TW201914012A - Schottky barrier diodes and manufacturing methods thereof - Google Patents

Schottky barrier diodes and manufacturing methods thereof Download PDF

Info

Publication number
TW201914012A
TW201914012A TW106128989A TW106128989A TW201914012A TW 201914012 A TW201914012 A TW 201914012A TW 106128989 A TW106128989 A TW 106128989A TW 106128989 A TW106128989 A TW 106128989A TW 201914012 A TW201914012 A TW 201914012A
Authority
TW
Taiwan
Prior art keywords
semiconductor layer
layer
schottky
electrode
ohmic electrode
Prior art date
Application number
TW106128989A
Other languages
Chinese (zh)
Other versions
TWI698015B (en
Inventor
林予堯
李鎮宇
林奕志
Original Assignee
晶元光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 晶元光電股份有限公司 filed Critical 晶元光電股份有限公司
Priority to TW106128989A priority Critical patent/TWI698015B/en
Publication of TW201914012A publication Critical patent/TW201914012A/en
Application granted granted Critical
Publication of TWI698015B publication Critical patent/TWI698015B/en

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)

Abstract

A schottky barrier diode includes a first semiconductor layer, a second semiconductor layer, a third semiconductor layer, a buffer structure, a first via, a schottky electrode, and an ohmic electrode. The first and second semiconductor layers are formed on a substrate. The buffer structure is between the substrate and the first semiconductor layer. The third semiconductor layer is between the first semiconductor layer and the buffer structure. The first via goes through at least the first and the second semiconductor layers. The schottky electrode and the ohmic electrode are separately formed on the second semiconductor layer, while part of the ohmic electrode is formed inside the first via. The ohmic electrode is electrically connected to the second semiconductor layer, and to, through the first via, the third semiconductor layer.

Description

蕭特基二極體與相關之製作方法Schottky diode and related manufacturing methods

本說明書係關於蕭特基二極體的元件結構以及製作方法,尤指以氮化鎵(Gallium Nitride,GaN)半導體材料所製作之蕭特基二極體的元件結構。The present specification relates to an element structure and a manufacturing method of a Schottky diode, and more particularly to an element structure of a Schottky diode made of a Gallium Nitride (GaN) semiconductor material.

蕭特基二極體是一種以ㄧ金屬接觸一半導體層所形成的半導體元件。該金屬跟該半導體層之間的接面,具有整流的功能,稱為蕭特基接面。而且這個接面對於蕭特基二極體內的自由載子而言,提供了一個相較於PN接面低的位能障蔽。因此,相較於一PN接面二極體,蕭特基二極體的順向偏壓(forward voltage),也就是讓二極體導通所需的電壓,是比較低的。此外,相較於PN接面二極體,蕭特基二極體的開關速度也比較快。因此,蕭特基二極體往往適用於非常在乎開關損失的應用之中。舉例來說,像是開關式電源供應器(switching mode power supply)。A Schottky diode is a semiconductor element formed by contacting a semiconductor layer with a base metal. The junction between the metal and the semiconductor layer has a rectifying function and is called a Schottky junction. Moreover, this junction provides a low energy barrier to the free carrier of the Schottky diode compared to the PN junction. Therefore, compared to a PN junction diode, the forward voltage of the Schottky diode, that is, the voltage required to turn on the diode, is relatively low. In addition, the switching speed of the Schottky diode is faster than that of the PN junction diode. Therefore, Schottky diodes are often used in applications that are very concerned about switching losses. For example, it is like a switching mode power supply.

目前已經有許多電子元件是採用III-V族半導體 (III-V semiconductor)來製作。這樣的電子元件一般是第三族元素的氮化物半導體來構成,所以又稱為III族氮化物半導體元件(III-Nitride semiconductor device)。III族氮化物半導體元件往往享有較大的能帶隙(energy band-gap)以及比較高的崩潰電壓特性,因此特別適用於高壓與高溫的操作。目前以III-V族氮化鎵半導體(III-V gallium nitride semiconductor)材料所製作的蕭特基二極體,已經具有低的導通電阻(on-resistance)以及高的崩潰電壓(breakdown voltage),當其運用在開關式電源供應器中,可以改進其能源轉換效率。Many electronic components have been fabricated using III-V semiconductors. Such an electronic component is generally composed of a nitride semiconductor of a Group III element, and is therefore also referred to as a III-Nitride semiconductor device. Group III nitride semiconductor devices tend to enjoy large energy band-gap and relatively high breakdown voltage characteristics, and are therefore particularly suitable for high voltage and high temperature operation. At present, Schottky diodes made of III-V gallium nitride semiconductor materials have low on-resistance and high breakdown voltage. When used in a switching power supply, it can improve its energy conversion efficiency.

圖1為習知的一蕭特基二極體10的剖面圖,以III-V族氮化鎵半導體材料為基礎,而氮化鎵簡稱為GaN。圖1中,在基底12上依序堆疊有數個GaN半導體層,包含有緩衝結構14、通道層16、以及阻障層18。蕭特基電極20跟阻障層18之間形成具有整流效果的蕭特基接面,歐姆電極22跟阻障層18之間形成沒有整流效果的歐姆接面。因為材料上的差異,所以通道層16與阻障層18分別具有不同的能帶隙(energy band-gap),也因此在兩者之間形成了一個異質接面,並導致二維電子氣(2-dimensional electron gas,2DEG)17的產生。圖1中也顯示了當蕭特基二極體10導通時的電流路徑Pth1。如同電流路徑Pth1所示,當蕭特基二極體10導通時,電流可以從蕭特基電極20開始,流過蕭特基電極20下方的阻障層18,然後沿著二維電子氣17到歐姆電極22的下方,然後朝上跨過阻障層18,而抵達歐姆電極22。1 is a cross-sectional view of a conventional Schottky diode 10 based on a III-V gallium nitride semiconductor material, and gallium nitride is abbreviated as GaN. In FIG. 1, a plurality of GaN semiconductor layers are sequentially stacked on a substrate 12, including a buffer structure 14, a channel layer 16, and a barrier layer 18. A Schottky junction having a rectifying effect is formed between the Schottky electrode 20 and the barrier layer 18, and an ohmic junction having no rectifying effect is formed between the ohmic electrode 22 and the barrier layer 18. Because of the difference in materials, the channel layer 16 and the barrier layer 18 respectively have different energy band-gaps, thereby forming a heterojunction between the two and causing two-dimensional electron gas ( Generation of 2-dimensional electron gas, 2DEG)17. The current path Pth1 when the Schottky diode 10 is turned on is also shown in FIG. As shown by the current path Pth1, when the Schottky diode 10 is turned on, current can flow from the Schottky electrode 20, through the barrier layer 18 below the Schottky electrode 20, and then along the two-dimensional electron gas 17 Below the ohmic electrode 22, then over the barrier layer 18, and to the ohmic electrode 22.

