TW201907680A - Unified beam management in a wireless network - Google Patents

Unified beam management in a wireless network Download PDF

Info

Publication number
TW201907680A
TW201907680A TW107120515A TW107120515A TW201907680A TW 201907680 A TW201907680 A TW 201907680A TW 107120515 A TW107120515 A TW 107120515A TW 107120515 A TW107120515 A TW 107120515A TW 201907680 A TW201907680 A TW 201907680A
Authority
TW
Taiwan
Prior art keywords
wtru
report
csi
rsrp
measurement
Prior art date
Application number
TW107120515A
Other languages
Chinese (zh)
Inventor
郗風君
俊霖 潘
陳衛
Original Assignee
美商Idac控股公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商Idac控股公司 filed Critical 美商Idac控股公司
Publication of TW201907680A publication Critical patent/TW201907680A/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0641Differential feedback
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0645Variable feedback
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0658Feedback reduction
    • H04B7/066Combined feedback for a number of channels, e.g. over several subcarriers like in orthogonal frequency division multiplexing [OFDM]

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A wireless/transmit receive unit (WTRU) may receive configuration information that includes a reporting setting for beam measurement of multiple reference signals (RSs) and a transmission power offset between RSs. The WTRU may send a unified beam report when measured L1-RSRP of the RSs is above a threshold value and based on the transmission power offset.

Description

無線網路中統一波束管理Unified beam management in wireless networks

相關申請的交叉引用 本申請要求享有以下申請的權益:2018年1月10日提交的美國臨時申請62/615,725,2017年11月15日提交的美國臨時申請62/586,596,2017年9月29日提交的美國臨時申請62/565,341,2017年9月8日提交的美國臨時申請62/555,755,2017年8月9日提交的美國臨時申請62/543,136以及2017年6月14日提交的美國臨時申請62/519,521,該申請的內容特此在本文被引入以作為參考。 CROSS- REFERENCE TO RELATED APPLICATIONS This application claims the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of US Provisional Application No. 62/615,725 filed on Jan. 10, 2018, U.S. Provisional Application No. 62/565,341, filed on September 8, 2017, U.S. Provisional Application No. 62/555,755, U.S. Provisional Application No. 62/543,136, filed on August 9, 2017, and U.S. Provisional Application, filed on June 14, 2017 The contents of this application are hereby incorporated by reference herein.

下一代行動通信包括新型無線電(NR)、增強型行動寬頻(eMBB)、巨量機器類型通信(mMTC)或超可靠低潛時通信(URLLC)等等。對於下一代行動通信來說,授權和無授權頻譜波段都在考慮之列。NR通信可以將通道狀態資訊-參考信號(CSI-RS)用於波束管理(BM)。NR還可以將其他的RS(例如同步信號(SS)塊(SSB或SS塊)或是與資料和控制通道相關聯的解調RS(DMRS)等等)以用於通信管理和控制。Next-generation mobile communications include new radio (NR), enhanced mobile broadband (eMBB), massive machine type communication (mMTC) or ultra-reliable low-latency communication (URLLC). Both licensed and unlicensed spectrum bands are considered for next-generation mobile communications. NR communication can use channel status information-reference signals (CSI-RS) for beam management (BM). The NR may also use other RSs (e.g., synchronization signal (SS) blocks (SSB or SS blocks) or demodulation RSs (DMRS) associated with data and control channels, etc. for communication management and control.

與資料和控制通道相關聯的SS塊和/或DMRS可被用於層1(L1)/層二(L2)BM,因為用週期性CSI-RS,無線傳輸/接收單元(WTRU)可能無法偵測到WTRU的運動或旋轉等等所導致的快速或突然的波束變化。為波束發現、波束追蹤和細化或波束恢復等等配置統一的BM,那麼將是所期望的。The SS block and/or DMRS associated with the data and control channel can be used for Layer 1 (L1) / Layer 2 (L2) BM, because with periodic CSI-RS, the WTRU may not be able to detect A fast or sudden beam change caused by the motion or rotation of the WTRU or the like is detected. It would be desirable to configure a uniform BM for beam discovery, beam tracking and refinement or beam recovery, and the like.

提供了一種用於執行統一波束管理(BM)的方法和裝置。統一的BM可以使用多個參考信號(RS)來執行。統一的BM框架可以包括統一的配置、波束管理以及報告和波束指示。用於多個傳輸/接收點(TRP)、測量和報告以及波束報告優先排序的統一BM同樣是可以執行的。A method and apparatus for performing unified beam management (BM) is provided. A unified BM can be implemented using multiple reference signals (RS). A unified BM framework can include unified configuration, beam management, and reporting and beam steering. A unified BM for multiple transmission/reception points (TRP), measurement and reporting, and beam report prioritization is also executable.

第1A圖是示出了可以實施所揭露的一或多個實施例的範例通信系統100的圖式。該通信系統100可以是為多個無線使用者提供諸如語音、資料、視訊、訊息傳遞、廣播等內容的多重存取系統。該通信系統100可以通過共用包括無線頻寬在內的系統資源而使多個無線使用者能夠存取此類內容。舉例來說,通信系統100可以使用一種或多種通道存取方法,例如分碼多重存取(CDMA)、分時多重存取(TDMA)、分頻多重存取(FDMA)、正交FDMA(OFDMA)、單載波FDMA(SC-FDMA)、零尾唯一字離散傅立葉轉換擴展正交分頻多重存取(ZT UW DTS-s OFDM)、唯一字OFDM(UW-OFDM)、資源塊濾波OFDM以及濾波器組多載波(FBMC)等等。FIG. 1A is a diagram showing an example communication system 100 in which one or more of the disclosed embodiments may be implemented. The communication system 100 can be a multiple access system that provides content for a plurality of wireless users, such as voice, data, video, messaging, broadcast, and the like. The communication system 100 can enable multiple wireless users to access such content by sharing system resources including wireless bandwidth. For example, communication system 100 can use one or more channel access methods, such as code division multiple access (CDMA), time division multiple access (TDMA), frequency division multiple access (FDMA), orthogonal FDMA (OFDMA). ), single-carrier FDMA (SC-FDMA), zero-tailed unique word discrete Fourier transform extended orthogonal frequency division multiple access (ZT UW DTS-s OFDM), unique word OFDM (UW-OFDM), resource block filtered OFDM, and filtering Multi-carrier group (FBMC) and so on.

如第1A圖所示,通信系統100可以包括無線傳輸/接收單元(WTRU)102a、102b、102c、102d、無線電存取網路RAN 104、核心網路CN 106、公共交換電話網路(PSTN)108、網際網路110以及其他網路112,然而應該理解的是,所揭露的實施例設想了任意數量的WTRU、基地台、網路和/或網路元件。WTRU 102a、102b、102c、102d中的每一者可以是被配置成在無線環境中操作和/或通信的任何類型的裝置。舉例來說,任一WTRU 102a、102b、102c、102d(其任一者可被稱為“站”和/或“STA”)可以被配置成傳輸和/或接收無線信號,並且可以包括使用者設備(UE)、行動站、固定或行動用戶單元、基於訂閱的單元、呼叫器、行動電話、個人數位助理(PDA)、智慧型電話、膝上型電腦、小筆電、個人電腦、無線感測器、熱點或Wi-Fi裝置、物聯網(IoT)裝置、手錶或其他可穿戴裝置、頭戴顯示器(HMD)、車輛、無人機、醫療裝置和應用(例如遠端手術)、工業裝置和應用(例如機器人和/或在工業和/或自動處理鏈環境中操作的其他無線裝置)、消費類電子裝置、以及在商業和/或工業無線網路上操作的裝置等等。WTRU 102a、102b、102c、102d中的任意一者可被互換地稱為UE。As shown in FIG. 1A, communication system 100 can include wireless transmit/receive units (WTRUs) 102a, 102b, 102c, 102d, radio access network RAN 104, core network CN 106, public switched telephone network (PSTN). 108. Internet 110 and other networks 112, however, it should be understood that the disclosed embodiments contemplate any number of WTRUs, base stations, networks, and/or network elements. Each of the WTRUs 102a, 102b, 102c, 102d may be any type of device configured to operate and/or communicate in a wireless environment. For example, any of the WTRUs 102a, 102b, 102c, 102d (any of which may be referred to as "station" and/or "STA") may be configured to transmit and/or receive wireless signals and may include a user Equipment (UE), mobile station, fixed or mobile subscriber unit, subscription-based unit, pager, mobile phone, personal digital assistant (PDA), smart phone, laptop, small laptop, personal computer, wireless Sensors, hotspots or Wi-Fi devices, Internet of Things (IoT) devices, watches or other wearable devices, head mounted displays (HMDs), vehicles, drones, medical devices and applications (eg remote surgery), industrial devices and Applications (such as robotics and/or other wireless devices operating in industrial and/or automated processing chain environments), consumer electronic devices, and devices operating on commercial and/or industrial wireless networks, and the like. Any of the WTRUs 102a, 102b, 102c, 102d may be referred to interchangeably as a UE.

通信系統100還可以包括基地台114a和/或基地台114b。基地台114a、114b中的每一者可以是被配置成通過與WTRU 102a、102b、102c、102d中的至少一有無線介面來促進存取一或多個通信網路(例如CN 106、網際網路110和/或其他網路112)的任何類型的裝置。例如,基地台114a、114b可以是基地收發台(BTS)、節點B、e節點B、本地節點B、本地e節點 B、下一代節點b(gNB)、新型無線電(NR)節點B、網站控制器(site controller)、存取點(AP)、以及無線路由器等等。雖然每一基地台114a、114b都被描述成了單個元件,然而應該理解的是,基地台114a、114b可以包括任何數量的互連基地台和/或網路元件。Communication system 100 may also include base station 114a and/or base station 114b. Each of the base stations 114a, 114b can be configured to facilitate access to one or more communication networks (e.g., CN 106, Internet) through a wireless interface with at least one of the WTRUs 102a, 102b, 102c, 102d Any type of device of way 110 and/or other network 112). For example, the base stations 114a, 114b may be base transceiver stations (BTS), node B, eNodeB, local node B, local eNodeB, next generation node b (gNB), new radio (NR) node B, website control Site controller, access point (AP), wireless router, and so on. While each base station 114a, 114b is depicted as a single component, it should be understood that the base stations 114a, 114b can include any number of interconnected base stations and/or network elements.

基地台114a可以是RAN 104的一部分,並且該RAN還可以包括其他基地台和/或網路元件(未顯示),例如基地台控制器(BSC)、無線電網路控制器(RNC)、中繼節點等等。基地台114a和/或基地台114b可被配置成在被稱為胞元(未顯示)的一或多個載波頻率上傳輸和/或接收無線信號。這些頻率可以處於授權頻譜、無授權頻譜或是授權與無授權頻譜的組合之中。胞元可以為相對固定或者有可能隨時間變化的特定地理區域提供無線服務覆蓋。胞元可被進一步分成胞元扇區。例如,與基地台114a相關聯的胞元可被分為三個扇區。由此,在一實施例中,基地台114a可以包括三個收發器,也就是說,胞元的每個扇區有一個。在一實施例中,基地台114a可以使用多輸入多輸出(MIMO)技術,並且可以為胞元的每一扇區使用多個收發器。舉例來說,使用波束成形可以在期望的空間方向上傳輸和/或接收信號。The base station 114a may be part of the RAN 104, and the RAN may also include other base stations and/or network elements (not shown), such as a base station controller (BSC), a radio network controller (RNC), a relay. Nodes and so on. Base station 114a and/or base station 114b may be configured to transmit and/or receive wireless signals on one or more carrier frequencies referred to as cells (not shown). These frequencies can be in the licensed spectrum, unlicensed spectrum, or a combination of authorized and unlicensed spectrum. Cells may provide wireless service coverage for a particular geographic area that is relatively fixed or that may change over time. Cells can be further divided into cell sectors. For example, a cell associated with base station 114a can be divided into three sectors. Thus, in an embodiment, base station 114a may include three transceivers, that is, one for each sector of the cell. In an embodiment, base station 114a may use multiple input multiple output (MIMO) technology and may use multiple transceivers for each sector of the cell. For example, beamforming can be used to transmit and/or receive signals in a desired spatial direction.

基地台114a、114b可以通過空中介面116來與WTRU 102a、102b、102c、102d中的一或多個進行通信,其中該空中介面可以是任何適當的無線通信鏈路(例如射頻(RF)、微波、釐米波、毫米波、紅外線(IR)、紫外線(UV)、可見光等等)。空中介面116可以使用任何適當的無線電存取技術(RAT)來建立。The base stations 114a, 114b may communicate with one or more of the WTRUs 102a, 102b, 102c, 102d via an empty intermediation plane 116, which may be any suitable wireless communication link (e.g., radio frequency (RF), microwave , centimeter wave, millimeter wave, infrared (IR), ultraviolet (UV), visible light, etc.). The empty intermediaries 116 can be established using any suitable radio access technology (RAT).

更具體地,如上所述,通信系統100可以是多重存取系統,並且可以使用一種或多種通道存取方案,例如CDMA、TDMA、FDMA、OFDMA以及SC-FDMA等等。例如,RAN 104中的基地台114a與WTRU 102a、102b、102c可以實施諸如通用行動電信系統(UMTS)陸地無線電存取(UTRA)的無線電技術,其中該技術可以使用寬頻CDMA(WCDMA)來建立空中介面116。WCDMA可以包括如高速封包存取(HSPA)和/或演進型HSPA(HSPA+)之類的通信協定。HSPA可以包括高速下鏈(DL)封包存取(HSDPA)和/或高速上鏈(UL)封包存取(HSUPA)。More specifically, as noted above, communication system 100 can be a multiple access system and can utilize one or more channel access schemes such as CDMA, TDMA, FDMA, OFDMA, and SC-FDMA, to name a few. For example, base station 114a and WTRUs 102a, 102b, 102c in RAN 104 may implement a radio technology such as Universal Mobile Telecommunications System (UMTS) Terrestrial Radio Access (UTRA), which may use wideband CDMA (WCDMA) to establish airborne Interface 116. WCDMA may include communication protocols such as High Speed Packet Access (HSPA) and/or Evolved HSPA (HSPA+). HSPA may include High Speed Downlink (DL) Packet Access (HSDPA) and/or High Speed Uplink (UL) Packet Access (HSUPA).

在一實施例中,基地台114a和WTRU 102a、102b、102c可以實施諸如演進型UMTS陸地無線電存取(E-UTRA)的無線電技術,其可以使用長期演進(LTE)和/或先進LTE(LTE-A)和/或先進LTA Pro(LTE-A Pro)來建立空中介面116。In an embodiment, base station 114a and WTRUs 102a, 102b, 102c may implement a radio technology such as Evolved UMTS Terrestrial Radio Access (E-UTRA), which may use Long Term Evolution (LTE) and/or Advanced LTE (LTE) -A) and/or Advanced LTA Pro (LTE-A Pro) to establish an empty mediation plane 116.

在一實施例中,基地台114a和WTRU 102a、102b、102c可以實施諸如NR無線電存取的無線電技術,其中該無線電技術可以使用新型無線電(NR)來建立空中介面116。In an embodiment, base station 114a and WTRUs 102a, 102b, 102c may implement a radio technology such as NR radio access, where the radio technology may use a new radio (NR) to establish an empty intermediation plane 116.

在一實施例中,基地台114a和WTRU 102a、102b、102c可以實施多種無線電存取技術。例如,基地台114a和WTRU 102a、102b、102c可以共同實施LTE無線電存取和NR無線電存取(例如使用雙連接(DC)原理)。由此,WTUR 102a、102b、102c使用的空中介面可以多種類型的無線電存取技術和/或向/從多種類型的基地台(例如eNB和gNB)發送的通信為特徵。In an embodiment, base station 114a and WTRUs 102a, 102b, 102c may implement a variety of radio access technologies. For example, base station 114a and WTRUs 102a, 102b, 102c may collectively implement LTE radio access and NR radio access (e.g., using a dual connectivity (DC) principle). Thus, the null intermediaries used by WTURs 102a, 102b, 102c may be characterized by multiple types of radio access technologies and/or communications to/from multiple types of base stations (e.g., eNBs and gNBs).

在其他實施例中,基地台114a和WTRU 102a、102b、102c可以實施以下的無線電技術,例如電氣和電子工程師協會(IEEE)802.11(即無線保真(WiFi))、IEEE 802.16(全球互通微波存取(WiMAX))、CDMA2000、CDMA2000 1X、CDMA2000 EV-DO、臨時標準2000(IS-2000)、臨時標準95(IS-95)、臨時標準856(IS-856)、全球行動通信系統(GSM)、用於GSM演進的增強資料速率(EDGE)以及GSM EDGE(GERAN)等等。In other embodiments, base station 114a and WTRUs 102a, 102b, 102c may implement the following radio technologies, such as Institute of Electrical and Electronics Engineers (IEEE) 802.11 (ie, Wireless Fidelity (WiFi)), IEEE 802.16 (Global Interoperable Microwave Memory) Take (WiMAX)), CDMA2000, CDMA2000 1X, CDMA2000 EV-DO, Provisional Standard 2000 (IS-2000), Provisional Standard 95 (IS-95), Provisional Standard 856 (IS-856), Global System for Mobile Communications (GSM) Enhanced Data Rate (EDGE) for GSM Evolution, GSM EDGE (GERAN), and more.

第1A圖中的基地台114b可以是無線路由器、本地節點B、本地e節點B或存取點,並且可以使用任何適當的RAT來促成在諸如營業場所、住宅、車輛、校園、工業設施、空中走廊(例如供無人機使用)以及道路等等的局部區域中的無線連接。在一實施例中,基地台114b與WTRU 102c、102d可以通過實施諸如IEEE 802.11之類的無線電技術來建立無線區域網路(WLAN)。在一實施例中,基地台114b與WTRU 102c、102d可以通過實施諸如IEEE 802.15之類的無線電技術來建立無線個人區域網路(WPAN)。在再一實施例中,基地台114b和WTRU 102c、102d可通過使用基於蜂巢的RAT(例如WCDMA、CDMA2000、GSM、LTE、LTE-A、LTE-A Pro、NR等等)來建立微微胞元或毫微微胞元。如第1A圖所示,基地台114b可以直連到網際網路110。由此,基地台114b可以不必要經由CN 106來存取網際網路110。The base station 114b in FIG. 1A may be a wireless router, a local Node B, a local eNodeB or an access point, and may use any suitable RAT to facilitate operations such as business premises, homes, vehicles, campuses, industrial facilities, air Wireless connections in local areas of corridors (such as for drones) and roads, etc. In an embodiment, base station 114b and WTRUs 102c, 102d may establish a wireless local area network (WLAN) by implementing a radio technology such as IEEE 802.11. In an embodiment, base station 114b and WTRUs 102c, 102d may establish a wireless personal area network (WPAN) by implementing a radio technology such as IEEE 802.15. In still another embodiment, base station 114b and WTRUs 102c, 102d may establish picocells by using a cellular based RAT (eg, WCDMA, CDMA2000, GSM, LTE, LTE-A, LTE-A Pro, NR, etc.) Or a femto cell. As shown in FIG. 1A, the base station 114b can be directly connected to the Internet 110. Thus, the base station 114b may not need to access the Internet 110 via the CN 106.

RAN 104可以與CN 106進行通信,其中該CN可以是被配置成向WTRU 102a、102b、102c、102d中的一者或多者提供語音、資料、應用和/或網際網路協定語音(VoIP)服務的任何類型的網路。該資料可以具有不同的服務品質(QoS)需求,例如不同的輸送量需求、潛時需求、容錯需求、可靠性需求、資料輸送量需求、以及行動性需求等等。CN 106可以提供呼叫控制、記帳服務、基於行動位置的服務、預付費呼叫、網際網路連接、視訊分發等等,和/或可以執行諸如使用者驗證之類的高級安全功能。雖然在第1A圖中沒有顯示,然而應該理解的是,RAN 104和/或CN 106可以直接或間接地和其他那些與RAN 104使用相同RAT或不同RAT的RAN進行通信。例如,除了與使用NR無線電技術的RAN 104相連之外,CN 106還可以與使用GSM、UMTS、CDMA 2000、WiMAX、E-UTRA或WiFi無線電技術的另一RAN(未顯示)通信。The RAN 104 can communicate with the CN 106, wherein the CN can be configured to provide voice, data, applications, and/or Voice over Internet Protocol (VoIP) to one or more of the WTRUs 102a, 102b, 102c, 102d. Any type of network that serves. The data can have different quality of service (QoS) requirements, such as different throughput requirements, latency requirements, fault tolerance requirements, reliability requirements, data throughput requirements, and mobility requirements. The CN 106 can provide call control, billing services, mobile location based services, prepaid calling, internet connectivity, video distribution, and the like, and/or can perform advanced security functions such as user authentication. Although not shown in FIG. 1A, it should be understood that RAN 104 and/or CN 106 may communicate directly or indirectly with other RANs that use the same RAT or a different RAT as RAN 104. For example, in addition to being connected to the RAN 104 using NR radio technology, the CN 106 can also communicate with another RAN (not shown) that uses GSM, UMTS, CDMA 2000, WiMAX, E-UTRA, or WiFi radio technology.

CN 106還可以充當供WTRU 102a、102b、102c、102d存取PSTN 108、網際網路110和/或其他網路112的閘道。PSTN 108可以包括提供簡易老式電話服務(POTS)的電路交換電話網路。網際網路110可以包括使用了公共通信協定(例如TCP/IP網際網路協定族中的傳輸控制協定(TCP)、使用者資料報協定(UDP)和/或網際網路協定(IP))的全球性互聯電腦網路及裝置之系統。該其他網路112可以包括由其他服務供應者擁有和/或操作的有線或無線通信網路。例如,該其他網路112可以包括與一或多個RAN相連的另一CN,其中該一或多個RAN可以與RAN 104使用相同RAT或不同RAT。The CN 106 can also act as a gateway for the WTRUs 102a, 102b, 102c, 102d to access the PSTN 108, the Internet 110, and/or other networks 112. The PSTN 108 may include a circuit switched telephone network that provides Plain Old Telephone Service (POTS). Internet 110 may include the use of public communication protocols (e.g., Transmission Control Protocol (TCP), User Datagram Protocol (UDP), and/or Internet Protocol (IP) in the TCP/IP Internet Protocol suite). A system of globally connected computer networks and devices. The other network 112 may include a wired or wireless communication network that is owned and/or operated by other service providers. For example, the other network 112 can include another CN connected to one or more RANs, where the one or more RANs can use the same RAT or a different RAT as the RAN 104.

通信系統100內的WTRU 102a、102b、102c、102d中的一些或全部可以包括多模式能力(例如,WTRU 102a、102b、102c、102d可以包括在不同無線鏈路上與不同無線網路通信的多個收發器)。例如,第1A圖所示的WTRU 102c可被配置成與使用基於蜂巢的無線電技術的基地台114a通信,以及與可以使用IEEE 802無線電技術的基地台114b通信。Some or all of the WTRUs 102a, 102b, 102c, 102d within the communication system 100 may include multi-mode capabilities (e.g., the WTRUs 102a, 102b, 102c, 102d may include multiple communications with different wireless networks over different wireless links) transceiver). For example, the WTRU 102c shown in FIG. 1A can be configured to communicate with a base station 114a that uses a cellular-based radio technology, and with a base station 114b that can use an IEEE 802 radio technology.

第1B圖是示出了範例WTRU 102的系統圖式。如第1B圖所示,WTRU 102可以包括處理器118、收發器120、傳輸/接收元件122、揚聲器/麥克風124、小鍵盤126、顯示器/觸控板128、非可移記憶體130、可移記憶體132、電源134、全球定位系統(GPS)晶片組136以及其他週邊設備138等等。應該瞭解的是,在保持符合實施例的同時,WTRU 102還可以包括前述元件的任何子組合。FIG. 1B is a system diagram showing an example WTRU 102. As shown in FIG. 1B, the WTRU 102 may include a processor 118, a transceiver 120, a transmit/receive element 122, a speaker/microphone 124, a keypad 126, a display/trackpad 128, a non-removable memory 130, and a removable Memory 132, power source 134, Global Positioning System (GPS) chipset 136, and other peripheral devices 138, and the like. It should be appreciated that the WTRU 102 may also include any sub-combination of the aforementioned elements while remaining consistent with the embodiments.

處理器118可以是通用處理器、專用處理器、常規處理器、數位訊號處理器(DSP)、多個微處理器、與DSP核心關聯的一或多個微處理器、控制器、微控制器、專用積體電路(ASIC)、現場可程式設計閘陣列(FPGA)電路、其他任何類型的積體電路(IC)以及狀態機等等。處理器118可以執行信號編碼、資料處理、功率控制、輸入/輸出處理、和/或其他任何能使WTRU 102在無線環境中操作的功能。處理器118可以耦合至收發器120,該收發器120可以耦合至傳輸/接收元件122。雖然第1B圖將處理器118和收發器120描述成分別組件,然而應該理解的是,處理器118和收發器120也可以整合在一電子元件或晶片中。The processor 118 can be a general purpose processor, a special purpose processor, a conventional processor, a digital signal processor (DSP), a plurality of microprocessors, one or more microprocessors associated with the DSP core, a controller, a microcontroller , Dedicated Integrated Circuit (ASIC), Field Programmable Gate Array (FPGA) circuits, any other type of integrated circuit (IC), and state machine. Processor 118 may perform signal coding, data processing, power control, input/output processing, and/or any other functionality that enables WTRU 102 to operate in a wireless environment. The processor 118 can be coupled to a transceiver 120 that can be coupled to the transmit/receive element 122. Although FIG. 1B depicts processor 118 and transceiver 120 as separate components, it should be understood that processor 118 and transceiver 120 can also be integrated into an electronic component or wafer.

傳輸/接收元件122可被配置成經由空中介面116傳輸或接收往或來自基地台(例如基地台114a)的信號。舉個例子,在一實施例中,傳輸/接收元件122可以是被配置成傳輸和/或接收RF信號的天線。作為範例,在一實施例中,傳輸/接收元件122可以是被配置成傳輸和/或接收IR、UV或可見光信號的放射器/偵測器。在再一實施例中,傳輸/接收元件122可被配置成傳輸和/或接收RF和光信號二者。應該理解的是,傳輸/接收元件122可以被配置成傳輸和/或接收無線信號的任何組合。The transmit/receive element 122 can be configured to transmit or receive signals to or from a base station (e.g., base station 114a) via the null intermediate plane 116. For example, in an embodiment, the transmit/receive element 122 can be an antenna configured to transmit and/or receive RF signals. As an example, in an embodiment, the transmit/receive element 122 can be an emitter/detector configured to transmit and/or receive IR, UV, or visible light signals. In still another embodiment, the transmit/receive element 122 can be configured to transmit and/or receive both RF and optical signals. It should be understood that the transmit/receive element 122 can be configured to transmit and/or receive any combination of wireless signals.

雖然在第1B圖中將傳輸/接收元件122描述成是單個元件,但是WTRU 102可以包括任何數量的傳輸/接收元件122。更具體地,WTRU 102可以使用MIMO技術。由此,在一實施例中,WTRU 102可以包括兩個或多個通過空中介面116來傳輸和接收無線信號的傳輸/接收元件122(例如多個天線)。Although the transmission/reception element 122 is depicted as a single element in FIG. 1B, the WTRU 102 may include any number of transmission/reception elements 122. More specifically, the WTRU 102 may use MIMO technology. Thus, in an embodiment, the WTRU 102 may include two or more transmission/reception elements 122 (e.g., multiple antennas) that transmit and receive wireless signals over the null plane 116.

收發器120可被配置成對傳輸/接收元件122所要傳輸的信號進行調變,以及對傳輸/接收元件122接收的信號進行解調。如上所述,WTRU 102可以具有多模式能力。因此,收發器120可以包括使得WTRU 102能夠經由多種RAT(例如NR和IEEE 802.11)來進行通信的多個收發器。The transceiver 120 can be configured to modulate signals to be transmitted by the transmission/reception component 122 and to demodulate signals received by the transmission/reception component 122. As noted above, the WTRU 102 may have multi-mode capabilities. Accordingly, transceiver 120 may include multiple transceivers that enable WTRU 102 to communicate via multiple RATs (eg, NR and IEEE 802.11).

WTRU 102的處理器118可以耦合到揚聲器/麥克風124、小鍵盤126和/或顯示器/觸控板128(例如液晶顯示器(LCD)顯示單元或有機發光二極體(OLED)顯示單元),並且可以接收來自揚聲器/麥克風124、小鍵盤126和/或顯示器/觸控板128(例如液晶顯示器(LCD)顯示單元或有機發光二極體(OLED)顯示單元)的使用者輸入資料。處理器118還可以向揚聲器/麥克風124、小鍵盤126和/或顯示器/觸控板128輸出使用者資料。此外,處理器118可以從諸如非可移記憶體130和/或可移記憶體132之類的任何適當類型的記憶體存取資訊,以及將資料存入這些記憶體。非可移記憶體106可以包括隨機存取記憶體(RAM)、唯讀記憶體(ROM)、硬碟或是其他任何類型的記憶存放裝置。可移記憶體132可以包括用戶身份模組(SIM)卡、記憶條、安全數位(SD)記憶卡等等。在其他實施例中,處理器118可以從那些並非實體上位於WTRU 102的記憶體存取資訊,以及將資料存入該記憶體,作為範例,該記憶體可以位於伺服器或家用電腦(未顯示)上。The processor 118 of the WTRU 102 may be coupled to a speaker/microphone 124, a keypad 126, and/or a display/touchpad 128 (eg, a liquid crystal display (LCD) display unit or an organic light emitting diode (OLED) display unit), and may User input data from speaker/microphone 124, keypad 126, and/or display/touchpad 128 (eg, a liquid crystal display (LCD) display unit or an organic light emitting diode (OLED) display unit) is received. The processor 118 can also output user profiles to the speaker/microphone 124, the keypad 126, and/or the display/trackpad 128. In addition, processor 118 can access information from any suitable type of memory, such as non-removable memory 130 and/or removable memory 132, and store the data in these memories. The non-removable memory 106 can include random access memory (RAM), read only memory (ROM), hard disk, or any other type of memory storage device. The removable memory 132 can include a Subscriber Identity Module (SIM) card, a memory stick, a secure digital (SD) memory card, and the like. In other embodiments, the processor 118 may access information from the memory that is not physically located in the WTRU 102 and store the data in the memory. As an example, the memory may be located on a server or a home computer (not shown). )on.

處理器118可以接收來自電源134的電力,並且可被配置成分發和/或控制用於WTRU 102中的其他組件的電力。電源134可以是為WTRU 102供電的任何適當裝置。例如,電源134可以包括一或多個乾電池組(如鎳鎘(Ni-Cd)、鎳鋅(Ni-Zn)、鎳氫(NiMH)、鋰離子(Li-ion)等等)、太陽能電池以及燃料電池等等。The processor 118 can receive power from the power source 134 and can be configured to transmit and/or control power for other components in the WTRU 102. Power source 134 may be any suitable device that powers WTRU 102. For example, the power source 134 can include one or more dry battery packs (eg, nickel cadmium (Ni-Cd), nickel zinc (Ni-Zn), nickel metal hydride (NiMH), lithium ion (Li-ion), etc.), solar cells, and Fuel cells and more.

處理器118還可以耦合到GPS晶片組136,該GPS晶片組136可被配置成提供與WTRU 102的當前位置相關的位置資訊(例如經度和緯度)。WTRU 102可以經由空中介面116接收來自基地台(例如基地台114a、114b)之加上或取代GPS晶片組136資訊的位置資訊,和/或根據從兩個或更多個的附近基地台接收的信號時序來確定其位置。應該理解的是,在保持符合實施例的同時,WTRU 102可以經由任何適當的定位方法來獲取位置資訊。The processor 118 may also be coupled to a GPS chipset 136 that may be configured to provide location information (eg, longitude and latitude) related to the current location of the WTRU 102. The WTRU 102 may receive location information from base stations (e.g., base stations 114a, 114b) plus or in place of GPS chipset 136 information via null intermediaries 116, and/or upon receipt from two or more nearby base stations. Signal timing to determine its position. It should be understood that the WTRU 102 may obtain location information via any suitable positioning method while remaining consistent with the embodiments.

處理器118還可以進一步耦合到其他週邊設備138,其中該週邊設備可以包括提供附加特徵、功能和/或有線或無線連接的一或多個軟體和/或硬體模組。例如,週邊設備138可以包括加速度計、電子指南針、衛星收發器、數位相機(用於照片和視訊)、通用序列匯流排(USB)埠、振動裝置、電視收發器、免持耳機、Bluetooth®模組、調頻(FM)無線電單元、數位音樂播放機、媒體播放機、視訊遊戲機模組、網際網路瀏覽器、虛擬實境和/或增強實境(VR/AR)裝置、以及活動追蹤器等等。週邊設備138可以包括一或多個感測器。該感測器可以是以下的一或多個:陀螺儀、加速度計、霍爾效應感測器、磁力計、方位感測器、鄰近感測器、溫度感測器、時間感測器、地理位置感測器、高度計、光感測器、觸摸感測器、磁力計、氣壓計、手勢感測器、生物測定感測器和/或濕度感測器等等。Processor 118 may also be further coupled to other peripheral devices 138, where the peripheral devices may include one or more software and/or hardware modules that provide additional features, functionality, and/or wired or wireless connections. For example, peripheral device 138 may include an accelerometer, an electronic compass, a satellite transceiver, a digital camera (for photo and video), a universal serial bus (USB) port, a vibrating device, a television transceiver, a hands-free headset, a Bluetooth® mode. Group, FM radio unit, digital music player, media player, video game console module, internet browser, virtual reality and/or augmented reality (VR/AR) device, and activity tracker and many more. Peripheral device 138 can include one or more sensors. The sensor can be one or more of the following: a gyroscope, an accelerometer, a Hall effect sensor, a magnetometer, a position sensor, a proximity sensor, a temperature sensor, a time sensor, a geography Position sensors, altimeters, light sensors, touch sensors, magnetometers, barometers, gesture sensors, biometric sensors and/or humidity sensors, and the like.

WTRU 102可以包括全雙工無線電,其中對於該全雙工無線電來說,一些或所有信號(例如與用於UL(例如用於傳輸)和下鏈(例如用於接收)的特別子訊框相關聯)的接收或傳輸可以是並行和/或同時的。全雙工無線電可以包括經由硬體(例如扼流圈)或是經由處理器(例如單獨的處理器(未顯示)或是經由處理器118)的信號處理來減小和/或實質消除自干擾的介面管理單元。在一實施例中,WTRU 102可以包括傳輸或接收一些或所有信號(例如與用於UL(例如用於傳輸)或下鏈(例如用於接收)的特別子訊框相關聯)的半雙工無線電。The WTRU 102 may include a full-duplex radio for which some or all of the signals (e.g., associated with special subframes for UL (e.g., for transmission) and downlink (e.g., for reception) are associated with The reception or transmission of the connection may be parallel and/or simultaneous. A full-duplex radio may include signal processing through a hardware (eg, a choke) or via a processor (eg, a separate processor (not shown) or via processor 118) to reduce and/or substantially eliminate self-interference. Interface management unit. In an embodiment, the WTRU 102 may include half-duplex transmitting or receiving some or all of the signals (e.g., associated with a special subframe for UL (e.g., for transmission) or downlink (e.g., for reception). radio.

第1C圖是示出了根據一實施例的RAN 104和CN 106的系統圖式。如上所述,RAN 104可以使用E-UTRA無線電技術通過空中介面116來與WTRU 102a、102b、102c進行通信。RAN 104還可以與CN 106進行通信。1C is a system diagram showing RAN 104 and CN 106, in accordance with an embodiment. As described above, the RAN 104 can communicate with the WTRUs 102a, 102b, 102c over the null plane 116 using E-UTRA radio technology. The RAN 104 can also communicate with the CN 106.

RAN 104可以包括e節點B 160a、160b、160c,然而應該理解,在保持符合實施例的同時,RAN 104可以包括任何數量的e節點B。e節點B 160a、160b、160c中的每一者都可以包括用於通過空中介面116與WTRU 102a、102b、102c通信的一或多個收發器。在一實施例中,e節點B 160a、160b、160c可以實施MIMO技術。由此,舉例來說,e節點B 160a可以使用多個天線來向WTRU 102a傳輸無線信號,和/或接收來自WTRU 102a的無線信號。The RAN 104 may include eNodeBs 160a, 160b, 160c, however it should be understood that the RAN 104 may include any number of eNodeBs while remaining consistent with the embodiments. Each of the eNodeBs 160a, 160b, 160c may include one or more transceivers for communicating with the WTRUs 102a, 102b, 102c over the null plane 116. In an embodiment, the eNodeBs 160a, 160b, 160c may implement MIMO technology. Thus, for example, eNodeB 160a may use multiple antennas to transmit wireless signals to, and/or receive wireless signals from, WTRU 102a.

e節點B 160a、160b、160c中的每一者都可以關聯於一特別胞元(未顯示),並且可被配置成處理無線電資源管理決策、交接決策、UL和/或DL中的使用者排程等等。如第1C圖所示,e節點B 160a、160b、160c彼此可以通過X2介面進行通信。Each of the eNodeBs 160a, 160b, 160c may be associated with a particular cell (not shown) and may be configured to handle radio resource management decisions, handover decisions, user queues in UL and/or DL Cheng and so on. As shown in FIG. 1C, the eNodeBs 160a, 160b, 160c can communicate with each other through the X2 interface.

第1C圖所示的CN 106可以包括行動性管理閘道(MME)162、服務閘道(SGW)164以及封包資料網路(PDN)閘道(或PGW)166。雖然前述的每一元件都被描述成是CN 106的一部分,然而應該理解的是,這些元件的任一者都可以由CN操作者之外的實體擁有和/或操作。The CN 106 shown in FIG. 1C may include an active management gateway (MME) 162, a service gateway (SGW) 164, and a packet data network (PDN) gateway (or PGW) 166. While each of the foregoing elements is described as being part of CN 106, it should be understood that any of these elements may be owned and/or operated by entities other than the CN operator.

