TW201843446A - Photothermal reaction analyzer - Google Patents
Photothermal reaction analyzer Download PDFInfo
- Publication number
- TW201843446A TW201843446A TW107112723A TW107112723A TW201843446A TW 201843446 A TW201843446 A TW 201843446A TW 107112723 A TW107112723 A TW 107112723A TW 107112723 A TW107112723 A TW 107112723A TW 201843446 A TW201843446 A TW 201843446A
- Authority
- TW
- Taiwan
- Prior art keywords
- container assembly
- photothermal reaction
- photothermal
- excitation light
- analyzer
- Prior art date
Links
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 200
- 239000003153 chemical reaction reagent Substances 0.000 claims abstract description 80
- 230000005284 excitation Effects 0.000 claims description 124
- 230000003287 optical effect Effects 0.000 claims description 110
- 238000003752 polymerase chain reaction Methods 0.000 claims description 75
- 238000010438 heat treatment Methods 0.000 claims description 61
- 238000001816 cooling Methods 0.000 claims description 38
- 230000005670 electromagnetic radiation Effects 0.000 claims description 28
- 238000010166 immunofluorescence Methods 0.000 claims description 20
- 238000004891 communication Methods 0.000 claims description 19
- 108010043121 Green Fluorescent Proteins Proteins 0.000 claims description 13
- 238000000429 assembly Methods 0.000 claims description 12
- 230000000712 assembly Effects 0.000 claims description 12
- 238000003753 real-time PCR Methods 0.000 claims description 12
- 239000004065 semiconductor Substances 0.000 claims description 9
- 238000012340 reverse transcriptase PCR Methods 0.000 claims description 7
- 238000007847 digital PCR Methods 0.000 claims description 6
- 238000007403 mPCR Methods 0.000 claims description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 5
- 229910052710 silicon Inorganic materials 0.000 claims description 5
- 239000010703 silicon Substances 0.000 claims description 5
- 241000254158 Lampyridae Species 0.000 claims 3
- 230000036760 body temperature Effects 0.000 claims 1
- 230000036413 temperature sense Effects 0.000 claims 1
- 239000000523 sample Substances 0.000 description 112
- 229910052723 transition metal Inorganic materials 0.000 description 24
- 150000003624 transition metals Chemical class 0.000 description 24
- 239000007850 fluorescent dye Substances 0.000 description 23
- 239000000376 reactant Substances 0.000 description 18
- 238000000034 method Methods 0.000 description 15
- 229910000314 transition metal oxide Inorganic materials 0.000 description 12
- 239000007769 metal material Substances 0.000 description 9
- 229910000420 cerium oxide Inorganic materials 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 150000004767 nitrides Chemical class 0.000 description 4
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 4
- 230000035484 reaction time Effects 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 230000000476 thermogenic effect Effects 0.000 description 4
- 239000012491 analyte Substances 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 238000000338 in vitro Methods 0.000 description 3
- 239000002470 thermal conductor Substances 0.000 description 3
- 239000001226 triphosphate Substances 0.000 description 3
- 235000011178 triphosphate Nutrition 0.000 description 3
- 210000001124 body fluid Anatomy 0.000 description 2
- 239000010839 body fluid Substances 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 239000000975 dye Substances 0.000 description 2
- 230000008105 immune reaction Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000003757 reverse transcription PCR Methods 0.000 description 2
- 125000002264 triphosphate group Chemical class [H]OP(=O)(O[H])OP(=O)(O[H])OP(=O)(O[H])O* 0.000 description 2
- 238000010240 RT-PCR analysis Methods 0.000 description 1
- 230000004308 accommodation Effects 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 230000028993 immune response Effects 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 150000007523 nucleic acids Chemical class 0.000 description 1
- 210000002381 plasma Anatomy 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- 239000013615 primer Substances 0.000 description 1
- 239000002987 primer (paints) Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 238000010839 reverse transcription Methods 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- UNXRWKVEANCORM-UHFFFAOYSA-N triphosphoric acid Chemical compound OP(O)(=O)OP(O)(=O)OP(O)(O)=O UNXRWKVEANCORM-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/01—Arrangements or apparatus for facilitating the optical investigation
- G01N21/03—Cuvette constructions
- G01N21/0332—Cuvette constructions with temperature control
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/28—Investigating the spectrum
- G01J3/30—Measuring the intensity of spectral lines directly on the spectrum itself
- G01J3/36—Investigating two or more bands of a spectrum by separate detectors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/28—Investigating the spectrum
- G01J3/44—Raman spectrometry; Scattering spectrometry ; Fluorescence spectrometry
- G01J3/4406—Fluorescence spectrometry
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/645—Specially adapted constructive features of fluorimeters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N2021/6417—Spectrofluorimetric devices
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2201/00—Features of devices classified in G01N21/00
- G01N2201/02—Mechanical
- G01N2201/023—Controlling conditions in casing
- G01N2201/0231—Thermostating
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Automatic Analysis And Handling Materials Therefor (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
Description
本揭露與一種體外診斷儀器有關。進一步地,和一種光熱反應分析儀以及一種以該光熱反應分析儀執行免疫螢光反應 (immunofluorescence reaction)、等溫聚合酶鏈鎖反應 (isothermal polymerase chain reaction;isothermal PCR)、反轉錄聚合酶鏈鎖反應 (reverse-transcriptase PCR)、多套式聚合酶鏈鎖反應 (multiplex PCR)、數位聚合酶鏈鎖反應 (digital PCR)、傳統聚合酶鏈鎖反應或即時聚合酶鏈鎖反應 (real-time PCR) 的方法有關。The disclosure relates to an in vitro diagnostic instrument. Further, a photothermal reaction analyzer and an immunofluorescence reaction, an isothermal polymerase chain reaction (isothermal PCR), and a reverse transcriptase polymerase chain reaction are performed by the photothermal reaction analyzer. Reverse-transcriptase PCR, multiple sets of polymerase chain reaction (multiplex PCR), digital polymerase chain reaction (digital PCR), traditional polymerase chain reaction or real-time polymerase chain reaction (real-time PCR) The method is related.
一聚合酶連鎖反應 (polymerase chain reaction;PCR) 由單一或多個標的模版增幅一段或多段DNA。該聚合酶鏈鎖反應通常在一封閉且溫度被控制的空間中執行。使用者可使用一特別的溫度設定以執行聚合酶鏈鎖反應。目前市面上的聚合酶鏈鎖反應分析儀多為能夠控制聚合酶鏈鎖反應溫度的溫度循環儀 (thermal cycler)。C-1000TM Touch Thermal Cycler為一能夠使使用者同時執行二套溫度設定的傳統聚合酶鏈鎖反應分析儀。目前市面上的聚合酶鏈鎖反應儀多可提供多個容置空間、槽或孔,以放置樣本容器。SimpliAmpTM Thermal Cycler為一可提供多個槽放置樣本且具有一遙控功能的傳統聚合酶鏈鎖反應分析儀。然而,傳統聚合酶鏈鎖反應分析儀無法執行其他常用於體外診斷中的反應,例如直接或間接免疫螢光反應 (immunofluorescence reaction)。A polymerase chain reaction (PCR) amplifies one or more pieces of DNA from a single or multiple target templates. The polymerase chain reaction is typically performed in a closed, temperature controlled space. The user can use a special temperature setting to perform the polymerase chain reaction. Currently, polymerase chain reaction analyzers on the market are mostly thermal cyclers capable of controlling the temperature of the polymerase chain reaction. The C-1000 TM Touch Thermal Cycler is a traditional polymerase chain reaction analyzer that enables the user to perform two sets of temperature settings simultaneously. Currently, polymerase chain reaction reactors on the market can provide a plurality of accommodation spaces, slots or holes for placing sample containers. The SimpliAmp TM Thermal Cycler is a traditional polymerase chain reaction analyzer that provides multiple slots for sample placement and a remote control function. However, conventional polymerase chain reaction analyzers are unable to perform other reactions commonly used in in vitro diagnostics, such as direct or indirect immunofluorescence reactions.