然而,習知的蕭特基二極體10因只有單一電流路徑Pth1,故當處於大電流操作時,單一電流路徑Pth1可能產生電流壅擠(current crowding)的現象,而使得蕭特基二極體10內部局部產生不必要的熱量,浪費了電能。此外,習知的蕭特基二極體10亦因阻障層18之表面存有缺陷而捕捉電極的電子產生虛擬電極(virtual electrode)或通道層16之內部存有晶體缺陷(crystal defect)而捕捉部分二維電子氣,使得蕭特基二極體10之電流值於操作ㄧ段時間後會大幅下降,造成其導通電阻上升,此現象稱電流崩塌(current collapse)。However, the conventional Schottky diode 10 has only a single current path Pth1, so when operating at a high current, the single current path Pth1 may cause current crowding, which makes the Schottky diode Part of the body 10 generates unnecessary heat locally, wasting electrical energy. In addition, the conventional Schottky diode 10 also has a crystal electrode trapped on the surface of the barrier layer 18 to generate a virtual electrode or a crystal defect in the channel layer 16 due to defects in the surface of the barrier layer 18. Capturing part of the two-dimensional electron gas causes the current value of the Schottky diode 10 to drop drastically after the operation period, causing its on-resistance to rise. This phenomenon is called current collapse.

本發明實施例提供一蕭特基二極體,包含有一第一半導體層、一第二半導體層、一第三半導體層、一緩衝結構、一第一穿孔、一蕭特基電極以及一歐姆電極。該第一半導體層以及該第二半導體層形成於一基底上。該緩衝結構形成於該基底與該第一半導體層之間。該第三半導體層形成該第一半導體層與該緩衝結構之間。該第ㄧ穿孔至少穿透該第二半導體層與該第一半導體層。該蕭特基電極以及該歐姆電極分隔地形成於該第二半導體層之上。該歐姆電極亦形成於該第ㄧ穿孔之中。該歐姆電極電性連接至該第二半導體層,並透過該第ㄧ穿孔,電性連接至該第三半導體層。Embodiments of the present invention provide a Schottky diode including a first semiconductor layer, a second semiconductor layer, a third semiconductor layer, a buffer structure, a first via, a Schottky electrode, and an ohmic electrode . The first semiconductor layer and the second semiconductor layer are formed on a substrate. The buffer structure is formed between the substrate and the first semiconductor layer. The third semiconductor layer forms between the first semiconductor layer and the buffer structure. The second through hole penetrates at least the second semiconductor layer and the first semiconductor layer. The Schottky electrode and the ohmic electrode are formed separately on the second semiconductor layer. The ohmic electrode is also formed in the second through hole. The ohmic electrode is electrically connected to the second semiconductor layer and is electrically connected to the third semiconductor layer through the second through hole.

本發明實施例另提供一種蕭特基二極體之製造方法,包含有下列步驟:於一基底上依序形成一緩衝結構、一第三半導體層、一第一半導體層以及一第二半導體層;圖案化該第一半導體層以及該第二半導體層,以形成一第ㄧ穿孔,該第ㄧ穿孔至少穿透該第一半導體層與該第二半導體層;形成一蕭特基電極,於該第二半導體層上;以及,形成一歐姆電極,於該第二半導體層上以及該第ㄧ穿孔之中。該歐姆電極電性連接至該第二半導體層,並透過該第ㄧ穿孔,電性連接至該第三半導體層。The embodiment of the invention further provides a method for manufacturing a Schottky diode, comprising the steps of sequentially forming a buffer structure, a third semiconductor layer, a first semiconductor layer and a second semiconductor layer on a substrate. Patterning the first semiconductor layer and the second semiconductor layer to form a second via, the second via penetrates at least the first semiconductor layer and the second semiconductor layer; forming a Schottky electrode And forming an ohmic electrode on the second semiconductor layer and in the second via. The ohmic electrode is electrically connected to the second semiconductor layer and is electrically connected to the third semiconductor layer through the second through hole.

在本說明書中,有一些相同的符號,其表示具有相同或是類似之結構、功能、原理的元件,且為業界具有一般知識能力者可以依據本說明書之教導而推知。為說明書之簡潔度考量,相同之符號的元件將不再重述。In the present specification, there are some identical symbols, which indicate elements having the same or similar structures, functions, and principles, and those having general knowledge in the industry can be inferred from the teachings of the present specification. For the sake of simplicity of the description, elements of the same symbols will not be repeated.

本發明的一實施例提供了一蕭特基二極體,其在導通時,從它的蕭特基電極跟它的歐姆電極之間,至少會有兩個電流路徑,可以有效的降低電流壅擠、避免電流崩塌等引起的耗能或失效的現象。An embodiment of the present invention provides a Schottky diode having at least two current paths between its Schottky electrode and its ohmic electrode during conduction, which can effectively reduce current 壅Squeeze, avoid the phenomenon of energy consumption or failure caused by current collapse.

圖2為依據本發明所實施的一蕭特基二極體60。圖2中,在基底62上依序堆疊有緩衝結構64、傳導層66、通道層68、以及阻障層70。因為材料上的差異,所以通道層68與阻障層70分別具有不同的能帶隙,在兩者之間形成了一個異質接面,並導致二維電子氣69的產生。2 is a Schottky diode 60 implemented in accordance with the present invention. In FIG. 2, a buffer structure 64, a conductive layer 66, a channel layer 68, and a barrier layer 70 are sequentially stacked on the substrate 62. Because of the difference in materials, the channel layer 68 and the barrier layer 70 respectively have different energy band gaps, forming a heterojunction between the two, and resulting in the generation of the two-dimensional electron gas 69.

圖2亦顯示部分的通道層68與阻障層70被去除而形成穿孔78。穿孔78穿透通道層68與阻障層70。穿孔78的側壁79上,覆蓋有絕緣層76。在圖2之剖面圖中的穿孔78,在一相對的上視圖中,可能具有一圓形圖案,也可能具有一矩形圖案,或是具有一任意圖案。2 also shows that portions of channel layer 68 and barrier layer 70 are removed to form perforations 78. The perforations 78 penetrate the channel layer 68 and the barrier layer 70. The side wall 79 of the perforation 78 is covered with an insulating layer 76. The perforations 78 in the cross-sectional view of Fig. 2, in an opposite top view, may have a circular pattern, may have a rectangular pattern, or have an arbitrary pattern.

蕭特基電極72與歐姆電極74分隔的形成於阻障層70上。The Schottky electrode 72 is formed on the barrier layer 70 separated from the ohmic electrode 74.