MME 162可以經由S1介面連接到RAN 104中的e節點B 160a、160b、160c中的每一者,並且可以充當控制節點。例如,MME 142可以負責驗證WTRU 102a、102b、102c的使用者,承載啟動/去啟動處理,以及在WTRU 102a、102b、102c的初始附著程序中選擇特別的服務閘道等等。MME 162可以提供用於在RAN 104與使用其他無線電技術(例如GSM或WCDMA)的其他RAN(未顯示)之間進行切換的控制平面功能。The MME 162 may be connected to each of the eNodeBs 160a, 160b, 160c in the RAN 104 via an S1 interface and may act as a control node. For example, the MME 142 may be responsible for verifying the users of the WTRUs 102a, 102b, 102c, bearer initiation/deactivation procedures, and selecting a particular service gateway or the like in the initial attach procedures of the WTRUs 102a, 102b, 102c. The MME 162 may provide control plane functionality for switching between the RAN 104 and other RANs (not shown) that use other radio technologies, such as GSM or WCDMA.

SGW 164可以經由S1介面連接到RAN 104中的每一e節點B 160a、160b、160c。SGW 164通常可以路由和轉發往/來自WTRU 102a、102b、102c的使用者資料封包。SGW 164還可以執行其他功能,例如在eNB間的交接中錨定使用者平面,在DL資料可供WTRU 102a、102b、102c使用時觸發傳呼,以及管理並儲存WTRU 102a、102b、102c的上下文等等。SGW 164 may be coupled to each eNodeB 160a, 160b, 160c in RAN 104 via an S1 interface. SGW 164 can typically route and forward user data packets to/from WTRUs 102a, 102b, 102c. The SGW 164 may also perform other functions, such as anchoring the user plane in the inter-eNB handover, triggering paging when the DL data is available to the WTRUs 102a, 102b, 102c, and managing and storing the context of the WTRUs 102a, 102b, 102c, etc. Wait.

SGW 164可以連接到PGW 146,該PGW可以為WTRU 102a、102b、102c提供封包交換網路(例如網際網路)存取,以便促成WTRU 102a、102b、102c與IP賦能裝置之間的通信。The SGW 164 can be coupled to the PGW 146, which can provide packet switching network (e.g., Internet) access to the WTRUs 102a, 102b, 102c to facilitate communication between the WTRUs 102a, 102b, 102c and IP-enabled devices.

CN 106可以促成與其他網路的通信。例如,CN 106可以為WTRU 102a、102b、102c提供電路交換式網路(例如PSTN 108)之存取,以便促成WTRU 102a、102b、102c與傳統的陸線通信裝置之間的通信。例如,CN 106可以包括IP閘道(例如IP多媒體子系統(IMS)伺服器)或與之進行通信,並且該IP閘道可以充當CN 106與PSTN 108之間的介面。此外,CN 106可以為WTRU 102a、102b、102c提供針對其他網路112的存取,其中該其他網路可以包括被其他服務供應者擁有和/或操作的其他有線或無線網路。The CN 106 can facilitate communication with other networks. For example, CN 106 may provide WTRUs 102a, 102b, 102c with access to a circuit-switched network (e.g., PSTN 108) to facilitate communication between WTRUs 102a, 102b, 102c and conventional landline communication devices. For example, CN 106 may include or communicate with an IP gateway (eg, an IP Multimedia Subsystem (IMS) server), and the IP gateway may act as an interface between CN 106 and PSTN 108. In addition, CN 106 may provide WTRUs 102a, 102b, 102c with access to other networks 112, which may include other wired or wireless networks that are owned and/or operated by other service providers.

雖然在第1A圖至第1D圖中將WTRU描述成了無線終端,然而應該想到的是,在某些代表實施例中,此類終端與通信網路可以使用(例如臨時或永久性)有線通信介面。Although the WTRU is described as a wireless terminal in Figures 1A through 1D, it should be appreciated that in certain representative embodiments, such terminals and communication networks may use (e.g., temporary or permanent) wired communications. interface.

在代表的實施例中,其他網路112可以是WLAN。In the representative embodiment, the other network 112 can be a WLAN.

基礎架構基本服務集(BSS)模式中的WLAN可以具有用於BSS的存取點(AP)以及與AP相關聯的一或多個站(STA)。該AP可以存取或是有介面於分散式系統(DS)或是將訊務攜入和/或攜出BSS的另一類型的有線/無線網路。源於BSS外部往STA的訊務可以通過AP到達並被遞送至STA。源自STA且往BSS外部的目的地的訊務可被發送至AP,以便遞送到相應的目的地。處於BSS內部的STA之間的訊務可以通過AP來發送,例如其中源STA可以向AP發送訊務並且該AP可以將訊務遞送至目的地STA。處於BSS內部的STA之間的訊務量可被認為和/或稱為點到點訊務。該點到點訊務可以在源與目的地STA之間(例如在其間直接)用直接鏈路建立(DLS)來發送。在某些代表實施例中,DLS可以使用802.11e DLS或802.11z隧道化DLS(TDLS)。使用獨立BSS(IBSS)模式的WLAN可不具有AP,並且處於IBSS內部或是使用IBSS的STA(例如所有STA)彼此可以直接通信。BSS通信模式也可被稱為“ad-hoc”通信模式。A WLAN in an Infrastructure Basic Service Set (BSS) mode may have an access point (AP) for the BSS and one or more stations (STAs) associated with the AP. The AP can access or have another type of wired/wireless network that interfaces with a distributed system (DS) or carries traffic and/or carries BSS. Traffic originating from the outside of the BSS to the STA may arrive through the AP and be delivered to the STA. Traffic originating from the STA and destined for a destination outside the BSS can be sent to the AP for delivery to the corresponding destination. Traffic between STAs within the BSS may be sent by the AP, for example where the source STA may send traffic to the AP and the AP may deliver the traffic to the destination STA. The amount of traffic between STAs within the BSS can be considered and/or referred to as point-to-point traffic. The point-to-point traffic can be sent between the source and destination STAs (eg, directly between them) with direct link setup (DLS). In some representative embodiments, the DLS may use 802.11e DLS or 802.11z Tunneled DLS (TDLS). A WLAN using an Independent BSS (IBSS) mode may not have an AP, and STAs that are internal to the IBSS or that use the IBSS (eg, all STAs) may communicate directly with each other. The BSS communication mode can also be referred to as an "ad-hoc" communication mode.

在使用802.11ac基礎設施操作模式或類似的操作模式時,AP可以在固定通道(例如主通道)上傳輸信標。該主通道可以是固定寬度(例如20MHz的頻寬)或是經由傳訊動態設定的寬度。主通道可以是BSS的操作通道,並且可被STA用來與AP建立連接。在代表典型實施例中,可以(例如在802.11系統中)實施具有衝突避免的載波感測多重存取(CSMA/CA)。對於CSMA/CA來說,包括AP在內的STA(例如每一STA)可以感測主通道。如果由特別STA感測到/偵測到和/或確定主通道繁忙,那麼該特別STA可以回退(back off)。在指定的BSS中,在任何指時序間都有一STA(例如只有一站)進行傳輸。When using the 802.11ac infrastructure operating mode or a similar mode of operation, the AP can transmit beacons on fixed channels (eg, primary channels). The main channel can be a fixed width (eg, a 20 MHz bandwidth) or a dynamically set width via messaging. The primary channel can be the operational channel of the BSS and can be used by the STA to establish a connection with the AP. In a representative exemplary embodiment, carrier sense multiple access with collision avoidance (CSMA/CA) can be implemented (e.g., in an 802.11 system). For CSMA/CA, STAs including APs (eg, each STA) can sense the primary channel. If the special channel is sensed/detected and/or determined to be busy by the special STA, the special STA may back off. In a given BSS, there is one STA (for example, only one station) for transmission between any finger timings.

高輸送量(HT)STA可以使用寬度為40MHz的通道來進行通信(例如經由將20MHz的主通道與20MHz的相鄰或不相鄰通道相結合來形成寬度為40MHz的通道)。High throughput (HT) STAs can communicate using a 40 MHz wide channel (eg, by combining a 20 MHz main channel with a 20 MHz adjacent or non-adjacent channel to form a 40 MHz wide channel).

超高輸送量(VHT)STA可以支援寬度為20MHz、40MHz、80MHz和/或160MHz的通道。40MHz和/或80MHz通道可以通過組合連續的20MHz通道來形成。160MHz通道可以通過組合8個連續的20MHz通道或者通過組合兩個不連續的80MHz通道(這種組合可被稱為80+80配置)來形成。對於80+80配置來說,在通道編碼之後,資料可被傳遞並經過一分段解析器,該分段解析器可以將資料分成兩個串流。可以在每一串流上分別執行反向快速傅立葉變換(IFFT)處理或時域處理。該串流可被映射在兩個80MHz通道上,並且資料可以由執行傳輸的STA來傳輸。在執行接收的STA的接收器處,用於80+80配置的上述操作可以是相反的,並且組合資料可被發送至媒體存取控制(MAC)。Ultra High Throughput (VHT) STAs can support channels with widths of 20MHz, 40MHz, 80MHz and/or 160MHz. 40MHz and/or 80MHz channels can be formed by combining successive 20MHz channels. A 160 MHz channel can be formed by combining 8 consecutive 20 MHz channels or by combining two discrete 80 MHz channels (this combination can be referred to as an 80+80 configuration). For an 80+80 configuration, after channel encoding, the data can be passed through a segmentation parser that splits the data into two streams. Inverse Fast Fourier Transform (IFFT) processing or time domain processing may be performed on each stream, respectively. The stream can be mapped on two 80 MHz channels and the data can be transmitted by the STA performing the transmission. At the receiver performing the received STA, the above operations for the 80+80 configuration may be reversed and the combined material may be sent to the Media Access Control (MAC).

802.11af和802.11ah支持次1吉赫(GHz)操作模式。與802.11n和802.11ac中所使用的相比,在802.11af和802.11ah中通道操作頻寬和載波被縮減。802.11af支援在TV白空間(TVWS)頻譜中5MHz、10MHz和20MHz頻寬,並且802.11ah支援使用非TVWS頻譜的1MHz、2MHz、4MHz、8MHz和16MHz頻寬。依照代表實施例,802.11ah可以支援儀錶類型控制/機器類型通信(例如巨集覆蓋區域中的MTC裝置)。MTC裝置可以具有某些能力,例如包含了支援(例如只支持)某些和/或有限頻寬在內的受限能力。MTC裝置可以包括電池,並且該電池的電池壽命高於臨界值(例如用於保持很長的電池壽命)。802.11af and 802.11ah support the next 1 GHz (GHz) mode of operation. The channel operation bandwidth and carrier are reduced in 802.11af and 802.11ah compared to those used in 802.11n and 802.11ac. 802.11af supports 5MHz, 10MHz, and 20MHz bandwidths in the TV White Space (TVWS) spectrum, and 802.11ah supports 1MHz, 2MHz, 4MHz, 8MHz, and 16MHz bandwidths using non-TVWS spectrum. In accordance with a representative embodiment, 802.11ah can support meter type control/machine type communication (e.g., MTC devices in a macro coverage area). The MTC device may have certain capabilities, such as including limited capabilities to support (e.g., only support) certain and/or limited bandwidth. The MTC device can include a battery and the battery life of the battery is above a threshold (eg, to maintain a very long battery life).

可以支援多個通道和通道頻寬(例如802.11n、802.11ac、802.11af以及802.11ah)的WLAN系統包括可被指定成主通道的通道。該主通道的頻寬可以等於BSS中的所有STA所支援的最大共用操作頻寬。主通道的頻寬可以由STA設定和/或限制,其中該STA源自在支援最小頻寬操作模式的BSS中操作的所有STA。在關於802.11ah的範例中,即使BSS中的AP和其他STA支持2 MHz、4 MHz、8 MHz、16 MHz和/或其他通道頻寬操作模式,但對支援(例如只支援)1MHz模式的STA(例如MTC類型的裝置)來說,主通道的寬度可以是1MHz。載波感測和/或網路分配向量(NAV)設定可以取決於主通道的狀態。如果主通道繁忙(因為STA(例如1MHz操作模式STA)向AP進行傳輸),那麼即使大多數的頻帶保持空閒並且可供使用,也可以認為整個可用頻帶繁忙。A WLAN system that can support multiple channels and channel bandwidths (eg, 802.11n, 802.11ac, 802.11af, and 802.11ah) includes channels that can be designated as primary channels. The bandwidth of the primary channel may be equal to the maximum shared operating bandwidth supported by all STAs in the BSS. The bandwidth of the primary channel may be set and/or limited by the STA, where the STA is derived from all STAs operating in the BSS supporting the least bandwidth mode of operation. In the example of 802.11ah, even if the AP and other STAs in the BSS support 2 MHz, 4 MHz, 8 MHz, 16 MHz, and/or other channel bandwidth modes of operation, support (eg, only support) 1 MHz mode STAs For a device such as an MTC type, the width of the main channel can be 1 MHz. Carrier sensing and/or network allocation vector (NAV) settings may depend on the state of the primary channel. If the primary channel is busy (because the STA (eg, 1 MHz mode of operation STA) transmits to the AP), then the entire available frequency band can be considered busy even though most of the frequency bands remain idle and available for use.

在美國,可供802.11ah使用的可用頻帶是902 MHz到928 MHz。在韓國,可用頻帶是917.5MHz到923.5MHz。在日本,可用頻帶是916.5MHz到927.5MHz。依照國家碼,可用於802.11ah的總頻寬是6MHz到26MHz。In the United States, the available frequency band available for 802.11ah is 902 MHz to 928 MHz. In Korea, the available frequency band is 917.5MHz to 923.5MHz. In Japan, the available frequency band is 916.5 MHz to 927.5 MHz. According to the country code, the total bandwidth available for 802.11ah is 6MHz to 26MHz.

第1D圖是示出了根據一實施例的RAN 104和CN 106的系統圖式。如上所述,RAN 104可以使用NR無線電技術通過空中介面116來與WTRU 102a、102b、102c進行通信。RAN 104還可以與CN 106進行通信。FIG. 1D is a system diagram showing RAN 104 and CN 106, in accordance with an embodiment. As described above, the RAN 104 can communicate with the WTRUs 102a, 102b, 102c over the null plane 116 using NR radio technology. The RAN 104 can also communicate with the CN 106.

RAN 104可以包括gNB 180a、180b、180c,但是應該理解的是,在保持符合實施例的同時,RAN 104可以包括任何數量的gNB。每一gNB 180a、180b、180c都可以包括一或多個收發器,以便通過空中介面116來與WTRU 102a、102b、102c通信。在一實施例中,gNB 180a、180b、180c可以實施MIMO技術。而且,例如,gNB 180a、180b、180c可以使用波束形成處理來向和/或從gNB 180a、180b、180c傳輸和/或接收信號。由此,舉例來說,gNB 180a可以使用多個天線來向WTRU 102a傳輸無線信號,以及接收來自WTRU 102a的無線信號。在一實施例中,gNB 180a、180b、180c可以實施載波聚合技術。例如,gNB 180a可以向WTRU 102a傳輸多個CC(未顯示)。這些CC的子集可以處於無授權頻譜上,而剩餘CC則可以處於授權頻譜上。在一實施例中,gNB 180a、180b、180c可以實施協作多點(CoMP)技術。例如,WTRU 102a可以接收來自gNB 180a和gNB 180b(和/或gNB 180c)的協作通信。The RAN 104 may include gNBs 180a, 180b, 180c, but it should be understood that the RAN 104 may include any number of gNBs while remaining consistent with the embodiments. Each gNB 180a, 180b, 180c may include one or more transceivers to communicate with the WTRUs 102a, 102b, 102c via the null plane 116. In an embodiment, gNBs 180a, 180b, 180c may implement MIMO technology. Moreover, for example, gNBs 180a, 180b, 180c may use beamforming processes to transmit and/or receive signals to and/or from gNBs 180a, 180b, 180c. Thus, for example, gNB 180a may use multiple antennas to transmit wireless signals to, and receive wireless signals from, WTRU 102a. In an embodiment, gNBs 180a, 180b, 180c may implement carrier aggregation techniques. For example, gNB 180a may transmit multiple CCs (not shown) to WTRU 102a. A subset of these CCs can be on the unlicensed spectrum, while the remaining CCs can be on the licensed spectrum. In an embodiment, gNBs 180a, 180b, 180c may implement Cooperative Multipoint (CoMP) technology. For example, the WTRU 102a may receive cooperative communications from the gNBs 180a and gNBs 180b (and/or gNBs 180c).

WTRU 102a、102b、102c可以使用與可擴縮參數配置相關聯的通信來與gNB 180a、180b、180c進行通信。例如,對於不同的通信、不同的胞元和/或不同的無線傳輸頻譜部分來說,OFDM符號間隔和/或OFDM子載波間隔(SCS)可以是不同的。WTRU 102a、102b、102c可以使用具有不同或可擴縮長度的子訊框或傳輸時間間隔(TTI)(例如包含了不同數量的OFDM符號和/或持續不同的絕對時間長度)來與gNB 180a、180b、180c進行通信。The WTRUs 102a, 102b, 102c may communicate with the gNBs 180a, 180b, 180c using communications associated with the scalable parameter configuration. For example, the OFDM symbol spacing and/or the OFDM subcarrier spacing (SCS) may be different for different communications, different cells, and/or different portions of the wireless transmission spectrum. The WTRUs 102a, 102b, 102c may use subframes or transmission time intervals (TTIs) having different or scalable lengths (e.g., containing different numbers of OFDM symbols and/or continuing different absolute time lengths) to communicate with the gNB 180a, 180b, 180c communicate.

gNB 180a、180b、180c可被配置成與採用分立配置和/或非分立配置的WTRU 102a、102b、102c進行通信。在分立配置中,WTRU 102a、102b、102c可以在也不存取其他RAN(例如e節點B 160a、160b、160c)的情況下與gNB 180a、180b、180c進行通信。在分立配置中,WTRU 102a、102b、102c可以使用gNB 180a、180b、180c中的一或多個作為行動錨點。在分立配置中,WTRU 102a、102b、102c可以使用無授權頻帶中的信號來與gNB 180a、180b、180c進行通信。在非分立配置中,WTRU 102a、102b、102c會在野與另一RAN(例如e節點B 160a、160b、160c)進行通信/相連的同時與gNB 180a、180b、180c進行通信/相連。舉例來說,WTRU 102a、102b、102c可以通過實施DC原理而以實質同時的方式與gNB 180a、180b、180c中的一者或多者以及e節點B 160a、160b、160c中的一者或多者進行通信。在非分立配置中,e節點B 160a、160b、160c可以充當WTRU 102a、102b、102c的行動性錨點,並且gNB 180a、180b、180c可以提供附加的覆蓋和/或輸送量,以便為WTRU 102a、102b、102c提供服務。The gNBs 180a, 180b, 180c can be configured to communicate with the WTRUs 102a, 102b, 102c in a discrete configuration and/or a non-discrete configuration. In a separate configuration, the WTRUs 102a, 102b, 102c may communicate with the gNBs 180a, 180b, 180c without accessing other RANs (e.g., eNodeBs 160a, 160b, 160c). In a separate configuration, the WTRUs 102a, 102b, 102c may use one or more of the gNBs 180a, 180b, 180c as mobility anchors. In a separate configuration, the WTRUs 102a, 102b, 102c may use signals in the unlicensed band to communicate with the gNBs 180a, 180b, 180c. In a non-discrete configuration, the WTRUs 102a, 102b, 102c may communicate/connect with the gNBs 180a, 180b, 180c while communicating/connecting with another RAN (e.g., eNodeBs 160a, 160b, 160c). For example, the WTRUs 102a, 102b, 102c may implement one or more of the gNBs 180a, 180b, 180c and one or more of the eNodeBs 160a, 160b, 160c in a substantially simultaneous manner by implementing the DC principles. Communicate. In a non-discrete configuration, eNodeBs 160a, 160b, 160c may act as mobility anchors for WTRUs 102a, 102b, 102c, and gNBs 180a, 180b, 180c may provide additional coverage and/or throughput to be WTRU 102a , 102b, 102c provide services.

每一gNB 180a、180b、180c都可以關聯於特別胞元(未顯示),並且可以被配置成處理無線電資源管理決策、交接決策、UL和/或DL中的使用者排程、網路截割支援、雙連線性、NR與E-UTRA之間的交互工作、路由往使用者平面功能(UPF)184a、184b的使用者平面資料、以及路由往存取和行動性管理功能(AMF)182a、182b的控制平面資訊等等。如第1D圖所示,gNB 180a、180b、180c彼此可以通過Xn介面通信。Each gNB 180a, 180b, 180c may be associated with a particular cell (not shown) and may be configured to handle radio resource management decisions, handover decisions, user scheduling in UL and/or DL, network truncation Support, dual connectivity, interworking between NR and E-UTRA, user plane data routed to user plane functions (UPF) 184a, 184b, and route to access and mobility management functions (AMF) 182a , 182b control plane information and so on. As shown in FIG. 1D, the gNBs 180a, 180b, 180c can communicate with each other through the Xn interface.

第1D圖所示的CN 106可以包括至少一AMF 182a、182b,至少一UPF 184a、184b,至少一會話管理功能(SMF)183a、183b,並且有可能包括資料網路(DN)185a、185b。雖然每一前述元件都被描述成了CN 106的一部分,但是應該理解的是,這其中的任一元件都可以被CN操作者之外的其他實體擁有和/或操作。The CN 106 shown in FIG. 1D may include at least one AMF 182a, 182b, at least one UPF 184a, 184b, at least one session management function (SMF) 183a, 183b, and possibly a data network (DN) 185a, 185b. While each of the foregoing elements is described as being part of CN 106, it should be understood that any of these elements may be owned and/or operated by other entities than the CN operator.

AMF 182a、182b可以經由N2介面連接到RAN 104中的gNB 180a、180b、180c中的一者或多者,並且可以充當控制節點。例如,AMF 182a、182b可以負責驗證WTRU 102a、102b、102c的使用者,支援網路截割(例如處理具有不同需求的不同協定資料單元PDU會話),選擇特別的SMF 183a、183b,管理註冊區域,終止非存取層(NAS)傳訊,以及行動性管理等等。AMF 182a、1823b可以使用網路截割,以便基於WTRU 102a、102b、102c使用的服務類型來為WTRU 102a、102b、102c定制CN支持。舉例來說,針對不同的用例,可以建立不同的網路截割,例如依賴於超可靠低潛時通信(URLLC)存取的服務、依賴於增強型巨量行動寬頻(eMBB)存取的服務、和/或用於MTC存取的服務等等。AMF 182a、182b可以提供用於在RAN 104與使用其他無線電技術(例如LTE、LTE-A、LTE-A Pro和/或諸如WiFi之類的非3GPP存取技術)的其他RAN(未顯示)之間切換的控制平面功能。The AMFs 182a, 182b may be connected to one or more of the gNBs 180a, 180b, 180c in the RAN 104 via an N2 interface and may serve as a control node. For example, AMFs 182a, 182b may be responsible for authenticating users of WTRUs 102a, 102b, 102c, supporting network truncation (e.g., handling different protocol data unit PDU sessions with different needs), selecting special SMFs 183a, 183b, managing registration areas. , terminate non-access layer (NAS) messaging, as well as mobility management and more. The AMFs 182a, 1823b may use network cuts to customize CN support for the WTRUs 102a, 102b, 102c based on the type of service used by the WTRUs 102a, 102b, 102c. For example, different network cuts can be established for different use cases, such as services that rely on ultra-reliable low-latency communication (URLLC) access, services that rely on enhanced massive mobile broadband (eMBB) access. And/or services for MTC access, etc. The AMFs 182a, 182b may provide other RANs (not shown) for use in the RAN 104 with other radio technologies (e.g., LTE, LTE-A, LTE-A Pro, and/or non-3GPP access technologies such as WiFi). Control plane function for switching between.

SMF 183a、183b可以經由N11介面連接到CN 106中的AMF 182a、182b。SMF 183a、183b還可以經由N4介面連接到CN 106中的UPF 184a、184b。SMF 183a、183b可以選擇和控制UPF 184a、184b,並且可以通過UPF 184a、184b來配置訊務路由。SMF 183a、183b可以執行其他功能,例如管理和分配WTRU IP位址,管理PDU會話,控制策略實施和QoS,以及提供下鏈資料通知等等。PDU會話類型可以是基於IP的、不基於IP的以及基於乙太網路的等等。The SMFs 183a, 183b may be connected to the AMFs 182a, 182b in the CN 106 via an N11 interface. The SMFs 183a, 183b may also be connected to the UPFs 184a, 184b in the CN 106 via an N4 interface. The SMFs 183a, 183b can select and control the UPFs 184a, 184b, and can configure traffic routing through the UPFs 184a, 184b. The SMFs 183a, 183b may perform other functions such as managing and allocating WTRU IP addresses, managing PDU sessions, controlling policy enforcement and QoS, and providing down-link data notifications and the like. The PDU session type can be IP based, non IP based, Ethernet based, and the like.

UPF 184a、184b可以經由N3介面連接到RAN 104中的gNB 180a、180b、180c中的一者或多者,這樣可以為WTRU 102a、102b、102c提供至封包交換網路(例如網際網路110)的存取,以便促成WTRU 102a、102b、102c與IP賦能裝置之間的通信。UPF 184、184b可以執行其他功能,例如路由和轉發封包、實施使用者平面策略、支援多連接(multi-homed)PDU會話、處理使用者平面QoS、緩衝DL封包、以及提供行動性錨定等等。The UPFs 184a, 184b may be coupled to one or more of the gNBs 180a, 180b, 180c in the RAN 104 via an N3 interface, such that the WTRUs 102a, 102b, 102c may be provided to a packet switched network (e.g., the Internet 110). Access to facilitate communication between the WTRUs 102a, 102b, 102c and the IP-enabled device. The UPFs 184, 184b can perform other functions such as routing and forwarding packets, implementing user plane policies, supporting multi-homed PDU sessions, handling user plane QoS, buffering DL packets, and providing mobility anchoring, etc. .

CN 106可以促成與其他網路的通信。例如,CN 106可以包括,或者可以與充當CN 106與CN 108之間的介面的IP閘道(例如IP多媒體子系統(IMS)伺服器)進行通信。此外,CN 106可以為WTRU 102a、102b、102c提供針對其他網路112的存取,該其他網路可以包括由其他服務供應者擁有和/或操作的其他有線及/或無線網路。在一實施例中,WTRU 102a、102b、102c可以經由到UPF 184a、184b的N3介面以及介於UPF 184a、184b與DN 185a、185b之間的N6介面通過UPF 184a、184b連接到本地DN 185a、185b。The CN 106 can facilitate communication with other networks. For example, CN 106 may include, or may be in communication with, an IP gateway (eg, an IP Multimedia Subsystem (IMS) server) that acts as an interface between CN 106 and CN 108. In addition, CN 106 may provide WTRUs 102a, 102b, 102c with access to other networks 112, which may include other wired and/or wireless networks that are owned and/or operated by other service providers. In an embodiment, the WTRUs 102a, 102b, 102c may connect to the local DN 185a via UPFs 184a, 184b via an N3 interface to UPFs 184a, 184b and an N6 interface between UPFs 184a, 184b and DNs 185a, 185b, 185b.

有鑒於第1A圖至第1D圖以及關於第1A圖至第1D圖的相應描述,在這裡針對以下的一項或多項描述的一或多個或所有功能可以由一或多個模擬裝置(未顯示)來執行:WTRU 102a-d、基地台114a-b、e節點B 160a-c、MME 162、SGW 164、PGW 166、gNB 180a-c、AMF 182a-b、UPF 184a-b、SMF 183a-b、DN 185 a-b和/或這裡描述的其他任何裝置。這些模擬裝置可以是被配置成模擬這裡描述之一或多個或所有功能的一或多個裝置。舉例來說,這些模擬裝置可用於測試其他裝置和/或模擬網路和/或WTRU功能。In view of Figures 1A through 1D and the corresponding descriptions of Figures 1A through 1D, one or more or all of the functions described herein for one or more of the following may be performed by one or more analog devices (not Displayed to perform: WTRUs 102a-d, base stations 114a-b, eNodeBs 160a-c, MME 162, SGW 164, PGW 166, gNBs 180a-c, AMFs 182a-b, UPFs 184a-b, SMF 183a- b. DN 185 ab and/or any other device described herein. These analog devices may be one or more devices configured to simulate one or more or all of the functions described herein. For example, these analog devices can be used to test other devices and/or analog network and/or WTRU functions.

模擬裝置可被設計成在實驗室環境和/或操作者網路環境中實施關於其他裝置的一項或多項測試。例如,一或多個模擬裝置可以在被完全或部分作為有線和/或無線通信網路一部分實施和/或部署的同時執行一或多個或所有功能,以便測試通信網路內部的其他裝置。該一或多個模擬裝置可以在被臨時作為有線和/或無線通信網路的一部分實施/部署的同時執行一或多個或所有功能。該模擬裝置可以直接耦合到另一裝置以執行測試,和/或可以使用空中無線通信來執行測試。The simulation device can be designed to implement one or more tests on other devices in a laboratory environment and/or an operator network environment. For example, one or more analog devices may perform one or more or all of the functions while being implemented and/or deployed in whole or in part as part of a wired and/or wireless communication network to test other devices within the communication network. The one or more analog devices may perform one or more or all of the functions while being temporarily implemented/deployed as part of a wired and/or wireless communication network. The analog device can be directly coupled to another device to perform the test, and/or can perform the test using over-the-air wireless communication.

一或多個模擬裝置可以在未被作為有線和/或無線通信網路一部分實施/部署的同時執行包括所有功能在內的一或多個功能。例如,該模擬裝置可以在測試實驗室和/或未被部署(例如測試)的有線和/或無線通信網路的測試場景中使用,以便實施對一或多個組件的測試。該一或多個模擬裝置可以是測試設備。該模擬裝置可以使用直接的RF耦合和/或經由RF電路(作為範例,該電路可以包括一或多個天線)的無線通信來傳輸和/或接收資料。One or more analog devices may perform one or more functions including all functions while not being implemented/deployed as part of a wired and/or wireless communication network. For example, the simulation device can be used in a test lab and/or in a test scenario of a wired and/or wireless communication network that is not deployed (eg, tested) to perform testing of one or more components. The one or more analog devices can be test devices. The analog device can transmit and/or receive data using direct RF coupling and/or wireless communication via an RF circuit (which, by way of example, may include one or more antennas).

對於子6GHz傳輸來說,多天線配置(例如多輸入多輸出(MIMO)、單輸入多輸出(SIMO)或多輸入單輸出(MISO)等等)可以提升無線資料速率。不同的MIMO配置可以提供分集增益、多工增益、波束成形或陣列增益等等。在多個WTRU與單個中心節點通信時,MU-MIMO可以通過在相同的時間以及在時間和頻率中的相同或重疊的資源集合上向不同的WTRU傳輸多個資料串流來提升系統輸送量。在單使用者MIMO(SU-MIMO)中,同一中心節點可以將多個資料串流傳輸到同一WTRU,而不是如在多使用者MIMO(MU-MIMO)中傳輸到多個WTRU。在毫米波頻率上進行的多天線傳輸可能不同於子6GHz的多天線配置。其原因有可能是因為在毫米波頻率的傳播特性不同或是BTS或WTRU具有與天線元件不同數量的RF鏈等等。For sub-6 GHz transmissions, multiple antenna configurations (such as Multiple Input Multiple Output (MIMO), Single Input Multiple Output (SIMO), or Multiple Input Single Output (MISO), etc., can increase the wireless data rate. Different MIMO configurations can provide diversity gain, multiplex gain, beamforming or array gain, and the like. When multiple WTRUs are communicating with a single central node, MU-MIMO may increase system throughput by transmitting multiple data streams to different WTRUs at the same time and on the same or overlapping set of resources in time and frequency. In single-user MIMO (SU-MIMO), the same central node can stream multiple streams of data to the same WTRU instead of transmitting to multiple WTRUs as in multi-user MIMO (MU-MIMO). Multi-antenna transmissions on millimeter wave frequencies may differ from sub-antenna configurations of 6 GHz. The reason for this may be because the propagation characteristics at the millimeter wave frequency are different or the BTS or WTRU has a different number of RF chains from the antenna elements and the like.

對於多天線、MIMO或其他配置來說,在將多個RS用於波束管理(BM)時,波束報告、波束故障偵測或是新的候選波束識別都是所期望的。雖然用於BM的多個RS(RS)的動態可用性及統一使用可以提供資源的靈活性以及有效使用,所期望的是可以基於不同的RS來從測量結果中有效地發現和確定波束品質,由此避免波束級乒乓效率、TRP或gNB級乒乓效應等等。For multi-antenna, MIMO or other configurations, beam reporting, beam fault detection or new candidate beam identification are desirable when using multiple RSs for beam management (BM). While the dynamic availability and uniform use of multiple RSs (RSs) for BM can provide resource flexibility and efficient use, it is desirable to be able to efficiently discover and determine beam quality from measurements based on different RSs, This avoids beam-level ping-pong efficiency, TRP or gNB-level ping-pong effects, and the like.

統一的下鏈(DL)BM可以使用不同的RS配置來執行波束測量和報告。波束測量和報告可以基於RS、通道狀態資訊-RS(CSI-RS)、同步信號(SS)塊或解調RS(DMRS)等等。在這裡給出的任一範例中,SS塊都可以與實體廣播通道(PBCH)一起作為SS/PBCH塊來發送。在某些配置中,SSB、SS塊、SS-塊或SS/PBCH塊是可以互換使用的。在這裡給出的範例中,報告處理可以使用聯合波束報告或獨立波束報告。此外,統一波束指示可以包括實際傳輸配置指示符(TCI)狀態與N位元TCI狀態欄位之間的映射。統一波束指示可以包括跨越多個分量載波(CC)的準共位(QCL)指示。該統一波束指示還可以用於對使用TCI狀態、TCI狀態中的空間QCL參考更新或是上鏈(UL)波束指示等等的處理進行最佳化。A unified downlink (DL) BM can perform beam measurements and reporting using different RS configurations. Beam measurements and reports can be based on RS, Channel State Information-RS (CSI-RS), Synchronization Signal (SS) blocks, or Demodulated RS (DMRS), and the like. In any of the examples given herein, the SS block can be transmitted as an SS/PBCH block together with a Physical Broadcast Channel (PBCH). In some configurations, SSB, SS blocks, SS-blocks, or SS/PBCH blocks are used interchangeably. In the example given here, the report processing can use a joint beam report or an independent beam report. Further, the unified beam indication can include a mapping between an actual transmission configuration indicator (TCI) state and an N-bit TCI status field. The unified beam indication may include a quasi-co-location (QCL) indication across multiple component carriers (CCs). The unified beam indication can also be used to optimize processing using a TCI state, a spatial QCL reference update in a TCI state, or a uplink (UL) beam indication, and the like.

第2圖是關於傳輸/接收點(TRP)和WTRU天線模型的範例200。巨量天線模型可以被配置成在每個垂直維度上之Mg個天線面板以及在每個水平維度上之Ng個天線面板。每一天線面板都可以被配置成具有N行和M列極化或非極化的天線元件。時序和相位是不能跨面板校準的。在同一eNB中可以配置多個面板。依照表1所給出的操作頻段,基線的巨量天線配置有可能是不同的。 表1Figure 2 is an example 200 of a transmit/receive point (TRP) and WTRU antenna model. The massive antenna model can be configured as Mg antenna panels in each vertical dimension and Ng antenna panels in each horizontal dimension. Each antenna panel can be configured to have N rows and M columns of polarized or non-polarized antenna elements. Timing and phase cannot be calibrated across panels. Multiple panels can be configured in the same eNB. According to the operating frequency bands given in Table 1, the base antenna configuration may be different. Table 1

在毫米波頻率的預編碼處理可以是數位的、類比的、數位和類比的或是混合的數位和類比的等等。數位預編碼處理可以與均衡處理相結合,並且可以用於SU、MU以及多胞元預編碼處理。數位預編碼處理與子6GHz(例如在IEEE 802.11n、802.11x、3GPP LTE、4G或5G等等)中使用的數位預編碼處理相似。然而,在毫米波頻率中,與天線元件相比存在的受限數量的RF鏈,及通道的稀疏特性可能需要不同的數位波束成形配置。The precoding process at the millimeter wave frequency can be digital, analog, digital and analog or mixed digital and analog, and the like. Digital precoding processing can be combined with equalization processing and can be used for SU, MU, and multi-cell precoding processing. The digital precoding process is similar to the digital precoding process used in sub 6 GHz (eg, in IEEE 802.11n, 802.11x, 3GPP LTE, 4G or 5G, etc.). However, in millimeter wave frequencies, the limited number of RF chains present compared to antenna elements, as well as the sparse nature of the channels, may require different digital beamforming configurations.

由於RF鏈的數量有限,類比波束成形處理可被配置成在每一天線元件上都具有類比移相器。在IEEE 802.11ax或802.11ad等等中,在用於識別最佳扇區的扇區級掃描程序中,在用於將扇區細化到天線波束的波束細化程序中或是在用於隨時間調整子波束以顧及通道程序中的任何變化的波束追蹤程序中可以配置類比波束成形處理。在混合波束成形中,預編碼器可以在類比域和數位域之間劃分。每一域都可以使用預編碼處理,並且可以組合具有不同結構約束(例如用於組合類比域中的矩陣的恆定模數約束)的矩陣。雖然受限於RF鏈的數量,但由於通道的稀疏性質、多使用者多工處理或多串流多工處理等等,混合波束成形處理可以實現高的數位預編碼處理性能。Due to the limited number of RF chains, the analog beamforming process can be configured to have an analog phase shifter on each antenna element. In IEEE 802.11ax or 802.11ad or the like, in a sector-level scanning procedure for identifying an optimum sector, in a beam refinement procedure for refining a sector to an antenna beam or for use in a beam refinement procedure for refining a sector to an antenna beam The analog beamforming process can be configured in a beam tracking procedure that temporally adjusts the sub-beams to account for any changes in the channel procedure. In hybrid beamforming, the precoder can be divided between an analog domain and a digital domain. Each domain can use precoding processing and can combine matrices with different structural constraints, such as constant modulus constraints for combining matrices in the analog domain. Although limited by the number of RF chains, hybrid beamforming processing can achieve high digital precoding processing performance due to the sparse nature of the channel, multi-user multiplex processing or multi-stream multiplexing processing.