聚合酶鏈鎖反應的其中一種為即時聚合酶鏈鎖反應 (real-time PCR) 或反轉錄聚合酶鏈鎖反應 (reverse-transcriptase PCR)。因為螢光分子經常被用於該反應中,所以該種即時聚合酶鏈鎖反應可以用光學方法觀測該反應進行時的內部空間,以得到實驗結果。該些螢光分子可被特定波長的雷射所激發,且會發出能夠作為反應指標的螢光訊號。大部分的即時聚合酶鏈鎖反應分析儀都有裝設光學元件以在反應時偵測螢光。該樣本容器內的螢光分子可被來自激發光源的激發光所激發,且該偵測元件偵測由該被激發的螢光分子而來的螢光訊號。因此,該光學元件需和該樣本容器對準以接收螢光訊號。當在該即時聚合酶鏈鎖反應分析儀之多個樣本容器中有多個反應發生時,為了要對準容置於複數個槽內的多個樣本容器,該光學元件就需要沿著X-Y平面平移,且由一槽移動至另一槽。CFX96TM Real-Time PCR Detection System具有一光學穿梭元件,可以在96孔盤上移動以偵測各孔中的螢光訊號,而該些螢光訊號主要來自於各孔上方的綠色LED。總之,該些在傳統即時聚合酶鏈鎖反應分析儀中光學元件的移動需要該光學元件和數個樣本容器、槽或孔之間形成精確的對準,此為提供可靠的即時聚合酶鏈鎖反應實驗成果之關鍵。One of the polymerase chain reaction reactions is real-time PCR or reverse-transcriptase PCR. Since fluorescent molecules are often used in the reaction, the instant polymerase chain reaction can optically observe the internal space at which the reaction proceeds to obtain experimental results. The fluorescent molecules can be excited by a laser of a specific wavelength and emit a fluorescent signal that can be used as a reaction indicator. Most instant polymerase chain reaction analyzers are equipped with optical components to detect fluorescence during the reaction. The fluorescent molecules in the sample container can be excited by the excitation light from the excitation light source, and the detecting element detects the fluorescent signal from the excited fluorescent molecules. Therefore, the optical component needs to be aligned with the sample container to receive the fluorescent signal. When multiple reactions occur in multiple sample containers of the instant polymerase chain reaction analyzer, the optical element needs to be along the XY plane in order to align multiple sample containers housed in a plurality of slots. Pan and move from one slot to another. CFX96 TM Real-Time PCR Detection System shuttle having an optical element, may be moved in a fluorescent signal detected in each well, and the plurality of fluorescent signal mainly from the green LED above each well of the 96 well plate. In summary, the movement of optical components in conventional instant polymerase chain reaction analyzers requires precise alignment between the optical component and several sample containers, slots or wells, which provides a reliable real-time polymerase chain lock. The key to the results of the reaction experiments.
因為光學元件和數個樣本容器之間需要精確的對準,所以傳統的即時聚合酶鏈鎖反應分析儀常為固定式,且販售時就被定義為非可攜式儀器。對傳統即時聚合酶鏈鎖反應分析儀的各種移動或傾斜可能會導致光學元件錯位。而當移動該固定式的即時聚合酶鏈鎖反應分析儀之後將需校正該光學元件,此動作使該傳統即時聚合酶鏈鎖反應分析儀的應用範圍受限。因此,在實驗室外執行即時聚合酶鏈鎖反應是不可行的。Because of the need for precise alignment between optical components and several sample containers, conventional instant polymerase chain reaction analyzers are often stationary and are marketed as non-portable instruments. Various movements or tilts of conventional instant polymerase chain reaction analyzers can cause optical components to be misaligned. The optical component will need to be calibrated after moving the immobilized real-time polymerase chain reaction analyzer, which limits the application of the conventional instant polymerase chain reaction analyzer. Therefore, it is not feasible to perform an immediate polymerase chain reaction outside the laboratory.
更進一步地,傳統的聚合酶鏈鎖反應分析儀或即時聚合酶鏈鎖反應分析儀使用單一的加熱塊體作為一熱導體以改變樣本容器的溫度。該加熱塊體直接和該些樣本容器接觸以升高該些樣本容器的溫度。該加熱塊體也可能會和周圍環境有直接接觸,或被容置於一薄殼體之中。然而,該些在單一加熱塊體之中的樣本容器也可能會被周圍環境的溫度所影響;若周圍環境極冷或極熱,則該些在聚合酶鏈鎖反應分析儀中的樣本容器的溫度就可能會被影響。在不正確溫度之下執行的反應可能是沒有效率且不可靠的,因此傳統使用單一加熱塊體設計的聚合酶鏈鎖反應分析儀不適合在戶外或極端環境下使用。.Further, a conventional polymerase chain reaction reaction analyzer or an instant polymerase chain reaction reaction analyzer uses a single heating block as a thermal conductor to change the temperature of the sample container. The heating block is in direct contact with the sample containers to raise the temperature of the sample containers. The heating block may also be in direct contact with the surrounding environment or be housed in a thin housing. However, the sample containers in a single heating block may also be affected by the temperature of the surrounding environment; if the surrounding environment is extremely cold or extremely hot, the sample containers in the polymerase chain reaction analyzer are The temperature may be affected. Reactions performed at incorrect temperatures may be inefficient and unreliable, so polymerase chain reaction analyzers that traditionally use a single heating block design are not suitable for use outdoors or in extreme environments. .
因此,目前亟需一種具有多個熱導體設計的光熱反應分析儀,如此周圍環境的溫度對樣本容器溫度的影響就是極低或沒有影響的。Therefore, there is a need for a photothermal reaction analyzer having multiple thermal conductor designs such that the temperature of the surrounding environment has little or no effect on the temperature of the sample container.
因此,目前亟需一種可攜帶、輕巧且具有固定式光學元件的光熱反應分析儀,如此該些光學元件在被移動之後就不需重新校正。Therefore, there is a need for a photothermal reaction analyzer that is portable, lightweight, and has fixed optical components such that the optical components do not need to be recalibrated after being moved.
目前也亟需一種能夠執行溫度循環相關應用和免疫螢光反應的光熱反應分析儀。There is also a need for a photothermal reaction analyzer capable of performing temperature cycle related applications and immunofluorescence reactions.
目前也亟需一種具有雷射、紅外光 (infrared light)、光學偵測和溫度感測元件以執行聚合酶鏈鎖反應或其他和激發光有關之反應的光熱反應分析儀。There is also a need for a photothermal reaction analyzer having laser, infrared light, optical detection, and temperature sensing elements to perform polymerase chain reaction or other excitation-related reactions.
目前也亟需一種藉由拍下該樣本容器中該些溶劑的影像而偵測聚合酶鏈鎖反應的光熱反應分析儀。There is also a need for a photothermal reaction analyzer that detects polymerase chain reaction by taking an image of the solvent in the sample container.
本揭露涉及一種具有固定式光學元件和多個熱導體的可攜式光熱反應分析儀。The present disclosure relates to a portable photothermal reaction analyzer having a fixed optical element and a plurality of thermal conductors.
根據以下的一個實施例,本揭露提供了一種光熱反應分析儀。該光熱反應分析儀包括複數個光熱反應單位。每一該光熱反應單位包括:一容器組件,包括一槽;一樣本容器,該樣本容器可被容置於該槽內且可以容納執行一光熱反應所需之試劑;一溫度控制模組,該溫度控制模組和該容器組件連結,且該溫度控制模組控制一對應到該容器組件的第一溫度程式和一對應到該樣本容器的第二溫度程式;以及一光學模組,該光學模組相對於該容器組件是固定不動的。According to one embodiment below, the present disclosure provides a photothermal reaction analyzer. The photothermal reaction analyzer includes a plurality of photothermal reaction units. Each of the photothermal reaction units includes: a container assembly including a tank; and a container, the sample container can be housed in the tank and can accommodate reagents required to perform a photothermal reaction; a temperature control module, The temperature control module is coupled to the container assembly, and the temperature control module controls a first temperature program corresponding to the container assembly and a second temperature program corresponding to the sample container; and an optical module, the optical module The set is stationary relative to the container assembly.
根據以下的一個實施例,該容器組件更包括至少一開口,該開口和該槽相通,且其中一光學模組透過該開口連結至該容器組件。According to one embodiment, the container assembly further includes at least one opening that communicates with the slot, and an optical module is coupled to the container assembly through the opening.
根據以下的一個實施例,該容器組件更包括至少二開口,該至少二開口和該槽相通,且每一光學模組包括至少一激發光源以發出一激發光和至少一偵測器以偵測一可見光或一螢光訊號。該激發光源和該偵測器皆分別透過該二開口連結至該容器組件。According to one embodiment, the container assembly further includes at least two openings, the at least two openings are in communication with the slot, and each optical module includes at least one excitation light source to emit an excitation light and at least one detector to detect A visible light or a fluorescent signal. The excitation light source and the detector are respectively coupled to the container assembly through the two openings.
根據以下的一個實施例,該光學模組被設定為可發出一藍色激發光、一綠色激發光、一橘色激發光、一紅色激發光或上述之組合。According to one embodiment below, the optical module is configured to emit a blue excitation light, a green excitation light, an orange excitation light, a red excitation light, or a combination thereof.
根據以下的一個實施例,該光學模組被設定為可偵測一綠色螢光、一青色螢光 (cyan fluorescence)、一橘色螢光、一紅色螢光或上述之組合。According to one embodiment below, the optical module is configured to detect a green fluorescent light, a cyan fluorescence, an orange fluorescent light, a red fluorescent light, or a combination thereof.