蕭特基電極72可以是一金屬層,形成於阻障層70上的預定範圍。蕭特基電極72跟阻障層70之間形成具有整流效果的蕭特基接面。The Schottky electrode 72 may be a metal layer formed in a predetermined range on the barrier layer 70. A Schottky junction having a rectifying effect is formed between the Schottky electrode 72 and the barrier layer 70.

歐姆電極74可以是另一金屬層,形成於穿孔78中以及部份的阻障層70上。在圖2中,歐姆電極74是均勻地在穿孔78表面順應的形成一金屬層,沒有填滿穿孔78。該金屬層可以是厚度一致,或是形成於阻障層70上的金屬層較形成於穿孔78內的厚或薄。在另一實施例,歐姆電極74完全填滿穿孔78。歐姆電極74跟阻障層70之間形成沒有整流效果的歐姆接面。在穿孔78的底部77,歐姆電極74跟傳導層66之間形成沒有整流效果的另一歐姆接面。所以,歐姆電極74電性連接至阻障層70,並透過穿孔78,電性連接至傳導層66。The ohmic electrode 74 can be another metal layer formed in the via 78 and on a portion of the barrier layer 70. In FIG. 2, the ohmic electrode 74 is uniformly conformed to the surface of the perforation 78 to form a metal layer that is not filled with the perforations 78. The metal layer may have a uniform thickness or a thicker or thinner metal layer formed on the barrier layer 70 than formed in the via 78. In another embodiment, the ohmic electrode 74 completely fills the perforations 78. An ohmic junction having no rectifying effect is formed between the ohmic electrode 74 and the barrier layer 70. At the bottom 77 of the perforation 78, another ohmic junction having no rectifying effect is formed between the ohmic electrode 74 and the conductive layer 66. Therefore, the ohmic electrode 74 is electrically connected to the barrier layer 70 and electrically connected to the conductive layer 66 through the through holes 78.

圖2之蕭特基二極體60顯示在蕭特基二極體60導通時,至少有兩個電流路徑Pth2與Pth3。如同圖2所示,電流路徑Pth2從蕭特基電極72開始,依序經過了阻障層70、二維電子氣69、阻障層70、抵達歐姆電極74。電流路徑Pth3從蕭特基電極72開始,依序經過了阻障層70、通道層68、傳導層66、抵達位於穿孔78底部77的歐姆電極74。當蕭特基二極體60處於大電流操作時,電流可以分散至電流路徑Pth2與Pth3,減少電流壅擠、電流崩塌等現象發生的機會,也可以降低蕭特基二極體60之內部等效電阻。The Schottky diode 60 of Figure 2 shows at least two current paths Pth2 and Pth3 when the Schottky diode 60 is turned on. As shown in FIG. 2, the current path Pth2 starts from the Schottky electrode 72, passes through the barrier layer 70, the two-dimensional electron gas 69, the barrier layer 70, and reaches the ohmic electrode 74. The current path Pth3 begins at the Schottky electrode 72 and sequentially passes through the barrier layer 70, the channel layer 68, the conductive layer 66, and reaches the ohmic electrode 74 at the bottom 77 of the via 78. When the Schottky diode 60 is operated at a high current, the current can be dispersed to the current paths Pth2 and Pth3, reducing the chance of current collapse, current collapse, etc., and also reducing the interior of the Schottky diode 60. Effective resistance.

絕緣層76形成於穿孔78之側壁79及歐姆電極74之間,用於防止歐姆電極74透過側壁79直接跟阻障層70或通道層68接觸,造成二維電子氣69之電流路徑Pth2短路。基於歐姆電極74不直接與穿孔78之側壁79接觸之目的,但本發明並不限於此,其它可達成此目的替代實施例亦在本發明之範疇,例如絕緣層76亦可以空穴取代之,亦即歐姆電極74與穿孔78側壁之間存在ㄧ間距,以達到歐姆電極74不直接接觸穿孔78之側壁79之目的。The insulating layer 76 is formed between the sidewall 79 of the via 78 and the ohmic electrode 74 for preventing the ohmic electrode 74 from directly contacting the barrier layer 70 or the channel layer 68 through the sidewall 79, thereby causing the current path Pth2 of the two-dimensional electron gas 69 to be short-circuited. The ohmic electrode 74 is not directly in contact with the side wall 79 of the through hole 78, but the present invention is not limited thereto. Other alternative embodiments for achieving this object are also within the scope of the present invention, for example, the insulating layer 76 may be replaced by a hole. That is, there is a spacing between the ohmic electrode 74 and the sidewall of the via 78 to achieve the purpose that the ohmic electrode 74 does not directly contact the sidewall 79 of the via 78.

圖3顯示蕭特基二極體60之一種製作方法80。圖4A到4D分別為蕭特基二極體60在製作方法80之不同階段時的剖面圖。FIG. 3 shows a method 80 of making a Schottky diode 60. 4A through 4D are cross-sectional views of the Schottky diode 60 at various stages of the fabrication method 80, respectively.

製作方法80中的步驟82是在基底62上依序堆疊形成緩衝結構64、傳導層66、通道層68、以及阻障層70,如同圖4A所示。The step 82 in the fabrication method 80 is to sequentially form a buffer structure 64, a conductive layer 66, a channel layer 68, and a barrier layer 70 on the substrate 62, as shown in FIG. 4A.

基底62可以是以矽、藍寶石(Al2O3)或碳化矽(SiC)所構成。在一實施例中,基底62是一矽基底。相較於藍寶石基底或碳化矽基底,矽基底好處在熱傳導高,散熱比較好,比較適合做高功率元件。而且,當基底62是一矽基底時,蕭特基二極體60可以跟矽半導體元件,像是N型、P型或互補式金氧半導體元件整合於同一基底上,例如可以與透過於矽基板上進行離子佈值或磊晶製程形成之矽半導體元件一同整合於基底62上。The substrate 62 may be made of tantalum, sapphire (Al 2 O 3 ) or tantalum carbide (SiC). In an embodiment, the substrate 62 is a crucible substrate. Compared with the sapphire substrate or the tantalum carbide substrate, the germanium substrate has the advantages of high heat conduction and good heat dissipation, and is suitable for high-power components. Moreover, when the substrate 62 is a germanium substrate, the Schottky diode 60 can be integrated with the semiconductor device, such as an N-type, P-type or complementary MOS device, on the same substrate, for example, The germanium semiconductor element on which the ion cloth value or the epitaxial process is formed on the substrate is integrated on the substrate 62.