隨著頻率的增大,通道可能會具有更高的路徑損耗以及更突然的變化。在高頻帶中,使用大尺度天線陣列,以用於高波束成形增益,由此解決高傳播損耗。使用基於定向波束的通信可能需要精確的波束配對。波束方向有可能在方位和高度中的到達角和離開角方面與通道相關聯。波束方向是可以隨著通道改變而被動態調整的。As the frequency increases, the channel may have higher path loss and more abrupt changes. In the high frequency band, a large-scale antenna array is used for high beamforming gain, thereby solving high propagation loss. Using directional beam based communication may require accurate beam pairing. The beam direction is likely to be associated with the channel in terms of the angle of arrival and the angle of departure in the azimuth and elevation. The beam direction can be dynamically adjusted as the channel changes.

作為範例,波束管理程序可以包括DL和UL波束管理程序。下鏈波束管理程序可被稱為P-1、P-2、P-3等等。在某些配置中,P1和P-1、P2和P-2以及P3和P-3是可以互換使用的。上鏈波束管理程序可被稱為U-1、U-2、U-3等等。第一下鏈波束管理程序(例如P-1)可被用於針對不同TRP TX波束上的WTRU測量(例如用於支持對TRP TX波束或WTRU RX波束的選擇)。P-1可以包括源自一組不同的波束的TRP內部或TRP之間的TX波束掃描(例如用於在TRP的波束成形處理)。P-1還可以包括源自一組不同的波束的WTRU RX波束掃描操作(例如用於在WTRU的波束成形處理)。在某些配置中,TRP TX波束和WTRU RX波束可以是聯合或順序確定的。As an example, the beam management program can include DL and UL beam management procedures. The downlink beam management program can be referred to as P-1, P-2, P-3, and the like. In some configurations, P1 and P-1, P2 and P-2, and P3 and P-3 are used interchangeably. The uplink beam management program can be referred to as U-1, U-2, U-3, and the like. The first downlink sensor management procedure (e.g., P-1) can be used for WTRU measurements on different TRP TX beams (e.g., to support selection of TRP TX beams or WTRU RX beams). P-1 may include a TX beam scan between TRP internal or TRP originating from a different set of beams (eg, for beamforming processing at TRP). P-1 may also include WTRU RX beam scanning operations originating from a different set of beams (e.g., for beamforming processing at the WTRU). In some configurations, the TRP TX beam and the WTRU RX beam may be jointly or sequentially determined.

在一範例中,第二下鏈波束管理程序(例如P-2)可被用於再不同的TRP TX波束的WTRU測量。P-2可以是用於改變一或多個TRP內部或TRP之間的波束(例如源於比P-1更小的波束集合,以便進行波束細化)的P-1的一種情形。此外,作為範例,在WTRU使用波束成形處理的時,第三下鏈波束管理程序(例如P-3)可以用於在相同TRP TX波束上的WTRU測量,以改變WTRU RX波束。In an example, a second downlink beam management procedure (e.g., P-2) can be used for WTRU measurements of different TRP TX beams. P-2 may be a scenario for changing the P-1 between one or more TRP internals or between TRPs (eg, from a smaller set of beams than P-1 for beam refinement). Moreover, as an example, when the WTRU uses beamforming processing, a third downlink beam management procedure (e.g., P-3) can be used for WTRU measurements on the same TRP TX beam to change the WTRU RX beam.

在這裡所給的範例中,第一上鏈波束管理程序(例如U-1)可被用於啟用在不同WTRU TX波束上的TRP測量,以便支持關於一或多個WTRU TX波束或是一或多個TRP RX波束的選擇。第二上鏈波束管理程序(例如U-2)可被用於在不同TRP RX波束上的TRP測量,以便改變或選擇TRP之間或內部的一或多個RX波束。第三上鏈波束管理程序(例如U-3)可被用於啟用在相同TRP RX波束上的TRP測量,以便改變WTRU TX波束。In the example given here, a first uplink beam management procedure (e.g., U-1) can be used to enable TRP measurements on different WTRU TX beams to support one or more WTRU TX beams or one or Selection of multiple TRP RX beams. A second uplink beam management procedure (e.g., U-2) can be used for TRP measurements on different TRP RX beams to change or select one or more RX beams between or within the TRP. A third uplink beam management procedure (e.g., U-3) can be used to enable TRP measurements on the same TRP RX beam in order to change the WTRU TX beam.

在這裡所給的範例中,在一或多個TRP內可以配置用於選擇TRP TX或WTRU RX波束的DL L1或L2 BM程序。用於波束選擇、TX波束細化、RX波束改變或TRP TX和WTRU RX波束掃描的程序P-1、P-2或P-3可以被配置或使用。WTRU觸發的波束故障恢復操作,WTRU特定的基於波束群組的報告處理以及用於針對BM的TX或RX波束掃描的CSI-RS配置同樣是可以被使用的。In the example given here, a DL L1 or L2 BM procedure for selecting a TRP TX or WTRU RX beam may be configured within one or more TRPs. Programs P-1, P-2 or P-3 for beam selection, TX beam refinement, RX beam change or TRP TX and WTRU RX beam scanning may be configured or used. The WTRU-triggered beam failback operation, WTRU-specific beam group based reporting processing, and CSI-RS configuration for TX or RX beam scanning for the BM can also be used.

第3圖是關於SS叢發和多個SS塊的範例300。SS塊可以包括主同步信號(PSS)、輔同步信號(SSS)以及實體廣播通道(PBCH)。在300中,SS叢發可針對x毫秒的週期,以及在一SS叢發中之多個SS塊1、2、…N而被配置。Figure 3 is an example 300 of an SS burst and multiple SS blocks. The SS block may include a primary synchronization signal (PSS), a secondary synchronization signal (SSS), and a physical broadcast channel (PBCH). In 300, SS bursts can be configured for a period of x milliseconds, as well as multiple SS blocks 1, 2, ... N in an SS burst.

用於UL傳輸的網路控制的BM之機制是可以被配置的。例如,在300中,在將多個波束用於初始存取的時候可以使用SS叢發。SS叢發中的一或多個SS塊可以與一或多個波束相關聯,並且SS叢發中的SS塊的數量可以由gNB基於發送波束的數量來確定。在一範例中,如果在gNB上配置N個波束,那麼可以在SS叢發中使用或傳輸N個SS塊。SS塊可以與WTRU特定的CSI-RS相比相對更少的資源而被配置,使用更少的傳訊負擔,以及具有低的干擾。對基於OFDMA的網路來說,胞元內部的WTRU通信可以是相互正交的,並且胞元間干擾(尤其是胞元邊界附近)有可能是主要干擾源。在這裡所給的範例中,CSI-RS或SS塊的傳輸功率可被改變或調適,以用於胞元間干擾協調、干擾減輕或是靈活的胞元覆蓋等等。The mechanism of the network controlled BM for UL transmission can be configured. For example, in 300, SS bursts can be used when multiple beams are used for initial access. One or more SS blocks in the SS burst may be associated with one or more beams, and the number of SS blocks in the SS burst may be determined by the gNB based on the number of transmit beams. In an example, if N beams are configured on the gNB, then N SS blocks can be used or transmitted in the SS burst. The SS block can be configured with relatively less resources than the WTRU-specific CSI-RS, using less messaging burden, and having low interference. For OFDMA-based networks, WTRU communications within cells may be mutually orthogonal, and inter-cell interference (especially near cell boundaries) may be the primary source of interference. In the example given here, the transmission power of the CSI-RS or SS block can be changed or adapted for inter-cell interference coordination, interference mitigation or flexible cell coverage, and the like.

第4圖是用於統一的BM的測量模型的範例400。DL統一的BM可以使用多個可用RS,例如WTRU特定的CSI-RS、SS塊或是DMRS(在配置了與一RS或多個RS相關聯的PDCCH或PDSCH的時候)等等。這些參考信號可被WTRU用於波束測量和報告。對於被配置了SS塊和DMRS波束成形傳輸的高頻NR系統來說,參考信號可以被使用於協助用於波束發現、波束追蹤、波束細化或波束恢復等等的基於CSI-RS的BM程序(例如P-1、P-2、P-3)。DMRS可以提供關於波束故障的早期偵測和精確預測。Figure 4 is an example 400 of a measurement model for a unified BM. A DL unified BM may use multiple available RSs, such as WTRU-specific CSI-RS, SS blocks, or DMRS (when PDCCH or PDSCH associated with one RS or multiple RSs is configured), and the like. These reference signals can be used by the WTRU for beam measurement and reporting. For high frequency NR systems configured with SS blocks and DMRS beamforming transmissions, the reference signals can be used to assist CSI-RS based BM procedures for beam discovery, beam tracking, beam refinement or beam recovery, etc. (eg P-1, P-2, P-3). DMRS can provide early detection and accurate prediction of beam faults.

在400中,gNB波束1到K可以作為信號A而被輸入第1層濾波組件402中,以及作為A1 被輸出。RRC參數和信號A1 可被輸入到波束合併/選擇組件404。K個波束或信號A1 以及RRC參數同樣可以被輸入L3波束濾波組件406,以及在信號E被輸出。該信號E可與RRC參數一起被輸入用於報告的波束選擇組件408,以便產生X個波束的信號F。輸出信號B和RRC參數可以由用於胞元品質的層3濾波組件410來處理,以便產生信號C。在報告準則評估組件412可以RRC參數來處理信號C和C1 ,以便產生信號D。In 400, gNB beams 1 through K can be input as signal A into layer 1 filter component 402 and output as A 1 . The RRC parameters and signal A 1 may be input to the beam combining/selecting component 404. The K beam or signal A 1 and RRC parameters can also be input to the L3 beam filtering component 406 and output at the signal E. This signal E can be input to the beam selection component 408 for reporting along with the RRC parameters to generate a signal F of X beams. The output signal B and RRC parameters may be processed by a layer 3 filtering component 410 for cell quality to generate a signal C. The signal C and C 1 may be processed at the reporting criteria evaluation component 412 to generate the signal D.

第5圖是使用多個RS來用於統一的BM的範例500。在SS叢發時段502,TRP或gNB可以傳輸RS的SS塊1-3以及CSI-RS 1-4,以便通過波束506來接收。WTRU特定的CSI-RS時段(504)可以是可供TRP或gNB傳輸CSI-RS 1-4或PDCCH的時段。RS可以包括CSI-RS、SS塊或DMRS,由此,在與PDCCH或PDSCH一起發送時,它們在不同的時間實例是可用的。Figure 5 is an example 500 of using multiple RSs for a unified BM. During the SS burst period 502, the TRP or gNB may transmit SS blocks 1-3 and CSI-RS 1-4 of the RS for reception by beam 506. The WTRU-specific CSI-RS period (504) may be a period of time during which the TRP or gNB may transmit CSI-RS 1-4 or PDCCH. The RS may include CSI-RS, SS block or DMRS, whereby they are available at different time instances when transmitted with the PDCCH or PDSCH.

WTRU可以對SS塊執行測量,以便執行快速的波束發現處理,以及建立用於BM程序P-1的粗略的波束配對鏈路(BPL)。此外,在SS塊可被配置成用比CSI-RS更寬的波束傳輸的配置中,使用比CSI-RS更少的波束來覆蓋掃描區域的處理是可以實現的。該配置還可以減小CSI-RS的波束掃描延遲、負擔或資源使用量,並且可以減小WTRU特定的CSI-RS的過多的胞元間干擾(因為SS塊可以是沒有WTRU特定配置的始終開啟的信號)。The WTRU may perform measurements on the SS block to perform fast beam discovery processing and establish a coarse beam pairing link (BPL) for the BM procedure P-1. Further, in a configuration in which an SS block can be configured to transmit with a wider beam than a CSI-RS, a process of covering a scan area using a beam smaller than a CSI-RS is achievable. This configuration may also reduce the beam scanning delay, load or resource usage of the CSI-RS, and may reduce excessive inter-cell interference for the WTRU-specific CSI-RS (because the SS block may be always on without WTRU-specific configuration) signal of).

基於在不同的SS塊的測量量(例如RS接收功率(RSRP)或RS接收品質(RSRQ)等等),WTRU可以基於某些預先定義或配置的規則來選擇N(N>=1)個較佳SS塊。例如,偏好的可以是具有報告給TRP或gNB的最佳的N個RSRP的塊。Based on measurements at different SS blocks (eg, RS Received Power (RSRP) or RS Receive Quality (RSRQ), etc.), the WTRU may select N(N>=1) comparisons based on certain predefined or configured rules. Good SS block. For example, the preference may be a block with the best N RSRPs reported to the TRP or gNB.

處於RRC連接模式的WTRU可以在實體上鏈共用通道(PUSCH)或短實體上鏈控制通道(PUCCH)上非週期地傳遞測量結果,例如層1-RSRP(L1-RSRP)、波束資源指示符、CSI資源索引(CRI)或同步信號塊(SSB)索引等等。在某些配置中,CRI可以是CSI-RS資源指示符、CSI-RS資源索引、CSI資源索引、或是CSI識別符或指示符(ID)等等。在某些配置中,SSBRI可以是SSB資源指示符、SSB索引、SS/PBCH資源指示符、SS/PBCH資源索引、SS塊識別符或指示符或索引(ID)、或是SSB ID等等。測量結果還可以在資料上捎帶,與資料多工,或是在具有不同格式的PUCCH上被週期性回饋等等。基於測量結果的大小或數量,不同的PUCCH格式可以包括常規格式、擴展格式、長PUCCH或短PUCCH等等。在某個時間的持續時間,如果WTRU快速行動,那麼可以在半永久性報告中傳遞測量結果,如果至少一服務波束品質降至某個臨界值以下,或者如果至少一被測波束的品質臨界值高於至少一服務波束等等,那麼可以在事件觸發的報告中傳遞測量結果。在這裡所給的任何範例中,事件觸發可以基於計時器、RS特定計時器或是臨界值等等。A WTRU in RRC connected mode may aperiodically transmit measurements on a physical uplink shared channel (PUSCH) or a short physical uplink control channel (PUCCH), such as layer 1 - RSRP (L1-RSRP), beam resource indicator, CSI Resource Index (CRI) or Synchronization Signal Block (SSB) index and so on. In some configurations, the CRI may be a CSI-RS resource indicator, a CSI-RS resource index, a CSI resource index, or a CSI identifier or indicator (ID), and the like. In some configurations, the SSBRI may be an SSB resource indicator, an SSB index, an SS/PBCH resource indicator, an SS/PBCH resource index, an SS block identifier or an indicator or index (ID), or an SSB ID, and the like. The measurement results can also be piggybacked on the data, multiplexed with the data, or periodically fed back on PUCCHs with different formats. Different PUCCH formats may include a regular format, an extended format, a long PUCCH, or a short PUCCH, etc., based on the size or number of measurements. At a certain time duration, if the WTRU is fast acting, the measurement may be passed in a semi-permanent report if at least one serving beam quality falls below a certain threshold, or if at least one of the measured beams has a high quality threshold For at least one service beam, etc., the measurement results can be passed in an event-triggered report. In any of the examples given here, the event trigger can be based on a timer, an RS specific timer or a threshold, and the like.

處於RRC空閒或無活動模式的WTRU可以通過實體隨機存取通道(PRACH)前言、PRACH訊息3或高層訊息等等來傳遞測量結果。WTRU可以使用特定的RACH資源、在特定的子帶中傳輸的特定的RACH前言以及與所選擇的一或多個SS塊相關聯的符號來執行隨機存取。WTRU可以通過SS塊時間索引來識別與SS塊相關聯的TRP或gNB TX波束。此外,一或多個SS塊以及RACH資源子集或前言索引子集可以在系統資訊(SI)中被發送到WTRU或者是被WTRU知悉的。一或多個SS塊以及RACH資源子集或前言索引子集還可以在先前的連接模式中通過專用信號被發送到WTRU。此外,空閒或無活動的WTRU可以在RACH程序的步驟1中為所選擇的RACH前言子集選擇RACH資源子集。TRP或gNB可以隱性地從RACH資源或前言中推導出在WTRU選擇的波束ID,並且可以在RACH程序的步驟2中將其用作DL TX波束。A WTRU in RRC idle or inactive mode may pass measurement results through a Physical Random Access Channel (PRACH) preamble, PRACH message 3 or higher layer messages, and the like. The WTRU may perform random access using a particular RACH resource, a particular RACH preamble transmitted in a particular subband, and a symbol associated with the selected one or more SS blocks. The WTRU may identify the TRP or gNB TX beam associated with the SS block by the SS block time index. In addition, one or more SS blocks and a subset of RACH resources or a preamble index may be sent to or known by the WTRU in System Information (SI). The one or more SS blocks and the RACH resource subset or the preamble index subset may also be transmitted to the WTRU through a dedicated signal in the previous connected mode. In addition, idle or inactive WTRUs may select a subset of RACH resources for the selected RACH preamble subset in step 1 of the RACH procedure. The TRP or gNB may implicitly derive the beam ID selected at the WTRU from the RACH resource or preamble and may use it as a DL TX beam in step 2 of the RACH procedure.

針對連接模式的WTRU可配置顯性的BM和報告。針對連接模式的WTRU來說,包含所選擇的SS塊的波束品質資訊的報告回饋可被直接回送至TRP或gNB。The WTRU for connected mode can configure dominant BM and reporting. For a connected mode WTRU, report feedback containing beam quality information for the selected SS block can be sent directly back to the TRP or gNB.

一旦TRP或gNB從處於空閒或無活動模式的WTRU接收到RACH前導碼,或者從處於連接模式的WTRU接收到測量報告,那麼將會知悉較佳的SS塊測量。TRP或gNB可以形成M(M>=1)個精細或窄波束CSI-RS,以使M個精細或窄波束的聚合覆蓋與TRP或gNB從所報告的SS塊中選擇的一或多個SS塊相匹配。有了來自WTRU的基於所測量的SS塊的回饋,用於攜帶CSI-RS的新形成的精細或窄波束可以包括TRP或gNB的可能的DL波束子集。這樣做可以通過避免使用大量的用以覆蓋特定覆蓋區域的CSI-RS波束而導致減小波束掃描潛時、負擔、功耗和干擾。Once the TRP or gNB receives the RACH preamble from the WTRU in idle or inactive mode, or receives a measurement report from the WTRU in connected mode, then the better SS block measurement will be known. The TRP or gNB may form M (M>=1) fine or narrow beam CSI-RSs such that the aggregate coverage of M fine or narrow beams and one or more SSs selected by the TRP or gNB from the reported SS blocks The blocks match. With feedback from the WTRU based on the measured SS blocks, the newly formed fine or narrow beams used to carry the CSI-RS may include a subset of possible DL beams of the TRP or gNB. This can reduce beam scanning latency, power, power consumption, and interference by avoiding the use of a large number of CSI-RS beams to cover a particular coverage area.

基於對新形成的精細或窄CSI-RS波束的測量,WTRU可以進一步細化WTRU與TRP或gNB之間的服務BPL,以用於BM程序P-2或P-3。波束細化可以在非週期性的CSI-RS上執行。由於通道的波動或WTRU的行動性、旋轉或速度等等,在服務BPL品質降級的情況下可以週期性地監控或報告WTRU與gNB或TRP之間的服務BPL。Based on measurements of the newly formed fine or narrow CSI-RS beams, the WTRU may further refine the serving BPL between the WTRU and the TRP or gNB for use in the BM procedure P-2 or P-3. Beam refinement can be performed on a non-periodic CSI-RS. The service BPL between the WTRU and the gNB or TRP may be periodically monitored or reported in the event of service BPL quality degradation due to channel fluctuations or WTRU mobility, rotation or speed, and the like.

服務BPL監控或追蹤處理可以使用週期性或非週期性RS。對於WTRU特定的週期性CSI-RS和SS塊來說,如果週期很長,那麼它們有可能無法追蹤或獲取頻繁或突然的通道變化。在本文給出了這種由於WTRU可能無法偵測或及時獲取波束品質資訊而導致的場景的範例。非週期性信號(例如DMRS)同樣可被用於BM。用於控制通道的多波束傳輸可以提升控制信號的可靠性。基於對與多波束PDCCH或PDSCH相關聯的DMRS的測量,可以使用用控制通道或資料通道傳輸的DMRS資源來測量和識別用於BM的一或多個新的候選波束。The service BPL monitoring or tracking process can use periodic or aperiodic RS. For WTRU-specific periodic CSI-RS and SS blocks, if the period is long, they may not be able to track or acquire frequent or sudden channel changes. An example of such a scenario due to the WTRU may not be able to detect or acquire beam quality information in time is given herein. Aperiodic signals (such as DMRS) can also be used for BM. Multi-beam transmission for control channels can improve the reliability of control signals. Based on measurements of the DMRS associated with the multi-beam PDCCH or PDSCH, one or more new candidate beams for the BM can be measured and identified using DMRS resources transmitted with the control channel or data channel.

為了保持服務BPL的性能,WTRU可以維護一候選BPL清單,由此,如果服務BPL品質降級,那麼WTRU可以快速找到另一BPL。候選BPL列表更新可以使用頻繁的RS測量。由於CSI-RS和SS塊有可能不可用,因此可以使用與控制通道或資料控制相關聯的DMRS。由於DMRS是在可用於後續資料或控制資訊的波束上傳輸的,並且關於DMRS的測量結果可以表示精確的波束品質資訊,因此,使用DMRS來更新候選BPL清單是所期望的。In order to maintain the performance of the serving BPL, the WTRU may maintain a candidate BPL list, whereby if the serving BPL quality is degraded, the WTRU may quickly find another BPL. Candidate BPL list updates can use frequent RS measurements. Since CSI-RS and SS blocks may not be available, DMRS associated with control channels or data control may be used. Since the DMRS is transmitted on a beam that can be used for subsequent data or control information, and the measurement results for the DMRS can represent accurate beam quality information, it is desirable to use the DMRS to update the candidate BPL list.

第6圖是用於統一BM的信號流程的範例600。TRP或gNB可以將掃描SS塊1-3發送到WTRU(602)。WTRU可以對所發現的SS塊執行測量(604),並且針對連接模式,WTRU可以在PUCCH上報告結果(606)。對處於空閒或無活動模式的WTRU來說,可以執行4步驟或2步驟的RACH程序,建立RRC連接,以及建立粗略的BPL(608)。TRP或gNB可以為覆蓋區域形成M個精細或窄CSI-RS波束(610)。新形成的CSI-RS1-4波束可被發送(612)到WTRU。TRP或gNB與WTRU可以通過波束管理P-2或P-3執行波束細化。TRP或gNB可以在其他候選波束上向WTRU 指示控制通道或資料通道的DMRS埠資訊(616)。TRP或gNB可以在多個波束上傳輸PDCCH或PDSCH(618)。WTRU可以使用所配置的埠資訊來對DMRS執行測量,獲取相應的波束品質資訊,以及更新候選BPL列表(620)。Figure 6 is an example 600 of a signal flow for unifying BM. The TRP or gNB may send Scan SS blocks 1-3 to the WTRU (602). The WTRU may perform measurements on the discovered SS blocks (604), and for the connected mode, the WTRU may report the results on the PUCCH (606). For a WTRU in idle or inactive mode, a 4-step or 2-step RACH procedure can be performed, an RRC connection is established, and a coarse BPL is established (608). The TRP or gNB may form M fine or narrow CSI-RS beams (610) for the coverage area. The newly formed CSI-RS1-4 beam can be transmitted (612) to the WTRU. The TRP or gNB and the WTRU may perform beam refinement through beam management P-2 or P-3. The TRP or gNB may indicate to the WTRU the DMRS information of the control channel or data channel on other candidate beams (616). The TRP or gNB may transmit the PDCCH or PDSCH over multiple beams (618). The WTRU may use the configured UI information to perform measurements on the DMRS, obtain corresponding beam quality information, and update the candidate BPL list (620).

在600中,如果服務BPL之阻擋被偵測到且不能從候選BPL列表中恢復(622)(例如因為突然的通道變化),那麼可以在已發現的SS塊上開始UE測量並且重複信號流流程(624)。並且,在偵測到波束故障時,可以使用SS塊信號來快速發現粗略的BPL。如果波束互易性適用,那麼可以使用SS塊來執行用於UL BM的波束發現處理。In 600, if the blocking of the serving BPL is detected and cannot be recovered (622) from the candidate BPL list (eg, due to a sudden channel change), UE measurements can be initiated on the discovered SS blocks and the signal flow flow repeated. (624). Also, when a beam failure is detected, the SS block signal can be used to quickly find the rough BPL. If beam reciprocity is applicable, the SS block can be used to perform beam discovery processing for the UL BM.

用於BM的多個信號的動態可用性或統一用法可以包括用於從來自不同RS的測量結果中發現或確定波束品質的配置。例如,RSRP可被用作多個RS的測量量,以便執行BM。針對不同信號的波束測量可以具有不同的特性。舉例來說,如果使用寬波束來傳輸SS塊以及使用窄波束來傳輸CSI-RS,那麼有可能會因為不同的波束成形增益而導致產生不同的波束RSRP、SS塊RSRP或CSI-RS RSRP的值。此外,WTRU可以在接收不同RS(例如用於SS塊的寬WTRU RX波束或用於CSI-RS的窄WTRU RX波束等等)的時候使用不同的空間濾波處理。The dynamic availability or uniform usage of multiple signals for the BM may include configurations for finding or determining beam quality from measurements from different RSs. For example, RSRP can be used as a measure of multiple RSs in order to perform BM. Beam measurements for different signals can have different characteristics. For example, if a wide beam is used to transmit SS blocks and a narrow beam is used to transmit CSI-RS, it is possible to generate different beam RSRP, SS block RSRP or CSI-RS RSRP values due to different beamforming gains. . In addition, the WTRU may use different spatial filtering processes when receiving different RSs (eg, wide WTRU RX beams for SS blocks or narrow WTRU RX beams for CSI-RS, etc.).

在清單中可以配置頻繁的候選BPL更新,以使列表保持為當前的。由於不同信號的不同頻率、SS塊和CSI-RS的不同週期性和配置、或是PDCCH和PDSCH的隨機使用等等,可以使用不同數量的採樣以及在相似或不同的信號上對候選BPL的品質取平均值、進行更新或是執行類似操作。這可被配置成避免候選BPL清單中的品質排序之波動。Frequent candidate BPL updates can be configured in the manifest to keep the list current. Different numbers of samples and quality of candidate BPLs on similar or different signals may be used due to different frequencies of different signals, different periodicities and configurations of SS blocks and CSI-RS, or random use of PDCCH and PDSCH, and the like. Take an average, update, or perform a similar operation. This can be configured to avoid fluctuations in the quality ranking in the candidate BPL list.

第7圖是在兩個窄波束的重疊覆蓋中行動的WTRU的範例700。在700中,在單個NR TRP或NR gNB配置中,WTRU可能處於多個波束、SS塊3-5以及CSI-RS 6-11/PDCCH 6-11的覆蓋以內。當WTRU位於靠近窄波束11的中間的位置A時,服務波束品質(例如高於某個臨界值的L1-RSRP)可能是足夠的,並且WTRU可被配置成跳過相鄰波束6-10的測量。Figure 7 is an example 700 of a WTRU acting in overlapping coverage of two narrow beams. In 700, in a single NR TRP or NR gNB configuration, the WTRU may be within coverage of multiple beams, SS blocks 3-5, and CSI-RS 6-11/PDCCH 6-11. When the WTRU is located at a location A near the middle of the narrow beam 11, a serving beam quality (eg, an L1-RSRP above a certain threshold) may be sufficient, and the WTRU may be configured to skip adjacent beams 6-10. measuring.

第8圖是波束級乒乓效應的範例800。WTRU可能會因為使用了多種類型的RS而遭遇到非期望的波束級乒乓效應。在第7圖中,當WTRU在窄波束10與11之間穿梭的時候有可能出現這種效應。在使用PDCCH或PDSCH傳輸DMRS時,基於時間t0的波束測量,WTRU的服務DL TX波束可以是第7圖中的窄波束11。從時間t1到時間t2,WTRU可以從位置A行動到B而進入窄波束10和11的重疊覆蓋,並且服務波束11的品質有可能會降至某個臨界值以下。WTRU可以被事件(例如若服務波束品質<Th1)觸發以啟動候選DL TX波束更新程序,並且開始測量附近的RS(例如SS塊),由此在服務波束品質持續降級的情況下搜尋潛在的波束。Figure 8 is an example 800 of a beam level ping-pong effect. The WTRU may experience undesired beam-level ping-pong effects due to the use of multiple types of RSs. In Figure 7, this effect may occur when the WTRU shuttles between narrow beams 10 and 11. When transmitting DMRS using PDCCH or PDSCH, the serving DL TX beam of the WTRU may be the narrow beam 11 in FIG. 7 based on beam measurement at time t0. From time t1 to time t2, the WTRU may move from location A to B to enter overlapping coverage of narrow beams 10 and 11, and the quality of service beam 11 may fall below a certain threshold. The WTRU may be triggered by an event (eg, if service beam quality <Th1) to initiate a candidate DL TX beam update procedure and begin measuring nearby RSs (eg, SS blocks), thereby searching for potential beams if service beam quality continues to degrade .

在基於SS塊的測量之後,WTRU可以將結果發送到NR TRP或gNb,其中該NR TRP或gNb在若干個精細或窄波束上觸發和發送非週期性CSI-RS。例如,如果WTRU處於沒有在波束11上進行傳輸之覆蓋內,那麼由於所報告的基於SS塊的測量沒有觸發CSI-RS傳輸,因此可以在窄波束10上傳輸CSI-RS。由於當前服務波束11的品質(例如L1-RSRP)有可能源於先前的DMRS信號而無當前之更新,因此,波束10會具有來自新形成的CSI-RS信號的更高的L1-RSRP測量值。此外,由於波束10成為了新的DL TX服務波束,因此,在WTRU與TRP之間可以建立新的BPL。從波束11到波束10的波束切換有可能會因為基於不同RS、DMRS或CSI-RS等等的品質變化而發生。After the SS block based measurement, the WTRU may send the result to the NR TRP or gNb, which triggers and transmits the aperiodic CSI-RS on several fine or narrow beams. For example, if the WTRU is in coverage that is not transmitting on beam 11, the CSI-RS may be transmitted on narrow beam 10 since the reported SS block based measurements did not trigger CSI-RS transmission. Since the quality of the current serving beam 11 (e.g., L1-RSRP) may be derived from the previous DMRS signal without the current update, the beam 10 will have a higher L1-RSRP measurement from the newly formed CSI-RS signal. . Furthermore, since beam 10 becomes a new DL TX service beam, a new BPL can be established between the WTRU and the TRP. Beam switching from beam 11 to beam 10 is likely to occur due to quality changes based on different RS, DMRS or CSI-RS, and the like.

如果WTRU在波束10的中間之外,並且測量到的波束10的品質不足或者高於臨界值,那麼WTRU可以通過測量SS塊等等來發現或追蹤相鄰波束。TRP或gNB可以基於新的或最近報告的SS塊測量來配置一組有波束11的CSI-RS波束。WTRU可以確定所測量的波束11的L1-RSRP值具有更高的值,並且切換回使用波束11作為新的DL TX波束。If the WTRU is outside the middle of beam 10 and the measured quality of beam 10 is insufficient or above a threshold, the WTRU may discover or track adjacent beams by measuring SS blocks or the like. The TRP or gNB can configure a set of CSI-RS beams with beams 11 based on new or recently reported SS block measurements. The WTRU may determine that the measured L1-RSRP value of beam 11 has a higher value and switch back to using beam 11 as a new DL TX beam.

波束10與波束11之間的非期望的切換可以指示波束級乒乓切換。波束級乒乓切換會因為以來自不同信號的測量為基礎的不同或相同波束之間的品質比較而發生,其中如果是通過傳輸不同的RS而被測量或確定的,那麼該絕對品質值有可能是不同的。波束級乒乓效應可以通過預先定義、指定或配置一組測量設定來緩解。測量配置設定可以包括分別針對測量和報告的至少一RS、一或多個觸發條件或規則(例如統一的L1(L1-Unified)或RS-RSRP低於臨界值)、統一的公式或波束報告格式等等。還可以配置相關的參數、臨界值或偏移值等等。胞元的測量設定的最大數量可以是動態或預先配置的。測量設定可以是WTRU特定的,基於WTRU群組或是胞元特定的等等,由此減少負擔或網路傳訊。Undesired switching between beam 10 and beam 11 may indicate beam level ping-pong switching. Beam-level ping-pong switching occurs because of quality comparisons between different or identical beams based on measurements from different signals, where the absolute quality value may be if it is measured or determined by transmitting a different RS different. Beam-level ping-pong effects can be mitigated by pre-defining, specifying, or configuring a set of measurement settings. The measurement configuration settings may include at least one RS, one or more trigger conditions or rules for measurement and reporting, respectively (eg, unified L1 (L1-Unified) or RS-RSRP below a threshold), unified formula, or beam report format and many more. You can also configure related parameters, thresholds or offset values, and more. The maximum number of measurement settings for a cell can be dynamic or pre-configured. The measurement settings may be WTRU-specific, based on WTRU group or cell-specific, etc., thereby reducing burden or network traffic.

WTRU群組可被設定或配置成具有與波束級乒乓效應相關聯的相似屬性的多個WTRU。例如,處於相同胞元內部而具有相似或不同QoS需求的多個WTRU可以形成一WTRU群組,該WTRU群組可被用於基於WTRU群組的配置。對於需要較高能量效率的WTRU群組來說,由於圍繞該WTRU群組的波束品質可能穩定,因此,測量週期有可能相對較長。對於具有隨機化或更高的行動性/旋轉的WTRU群組來說,可配置測量之更高頻率或密度,以用於增強或精細的波束追蹤。A WTRU group may be set or configured as a plurality of WTRUs having similar attributes associated with beam level ping-pong effects. For example, multiple WTRUs that are within the same cell but have similar or different QoS requirements may form a WTRU group that may be used for WTRU group based configuration. For a group of WTRUs that require higher energy efficiency, the measurement period may be relatively long since the beam quality around the WTRU group may be stable. For groups of WTRUs with randomization or higher mobility/rotation, the measured higher frequencies or densities can be configured for enhanced or fine beam tracking.

WTRU可以一或多個測量配置集合被配置,並且每一集合都可以通過預先定義、指定或配置的測量事件來觸發。例如,WTRU可以具有同時以多樣化的QoS需求(例如延遲、輸送量或可靠性等等)運行的多個應用。WTRU可以在不同的狀態(例如節能狀態、高性能狀態或高速狀態等等)之間轉換,而每一者具有不同的QoS需求。於是,WTRU可以針對與不同的狀態相關聯的不同QoS需求的多個配置集合而被配置。A WTRU may be configured with one or more measurement configuration sets, and each set may be triggered by a pre-defined, specified, or configured measurement event. For example, a WTRU may have multiple applications that operate simultaneously with diverse QoS requirements (eg, latency, throughput, or reliability, etc.). The WTRU may switch between different states (eg, a power saving state, a high performance state, or a high speed state, etc.), each having a different QoS requirement. Thus, the WTRU may be configured for multiple configuration sets of different QoS requirements associated with different states.

通過配置一或多個特定測量設定,WTRU可以基於一種RS或多個RS來執行波束測量和報告(有不同的RS之可比較的波束品質和靈活的可用性)。測量配置可以通過較高層傳訊、RRC傳訊、較低層傳訊、媒體存取控制-控制元素(MAC-CE)或DCI等等來實現。By configuring one or more specific measurement settings, the WTRU may perform beam measurements and reporting based on one RS or multiple RSs (with comparable beam quality and flexible availability of different RSs). The measurement configuration can be implemented by higher layer communication, RRC communication, lower layer communication, media access control-control element (MAC-CE) or DCI, and the like.

在表2和表3中給出了可以降低波束級乒乓效應的波束測量配置的範例。作為範例,當服務波束的品質滿足某些條件時,可以跳過TRP內部或gNB內部的波束測量,由此節省能量或者避免可能導致波束級乒乓效應的非期望的波束切換。此外,在期望用於RS類型的更多採樣時,短期通道波動可能導致所測量的一或多個波束的品質之變化,並且可以使用GracePeriodForMeasurement(測量寬限期)。此外,波束級乒乓效應還可以通過設定臨界值來減輕,以使目標波束或鏈路的訊噪比(SNR)或能量與服務波束或鏈路相比高出X dB。較高的X會降低乒乓效應(有波束切換之較高潛時或延遲之代價)。 表2 表3An example of a beam measurement configuration that can reduce the beam level ping-pong effect is given in Tables 2 and 3. As an example, when the quality of the serving beam satisfies certain conditions, beam measurements within the TRP or within the gNB may be skipped, thereby conserving energy or avoiding undesired beam switching that may result in beam level ping-pong effects. Furthermore, when more samples for the RS type are desired, short-term channel fluctuations may result in changes in the quality of the measured one or more beams, and GracePeriodForMeasurement may be used. In addition, the beam-level ping-pong effect can be mitigated by setting a threshold such that the signal-to-noise ratio (SNR) or energy of the target beam or link is X dB higher than the service beam or link. A higher X will reduce the ping-pong effect (the cost of higher latency or delay for beam switching). Table 2 table 3

如表2所示,在這裡可以配置兩個測量集合,其中每一測量集合都可以包括集合ID(識別符或指示符)、觸發事件或測量集合主體等等。表3中的測量集合主體可以指定所配置的WTRU如何執行波束測量或是如何報告測量資訊。WTRU可能測量的信號類型可以由一二進位位元指示。例如,1(或0)可以指示ON或被使用,0(或1)可以指示OFF或未被使用。在表3中,1100可以指示使用了RS、CSI-RS或SS塊,其可以用位元1來指示。至少一RS可以用ON狀態指示,由此確保BM被正確執行。當一RS被啟用或被指示成具有ON(例如僅僅SS塊或僅僅CSI-RS)時,WTRU可被配置成基於這個RS來執行L1-RSRP波束測量和報告。As shown in Table 2, two sets of measurements can be configured here, where each set of measurements can include a set ID (identifier or indicator), a trigger event or a measure set body, and the like. The measurement set body in Table 3 can specify how the configured WTRU performs beam measurements or how to report measurement information. The type of signal that the WTRU may measure may be indicated by a binary bit. For example, 1 (or 0) may indicate ON or be used, and 0 (or 1) may indicate OFF or not used. In Table 3, 1100 may indicate that an RS, CSI-RS, or SS block is used, which may be indicated by bit 1. At least one RS can be indicated with an ON state, thereby ensuring that the BM is correctly executed. When an RS is enabled or indicated as having ON (eg, only SS blocks or only CSI-RS), the WTRU may be configured to perform L1-RSRP beam measurements and reporting based on this RS.