根據以下的一個實施例,該光學模組更進一步地被設定為能夠過濾該螢光至一波長範圍。According to one embodiment below, the optical module is further configured to be capable of filtering the fluorescence to a range of wavelengths.
根據以下的一個實施例,該溫度控制模組包括:一加熱元件,該加熱元件透過該開口連結至其中一容器組件以加熱該樣本容器;一容器組件溫度感測器;一樣本溫度感測器;以及一冷卻元件。該加熱元件可為一電磁輻射產生器。According to one embodiment, the temperature control module includes: a heating element, the heating element is coupled to one of the container assemblies through the opening to heat the sample container; a container assembly temperature sensor; the same temperature sensor And a cooling element. The heating element can be an electromagnetic radiation generator.
根據以下的一個實施例,該激發光源包括一藍光激發光源、一綠光激發光源、一橘光激發光源或一紅光激發光源。According to one embodiment below, the excitation light source comprises a blue excitation light source, a green light excitation light source, a orange light excitation light source or a red light excitation light source.
根據以下的一個實施例,該偵測器包括一綠螢光偵測器、一青螢光偵測器、一橘螢光偵測器或一紅螢光偵測器。According to one embodiment, the detector includes a green fluorescent detector, a blue fluorescent detector, an orange fluorescent detector or a red fluorescent detector.
根據以下的一個實施例,該偵測器包括一光電二極體 (photodiode;PD)、一雪崩光電二極體 (avalanche photodiode;APD)、一光電倍增管 (photomultiplier tube;PMT)、一矽光電倍增管 (silicon photomultiplier;SIPM) 或上述之組合。According to one embodiment below, the detector comprises a photodiode (PD), an avalanche photodiode (APD), a photomultiplier tube (PMT), and a photocell. A silicon photomultiplier (SIPM) or a combination of the above.
根據以下的一個實施例,該光學模組更包括一濾波器,該濾波器置於該激發光源和該偵測器之間以過濾該螢光至一波長範圍。According to one embodiment, the optical module further includes a filter disposed between the excitation light source and the detector to filter the fluorescence to a wavelength range.
根據以下的一個實施例,該偵測器包括一個或多個影像元件以捕捉該容器組件內側的至少一影像。According to one embodiment below, the detector includes one or more image elements to capture at least one image of the inside of the container assembly.
本揭露的另一實施例提供了一種光熱反應分析儀。該光熱反應分析儀包括了複數個容器組件、一容器組件接收裝置、複數個溫度控制模組以及複數個光學模組。該容器組件接收裝置包括複數個凹處,且每一凹處可容置一容器組件。該樣本容器可被容置於一容器組件的槽內,且該樣本容器可容納執行一光熱反應所需之試劑。該溫度控制模組和該容器組件連結,且該溫度控制模組控制一對應到該容器組件接收裝置的第三溫度程式和一對應到該樣本容器的第二溫度程式。每一光學模組連結到一容器組件且可發出和接收光。該光學模組相對於該容器組件是固定不動的。Another embodiment of the present disclosure provides a photothermal reaction analyzer. The photothermal reaction analyzer includes a plurality of container assemblies, a container assembly receiving device, a plurality of temperature control modules, and a plurality of optical modules. The container assembly receiving device includes a plurality of recesses, and each recess can accommodate a container assembly. The sample container can be housed in a tank of a container assembly and the sample container can hold the reagents required to perform a photothermal reaction. The temperature control module is coupled to the container assembly, and the temperature control module controls a third temperature program corresponding to the container assembly receiving device and a second temperature program corresponding to the sample container. Each optical module is coupled to a container assembly and can emit and receive light. The optical module is stationary relative to the container assembly.
本揭露的另一實施例提供了一種光熱反應分析儀。該光熱反應分析儀包括一容器組件塊體。該容器組件塊體包括:複數個槽;複數個樣本容器;一溫度控制模組;以及複數個光學模組。每一樣本容器可被容置於一槽內且可以容納執行一光熱反應所需之試劑。該溫度控制模組和該容器組件塊體連結,且該溫度控制模組控制一對應到該容器組件塊體的第四溫度程式和一對應到該樣本容器的第二溫度程式。每一光學模組皆連結到該容器組件塊體內的一槽。該光學模組相對於該容器組件是固定不動的。Another embodiment of the present disclosure provides a photothermal reaction analyzer. The photothermal reaction analyzer includes a container assembly block. The container assembly block includes: a plurality of slots; a plurality of sample containers; a temperature control module; and a plurality of optical modules. Each sample container can be housed in a tank and can contain the reagents needed to perform a photothermal reaction. The temperature control module is coupled to the container assembly block, and the temperature control module controls a fourth temperature program corresponding to the container assembly block and a second temperature program corresponding to the sample container. Each optical module is coupled to a slot in the body of the container assembly. The optical module is stationary relative to the container assembly.
根據以下的一個實施例,該容器組件塊體進一步包括複數個開口,且至少二開口和該槽相通,且每一光學模組包括至少一激發光源以發出一激發光和至少一偵測器以偵測一可見光或一螢光訊號。該激發光源和該偵測器皆分別透過該二開口連結至該容器組件塊體。According to one embodiment, the container assembly block further includes a plurality of openings, and at least two openings are in communication with the slots, and each optical module includes at least one excitation light source to emit an excitation light and at least one detector to Detect a visible light or a fluorescent signal. The excitation light source and the detector are respectively coupled to the container assembly block through the two openings.
根據以下的一個實施例,該溫度控制模組包括:複數個加熱元件以加熱該些樣本容器;一容器組件塊體溫度感測器;一樣本溫度感測器;以及一冷卻元件。每一加熱元件皆透過該些開口和該容器組件塊體中的一槽相連結。該加熱元件為一電磁輻射產生器。According to one embodiment, the temperature control module includes: a plurality of heating elements to heat the sample containers; a container assembly block temperature sensor; the same temperature sensor; and a cooling element. Each of the heating elements is coupled to a slot in the block of the container assembly through the openings. The heating element is an electromagnetic radiation generator.
根據以下的一個實施例,被該光熱反應分析儀或該光熱反應分析單位執行的該光熱反應為一免疫螢光反應、一等溫聚合酶鏈鎖反應 (isothermal PCR)、一反轉錄聚合酶鏈鎖反應 (reverse-transcriptase PCR)、一多套式聚合酶鏈鎖反應 (multiplex PCR)、一數位聚合酶鏈鎖反應 (digital PCR)、一傳統聚合酶鏈鎖反應或一即時聚合酶鏈鎖反應 (real-time PCR)。According to one embodiment below, the photothermal reaction performed by the photothermal reaction analyzer or the photothermal reaction analysis unit is an immunofluorescence reaction, an isothermal polymerase chain reaction (isothermal PCR), and a reverse transcription polymerase chain. Reverse-transcriptase PCR, multiple sets of polymerase chain reaction (multiplex PCR), one-digit polymerase chain reaction (digital PCR), a traditional polymerase chain reaction or an instant polymerase chain reaction (real-time PCR).
根據以下的一個實施例,該光熱反應分析儀更包括一控制模組以控制該溫度控制模組和該光學模組。According to one embodiment below, the photothermal reaction analyzer further includes a control module to control the temperature control module and the optical module.
為使圖式簡明清楚,因此不同圖式中代表相對應元件之符號可能會重複。另外為了使實施例可被完整地理解,本說明書也針對各實施例中的諸多細節進行說明。然而,本技術領域中具有通常技藝之人也可不需上述諸多細節就可實施以下各實施例。本揭露之圖式並不代表部分元件之尺寸和比例,且有可能會將部分元件誇大表示以更佳地說明該元件相關之細節和特徵。本說明書之目的並非限制以下實施例之內容。In order to make the schema clear and concise, the symbols representing the corresponding components in different drawings may be repeated. Further, in order to make the embodiments fully understandable, the present specification also describes various details in the various embodiments. However, those skilled in the art can also implement the following embodiments without the many details described above. The illustrations of the present disclosure are not intended to represent the dimensions and proportions of the components, and may be exaggerated to better illustrate the details and features of the components. The purpose of the present specification is not to limit the contents of the following embodiments.