以GaN為基礎的GaN系半導體材料跟作為基底62的材料,往往有不同的晶格常數(lattice constant)與熱膨脹係數(thermal expansion coefficient)。故可設置ㄧ緩衝結構64,用來降低因為熱膨脹係數所產生的應力(strain),也用來減少晶格常數不匹配(mismatch)所可能產生的晶格缺陷(defects)。緩衝結構64可以是簡單的由單一物質所構成的單一層,或是由許多層所構成的一複合層。舉例來說,緩衝結構64可以是由Alx Ga1-x N層與GaN層交互堆疊所構成。在較佳實施例中,緩衝結構64之靠近基底62的層別可選用晶格常數與基底62之晶格常數相近的材料,而緩衝結構64之靠近傳導層66的層別可選用晶格常數與傳導層66之晶格常數相近的材料。緩衝結構64靠近基底62側包含有一個或是多個成核層,成核層材料的晶格常數與基底62之晶格常數相近。舉例來說,成核層可由氮化鋁(Aluminum Nitride,AlN)所構成,其厚度介於50nm到500nm之間。在較佳實施例中,成核層可為一複合層,例如低溫製程的AlN(厚度約40nm)及高溫製程的AlN(厚度約150nm)。The GaN-based GaN-based semiconductor material and the material used as the substrate 62 tend to have different lattice constants and thermal expansion coefficients. Therefore, a buffer structure 64 can be provided to reduce the strain caused by the coefficient of thermal expansion and also to reduce the lattice defects that may occur due to lattice constant mismatch. The buffer structure 64 can be a simple single layer of a single substance or a composite layer composed of a plurality of layers. For example, the buffer structure 64 may be formed by alternately stacking Al x Ga 1-x N layers and GaN layers. In a preferred embodiment, the layer of buffer structure 64 adjacent to substrate 62 may be selected from materials having a lattice constant similar to the lattice constant of substrate 62, and the layer of buffer structure 64 adjacent to conductive layer 66 may be selected from a lattice constant. A material similar to the lattice constant of the conductive layer 66. The buffer structure 64 includes one or more nucleation layers near the substrate 62 side, and the lattice constant of the nucleation layer material is close to the lattice constant of the substrate 62. For example, the nucleation layer may be composed of aluminum nitride (AlN) and has a thickness of between 50 nm and 500 nm. In a preferred embodiment, the nucleation layer can be a composite layer such as a low temperature process AlN (thickness about 40 nm) and a high temperature process AlN (thickness about 150 nm).

於ㄧ實施例中,緩衝結構64係由複數的Alx Ga1-x N層所構成,x的組成係介於1和0之間,其總和厚度介於0.5μm到5.5μm之間,可以是1μm。在ㄧ實施例中,緩衝結構64之Alx Ga1-x N層的x組成自基底62至傳導層66係由大至小漸變,例如,可以是自基底62向上至傳導層66由Al0.7 Ga0.3 N層、Al0.4 Ga0.7 N層、Al0.1 Ga0.9 N層三層組成緩衝結構64。緩衝結構64可具有碳摻雜,其碳摻雜濃度大於1E+18cm-3 。碳摻雜可以使得緩衝結構64具有高阻抗,防止傳導層66中的電荷透過緩衝結構64而產生擊穿(punch through)的漏電現象,進而可增進元件整體垂直方向的耐受電壓。在一實施例中,緩衝結構64的上下兩面可以耐受到600V的電壓而不崩潰。In the embodiment, the buffer structure 64 is composed of a plurality of Al x Ga 1-x N layers, and the composition of x is between 1 and 0, and the total thickness thereof is between 0.5 μm and 5.5 μm. It is 1 μm. In the embodiment, the x composition of the Al x Ga 1-x N layer of the buffer structure 64 is gradually changed from the substrate 62 to the conductive layer 66, for example, from the substrate 62 up to the conductive layer 66 by Al 0.7. The Ga 0.3 N layer, the Al 0.4 Ga 0.7 N layer, and the Al 0.1 Ga 0.9 N layer are three layers to form a buffer structure 64. The buffer structure 64 can have carbon doping with a carbon doping concentration greater than 1E+18 cm -3 . The carbon doping can make the buffer structure 64 have a high impedance, prevent the charge in the conductive layer 66 from passing through the buffer structure 64 and cause a punch through leakage phenomenon, thereby enhancing the withstand voltage of the entire vertical direction of the element. In an embodiment, the upper and lower sides of the buffer structure 64 can withstand a voltage of 600V without collapse.

傳導層66可以是一N型的GaN半導體層,於ㄧ實施例中,傳導層66為一重摻雜的N型GaN半導體層,其摻雜濃度不小於5E+16cm-3 ,其厚度可以是500nm。傳導層66主要是提供一橫向的電流路徑。The conductive layer 66 may be an N-type GaN semiconductor layer. In the embodiment, the conductive layer 66 is a heavily doped N-type GaN semiconductor layer having a doping concentration of not less than 5E+16 cm -3 and a thickness of 500 nm. . Conductive layer 66 primarily provides a lateral current path.

通道層68與阻障層70形成於傳導層66上。在一實施例中,通道層68為一N形輕摻雜的GaN半導體層,其摻雜濃度為5E+17cm-3 ,其厚度介於500 nm到1500nm之間,在ㄧ實施例中,GaN半導體層可以是1000nm;阻障層70是由無摻雜的Alz Ga1-z N的一半導體層所構成,其中,0.4≧z> 0.1,在ㄧ實施例中,z可以是0.21。阻障層70的厚度介於15 nm到30 nm之間,在ㄧ實施例中,阻障層70的厚度可以是26nm。在一實施例中,阻障層70另包含有以無摻雜的GaN所構成的一蓋層(cap layer),位於阻障層70的最表面,其厚度可以是2nm。在阻障層70與通道層68之間的異質接面,由於磊晶層結構的極化方向總和會造成能帶扭曲形成一個低於費米能階的量子位能井(quantum well),並因此產生二維電子氣69。Channel layer 68 and barrier layer 70 are formed on conductive layer 66. In one embodiment, the channel layer 68 is an N-type lightly doped GaN semiconductor layer having a doping concentration of 5E+17 cm -3 and a thickness between 500 nm and 1500 nm. In the ㄧ embodiment, GaN The semiconductor layer may be 1000 nm; the barrier layer 70 is composed of a semiconductor layer of undoped Al z Ga 1-z N wherein 0.4 ≧ z > 0.1, and in the ㄧ embodiment, z may be 0.21. The thickness of the barrier layer 70 is between 15 nm and 30 nm. In the embodiment, the barrier layer 70 may have a thickness of 26 nm. In one embodiment, the barrier layer 70 further includes a cap layer made of undoped GaN, which is located on the outermost surface of the barrier layer 70 and may have a thickness of 2 nm. In the heterojunction between the barrier layer 70 and the channel layer 68, the sum of the polarization directions of the epitaxial layer structure causes the band to be twisted to form a quantum well below the Fermi level. A two-dimensional electron gas 69 is thus produced.