二進位位元可以用於指示由WTRU測量的測量量。例如,1(或0)可以指示ON或是被使用,0(或1)可以指示OFF或是未使用。在表3中,位元映射10可以指示使用了RSRP值,該RSRP值可以用位元1來指示。The binary bit can be used to indicate the amount of measurement measured by the WTRU. For example, 1 (or 0) can indicate ON or be used, and 0 (or 1) can indicate OFF or not used. In Table 3, the bit map 10 may indicate that an RSRP value is used, which may be indicated by bit 1.

層1濾波可被配置成使用測量平均運算。該平均運算可以是WTRU特定的,並且可以以性能需求為基礎,例如針對不同情形(例如TRP內部、TRP之間或頻率內部等等)的能量或延遲。不同測量採樣之間的大幅波動可以通過使用時域平均運算來減小,並且一些可配置的係數可以是採樣頻率(例如每ms一採樣或平均運算之前的採樣數量等等)。Layer 1 filtering can be configured to use a measurement averaging operation. The averaging operation may be WTRU-specific and may be based on performance requirements, such as energy or delay for different situations (eg, internal to TRP, between TRP, or internal to frequency, etc.). Large fluctuations between different measurement samples can be reduced by using time domain averaging operations, and some configurable coefficients can be sampling frequencies (eg, one sample per ms or the number of samples before the averaging operation, etc.).

由於延遲和能耗,WTRU可被配置成針對不同的情形(例如TRP內部、TRP之間或頻率內部等等)而測量有限數量的波束,以及報告關於有限數量的波束的測量結果。例如,有N個最高的品質的波束可以被報告,由此最小化傳訊負擔。針對將是有效的、被使用和過期的測量結果可配置時間的持續時間。較高的持續時間將會更為穩定或可靠,但是無法獲得快速的通道或波束品質變化。Due to delays and power consumption, the WTRU may be configured to measure a limited number of beams for different situations (eg, within TRP, between TRP or within frequency, etc.), and report measurements on a limited number of beams. For example, beams with the N highest quality can be reported, thereby minimizing the burden of messaging. The duration of the configurable time for measurements that will be valid, used, and expired. Higher durations will be more stable or reliable, but will not result in fast channel or beam quality variations.

在配置了多種類型的RS時,相同的波束有可能會因為源於不同RS的不同波束特性而具有不同的代表值。例如,時間資源、頻率資源、所使用的符號的數量或不同的子帶等等可被以不同的方式用於RS。在具有不同特性的情況下,如果在報告之前需要單個波束品質值,那麼可以配置跨越了不同的被測量RS的波束品質資訊組合。When multiple types of RSs are configured, the same beam may have different representative values due to different beam characteristics originating from different RSs. For example, time resources, frequency resources, the number of symbols used, or different sub-bands, etc., can be used in different ways for the RS. In the case of different characteristics, if a single beam quality value is required before reporting, a beam quality information combination spanning different measured RSs can be configured.

再次參考表3,統一的波束報告格式可以使用加權行動平均運算作為統一的公式,並且可以配置用於不同的RS的加權係數。在配置統一報告時,參數β1、β2、β3和β4可以是用於不同RS的不同的可配置加權係數。在配置獨立報告時,參數μ1可以是用於不同的RS的可配置加權係數。如果來自不同RS的波束測量結果可用,並且所要產生的是統一的值,那麼可以使用可配置的統一公式來將多個測量結果合併成單個值。如果不產生統一值,那麼可以在滿足相關聯的報告觸發的時候產生和報告來自不同RS的關於波束品質的獨立報告或測量結果。Referring again to Table 3, the unified beam reporting format can use a weighted action averaging operation as a uniform formula and can be configured for weighting coefficients for different RSs. When configuring a unified report, the parameters β1, β2, β3, and β4 may be different configurable weighting coefficients for different RSs. When configuring an independent report, the parameter μ1 can be a configurable weighting factor for a different RS. If beam measurements from different RSs are available and a uniform value is to be produced, then a configurable unified formula can be used to combine multiple measurements into a single value. If a uniform value is not generated, independent reports or measurements on beam quality from different RSs can be generated and reported while the associated report trigger is met.

統一公式可針對WTRU被調整並被配置U,以用於不同的波束測量報告。參考表3中的統一波束報告格式中的統一公式,在將一RS配置給WTRU以進行波束測量報告(例如僅SS塊或僅CSI-RS)且布林值為真時,一加權係數β1可以被配置為正值和非零值,而其他加權係數β2、β3或β4等等則可以被配置成零。如果布林值為假,那麼可以執行相似的程序。The unified formula can be adjusted for the WTRU and configured for U for different beam measurement reports. Referring to the unified formula in the unified beam reporting format in Table 3, when an RS is configured to the WTRU for beam measurement reporting (eg, only SS block or CSI-RS only) and the Boolean value is true, a weighting coefficient β1 may It is configured as a positive value and a non-zero value, while other weighting coefficients β2, β3 or β4, etc. can be configured to be zero. If the Boolean value is false, then a similar procedure can be performed.

在將多個RS配置給WTRU以進行波束測量和報告時,這時可以同時使用聯合波束測量報告和獨立波束測量報告。對於聯合波束測量報告來說,可以使用假布林值以及具有非零值的不同加權係數β1、β2或β3等等來從關於不同RS(例如SS塊或CSI-RS)的波束測量中產生統一值。對於獨立的波束測量報告來說,該範例中的布林值可被配置成假,由此,來自不同RS的測量結果是以獨立而不是聯合的方式報告的。When multiple RSs are configured to the WTRU for beam measurement and reporting, the combined beam measurement report and the independent beam measurement report can be used simultaneously. For joint beam measurement reports, a pseudo-bullet value and different weighting coefficients β1, β2 or β3 with non-zero values, etc., can be used to generate uniformity from beam measurements on different RSs (eg, SS blocks or CSI-RS). value. For independent beam measurement reports, the Boolean values in this example can be configured to be false, whereby measurements from different RSs are reported in an independent rather than a joint manner.

配置TRP或gNB,以使得在潛在的波束上傳輸的RS在可配置的時間視窗(例如具有SS叢發集合804的SS叢發時段802)中被測量至少一次。再次參考第8圖,在時間t4,即使波束11和波束10的品質是相當的,在沒有波束11之測量時機的情況下,WTRU的當前服務DL TX波束也會從波束11改變成10。這種切換有可能會在WTRU處於波束10與11的重疊覆蓋區域中間的時候發生。The TRP or gNB is configured such that the RS transmitted over the potential beam is measured at least once in a configurable time window (eg, the SS burst period 802 with the SS burst set 804). Referring again to Fig. 8, at time t4, even if the quality of beam 11 and beam 10 are comparable, the WTRU's current serving DL TX beam will change from beam 11 to 10 without the measurement opportunity of beam 11. This switching may occur when the WTRU is in the middle of the overlapping coverage areas of beams 10 and 11.

第9圖是用於減小波束級乒乓效應的RS的範例900。在範例900中,如果波束11-14上的CSI-RS的補充傳輸(902)可用以進行測量,那麼WTRU可以確定波束11和波束10的品質是相當的,由此可以避免從波束11切換到波束10之非期望波束切換。CSI-RS的補充傳輸可以是由網路、TRP或gNB發起的。補充傳輸也可以顯性或隱性地由WTRU發起或請求。Figure 9 is an example 900 of an RS for reducing beam level ping-pong effects. In example 900, if supplemental transmission (902) of CSI-RS on beams 11-14 is available for measurement, the WTRU may determine that the quality of beam 11 and beam 10 is comparable, thereby avoiding switching from beam 11 to Undesired beam switching of beam 10. The supplemental transmission of the CSI-RS may be initiated by the network, TRP or gNB. Supplemental transmissions may also be initiated or requested by the WTRU either explicitly or implicitly.

TRP或gNB可以將WTRU的當前服務DL TX波束添加到新形成的CSI-RS波束中,以使WTRU對服務波束或相鄰波束執行新的測量。TRP或gNB還可以是在空間上與服務波束共位的其他波束之成因,例如第9圖中的波束11-14上的補充傳輸。The TRP or gNB may add the WTRU's current serving DL TX beam to the newly formed CSI-RS beam to cause the WTRU to perform new measurements on the serving beam or adjacent beams. The TRP or gNB may also be the cause of other beams that are spatially co-located with the service beam, such as supplemental transmissions on beams 11-14 in Figure 9.

在隱性的發起或請求中,在基於最後一報告的SS塊的測量結果中,WTRU可以包含服務波束的最後一測量。在顯性的發起或請求中,WTRU可以在特定的波束、服務波束或QCL波束等等上發送關於RS的傳輸請求。該請求可以是分立訊息、PUCCH訊息、MAC-CE訊息或是在其他訊息上捎帶的若干位元資訊。舉例來說,跟隨著基於SS塊的測量報告的欄位可被使用。顯性的發起或請求可以在測量報告內部被立即、接著測量報告、或延遲直到期待波束上的RS沒有到達才被送出。In a recessive initiation or request, the WTRU may include the last measurement of the serving beam in the measurement based on the last reported SS block. In a dominant initiation or request, the WTRU may send a transmission request for the RS on a particular beam, service beam or QCL beam or the like. The request can be a discrete message, a PUCCH message, a MAC-CE message, or a number of bit information piggybacked on other messages. For example, a field following the SS block based measurement report can be used. An explicit initiation or request can be sent immediately after the measurement report, followed by a measurement report, or a delay until the RS on the expected beam does not arrive.

不同的RS可以具有不同的特性,例如波束寬度、週期性、可用測量採樣數量或是用於全波束掃描的特別測量持續時間。由於不同的波束成形增益,不同的測量量或品質參數可被用於特徵化波束。在將單個值(例如L1-RSRP)配置成表示波束品質時,如果來自CSI-RS的測量採樣比來自SS塊的多,那麼基於SS塊的測量的單個值可能會低於基於CSI-RS的測量之單個值。Different RSs may have different characteristics, such as beamwidth, periodicity, number of available measurement samples, or special measurement duration for full beam scanning. Different measurements or quality parameters can be used to characterize the beam due to different beamforming gains. When a single value (eg L1-RSRP) is configured to represent beam quality, if the measurement samples from the CSI-RS are more than from the SS block, the single value of the SS block based measurement may be lower than the CSI-RS based A single value measured.

兩個或更多信號的測量量或品質有可能會因為無線通道變化而隨時間改變,或者會從在不同時間實例測量開始隨時間改變。在一配置中,通過執行個別的濾波或合併處理(例如在時間上取平均值),可以在WTRU向TRP或gNB報告或回饋之前合併和聯合來自不同RS的測量得到的波束品質資訊。該單獨的濾波或合併處理可以使用預先配置的映射表(例如表4)。 表4The measured quantity or quality of two or more signals may change over time due to changes in the wireless channel, or may change over time from measurements at different time instances. In one configuration, by performing individual filtering or combining processes (e.g., averaging over time), the measured beam quality information from different RSs may be combined and combined before the WTRU reports or feeds back to the TRP or gNB. This separate filtering or merging process can use a pre-configured mapping table (eg, Table 4). Table 4

從不同RS測得的波束品質資訊可被直接報告給TRP或gNB,以便合併或整併測量結果。基於上述合併或整併,TRP或gNB可以產生或調適DL TX波束。表5是關於TRP或gNB執行的合併或整併操作的一範例。 表5Beam quality information measured from different RSs can be reported directly to the TRP or gNB for merging or merging measurements. Based on the above combining or merging, the TRP or gNB can generate or adapt the DL TX beam. Table 5 is an example of a merge or merge operation performed with respect to TRP or gNB. table 5

表5中的功率偏移可被應用於波束故障偵測或波束測量和報告。值V1、V2、V3、α1、α2和α3可以是WTRU特定或可配置的。舉個例子,對於波束故障偵測來說,功率偏移可以是DL RS、CSI-RS,SS塊等與PDCCH的DMRS之間的傳輸功率偏移。The power offsets in Table 5 can be applied to beam fault detection or beam measurement and reporting. The values V1, V2, V3, α1, α2, and α3 may be WTRU-specific or configurable. For example, for beam fault detection, the power offset may be a transmission power offset between a DL RS, a CSI-RS, an SS block, and the like, and a DMRS of the PDCCH.

在這裡給出的範例中,L1-RSRP或信號雜訊干擾比(SINR)可被用於波束故障偵測。此類偵測可以基於假設的控制通道性能或假設的PDCCH塊差錯率(BLER)等等。如果基於DL RS、CSI-RS或SS塊等等的測量來確定波束故障,由此將基於DL RS的測量轉換成了假設的控制通道性能,那麼WTRU可以計算所使用的DL RS與PDCCH的DMRS之間的傳輸功率偏移。當使用品質測量度量L1-RSRP或假設的PDCCH BLER時,這時可以使用傳輸功率偏移。In the example given here, L1-RSRP or Signal-to-Noise Interference Ratio (SINR) can be used for beam fault detection. Such detection may be based on assumed control channel performance or assumed PDCCH block error rate (BLER) and the like. If the beam fault is determined based on measurements of DL RS, CSI-RS or SS block, etc., thereby converting the DL RS based measurements into hypothetical control channel performance, the WTRU may calculate the DL RS used for the DMRS and the PDCCH. The transmission power offset between. When the quality measurement metric L1-RSRP or the assumed PDCCH BLER is used, the transmission power offset can be used at this time.

如果一或多個服務波束中的一部分或所有這些波束全都發生故障,那麼可以確定波束故障。如果用於波束故障偵測的品質測量度量(例如L1-RSRP或假設PDCCH BLER等等)超出了預先指定或是通過較高層傳訊配置的臨界值,那麼可以將其記為一波束故障實例。如果連續偵測到的波束故障實例的數量超出了所配置的最大數量,那麼可以發送波束恢復請求。A beam failure can be determined if some or all of one or more of the service beams fail. If the quality measurement metric for beam failure detection (eg, L1-RSRP or hypothetical PDCCH BLER, etc.) exceeds a threshold specified in advance or configured through higher layer communication, it can be recorded as a beam failure instance. A beam recovery request can be sent if the number of continuously detected beam failure instances exceeds the configured maximum number.

如果偵測到波束故障,那麼可以識別和報告一或多個候選波束以及波束故障恢復請求傳輸。為了識別更高品質的候選波束,可以以高於臨界值的候選波束的品質測量度量為基礎來識別一或多個候選波束。候選波束的品質測量度量可以是L1-RSRP、SINR或假設的PDCCH BLER等等。If a beam failure is detected, one or more candidate beams and beam failure recovery request transmissions can be identified and reported. To identify higher quality candidate beams, one or more candidate beams may be identified based on quality measurement metrics of candidate beams above a threshold. The quality measurement metric of the candidate beam may be L1-RSRP, SINR or hypothetical PDCCH BLER, and the like.

在考慮DL RS、CSI-RS、SS塊或PDCCH的DMRS等等之間的相似或不同的傳輸功率偏移時,可以為SS塊、SSB和CSI-RS引入相似或不同的臨界值。例如,網路可以為與CSI-RS或SS塊相對應的候選波束識別配置相似或不同的臨界值。網路可以將所選擇的候選波束的品質測量度量配置成比波束故障臨界值高出一可配置的偏移和/或與一或多個服務波束相比要勝出一可配置的偏移。在這裡給出的範例中,針對候選波束識別以及觸發波束故障恢復請求,WTRU可能需要知道所用的DL RS(例如CSI-RS或SS塊)與預先指定成被較高層傳訊、RRC訊息或MAC-CE等等配置的固定值的PDCCH的DMRS之間的傳輸功率偏移。舉例來說,如果配置了傳輸功率偏移,則可以從一DL RS(SS塊)的臨界值中推導出另一DL RS(CSI-RS)的臨界值。這可以通過縮放(scaling)運算或類似的方法來執行。Similar or different threshold values may be introduced for SS blocks, SSBs, and CSI-RSs when considering similar or different transmission power offsets between DL RSs, CSI-RSs, SS blocks, or DMRSs of PDCCHs, and the like. For example, the network may configure similar or different thresholds for candidate beam identification corresponding to CSI-RS or SS blocks. The network may configure the quality measurement metric of the selected candidate beam to be a configurable offset above the beam failure threshold and/or to win a configurable offset from one or more service beams. In the example presented here, for candidate beam identification and trigger beam failure recovery requests, the WTRU may need to know the DL RS (eg, CSI-RS or SS block) used and pre-designated to be higher layered, RRC message or MAC- The transmission power offset between the DMRS of the fixed value PDCCH configured by the CE or the like. For example, if a transmission power offset is configured, a threshold value of another DL RS (CSI-RS) can be derived from a threshold of one DL RS (SS block). This can be performed by a scaling operation or the like.

用於多個TRP的統一BM可被配置以避免TRP或gNB乒乓效應。在多個TRP配置中,波束級乒乓效應有可能會成為TRP級或胞元級乒乓效應。TRP級或胞元級波束切換可能導致更多的負擔、延遲、能耗或資料中斷時間等等。這有可能歸因於胞元切換期間的資料轉發、路徑切換或WTRU上下文檢索等等。A unified BM for multiple TRPs can be configured to avoid TRP or gNB ping-pong effects. In multiple TRP configurations, the beam-level ping-pong effect may become a TRP-level or cell-level ping-pong effect. TRP-level or cell-level beam switching can result in more burden, delay, power or data interruption time, and so on. This may be due to data forwarding during cell switching, path switching or WTRU context retrieval, and the like.

第10圖是由於將多種類型的RS用於BM而導致產生的TRP乒乓效應的範例1000。在1000中,第7圖中的波束11和波束10可以是從不同的TRP 1-2或gNB 1-2作為不同(1002)或相似(1004)類型的波束傳輸。為了避免源於多個TRP部署的TRP或gNB級乒乓問題,服務gNB可以為WTRU配置一組參數或臨界值,以便使用差分波束測量配置。差分測量配置可以顯示出因為波束切換的高成本而導致的關於服務TRP或gNB的偏向性。例如,為了報告來自相鄰TRP或gNB的波束的波束品質資訊,在配置中,與在擴展時間之時段期間來自服務TRP的波束相比,波束的測量量的值可能必須在另一更高的臨界值之上。Figure 10 is an example 1000 of the TRP ping-pong effect resulting from the use of multiple types of RSs for BM. In 1000, beam 11 and beam 10 in Figure 7 may be transmitted from different TRPs 1-2 or gNBs 1-2 as different (1002) or similar (1004) types of beams. To avoid TRP or gNB level ping-pong problems stemming from multiple TRP deployments, the serving gNB can configure a set of parameters or thresholds for the WTRU to use a differential beam measurement configuration. The differential measurement configuration can show the bias towards service TRP or gNB due to the high cost of beam switching. For example, to report beam quality information for beams from neighboring TRPs or gNBs, the value of the measured amount of beam may have to be higher in the configuration than the beam from the serving TRP during the extended time period. Above the critical value.

每一SS塊都可以具有可配置的特徵,例如在特定的時間、頻率、子帶或符號等等中傳輸。每一SS塊還可以具有可配置的特徵,例如週期性、波束掃描圖案、每一SS塊叢發集合內部的全掃描或部分掃描、波束掃描順序、與RACH資源的關聯、與特定實體隨機存取通道(PRACH)前言的關聯。CSI-RS可以具有可配置的特徵,例如週期性、顯性或隱性觸發信號、CSI-RS資源配置、CSI-RS資源元素(RE)圖案、CSI-RS天線埠的數量、CSI-RS資源集合組合、CSI-RS資源數量、或是與每一CSI-RS資源相關聯的時域重多個量等等。Each SS block can have configurable characteristics, such as transmissions in a particular time, frequency, subband or symbol, and the like. Each SS block may also have configurable features, such as periodicity, beam scanning pattern, full or partial scanning within each SS block burst set, beam scanning order, association with RACH resources, and random storage with specific entities. Take the association of the channel (PRACH) preamble. The CSI-RS may have configurable features such as periodic, dominant or implicit trigger signals, CSI-RS resource configuration, CSI-RS resource element (RE) pattern, number of CSI-RS antennas, CSI-RS resources The set combination, the number of CSI-RS resources, or the time domain weight associated with each CSI-RS resource, and the like.

SS塊或CSI-RS可以變成是動態可用的,由此,在WTRU執行波束測量的特時序間實例,CSI-RS或SS塊在相同時間將會是不可用的。此外,CSI-RS或SS塊可被TRP或gNB用於和配置成用於統一波束測量、統一波束報告(UBR)、波束故障偵測或新候選波束識別等等。週期性NR-PUCCH回饋的類型或是用於非週期性報告的時間或頻率資源等等同樣可以由TRP或gNB來配置。The SS block or CSI-RS may become dynamically available, whereby the CSI-RS or SS block will not be available at the same time in the inter-timing instance where the WTRU performs beam measurements. In addition, CSI-RS or SS blocks can be used and configured by TRP or gNB for unified beam measurement, unified beam reporting (UBR), beam fault detection or new candidate beam identification, and the like. The type of periodic NR-PUCCH feedback or time or frequency resources for aperiodic reporting, etc., can also be configured by TRP or gNB.

專用PRACH資源可以被配置給SS塊或CSI-RS資源。在配置了多個SS塊時,一或多個SS塊可以與相同的上鏈資源或PRACH資源等等相關聯。舉例來說,一或多個專用通用PRACH資源可被保留並被配置給WTRU。多個SS塊可以與相同或不同的上鏈資源(例如PRACH資源)相關聯。為了執行強健的傳輸,當波束因為阻擋或WTRU旋轉等原因不可用時,這時可以使用多個波束來傳輸控制通道。如果網路、gNB或TRP等等通過與多個SS塊相關聯的上鏈資源來從WTRU接收上鏈傳輸,那麼網路可以依照WTRU能力或網路能力而通過同時在所有相關聯的SS塊上執行傳輸或者通過TX波束掃描來做出回應。網路可以請求對來自WTRU的SS塊進行更進一步的波束測量和報告,以使網路可以選擇所有的相關SS塊或是其一子集,以便用於接下來或後續的傳輸。The dedicated PRACH resources can be configured to SS blocks or CSI-RS resources. When multiple SS blocks are configured, one or more SS blocks may be associated with the same uplink resource or PRACH resource or the like. For example, one or more dedicated generic PRACH resources may be reserved and configured for the WTRU. Multiple SS blocks may be associated with the same or different uplink resources (eg, PRACH resources). In order to perform robust transmission, when the beam is not available due to blocking or WTRU rotation, etc., multiple beams may be used to transmit the control channel. If the network, gNB, or TRP, etc. receive uplink transmissions from the WTRU through uplink resources associated with multiple SS blocks, the network may pass all of the associated SS blocks simultaneously in accordance with WTRU capabilities or network capabilities. The transmission is performed on or transmitted by the TX beam scan. The network may request further beam measurements and reporting of SS blocks from the WTRU so that the network may select all of the associated SS blocks or a subset thereof for use in subsequent or subsequent transmissions.

對於BM來說,CSI-RS和SS塊可以是互補,因為SS塊可以是週期性可用的,並且可以用於減少配置WTRU特定CSI-RS的負擔。依照針對SS塊的子集的波束測量是否足以讓WTRU執行波束發現、細化或追蹤處理等等,WTRU可被配置成具有所有的SS塊資源或波束或是SS塊資源或波束子集。For BM, the CSI-RS and SS blocks may be complementary, as the SS blocks may be periodically available and may be used to reduce the burden of configuring the WTRU-specific CSI-RS. Depending on whether beam measurements for a subset of SS blocks are sufficient for the WTRU to perform beam discovery, refinement or tracking processing, etc., the WTRU may be configured to have all SS block resources or beams or SS block resources or beam subsets.

SS塊和CSI-RS可以通過相同的TX波束來傳輸。在通過不同TX波束傳輸SS塊和CSI-RS的情形中,每一信號可以作為每一波束的基線RS來使用。在將一RS、SS塊或CSI-RS等等配置給WTRU以進行波束測量和報告時,所配置的RS將會預設成為基線參考。如果將多個RS配置給WTRU,但是由網路來配置獨立波束測量報告,那麼每一RS將會分別成為基線信號,並且WTRU可以獨立地對所配置的每一RS執行波束測量和報告。The SS block and the CSI-RS can be transmitted through the same TX beam. In the case of transmitting SS blocks and CSI-RSs through different TX beams, each signal can be used as a baseline RS for each beam. When an RS, SS block or CSI-RS or the like is configured to the WTRU for beam measurement and reporting, the configured RS will be preset as a baseline reference. If multiple RSs are configured to the WTRU, but independent beam measurement reports are configured by the network, then each RS will be a baseline signal, respectively, and the WTRU can perform beam measurements and reporting independently for each configured RS.

由於CSI-RS是WTRU特定的,並且是可以依照通道和行動性狀況或頻寬等等為每一WTRU靈活配置的,因此可以將CSI-RS用作統一BM的基線RS。在本文給出的範例中,CSI資源可以在多個CSI-RS埠上傳輸。通過靈活的觸發條件,可以以週期性、非週期性或是半永久性的方式來傳輸CSI-RS。Since the CSI-RS is WTRU-specific and can be flexibly configured for each WTRU in accordance with channel and mobility conditions or bandwidth, etc., the CSI-RS can be used as the baseline RS for the unified BM. In the example given herein, CSI resources can be transmitted on multiple CSI-RSs. The CSI-RS can be transmitted in a periodic, aperiodic or semi-permanent manner through flexible trigger conditions.

如果將SS塊和CSI-RS都用於BM,那麼WTRU可被配置成比較針對相應波束的CSI-RS與SS塊資源之間的測量量。如果CSI-RS和SS塊具有不同特性,那麼即使針對在相同時間實例測量的相同波束,測量得到的RSRP也有可能是不同的。作為回應,在WTRU比較、選擇或是向TRP或gNB報告RSRP以執行BM時,WTRU可以使用被調整至基線RS RSRP的SS塊RSRP或是具有某個偏移值的CSI-RS。If both the SS block and the CSI-RS are used for the BM, the WTRU may be configured to compare the measured amount between the CSI-RS and the SS block resource for the respective beam. If the CSI-RS and the SS block have different characteristics, the measured RSRP may be different even for the same beam measured at the same time instance. In response, the WTRU may use an SS block RSRP adjusted to a baseline RS RSRP or a CSI-RS with a certain offset value when the WTRU compares, selects, or reports the RSRP to the TRP or gNB to perform the BM.

如果下鏈RS的傳輸功率是固定的,那麼CSI-RS與SS塊之間的相對傳輸功率偏移可以由TRP或gNB通過專用傳訊(例如SI傳輸或RRC重配置)配置給WTRU。這可以在WTRU進入連接模式的時候或是在從以不同方式配置WTRU的另一胞元或TRP交接的期間中被執行。如果為了胞元間干擾協調或靈活的胞元覆蓋而改變下鏈RS的傳輸功率,那麼WTRU可能會需要不同SS塊的功率值或是不同SS塊與不同CSI-RS波束之間的功率偏移。WTRU還有可能需要不同SS塊的功率值,或是不同SS塊集合(如果相同SS塊集合內部的所有SS塊波束的傳輸功率相同)與不同的CSI-RS波束之間的功率偏移。在配置中,TRP或gNB不會以不同的傳輸功率傳輸CSI-RS資源內部的不同CSI-RS埠,且取而代之的是,會以不同的傳輸功率傳輸不同的CSI-RS資源。If the transmission power of the downlink RS is fixed, the relative transmission power offset between the CSI-RS and the SS block may be configured by the TRP or gNB to the WTRU through dedicated communication (eg, SI transmission or RRC reconfiguration). This may be performed during the WTRU's entry into the connected mode or during the transition from another cell or TRP that configures the WTRU in a different manner. If the transmission power of the downlink RS is changed for inter-cell interference coordination or flexible cell coverage, the WTRU may require power values of different SS blocks or power offsets between different SS blocks and different CSI-RS beams. . The WTRU may also require power values for different SS blocks, or power offsets between different sets of SS blocks (if the transmission powers of all SS block beams within the same set of SS blocks are the same) and different CSI-RS beams. In the configuration, the TRP or the gNB does not transmit different CSI-RSs within the CSI-RS resources with different transmission powers, and instead, different CSI-RS resources are transmitted with different transmission powers.

在某些配置中,SS塊可以是特定於胞元的。當SS塊的傳輸功率改變時,如果每一SS塊波束的傳輸功率不同,那麼可以配置每一別的SS塊的功率值或參考功率值加上功率偏移。如果功率資訊包含小的酬載,或者單個SS叢發集合內部的傳輸功率相同,那麼可以在SI中傳遞功率值,以使胞元中的所有WTRU全都接收該資訊。如果功率資訊包含大的酬載,那麼可以通過用於WTRU群組的專用SI或是共同搜尋空間PDCCH來配置功率值和偏移。例如,功率資訊可被嵌入到與SS塊在相同時槽中傳輸的共同PDCCH中。CSI-RS同樣可以是特定於WTRU的,並且如果在較高層傳訊、第3層傳訊或RRC配置訊息等等中配置了CSI-RS資源,那麼將功率資訊發送到WTRU。In some configurations, the SS block can be cell-specific. When the transmission power of the SS block is changed, if the transmission power of each SS block beam is different, the power value or reference power value of each other SS block plus the power offset may be configured. If the power information contains a small payload, or if the transmission power within a single SS burst set is the same, then the power value can be passed in the SI so that all of the WTRUs in the cell receive the information. If the power information contains a large payload, the power value and offset can be configured by a dedicated SI for the WTRU group or a common search space PDCCH. For example, power information can be embedded in a common PDCCH transmitted in the same time slot as the SS block. The CSI-RS may also be WTRU-specific, and if CSI-RS resources are configured in higher layer messaging, Layer 3 messaging or RRC configuration messages, etc., power information is sent to the WTRU.

SS塊可被配置成是統一BM的基線RS。該配置可以減少用於空閒和連接模式WTRU的配置負擔、排程CSI-RS資源或干擾協調等等。使用SS塊作為基線RS還可以減少來自CSI-RS傳輸的干擾和來自排程WTRU特定CSI-RS的潛時。The SS block can be configured to be a baseline RS of the unified BM. This configuration can reduce the configuration burden for idle and connected mode WTRUs, scheduling CSI-RS resources or interference coordination, and the like. Using the SS block as the baseline RS can also reduce interference from CSI-RS transmissions and latency from scheduling WTRU-specific CSI-RS.

在本文給出的範例中,當SS塊被配置為基線RS時,其他RS的測量量可被轉換成用於比較波束品質的等效值。舉例來說,如果不同CSI-RS資源的傳輸功率是固定的,那麼可以在配置CSI-RS資源的時候為WTRU配置功率資訊。如果不同CSI-RS資源的傳輸功率是動態變化的,那麼可以為WTRU配置和在通過專用MAC-CE、較高層傳訊或RRC傳訊等等而將CSI-RS選擇作為基線RS時相似的資訊。功率資訊格式可以是靈活的,並且如果功率資訊或酬載不包含針對WTRU的大的負擔,那麼可以傳輸傳輸功率的絕對值。在其他配置中,傳輸功率的偏移值乃至具有不同解析度等級的傳輸功率的差分值可以被傳輸。In the example given herein, when the SS block is configured as a baseline RS, the measured quantities of the other RSs can be converted into equivalent values for comparing the beam qualities. For example, if the transmission power of different CSI-RS resources is fixed, the WTRU may be configured with power information when configuring CSI-RS resources. If the transmission power of different CSI-RS resources is dynamically changed, information similar to that when the CSI-RS is selected as the baseline RS by dedicated MAC-CE, higher layer communication, or RRC communication, etc., may be configured for the WTRU. The power information format can be flexible, and if the power information or payload does not contain a large burden on the WTRU, the absolute value of the transmission power can be transmitted. In other configurations, offset values of transmission power or even differential values of transmission power having different resolution levels may be transmitted.

在這裡給出的範例中,UBR可以是週期性、半持續性的或非週期性的。用於波束測量資訊(BMI)或波束相關資訊(BRI)的UBR可以包括參考信號接收功率(RSRP)、參考信號接收品質(RSRQ)、通道狀態資訊(CSI)、波束索引、波束群組索引、通道品質指示符(CQI)、秩指示符(RI)、CSI資源指示符(CRI)或是與波束資訊相關聯的SS塊資源指示符等等。供WTRU報告的一或多個BRI可以是預先指定或是由RRC訊息配置的,或者可以是由L1傳訊、L2傳訊、MAC-CE或NR-(e)PDCCH/NR-DCI動態地用信號通告的等等。波束測量資訊或波束相關資訊可以被TRP或gNB配置成是週期性或非週期性的。In the examples given here, the UBR can be periodic, semi-persistent or aperiodic. The UBR for beam measurement information (BMI) or beam correlation information (BRI) may include reference signal received power (RSRP), reference signal received quality (RSRQ), channel state information (CSI), beam index, beam group index, Channel Quality Indicator (CQI), Rank Indicator (RI), CSI Resource Indicator (CRI) or SS block resource indicator associated with beam information, and the like. One or more BRIs reported by the WTRU may be pre-designated or configured by RRC messages, or may be dynamically signaled by L1, L2, MAC-CE or NR-(e)PDCCH/NR-DCI And so on. Beam measurement information or beam related information can be configured by the TRP or gNB to be periodic or aperiodic.

統一的BM測量和報告配置可以使用一個包含了RS類型、週期性、波束寬度或是按需或活動配置等等的映射表。正如本文所給出的那樣,統一的BM測量和報告可以是週期性、非週期性、半持續性或基於事件觸發的。事件觸發可以基於RS特定的計時器或臨界值。A unified BM measurement and reporting configuration can use a mapping table that includes RS type, periodicity, beamwidth or on-demand or active configuration, and so on. As presented herein, unified BM measurements and reports can be periodic, aperiodic, semi-persistent, or event-triggered. Event triggering can be based on RS-specific timers or thresholds.

第11圖是用於統一的BM的測量和報告設定之配置的範例1100,其中該配置具有CSI-RS和SS塊的聯合和獨立波束報告。BM可以包括參考資源配置、測量配置或報告配置等等,並且可以使用與用於CSI-RS和SS塊資源的資源設定和報告設定相似的格式。當WTRU被配置成用於具有N≥1個報告設定和M≥1個資源設定的統一BM時,測量設定(1102)可以將N個報告設定連結至M個RS設定等等。配置參數N、M和L可以在較高層傳訊、第3層傳訊、RRC傳訊等等中被隱性或顯性地指示或是用信號通告。可在每一報告設定中用信號通告的配置參數可以包括所報告的RS ID、SS塊ID、CRI、所報告的BRI、測量品質、在SS上的L1-RSRP、CSI-RS、報告類型、聯合報告參數、獨立報告參數、時域行為、非週期性設定、週期性設定或半持續性設定等等。Figure 11 is an example 1100 of a configuration for measurement and reporting settings for a unified BM with joint and independent beam reporting of CSI-RS and SS blocks. The BM may include a reference resource configuration, a measurement configuration or a report configuration, and the like, and may use a format similar to resource setting and report settings for CSI-RS and SS block resources. When the WTRU is configured for a unified BM with N > 1 report settings and M > 1 resource settings, the measurement settings (1102) may link N report settings to M RS settings and the like. Configuration parameters N, M, and L can be implicitly or explicitly indicated or signaled in higher layer communications, Layer 3 communications, RRC communications, and the like. The configuration parameters that can be signaled in each report setting may include the reported RS ID, SS block ID, CRI, reported BRI, measurement quality, L1-RSRP on the SS, CSI-RS, report type, Joint reporting parameters, independent reporting parameters, time domain behavior, aperiodic settings, periodic settings, or semi-persistent settings, and more.

在1100中,報告設定1可以是週期性的,並且可以報告最佳的3個L1-RSRP值,而報告設定2則可以是非週期性的,並且可以報告所有被測量的L1-RSRP。資源設定1(週期性)可以包括聯合的CSI-RS和SS資源集合,其中集合1具有四個CSI-RS和四個SS塊資源,並且重複性被設定成OFF。資源設定2(非週期性)可以包括CSI-RS資源集合,其中集合1具有八個資源,並且重複性被設定成ON。此外,集合2可以具有四個資源,並且重複性被設定為OFF。資源設定3(週期性)可以包括獨立的CSI-RS和SS塊資源集合,其中集合1具有12個CSI-RS資源,並且重複性被設定成OFF。在另一種配置中,集合1可以具有24個SS塊資源,並且重複性被設定成OFF。In 1100, report setting 1 may be periodic and may report the best 3 L1-RSRP values, while reporting setting 2 may be aperiodic and may report all measured L1-RSRPs. Resource setting 1 (period) may include a joint CSI-RS and SS resource set, where set 1 has four CSI-RSs and four SS block resources, and the repeatability is set to OFF. Resource setting 2 (non-periodic) may include a CSI-RS resource set, where set 1 has eight resources, and repeatability is set to ON. Further, the set 2 can have four resources, and the repeatability is set to OFF. Resource setting 3 (periodic) may include independent CSI-RS and SS block resource sets, where set 1 has 12 CSI-RS resources, and repeatability is set to OFF. In another configuration, set 1 may have 24 SS block resources and the repeatability is set to OFF.

在某些配置中,S≥1個CSI-RS或是一或多個SS塊資源集合可以用信號通告。資源集合可以對應於來自所配置的所有CSI-RS或SS塊資源的池的不同選集。如果Ks≥1並且CSI-RS或SS塊資源與每一集合相對應,那麼可以配置至RE的映射、埠數量、時域行為、非週期性報告、週期性報告、半持續性報告、RS頻率寬度(frequency span)、RS功率、RS功率偏移、或是在所配置的時段/時槽中至OFDM符號的映射等等。In some configurations, S ≥ 1 CSI-RS or one or more SS block resource sets may be signaled. The set of resources may correspond to different sets of pools from all configured CSI-RS or SS block resources. If Ks ≥ 1 and the CSI-RS or SS block resources correspond to each set, then the mapping to the RE, the number of 、, the time domain behavior, the aperiodic report, the periodic report, the semi-persistent report, the RS frequency can be configured. Frequency span, RS power, RS power offset, or mapping to OFDM symbols in the configured time/time slot, and so on.