請見圖1,本揭露提供了一光熱反應單位10。該光熱反應分析儀包括複數個光熱反應單位10。每一個光熱反應單位10包括一容器組件140,該容器組件140具有一槽141、一樣本容器110且該樣本容器110可被容置於該槽141內且可以容納執行一光熱反應所需之試劑、一溫度控制模組120連結至該容器組件140且控制一對應到該容器組件140的第一溫度程式和一對應到該樣本容器110的第二溫度程式、一光學模組130連結至該容器組件140且可以發出或接收光。在每一該光熱反應單位10之中,該光學模組130相對於該容器組件140是固定不動的。Please refer to FIG. 1. The present disclosure provides a photothermal reaction unit 10. The photothermal reaction analyzer includes a plurality of photothermal reaction units 10. Each photothermal reaction unit 10 includes a container assembly 140 having a tank 141, a similar container 110, and the sample container 110 can be received within the tank 141 and can contain reagents required to perform a photothermal reaction. A temperature control module 120 is coupled to the container assembly 140 and controls a first temperature program corresponding to the container assembly 140 and a second temperature program corresponding to the sample container 110. An optical module 130 is coupled to the container. Component 140 can also emit or receive light. In each of the photothermal reaction units 10, the optical module 130 is stationary relative to the container assembly 140.
該樣本容器110為一透明容器且具有一封閉空間以容置該些試劑。該樣本容器110可為一微量離心管 (eppendorf)、一毛細管、一微流體晶片 (microfluidic chip)、一吸管尖 (tip) 或其他具有透明管壁和和封閉空間的容器。該試劑可以包括一種或多種產熱反應物。該產熱反應物能夠被電磁輻射照射而產熱。該反應物可為一種過渡金屬材質,且該過渡金屬材質可為一種過渡金屬氧化物,一種過渡金屬氫氧化物,或一種第三族金屬之氮化物、磷化物或砷化物摻雜過渡金屬或過渡金屬氧化物,或一種二氧化矽摻雜過渡金屬、過渡金屬氧化物或過渡金屬氫氧化物。當該反應物被紅外線照射時其溫度會升高。The sample container 110 is a transparent container and has a closed space for receiving the reagents. The sample container 110 can be a microcentrifuge tube, a capillary tube, a microfluidic chip, a pipette tip or other container having a transparent tube wall and an enclosed space. The reagent can include one or more thermogenic reactants. The heat generating reactant can be irradiated with electromagnetic radiation to generate heat. The reactant may be a transition metal material, and the transition metal material may be a transition metal oxide, a transition metal hydroxide, or a nitride, phosphide or arsenide doped transition metal of a Group III metal or A transition metal oxide, or a cerium oxide doped transition metal, transition metal oxide or transition metal hydroxide. The temperature of the reactants rises when it is irradiated with infrared rays.
更進一步地,該試劑也可包括免疫螢光反應 (immunofluorescence reaction)、聚合酶鏈鎖反應 (polymerase chain reaction;PCR) 或即時聚合酶鏈鎖反應 (real-time PCR) 所需之試劑。該些免疫螢光反應所需之試劑可包括待測物、螢光染劑、標記試劑或其他任何執行一免疫螢光反應所需的試劑。該些聚合酶鏈鎖反應所需之試可包括待測物、聚合酶 (polymerase)、去氧核苷三磷酸 (dNTPs)、引子 (primer)、探針 (probe)、螢光染劑、模版序列 (template sequence) 或其他任何執行一聚合酶鏈鎖反應或即時聚合酶鏈鎖反應所需的試劑。Further, the reagent may also include an agent required for an immunofluorescence reaction, a polymerase chain reaction (PCR) or an instant polymerase chain reaction (real-time PCR). The reagents required for the immunofluorescence reaction may include a test substance, a fluorescent dye, a labeling reagent, or any other reagent required to perform an immunofluorescence reaction. The tests required for the polymerase chain reaction may include a test substance, a polymerase, a deoxynucleoside triphosphate (dNTPs), a primer, a probe, a fluorescent dye, and a template. A template sequence or any other reagent required to perform a polymerase chain reaction or an instant polymerase chain reaction.
該溫度控制模組120包括一加熱元件121,該加熱元件121透過一開口 (未顯示於圖中) 連結至該容器組件140以加熱該樣本容器110,該溫度控制模組120更包括一容器組件溫度感測器124、一樣本溫度感測器122,以及一冷卻元件123。該溫度控制模組120控制一對應到該容器組件140的第一溫度程式和一對應到該樣本容器110的第二溫度程式。該第一溫度程式調節該容器組件140的溫度。較佳地,該第一溫度程式被設計為使該容器組件140處在一恆定的溫度下,不受周圍環境溫度所影響。該容器組件140的溫度可根據該第一溫度程式而升高或降低。因此,在該樣本容器110之中的該光熱反應可在一穩定條件下執行,周圍環境的溫度對其影響極低或沒有影響。該第二溫度程式是一預先設定之程式且能使該樣本容器110處在一個或多個預先設定之溫度中。該第二溫度程式可包括一個或多個預先設定之溫度、一個或多個時間區間使該樣本容器110在一預先設定之溫度中度過特定長度的時間,以及一個或多個預先設定之時間區間使溫度由一溫度改變至另一溫度。例如,該第二溫度程式可使該樣本容器110處在65℃之下達10分鐘,在95℃之下達5分鐘,且在60秒內由65℃改變至95℃。該第二溫度程式可由使用者設計以達到一免疫螢光反應、一等溫聚合酶鏈鎖反應 (isothermal PCR)、一反轉錄聚合酶鏈鎖反應 (reverse-transcriptase PCR)、一多套式聚合酶鏈鎖反應 (multiplex PCR)、一數位聚合酶鏈鎖反應 (digital PCR)、一傳統聚合酶鏈鎖反應或一即時聚合酶鏈鎖反應 (real-time PCR) 所需的溫度。本揭露的該光熱反應分析儀能夠執行一免疫螢光反應、一等溫聚合酶鏈鎖反應、一反轉錄聚合酶鏈鎖反應、一多套式聚合酶鏈鎖反應、一數位聚合酶鏈鎖反應、一傳統聚合酶鏈鎖反應、一即時聚合酶鏈鎖反應或其他具有溫度限制的體外反應。該傳統聚合酶鏈鎖反應可能需要特定溫度以執行變性 (denature)、雜交 (hydrize) 和延展 (elongation)。然而,等溫聚合酶鏈鎖反應或免疫螢光反應可能僅需要一個或少數幾個特定溫度。The temperature control module 120 includes a heating element 121 coupled to the container assembly 140 to heat the sample container 110 through an opening (not shown). The temperature control module 120 further includes a container assembly. The temperature sensor 124, the same temperature sensor 122, and a cooling element 123. The temperature control module 120 controls a first temperature program corresponding to the container assembly 140 and a second temperature program corresponding to the sample container 110. The first temperature program adjusts the temperature of the container assembly 140. Preferably, the first temperature program is designed such that the container assembly 140 is at a constant temperature that is unaffected by ambient temperature. The temperature of the container assembly 140 can be raised or lowered according to the first temperature program. Therefore, the photothermal reaction in the sample container 110 can be performed under a stable condition, and the temperature of the surrounding environment has little or no influence on the influence thereof. The second temperature program is a pre-programmed program and enables the sample container 110 to be in one or more predetermined temperatures. The second temperature program can include one or more predetermined temperatures, one or more time intervals for the sample container 110 to spend a certain length of time at a predetermined temperature, and one or more predetermined times The interval changes the temperature from one temperature to another. For example, the second temperature program can cause the sample container 110 to be at 65 ° C for 10 minutes, at 95 ° C for 5 minutes, and within 60 seconds from 65 ° C to 95 ° C. The second temperature program can be designed by the user to achieve an immunofluorescence reaction, an isothermal polymerase chain reaction (isothermal PCR), a reverse transcription polymerase chain reaction (reverse-transcriptase PCR), a multi-set polymerization. The temperature required for multiplex PCR, one-digit polymerase chain reaction (digital PCR), a conventional polymerase chain reaction, or an instant polymerase chain reaction (real-time PCR). The photothermal reaction analyzer of the present disclosure is capable of performing an immunofluorescence reaction, an isothermal polymerase chain reaction, a reverse transcription polymerase chain reaction, a multi-set polymerase chain reaction, and a digital polymerase chain lock. Reaction, a conventional polymerase chain reaction, an immediate polymerase chain reaction or other temperature-limited in vitro reaction. This traditional polymerase chain reaction may require a specific temperature to perform denaturation, hydration, and elongation. However, isothermal polymerase chain reaction or immunofluorescence may require only one or a few specific temperatures.