步驟84是圖案化了阻障層70與通道層68,即去除掉選擇區域中的阻障層70與通道層68,形成穿孔78,如同圖4B所示。從另一個角度來看,穿孔78穿透了阻障層70與通道層68。在圖4B中,穿孔78的側壁79曝露了阻障層70與通道層68,而穿孔78的底部77曝露了傳導層66。Step 84 is to pattern the barrier layer 70 and the channel layer 68, i.e., remove the barrier layer 70 and the channel layer 68 in the selected region to form the vias 78, as shown in Figure 4B. From another perspective, the perforations 78 penetrate the barrier layer 70 and the channel layer 68. In FIG. 4B, sidewalls 79 of vias 78 expose barrier layer 70 and via layer 68, while bottom 77 of vias 78 expose conductive layer 66.

步驟86是在穿孔78的側壁79上形成絕緣層76,用來防止歐姆電極74透過側壁79,跟阻障層70或通道層68之間形成接觸,例如漏電流接觸、低阻值接觸,如:歐姆接觸,如同圖4C所示。絕緣層76的材料可以是二氧化矽、AlN、五氧化二鉭(Ta2 O5 )、二氧化鈦(TiO2 )、二氧化鉿(HfO2 )、二氧化鋯(ZrO2 )、三氧化二鋁(Al2 O3 )、氧化鑭(La2 O3 )、三氧化二鐠(Pr2 O3 )或其他高介電系數(high-k)的絕緣材料。舉例來說,可以先在阻障層70與穿孔78中形成一均勻厚度的絕緣層,然後以回蝕刻(etch back)的方式,使得絕緣層只有殘留在穿孔78的側壁79上。Step 86 is to form an insulating layer 76 on the sidewall 79 of the via 78 for preventing the ohmic electrode 74 from passing through the sidewall 79, forming a contact with the barrier layer 70 or the channel layer 68, such as leakage current contact, low resistance contact, such as : Ohmic contact, as shown in Figure 4C. The material of the insulating layer 76 may be cerium oxide, AlN, tantalum pentoxide (Ta 2 O 5 ), titanium dioxide (TiO 2 ), hafnium oxide (HfO 2 ), zirconium dioxide (ZrO 2 ), and aluminum oxide. (Al 2 O 3 ), lanthanum oxide (La 2 O 3 ), antimony trioxide (Pr 2 O 3 ) or other high-k insulating material. For example, a uniform thickness of insulating layer can be formed in the barrier layer 70 and the via 78, and then the etch back is such that the insulating layer remains only on the sidewall 79 of the via 78.

步驟88是在阻障層70上的預定位置與穿孔78中,形成歐姆電極74,如同圖4D所示。歐姆電極74跟阻障層70形成歐姆接觸,也跟穿孔78底部77曝露的傳導層66形成歐姆接觸。歐姆電極74的材料可以是鈦(Titanium,Ti)、鋁(Aluminum,Al)、鎳(nickel,Ni)、金(gold,Au)數種金屬的合金、或是數個金屬層堆疊而成。Step 88 is to form the ohmic electrode 74 in a predetermined position on the barrier layer 70 and the via 78, as shown in FIG. 4D. The ohmic electrode 74 forms an ohmic contact with the barrier layer 70 and also forms an ohmic contact with the conductive layer 66 exposed by the bottom 77 of the via 78. The material of the ohmic electrode 74 may be an alloy of titanium (Titanium, Ti), aluminum (Aluminum, Al), nickel (nickel, Ni), gold (gold), or a plurality of metal layers.

步驟90是於阻障層70上的預定位置形成蕭特基電極72,蕭特基電極72跟阻障層70形成蕭特基接觸,結果如同圖2所示。蕭特基電極72的材料可以是耐火金屬(refractory metal)或是其化合物,像是鉭(tantalum,Ta)、氮化鉭(tantalum nitride,TaN)、氮化鈦(titanium nitride,TiN)、鎢(tungsten,W)、或是矽化鎢(tungsten silicide,WSi2 )、鎳(nickel,Ni)、金(gold,Au)、鉑(platinum,Pt)、數種金屬的合金、或是數個金屬層堆疊而成。在ㄧ實施例中,蕭特基電極的材料與歐姆電極的材料可為相同材料,如氮化鈦。例如可先形成氮化鈦於阻障層70的預定位置上及穿孔78中,經退火製程(Annealing process)而與半導體層形成歐姆接觸,再形成氮化鈦於阻障層70的預定位置上,而與半導體層形成蕭特基接觸。Step 90 is to form a Schottky electrode 72 at a predetermined position on the barrier layer 70, and the Schottky electrode 72 forms a Schottky contact with the barrier layer 70, as shown in FIG. The material of the Schottky electrode 72 may be a refractory metal or a compound thereof, such as tantalum (Ta), tantalum nitride (TaN), titanium nitride (TiN), tungsten. (tungsten, W), or tungsten silicide (WSi 2 ), nickel (nickel, Ni), gold (gold), platinum (platinum, Pt), alloys of several metals, or several metals The layers are stacked. In an embodiment, the material of the Schottky electrode and the material of the ohmic electrode may be the same material, such as titanium nitride. For example, titanium nitride may be formed on the predetermined position of the barrier layer 70 and in the via 78, and an ohmic contact is formed with the semiconductor layer through an annealing process to form titanium nitride at a predetermined position of the barrier layer 70. And forming a Schottky contact with the semiconductor layer.

圖3的製作方法80中,是先形成歐姆電極74(步驟88),然後才形成蕭特基電極72(步驟90),但本發明並不限於此。在另一個實施例中,製作方法80中的步驟88與90可相互對調,也就是蕭特基電極72的形成早於歐姆電極74的形成。圖4E顯示蕭特基電極72已形成而歐姆電極74尚未形成時,蕭特基二極體60的剖面圖。In the fabrication method 80 of FIG. 3, the ohmic electrode 74 is formed first (step 88), and then the Schottky electrode 72 is formed (step 90), but the invention is not limited thereto. In another embodiment, steps 88 and 90 in fabrication method 80 may be mutually exclusive, that is, the formation of Schottky electrode 72 is earlier than the formation of ohmic electrode 74. 4E shows a cross-sectional view of the Schottky diode 60 when the Schottky electrode 72 has been formed and the ohmic electrode 74 has not been formed.

圖5為依據本發明所實施的一蕭特基二極體30。圖5之蕭特基二極體30與圖2之蕭特基二極體60彼此相同或類似之處,可透過先前之說明而得知,不再重述。Figure 5 is a Schottky diode 30 implemented in accordance with the present invention. The Schottky diodes 30 of FIG. 5 and the Schottky diodes 60 of FIG. 2 are identical or similar to each other and can be understood from the previous description and will not be repeated.