在某些配置中,CSI或SS塊波束測量設定中的L個連結中的每一都可以包括在SS塊或CSI-RS上的聯合或獨立報告設定指示、資源設定指示、待測量、L1-RSRP測量、在SS塊上的L1-RSRP量度,或是在CSI-RS上的L1-RSRP測量等等。聯合或獨立報告設定可以與一或多個資源設定或相同的資源設定連結。In some configurations, each of the L links in the CSI or SS block beam measurement settings may include a joint or independent report setting indication on the SS block or CSI-RS, a resource setting indication, to be measured, L1- RSRP measurements, L1-RSRP metrics on SS blocks, or L1-RSRP measurements on CSI-RS, and so on. Federated or independent reporting settings can be linked to one or more resource settings or the same resource settings.

在範例1100中,一週期性報告設定可以分別連結至包含了聯合和獨立CSI-RS和SS塊資源集合的兩個資源設定。資源集合可被配置成具有重複資訊元素(IE),其中該元素被設定成OFF,以便執行TRP或gNB TX波束掃描。相似的配置可被用於WTRU RX波束掃描,其中重複性設定為ON。此外,非週期性報告設定可以連結至資源設定3,其中兩個集合的重複性分別被設定成ON和OFF。在範例1100中,WTRU可被配置成執行具有資源設定1或資源設定3的報告設定1,由此,使用了基於QCL的SS塊和CSI-RS的聯合L1-RSRP報告,或是使用了SS塊和CSI-RS的獨立的L1-RSRP報告被使用。In example 1100, a periodic report setting can be linked to two resource settings including a union and independent CSI-RS and SS block resource sets, respectively. The set of resources can be configured to have a repeating information element (IE), where the element is set to OFF to perform a TRP or gNB TX beam scan. A similar configuration can be used for WTRU RX beam scanning where the repeatability is set to ON. In addition, the aperiodic report settings can be linked to resource settings 3, where the repeatability of the two sets is set to ON and OFF, respectively. In example 1100, the WTRU may be configured to perform report setting 1 with resource setting 1 or resource setting 3, thereby using a joint L1-RSRP report of QCL-based SS blocks and CSI-RS, or using SS Independent L1-RSRP reports for blocks and CSI-RS are used.

第12圖是用於統一的BM的測量和報告設定的另一配置的範例1200,其中該配置具有CSI-RS和SS塊的聯合和獨立波束報告。在範例1200中,報告設定1和報告設定2都可以連結至相同的週期性資源設定1。資源設定1可以包括具有四個CSI-RS資源的資源集合1以及具有8個SS塊資源的資源集合2。任一集合或所有的兩個集合都可以通過DCI或MAC-CE等等來選擇,並且可以通過較高層的傳訊或RRC傳訊等等來配置。在範例1200中,由於資源設定1包含了週期性RS,因此,非週期性報告或週期性報告都是可以被使用。Figure 12 is an example 1200 of another configuration for unified measurement and reporting of BMs with joint and independent beam reporting of CSI-RS and SS blocks. In the example 1200, both report setting 1 and report setting 2 can be linked to the same periodic resource setting 1. The resource setting 1 may include a resource set 1 having four CSI-RS resources and a resource set 2 having 8 SS block resources. Any set or all of the two sets can be selected by DCI or MAC-CE, etc., and can be configured by higher layer communication or RRC communication or the like. In the example 1200, since the resource setting 1 includes a periodic RS, an aperiodic report or a periodic report can be used.

由於獨立報告(例如使用了基於QCL的SS塊和CSI-RS的獨立L1-RSRP報告)可能具有大的負擔,因此可以使用非週期性報告處理。由於與獨立報告相比之來自基於QCL的SS塊和CSI-RS之合併的L1-RSRP測量的低負擔,因此可以配置週期性的聯合報告(例如使用了基於QCL的SS塊和CSI-RS的聯合L1-RSRP報告)。TRP或gNB可以命令處於相同胞元內部的WTRU執行相似類型的報告(例如用於週期性報告的獨立的L1-RSRP報告)。WTRU還可以操作獨立的L1-RSRP報告,以便執行週期性報告。Since independent reporting (eg, independent L1-RSRP reporting using QCL-based SS blocks and CSI-RS) can have a large burden, aperiodic reporting processing can be used. Due to the low burden of L1-RSRP measurements from the combined QCL-based SS block and CSI-RS compared to the independent report, periodic joint reports can be configured (eg using QCL-based SS blocks and CSI-RS) Joint L1-RSRP report). The TRP or gNB may command WTRUs within the same cell to perform similar types of reporting (eg, independent L1-RSRP reporting for periodic reporting). The WTRU may also operate a separate L1-RSRP report to perform periodic reporting.

再次參考第4圖,統一的BM L3波束濾波處理可被用於或被配置給針對WTRU L3行動性的SS塊的L3-RSRP或L3-RSRP。由於RRC配置或重配置,L3濾波處理與L1濾波處理相比要更為靈活。在具有靜態位置的電池受限的WTRU的配置中,L3濾波處理可以在長的時間尺度執行,以用於穩定及長期的波束品質。在另一配置中,行動性事件有可能更為頻繁,並且對於電池適度受限或不受限制的WTRU來說,精確的波束品質測量將會是高度期望的。為了獲取源於阻擋的短期波束品質波動,L3濾波處理可以是RRC配置的,以便在較短的時間尺度上執行取測量平均值的處理。如果服務波束遭遇到波束阻擋,那麼該配置可以允許網路和WTRU快速切換波束。L3濾波處理還可以與源自L3-RSRP的不同配置一起使用,以便解決短期波束品質波動。然而,由於可以在PUCCH、PUSCH或MAC-CE等等上攜帶L3-RSRP報告,因此有可能會導致產生更大的UL資源負擔。Referring again to FIG. 4, the unified BM L3 beam filtering process can be used or configured for L3-RSRP or L3-RSRP for SS blocks of WTRU L3 mobility. Due to RRC configuration or reconfiguration, the L3 filtering process is more flexible than the L1 filtering process. In a configuration of a battery-limited WTRU with a static location, the L3 filtering process can be performed over a long time scale for stable and long-term beam quality. In another configuration, the mobility event is likely to be more frequent, and for a WTRU that is modestly limited or unrestricted, accurate beam quality measurements would be highly desirable. In order to obtain short-term beam quality fluctuations stemming from blocking, the L3 filtering process may be RRC configured to perform a process of taking a measurement average on a shorter time scale. This configuration may allow the network and the WTRU to quickly switch beams if the serving beam encounters beam blocking. The L3 filtering process can also be used with different configurations derived from L3-RSRP to address short-term beam quality fluctuations. However, since the L3-RSRP report can be carried on the PUCCH, the PUSCH, or the MAC-CE, etc., it is likely to cause a larger UL resource burden.

第13圖是可以將層3RS接收功率(L3-RSRP)波束濾波處理用於BM的測量模型的範例1300。在1300中,通過配置L3濾波參數,可以使用範例400中顯示的L3-RSRP波束濾波處理,由此將會報告L3-RSRP(1302)和/或L1-RSRP兩者(1304)。Figure 13 is an example 1300 of a layer 3RS received power (L3-RSRP) beam filtering process for a measurement model of a BM. In 1300, by configuring the L3 filtering parameters, the L3-RSRP beam filtering process shown in the example 400 can be used, whereby both L3-RSRP (1302) and/or L1-RSRP (1304) will be reported.

第14圖是使用了層1(L1)波束濾波處理的測量模型的範例1400。用於計算L1-RSRP的L1濾波處理可以使用已有或可用L1波束測量的平均或加權行動平均。針對不同的RS,L1濾波處理可以是預先定義的,以與L3濾波處理相似的方式配置的,或是以與L3濾波處理不同的方式配置的等等。L1濾波處理可以是靈活或調適性的(adaptive),並且可以由L1或L2控制(例如DCI傳訊或MAC訊息遞送等等)來指示。在1400中,gNB波束1-K可以作為信號A而被輸入到層1濾波組件1402,並且可以作為信號A1 輸出。RRC參數和信號A1 可被輸入波束合併/選擇組件1404。K個波束或信號A1 和RRC參數還可以被輸入L3波束濾波組件1406,以及作為信號E輸出。信號E可以與RRC參數一起被輸入報告波束選擇組件1410,以便產生X波束的輸出F。輸出B和RRC參數可以由層3胞元品質濾波組件1414來處理,以便產生信號C。在報告準則評估組件1416可以用RRC參數來處理信號C和C1 ,以便產生信號D。Figure 14 is an example 1400 of a measurement model using Layer 1 (L1) beam filtering. The L1 filtering process used to calculate the L1-RSRP can use an average or weighted action average of existing or available L1 beam measurements. For different RSs, the L1 filtering process may be pre-defined, configured in a similar manner to the L3 filtering process, or configured in a different manner than the L3 filtering process, and the like. The L1 filtering process can be flexible or adaptive and can be indicated by L1 or L2 control (eg, DCI messaging or MAC message delivery, etc.). In 1400, gNB 1-K beam may be input to the layer 1 as a signal filtering component 1402 A, and may be output as a signal A 1. The RRC parameters and signal A 1 may be input to a beam combining/selecting component 1404. The K beam or signal A 1 and RRC parameters may also be input to the L3 beam filtering component 1406 and output as a signal E. Signal E may be input to report beam selection component 1410 along with the RRC parameters to produce an output F of the X beam. The output B and RRC parameters may be processed by layer 3 cell quality filtering component 1414 to produce signal C. In reporting guidelines RRC evaluation component 1416 can be used to process the signals C and parameter C 1, to generate a signal D.

在範例1400中,信號A1 和DCI參數還可以被輸入L1波束濾波組件1408,並且可以作為信號G輸出。信號G可以與DCI參數一起被輸入報告波束選擇組件1412,以便產生Y個波束的輸出H。在為WTRU配置了多個RS或是有多個RS可供其使用時,可以聯合或獨立地執行波束測量報告。由於測量結果在基於相同RS的時候彼此是相當的,因此,當配置獨立波束測量報告時,波束報告資訊可以包含來自僅僅一RS且被直接報告的測量結果。通過聯合波束測量報告(例如使用了基於QCL的SS塊和CSI-RS的聯合L1-RSRP),波束報告資訊可以包括來自多個RS的測量結果。在該配置中,由於測量結果在測量不同RS的時候不具可比性,因此,為了為每一波束產生單獨的代表值,可以使用UBR來組合波束的測量結果以及減少負擔。In the example 1400, the signal A 1 and DCI parameters can also be input to the L1 beam filtering component 1408 and can be output as the signal G. Signal G may be input to the report beam selection component 1412 along with the DCI parameters to produce an output H of the Y beams. Beam measurement reports may be performed jointly or independently when multiple WTRUs are configured for the WTRU or when multiple RSs are available for use. Since the measurement results are equivalent to each other based on the same RS, when the independent beam measurement report is configured, the beam report information may include measurement results from only one RS and directly reported. The beam report information may include measurements from multiple RSs by combining beam measurement reports (eg, using a joint L1-RSRP of QCL-based SS blocks and CSI-RS). In this configuration, since the measurement results are not comparable when measuring different RSs, in order to generate separate representative values for each beam, UBR can be used to combine the measurement results of the beams and reduce the burden.

UBR 1可以使用一統一值,其中來自測量特定波束的不同RS的測量結果會基於所配置的統一公式而被整併到一統一的值中。表3示出了測量配置集合的範例主體,並且表6顯示了統一值的範例。WTRU可被配置成測量一組波束,例如波束0-10。來自不同RS的測量結果可以被整併或組合到關於每一波束的單個代表或統一值中。在UBR 1中,RS資訊有可能不可用,或者UBR 1不會在報告中包含RS類型資訊。 表6UBR 1 can use a uniform value in which measurements from different RSs measuring a particular beam are consolidated into a uniform value based on the configured uniform formula. Table 3 shows an example body of a measurement configuration set, and Table 6 shows an example of a uniform value. The WTRU may be configured to measure a set of beams, such as beams 0-10. Measurements from different RSs can be consolidated or combined into a single representative or uniform value for each beam. In UBR 1, RS information may not be available, or UBR 1 will not include RS type information in the report. Table 6

在UBR 2中,RS報告可被使用,並且WTRU可被配置成選擇某個RS作為基線RS。如果對除了所配置的基線RS之外的不同RS進行測量,那麼可以基於基線RS和所配置或測量的偏移值而將測量結果轉換為等效值。表7顯示了轉換值的範例。 表7In UBR 2, an RS report can be used and the WTRU can be configured to select a certain RS as a baseline RS. If measurements are made on different RSs other than the configured baseline RS, the measurements can be converted to equivalent values based on the baseline RS and the configured or measured offset values. Table 7 shows an example of the conversion value. Table 7

在UBR 3中,如表8所示,1位元的RS類型指示符可被用於兩個RS,例如CSI-RS和SS塊。1位元的RS類型指示符可以由WTRU在PUCCH、PUSCH或其他任何上鏈通道上的位元映射中傳遞。同樣,UBR格式可以包括用於兩個以上的RS的2位元RS類型指示符。表9顯示了用2位元的RS類型之指示符代表的四個RS的範例,其包括CSI-RS、SS塊、PDCCH-DMRS以及PDSCH-DMRS,該指示符可以由WTRU在PUCCH、PUSCH或其他任何上鏈通道上的位元映射中傳遞。 表8 表9In UBR 3, as shown in Table 8, a 1-bit RS type indicator can be used for two RSs, such as CSI-RS and SS blocks. A 1-bit RS type indicator may be passed by the WTRU in a bit map on PUCCH, PUSCH, or any other uplink channel. Also, the UBR format may include a 2-bit RS type indicator for more than two RSs. Table 9 shows an example of four RSs represented by an indicator of a 2-bit RS type, including CSI-RS, SS block, PDCCH-DMRS, and PDSCH-DMRS, which may be by the WTRU on PUCCH, PUSCH or Passed in the bit map on any other uplink channel. Table 8 Table 9

在UBR 3中,測量結果的完整表述可以包括用於RS類型的欄位(例如1或2位元),以及用於不同RS和相關值的可變長度的測量量。依照報告負擔、精確度、L1-RSRP解析度、L1-RSRP步長或最大L1-RSRP範圍等等,用於不同RS的測量量的長度可以是相似或不同的。在表10中顯示了一波束報告的範例。作為範例,當測量量是001101時,前兩個位元00可以指示SS塊波束,並且四個位元1101可以用於SS塊L1-RSRP值之範圍。在另一範例中,當測量量是011000101時,前兩個位元01可以指示CSI-RS波束,並且7個位元1000101可以用於大範圍的CSI-RS L1-RSRP值。 表10In UBR 3, the complete representation of the measurement results may include fields for RS type (eg, 1 or 2 bits), as well as variable length measurements for different RS and correlation values. The lengths of the measurements for different RSs may be similar or different depending on the reporting burden, accuracy, L1-RSRP resolution, L1-RSRP step size or maximum L1-RSRP range, and the like. An example of a beam report is shown in Table 10. As an example, when the measured quantity is 001101, the first two bits 00 may indicate the SS block beam, and the four bits 1101 may be used for the range of the SS block L1-RSRP value. In another example, when the measured quantity is 011000101, the first two bits 01 may indicate a CSI-RS beam, and the seven bits 1000101 may be used for a wide range of CSI-RS L1-RSRP values. Table 10

在本文給出的範例中,UBR 1或UBR 2可以是為聯合波束報告配置的。例如,UBR 1可以在沒有RS資訊的情況下執行聯合報告,而UBR 2則使用了基線RS資訊來執行聯合報告(例如在將來自多個RS的測量轉換成基於基線RS的測量的時候)。UBR 3可以用於獨立波束報告,其中來自不同RS的測量是可以被分別計算和獨立報告的。In the example given herein, UBR 1 or UBR 2 may be configured for joint beam reporting. For example, UBR 1 can perform joint reporting without RS information, while UBR 2 uses baseline RS information to perform joint reporting (eg, when converting measurements from multiple RSs into baseline RS based measurements). UBR 3 can be used for independent beam reporting where measurements from different RSs can be calculated separately and independently.

在UBR 4中,混合UBR格式可被用於指示資訊,該資訊例如是波束ID、RS類型、SS塊使用、CSI-RS使用情況、測量量、L1-RSRP、L1-RSRQ、報告類型、獨立的L1-RSRP報告或聯合的L1-RSRP報告等等。在UBR 4中可以使用報告類型欄位,以使混合的UBR格式使用聯合和獨立報告。在表11中顯示了使用UBR 4的波束報告的範例。波束2和波束3可以使用獨立的波束報告,而一位元指示了針對獨立的波束報告所測量的RS。測量量中的第一位元可以指示RS類型,例如,1和0可以分別指示用於波束2和波束3的CSI-RS和SS塊。測量量的剩餘的5位元01101可被用於測量量,例如分別用於CSI-RS和SS塊的L1-RSRP值。波束5可以使用聯合波束報告,其中測量量的所有的6個位元101101都用於代表UBR 1或UBR 2的L1-RSRP值。 表11In UBR 4, the mixed UBR format can be used to indicate information such as beam ID, RS type, SS block usage, CSI-RS usage, measurement, L1-RSRP, L1-RSRQ, report type, independent L1-RSRP report or joint L1-RSRP report and so on. The Report Type field can be used in UBR 4 to enable federated and independent reporting for mixed UBR formats. An example of beam reporting using UBR 4 is shown in Table 11. Beam 2 and Beam 3 can use independent beam reporting, while a bit indicates the RS measured for independent beam reporting. The first bit in the measured quantity may indicate the RS type, for example, 1 and 0 may indicate CSI-RS and SS blocks for Beam 2 and Beam 3, respectively. The remaining 5 bits of the measured quantity 01101 can be used for the measured quantities, such as the L1-RSRP values for the CSI-RS and SS blocks, respectively. Beam 5 can use a joint beam report where all 6 bits 101101 of the measured quantity are used to represent the L1-RSRP value of UBR 1 or UBR 2. Table 11

此外,波束2和波束5可被配置成具有不同報告類型(例如獨立波束報告或聯合波束報告)的相同測量量值(例如101101。由於報告類型不同,用於波束2和波束5的具有相同值101101的測量量可以代表不同的測量量,例如L1-RSRP值。對於波束2來說,由於使用了獨立報告,因此,第一位元可以用於指示使用了哪一RS(例如CSI-RS),並且剩餘的5位元01101可以代表L1-RSRP值。波束5可以使用聯合波束報告處理,其中測量量的所有的6位元101101都可以被用於表示L1-RSRP值。Furthermore, beam 2 and beam 5 can be configured to have the same measurement magnitude (eg 101101) with different report types (eg independent beam report or joint beam report). The same values for beam 2 and beam 5 due to different report types The measured amount of 101101 can represent different measured quantities, such as L1-RSRP values. For beam 2, the first bit can be used to indicate which RS is used (eg CSI-RS) due to the use of independent reporting. And the remaining 5 bits 01101 may represent L1-RSRP values. Beam 5 may use joint beam reporting processing, where all 6 bits 101101 of the measured quantity may be used to represent the L1-RSRP value.

週期性的波束測量可被配置成具有正常觸發,以便保持波束群組的品質狀態。用於週期性測量的負擔可以通過限制圍繞一或多個服務波束或一或多個BPL的波束的測量和報告來減小或最佳化。通過對測量進行限制或約束,可以在管理負擔的同時獲取因為WTRU旋轉和波束阻擋而導致的短期波動。每一週期性測量和報告中的波束群組都可以由WTRU來調整,雖然其是由WTRU或網路發起(例如經配置或用信號通知)或控制的(例如經配置或用信號通知)。例如,基於特別時刻的週期性測量,WTRU會以獨立的方式或者網路會確定下一次測量所報告的最佳波束周圍的波束,而無周圍的一或多個服務波束之測量。Periodic beam measurements can be configured to have normal triggering in order to maintain the quality status of the beam group. The burden for periodic measurements can be reduced or optimized by limiting the measurement and reporting of beams around one or more service beams or one or more BPLs. By limiting or constraining measurements, short-term fluctuations due to WTRU rotation and beam blocking can be obtained while managing the burden. The group of beams in each periodic measurement and report may be adjusted by the WTRU, although it is initiated (e.g., configured or signaled) or controlled (e.g., configured or signaled) by the WTRU or the network. For example, based on periodic measurements at particular moments, the WTRU may determine the beam around the best beam reported in the next measurement in an independent manner or the network without the measurement of one or more surrounding service beams.

對於非週期性的波束測量來說,WTRU或網路可以為針對已解碼的控制傳輸、已解碼的資料傳輸或偵測到的波束故障等等中的突然降級的SNR的一次性波束測量配置一觸發。可以為非週期性配置一大型報告,因為其是單次的。For aperiodic beam measurements, the WTRU or network may configure a one-shot beam measurement for a sudden degraded SNR in a decoded control transmission, a decoded data transmission, or a detected beam failure, etc. trigger. A large report can be configured for non-periodicity because it is a single.

靈活的差分波束報告可被用於這裡給出的波束測量。由於不同等級的測量複雜度和負擔的容忍度有可能是不同的,因此也可以採用不同的方式來配置RSRP解析度和RSRP參考。此外,對於不同的RS來說,由於不同之波束成形增益,傳輸功率、頻率選擇性衰落或測量量的動態範圍也有可能不同。用於統一的BM的差分波束報告可以使用一格式來表示具有用於不同RS的差分參考RSRP或解析度的差分波束報告。Flexible differential beam reporting can be used for the beam measurements given here. Since different levels of measurement complexity and burden tolerance may be different, RSRP resolution and RSRP reference can also be configured in different ways. In addition, for different RSs, the dynamic range of transmission power, frequency selective fading, or measurement may also be different due to different beamforming gains. Differential beam reporting for a unified BM may use a format to represent differential beam reports with differential reference RSRP or resolution for different RSs.

可以配置用於以每個波束為基礎的報告或是以非群組為基礎的多波束報告的差分RSRP。表12顯示了用於不同波束的多偏移和多解析度RSRP。所報告的所有波束都可以基於相似的參考RSRP,並且任何具有低於該參考的被測量RSRP的波束可能不會被報告,因為參考RSRP可以是多波束配置中的最大RSRP。A differential RSRP for each beam-based report or a non-group based multi-beam report can be configured. Table 12 shows multiple offset and multi-resolution RSRP for different beams. All of the reported beams may be based on a similar reference RSRP, and any beam with a measured RSRP below the reference may not be reported because the reference RSRP may be the largest RSRP in the multi-beam configuration.

對於在不同RS上測量的波束來說,可以使用不同的偏移值。在表12中,波束1可以是偏移值為0 dBm的SS塊,而波束5則是偏移值為30 dBm的CSI-RS波束。WTRU可以基於相應RS的功率偏移來調整多個RS資源、SS塊或CSI-RS等等的RSRP。此外,靠近和包含服務波束(一或多個)的波束可以用更高的解析度來報告(例如為波束3使用1)。對於在不同RS上測量的波束來說,可以使用不同的解析度。例如,對於6GHz以上的頻率來說,CSI-RS波束和PDSCH波束具有的波束的數量可以大於64個。在該配置中,SS塊波束可以具有更寬的波束寬度和相對更粗糙的RSRP值,並且可以用較低的RSRP解析度來被報告。 表12Different offset values can be used for beams measured on different RSs. In Table 12, beam 1 may be an SS block with an offset value of 0 dBm, and beam 5 is a CSI-RS beam with an offset value of 30 dBm. The WTRU may adjust RSRP for multiple RS resources, SS blocks or CSI-RSs, etc. based on the power offset of the corresponding RS. In addition, beams near and containing the service beam(s) can be reported with higher resolution (eg, 1 for beam 3). Different resolutions can be used for beams measured on different RSs. For example, for frequencies above 6 GHz, the CSI-RS beam and the PDSCH beam may have more than 64 beams. In this configuration, the SS block beam can have a wider beamwidth and a relatively coarser RSRP value and can be reported with a lower RSRP resolution. Table 12

表13包括多個差分RSRP報告規則,其中每一都具有可被映射到特定BM RS的不同測量報告特徵。在一配置中,為了使用表12和表13來確定波束的絕對RSRP值,可以使用偏移類型和相對RSRP值。用於波束群組的參考RSRP值可以是相似的。偏移類型可以指示基於所測量的波束的RS。Table 13 includes a plurality of differential RSRP reporting rules, each having different measurement reporting features that can be mapped to a particular BM RS. In one configuration, to determine the absolute RSRP value of the beam using Tables 12 and 13, the offset type and the relative RSRP value can be used. The reference RSRP values for the beam group can be similar. The offset type may indicate an RS based on the measured beam.

對於針對多個波束的以非群組為基礎的差分波束報告來說,參考RSRP和差分RSRP的位元寬度可被預先指定或配置成是相似或不同的值。舉例來說,參考L1-RSRP可以用第一位元寬度報告,例如X1位元=7位元,並且差分L1-RSRP可以用第二位元寬度來報告,例如X2位元=4位元。對於不同RS上的差分L1-RSRP來說,用於參考L1-RSRP和差分L1-RSRP的位元寬度相同集合可以被使用。作為替換,用於參考L1-RSRP和差分L1-RSRP的不同位元寬度集合可被用於不同RS上的差分L1-RSRP。 表13For non-group based differential beam reporting for multiple beams, the bit widths of the reference RSRP and differential RSRP may be pre-specified or configured to be similar or different values. For example, the reference L1-RSRP can be reported with a first bit width, such as X1 bit = 7 bits, and the differential L1-RSRP can be reported with a second bit width, such as X2 bit = 4 bits. For differential L1-RSRP on different RSs, the same set of bit widths for reference L1-RSRP and differential L1-RSRP can be used. Alternatively, different sets of bit widths for reference L1-RSRP and differential L1-RSRP can be used for differential L1-RSRP on different RSs. Table 13

如果不同的群組被配置用於不同的規則,那麼也可以為以群組為基礎的波束報告使用差分RSRP。在該配置中,通過測量相同RS報告的波束可被指定成是相同群組或RS特定波束群組等等。來自相同TRP、gNB或相同面板(panel)的波束可被指定成是相同群組、RS特定波束組等等。用相同等級的解析度的RSRP報告或是同時接收/測量的波束可被指定成是相同的群組或RS特定波束群組等等。If different groups are configured for different rules, differential RSRP can also be used for group-based beam reporting. In this configuration, beams that are reported by measuring the same RS may be designated as the same group or RS-specific beam group, and the like. Beams from the same TRP, gNB, or the same panel may be designated as the same group, RS specific beam group, and the like. RSRP reports with the same level of resolution or beams received/measured simultaneously may be designated as the same group or RS-specific beam group, and so on.

對於以群組為基礎的波束報告的L1-RSRP報告來說,用於參考RSRP或差分RSRP的位元寬度可被預先指定或配置成相似或不同的值。例如,參考L1-RSRP可以用針對不同RS特定波束群組(例如基於SS塊的波束群組和基於CSI-RS的波束群組)的相似位元寬度來報告,而差分L1-RSRP則可以用針對不同波束群組的相似或不同位元寬度來報告。如果為不同的波束群組使用了不同的差分量化步長,那麼位元寬度可以取決於不同波束群組的波束的數量。例如,針對SS塊和CSI-RS的參考L1-RSRP可以使用相似的位元寬度(例如7位元),而針對SS塊上的差分L1-RSRP則可以使用較小的位元。此外,對於以SS塊和CSI-RS為基礎的波束群組的參考L1-RSRP可以使用不同的位元寬度(例如7位元或5位元),而針對基於SS塊和CSI-RS的波束群組則可以使用相似或不同的位元寬度。For L1-RSRP reports for group-based beam reporting, the bit width for reference RSRP or differential RSRP can be pre-specified or configured to similar or different values. For example, the reference L1-RSRP can be reported with similar bit widths for different RS specific beam groups (eg, SS block based beam groups and CSI-RS based beam groups), while differential L1-RSRP can be used. Reported for similar or different bit widths for different beam groups. If different differential quantization step sizes are used for different beam groups, the bit width may depend on the number of beams of different beam groups. For example, a reference L1-RSRP for an SS block and a CSI-RS may use a similar bit width (eg, 7 bits), while for a differential L1-RSRP on an SS block, a smaller bit may be used. Furthermore, reference L1-RSRP for beam groups based on SS blocks and CSI-RS may use different bit widths (eg 7-bit or 5-bit) for SS-based and CSI-RS-based beams Groups can use similar or different bit widths.

在通過RS建構波束群組或者沒有通過單一類型的RS來構造群組並且配置了獨立波束報告時,可以配置以下的報告格式: 基線參考RSRP 用於RS1的規則R1,報告波束數量n1。 配對1:(波束G1_1,相對RSRP值1) ... 配對n:(波束G1_n,相對RSRP值n1) 注釋:RSRP值低於最小RSRP的波束可能不會被報告;RSRP值高於最大RSRP的波束會被被調整到最大RSRP;這些配對是按順序報告的;所報告的波束的數量是在一開始給出的。 用於RS2的規則R2,報告波束數量n2。 配對1:(波束G2_1,相對RSRP值1) ... 配對n:(波束G2_n,相對RSRP值n2) 用於RS3的規則R3,報告波束數量n3。 配對1:(波束G3_1,相對RSRP值1) ... 配對n:(波束G3_n,相對RSRP值n2)When constructing a beam group through RS or constructing a group without a single type of RS and configuring independent beam reporting, the following reporting formats can be configured: Baseline Reference RSRP is used for RS1 rule R1, reporting beam number n1. Pair 1: (beam G1_1, relative RSRP value 1) ... Pair n: (beam G1_n, relative RSRP value n1) Note: Beams with RSRP values below the minimum RSRP may not be reported; RSRP values are higher than the maximum RSRP The beam will be adjusted to the maximum RSRP; these pairs are reported in order; the number of reported beams is given at the outset. Rule R2 for RS2, reporting the number of beams n2. Pair 1: (beam G2_1, relative RSRP value 1) ... Pair n: (beam G2_n, relative RSRP value n2) Rule R3 for RS3, report beam number n3. Pair 1: (beam G3_1, relative RSRP value 1) ... Pair n: (beam G3_n, relative RSRP value n2)

如果波束群組不是通過正被使用的RS構建的並且配置了聯合波束報告,那麼可以配置使用了兩級群組報告結構的報告格式: 基線參考RSRP 群組1 用於RS1的規則R1,報告波束數量n1。 配對1:(波束1,相對RSRP值1) ... 用於RS2的規則R2,報告波束數量n2。 ... 群組2 用於RS1的規則R1,報告波束數量n1。 配對1:(波束1,相對RSRP值1) ... 用於RS2的規則R2,報告波束數量n2。 ... 群組3 用於RS1的規則R1,報告波束數量n1。 配對1:(波束1,相對RSRP值1) ... 用於RS2的規則R2,報告波束數量n2。 ... 在第二級中,波束在每一基於RS的所給定的群組內部被排序。If the beam group is not constructed by the RS being used and the joint beam report is configured, then the reporting format using the two-level group reporting structure can be configured: Baseline Reference RSRP Group 1 Rule R1 for RS1, Report Beam The number is n1. Pair 1: (Beam 1, relative RSRP value 1) ... Rule R2 for RS2, report beam number n2. ... Group 2 is used for rule R1 of RS1, reporting the number of beams n1. Pair 1: (Beam 1, relative RSRP value 1) ... Rule R2 for RS2, report beam number n2. ... Group 3 is used for rule R1 of RS1, reporting the number of beams n1. Pair 1: (Beam 1, relative RSRP value 1) ... Rule R2 for RS2, report beam number n2. ... In the second level, the beams are ordered within each given group of RS-based groups.

基於每個波束報告的差分波束ID也是可以被配置的。除了波束品質資訊(例如RSRP)之外,波束ID也會導致產生傳訊負擔。為了識別波束(例如來自未知TRP或gNB的CSI-RS或SS塊),有可能需要大量的位元。在SS叢發集合有64個SS塊的配置中,有可能需要附加的6個位元來識別SS塊時間索引。對於比6GHz在更高的頻率的基於CSI-RS的波束來說,有可能需要6個以上的位元,由此會導致產生負擔之16位元以上。為了減小波束ID的傳訊負擔,當WTRU被配置成具有用於波束測量和報告的多個SS塊和CSI-RS資源時,映射表可以包括縮短的波束ID的列表。與完整波束ID相比,縮短的ID可以識別可用SS塊和CSI-RS波束的子集。The differential beam ID reported on a per beam basis can also be configured. In addition to beam quality information (such as RSRP), the beam ID can also cause a traffic burden. In order to identify a beam (eg, a CSI-RS or SS block from an unknown TRP or gNB), a large number of bits may be required. In a configuration where the SS burst set has 64 SS blocks, an additional 6 bits may be needed to identify the SS block time index. For a CSI-RS based beam at a higher frequency than 6 GHz, it is possible to require more than 6 bits, which results in a burden of more than 16 bits. To reduce the signaling burden of the beam ID, the mapping table may include a list of shortened beam IDs when the WTRU is configured to have multiple SS blocks and CSI-RS resources for beam measurement and reporting. The shortened ID can identify a subset of available SS blocks and CSI-RS beams compared to the full beam ID.

第15圖是所報告的波束在地理上接近介於胞元1與胞元2之間的WTRU並以之為中心的範例1500。當觸發WTRU執行波束測量和報告時,由於最終報告的波束有可能在地理上接近WTRU並且以之為中心,因此,更加遠離WTRU且RSRP很低的其他波束不會被報告。在1500中,胞元1可以包括波束(m-2,m-1,m,m+1),並且胞元2可以包括波束(n-2,n-1,n,n+1)。通過使用一選定波束(例如具有最低索引值的波束)的波束ID作為參考值,可以使用差分波束ID之其他波束來執行波束報告。表14提供了以差分波束ID為基礎的報告的範例。對於差分ID來說,縮短的波束ID可以包括所報告的每一波束ID的2個位元。 表14Figure 15 is an example 1500 of the reported WTRU being geographically close to the WTRU between cell 1 and cell 2. When the WTRU is triggered to perform beam measurements and reporting, since the finally reported beam is likely to be geographically close to and centered on the WTRU, other beams that are further away from the WTRU and have a low RSRP will not be reported. In 1500, cell 1 may include a beam (m-2, m-1, m, m+1), and cell 2 may include a beam (n-2, n-1, n, n+1). By using the beam ID of a selected beam (eg, a beam with the lowest index value) as a reference value, beam reporting can be performed using other beams of the differential beam ID. Table 14 provides an example of a report based on differential beam ID. For differential IDs, the shortened beam ID may include 2 bits of each beam ID reported. Table 14

為了效率,WTRU可被配置成測量和報告所有可用CSI-RS或SS塊資源或波束的子集。WTRU可以報告測量結果之全部或是子集。例如,當WTRU被配置成測量M個波束時,它可以報告N個波束,其中N<=M。For efficiency, the WTRU may be configured to measure and report a subset of all available CSI-RS or SS block resources or beams. The WTRU may report all or a subset of the measurements. For example, when the WTRU is configured to measure M beams, it can report N beams, where N <= M.

在WTRU的網路配置映射表15可以包括用於表示ID(例如用於測量的CSI-RS或SS塊資源/波束的胞元ID、波束ID或波束類型的組合)的多個完整-縮短ID映射。網路可以配置WTRU特定的映射表,其中該映射表同樣為網路所知悉。對於報告測量結果的WTRU來說,可以使用縮短的ID(例如縮短的胞元ID、縮短的波束ID或波束類型的組合)來指示波束身份,網路則會使用本地存放的WTRU特定映射表來確定完整ID。如表15所示,完整波束ID的長度可以是17位元(有10位元胞元ID,1位元波束類型,以及6位元波束ID)。短波束ID的長度可以是4位元(有1位元胞元ID,1位元波束類型以及2位元波束ID)。 表15The network configuration mapping table 15 at the WTRU may include a plurality of full-short IDs for indicating an ID (eg, a combination of cell ID, beam ID, or beam type for measured CSI-RS or SS block resource/beam) Mapping. The network can configure a WTRU-specific mapping table, which is also known to the network. For a WTRU reporting a measurement, a shortened ID (eg, a shortened cell ID, a shortened beam ID, or a combination of beam types) may be used to indicate the beam identity, and the network will use a locally stored WTRU-specific mapping table. Determine the full ID. As shown in Table 15, the length of the full beam ID may be 17 bits (having a 10-bit cell ID, a 1-bit beam type, and a 6-bit beam ID). The length of the short beam ID may be 4 bits (with 1 bit cell ID, 1 bit beam type, and 2 bit beam ID). Table 15

如果通過聯合索引CSI-RS、SS塊波束或資源ID而使得沒有重疊,那麼網路可以為WTRU映射表配置胞元ID、波束類型或波束ID等等的聯合編碼。如表16所示,通過聯合索引CSI-RS或SS塊波束/資源ID,可以減少短波束ID所需要的位元。由於CSI-RS和SS塊波束/資源ID是聯合索引的,因此,表16中的波束類型將不是必要的,由此進一步減少了用於短波束ID的位元數量(3位元)。在表15和表16中,TRP或gNB可以具有WTRU特定映射表的本地複製。為了減小負擔,胞元內部的WTRU之全部或是子集可能不具有在網路的映射表。如表17所述,映射表可以將參考ID用於短胞元ID或波束ID。 表16 表17If there is no overlap by jointly indexing the CSI-RS, SS block beam or resource ID, the network may configure joint coding of the cell ID, beam type or beam ID, etc., for the WTRU mapping table. As shown in Table 16, by jointly indexing CSI-RS or SS block beam/resource ID, the bits required for the short beam ID can be reduced. Since the CSI-RS and SS block beam/resource ID are jointly indexed, the beam type in Table 16 will not be necessary, thereby further reducing the number of bits (3 bits) for the short beam ID. In Tables 15 and 16, the TRP or gNB may have a local copy of the WTRU-specific mapping table. In order to reduce the burden, all or a subset of the WTRUs within the cell may not have a mapping table in the network. As described in Table 17, the mapping table can use the reference ID for the short cell ID or beam ID. Table 16 Table 17

如果在網路沒有儲存在WTRU配置的映射表,那麼映射表之WTRU更新以及依照在先的波束報告配置來報告波束測量結果子集也會減小負擔。例如,WTRU可以報告具有高於某臨界值的L1-RSRP的波束。如表18所示,對於這種配置來說,針對短波束ID可能需要1位元。 表18If the mapping table configured by the WTRU is not stored in the network, then the WTRU update of the mapping table and reporting the subset of beam measurements in accordance with the prior beam reporting configuration will also reduce the burden. For example, the WTRU may report a beam with an L1-RSRP above a certain threshold. As shown in Table 18, for this configuration, one bit may be required for the short beam ID. Table 18

即使在WTRU的波束報告設定發生變化,當網路跳過映射表更新時,網路和WTRU之間的傳訊負擔同樣也會減小。在將SS塊和CSI-RS兩者配置用於波束測量報告時,WTRU可以基於每個波束或者基於每個群組來獨立執行波束報告。在將SS塊和CSI-RS兩者配置用於波束測量和報告時,用於統一BM的差分波束報告也可以用於獨立波束報告。Even if the WTRU's beam reporting settings change, the traffic burden between the network and the WTRU will also decrease as the network skips the mapping table update. When both the SS block and the CSI-RS are configured for beam measurement reporting, the WTRU may perform beam reporting independently based on each beam or on a per group basis. When both SS blocks and CSI-RSs are configured for beam measurement and reporting, differential beam reporting for unified BM can also be used for independent beam reporting.