該溫度控制模組120包括一加熱元件121。該加熱元件121被該第二溫度程式所控制以升高該樣本容器110的溫度。較佳地,該加熱元件121會置於該樣本容器110的底部。該加熱元件121可唯一電磁輻射產生器,可發出一種或多種電磁輻射。由該加熱元件121所發出的該電磁輻射具有一頻率範圍為200 kHz至500 THz之間。較佳地,該加熱元件121為一紅外線雷射二極體 (infrared laser diode)。該加熱元件可發出電磁輻射以使該產熱反應物在該樣本容器110之中提高該些試劑的溫度。該些具有特定波長的電磁輻射可以誘使該試劑中的該些反應物溫度升高。The temperature control module 120 includes a heating element 121. The heating element 121 is controlled by the second temperature program to raise the temperature of the sample container 110. Preferably, the heating element 121 is placed at the bottom of the sample container 110. The heating element 121 can be a single electromagnetic radiation generator that emits one or more electromagnetic radiation. The electromagnetic radiation emitted by the heating element 121 has a frequency in the range of 200 kHz to 500 THz. Preferably, the heating element 121 is an infrared laser diode. The heating element can emit electromagnetic radiation to cause the heat generating reactant to raise the temperature of the reagents within the sample container 110. The electromagnetic radiation having a particular wavelength can induce an increase in the temperature of the reactants in the reagent.
在另一實施例中,該溫度控制模組120可進一步地包括一樣本溫度感測器122。該樣本溫度感測器122和該樣本容器110直接接觸以感測該樣本容器110的溫度。較佳地,該樣本溫度感測器122為一熱電偶 (thermocouple)。In another embodiment, the temperature control module 120 can further include the same temperature sensor 122. The sample temperature sensor 122 is in direct contact with the sample container 110 to sense the temperature of the sample container 110. Preferably, the sample temperature sensor 122 is a thermocouple.
在另一實施例中,該樣本溫度感測器122也可和一該加熱元件121整合在同一元件上以降低該樣本溫度感測器122和該加熱元件121的電力消耗和體積。In another embodiment, the sample temperature sensor 122 can also be integrated with the heating element 121 on the same component to reduce the power consumption and volume of the sample temperature sensor 122 and the heating element 121.
在另一實施例中,該溫度控制模組120更可包括一冷卻元件123以冷卻該容器組件140。該冷卻元件123並不直接和該樣本容器110接觸。該冷卻元件123被該第一溫度程式所控制。較佳地,該冷卻元件123可為一氣冷元件、一液冷元件、一液冷-氣冷混合冷卻元件、一半導體冷卻元件。該氣冷元件可為一風扇或能夠產生氣流以冷卻周邊環境溫度的元件。該半導體冷卻元件可為一半導體冷卻板或晶片,例如熱冷致電器 (thermoelectric cooler;TE cooler)。該樣本容器110被該加熱元件121所加熱,再被該容器組件140所冷卻,其中該容器組件140可被該冷卻元件123所冷卻。該樣本容器110的溫度是被一樣本溫度感測器122所偵測。該加熱元件121、該樣本溫度感測器122和該冷卻元件123互相之間通訊地耦合且能夠偵測在該樣本容器110中的該試劑之溫度。In another embodiment, the temperature control module 120 further includes a cooling element 123 to cool the container assembly 140. The cooling element 123 is not in direct contact with the sample container 110. The cooling element 123 is controlled by the first temperature program. Preferably, the cooling element 123 can be an air cooling element, a liquid cooling element, a liquid cold-air cooled hybrid cooling element, and a semiconductor cooling element. The air cooling element can be a fan or an element capable of generating an air flow to cool the ambient temperature. The semiconductor cooling element can be a semiconductor cooling plate or wafer, such as a thermo cooler (TE cooler). The sample container 110 is heated by the heating element 121 and cooled by the container assembly 140, wherein the container assembly 140 is cooled by the cooling element 123. The temperature of the sample container 110 is detected by the same temperature sensor 122. The heating element 121, the sample temperature sensor 122, and the cooling element 123 are communicatively coupled to one another and are capable of detecting the temperature of the reagent in the sample container 110.
該光學模組130可被設定為發出一藍光激發光、一綠光激發光、一橘光激發光、一紅光激發光或上述之組合。該光學模組130也可被設定為能夠偵測一綠螢光、一青螢光 (cyan fluorescence)、一橘螢光、一紅螢光或上述之組合。該光學模組130也可被設定為能過濾該螢光至一波長範圍。The optical module 130 can be configured to emit a blue excitation light, a green light excitation light, an orange light excitation light, a red light excitation light, or a combination thereof. The optical module 130 can also be configured to detect a green fluorescent light, a cyan fluorescence, an orange fluorescent light, a red fluorescent light, or a combination thereof. The optical module 130 can also be configured to filter the fluorescence to a range of wavelengths.
該光學模組130包括一個或多個激發光源和一個或多個偵測器。該光學模組130也可被設定為具有不同的激發光源以發出不同波長的激發光,或具有不同偵測器以偵測不同波長的螢光。該激發光源131a和131b也可發出一激發光至該樣本容器110中的該試劑。在該試劑之中的該螢光染劑當被該激發光源131a和131b發出之該激發光激發時會發出螢光。該激發光源131a和131b也可為一個或多個光源。該激發光源131a和131b可以選擇性地發出不同波長的激發光,因此使不同螢光染劑發出螢光。該偵測器132a和132b可以選擇性地偵測由不同螢光染劑發出的螢光。The optical module 130 includes one or more excitation sources and one or more detectors. The optical module 130 can also be configured to have different excitation sources to emit excitation light of different wavelengths, or have different detectors to detect different wavelengths of fluorescence. The excitation light sources 131a and 131b can also emit an excitation light to the reagent in the sample container 110. The fluorescent dye in the reagent emits fluorescence when excited by the excitation light emitted from the excitation light sources 131a and 131b. The excitation light sources 131a and 131b can also be one or more light sources. The excitation light sources 131a and 131b can selectively emit excitation light of different wavelengths, thereby causing different fluorescent dyes to emit fluorescence. The detectors 132a and 132b can selectively detect fluorescent light emitted by different fluorescent dyes.
在本揭露中,該光學模組130包括至少二個激發光源131a和131b。該激發光源131a可為一藍光激發光源且該激發光源131b可為一綠光激發光源。也可使用其他激發光源於該光學模組130中,例如青螢光之激發光源、橘螢光之激發光源或紅螢光之激發光源。在本實施例中,該激發光源131a發出一具有波長範圍約450至495奈米的電磁輻射,且該激發光源131b發出一具有波長範圍約495至570奈米的電磁輻射。較佳地,該激發光源131a或131b為一發光二極體 (LED) 或一半導體雷射二極體 (LD),例如一藍光發光二極體、一藍光半導體雷射二極體、一綠光發光二極體或一綠光半導體雷射二極體。由該試劑中的該螢光染劑種類,可決定使用哪種激發光源。例如:若該螢光染劑為SYBR,則該激發光源131a可被自動或手動啟動;若該螢光染劑為ROX,則該激發光源131b也可被自動或手動啟動。根據實驗需求,使用者可選擇更多種其他激發光源。In the present disclosure, the optical module 130 includes at least two excitation light sources 131a and 131b. The excitation light source 131a can be a blue excitation source and the excitation source 131b can be a green excitation source. Other excitation sources may also be used in the optical module 130, such as a blue fluorescent excitation source, an orange fluorescent excitation source, or a red fluorescent excitation source. In the present embodiment, the excitation light source 131a emits electromagnetic radiation having a wavelength range of about 450 to 495 nm, and the excitation light source 131b emits electromagnetic radiation having a wavelength range of about 495 to 570 nm. Preferably, the excitation light source 131a or 131b is a light emitting diode (LED) or a semiconductor laser diode (LD), such as a blue light emitting diode, a blue semiconductor laser diode, and a green light. A light emitting diode or a green semiconductor laser diode. From the type of the fluorescent dye in the reagent, it is possible to determine which excitation light source to use. For example, if the fluorescent dye is SYBR, the excitation light source 131a can be automatically or manually activated; if the fluorescent dye is ROX, the excitation light source 131b can also be automatically or manually activated. According to the experimental requirements, the user can choose a wider variety of other excitation sources.
該螢光偵測器132a和132b可偵測一或多個波長的光。一偵測器132a可被設定為偵測被多個激發光源131a和131b所激發的不同波長螢光。此外,被多個激發光源131a和131b所激發的不同波長螢光也能被多個偵測器132a和132b所偵測。The fluorescent detectors 132a and 132b can detect light of one or more wavelengths. A detector 132a can be configured to detect different wavelengths of fluorescence that are excited by the plurality of excitation sources 131a and 131b. In addition, different wavelengths of fluorescence excited by the plurality of excitation light sources 131a and 131b can also be detected by the plurality of detectors 132a and 132b.