相較於圖2之蕭特基二極體60,圖5之蕭特基二極體30額外多了穿孔32,其穿透了通道層68與阻障層70。跟穿孔78類似的,在相對的一上視圖中,穿孔32可能具有一圓形圖案,也可能具有一矩形圖案,或是具有一任意圖案。In contrast to the Schottky diode 60 of FIG. 2, the Schottky diode 30 of FIG. 5 has an additional number of perforations 32 that penetrate the channel layer 68 and the barrier layer 70. Similar to the perforations 78, in an opposite top view, the perforations 32 may have a circular pattern, may have a rectangular pattern, or have an arbitrary pattern.

穿孔32的側壁33上,覆蓋有絕緣層34。絕緣層34的材料可以跟絕緣層76的材料一樣。舉例來說,絕緣層34與絕緣層76經歷完全相同的製程而產生。The side wall 33 of the perforation 32 is covered with an insulating layer 34. The material of the insulating layer 34 may be the same as that of the insulating layer 76. For example, the insulating layer 34 and the insulating layer 76 are produced in exactly the same process.

蕭特基電極36可以是一金屬層,形成於穿孔32中以及部份的阻障層70上。在圖5中,蕭特基電極36完全填滿穿孔32。在另一實施例,蕭特基電極36是順應地在穿孔32表面形成一金屬層,沒有填滿穿孔32。該金屬層可以是厚度一致,或是形成於阻障層70上的金屬層較形成於穿孔32內的厚或薄。蕭特基電極36跟阻障層70之間形成具有整流效果的蕭特基接面。在穿孔32的底部31,蕭特基電極36跟傳導層66之間形成具有整流效果的另一蕭特基接面。蕭特基電極36的材料可以跟蕭特基電極72的材料一樣。The Schottky electrode 36 can be a metal layer formed in the via 32 and on a portion of the barrier layer 70. In FIG. 5, the Schottky electrode 36 completely fills the perforations 32. In another embodiment, the Schottky electrode 36 conformally forms a metal layer on the surface of the perforation 32 without filling the perforations 32. The metal layer may have a uniform thickness or a thick or thin metal layer formed on the barrier layer 70 than formed in the through hole 32. A Schottky junction having a rectifying effect is formed between the Schottky electrode 36 and the barrier layer 70. At the bottom 31 of the perforation 32, another Schottky junction having a rectifying effect is formed between the Schottky electrode 36 and the conductive layer 66. The material of the Schottky electrode 36 can be the same as that of the Schottky electrode 72.

圖5之蕭特基二極體30顯示在蕭特基二極體30導通時,亦至少有兩個電流路徑Pth4與Pth5。如同圖5所示,電流路徑Pth4從蕭特基電極36開始,依序經過了阻障層70、二維電子氣69、阻障層70、抵達歐姆電極74。電流路徑Pth5從蕭特基電極72開始,透過了穿孔32底部31,橫向地經過傳導層66、抵達穿孔78中的歐姆電極74。當蕭特基二極體30處於大電流操作時,電流可以分散至電流路徑Pth4與Pth5,減少電流壅擠、避免電流崩塌等引起的耗能或失效現象發生的機會,降低蕭特基二極體30之內部等效電阻。The Schottky diode 30 of Fig. 5 shows that there are at least two current paths Pth4 and Pth5 when the Schottky diode 30 is turned on. As shown in FIG. 5, the current path Pth4 starts from the Schottky electrode 36, passes through the barrier layer 70, the two-dimensional electron gas 69, the barrier layer 70, and reaches the ohmic electrode 74. The current path Pth5 begins at the Schottky electrode 72, passes through the bottom 31 of the perforation 32, passes laterally through the conductive layer 66, and reaches the ohmic electrode 74 in the via 78. When the Schottky diode 30 is in high current operation, the current can be dispersed to the current paths Pth4 and Pth5, reducing the chance of energy dissipation or failure caused by current collapse, avoiding current collapse, etc., reducing the Schottky diode The internal equivalent resistance of body 30.

絕緣層34形成於穿孔32之側壁33及蕭特基電極36之間,用於防止蕭特基電極36透過側壁33直接跟阻障層70或通道層68接觸,造成二維電子氣69之電流路徑Pth4短路。基於蕭特基電極36不直接與穿孔32之側壁33接觸之目的,但本發明並不限於此,其它可達成此目的替代實施例亦在本發明之範疇,例如絕緣層34亦可以空穴取代之,亦即蕭特基電極36與穿孔32側壁之間存在ㄧ間距,以達到蕭特基電極36不直接接觸穿孔32之側壁33之目的。The insulating layer 34 is formed between the sidewall 33 of the through hole 32 and the Schottky electrode 36 for preventing the Schottky electrode 36 from directly contacting the barrier layer 70 or the channel layer 68 through the sidewall 33, thereby causing a current of the two-dimensional electron gas 69. The path Pth4 is shorted. Based on the purpose that the Schottky electrode 36 is not in direct contact with the side wall 33 of the perforation 32, the invention is not limited thereto, and other alternative embodiments for achieving this object are also within the scope of the invention, for example, the insulating layer 34 may also be replaced by a hole. That is, there is a spacing between the Schottky electrode 36 and the sidewalls of the perforations 32 to achieve the purpose that the Schottky electrode 36 does not directly contact the sidewalls 33 of the perforations 32.

圖6顯示蕭特基二極體30之一種製作方法40。圖7A到7D分別為蕭特基二極體30在製作方法40之不同階段時的剖面圖。圖6之製作方法40與圖3之製作方法80彼此相同或類似之處,可透過先前之說明而得知,不再重述。圖7A為於步驟82完成後的剖面圖;圖7B對應到步驟42完成後的剖面圖;圖7C對應到步驟86完成後的剖面圖;而圖7D對應到步驟88完成後的剖面圖。FIG. 6 shows a method 40 of making a Schottky diode 30. 7A through 7D are cross-sectional views of the Schottky diode 30 at various stages of the fabrication method 40, respectively. The manufacturing method 40 of FIG. 6 and the manufacturing method 80 of FIG. 3 are the same or similar to each other, and can be understood from the previous description, and will not be repeated. 7A is a cross-sectional view after completion of step 82; FIG. 7B corresponds to a cross-sectional view after completion of step 42; FIG. 7C corresponds to a cross-sectional view after completion of step 86; and FIG. 7D corresponds to a cross-sectional view after completion of step 88.