用於SS塊或CSI-RS的獨立波束報告可以不同的參數被配置或指定。對於SS塊的L1-RSRP測量報告來說,針對給定報告實例測量的最大TX波束數量可以取決於頻帶,並且可被表示成KSSB 。舉個例子,如果小於3GHz,那麼KSSB =4,如果小於6GHz,那麼KSSB =8,如果大於6GHz且小於52.6GHz,那麼KSSB =64。WTRU在每個報告實例所報告的最大TX波束數量可以依賴於頻帶,並且還可以由TRP或gNB用NSSB 來配置。在一配置中,如果小於3GHz,那麼NSSB =1,如果小於6GHz,那麼NSSB =[1,2],如果大於6GHz且小於52.6GHz,那麼NSSB =[1,2,4,8]。Independent beam reports for SS blocks or CSI-RS can be configured or specified with different parameters. For an L1-RSRP measurement report for an SS block, the maximum number of TX beams measured for a given report instance may depend on the frequency band and may be expressed as K SSB . For example, if it is less than 3 GHz, then K SSB = 4, if it is less than 6 GHz, then K SSB = 8, if it is greater than 6 GHz and less than 52.6 GHz, then K SSB = 64. The maximum number of TX beams reported by the WTRU at each reporting instance may depend on the frequency band and may also be configured with N SSB by the TRP or gNB. In a configuration, if less than 3 GHz, then N SSB = 1, if less than 6 GHz, then N SSB = [1, 2], if greater than 6 GHz and less than 52.6 GHz, then N SSB = [1, 2, 4, 8] .

用於以PUCCH和PUSCH為基礎的報告的值可以是不同的。例如,TRP或gNB可以為基於PUSCH的報告配置較大的值,並且為基於PUCCH的報告配置較小的值。再次參考第4圖,用於P-1、P-2和P-3程序的值可以是不同的。例如,為P-2程序配置的可以是較大的值,並且為P-1程序配置的可以是較小的值。用於非週期性報告、半持續性報告或週期性報告等等的報告值同樣可以是不同的。例如,可以為非週期性報告配置較大的值,並且可以為半持續或週期性報告配置較小的值。The values for reporting on PUCCH and PUSCH may be different. For example, a TRP or gNB may configure a larger value for PUSCH based reporting and a smaller value for PUCCH based reporting. Referring again to Figure 4, the values for the P-1, P-2, and P-3 programs can be different. For example, the P-2 program can be configured with a larger value, and the P-1 program can be configured with a smaller value. Report values for aperiodic reports, semi-persistent reports, periodic reports, and the like can also be different. For example, you can configure a larger value for aperiodic reporting and configure a smaller value for semi-persistent or periodic reporting.

用於相關報告內容的報告值可以是不同的。例如,針對所要報告的測量量較少(例如使用差分L1-RSRP報告),那麼可以配置大的值,而對於所要報告的較多的測量量(例如使用絕對或常規L1-RSRP報告)來說,那麼可以配置小的值。在本文給出的範例中,TRP或gNB可以選擇N(<=NSSB )個波束的一子集,並且該子集可以通過較高層傳訊、RRC傳訊、MAC-CE、L1傳訊或DCI等等指示給WTRU。The report values used for related report content can be different. For example, for a small amount of measurement to be reported (eg, using a differential L1-RSRP report), then a large value can be configured, and for more measurements to be reported (eg using absolute or regular L1-RSRP reports) , then you can configure a small value. In the example given in this paper, TRP or gNB can select a subset of N (<=N SSB ) beams, and the subset can pass higher layer communication, RRC communication, MAC-CE, L1 communication or DCI, etc. Indicated to the WTRU.

供WTRU針對給定報告實例測量的最大TX波束數量可以取決於頻帶,並且對於CSI-RS的L1-RSRP測量報告來說,可以被指示成KCSIRS 。舉例來說,如果小於6GHz,那麼KCSIRS =8,如果大於6GHz,那麼KCSIRS =64或KCSIRS =128。在另一範例中,供WTRU針對給定報告實例測量的單個最大TX波束數量可以與頻帶獨立,例如KCSIRS =128。The maximum number of TX beams measured by the WTRU for a given reporting instance may depend on the frequency band and may be indicated as K CSIRS for the L1-RSRP measurement report of the CSI-RS. For example, if it is less than 6 GHz, then K CSIRS = 8, and if it is greater than 6 GHz, then K CSIRS = 64 or K CSIRS = 128. In another example, the single maximum number of TX beams measured by the WTRU for a given reporting instance may be independent of the frequency band, such as K CSIRS = 128.

由WTRU在每個報告實例報告的最大TX波束數量可以取決於頻帶,並且對於CSI-RS的L1-RSRP測量報告來說,可以由TRP或gNB所配置的。用於該配置的指示可以是NCSIRS ,作為範例,如果小於6GHz,那麼NCSIRS = [1,2],如果大於6GHz,那麼NCSIRS =[1,2,4,8]。在另一範例中,由WTRU在每個報告實例報告的單個最大TX波束數量可以與頻帶獨立,例如,KCSIRS = [1,2,4,8]。The maximum number of TX beams reported by the WTRU at each reporting instance may depend on the frequency band and may be configured by the TRP or gNB for the L1-RSRP measurement report of the CSI-RS. The indication for this configuration may be N CSIRS , as an example, if less than 6 GHz, then N CSIRS = [1, 2], if greater than 6 GHz, then N CSIRS = [1, 2, 4, 8]. In another example, the single maximum number of TX beams reported by the WTRU at each reporting instance may be independent of the frequency band, eg, K CSIRS = [1, 2, 4, 8].

針對NCSIRS 可以使用不同的配置,其中TRP或gNB可以為基於PUSCH的報告配置較大的NCSIRS 值,以及可以為PUCCH報告配置較小的值。針對P-2程序可配置較大的值,並且針對P-1程序可配置較小的值。對非週期性報告可配置較大的值,並且對半持續性或週期性報告可配置較小的值。此外,對於相關聯的報告內容來說,NCSIRS 可以是不同的。例如,對於所要報告的測量量較少(例如使用差分L1-RSRP報告),那麼可以配置大的值,而對於所要報告的較多的測量量(例如使用絕對或常規L1-RSRP報告)來說,可配置小的值。與本文給出的其他範例類似,TRP或gNB可以選擇N(<=NCSIRS )個波束的一子集,並且該子集可以通過較高層傳訊、RRC傳訊、MAC-CE、L1傳訊、DCI或是用於報告的類似者指示給WTRU。Different configurations may be used for N CSIRS , where the TRP or gNB may configure a larger N CSIRS value for PUSCH based reporting and may configure a smaller value for PUCCH reporting. Larger values can be configured for the P-2 program and smaller values can be configured for the P-1 program. Large values can be configured for aperiodic reports, and smaller values can be configured for semi-persistent or periodic reports. In addition, the N CSIRS can be different for the associated report content. For example, for a small amount of measurement to be reported (eg, using a differential L1-RSRP report), then a large value can be configured for more measurements to be reported (eg using absolute or regular L1-RSRP reports) , can be configured with small values. Similar to the other examples given in this paper, TRP or gNB can select a subset of N (<=NC SIRS ) beams, and the subset can pass higher layer communication, RRC communication, MAC-CE, L1 communication, DCI or A similarity indication for reporting is to the WTRU.

對於L1-RSRP等級而言,SS塊和CSI-RS上的L1-RSRP的最大L1-RSRP範圍和步長可以是相似或不同的,並且可以取決於在SS塊和CSI-RS上測量和報告的波束的數量或是期望的傳訊負擔等等。舉例來說,如果SS塊上具有更大的波束寬度,那麼L1-RSRP等級可以小於或等於CSI-RS上的L1-RSRP。此外,CSI-RS上的L1-RSRP的步長可以大於SS塊上的L1-RSRP的步長,以便在CSI-RS上測量的波束數量大於在SS塊上測量的波束數量的時候減少負擔。For the L1-RSRP level, the maximum L1-RSRP range and step size of the L1-RSRP on the SS block and the CSI-RS may be similar or different and may be measured and reported depending on the SS block and the CSI-RS. The number of beams or the desired traffic burden and so on. For example, if there is a larger beamwidth on the SS block, the L1-RSRP level may be less than or equal to the L1-RSRP on the CSI-RS. Furthermore, the step size of the L1-RSRP on the CSI-RS may be greater than the step size of the L1-RSRP on the SS block in order to reduce the burden when the number of beams measured on the CSI-RS is greater than the number of beams measured on the SS block.

依照基於PUCCH的報告、基於PUSCH的報告、P-1程序、P-2程序、P-3程序或週期性報告等等,WTRU在SS塊或CSI-RS上在每個報告實例報告的最大TX波束數量可以是相似或不同的。針對最大TX波束報告或是本文所給出的任何其他參數來說,在WTRU能力資訊元素中可以指示WTRU特定配置。The maximum TX reported by the WTRU in each reporting instance on the SS block or CSI-RS in accordance with PUCCH based reporting, PUSCH based reporting, P-1 procedure, P-2 procedure, P-3 procedure or periodic reporting, etc. The number of beams can be similar or different. The WTRU specific configuration may be indicated in the WTRU Capability Information Element for the maximum TX beam report or any other parameter presented herein.

針對用於BM的波束資源指示符、CRI報告、SS塊索引報告、L1-RSRP報告、週期性報告或非週期性報告等等,WTRU可以為其使用不同的UL通道、短PUCCH、短PUSCH、長PUCCH或長PUSCH等等。舉個例子,對於週期性波束報告來說,WTRU可被配置成用於長PUCCH和短PUCCH報告。對於半持續性波束報告來說,WTRU可以被配置成用於短PUCCH、長PUCCH以及PUSCH。對於非週期性波束報告來說,WTRU可以被配置成用於短PUCCH和PUSCH。For the beam resource indicator, CRI report, SS block index report, L1-RSRP report, periodic report or aperiodic report for the BM, etc., the WTRU may use different UL channels, short PUCCH, short PUSCH, Long PUCCH or long PUSCH and so on. For example, for periodic beam reporting, the WTRU may be configured for long PUCCH and short PUCCH reporting. For semi-persistent beam reporting, the WTRU may be configured for short PUCCH, long PUCCH, and PUSCH. For aperiodic beam reporting, the WTRU may be configured for short PUCCH and PUSCH.

表19中顯示的波束報告優先順序映射可被配置成對波束報告進行最佳化,以便實現低的負擔和能耗。基於波束報告優先順序映射,WTRU可被配置成針對不同的WTRU狀況(例如所配置的UL通道、WTRU速度或WTRU服務類型等等)而執行多級波束報告。 表19The beam report prioritization map shown in Table 19 can be configured to optimize beam reporting to achieve low burden and power consumption. Based on the beam report prioritization mapping, the WTRU may be configured to perform multi-level beam reporting for different WTRU conditions (eg, configured UL channel, WTRU speed or WTRU service type, etc.). Table 19

當在短PUCCH上傳輸波束報告和CSI報告時,由於一短PUCCH的容量限制,WTRU可被配置成只報告優先順序高於預先確定或配置的值的波束報告內容。通過用信號通知觸發非週期波束測量報告的相同L1傳訊的低優先順序值,可以配置大尺寸的波束報告。如果在PUSCH上傳輸非週期性波束報告,那麼該配置將會適用於該非週期性波束報告,因為其為單個事件,並且與短PUCCH相比,PUSCH具有更大的酬載容量。在某些配置中,對於低延遲的非週期性報告來說,WTRU可以在具有低酬載容量的短PUCCH上報告具有高優先順序的內容。對於UL傳輸來說,WTRU可被配置成執行帶有波束報告和CSI報告的SRS傳輸。When transmitting beam reports and CSI reports on a short PUCCH, due to the capacity limitations of a short PUCCH, the WTRU may be configured to report only beam reporting content with a higher priority than a predetermined or configured value. A large size beam report can be configured by signaling a low priority value of the same L1 message that triggers the aperiodic beam measurement report. If a non-periodic beam report is transmitted on the PUSCH, then the configuration will apply to the aperiodic beam report as it is a single event and the PUSCH has a greater payload capacity than the short PUCCH. In some configurations, for low latency aperiodic reporting, the WTRU may report content with high priority on short PUCCHs with low payload capacity. For UL transmissions, the WTRU may be configured to perform SRS transmissions with beam reporting and CSI reporting.

最佳化規則可被配置成減少傳輸負擔以及可能的衝突。例如,當CSI報告和波束報告的總酬載大小在短PUCCH的容量之上時,當時槽內部的可用OFDM符號數量不足以傳輸SRS和PUCCH時,這時有可能會存在衝突。WTRU可以使用可擴縮的多級波束報告來避免這些及其他衝突。Optimization rules can be configured to reduce transmission burdens and possible conflicts. For example, when the total payload size of the CSI report and the beam report is above the capacity of the short PUCCH, when the number of available OFDM symbols inside the slot is insufficient to transmit the SRS and the PUCCH, there may be a collision at this time. The WTRU may use scalable multi-level beam reporting to avoid these and other collisions.

與週期性傳輸相比,非週期性傳輸、波束報告、CSI報告或SRS等等可以被配置成用於更高的傳輸優先順序。與PUSCH和SRS傳輸相比,PUCCH、短PUCCH或長PUCCH可以具有更高的傳輸優先順序。在發生衝突時,通道可能會在時域中被部分地放掉(dropped)。例如,SRS傳輸有可能會與PUCCH、短PUCCH或長PUCCH部分重疊,並且只有與PUCCH、短PUCCH或長PUCCH重疊的SRS符號不會被傳輸。在傳遞非週期性傳輸時,下一個被排程的週期性或半持續性傳輸可以被跳過。在某些配置中,非週期性波束報告可以在每個緊急請求被觸發,並且在慢通道變化時段期間可以使用週期性報告。Aperiodic transmissions, beam reports, CSI reports, or SRS, etc., can be configured for higher transmission prioritization than periodic transmissions. A PUCCH, a short PUCCH, or a long PUCCH may have a higher transmission priority order than PUSCH and SRS transmission. In the event of a collision, the channel may be partially dropped in the time domain. For example, an SRS transmission may partially overlap with a PUCCH, a short PUCCH, or a long PUCCH, and only SRS symbols overlapping with a PUCCH, a short PUCCH, or a long PUCCH are not transmitted. The next scheduled periodic or semi-persistent transmission can be skipped when the aperiodic transmission is delivered. In some configurations, aperiodic beam reporting can be triggered on each emergency request, and periodic reporting can be used during the slow channel change period.

第16圖是統一的波束測量和報告的範例1600。在1600中顯示了以功率偏移指示為基礎的多個參考信號上的統一波束測量和報告(例如CSI-RS和SSB上的聯合或獨立L1-RSRP報告)。在1600中,WTRU可以接收用於SS塊和CSI-RS上的波束測量和報告的統一波束配置(1602)。波束測量可以基於所配置的RS來執行(1604)。如果滿足用於波束報告的觸發(1606),那麼可以基於是否配置了單個RS來做出確定(1612)。否則可以確定向TRP或gNB發送用於測量協助的請求(1608),並且該測量輔助資訊請求將被接收(1610),以便執行附加測量。如果沒有發送用於測量協助資訊的請求,那麼可以執行附加測量。WTRU可以向TRP或gNB請求測量協助,以便通過分時多工(TDM)或分頻工(FDM)的方式來執行補充的RS傳輸。Figure 16 is an example 1600 of unified beam measurement and reporting. Unified beam measurements and reports on multiple reference signals based on power offset indications (eg, joint or independent L1-RSRP reports on CSI-RS and SSB) are shown in 1600. At 1600, the WTRU may receive a unified beam configuration (1602) for beam measurements and reporting on SS blocks and CSI-RS. Beam measurements can be performed based on the configured RS (1604). If the trigger for beam reporting is satisfied (1606), a determination can be made based on whether a single RS is configured (1612). Otherwise, it may be determined that a request for measurement assistance is sent to the TRP or gNB (1608), and the measurement assistance information request is to be received (1610) to perform additional measurements. Additional measurements can be performed if a request for measuring assistance information is not sent. The WTRU may request measurement assistance from the TRP or gNB to perform supplemental RS transmissions by means of time division multiplexing (TDM) or frequency division (FDM).

如果配置了單個RS,那麼可以執行單個RS的波束測量和報告(1614)。如果配置了單個以上的RS或多個RS,那麼可以配置/指示一功率偏移(例如藉由網路),並且可以基於所指示的功率偏移來執行聯合或獨立的測量和報告(1618)。否則在沒有所指示的功率偏移的情況下也可以執行聯合或獨立測量和報告(1624)。If a single RS is configured, beam measurement and reporting of a single RS can be performed (1614). If more than one RS or multiple RSs are configured, then a power offset can be configured/indicated (eg, via the network) and joint or independent measurements and reports can be performed based on the indicated power offsets (1618) . Otherwise joint or independent measurements and reports can be performed without the indicated power offset (1624).

對於具有功率偏移的聯合測量和報告來說,聯合測量和報告可以使用統一的基線RS報告(UBRR)來執行(1620)。WTRU可以基於基線RS以及所指示的相對於基線RS的功率偏移通過使用SS塊和CSI-RS上的聯合的L1-RSRP來執行UBRR,以便實現精確的測量和報告。在UBRR中,WTRU測得的L1-RSRP值可被轉換到所配置的基線RS的值範圍。For joint measurements and reports with power offsets, joint measurements and reports can be performed using a unified baseline RS report (UBRR) (1620). The WTRU may perform UBRR by using the SS block and the joint L1-RSRP on the CSI-RS based on the baseline RS and the indicated power offset relative to the baseline RS in order to achieve accurate measurements and reporting. In UBRR, the WTRU-measured L1-RSRP value can be converted to a range of values for the configured baseline RS.

對於具有功率偏移的獨立測量和報告來說,靈活的獨立波束報告(FIBR)同樣是可以被執行的(1622)。在FIBR中,WTRU可以對SS塊或CSI-RS執行分別測量,但是會基於所指示的功率偏移來報告源自一RS、SS塊或CSI-RS或是兩個參考信號的測量結果。Flexible independent beam reporting (FIBR) can also be performed for independent measurements and reporting with power offset (1622). In FIBR, the WTRU may perform separate measurements on SS blocks or CSI-RS, but may report measurements derived from an RS, SS block or CSI-RS or two reference signals based on the indicated power offset.

對於沒有功率偏移的聯合測量和報告來說,聯合報告統一的測量報告(UMR)(1626)可以被使用。WTRU可以執行粗略測量(例如有在多個RS上之簡單平均),並且可以使用UMR來報告多個RS上的聯合的L1-RSRP。對於UMR來說,WTRU可以對SS塊或CSI-RS執行分別的測量,但是會報告聯合或合併的結果。關於合併結果的範例可以是來自SS塊或CSI-RS的針對相同波束的L1-RSRP值的線性平均。For joint measurements and reports without power offsets, the Joint Report Unified Measurement Report (UMR) (1626) can be used. The WTRU may perform coarse measurements (e.g., have a simple average over multiple RSs) and may use UMR to report joint L1-RSRPs on multiple RSs. For UMR, the WTRU may perform separate measurements on the SS block or CSI-RS, but will report the result of the joint or merge. An example of a merge result may be a linear average of L1-RSRP values for the same beam from an SS block or CSI-RS.

對於獨立的測量和報告來說,在沒有功率偏移的情況下,獨立波束報告(IBR)(1628)同樣是可以被使用的。在IBR中,WTRU可以對不同的RS、SSB或CSI-RS等等執行分別的測量。對於該配置來說,SSB或CSI-RS上的兩個測量結果是可以分別或獨立報告的。For independent measurements and reporting, Independent Beam Reporting (IBR) (1628) can also be used without power offset. In the IBR, the WTRU may perform separate measurements on different RSs, SSBs, or CSI-RSs, and the like. For this configuration, the two measurements on the SSB or CSI-RS can be reported separately or independently.

在執行和確定了波束測量和報告程序之後,WTRU可以經由統一的波束報告格式來報告SS塊和/或CSI-RS上的聯合或獨立L1-RSRP報告。統一的波束報告格式可以包括波束ID(例如差分或絕對波束ID)、RS類型(例如SSB或CSI-RS)、測量量(例如L1-RSRP值或差分L1-RSRP值)或報告類型(例如聯合或獨立L1-RSRP報告)等等。After performing and determining the beam measurement and reporting procedures, the WTRU may report joint or independent L1-RSRP reports on the SS block and/or CSI-RS via a unified beam reporting format. The unified beam reporting format may include beam ID (eg, differential or absolute beam ID), RS type (eg, SSB or CSI-RS), measurement (eg, L1-RSRP value or differential L1-RSRP value), or report type (eg, federation) Or independent L1-RSRP report) and so on.

在本文所給出的範例中,WTRU可以從網路接收用於波束測量和報告的統一BM配置。這些配置可以包括來自廣播和RRC配置等等的最小SI。該配置可以包括至少一RS、波束報告的觸發條件、L1-RSRP臨界值、報告設定、功率偏移或報告類型等等。配置可以基於用於映射RS類型、週期性、波束寬度、按需報告、主動報告、週期性報告、非週期性報告、半持續性報告或事件觸發等等的映射表。在表3中給出了關於配置的範例,並且在第11圖和第12圖中給出了報告設定以及可能的測量資源/報告設定。In the examples presented herein, the WTRU may receive a unified BM configuration for beam measurement and reporting from the network. These configurations may include minimum SI from broadcast and RRC configurations, and the like. The configuration may include at least one RS, a trigger condition for beam reporting, an L1-RSRP threshold, a report setting, a power offset or a report type, and the like. The configuration may be based on a mapping table for mapping RS type, periodicity, beamwidth, on-demand reporting, active reporting, periodic reporting, aperiodic reporting, semi-persistent reporting or event triggering, and the like. Examples of configurations are given in Table 3, and report settings and possible measurement resource/report settings are given in Figures 11 and 12.

在本文所給出的範例中,WTRU可以由網路配置成用於週期性波束測量和報告。網路還可以請求WTRU執行非週期性或半持續性波束測量和報告。在觸發WTRU的情況下,WTRU可以使用主動觸發的波束測量和報告。例如,WTRU可以使用用於波束訓練、測量或波束報告的信號請求。WTRU還可以被配置成終止當前波束訓練程序。通過使用RS特定的計時器和臨界值,可以配置和定義事件觸發。本文給出的測量配置設定(例如在表2和表3中的)可以被使用。對於某些配置來說,如果沒有滿足觸發(例如L1-RSRP不高於臨界值),那麼WTRU可以顯性或隱性地向網路TRP或gNB請求測量協助,以便執行使用TDM或FDM的補充RS傳輸。第9圖顯示了關於補充RS傳輸的範例900。In the examples presented herein, the WTRU may be configured by the network for periodic beam measurement and reporting. The network may also request the WTRU to perform aperiodic or semi-persistent beam measurements and reporting. In the case of a triggered WTRU, the WTRU may use actively triggered beam measurements and reports. For example, the WTRU may use signal requests for beam training, measurements, or beam reporting. The WTRU may also be configured to terminate the current beam training procedure. Event triggering can be configured and defined by using RS-specific timers and thresholds. The measurement configuration settings presented herein (eg, in Tables 2 and 3) can be used. For some configurations, if the trigger is not met (eg, L1-RSRP is not above the threshold), the WTRU may request measurement assistance explicitly or implicitly to the network TRP or gNB to perform supplements using TDM or FDM. RS transmission. Figure 9 shows an example 900 for supplemental RS transmission.

在波束測量期間,所測量的RS的總的頻寬可被考慮,並且可以配置一最小測量頻寬。例如,當所測量的參考資源佔用最小頻寬時,測量結果可以反映精確的波束品質資訊。由於最小頻寬,測量RS資源或QCL不同的RS資源等等中的一種或多種組合可以被使用。在範例中,所配置的WTRU特定CSI-RS資源有可能超出最小頻寬。為了滿足使用FDM的最小頻寬,SS塊資源和CSI-RS資源都可以通過相同的符號來傳輸。為了滿足使用TDM的最小頻寬,SS塊資源和CSI-RS資源可以通過不同的符號來傳輸。用於BM和CSI捕獲的最小頻寬可以是不同或相似的。當CSI-RS或SS塊資源滿足最小頻寬需求時,單個RS上的測量可以觸發波束測量報告。During beam measurement, the total bandwidth of the measured RS can be considered and a minimum measurement bandwidth can be configured. For example, when the measured reference resource occupies a minimum bandwidth, the measurement can reflect accurate beam quality information. One or more combinations of measuring RS resources or different RS resources of the QCL, etc. may be used due to the minimum bandwidth. In an example, the configured WTRU-specific CSI-RS resources may exceed the minimum bandwidth. In order to satisfy the minimum bandwidth using FDM, both the SS block resource and the CSI-RS resource can be transmitted by the same symbol. In order to satisfy the minimum bandwidth using TDM, SS block resources and CSI-RS resources can be transmitted by different symbols. The minimum bandwidth used for BM and CSI capture can be different or similar. A measurement on a single RS can trigger a beam measurement report when the CSI-RS or SS block resource meets the minimum bandwidth requirement.

在本文所給出的範例中,對BM和CSI捕獲處理可以使用不同或相似的CSI-RS配置。如果將CSI-RS配置用於BM,那麼既有可能需要也有可能不需要附加的配置來區分波束測量或CSI捕獲是被執行(或可能的時間實例)。In the examples presented herein, different or similar CSI-RS configurations may be used for the BM and CSI acquisition processes. If a CSI-RS configuration is used for the BM, then there may or may not be an additional configuration to distinguish between beam measurements or CSI acquisitions being performed (or possible time instances).

如果CSI-RS或SSB資源滿足最小頻寬需求,那麼在單個RS上的測量足以觸發波束測量報告。在某些配置中,WTRU可以發送與最小頻寬以及CSI-RS資源或集合數量相關的測量輔助請求。由於RX波束掃描,這可以在P-1和P-3程序期間執行。對於被掃描的WTRU RX波束的不同數量,在P-3程序中,CSI-RS資源集合內部的CSI-RS資源的數量有可能是不同的。舉例來說,在一波束上可以傳輸一CSI-RS資源。在P-1程序期間,CSI-RS資源集合的數量同樣有可能是不同的。例如,WTRU可以在網路TX波束掃描時段以內使用相同的RX波束,但是會在網路切換到下一TX波束掃描時段的時候使用不同的RX波束。If the CSI-RS or SSB resources meet the minimum bandwidth requirement, then measurements on a single RS are sufficient to trigger a beam measurement report. In some configurations, the WTRU may send a measurement assistance request related to the minimum bandwidth and the number of CSI-RS resources or sets. This can be performed during the P-1 and P-3 procedures due to RX beam scanning. For different numbers of scanned WTRU RX beams, the number of CSI-RS resources within the CSI-RS resource set may be different in the P-3 procedure. For example, a CSI-RS resource can be transmitted on a beam. The number of CSI-RS resource sets may also be different during the P-1 procedure. For example, the WTRU may use the same RX beam within the network TX beam scan period, but will use a different RX beam when the network switches to the next TX beam scan period.

如本文的範例中給出的那樣,如果在測量了單個RS、SS塊或CSI-RS之後滿足了觸發,那麼WTRU可以執行單個RS的L1-RSRP的波束測量報告。如果在對多個RS、SS塊或CSI-RS等等進行了測量之後滿足觸發,那麼WTRU可以基於來自網路、TRP或gNB等等的功率偏移指示來對CSI-RS和SS塊執行聯合或獨立的L1-RSRP報告。As given in the examples herein, if the trigger is satisfied after measuring a single RS, SS block, or CSI-RS, the WTRU may perform a beam measurement report for the L1-RSRP of a single RS. If the trigger is satisfied after measurements are made on multiple RSs, SS blocks or CSI-RSs, etc., the WTRU may perform joint on CSI-RS and SS blocks based on power offset indications from the network, TRP or gNB, and the like. Or a separate L1-RSRP report.

再次參考第16圖,一旦確定了報告程序,那麼WTRU可以經由統一的波束報告格式來報告SS塊和/或CSI-RS的聯合或獨立的L1-RSRP。舉個例子,統一的波束報告格式可以包括以下各項之一或是其的任意組合:具有差分值或絕對值的波束ID(即差分波束ID或絕對波束ID/常規波束ID/波束ID),SSB類型或CSI-RS類型的RS類型,L1-RSRP值的測量量,差分L1-RSRP值,RSRP值或RSRQ值,或是聯合或獨立L1-RSRP報告的報告類型等等。Referring again to FIG. 16, once the reporting procedure is determined, the WTRU may report a joint or independent L1-RSRP of SS blocks and/or CSI-RSs via a unified beam reporting format. For example, the unified beam reporting format may include one or any combination of the following: a beam ID having a differential value or an absolute value (ie, a differential beam ID or an absolute beam ID/conventional beam ID/beam ID), RS type of SSB type or CSI-RS type, measurement quantity of L1-RSRP value, differential L1-RSRP value, RSRP value or RSRQ value, or report type of joint or independent L1-RSRP report, and the like.

在一配置中,對於波束測量、基於波束的傳輸或波束切換的統一波束指示可以經由RRC訊息、MAC-CE或NR-(e)PDCCH、NR-DCI、DCI欄位或隨機存取回應(RAR)許可等等而被顯性地用信號通告給WTRU。來自TRP或gNB的統一波束指示可以包括用於WTRU資料接收來使用的波束,用於波束追蹤、傳輸或切換的統一波束測量,由WTRU測量和報告的波束的數量以及相關聯RS,或是用於WTRU報告的波束測量量的類型等等。統一的波束指示還可以是具有一或多個欄位的位元映射,以指示RS類型指示符、波束數量以及相關聯的波束測量量、RSRP或CSI等等。In one configuration, the unified beam indication for beam measurement, beam-based transmission, or beam switching may be via RRC message, MAC-CE or NR-(e)PDCCH, NR-DCI, DCI field or random access response (RAR) The license is advertised to the WTRU explicitly. The unified beam indication from the TRP or gNB may include beams for WTRU data reception, unified beam measurements for beam tracking, transmission or handover, number of beams measured and reported by the WTRU, and associated RS, or The type of beam measurement reported by the WTRU, and so on. The unified beam indication may also be a bit map with one or more fields to indicate an RS type indicator, a number of beams, and associated beam measurements, RSRP or CSI, and the like.

在一些配置中,由於TRP或gNB可能不知道WTRU的測量能力,因此可以隱性地用信號通告統一的波束指示。舉例來說,將顯性地用信號通告WTRU所要測量和報告的波束或波束群組數量取而代之的是,用於相關波束測量量(例如SS-RSRP、CSI-RSRP或DMRS-RSRP等等)的不同臨界值同樣可以用信號通告給WTRU,以用於報告給TRP或gNB。In some configurations, the unified beam indication may be implicitly signaled since the TRP or gNB may not be aware of the WTRU's measurement capabilities. For example, the number of beams or beam groups that the signal WTRU is to measure and report is explicitly signaled instead for the associated beam measurement (eg, SS-RSRP, CSI-RSRP, or DMRS-RSRP, etc.) Different thresholds can also be signaled to the WTRU for reporting to the TRP or gNB.

DCI中的N位元指示符欄位可被用於針對DL RS或CSI-RS SS塊等等的空間QCL參考,以便解調下鏈通道、PDCCH或PDSCH等等。指示符可以是與DL RS、CRI或SS塊等等的索引相關聯的指示符狀態。對於CSI-RS來說,該資源可以是週期性的、半持續性的或非週期性的等等。在WTRU測量期間,DL RS索引可以通過顯性傳訊或者以隱性的方式與指示符狀態相關聯。作為隱性傳訊的範例,網路可以配置DL RS的一子集以供WTRU之測量,並且WTRU可以在DL RS索引與基於指示符狀態的測量結果之間建立關聯。該N位元指示符可以是TCI的函數,並且可以以DCI欄位大小來傳送。TCI的欄位大小可以被預先指定成固定值,或通過較高層傳訊、RRC傳訊或MAC-CE等等來配置。The N-bit indicator field in the DCI can be used for spatial QCL reference for DL RS or CSI-RS SS block, etc., in order to demodulate the downlink channel, PDCCH or PDSCH, and the like. The indicator may be an indicator state associated with an index of a DL RS, CRI or SS block or the like. For CSI-RS, the resource can be periodic, semi-persistent or aperiodic, and so on. During WTRU measurements, the DL RS index may be associated with the indicator state by explicit signaling or implicitly. As an example of implicit messaging, the network may configure a subset of the DL RS for measurement by the WTRU, and the WTRU may establish an association between the DL RS index and the indicator state based measurement. The N-bit indicator can be a function of the TCI and can be transmitted in a DCI field size. The TCI field size can be pre-specified to a fixed value, or configured by higher layer messaging, RRC messaging, or MAC-CE.

WTRU可以通過RRC而被配置成具有多達M個用於QCL指示的TCI狀態的清單。在某些配置中,M可以等於或大於2N ,其中N是DCI中的N-位元TCI狀態欄位的大小。由於DL RS的索引、CRI或SS塊索引等等的總數有可能高於2N,因此,M的值可以大於2N,並且實際的TCI狀態與N位元DCI欄位描述的狀態之間的映射可以使用基於階層群組的或是三階段的映射。The WTRU may be configured by RRC to have up to M lists of TCI states for QCL indication. In some configurations, M can be equal to or greater than 2 N , where N is the size of the N-bit TCI status field in the DCI. Since the total number of indexes, CRI or SS block indexes, etc. of the DL RS may be higher than 2N, the value of M may be greater than 2N, and the mapping between the actual TCI state and the state described by the N-bit DCI field may be Use hierarchical group-based or three-phase mapping.

在基於階層群組的映射中,DL RS的全集可以依照預先定義或配置的規則而被分成若干群組。規則可以包括空間QCL參考或RS類型,例如SS塊、週期性CSI-RS、非週期性CSI-RS或半持續性CSI-RS等等。WTRU可被配置成測量和報告DL RS索引群組的子集。在該配置中,所配置的DL RS索引的總數可被一對一映射到N位元TCI欄位索引的狀態數量。例如,WTRU可被配置成對用DCI中的3位元(23=8>7)指示符欄位所索引的7個DL RS進行測量。如果DL RS索引的完整集合是10,那麼可以基於RS類型將其分成兩群組,其中第一群組可以包括用於SS塊的4個DL RS索引,第二群組可以包括用於CSI-RS的6個DL RS索引。In hierarchical group-based mapping, the corpus of DL RSs can be divided into groups according to pre-defined or configured rules. The rules may include spatial QCL references or RS types, such as SS blocks, periodic CSI-RS, aperiodic CSI-RS or semi-persistent CSI-RS, and the like. A WTRU may be configured to measure and report a subset of DL RS index groups. In this configuration, the total number of configured DL RS indices can be mapped one-to-one to the number of states of the N-bit TCI field index. For example, the WTRU may be configured to measure 7 DL RSs indexed with a 3-bit (23=8>7) indicator field in the DCI. If the complete set of DL RS indices is 10, it can be divided into two groups based on the RS type, where the first group can include 4 DL RS indexes for SS blocks, and the second group can include for CSI- 6 DL RS indexes of the RS.

此外,WTRU可以被配置成測量4個DL RS之第一群組,其中該DL RS可以用3位元TCI欄位中用於4個DL RS索引的2個位元來指示。剩餘的1位元可被保留,以便指示群組或分群組規則。6個DL RS索引之第二個群組可以通過3位元TCI欄位來指示。另一分群組規則可以是QCL DL RS,例如7個DL空間QCL的RS,其被分群組在一起,並用DCI中的3位元(23 =8>7)指示符欄位來索引。如果TCI狀態(其中每一狀態都可以與一DL RS集合相關聯)具有相關聯的QCL配置,那麼它們可以被映射到DCI中的相同的N位元TCI狀態欄位。相關聯的QCL配置可以是在一TCI狀態的RS集合中攜帶的一或多個DL RS,其包含了具有在另一TCI狀態的RS集合中攜帶的一或多個DL RS的QCL。In addition, the WTRU may be configured to measure a first group of 4 DL RSs, which may be indicated by 2 bits in the 3-bit TCI field for 4 DL RS indices. The remaining 1 bit can be reserved to indicate a group or group rule. The second group of 6 DL RS indices can be indicated by a 3-bit TCI field. Another grouping rule may be a QCL DL RS, such as RSs of 7 DL space QCLs, grouped together and indexed by a 3-bit (2 3 = 8 > 7) indicator field in the DCI. . If the TCI states (where each state can be associated with a DL RS set) have associated QCL configurations, they can be mapped to the same N-bit TCI status field in the DCI. The associated QCL configuration may be one or more DL RSs carried in a set of RSs in a TCI state, including QCLs having one or more DL RSs carried in an RS set of another TCI state.