在另一實施例中,該偵測器132a為一綠螢光偵測器且該偵測器132b為一紅螢光偵測器。其他螢光偵測器也可用於本揭露所述的偵測器中,例如青螢光偵測器或橘螢光偵測器。該偵測器是基於該試劑中的該螢光染劑種類,該偵測器132a偵測綠色螢光,且該偵測器132b偵測波長範圍為620奈米至750奈米之間的紅色螢光。較佳地,該偵測器132a為一光電二極體 (photodiode;PD)、一雪崩光電二極體 (avalanche photodiode;APD)、一光電倍增管 (photomultiplier tube;PMT)、一矽光電倍增管 (silicon photomultiplier;SIPM) 或其他光電倍增或二極體元件。該偵測器132a和132b可因該試劑中所被激發的螢光種類而被選擇或啟動。例如,該螢光染劑若為SYBR則可被該激發光源131A所發出的激發光而激發,該偵測器132a可被自動或手動啟動。該激發光源131a、該樣本容器110和該偵測器132a在一光學系統中對齊以使該偵測器132b接收螢光或從該樣本容器110中捕捉影像。依照所需執行的實驗需求,該光學模組130可包括能夠偵測其他波長的偵測器。In another embodiment, the detector 132a is a green fluorescent detector and the detector 132b is a red fluorescent detector. Other fluorescent detectors can also be used in the detectors described in the present disclosure, such as a blue fluorescent detector or an orange fluorescent detector. The detector is based on the fluorescent dye type in the reagent, the detector 132a detects green fluorescent light, and the detector 132b detects red in a wavelength range of 620 nm to 750 nm. Fluorescent. Preferably, the detector 132a is a photodiode (PD), an avalanche photodiode (APD), a photomultiplier tube (PMT), and a photomultiplier tube. (silicon photomultiplier; SIPM) or other photomultiplier or diode components. The detectors 132a and 132b can be selected or activated by the type of fluorescent light that is excited in the reagent. For example, if the fluorescent dye is SYBR, it can be excited by the excitation light emitted by the excitation light source 131A, and the detector 132a can be automatically or manually activated. The excitation light source 131a, the sample container 110, and the detector 132a are aligned in an optical system such that the detector 132b receives or captures images from the sample container 110. The optical module 130 can include a detector capable of detecting other wavelengths in accordance with the experimental requirements that need to be performed.
該光學模組130更進一步地包括一個或多個濾波器或一個或多個影像元件。該濾波器過濾該螢光至指定的波長範圍。該影像元件捕捉一個或多個位於該容器組件140之中的影像。更精確地來說,該影像元件捕捉一個或多個位於該樣本容器110內該試劑的影像。該影像元件之位置可以接收該被濾波器過濾的螢光,因此該影像元件僅捕捉在特定波長範圍內的影像。該影像元件、該濾波器、該偵測器132、該樣本容器110和該激發光源131a和131b被設置為在同一光學系統中,使得該影像元件能夠取得該樣本容器110的影像。The optical module 130 further includes one or more filters or one or more image elements. The filter filters the fluorescence to a specified wavelength range. The image element captures one or more images located within the container assembly 140. More precisely, the image element captures one or more images of the reagent located within the sample container 110. The position of the image element can receive the fluorescence filtered by the filter, so the image element captures only images in a specific wavelength range. The image element, the filter, the detector 132, the sample container 110, and the excitation light sources 131a and 131b are disposed in the same optical system such that the image element can acquire an image of the sample container 110.
在另一實施例中,該偵測器132a可和該激發光源131a整合在同一元件上,且該偵測器132b也可和該激發光源131b整合在同一元件上,以降低該些偵測器和激發光源的電量消耗和體積。In another embodiment, the detector 132a can be integrated with the excitation light source 131a on the same component, and the detector 132b can also be integrated with the excitation light source 131b on the same component to reduce the detectors. And the power consumption and volume of the excitation source.
在本揭露中,該光熱反應單位190也可以包括一個或多個容器組件140以容置該樣本容器110。該加熱元件121和該樣本溫度感測器122和該容器組件140連結,且位於該容器組件140的底部且在該樣本容器110之下。該光學模組130和該容器組件140連結且位於該容器組件140的側壁。該光學模組130對焦於該樣本容器110的一透明區域。該冷卻元件123位於該容器組件140的外壁。該容器組件140是由一種或多種高導熱度材質所構成。該高導熱度材質可包括金屬和非金屬材質。In the present disclosure, the photothermal reaction unit 190 can also include one or more container assemblies 140 to house the sample container 110. The heating element 121 and the sample temperature sensor 122 are coupled to the container assembly 140 and are located at the bottom of the container assembly 140 and below the sample container 110. The optical module 130 is coupled to the container assembly 140 and is located on a sidewall of the container assembly 140. The optical module 130 focuses on a transparent area of the sample container 110. The cooling element 123 is located on the outer wall of the container assembly 140. The container assembly 140 is constructed from one or more materials of high thermal conductivity. The high thermal conductivity material can include both metallic and non-metallic materials.
該容器組件140更進一步包括至少一開口,該開口連結至該槽141,且該光學模組130包括激發光源131a、131b以發出激發光,偵測器132a、132b以偵測可見光或一螢光訊號。該容器組件140包括該槽141以容置該樣本組件110和用來連結該偵測器132a、該偵測器132b、該激發光源131a、該激發光源131b和該加熱元件121至該容器組件140上的複數個開口。在圖1中,僅繪出用來連結該偵測器132b和該激發光源131b至該容器組件140的該些開口142a和142b。該容器組件140可有一個或多個開口,使多個激發光源或偵測器連結至該容器組件140上。若該激發光源131a、131b和該偵測器132a、132b整合於同一元件上,則該容器組件140上僅需要一個開口就可使該激發光源連結至該容器組件140上。The container assembly 140 further includes at least one opening connected to the slot 141, and the optical module 130 includes excitation light sources 131a, 131b for emitting excitation light, and detectors 132a, 132b for detecting visible light or a fluorescent light. Signal. The container assembly 140 includes the slot 141 for receiving the sample assembly 110 and for connecting the detector 132a, the detector 132b, the excitation light source 131a, the excitation light source 131b, and the heating element 121 to the container assembly 140. Multiple openings on the top. In FIG. 1, only the openings 142a and 142b for connecting the detector 132b and the excitation light source 131b to the container assembly 140 are depicted. The container assembly 140 can have one or more openings to which a plurality of excitation light sources or detectors are coupled. If the excitation light sources 131a, 131b and the detectors 132a, 132b are integrated on the same component, only one opening is required on the container assembly 140 to connect the excitation light source to the container assembly 140.
該光學模組130固定於該容器組件140上。在該光熱反應進行時,該光學模組130相對於該容器組件140是固定不動的,因此該光學模組130和該樣本容器110之間的距離不會改變。該光學模組130和該容器組件140之間的固定位置設計使該光熱反應單位10可以在實驗室外使用或可被攜行,因為在移動該光熱反應單位10由一地點至另一地點時,該光學模組130不需要再次校正。The optical module 130 is fixed to the container assembly 140. When the photothermal reaction is performed, the optical module 130 is fixed relative to the container assembly 140, so the distance between the optical module 130 and the sample container 110 does not change. The fixed position between the optical module 130 and the container assembly 140 is such that the photothermal reaction unit 10 can be used outside the laboratory or can be carried because the photothermal reaction unit 10 is moved from one location to another. The optical module 130 does not need to be corrected again.
該溫度控制模組120也可包括一容器組件溫度感測器124。在本實施例中,該容器組件溫度感測器124直接接觸該容器組件140,且置放於該容器組件140旁以偵測該容器組件140的溫度。該容器組件溫度感測器124傳送溫度資訊至該第一溫度程式。較佳地,該容器組件溫度感測器124為一熱電偶。在另一實施例中,該容器組件溫度感測器124可以不接觸該容器組件140就能偵測其內溫度。較佳地,上述該容器組件溫度感測器124為一紅外線溫度感測器。The temperature control module 120 can also include a container assembly temperature sensor 124. In the present embodiment, the container assembly temperature sensor 124 directly contacts the container assembly 140 and is placed beside the container assembly 140 to detect the temperature of the container assembly 140. The container assembly temperature sensor 124 transmits temperature information to the first temperature program. Preferably, the container assembly temperature sensor 124 is a thermocouple. In another embodiment, the container assembly temperature sensor 124 can detect the temperature therein without contacting the container assembly 140. Preferably, the container assembly temperature sensor 124 is an infrared temperature sensor.
在另一實施例中,該容器組件溫度感測器124也可和該冷卻元件123整合在同一元件上,以降低該冷卻元件和該容器組件溫度感測器的電量消耗和體積。In another embodiment, the container assembly temperature sensor 124 can also be integrated with the cooling element 123 on the same component to reduce the power consumption and volume of the cooling element and the container assembly temperature sensor.
