en) Lateral Bipolar Junction Transistor (BJT) on silicon-on-insulator (SOI) substrate
KR101710763B1 (en) Tunnel Field-Effect Transitor and Method for Febricating The Same
US9543535B1 (en) Self-aligned carbon nanotube transistor including source/drain extensions and top gate
US10103253B2 (en) Structure and method for vertical tunneling field effect transistor with leveled source and drain
US9748377B2 (en) Semiconductor device and method of manufacturing the same
US20190198633A1 (en) Semiconductor structure and method for forming the same
US20160133695A1 (en) A method of inhibiting leakage current of tunneling transistor, and the corresponding device and a preparation method thereof
CN103681346B (en) Transistors, semiconductor devices, and methods of manufacture thereof
JP3344381B2 (en) Semiconductor device and manufacturing method thereof
US20180331202A1 (en) Vertical tunneling field effect transistor device and fabrication method thereof
CN111554578B (en) Semiconductor structure and forming method thereof
CN108573910B (en) Semiconductor structure and forming method thereof
CN112928153B (en) Semiconductor structure and forming method thereof
TWI658595B (en) Semiconductor structure and method for forming the same
CN108305830A (en) Semiconductor structure and forming method thereof
TWI517406B (en) Semiconductor device and method for manufacturing the same
CN114388616A (en) Semiconductor structure and forming method thereof
CN108807266B (en) Semiconductor structure and forming method thereof
CN112151605A (en) Semiconductor structure and forming method thereof
US20140077302A1 (en) Power rectifying devices
CN112786451A (en) Semiconductor structure and forming method thereof
US6579765B1 (en) Metal oxide semiconductor field effect transistors
US11626500B2 (en) Semiconductor device including gate oxide layer and manufacturing method thereof
TW201909418A (en) Tunneling effect transistor and manufacturing method thereof