圖6以步驟42與44分別取代圖3的步驟84與90。步驟42是去除掉選擇區域中的阻障層70與通道層68,以同時形成穿孔78與32,如同圖7B所示。參照圖7C,步驟86是在穿孔78及32的側壁79及33上形成絕緣層76及34,用來防止歐姆電極74透過側壁79,跟阻障層70或通道層68之間形成接觸,例如漏電流接觸、低阻值接觸,如:歐姆接觸;以及防止蕭特基電極36透過側壁33,跟阻障層70或通道層68之間形成接觸,例如:蕭特基接觸。絕緣層34的材料及形成方式如同絕緣層76的材料及形成方式,不再重述。接著,於步驟88及44分別形成歐姆電極74及蕭特基電極36於阻障層70上的預定位置及穿孔78與32中,歐姆電極74跟阻障層70與穿孔70底部77之傳導層66都形成歐姆接觸,而蕭特基電極36跟阻障層70與穿孔32底部31之傳導層66都形成蕭特基接觸,如同圖5所示。Figure 6 replaces steps 84 and 90 of Figure 3 with steps 42 and 44, respectively. Step 42 is to remove the barrier layer 70 and the channel layer 68 in the selected region to simultaneously form the vias 78 and 32, as shown in Figure 7B. Referring to FIG. 7C, step 86 is to form insulating layers 76 and 34 on sidewalls 79 and 33 of vias 78 and 32 for preventing ohmic electrode 74 from penetrating through sidewall 79 to form contact with barrier layer 70 or channel layer 68, such as Leakage current contact, low resistance contact, such as ohmic contact; and prevention of the Schottky electrode 36 from passing through the sidewall 33, forming a contact with the barrier layer 70 or the channel layer 68, such as a Schottky contact. The material and formation of the insulating layer 34 are the same as those of the insulating layer 76 and will not be repeated. Next, in steps 88 and 44, a predetermined position of the ohmic electrode 74 and the Schottky electrode 36 on the barrier layer 70 and the conductive layers of the barrier layer 70 and the bottom 77 of the via 70 are formed in the vias 78 and 32, respectively. 66 forms an ohmic contact, and the Schottky electrode 36 forms a Schottky contact with the barrier layer 70 and the conductive layer 66 of the bottom 31 of the via 32, as shown in FIG.

圖6的製作方法40中,是先形成歐姆電極74,然後才形成蕭特基電極36,但本發明並不限於此。在另一個實施例中,製作方法40中的步驟88與44可相互對調,也就是蕭特基電極36的形成早於歐姆電極74的形成。圖7E顯示蕭特基電極36已形成而歐姆電極74尚未形成時,蕭特基二極體30的剖面圖。In the fabrication method 40 of FIG. 6, the ohmic electrode 74 is formed first, and then the Schottky electrode 36 is formed, but the present invention is not limited thereto. In another embodiment, steps 88 and 44 in fabrication method 40 may be mutually offset, that is, the formation of Schottky electrode 36 is earlier than the formation of ohmic electrode 74. 7E shows a cross-sectional view of the Schottky diode 30 when the Schottky electrode 36 has been formed and the ohmic electrode 74 has not been formed.

以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。The above are only the preferred embodiments of the present invention, and all changes and modifications made to the scope of the present invention should be within the scope of the present invention.

10、30、60‧‧‧蕭特基二極體10, 30, 60‧‧‧ Schottky diodes

12、62‧‧‧基底12, 62‧‧‧ base

14、64‧‧‧緩衝結構14, 64‧‧‧ buffer structure

16、68‧‧‧通道層16, 68‧‧‧ channel layer

17、69‧‧‧二維電子氣17, 69‧‧‧Two-dimensional electronic gas

18、70‧‧‧阻障層18, 70‧‧‧ barrier layer

20、36、72‧‧‧蕭特基電極20, 36, 72‧‧‧ Schottky electrodes

22、74‧‧‧歐姆電極22, 74‧‧‧ Ohmic electrodes

31、77‧‧‧底部31, 77‧‧‧ bottom

32、78‧‧‧穿孔32, 78‧‧‧ perforation

33、79‧‧‧側壁33, 79‧‧‧ side wall

34、76‧‧‧絕緣層34, 76‧‧‧Insulation

40、80‧‧‧製作方法40, 80‧‧‧How to make

42、44、82、84、86、88、90‧‧‧步驟42, 44, 82, 84, 86, 88, 90 ‧ ‧ steps

66‧‧‧傳導層66‧‧‧Transmission layer

Pth1、Pth2、Pth3、Pth4、Pth5‧‧‧電流路徑Pth1, Pth2, Pth3, Pth4, Pth5‧‧‧ current path

圖1為習知的一蕭特基二極體的剖面圖。1 is a cross-sectional view of a conventional Schottky diode.

圖2為依據本發明所實施的一蕭特基二極體。2 is a Schottky diode implemented in accordance with the present invention.

圖3顯示圖2之蕭特基二極體的一種製作方法。Figure 3 shows a method of making the Schottky diode of Figure 2.

圖4A到4E分別為圖2之蕭特基二極體在製作的不同階段時的剖面圖。4A to 4E are cross-sectional views of the Schottky diode of Fig. 2 at different stages of fabrication, respectively.

圖5為依據本發明所實施的另一蕭特基二極體。Figure 5 is another Schottky diode implemented in accordance with the present invention.

圖6顯示圖5之蕭特基二極體的一種製作方法。Figure 6 shows a method of making the Schottky diode of Figure 5.

圖7A到7E分別為圖5之蕭特基二極體在製作的不同階段時的剖面圖。7A to 7E are cross-sectional views of the Schottky diode of Fig. 5 at different stages of fabrication, respectively.

Claims (10)