請見圖2,本揭露提供了該激發光源、該偵測器和該樣本容器之間,且在該光熱反應分析儀或該光熱反應分析單位中的一光學系統。該激發光源131、該樣本容器110和該偵測器132所形成的該光學系統能最佳化訊號偵測的過程。介於該激發光源131、該樣本容器110和該偵測器132之間的一角度α已被最小化,如此可使在該樣本容器110之中該試劑的影像在被該偵測器132捕捉時不失真。該角度α可介於0至60度之間。若該角度α越小則該樣本容器110之中該試劑的影像品質越佳。較佳地,該角度α應盡可能的接近0度。Referring to FIG. 2, the present disclosure provides an optical system between the excitation light source, the detector and the sample container, and in the photothermal reaction analyzer or the photothermal reaction analysis unit. The optical system formed by the excitation light source 131, the sample container 110 and the detector 132 can optimize the process of signal detection. An angle a between the excitation source 131, the sample container 110, and the detector 132 has been minimized such that an image of the reagent in the sample container 110 is captured by the detector 132. No distortion. The angle α can be between 0 and 60 degrees. If the angle α is smaller, the image quality of the reagent in the sample container 110 is better. Preferably, the angle a should be as close as possible to 0 degrees.
請見圖3,本揭露提供了另一光熱反應分析儀20。該光熱反應分析儀20包括了複數個容器組件140、一容器組件接收裝置150、複數個溫度控制模組 (未顯示於圖中),以及複數個光學模組130。該容器組件接收裝置150包括複數個凹處151,且每一個凹處151容置一套該容器組件140。每一樣本容器110容置於該槽141之中以容納執行一光熱反應所需之試劑。該溫度控制模組 (未顯示於圖中) 連結至該容器組件接收裝置150以控制一對應到該容器組件接收裝置150的第三溫度程式,以及控制一對應到該樣本容器的第二溫度程式。每一光學模組130都連結到一容器組件140以發出及接收光。在每一光熱反應分析儀20之中,該光學模組130相對於該容器組件140是固定不動的。Referring to FIG. 3, the present disclosure provides another photothermal reaction analyzer 20. The photothermal reaction analyzer 20 includes a plurality of container assemblies 140, a container assembly receiving device 150, a plurality of temperature control modules (not shown), and a plurality of optical modules 130. The container assembly receiving device 150 includes a plurality of recesses 151, and each recess 151 houses a set of the container assemblies 140. Each sample container 110 is housed in the tank 141 to accommodate the reagents required to perform a photothermal reaction. The temperature control module (not shown) is coupled to the container assembly receiving device 150 for controlling a third temperature program corresponding to the container assembly receiving device 150, and controlling a second temperature program corresponding to the sample container . Each optical module 130 is coupled to a container assembly 140 for emitting and receiving light. Within each photothermal reaction analyzer 20, the optical module 130 is stationary relative to the container assembly 140.
在圖3中,複數個容器組件溫度感測器124或冷卻元件123可位於每一容器組件140上,且位置關係和圖1中的設計類似,其中該容器組件溫度感測器124及該冷卻元件123和該容器組件接收裝置150相接觸 (未顯示於圖中)。該複數個冷卻元件123也可以被單一冷卻元件所取代,其中該單一冷卻元件連結至該容器組件接收裝置150。該容器組件溫度感測器124和該冷卻元件123根據一第三溫度程式而穩定周圍溫度。該第三溫度程式調節該容器組件接收裝置150的溫度。較佳地,該第三溫度程式是用於使容器組件接收裝置150處於一恆定溫度下,且不受周遭環境所影響。因此,該在樣本容器110之中的光熱反應就可在一穩定條件下啟動,且受周遭環境影響極低或沒有影響。每一容器組件140和一加熱元件121連結 (未顯示於圖中),且該加熱元件121根據該第二溫度程式調節該樣本容器110的溫度。圖3中的每一該樣本容器110也可同時被第二溫度程式調整到互相之間具有不同的溫度。In FIG. 3, a plurality of container assembly temperature sensors 124 or cooling elements 123 can be located on each container assembly 140, and the positional relationship is similar to that of FIG. 1, wherein the container assembly temperature sensor 124 and the cooling Element 123 is in contact with the container assembly receiving device 150 (not shown). The plurality of cooling elements 123 can also be replaced by a single cooling element that is coupled to the container assembly receiving device 150. The container assembly temperature sensor 124 and the cooling element 123 stabilize the ambient temperature according to a third temperature program. The third temperature program adjusts the temperature of the container assembly receiving device 150. Preferably, the third temperature program is for placing the container assembly receiving device 150 at a constant temperature and is unaffected by the surrounding environment. Therefore, the photothermal reaction in the sample container 110 can be started under a stable condition and is extremely low or unaffected by the surrounding environment. Each container assembly 140 is coupled to a heating element 121 (not shown) and the heating element 121 adjusts the temperature of the sample container 110 in accordance with the second temperature program. Each of the sample containers 110 of Figure 3 can also be simultaneously adjusted by the second temperature program to have different temperatures from each other.
該光學元件130固定於該容器組件140。在該光熱反應進行時,該光學模組130相對於該容器組件140是固定不動的,因此該光學模組130和該樣本容器110之間的距離不會改變。該光學模組130和該容器組件140之間的固定位置設計使該光熱反應單位20可以在實驗室外使用或可被攜行,因為在移動該光熱反應單位20由一地點至另一地點時,該光學模組130不需要再次校正。The optical component 130 is secured to the container assembly 140. When the photothermal reaction is performed, the optical module 130 is fixed relative to the container assembly 140, so the distance between the optical module 130 and the sample container 110 does not change. The fixed position between the optical module 130 and the container assembly 140 is such that the photothermal reaction unit 20 can be used outside the laboratory or can be carried because the photothermal reaction unit 20 is moved from one location to another. The optical module 130 does not need to be corrected again.
請見圖4,本揭露提供了另一光熱反應分析儀30。該光熱反應分析儀30包括一容器組件塊體250,該容器組件塊體250包括複數個槽251、複數個樣本容器110、一溫度控制模組120以及複數個光學模組130。每一樣本容器110可被容置於該槽251內且可以容納執行一光熱反應所需之試劑。該溫度控制模組120連結至該容器組件塊體250以控制一對應到該容器組件塊體250的第四溫度程式和一對應到該樣本容器110的第二溫度程式。每一光學模組130連結至該容器組件塊體250的一槽251,且該光學模組130相對於該容器組件塊體250是固定不動的。Referring to FIG. 4, the present disclosure provides another photothermal reaction analyzer 30. The photothermal reaction analyzer 30 includes a container assembly block 250 including a plurality of slots 251, a plurality of sample containers 110, a temperature control module 120, and a plurality of optical modules 130. Each sample container 110 can be housed within the tank 251 and can contain the reagents required to perform a photothermal reaction. The temperature control module 120 is coupled to the container assembly block 250 to control a fourth temperature program corresponding to the container assembly block 250 and a second temperature program corresponding to the sample container 110. Each optical module 130 is coupled to a slot 251 of the container assembly block 250, and the optical module 130 is stationary relative to the container assembly block 250.
該容器組件塊體250可以和圖1中的該樣本容器110、該光學模組130整合。該容器組件塊體250包括複數個槽251,且每一槽251可以容置一樣本容器110。該容器組件塊體250更進一步包括複數個開口,其中一開口252a可容置一激發光源而另一開口252b可容置一偵測器。一溫度控制模組120可連結至該容器組件塊體250。和該容器組件塊體250結合的該溫度控制模組包括一冷卻元件 (未顯示於圖中)、一容器組件塊體溫度感測器 (未顯示於圖中)、複數個樣本溫度感測器122以及複數個加熱元件121。該容器組件塊體250中的每一個槽251、加熱元件121和樣本溫度感測器122是用來調節該樣本容器110的溫度。該加熱元件121和該樣本溫度感測器122是依照一第二溫度程式來調節該樣本容器110的溫度。該冷卻元件和該容器組件塊體溫度感測器連結至該容器組件塊體250 (未顯示於圖中)。一第四溫度程式用來調節該容器組件塊體250的溫度。較佳地,該第四溫度程式是用於使容器組件塊體250處於一恆定溫度下,且不受周遭環境所影響。因此,該在樣本容器110之中的光熱反應就可在一穩定條件下啟動,且受周遭環境影響極低或沒有影響。該容器組件塊體250和一加熱元件121連結,且該加熱元件121根據該第二溫度程式調節該樣本容器110的溫度。圖4中的每一該樣本容器110也可同時被第二溫度程式調整到互相之間具有不同的溫度。The container assembly block 250 can be integrated with the sample container 110 and the optical module 130 of FIG. The container assembly block 250 includes a plurality of slots 251, and each slot 251 can accommodate the same container 110. The container assembly block 250 further includes a plurality of openings, wherein one opening 252a can accommodate an excitation light source and the other opening 252b can accommodate a detector. A temperature control module 120 can be coupled to the container assembly block 250. The temperature control module coupled to the container assembly block 250 includes a cooling element (not shown), a container assembly block temperature sensor (not shown), and a plurality of sample temperature sensors. 122 and a plurality of heating elements 121. Each of the tank assembly 250, the heating element 121, and the sample temperature sensor 122 are used to adjust the temperature of the sample container 110. The heating element 121 and the sample temperature sensor 122 adjust the temperature of the sample container 110 in accordance with a second temperature program. The cooling element and the container assembly block temperature sensor are coupled to the container assembly block 250 (not shown). A fourth temperature program is used to adjust the temperature of the container assembly block 250. Preferably, the fourth temperature program is for placing the container assembly block 250 at a constant temperature and is unaffected by the surrounding environment. Therefore, the photothermal reaction in the sample container 110 can be started under a stable condition and is extremely low or unaffected by the surrounding environment. The container assembly block 250 is coupled to a heating element 121, and the heating element 121 adjusts the temperature of the sample container 110 in accordance with the second temperature program. Each of the sample containers 110 of Figure 4 can also be simultaneously adjusted by the second temperature program to have different temperatures from each other.