三階段的映射可以包括第一階段的RRC配置,第二階段的MAC-CE啟動或去啟動,以及第三階段的DCI欄位指示。另外,WTRU可以通過RRC而被配置一DL RS池。網路可以使用MAC-CE來動態啟動或去啟動DL RS池中的DL RS的子集。動態啟動的DL RS的大小可以由DCI中的N位元TCI欄位來索引。The three-phase mapping may include the RRC configuration of the first phase, the MAC-CE initiation or deactivation of the second phase, and the DCI field indication of the third phase. Additionally, the WTRU may be configured with a DL RS pool through RRC. The network can use MAC-CE to dynamically initiate or deactivate a subset of the DL RSs in the DL RS pool. The size of the dynamically initiated DL RS can be indexed by the N-bit TCI field in the DCI.

TCI狀態可被用作用於接收和解調PDSCH的QCL參考。對於PDSCH來說,該QCL參考可以通過DCI中攜帶的TCI欄位來動態指示。在配置了TCI狀態時,TCI將會是存在的。例如,在沒有執行DL RX波束掃描的情況下,WTRU可以包含一固定的RX波束或全向波束。TCI狀態還可以是用於監控或接收PDCCH的QCL參考。The TCI state can be used as a QCL reference for receiving and demodulating the PDSCH. For PDSCH, the QCL reference can be dynamically indicated by the TCI field carried in the DCI. TCI will be present when the TCI state is configured. For example, the WTRU may include a fixed RX beam or an omnidirectional beam without performing DL RX beam scanning. The TCI state may also be a QCL reference for monitoring or receiving the PDCCH.

WTRU可被配置成具有多個資源控制資源集合(CORESET),並且如果所配置CORESET之全部或是子集與一或多個TCI狀態相連結,那麼還可以將由一或多個TCI狀態所指示的QCL參考用於PDCCH。與用於L1 DCI指示的PDSCH的TCI狀態不同,對於PDCCH來說,用於CORESET的TCI狀態可以由較高層傳訊、RRC傳訊、MAC-CE或是RRC傳訊和MAC-CE等等中攜帶的參考來進行配置或通告。PDCCH CORESET配置還可以是以半靜態的方式配置的。The WTRU may be configured to have multiple resource control resource sets (CORESET) and may also be indicated by one or more TCI states if all or a subset of the configured CORESETs are associated with one or more TCI states The QCL reference is used for the PDCCH. Different from the TCI state of the PDSCH used for the L1 DCI indication, for the PDCCH, the TCI state for CORESET can be carried by the higher layer communication, RRC communication, MAC-CE or RRC communication and MAC-CE, and the like. To configure or advertise. The PDCCH CORESET configuration can also be configured in a semi-static manner.

在NR配置中,對於DL來說,QCL設定可以跨載波和頻寬部分(BWP)應用。對於高頻(HF)載波聚合來說,如果兩個收發器共位,並且兩個頻率在數值上接近,那麼這兩個HF載波在空間域中會具有相似的功率分佈。在該配置中,第一HF CC中的BM資訊可以至少部分在第二HF CC中使用,這減小第二CC的負擔。In the NR configuration, for DL, the QCL settings can be applied across the carrier and bandwidth portion (BWP). For high frequency (HF) carrier aggregation, if two transceivers are co-located and the two frequencies are numerically close, then the two HF carriers will have similar power distributions in the spatial domain. In this configuration, the BM information in the first HF CC can be used at least partially in the second HF CC, which reduces the burden on the second CC.

在將NR配置成用於較寬頻寬以用於較高的容量時,網路、TRP或gNB將活動的頻寬動態地從一BWP配置到有重疊或不重疊的另一BWP。在動態頻寬調整程序中,SS塊資源和CSI-RS資源既有可能存在,也有可能不存在。當SS塊和CSI-RS資源在新的BWP內部全都可用時,WTRU可能需要跨BWP的空間QCL參數指示。如果空間QCL配置在SS塊與CSI-RS資源之間是可應用的,那麼可以在相同的波束上傳輸QCL SS塊和CSI-RS資源,這指示使用了QCL SS塊和CSI-RS的聯合和獨立L1-RSRP報告正被WTRU使用。在上文中描述了聯合L1-RSRP報告的範例。如果空間QCL配置在SS塊與CSI-RS資源之間不可應用,那麼WTRU可以使用獨立的L1-RSRP報告。When the NR is configured for a wider bandwidth for higher capacity, the network, TRP or gNB dynamically configures the active bandwidth from one BWP to another BWP with or without overlapping. In the dynamic bandwidth adjustment procedure, SS block resources and CSI-RS resources may or may not exist. When the SS block and the CSI-RS resources are all available within the new BWP, the WTRU may need a spatial QCL parameter indication across the BWP. If the spatial QCL configuration is applicable between the SS block and the CSI-RS resources, the QCL SS block and the CSI-RS resources can be transmitted on the same beam, which indicates that the joint sum of the QCL SS block and the CSI-RS is used. The independent L1-RSRP report is being used by the WTRU. An example of a joint L1-RSRP report is described above. If the spatial QCL configuration is not applicable between the SS block and the CSI-RS resources, the WTRU may use a separate L1-RSRP report.

第17圖是在活動的BWP以外的波束測量和報告的範例1700。在1700中,如果,所配置的BWP 1-3可被配置成在一些BMP已被完全使用、阻攔或保留的情況下用於強健的傳輸。在某些配置中,所配置的BWP 2可以是活動的。當WTRU為不同的應用或服務類型請求不同的容量時,BWP 1-3還可以允許靈活的容量需求。針對魯棒性或容量等等的考慮,WTRU還可以通過基於DCI或基於計時器的切換來動態切換一或多個活動的BWP。在切換之前,WTRU可以確定用於不同候選BWP的QoS,以便用於適當的選擇。WTRU可以通過較高層傳訊、RRC傳訊、MAC-CE或DCI等等而被配置或指示,以顯性或隱性地測量在活動BWP以外的BWP。Figure 17 is an example 1700 of beam measurement and reporting outside of an active BWP. In 1700, if configured, the BWPs 1-3 can be configured to be used for robust transmissions where some BMPs have been fully used, blocked, or reserved. In some configurations, the configured BWP 2 can be active. BWPs 1-3 may also allow for flexible capacity requirements when the WTRU requests different capacities for different applications or service types. For robustness or capacity considerations, etc., the WTRU may also dynamically switch one or more active BWPs via DCI based or timer based handover. Prior to handover, the WTRU may determine QoS for different candidate BWPs for use in appropriate selection. The WTRU may be configured or indicated by higher layer messaging, RRC messaging, MAC-CE or DCI, etc. to explicitly or implicitly measure BWPs outside of the active BWP.

CSI-RS的頻寬資源可能小於BWP,並且BWP既可以包含也可以不包含SS塊。BWP的大小的範圍可以是從SS塊的頻寬到可供WTRU用於CC的最大頻寬能力。因此,WTRU可以通過考慮一種或多種類型的RS而在多個BWP(其包括一或多個活動的BWP以及無活動BWP兩者)上執行波束測量和報告。這些RS可以包括週期性CSI-RS、非週期性CSI-RS、半持續性CSI-RS或SS塊等等。The bandwidth resource of the CSI-RS may be smaller than the BWP, and the BWP may or may not contain the SS block. The size of the BWP may range from the bandwidth of the SS block to the maximum bandwidth capability available to the WTRU for the CC. Thus, the WTRU may perform beam measurements and reporting on multiple BWPs (which include both one or more active BWPs and inactive BWPs) by considering one or more types of RSs. These RSs may include periodic CSI-RS, aperiodic CSI-RS, semi-persistent CSI-RS or SS block, and the like.

在表20中,WTRU可被配置成具有不同CC(例如CC1和CC2)之間的空間QCL關係,並且可以指示為了CC1,TCI狀態0被保持,以被用於另一QCL CC2。gNB可以在DCI中用信號通告WTRU會為TCI狀態0使用CC1中的CRI#0。WTRU可以使用該配置而在CC2中用於後續的BM及資料和控制傳輸。在與TCI狀態0相關聯的RS集合中,CRI#0和SSB#1中的兩個DL RS可以處於相同的QCL中。基於TCI狀態0,這兩個索引可以指向相同的波束和BM,其可以指示WTRU將利用使用QCL化的SS塊(QCLed SS block)和CSI-RS的聯合L1-RSRP報告。 表20In Table 20, the WTRU may be configured to have a spatial QCL relationship between different CCs (e.g., CC1 and CC2) and may indicate that for CC1, TCI State 0 is maintained to be used for another QCL CC2. The gNB may signal in the DCI that the WTRU will use CRI #0 in CC1 for TCI State 0. The WTRU may use this configuration for subsequent BM and data and control transmissions in CC2. In the RS set associated with TCI State 0, the two DL RSs in CRI #0 and SSB #1 may be in the same QCL. Based on TCI state 0, the two indices may point to the same beam and BM, which may indicate that the WTRU will utilize a joint L1-RSRP report using a QCLized SS block and a CSI-RS. Table 20

WTRU可以在初始存取中從SI中獲取不同CC之間的空間QCL關係。QCL關係可以與WTRU能力或是與WTRU相關的CC等等相關聯。QCL資訊可以是在從網路接收到WTRU能力報告之後獲取的。處於RRC連接模式的WTRU可被配置成在多個CC上執行測量和報告。由於WTRU觀察到的動態變化的傳播環境(包括行動性、阻擋、多徑或反射等等),gNB可以使用WTRU回饋來動態更新或指示不同CC之間的空間QCL資訊。更新可以較高層信號、RRC傳訊、RRC訊息、MAC-CE或DCI等等來執行。測量報告或空間QCL資訊可以通過較高層信號、RRC傳訊、RRC訊息、MAC-CE或UCI等等而被從WTRU用信號通告給gNB。同樣,WTRU可以通過RRC而被配置成具有跨域了多個BWP上的空間QCL參數,以使該WTRU可以使用QCL SS塊和CSI-RS來執行聯合或獨立的L1-RSRP報告。The WTRU may acquire spatial QCL relationships between different CCs from the SI in the initial access. The QCL relationship may be associated with WTRU capabilities or CCs associated with the WTRU, and the like. The QCL information may be obtained after receiving a WTRU capability report from the network. A WTRU in RRC connected mode may be configured to perform measurements and reporting on multiple CCs. Due to the dynamically changing propagation environment (including mobility, blocking, multipath or reflection, etc.) observed by the WTRU, the gNB may use WTRU feedback to dynamically update or indicate spatial QCL information between different CCs. Updates can be performed with higher layer signals, RRC messaging, RRC messages, MAC-CE or DCI, and the like. The measurement report or spatial QCL information may be signaled from the WTRU to the gNB through higher layer signals, RRC messaging, RRC messages, MAC-CE or UCI, and the like. Likewise, the WTRU may be configured by RRC to have spatial QCL parameters across multiple BWPs across the domain such that the WTRU may perform joint or independent L1-RSRP reporting using QCL SS blocks and CSI-RS.

不同CC之間的QCL關係還可以在啟動新的CC的時候用信號通告給WTRU。舉例來說,用於DL的跨載波的QCL配置可以由主CC或主服務胞元用信號通告。同樣,BWP之間的QCL配置或關係也可以在啟動BWP的時候用信號通告。舉例來說,跨越了多個BWP的QCL配置可以通過位於載波頻率的中間BWP來通告。該傳訊可以是高層傳訊、RRC傳訊、MAC-CE、或是RRC傳訊和MAC-CE,以用於高可靠性。該傳訊還可以使用較低層傳訊(例如DCI)來以較低的可靠性用於低負擔。The QCL relationship between different CCs can also be signaled to the WTRU when a new CC is initiated. For example, a cross-carrier QCL configuration for DL can be signaled by the primary CC or primary serving cell. Similarly, the QCL configuration or relationship between BWPs can also be signaled when the BWP is launched. For example, a QCL configuration that spans multiple BWPs can be advertised by an intermediate BWP located at the carrier frequency. The communication can be high-level communication, RRC communication, MAC-CE, or RRC communication and MAC-CE for high reliability. The messaging can also use lower layer messaging (eg, DCI) for lower burdens with lower reliability.

如表20所示,TCI狀態可以包括一或多個DL RS索引,並且可以使用單波束或多波束傳輸配置。例如,TCI狀態0可以指一DL RS索引,其中CRI#0和SSB#1可以是相同波束,並且TCI狀態1可以指兩個DL RS索引CRI#2和SSB#3。如果將一DL RS ID包含在TCI狀態指的RS集合內部,那麼單波束傳輸、單個TRP或單個面板等等可以被利用。如果在RS集合內部包含了多個DL RS ID(例如兩個DL RS ID),那麼可以使用同時的多波束傳輸、多TRP或多面板等等。每TCI狀態之一以上的RS集合還可以被配置成為PDSCH使用一以上的DMRS埠群組。As shown in Table 20, the TCI state may include one or more DL RS indices and may use a single beam or multiple beam transmission configuration. For example, TCI state 0 may refer to a DL RS index, where CRI #0 and SSB #1 may be the same beam, and TCI state 1 may refer to two DL RS indices CRI #2 and SSB #3. If a DL RS ID is included within the RS set of the TCI status finger, a single beam transmission, a single TRP or a single panel or the like can be utilized. If multiple DL RS IDs (eg, two DL RS IDs) are included within the RS set, simultaneous multi-beam transmission, multiple TRP or multi-panel, etc. can be used. The RS set of one or more per TCI state may also be configured to use more than one DMRS group for the PDSCH.

多波束指示還可以被配置成是DCI或MAC-CE中的多位元映射。舉例來說,多位元映射的長度可以指示多個波束的數量,並且每一位元可以指示一波束或一DL RS ID。此外,用於多TRP或多面板部署的多維多位元映射同樣是可以配置的,其中每一維度都被用於一TRP、一gNB、一面板或一波束群組等等。The multi-beam indication can also be configured to be a multi-bit map in DCI or MAC-CE. For example, the length of the multi-bit map may indicate the number of multiple beams, and each bit may indicate a beam or a DL RS ID. In addition, multi-dimensional multi-bit mapping for multi-TRP or multi-panel deployments is also configurable, with each dimension being used for a TRP, a gNB, a panel or a beam group, and the like.

此外,在DCI中攜帶的用於PDSCH或PDCCH波束指示的N位元欄位中可以帶表TCI狀態。TCI狀態或N位元指示符欄位可以依照容量或負擔而包含附加的參數。TCI可以包括PDSCH或PUSCH速率匹配參數。此外,在NR中,PDSCH或PUSCH RE映射可以通過RRC而被配置成具有大的潛在RE映射參數集合。MAC-CE傳訊可以用於減小或啟動通過RRC配置的RE映射參數的子集。最後,DCI中攜帶的PDSCH RE映射以及準共位指示(PQI)位元可以用於動態指示用於所排程的PDSCH或PUSCH的實際RE映射集合。RE映射參數可以包括PDSCH起始符號、PUSCH起始符號、PDSCH結束符號、PUSCH結束符號、PDSCH符號的數量或PUSCH符號的數量等等。In addition, the T-bit status may be carried in the N-bit field for PDSCH or PDCCH beam indication carried in the DCI. The TCI status or N-bit indicator field may contain additional parameters depending on capacity or burden. The TCI may include a PDSCH or PUSCH rate matching parameter. Furthermore, in NR, PDSCH or PUSCH RE mapping can be configured to have a large set of potential RE mapping parameters by RRC. MAC-CE messaging can be used to reduce or initiate a subset of RE mapping parameters configured through RRC. Finally, the PDSCH RE mapping and Pseudo-Resonance Indication (PQI) bits carried in the DCI can be used to dynamically indicate the actual RE mapping set for the scheduled PDSCH or PUSCH. The RE mapping parameters may include a PDSCH start symbol, a PUSCH start symbol, a PDSCH end symbol, a PUSCH end symbol, a number of PDSCH symbols, or a number of PUSCH symbols, and the like.

參數可以與TCI狀態中的QCL指示直接相關。關於在QCL相對於QCL指示的時間而被應用的時序可以改變。舉例來說,為時序間隙配置時間延遲值、時槽數量或符號數量等等,以正確地解碼PDCCH,或依照PDCCH指示來改變或應用PDSCH波束。PDSCH起始符號可以提供用於應用或改變PDSCH波束的DCI解碼時間和波束切換時間間隙。舉例來說,如果PDSCH起始符號的值是K,那麼K個時間符號可以用來確定用於相應PDSCH接收的波束。The parameters can be directly related to the QCL indication in the TCI state. The timing with respect to the time indicated by the QCL with respect to the QCL may vary. For example, a time delay value, a number of time slots or a number of symbols, etc., are configured for the timing gap to correctly decode the PDCCH, or to change or apply the PDSCH beam in accordance with the PDCCH indication. The PDSCH start symbol may provide a DCI decoding time and a beam switching time gap for applying or changing the PDSCH beam. For example, if the value of the PDSCH start symbol is K, then K time symbols can be used to determine the beam for the corresponding PDSCH reception.

第18圖是顯示了用於排程新型無線電實體下鏈共用通道(NR-PDSCH)的起始符號索引或符號偏移與DCI解碼延遲或潛在的波束切換時間之間的關係的範例1800。K的值可以指示起始符號索引或是DCI與相應NR-PDSCH分配的起始符號之間的符號偏移(1802)。DCI解碼時間或波束切換時間可以基於K來被配置(1804)。K的值可以預先指定的,被配置的,或是由較高層傳訊、RRC傳訊或MAC-CE等等指示的,並還可以是基於WTRU硬體能力、DCI解碼延遲、RF調諧延遲或波束切換時間等等。K的值可以隱性地代表時間延遲的臨界值,其顧及了TCI解碼時間,用於具有TCI的DCI的解碼時間,RF調諧時間或波束切換時間等等。作為範例,WTRU可以應用不同的RX波束來執行DCI接收和PDSCH接收,並且有可能需要時間來獲取和應用適當的RX波束,以接收DCI指示的相應PDSCH。Figure 18 is a diagram 1800 showing an example of a relationship between a starting symbol index or symbol offset for scheduling a new radio entity downlink shared channel (NR-PDSCH) and a DCI decoding delay or potential beam switching time. The value of K may indicate a start symbol index or a symbol offset between the DCI and the start symbol of the corresponding NR-PDSCH allocation (1802). The DCI decoding time or beam switching time may be configured based on K (1804). The value of K may be pre-specified, configured, or indicated by higher layer messaging, RRC signaling or MAC-CE, etc., and may also be based on WTRU hardware capabilities, DCI decoding delay, RF tuning delay, or beam switching. Time and so on. The value of K may implicitly represent the threshold of the time delay, which takes into account the TCI decoding time, the decoding time for the DCI with TCI, the RF tuning time or beam switching time, and the like. As an example, a WTRU may apply different RX beams to perform DCI reception and PDSCH reception, and it may take time to acquire and apply an appropriate RX beam to receive a corresponding PDSCH indicated by the DCI.

臨界值可以依照WTRU硬體能力、DCI解碼延遲、波束切換延遲、載波頻率、WTRU特定配置、WTRU CORESET、WTRU搜尋空間、WTRU操作參數配置、符號長度、WTRU服務類型或URLLC操作等等而改變。K的值可以大於或小於臨界值。當K的值大於臨界值的時候,那麼WTRU將會具有適當的時間來獲取和應用所指示的DCI波束。當K的值小於臨界值的時候,那麼在有限的時間以內,WTRU將會依賴於一或多個預先配置的波束,或者可以使用預先定義的配置或規則來確定適當的RX波束,以便接收相應的PDSCH。預先配置的一或多個波束以及預先定義的規則可以通過使用較高層傳訊、RRC傳訊、廣播SI或單播SI等等而被顯性地配置給WTRU。在某些配置中,K的值可以代表PDSCH分配的排程偏移,並且可以包含在攜帶TCI狀態的相同的排程分配DCI中。在該配置中,K的值是在DCI中的TCI狀態欄位以內或是TCI狀態欄位以外攜帶的。The threshold may vary depending on WTRU hardware capabilities, DCI decoding delay, beam handoff delay, carrier frequency, WTRU specific configuration, WTRU CORESET, WTRU search space, WTRU operating parameter configuration, symbol length, WTRU service type or URLLC operation, and the like. The value of K can be greater or less than the critical value. When the value of K is greater than the threshold, then the WTRU will have the appropriate time to acquire and apply the indicated DCI beam. When the value of K is less than the threshold, then within a limited time, the WTRU will rely on one or more pre-configured beams, or a predefined configuration or rule may be used to determine the appropriate RX beam to receive the corresponding PDSCH. The pre-configured one or more beams and predefined rules may be explicitly configured to the WTRU by using higher layer messaging, RRC messaging, broadcast SI or unicast SI, and the like. In some configurations, the value of K may represent the scheduling offset of the PDSCH allocation and may be included in the same scheduling allocation DCI that carries the TCI state. In this configuration, the value of K is carried in the TCI status field in the DCI or outside the TCI status field.

第19圖是用於為不同時槽或跨時槽的排程處理排程NR-PDSCH的起始時槽索引或時槽偏移的範例1900。在1900中,如果DCI的跨時槽排程以及相應的NR-PDSCH分配被配置,那麼K的值可以指示起始時槽索引或時槽偏移(1902)。基於該K,DCI解碼時間或波束切換時間(1904)可能是可用的。Figure 19 is an example 1900 for processing the start time slot index or time slot offset of the scheduled NR-PDSCH for scheduling of different time slots or time slots. In 1900, if the time slot schedule of the DCI and the corresponding NR-PDSCH allocation are configured, the value of K may indicate a start slot index or a time slot offset (1902). Based on this K, DCI decoding time or beam switching time (1904) may be available.

一旦存在為WTRU配置的TCI狀態,則可以通過顯性或隱性傳訊並基於WTRU的行動、WTRU的旋轉、WTRU的活動BWP切換或是WTRU的活動CC切換等等來更新一或多個TCI狀態中的空間QCL參考或預配置。在某些配置中,QCL關係或空間QCL參考可以反映將被用於波束管理或是控制或資料接收的波束或空間RX參數。Once there is a TCI state configured for the WTRU, one or more TCI states may be updated by explicit or implicit messaging and based on the WTRU's actions, WTRU rotation, WTRU's active BWP handover, or WTRU's active CC handover, and the like. Space QCL reference or pre-configuration. In some configurations, the QCL relationship or spatial QCL reference may reflect beam or spatial RX parameters that will be used for beam management or control or data reception.

顯性更新可以以來自WTRU的波束測量報告為基礎,並且網路、TRP或gNB可以確定是否需要顯性更新。該更新可以基於測量報告中與一或多個不同的TCI狀態相關聯的所有RS索引或是子集。如果需要顯性更新,那麼網路可以用信號向WTRU通告一或多個TCI以及一或多個相關聯的DL RS索引,以用於一或多個TCI狀態中的QCL參考更新。The explicit update can be based on beam measurement reports from the WTRU, and the network, TRP or gNB can determine if a explicit update is needed. The update may be based on all RS indexes or subsets in the measurement report associated with one or more different TCI states. If explicit updates are required, the network may signal one or more TCIs and one or more associated DL RS indices to the WTRU for QCL reference updates in one or more TCI states.

WTRU發起的TCI狀態中的空間QCL參考或配置更新同樣是可以被配置。WTRU可以發起更新,而不是網路發起的更新。作為範例,當WTRU確定服務波束品質降級時(例如低L1-RSRP或低SNR),WTRU可以向網路發送特定的更新請求,或者可以直接發送經過更新的波束測量報告結果。當接收到請求或更新的測量報告時,網路將被觸發以決定和更新WTRU處的一或多個TCI狀態中的QCL參考或配置。The spatial QCL reference or configuration update in the TCI state initiated by the WTRU may also be configured. The WTRU may initiate an update instead of a network initiated update. As an example, when the WTRU determines that the serving beam quality is degraded (eg, low L1-RSRP or low SNR), the WTRU may send a particular update request to the network, or may send the updated beam measurement report result directly. Upon receiving a request or updated measurement report, the network will be triggered to determine and update the QCL reference or configuration in one or more TCI states at the WTRU.

在WTRU在TCI狀態中能夠應用經過更新的空間QCL參考或配置的時候之時序延遲可被某些配置利用。一旦在WTRU執行QCL更新,則網路可以指示WTRU應用已更新的QCL參考或用於解調通道、PDCCH或PDSCH等等的配置的開始時間。如果QCL更新是通過顯性傳訊執行的,那麼WTRU會花時間來處理傳訊內容,並且更新TCI狀態,以及依需要執行波束切換。如果QCL更新是通過隱性傳訊執行的,那麼WTRU可以向網路告知該更新已成功完成,並且可以提供更新細節。更新細節可以包括經更新的空間QCL參考或配置。網路可能需要基於顯性或隱性傳訊來與WTRU協調排程PDCCH或PDSCH。Timing delays when the WTRU is able to apply an updated spatial QCL reference or configuration in the TCI state may be utilized by certain configurations. Once the QLC update is performed at the WTRU, the network may instruct the WTRU to apply the updated QCL reference or the start time of the configuration for demodulating the channel, PDCCH or PDSCH, and the like. If the QCL update is performed via explicit messaging, the WTRU will take the time to process the messaging content and update the TCI status and perform beam switching as needed. If the QCL update is performed by implicit messaging, the WTRU may inform the network that the update has completed successfully and may provide update details. The update details may include an updated spatial QCL reference or configuration. The network may need to coordinate the scheduled PDCCH or PDSCH with the WTRU based on explicit or implicit messaging.

如果PDCCH或PDSCH的排程偏移大於WTRU完成QCL參考或配置更新以及波束切換所需要的時間延遲,那麼WTRU可以獲取和應用一或多個適當的RX波束。如果排程偏移小於該時間延遲,那麼在應用經過更新的QCL參考或配置之前,WTRU可以依照預先的配置或預先定義的規則等等切換到適當的RX波束。在更新相關TCI狀態時,PDSCH和PDCCH,時間延遲可以是相似或不同的。如果PDCCH和PDSCH共用相同的TCI狀態,那麼可以為這兩個通道使用相似的時間延遲。If the scheduling offset of the PDCCH or PDSCH is greater than the time delay required by the WTRU to complete the QCL reference or configuration update and beam handover, the WTRU may acquire and apply one or more suitable RX beams. If the schedule offset is less than the time delay, the WTRU may switch to the appropriate RX beam in accordance with a pre-configured or pre-defined rule or the like before applying the updated QCL reference or configuration. When updating the relevant TCI state, the PDSCH and PDCCH, the time delay may be similar or different. If the PDCCH and PDSCH share the same TCI state, then a similar time delay can be used for both channels.

在用於更新TCI狀態的空間QCL參考或預配置的相同傳訊中可以包含在WTRU在TCI狀態中應用已更新的空間QCL參考或配置的時間時候的延遲。時間延遲可以是以處理傳訊內容的WTRU硬體能力、用於更新TCI狀態的資源以及後續的波束切換等等為基礎而由較高層傳訊、RRC傳訊或MAC-CE等等指示、配置或預先指定。如果WTRU在該時間延遲之後基於已更新的TCI狀態接收PDCCH或PDSCH,那麼WTRU可以應用新的空間QCL參考或預配置。然而,如果WTRU在該時間延遲之前基於已更新的TCI狀態接收PDCCH或PDSCH,那麼預先配置或預先指定的規則等等可以被利用。The same timing in the spatial QCL reference or pre-configuration for updating the TCI state may include a delay when the WTRU applies the updated spatial QCL reference or configuration in the TCI state. The time delay may be indicated, configured or pre-specified by higher layer communication, RRC communication or MAC-CE, etc. based on the WTRU hardware capability of processing the communication content, resources for updating the TCI status, and subsequent beam switching, and the like. . If the WTRU receives a PDCCH or PDSCH based on the updated TCI status after this time delay, the WTRU may apply a new spatial QCL reference or pre-configuration. However, if the WTRU receives the PDCCH or PDSCH based on the updated TCI status prior to the time delay, pre-configured or pre-specified rules and the like may be utilized.

第20圖是在TCI狀態中應用已更新的空間QCL參考時的時序延遲的範例2000。在2000中,用於NR-PDSCH(2002)的TCI 001會被WTRU RX波束3接收。在更新了TCI 001的QCL參考之後(2004),對於WTRU,存在時間延遲,以在TCI狀態001中應用已更新的QCL參考(2010)。在該延遲期間,WTRU可被配置成繼續應用舊的QCL參考,或者應用預先配置的QCL參考來用於PDCCH、PDSCH或NR-PDSCH(2006)接收。舉例來說,如果沒有應用已更新的QCL參考或預配置,那麼針對WTRU的預配置可以使用特定的預配置波束來接收PDCCH或PDSCH。在另一範例中,預配置可以使用從空閒模式中獲得的波束、作為回退模式的全向波束、主服務波束或錨定波束等等。如果時間延遲充足,那麼WTRU可以將已更新的QCL參考用於RX波束5,以接收NR-PDSCH(2008)。Figure 20 is an example 2000 of timing delays when an updated spatial QCL reference is applied in the TCI state. In 2000, TCI 001 for NR-PDSCH (2002) will be received by WTRU RX Beam 3. After updating the QCI reference for TCI 001 (2004), there is a time delay for the WTRU to apply the updated QCL reference (2010) in TCI state 001. During this delay, the WTRU may be configured to continue to apply the old QCL reference or apply a pre-configured QCL reference for PDCCH, PDSCH or NR-PDSCH (2006) reception. For example, if no updated QCL reference or pre-configuration is applied, the pre-configuration for the WTRU may use a particular pre-configured beam to receive the PDCCH or PDSCH. In another example, the pre-configuration may use a beam obtained from an idle mode, an omnidirectional beam as a fallback mode, a primary serving beam or an anchor beam, and the like. If the time delay is sufficient, the WTRU may use the updated QCL reference for the RX beam 5 to receive the NR-PDSCH (2008).

QCL指示可被利用來指示不同DL RS之間的空間QCL關係。SS塊可以在空間上與另一CSI-RS資源內部的用於週期性、非週期性或半永久性報告等等的一或多個埠實施QCL。由於可以使用P-1來提供粗略的波束相關資訊,因此可以將空間QCL用於BMP-1程序,其中CSI-RS資源被配置成在空間上與SS塊實施QCL。在另一實施例中,CSI-RS資源可以在空間上與用於P-2和P-3程序的另一CSI-RS資源執行QCL。在該配置中可以執行波束細化處理,並且可以使用QCL關係來指先前傳輸的CSI-RS資源或波束。The QCL indication can be utilized to indicate spatial QCL relationships between different DL RSs. The SS block may spatially implement QCL with one or more of the internal CSI-RS resources for periodic, aperiodic or semi-permanent reporting, and the like. Since P-1 can be used to provide coarse beam related information, the spatial QCL can be used for the BMP-1 procedure, where the CSI-RS resources are configured to spatially interact with the SS block to implement QCL. In another embodiment, the CSI-RS resources may spatially perform QCL with another CSI-RS resource for the P-2 and P-3 procedures. Beam refinement processing may be performed in this configuration, and a QCL relationship may be used to refer to previously transmitted CSI-RS resources or beams.

空間QCL關係可以使用較高層傳訊、RRC傳訊或RRC傳訊和MAC-CE來配置。空間QCL關係還可以藉由DCI來指示,例如用於非週期性的CSI-RS報告。由於用於PDCCH或PDSCH之接收的QCL指示和DL RS的目的可能不同,因此,DCI欄位或格式同樣有可能會不同。PDCCH或PDSCH接收和DL RS還可以被聯合指示,並且聯合DCI欄位或格式可以被聯合編碼。Spatial QCL relationships can be configured using higher layer messaging, RRC messaging or RRC messaging and MAC-CE. The spatial QCL relationship can also be indicated by DCI, such as for aperiodic CSI-RS reporting. Since the purpose of the QCL indication for PDCCH or PDSCH reception and the DL RS may be different, the DCI field or format may also be different. The PDCCH or PDSCH reception and DL RS may also be jointly indicated, and the joint DCI field or format may be jointly encoded.

本文所給出的DL波束指示配置可被應用於UL波束指示。可以配置和維持包含了用於UL波束指示的多個TCI狀態的分別的TCI表格。較高層或RRC傳訊可以在一開始配置TCI狀態與針對UL的RS集合之間的QCL關聯。每一TCI狀態可以是參考RS的候選,其在空間上與目標RS、PUCCH的DM-RS或PUSCH的DM-RS等等執行QCL,以用於UL傳輸。動態傳訊、較高層傳訊、RRC傳訊、MAC-CE或DCI等等,可以更新TCI狀態、RS ID、SRI、CRI或SS塊索引等等之間的關係,以用於UL傳輸的動態波束指示。The DL beam indication configuration presented herein can be applied to UL beam indication. Separate TCI tables containing multiple TCI states for UL beam indication can be configured and maintained. The higher layer or RRC communication may configure the QCL association between the TCI state and the RS set for the UL at the beginning. Each TCI state may be a candidate for a reference RS that performs QCL spatially with a target RS, a DM-RS of a PUCCH, or a DM-RS of a PUSCH, etc. for UL transmission. Dynamic messaging, higher layer messaging, RRC messaging, MAC-CE or DCI, etc., may update the relationship between TCI status, RS ID, SRI, CRI or SS block index, etc. for dynamic beam indication of UL transmissions.

當UL和DL之間的波束對應性可應用時,為了效率,RS集合可以只包含DL RS ID,或者包含SRS ID和DL RS ID兩者。如果沒有波束對應性,那麼RS集合可以包含PRACH前言或SRS ID等等。在另一實施例中,針對DL波束指示和UL波束指示可配置一聯合的TCI表格。在這種情況下,如果TCI狀態指的RS集合只包含DL RS ID,那麼其可以指示UL與DL之間的波束對應性是可應用的,並且相同的DL ID可被用於DL和UL QCL參考。由此,WTRU可以使用有和與所指示的DL RS ID配對的DL RX波束具有相同方向的SRS波束作為UL TX波束。When beam correspondence between UL and DL is applicable, for efficiency, the RS set may include only the DL RS ID or both the SRS ID and the DL RS ID. If there is no beam correspondence, the RS set may contain a PRACH preamble or an SRS ID and the like. In another embodiment, a joint TCI table can be configured for the DL beam indication and the UL beam indication. In this case, if the RS set of the TCI state refers to only the DL RS ID, it may indicate that the beam correspondence between the UL and the DL is applicable, and the same DL ID may be used for the DL and UL QCL. reference. Thus, the WTRU may use the SRS beam having the same direction as the DL RX beam paired with the indicated DL RS ID as the UL TX beam.

雖然在上文中描述了採用特定組合的特徵和元件,但是本領域普通技術人員將會認識到,每一特徵既可以單獨使用,也可以與其他特徵和元件進行任何組合。此外,這裡描述的方法可以在引入電腦可讀媒體中以供電腦或處理器運行的電腦程式、軟體或韌體中實施。關於電腦可讀媒體的範例包括電信號(經由有線或無線連接傳輸)以及電腦可讀儲存媒體。關於電腦可讀儲存媒體的範例包括但不侷限於唯讀記憶體(ROM)、隨機存取記憶體(RAM)、暫存器、快取記憶體、半導體記憶裝置、磁媒體(例如內部硬碟和可拆卸磁片)、磁光媒體、以及光媒體(例如CD-ROM碟片和數位多用途碟片(DVD))。與軟體關聯的處理器可以用於實施在WTRU、UE、終端、基地台、RNC或任何電腦主機使用的射頻收發器。Although features and elements of a particular combination are described above, one of ordinary skill in the art will recognize that each feature can be used alone or in any combination with other features and elements. Moreover, the methods described herein can be implemented in a computer program, software or firmware incorporated into a computer readable medium for use by a computer or processor. Examples of computer readable media include electrical signals (transmitted via wired or wireless connections) and computer readable storage media. Examples of computer readable storage media include, but are not limited to, read only memory (ROM), random access memory (RAM), scratchpad, cache memory, semiconductor memory devices, magnetic media (eg internal hard drives) And detachable magnetic disks), magneto-optical media, and optical media (such as CD-ROM discs and digital versatile discs (DVD)). A processor associated with the software can be used to implement a radio frequency transceiver for use at a WTRU, UE, terminal, base station, RNC, or any computer host.