一種蕭特基二極體(Schottky Barrier Diode),包含有: 一第一半導體層以及一第二半導體層,形成於一基底上; 一緩衝結構,形成於該基底與該第一半導體層之間; 一第三半導體層,形成該第一半導體層與該緩衝結構之間; 一第一穿孔,至少穿透該第二半導體層與該第一半導體層;以及 一蕭特基電極以及一歐姆電極,分隔地形成於該第二半導體層之上,該歐姆電極亦形成於該第一穿孔之中; 其中,該歐姆電極電性連接至該第二半導體層,並透過該第一穿孔,電性連接至該第三半導體層。A Schottky Barrier Diode includes: a first semiconductor layer and a second semiconductor layer formed on a substrate; a buffer structure formed between the substrate and the first semiconductor layer a third semiconductor layer forming the first semiconductor layer and the buffer structure; a first through hole penetrating at least the second semiconductor layer and the first semiconductor layer; and a Schottky electrode and an ohmic electrode Separatingly formed on the second semiconductor layer, the ohmic electrode is also formed in the first through hole; wherein the ohmic electrode is electrically connected to the second semiconductor layer and penetrates the first through hole, and is electrically Connected to the third semiconductor layer. 如申請專利範圍第1項之該蕭特基二極體,其中,該第一穿孔包含有一側壁,覆蓋有一絕緣層。The Schottky diode of claim 1, wherein the first through hole comprises a side wall covered with an insulating layer. 如申請專利範圍第1項之該蕭特基二極體,其中,該第一半導體層以及一第二半導體層之間形成有一異質接面,可導致一二維電子氣。The Schottky diode of claim 1, wherein a heterojunction is formed between the first semiconductor layer and a second semiconductor layer to cause a two-dimensional electron gas. 如申請專利範圍第1項之該蕭特基二極體,另包含有: 一第二穿孔,至少穿透該第二半導體層與該第一半導體層,其中,該蕭特基電極形成於該第二穿孔之中,且與該第三半導體層形成一蕭特基接觸。The Schottky diode of claim 1, further comprising: a second through hole penetrating at least the second semiconductor layer and the first semiconductor layer, wherein the Schottky electrode is formed Among the second through holes, and forming a Schottky contact with the third semiconductor layer. 如申請專利範圍第4項之該蕭特基二極體,其中,該第二穿孔包含有一側壁,覆蓋有一絕緣層。The Schottky diode of claim 4, wherein the second through hole comprises a side wall covered with an insulating layer. 一種蕭特基二極體之製造方法,包含有下列步驟: 於一基底上依序形成一緩衝結構、一第三半導體層、一第一半導體層及一第二半導體層; 圖案化該第一半導體層以及該第二半導體層,以形成一第一穿孔,該第一穿孔至少穿透該第一半導體層與該第二半導體層; 形成一蕭特基電極,於該第二半導體層上;以及 形成一歐姆電極,於該第二半導體層上以及該第一穿孔之中; 其中,該歐姆電極電性連接至該第二半導體層,並透過該第一穿孔,電性連接至該第三半導體層。A method for manufacturing a Schottky diode includes the steps of: sequentially forming a buffer structure, a third semiconductor layer, a first semiconductor layer, and a second semiconductor layer on a substrate; patterning the first a semiconductor layer and the second semiconductor layer to form a first via, the first via penetrates at least the first semiconductor layer and the second semiconductor layer; forming a Schottky electrode on the second semiconductor layer; And forming an ohmic electrode on the second semiconductor layer and the first through hole; wherein the ohmic electrode is electrically connected to the second semiconductor layer, and is electrically connected to the third through the first through hole Semiconductor layer. 如申請專利範圍第6項之該製造方法,其中,該第一穿孔包含有一側壁,且於形成該歐姆電極之前,該製造方法包含有下列步驟: 形成一絕緣層,覆蓋該第一穿孔之該側壁; 其中,該歐姆電極無法透過該側壁與該第一半導體層以及該第二半導體層形成歐姆接觸。The manufacturing method of claim 6, wherein the first through hole comprises a sidewall, and before the forming the ohmic electrode, the manufacturing method comprises the steps of: forming an insulating layer covering the first through hole a sidewall; wherein the ohmic electrode cannot form an ohmic contact with the first semiconductor layer and the second semiconductor layer through the sidewall. 如申請專利範圍第7項之該製造方法,其中,圖案化該第一半導體層以及該第二半導體層之該步驟,更包含形成一第二穿孔,其中該蕭特基電極位於該第二半導體層上以及該第二穿孔之中。The manufacturing method of claim 7, wherein the step of patterning the first semiconductor layer and the second semiconductor layer further comprises forming a second via, wherein the Schottky electrode is located in the second semiconductor On the layer and in the second perforation. 如申請專利範圍第8項之該製造方法,其中,該第二穿孔包含有一側壁,且於形成該蕭特基電極之前,該製造方法包含有下列步驟: 形成一絕緣層,覆蓋該第二穿孔之該側壁。The manufacturing method of claim 8, wherein the second through hole comprises a sidewall, and before the forming the Schottky electrode, the manufacturing method comprises the steps of: forming an insulating layer covering the second through hole The side wall. 如申請專利範圍第6項之該製造方法,其中,該第一半導體層以及該第二半導體層之間形成有一異質接面,可導致一二維電子氣。The manufacturing method of claim 6, wherein a heterojunction is formed between the first semiconductor layer and the second semiconductor layer to cause a two-dimensional electron gas.
TW106128989A 2017-08-25 2017-08-25 Schottky barrier diodes and manufacturing methods thereof TWI698015B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106128989A TWI698015B (en) 2017-08-25 2017-08-25 Schottky barrier diodes and manufacturing methods thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106128989A TWI698015B (en) 2017-08-25 2017-08-25 Schottky barrier diodes and manufacturing methods thereof

Publications (2)

Publication Number Publication Date
TW201914012A true TW201914012A (en) 2019-04-01
TWI698015B TWI698015B (en) 2020-07-01

Family

ID=66991919

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106128989A TWI698015B (en) 2017-08-25 2017-08-25 Schottky barrier diodes and manufacturing methods thereof

Country Status (1)

Country Link
TW (1) TWI698015B (en)

Also Published As

Publication number Publication date
TWI698015B (en) 2020-07-01

Similar Documents

Publication Publication Date Title
JP6685476B2 (en) Oxide semiconductor device and method for manufacturing oxide semiconductor device
TWI663698B (en) Semiconductor device
JP5983999B2 (en) Manufacturing method of semiconductor device
WO2018150451A1 (en) Power semiconductor device
US11664430B2 (en) Semiconductor device
JP2008270310A (en) Group iii nitride compound semiconductor vertical type transistor and its manufacturing method
CN106783995A (en) The normally closed transistor npn npn and its manufacture method of conducting state impedance reduction
JP2011192834A (en) Semiconductor device, and method of manufacturing semiconductor device
CN107534060A (en) GaN base Schottky diode with big bond pad and reduction contact resistance
TWI641133B (en) Semiconductor cell
TW201810654A (en) Semiconductor structure, HEMT structure and method of forming the same
TW201838186A (en) High electron mobility transistor
JP2009212472A (en) Nitride semiconductor element
TWI624872B (en) Nitride semiconductor device
TWI569439B (en) Semiconductor cell
JP2008166639A (en) Rectifier element and power converter using the same
JP4327114B2 (en) Nitride semiconductor device
TWI676216B (en) Semiconductor devices and methods for fabricating the same
JP5757746B2 (en) Nitride semiconductor device
TW201933450A (en) Semiconductor structures and methods for fabricating the same
JP2014110311A (en) Semiconductor device
TWI698015B (en) Schottky barrier diodes and manufacturing methods thereof
JP5113375B2 (en) Nitride semiconductor device
JP6951311B2 (en) Semiconductor device
JP2009060065A (en) Nitride semiconductor device