BPL‧‧‧波束配對鏈路BPL‧‧‧beam paired link

CSI-RS‧‧‧通道狀態資訊參考信號CSI-RS‧‧‧Channel Status Information Reference Signal

DCI‧‧‧下鏈控制資訊DCI‧‧‧Chain Control Information

DL‧‧‧高速下鏈DL‧‧‧High speed chain

DMRS‧‧‧解調RSDMRS‧‧‧Demodulation RS

FDM‧‧‧分頻多工FDM‧‧‧divided multiplex

FIBR‧‧‧靈活的獨立波束報告FIBR‧‧‧Flexible independent beam report

ID‧‧‧識別符或指示符ID‧‧‧identifier or indicator

L1‧‧‧層1L1‧‧‧ layer 1

L1-RSRP‧‧‧第一層參考信號接收功率L1-RSRP‧‧‧First layer reference signal received power

N2、N3、N4、N6、N11、S1、X2、Xn‧‧‧介面N2, N3, N4, N6, N11, S1, X2, Xn‧‧ interface

NR‧‧‧新型無線電NR‧‧‧New radio

NR-PDSCH、2002、2008‧‧‧新型無線電實體下鏈共用通道NR-PDSCH, 2002, 2008‧‧‧New radio entity downlink shared channel

PBCH‧‧‧實體廣播通道PBCH‧‧‧ entity broadcast channel

PSS‧‧‧主同步信號PSS‧‧‧ primary sync signal

PUCCH‧‧‧短實體上鏈控制通道PUCCH‧‧‧ Short physical chain control channel

QCL‧‧‧準共位QCL‧‧‧ Quasi-co-location

RS‧‧‧參考信號RS‧‧‧ reference signal

SS‧‧‧同步信號SS‧‧‧Synchronization signal

SSS‧‧‧輔同步信號SSS‧‧‧Secondary sync signal

TCI‧‧‧傳輸配置指示符TCI‧‧‧Transmission Configuration Indicator

TDM‧‧‧分時多工TDM‧‧‧Time-division

TRP‧‧‧傳輸接收點TRP‧‧‧ transmission receiving point

UBRR‧‧‧統一的基線RS報告UBRR‧‧‧ Unified Baseline RS Report

UE‧‧‧使用者設備UE‧‧‧User equipment

100‧‧‧通信系統100‧‧‧Communication system

102、102a、102b、102c、102d、602‧‧‧無線傳輸/接收單元(WTRU)102, 102a, 102b, 102c, 102d, 602 ‧ ‧ WTRU

104‧‧‧無線電存取網路(RAN)104‧‧‧Radio Access Network (RAN)

106‧‧‧核心網路(CN)106‧‧‧ Core Network (CN)

108‧‧‧公共交換電話網路(PSTN)108‧‧‧Public Switched Telephone Network (PSTN)

110‧‧‧網際網路110‧‧‧Internet

112‧‧‧其他網路112‧‧‧Other networks

114a、114b‧‧‧基地台114a, 114b‧‧‧ base station

116‧‧‧空中介面116‧‧‧Intermediate mediation

118‧‧‧處理器118‧‧‧Processor

120‧‧‧收發器120‧‧‧ transceiver

122‧‧‧傳輸/接收元件122‧‧‧Transmission/receiving components

124‧‧‧揚聲器/麥克風124‧‧‧Speaker/Microphone

126‧‧‧小鍵盤126‧‧‧Keypad

128‧‧‧顯示器/觸控板128‧‧‧Display/Touchpad

130‧‧‧非可移記憶體130‧‧‧ Non-removable memory

132‧‧‧可移記憶體132‧‧‧Removable memory

134‧‧‧電源134‧‧‧Power supply

136‧‧‧全球定位系統(GPS)晶片組136‧‧‧Global Positioning System (GPS) chipset

138‧‧‧週邊設備138‧‧‧ Peripherals

160a、160b、160c‧‧‧e節點B160a, 160b, 160c‧‧‧e Node B

162‧‧‧行動性管理閘道(MME)162‧‧‧Action Management Gateway (MME)

164‧‧‧服務閘道(SGW)164‧‧‧Service Gateway (SGW)

166‧‧‧封包資料網路(PDN)閘道(或PGW)166‧‧‧ Packet Data Network (PDN) Gateway (or PGW)

180a、180b、180c‧‧‧下一代節點b(gNB)180a, 180b, 180c‧‧‧Next generation node b (gNB)

184a、184b‧‧‧使用者平面功能(UPF)184a, 184b‧‧‧ User Plane Function (UPF)

182a、182b‧‧‧存取和行動性管理功能(AMF)182a, 182b‧‧‧Access and mobility management functions (AMF)

183a、183b‧‧‧會話管理功能(SMF)183a, 183b‧‧‧ Session Management Function (SMF)

185a、185b‧‧‧資料網路(DN)185a, 185b‧‧‧ Data Network (DN)

402‧‧‧第1層濾波組件402‧‧‧Layer 1 filter component

404、1404‧‧‧波束合併/選擇組件404, 1404‧‧‧ Beam Consolidation/Selection Components

406‧‧‧L3波束濾波組件406‧‧‧L3 beam filter assembly

408‧‧‧波束選擇組件408‧‧‧beam selection component

410‧‧‧層3濾波組件410‧‧‧ Layer 3 Filter Components

412、1416‧‧‧報告準則評估組件412, 1416‧‧ Reporting criteria assessment component

502、802‧‧‧SS叢發時段502, 802‧‧‧SS bursting time

504‧‧‧WTRU特定的CSI-RS時段504‧‧‧WTRU-specific CSI-RS period

506‧‧‧波束506‧‧‧beam

1102‧‧‧測量設定1102‧‧‧Measurement settings

1402‧‧‧層1濾波組件1402‧‧‧ Layer 1 Filter Assembly

1406‧‧‧L3波束濾波組件1406‧‧‧L3 beam filter assembly

1408‧‧‧L1波束濾波組件1408‧‧‧L1 beam filter assembly

1410、1412‧‧‧報告波束選擇組件1410, 1412‧‧‧Report beam selection component

1414‧‧‧層3胞元品質濾波組件1414‧‧‧ Layer 3 cell quality filter component

1626‧‧‧統一的測量報告(UMR)1626‧‧‧ Unified Measurement Report (UMR)

1628‧‧‧獨立波束報告(IBR)1628‧‧‧Independent Beam Reporting (IBR)

更詳細的描述可以從以下結合附圖舉例給出的具體實施方式中得到,其中附圖中的相同參考數字指示的是相同的元件,並且其中: 第1A圖是示出了可以實施所揭露的一或多個實施例的範例通信系統的系統圖式; 第1B圖是示出了根據一實施例的可以在第1A圖所示的通信系統內部使用的範例無線傳輸/接收單元(WTRU)的系統圖式; 第1C圖是示出了根據一實施例的可以在第1A圖所示的通信系統內部使用的範例無線電存取網路(RAN)和範例核心網路(CN)的系統圖式; 第1D圖是示出了根據一實施例的可以在第1A圖所示的通信系統內部使用的另一範例RAN和另一範例CN的系統圖式; 第2圖是關於傳輸/接收點(TRP)和WTRU天線模型的範例; 第3圖是關於同步信號(SS)叢發和多個SS塊的範例; 第4圖是用於統一波束管理(BM)的測量模型的範例; 第5圖是將多個參考信號(RS)用於統一BM的範例; 第6圖是用於統一BM的範例信號流程; 第7圖是在兩個窄波束的重疊覆蓋中行動的WTRU的範例; 第8圖是用於信號流程的波束級乒乓效應的範例; 第9圖是用於減小波束級乒乓效應的RS的範例; 第10圖是使用用於BM的多種類型的RS所導致的TRP乒乓效應的範例; 第11圖是具有關於通道狀態資訊-RS(CSI-RS)和SS塊的聯合和獨立波束報告的用於統一的BM的測量和報告設定配置的範例; 第12圖是具有關於CSI-RS和SS塊的聯合和獨立波束報告的用於統一的BM的測量和報告設定的另一配置的範例; 第13圖是關於測量模型的範例,其中針對BM可以使用第3層 RS接收功率(L3-RSRP)波束濾波處理; 第14圖是具有層1(L1)波束濾波處理的測量模型的範例; 第15圖是所報告的波束在地理上接近WTRU並以WTRU為中心的範例; 第16圖是關於統一的波束測量和報告的範例; 第17圖是活動頻寬部分(BWP)之外的波束測量和報告的範例; 第18圖是使用了下鏈控制資訊(DCI)解碼延遲或波束切換時間來排程新型無線電實體下鏈共用通道(NR-PDSCH)的範例起始符號索引或符號偏移; 第19圖是用於排程NR-PDSCH以進行不同的時槽或跨時槽排程的起始時槽索引或時槽偏移的範例;以及 第20圖是在傳輸配置指示符(TCI)狀態中應用更新的空間準共位(QCL)參考時的定潛時遲的範例。A more detailed description may be derived from the following detailed description of the embodiments illustrated in the accompanying drawings, in which System diagram of an example communication system of one or more embodiments; FIG. 1B is a diagram showing an exemplary wireless transmit/receive unit (WTRU) that may be used within the communication system illustrated in FIG. 1A, in accordance with an embodiment. System Schematic; FIG. 1C is a system diagram showing an example radio access network (RAN) and an example core network (CN) that can be used within the communication system shown in FIG. 1A, in accordance with an embodiment. 1D is a system diagram showing another example RAN and another example CN that may be used inside the communication system shown in FIG. 1A according to an embodiment; FIG. 2 is a transmission/reception point ( Examples of TRP and WTRU antenna models; Figure 3 is an example of synchronization signal (SS) bursting and multiple SS blocks; Figure 4 is an example of a measurement model for unified beam management (BM); Is to have multiple reference signals ( RS) an example for unifying BM; Figure 6 is an example signal flow for unifying BM; Figure 7 is an example of a WTRU acting in overlapping coverage of two narrow beams; Figure 8 is for signal flow An example of a beam-level ping-pong effect; Figure 9 is an example of an RS for reducing the beam-stage ping-pong effect; Figure 10 is an example of a TRP ping-pong effect caused by using multiple types of RSs for BM; An example of measurement and report setting configuration for unified BM with joint and independent beam reporting for channel state information-RS (CSI-RS) and SS blocks; Figure 12 is a diagram with joints for CSI-RS and SS blocks An example of another configuration for measurement and reporting of uniform BM reporting with independent beams; Figure 13 is an example of a measurement model in which Layer 3 RS received power (L3-RSRP) beam filtering can be used for BM Figure 14 is an example of a measurement model with Layer 1 (L1) beam filtering; Figure 15 is an example of a reported beam geographically close to the WTRU and WTRU-centric; Figure 16 is for a unified beam Examples of measurements and reports Figure 17 is an example of beam measurement and reporting outside the active bandwidth portion (BWP); Figure 18 is the use of downlink control information (DCI) decoding delay or beam switching time to schedule new radio entity downlink shared channels Example starting symbol index or symbol offset of (NR-PDSCH); Figure 19 is the starting time slot index or time slot offset for scheduling NR-PDSCH for different time slot or time slot scheduling An example of FIG. 20; and FIG. 20 is an example of a latent time delay when an updated spatial quasi-co-location (QCL) reference is applied in a Transmission Configuration Indicator (TCI) state.

Claims (20)

一種無線/傳輸接收單元(WTRU),包括: 一收發器,被配置成從一傳輸接收點(TRP)接收配置資訊,該配置資訊包含了用於多個參考信號(RS)的一波束測量報告設定以及RS之間的一傳輸功率偏移; 一收發器,被配置成測量一波束的一第一參考信號(RS)和一第二RS的第一層參考信號接收功率(L1-RSRP);以及 一處理器,被配置成發送一聯合報告或一獨立報告,其中該聯合報告或該獨立報告是在該第一RS或該第二RS的該經測量L1-RSRP高於一臨界值的一條件下且基於該傳輸功率偏移產生的。A wireless/transmission receiving unit (WTRU), comprising: a transceiver configured to receive configuration information from a transmission receive point (TRP), the configuration information including a beam measurement report for a plurality of reference signals (RS) Setting a transmission power offset between the RSs; a transceiver configured to measure a first reference signal (RS) of a beam and a first layer reference signal received power (L1-RSRP) of a second RS; And a processor configured to send a joint report or an independent report, wherein the joint report or the independent report is one of the measured L1-RSRP of the first RS or the second RS being higher than a threshold And generated based on the transmission power offset. 如申請專利範圍第1項所述的WTRU,其中該WTRU向該TRP請求測量協助,以便以分時多工(TDM)或分頻多工(FDM)的方式執行補充RS傳輸。The WTRU as claimed in claim 1, wherein the WTRU requests measurement assistance from the TRP to perform supplementary RS transmission in a time division multiplexing (TDM) or a frequency division multiplexing (FDM) manner. 如申請專利範圍第1項所述的WTRU,進一步包括:該WTRU基於一基線RS和該基線RS的該功率偏移來執行該第一RS和第二RS的一聯合報告的測量。The WTRU of claim 1, further comprising: the WTRU performing a joint report measurement of the first RS and the second RS based on the baseline RS and the power offset of the baseline RS. 如申請專利範圍第1項所述的WTRU,其中該第一RS是同步信號(SS)/實體廣播通道(SS/PBCH)塊,並且該第二RS是處於頻寬部分(BWP)內部的準共位(QCL)資源上的通道狀態資訊參考信號(CSI-RS)。The WTRU as claimed in claim 1, wherein the first RS is a synchronization signal (SS)/physical broadcast channel (SS/PBCH) block, and the second RS is within a bandwidth portion (BWP) Channel status information reference signal (CSI-RS) on co-located (QCL) resources. 如申請專利範圍第1項所述的WTRU,其中該WTRU發送該第一RS和該第二RS的一統一報告,並且該統一報告包括以下中的一者或多者:一波束識別(波束ID)、一報告類型、一RS類型或一L1-RSRP值。The WTRU as claimed in claim 1, wherein the WTRU sends a unified report of the first RS and the second RS, and the unified report includes one or more of the following: a beam identification (beam ID) ), a report type, an RS type, or an L1-RSRP value. 如申請專利範圍第5項所述的WTRU,其中該報告類型指示聯合報告或獨立報告。The WTRU as recited in claim 5, wherein the report type indicates a joint report or an independent report. 如申請專利範圍第1項所述的WTRU,其中一已更新的傳輸配置指示符(TCI)表是基於該聯合報告或該獨立報告而被接收的,該聯合報告或該獨立報告包含了多個分量載波或多個頻寬部分(BWP)的一已更新的準共位(QCL)參考。The WTRU as claimed in claim 1, wherein an updated Transmission Configuration Indicator (TCI) table is received based on the joint report or the independent report, the joint report or the independent report includes a plurality of An updated quasi-co-location (QCL) reference for a component carrier or multiple bandwidth portions (BWP). 如申請專利範圍第1項所述的WTRU,其中該傳輸功率偏移介於一同步信號(SS)/實體廣播通道(SS/PBCH)塊與用於輔助波束測量報告或波束故障恢復的一通道狀態資訊參考信號(CSI-RS)之間。The WTRU as claimed in claim 1, wherein the transmission power offset is between a synchronization signal (SS)/physical broadcast channel (SS/PBCH) block and a channel for assisting beam measurement reporting or beam failure recovery. Between status information reference signals (CSI-RS). 如申請專利範圍第8項所述的WTRU,其中介於該SS/PBCH塊與該CSI-RS之間的該傳輸功率偏移被用於推導在一準共位(QCL)SSB和用於該波束測量報告的CSI-RS的一統一L1-RSRP值。The WTRU as claimed in claim 8 wherein the transmission power offset between the SS/PBCH block and the CSI-RS is used to derive a quasi-co-location (QCL) SSB and for the A unified L1-RSRP value of the CSI-RS reported by the beam measurement. 如申請專利範圍第8項所述的WTRU,其中介於該SS/PBCH塊與該CSI-RS之間的該傳輸功率偏移被用於推導用於波束故障恢復的不同的L1-RSRP臨界值候選波束選擇。The WTRU as claimed in claim 8 wherein the transmission power offset between the SS/PBCH block and the CSI-RS is used to derive different L1-RSRP thresholds for beam failure recovery. Candidate beam selection. 一種由無線/傳輸接收單元(WTRU)執行的方法,該方法包括: 藉該WTRU從一傳輸接收點(TRP)接收配置資訊,該配置資訊包含了關於多個參考信號(RS)的波束測量之一報告設定以及RS之間的一傳輸功率偏移; 藉該WTRU測量一波束的一第一參考信號(RS)和一第二RS的層1參考信號接收功率(L1-RSRP);及 藉該WTRU發送一聯合報告或一獨立報告,其中該聯合報告或獨立報告是在該第一RS或該第二RS的該經測量的L1-RSRP高於一臨界值的一條件下且基於該傳輸功率偏移產生的。A method performed by a wireless/transmission receiving unit (WTRU), the method comprising: receiving, by the WTRU, configuration information from a transmission receiving point (TRP), the configuration information including beam measurements on a plurality of reference signals (RS) a report setting and a transmission power offset between the RSs; the WTRU measures a first reference signal (RS) of a beam and a layer 1 reference signal received power (L1-RSRP) of a second RS; The WTRU sends a joint report or an independent report, where the joint report or the independent report is based on the condition that the measured L1-RSRP of the first RS or the second RS is higher than a threshold and based on the transmission power Offset generated. 如申請專利範圍第11項所述的方法,其中該WTRU向該TRP請求測量協助,以便以分時多工(TDM)或分頻多工(FDM)的方式執行補充RS傳輸。The method of claim 11, wherein the WTRU requests measurement assistance from the TRP to perform supplementary RS transmission in a time division multiplexing (TDM) or a frequency division multiplexing (FDM) manner. 如申請專利範圍第11項所述的方法,進一步包括:藉該WTRU基於一基線RS和該基線RS的該功率偏移來執行用於該第一RS和第二RS的一聯合報告的測量。The method of claim 11, further comprising: performing, by the WTRU, a measurement of a joint report for the first RS and the second RS based on the baseline offset of the baseline RS and the baseline RS. 如申請專利範圍第11項所述的方法,其中該第一RS是一同步信號(SS)/實體廣播通道(SS/PBCH)塊,並且該第二RS是處於一頻寬部分(BWP)內部的準共位(QCL)資源上的一通道狀態資訊參考信號(CSI-RS)。The method of claim 11, wherein the first RS is a synchronization signal (SS)/physical broadcast channel (SS/PBCH) block, and the second RS is in a bandwidth portion (BWP) A channel status information reference signal (CSI-RS) on a quasi-co-location (QCL) resource. 如申請專利範圍第11項所述的方法,該方法還包括:該WTRU發送該第一RS和該第二RS的一統一報告,並且該統一報告包括以下中的一者或多者:一波束識別(波束ID)、一報告類型、一RS類型或一L1-RSRP值。The method of claim 11, the method further comprising: the WTRU transmitting a unified report of the first RS and the second RS, and the unified report includes one or more of the following: a beam Identification (beam ID), a report type, an RS type, or an L1-RSRP value. 如申請專利範圍第15項所述的方法,其中該報告類型指示聯合報告或獨立報告。The method of claim 15, wherein the report type indicates a joint report or an independent report. 如申請專利範圍第11項所述的方法,其中一已更新的傳輸配置指示符(TCI)表是基於該聯合報告或該獨立報告而被接收的,該聯合報告或該獨立報告包含了用於多個分量載波或多個頻寬部分(BWP)的一已更新的準共位(QCL)參考。The method of claim 11, wherein an updated Transmission Configuration Indicator (TCI) table is received based on the joint report or the independent report, the joint report or the independent report is included An updated quasi-co-location (QCL) reference for multiple component carriers or multiple bandwidth portions (BWP). 如申請專利範圍第11項所述的方法,其中該傳輸功率偏移介於一同步信號(SS)/實體廣播通道(SS/PBCH)塊與用於輔助波束測量報告或波束故障恢復的一通道狀態資訊參考信號(CSI-RS)之間。The method of claim 11, wherein the transmission power offset is between a synchronization signal (SS)/physical broadcast channel (SS/PBCH) block and a channel for assisting beam measurement reporting or beam failure recovery. Between status information reference signals (CSI-RS). 如申請專利範圍第18項所述的方法,其中介於該SS/PBCH塊與該CSI-RS之間的該傳輸功率偏移被用於推導在一準共位(QCL)SSB和用於波束測量報告CSI-RS的的一統一L1-RSRP值。The method of claim 18, wherein the transmission power offset between the SS/PBCH block and the CSI-RS is used to derive a quasi-co-location (QCL) SSB and for a beam The measurement reports a uniform L1-RSRP value of the CSI-RS. 如申請專利範圍第18項所述的方法,其中介於該SS/PBCH塊與該CSI-RS之間的該傳輸功率偏移被用於推導用於波束故障恢復的候選波束選擇的不同的L1-RSRP臨界值。The method of claim 18, wherein the transmission power offset between the SS/PBCH block and the CSI-RS is used to derive a different L1 of candidate beam selection for beam failure recovery. -RSRP threshold.
TW107120515A 2017-06-14 2018-06-14 Unified beam management in a wireless network TW201907680A (en)

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
US201762519521P 2017-06-14 2017-06-14
US62/519521 2017-06-14
US201762543136P 2017-08-09 2017-08-09
US62/543136 2017-08-09
US201762555755P 2017-09-08 2017-09-08
US62/555755 2017-09-08
US201762565341P 2017-09-29 2017-09-29
US62/565341 2017-09-29
US201762586596P 2017-11-15 2017-11-15
US62/586596 2017-11-15
US201862615725P 2018-01-10 2018-01-10
US62/615725 2018-01-10

Publications (1)

Publication Number Publication Date
TW201907680A true TW201907680A (en) 2019-02-16

Family

ID=62909592

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107120515A TW201907680A (en) 2017-06-14 2018-06-14 Unified beam management in a wireless network

Country Status (2)

Country Link
TW (1) TW201907680A (en)
WO (1) WO2018232090A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112189320A (en) * 2019-05-03 2021-01-05 联发科技股份有限公司 Transmission configuration indication handover procedure in new radio mobile communication
CN112822695A (en) * 2019-11-15 2021-05-18 财团法人工业技术研究院 Method for coordinating beam scanning scheduling and intelligent controller
CN113316267A (en) * 2019-03-01 2021-08-27 Oppo广东移动通信有限公司 Wireless communication method, terminal equipment and network equipment
TWI751656B (en) * 2019-08-16 2022-01-01 大陸商大唐移動通信設備有限公司 Method, base station and user terminal for indicating energy saving information
CN113940107A (en) * 2019-04-09 2022-01-14 株式会社Ntt都科摩 User terminal and wireless communication method
TWI754301B (en) * 2019-07-26 2022-02-01 大陸商大唐移動通信設備有限公司 Resource allocation, determination method, device and computer storage medium
CN114175761A (en) * 2019-06-13 2022-03-11 株式会社Ntt都科摩 Terminal and wireless communication method
CN114223266A (en) * 2019-06-13 2022-03-22 株式会社Ntt都科摩 Terminal and wireless communication method

Families Citing this family (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10904940B2 (en) 2018-03-30 2021-01-26 Comcast Cable Communications, Llc Configuration for beam failure recovery
US10887939B2 (en) 2017-08-10 2021-01-05 Comcast Cable Communications, Llc Transmission power control for beam failure recovery requests
US10855359B2 (en) 2017-08-10 2020-12-01 Comcast Cable Communications, Llc Priority of beam failure recovery request and uplink channels
US11337265B2 (en) 2017-08-10 2022-05-17 Comcast Cable Communications, Llc Beam failure recovery request transmission
US11950287B2 (en) 2017-08-10 2024-04-02 Comcast Cable Communications, Llc Resource configuration of beam failure recovery request transmission
US11277301B2 (en) 2017-09-07 2022-03-15 Comcast Cable Communications, Llc Unified downlink control information for beam management
US11611468B2 (en) 2017-09-28 2023-03-21 Comcast Cable Communications, Llc Beam management with DRX configuration
US20200389883A1 (en) * 2017-11-16 2020-12-10 Telefonaktiebolaget Lm Ericsson (Publ) Configuring spatial qcl reference in a tci state
US10660063B2 (en) 2017-11-16 2020-05-19 Comcast Cable Communications, Llc Beam paging assistance
CN114710247A (en) * 2017-11-17 2022-07-05 中兴通讯股份有限公司 Information transmitting method, information receiving method, information transmitting device, information receiving device, storage medium and processor
CN109818723B (en) 2017-11-21 2020-12-29 中国移动通信有限公司研究院 Method for data transmission, network side equipment and terminal
WO2019102064A1 (en) * 2017-11-27 2019-05-31 Nokia Technologies Oy Joint beam reporting for wireless networks
US11050478B2 (en) * 2017-12-19 2021-06-29 Samsung Electronics Co., Ltd. Method and apparatus for beam reporting in next generation wireless systems
US10863570B2 (en) 2018-01-09 2020-12-08 Comcast Cable Communications, Llc Beam selection in beam failure recovery request retransmission
US10735078B2 (en) * 2018-01-12 2020-08-04 Qualcomm Incorporated Operations with bandwidth part (BWP) switching
US10798622B2 (en) 2018-02-09 2020-10-06 Comcast Cable Communications, Llc Beam failure recovery in carrier aggregation
US11419066B2 (en) 2018-02-15 2022-08-16 Comcast Cable Communications, Llc Beam failure report
EP3744140B1 (en) 2018-03-30 2024-02-14 Ofinno, LLC Bandwidthpart (bwp) switching during beam failure recovery
JP6924460B2 (en) 2018-03-30 2021-08-25 オフィノ, エルエルシー Scheduling request-based beam failure recovery
EP3771268A4 (en) * 2018-03-30 2021-03-24 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Signal transmission method and device
CA3038779A1 (en) 2018-04-02 2019-10-02 Comcast Cable Communications, Llc Beam failure recovery
CA3045809A1 (en) 2018-05-10 2019-11-10 Comcast Cable Communications, Llc Prioritization in beam failure recovery procedures
CN110636538B (en) * 2018-06-22 2021-07-20 维沃移动通信有限公司 Beam measurement method, network side device, terminal device and storage medium
US20190393980A1 (en) * 2018-06-22 2019-12-26 Mediatek Inc. Method for NR Radio Link Monitoring (RLM) and Evaluation Period Determination
US11012137B2 (en) 2018-08-09 2021-05-18 Comcast Cable Communications, Llc Resource management for beam failure recovery procedures
CN110830159B (en) * 2018-08-10 2021-07-16 华为技术有限公司 Wireless communication method, device and computer readable storage medium
EP3837774B1 (en) * 2018-08-17 2024-01-17 InterDigital Patent Holdings, Inc. Beam management for multi-trp
EP3627721A1 (en) 2018-09-24 2020-03-25 Comcast Cable Communications LLC Beam failure recovery procedures
CA3056608A1 (en) 2018-09-25 2020-03-25 Comcast Cable Communications, Llc Beam configuration for secondary cells
KR102537256B1 (en) * 2018-09-27 2023-05-26 노키아 테크놀로지스 오와이 Beam Failure Recovery for Serving Cell
EP3905803A4 (en) * 2018-12-25 2022-08-10 Beijing Xiaomi Mobile Software Co., Ltd. Data transmission method, base station, user equipment and storage medium
WO2020141929A1 (en) * 2019-01-03 2020-07-09 엘지전자 주식회사 Always-on signal reception method performed by terminal in wireless communication system, and terminal using same method
WO2020034561A1 (en) 2019-01-04 2020-02-20 Zte Corporation Rate matching resource mapping in wireless communications
CN111263449B (en) * 2019-01-07 2023-07-14 维沃移动通信有限公司 Information transmission method, terminal equipment and network equipment
CN109891993B (en) * 2019-01-08 2021-10-26 北京小米移动软件有限公司 Downlink data receiving method, transmitting method, device and storage medium
CN111432427B (en) * 2019-01-09 2023-05-09 中国移动通信有限公司研究院 Measurement method and device
CN111431656B (en) 2019-01-09 2023-01-10 苹果公司 Cell edge reliability improvement
WO2020154886A1 (en) * 2019-01-29 2020-08-06 Zte Corporation Random access channel structure design
US20220103227A1 (en) * 2019-02-01 2022-03-31 Lg Electronics Inc. Beam failure reporting method of terminal in wireless communication system, and terminal and base station supporting same
WO2020165736A1 (en) * 2019-02-11 2020-08-20 Telefonaktiebolaget Lm Ericsson (Publ) Reliable link performance for cellular internet of things and new radio in non-terrestrial networks
US20220132591A1 (en) * 2019-02-12 2022-04-28 Samsung Electronics Co., Ltd. Method and apparatus for bwp switching and pusch resource overhead reducing for 2 step rach in wireless communication system
CN113412600A (en) * 2019-02-14 2021-09-17 苹果公司 System and method for UE triggered CSI-RS
CN114124330A (en) * 2019-02-14 2022-03-01 华为技术有限公司 State configuration method and device
US10998955B2 (en) * 2019-03-06 2021-05-04 Qualcomm Incorporated Group-based beam indication and signaling
WO2020187392A1 (en) * 2019-03-15 2020-09-24 Huawei Technologies Co., Ltd. Client device and network access node for measurement reporting based on differential values relative to a reference measurement
EP3944654A1 (en) * 2019-03-20 2022-01-26 Ntt Docomo, Inc. User device and communication method
US20220167322A1 (en) * 2019-03-27 2022-05-26 Ntt Docomo, Inc. User equipment and base station device
US11894903B2 (en) * 2019-03-29 2024-02-06 Apple Inc. Transmission configuration indication (TCI) state and beam switching
US11943022B2 (en) 2019-03-29 2024-03-26 Intel Corporation Techniques for elevated device communication
US11304201B2 (en) 2019-03-29 2022-04-12 Qualcomm Incorporated Beam indication set determination
CN113892303B (en) * 2019-03-29 2024-02-13 株式会社Ntt都科摩 Terminal, wireless communication method, base station and system
WO2020220228A1 (en) * 2019-04-29 2020-11-05 北京小米移动软件有限公司 Downlink data transmission method and device, and storage medium
WO2020221099A1 (en) * 2019-04-30 2020-11-05 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for random access
CN111954147B (en) * 2019-04-30 2021-10-29 大唐移动通信设备有限公司 Signal transmission method, signal measurement reporting method, signal measurement positioning method and device
US11031991B2 (en) 2019-05-03 2021-06-08 Qualcomm Incorporated Multi-panel control channel order, initial access, and handover
US11277185B2 (en) * 2019-05-10 2022-03-15 Qualcomm Incorporated Multi-beam operation with a single TCI state
BR112022002812A2 (en) * 2019-08-14 2022-05-10 Huawei Tech Co Ltd Method for updating beam and communications device information
CN111835490B (en) * 2019-08-23 2022-02-11 维沃移动通信有限公司 Channel transmission method, equipment and system
EP4033801A4 (en) * 2019-09-20 2023-06-07 Ntt Docomo, Inc. Terminal
WO2021061412A1 (en) * 2019-09-24 2021-04-01 Qualcomm Incorporated Beam selection procedures based on thresholds
CN112584528A (en) * 2019-09-27 2021-03-30 苹果公司 Downlink signal reception with antenna panel switching
US11398893B2 (en) 2019-10-25 2022-07-26 Qualcomm Incorporated Reporting of multiple component carriers or frequency bands that share quasi co-location information
CN110891281B (en) * 2019-11-07 2022-06-21 北京紫光展锐通信技术有限公司 Measurement method and related device
US20230058303A1 (en) * 2020-01-24 2023-02-23 Ntt Docomo, Inc. Terminal, radio communication method, and base station
EP4097854A1 (en) * 2020-01-28 2022-12-07 Telefonaktiebolaget Lm Ericsson (Publ) Efficient scheduling of terminal devices
CN115176437A (en) * 2020-02-03 2022-10-11 联发科技(新加坡)私人有限公司 Beam management method and related communication device
US11937222B2 (en) * 2020-02-06 2024-03-19 Qualcomm Incorporated User equipment (UE) capability on band group sharing of same quasi co-location (QCL) parameter
CN115226117A (en) * 2020-02-07 2022-10-21 维沃移动通信有限公司 Beam indication method, device, equipment and medium
EP4070578A4 (en) * 2020-02-13 2023-01-11 Nokia Technologies Oy Beam reporting for rank enhancement
CN113316253A (en) * 2020-02-27 2021-08-27 索尼公司 Electronic device and method for wireless communication, computer-readable storage medium
WO2021168852A1 (en) * 2020-02-29 2021-09-02 华为技术有限公司 Communication method, apparatus and device
US11856415B2 (en) 2020-05-15 2023-12-26 Huawei Technologies Co., Ltd. Method, apparatus, and system utilizing lower layer signalling for mobility beam management
US20230130407A1 (en) * 2020-05-27 2023-04-27 Qualcomm Incorporated Beam blocking detection and reporting
US11533713B2 (en) * 2020-06-05 2022-12-20 Samsung Electronics Co., Ltd. Multi-beam operations for multiple component carriers
CN113840380A (en) * 2020-06-24 2021-12-24 华为技术有限公司 Beam indication method and communication device
CN114006682B (en) * 2020-07-27 2023-04-07 大唐移动通信设备有限公司 Beam indication method, device, terminal and network side equipment
CN114079940B (en) * 2020-08-14 2024-02-13 维沃移动通信有限公司 Candidate beam measurement method, device and terminal
WO2022049643A1 (en) * 2020-09-01 2022-03-10 株式会社Nttドコモ Terminal, wireless communication method, and base station
WO2022060014A1 (en) * 2020-09-15 2022-03-24 엘지전자 주식회사 Method and device for beam reporting in wireless communication system
US20220095254A1 (en) * 2020-09-22 2022-03-24 Samsung Electronics Co., Ltd. Method and apparatus for beam measurement, reporting and indication
US20220095145A1 (en) * 2020-09-23 2022-03-24 Qualcomm Incorporated Measurement report for mixed downlink reference signal reporting
CN116097578A (en) * 2020-09-24 2023-05-09 华为技术有限公司 Beam generation method and related device
US11937107B2 (en) * 2020-09-29 2024-03-19 Samsung Electronics Co., Ltd. Method and apparatus for fast beam measurement and reporting
WO2022072830A1 (en) * 2020-10-01 2022-04-07 Jonghyun Park Transmission configuration indicator configuration
US11647530B2 (en) 2020-12-21 2023-05-09 Qualcomm Incorporated Transmission configuration indicator (TCI) state groups
CN114826451A (en) * 2021-01-21 2022-07-29 中国移动通信有限公司研究院 Information reporting and receiving method, terminal and network equipment
US20220263558A1 (en) * 2021-02-05 2022-08-18 Samsung Electronics Co., Ltd. Method and apparatus of group-based beam reporting
US20240032133A1 (en) * 2021-02-05 2024-01-25 Qualcomm Incorporated Unified transmission configuration indication for nondedicated channels
US11743928B2 (en) * 2021-02-18 2023-08-29 Qualcomm Incorporated Techniques for autonomously updating a transmission configuration indicator (TCI) state associated with a nonserving cell reference signal
US20220408224A1 (en) * 2021-06-17 2022-12-22 Qualcomm Incorporated Initial access enhancements for fixed point-to-multipoint millimeter-wave wireless communication networks
BR112023026494A2 (en) * 2021-06-18 2024-03-05 Beijing Xiaomi Mobile Software Co Ltd METHOD AND APPARATUS FOR INDICATION OF INFORMATION, APPLICABLE TO A USER EQUIPMENT, USER EQUIPMENT, BASE STATION, AND, COMPUTER STORAGE MEDIUM
CN113472506B (en) * 2021-06-28 2022-07-19 中信科移动通信技术股份有限公司 Downlink beam management method, base station and terminal
WO2023014847A1 (en) * 2021-08-06 2023-02-09 Intel Corporation Radio resource management requirements for unified transmission configuration indicator framework
CA3189049A1 (en) * 2022-02-08 2023-08-08 Comcast Cable Communications, Llc Radio link monitoring with base station in energy saving state
CN114731677A (en) * 2022-02-18 2022-07-08 北京小米移动软件有限公司 Quasi co-location QCL (quaternary clock line) indication method, device, equipment and storage medium
WO2023200547A1 (en) * 2022-04-15 2023-10-19 Qualcomm Incorporated Scheduling requests for spatial multiplexing
KR20230170364A (en) * 2022-06-10 2023-12-19 삼성전자주식회사 Method and apparatus for beam control for direct communication between terminals in wireless communication system
WO2024010389A1 (en) * 2022-07-06 2024-01-11 엘지전자 주식회사 Method and device for transmitting beam prediction report in wireless communication system
WO2024031684A1 (en) * 2022-08-12 2024-02-15 Google Llc Ue-assisted time domain beam prediction
US20240097757A1 (en) * 2022-09-16 2024-03-21 Qualcomm Incorporated Techniques for mobility support for user equipment with backscattering radio

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104584450B (en) * 2012-06-04 2018-01-26 交互数字专利控股公司 Transmit the channel condition information (CSI) of multiple transmission point

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113316267A (en) * 2019-03-01 2021-08-27 Oppo广东移动通信有限公司 Wireless communication method, terminal equipment and network equipment
CN113316267B (en) * 2019-03-01 2023-01-13 Oppo广东移动通信有限公司 Wireless communication method, terminal equipment and network equipment
CN113940107B (en) * 2019-04-09 2023-12-19 株式会社Ntt都科摩 Terminal, wireless communication method and system
CN113940107A (en) * 2019-04-09 2022-01-14 株式会社Ntt都科摩 User terminal and wireless communication method
CN112189320A (en) * 2019-05-03 2021-01-05 联发科技股份有限公司 Transmission configuration indication handover procedure in new radio mobile communication
CN114223266B (en) * 2019-06-13 2024-04-02 株式会社Ntt都科摩 Terminal and wireless communication method
CN114175761A (en) * 2019-06-13 2022-03-11 株式会社Ntt都科摩 Terminal and wireless communication method
CN114223266A (en) * 2019-06-13 2022-03-22 株式会社Ntt都科摩 Terminal and wireless communication method
CN114175761B (en) * 2019-06-13 2024-01-09 株式会社Ntt都科摩 Terminal and wireless communication method
TWI754301B (en) * 2019-07-26 2022-02-01 大陸商大唐移動通信設備有限公司 Resource allocation, determination method, device and computer storage medium
TWI751656B (en) * 2019-08-16 2022-01-01 大陸商大唐移動通信設備有限公司 Method, base station and user terminal for indicating energy saving information
CN112822695B (en) * 2019-11-15 2023-11-07 财团法人工业技术研究院 Method for coordinating beam scanning scheduling and intelligent controller
CN112822695A (en) * 2019-11-15 2021-05-18 财团法人工业技术研究院 Method for coordinating beam scanning scheduling and intelligent controller

Also Published As

Publication number Publication date
WO2018232090A1 (en) 2018-12-20

Similar Documents

Publication Publication Date Title
TW201907680A (en) Unified beam management in a wireless network
KR102650783B1 (en) Beam management in wireless networks
US11689275B2 (en) Group-based beam management
US11259274B2 (en) Resource pool sharing between network scheduled UE and autonomous scheduled UE transmissions
JP7050178B2 (en) Beam display for 5G new radio
KR102401700B1 (en) New wireless LAN access in beamforming system
US20200136708A1 (en) Uplink beam management
US20230064231A1 (en) Methods and apparatuses for multi-trp transmission in hst scenarios
TW201906466A (en) Flexible srs-based uplink beam management
KR20220045200A (en) Apparatus and methods for acquiring new radio sidelink channel state information
US20210176735A1 (en) Control information transmission and sensing in wireless systems
KR20230002956A (en) Coordinated Multiple Access Point Transmissions for Wireless Local Area Network Systems
KR20220044569A (en) Method for panel activation/deactivation for uplink MIMO transmission
KR20230006490A (en) Improved coverage in the high frequency range
KR20220019665A (en) How to support BSS EDGE user transfers