和圖3相比,該容器組件塊體250因減少元件數量所以具有較佳的熱傳導能力,同時也能使該溫度控制模組120依照該第四溫度程式有效地調節該容器組件塊體250的溫度。Compared with FIG. 3, the container assembly block 250 has better heat transfer capability by reducing the number of components, and also enables the temperature control module 120 to effectively adjust the container assembly block 250 according to the fourth temperature program. temperature.
該光學元件130固定於該容器組件塊體250。在該光熱反應進行時,該光學模組130相對於該容器組件塊體250是固定不動的,因此該光學模組130和該樣本容器110之間的距離不會改變。該光學模組130和該容器組件塊體250之間的固定位置設計使該光熱反應分析儀30可以在實驗室外使用或可被攜行,因為在移動該光熱反應分析儀30由一地點至另一地點時,該光學模組130不需要再次校正。The optical component 130 is secured to the container assembly block 250. When the photothermal reaction is performed, the optical module 130 is fixed relative to the container assembly block 250, so the distance between the optical module 130 and the sample container 110 does not change. The fixed position between the optical module 130 and the container assembly block 250 allows the photothermal reaction analyzer 30 to be used outside the laboratory or can be carried because the photothermal reaction analyzer 30 is moved from a location to At another location, the optical module 130 does not need to be corrected again.
請見圖5,本揭露提供了該光熱反應分析儀的一控制模組。一個或多個光熱反應單位10、光熱反應單位20和光熱反應分析儀30可包括一控制模組160。該控制模組160控制該溫度控制模組120和該光學模組130的運行。該控制模組160包括一輸入單元161、一微處理器162和一輸出單元163。Please refer to FIG. 5. The present disclosure provides a control module of the photothermal reaction analyzer. One or more photothermal reaction units 10, photothermal reaction units 20, and photothermal reaction analyzer 30 may include a control module 160. The control module 160 controls the operation of the temperature control module 120 and the optical module 130. The control module 160 includes an input unit 161, a microprocessor 162, and an output unit 163.
該輸入單元161可和該微處理器162、該偵測器132、該樣本溫度感測器122以及該容器組件溫度感測器124通訊。使用者可以輸入一項或多項指令至該輸入單元161,並且該輸入單元161也可由該偵測器132、該樣本溫度感測器122和該容器組件溫度感測器124處得到資訊。該輸入單元161可包括一輸入介面和一類比-數位訊號轉換元件。使用者可以藉由該輸入單元161中的輸入介面輸入指令。該類比-數位訊號轉換元件能轉換並傳輸該指令。較佳地,該輸入介面可為一按鈕、一停止指令、一暫停指令或其他任何能夠影響該光熱反應分析單位10之中的指令。The input unit 161 can communicate with the microprocessor 162, the detector 132, the sample temperature sensor 122, and the container assembly temperature sensor 124. The user can input one or more commands to the input unit 161, and the input unit 161 can also obtain information from the detector 132, the sample temperature sensor 122, and the container assembly temperature sensor 124. The input unit 161 can include an input interface and an analog-to-digital signal conversion component. The user can input an instruction through the input interface in the input unit 161. The analog-to-digital signal conversion component can convert and transmit the instruction. Preferably, the input interface can be a button, a stop command, a pause command or any other command that can affect the photothermal reaction analysis unit 10.
該微處理器162可和該輸入單元161以及該輸出單元163通訊。該微處理器162由該輸入單元161處取得指令,且傳送一個或多個執行指令至該輸出單元163。當調整該容器組件140的溫度時,該微處理器162接收由該容器組件溫度感測器124所取得的溫度資訊,並傳送指令至該冷卻元件,且依照:1) 該第一溫度程式調節該容器組件140的溫度;2) 該第三溫度程式調節該容器組件接收裝置150的溫度;或3) 該第四溫度程式調節該容器組件塊體250的溫度。當調節該樣本容器110的溫度時,該微處理器162由該樣本溫度感測器122處得到資訊,並依照該第二溫度程式傳送指令至該加熱元件121。更進一步地,該微處理器162可分析由該偵測器132所取得的資訊以得到實驗結果,並傳送實驗結果至該輸出單元163。較佳地,該微處理器162可為一微處理機單元 (microprocessor unit;MPU)、一微控制器單元 (microcontroller unt;MCU、一中央處理器 (central processing unit;CPU) 或其他任何數據處理元件。The microprocessor 162 can communicate with the input unit 161 and the output unit 163. The microprocessor 162 takes instructions from the input unit 161 and transmits one or more execution instructions to the output unit 163. When the temperature of the container assembly 140 is adjusted, the microprocessor 162 receives the temperature information obtained by the container assembly temperature sensor 124 and transmits an instruction to the cooling element according to: 1) the first temperature program adjustment The temperature of the container assembly 140; 2) the third temperature program adjusts the temperature of the container assembly receiving device 150; or 3) the fourth temperature program adjusts the temperature of the container assembly block 250. When the temperature of the sample container 110 is adjusted, the microprocessor 162 obtains information from the sample temperature sensor 122 and transmits an instruction to the heating element 121 in accordance with the second temperature program. Further, the microprocessor 162 can analyze the information obtained by the detector 132 to obtain an experimental result, and transmit the experimental result to the output unit 163. Preferably, the microprocessor 162 can be a microprocessor unit (MPU), a microcontroller unit (microcontroller unt; MCU, a central processing unit (CPU) or any other data processing. element.
該輸出單元163可和該微處理器162、該加熱元件121、該激發光源131a和131b以及該冷卻元件123通訊。該輸出單元163可輸出執行指令至該加熱元件121、該激發光源131a和131b以及該冷卻元件123。另外,該輸出單元163能由該微處理器162取得一實驗結果並輸出該結果。該輸出單元163可包括一顯示介面和一數位-類比訊號轉換元件。該顯示介面由該微處理器162取得並顯示該實驗結果。該數位-類比訊號轉換元件轉換並傳送該實驗結果。較佳地,該顯示介面可為一顯示螢幕、一印表機或其他類似元件。The output unit 163 can communicate with the microprocessor 162, the heating element 121, the excitation light sources 131a and 131b, and the cooling element 123. The output unit 163 can output an execution instruction to the heating element 121, the excitation light sources 131a and 131b, and the cooling element 123. In addition, the output unit 163 can obtain an experimental result from the microprocessor 162 and output the result. The output unit 163 can include a display interface and a digital-to-analog signal conversion component. The display interface is retrieved by the microprocessor 162 and displays the results of the experiment. The digital-analog signal conversion component converts and transmits the experimental result. Preferably, the display interface can be a display screen, a printer or the like.
更進一步地,該控制模組160也可包括一通訊單元164和一記憶體165。該通訊單元164可和該記憶體165通訊。Further, the control module 160 can also include a communication unit 164 and a memory 165. The communication unit 164 can communicate with the memory 165.
該通訊單元164可和該微處理器以及一外部裝置通訊。該通訊單元164是用來在該光熱反應單元10和該外部裝置之間傳遞資訊。較佳地,該通訊單元164也可包括一個或多個無限通訊元件、例如藍芽 (Blootooth® ) 元件、WIFI元件或其他類似元件。該外部裝置可為一計算機裝置、例如一電腦、一平板電腦、一智慧型手機、一筆記型電腦或其他類似元件。更進一步地,使用者能由該通訊單元164輸入一個或多個指令,或由和該通訊單元164通訊的一個或多個計算機裝置輸入一個或多個指令,且由該微處理器162取得該實驗結果。The communication unit 164 can communicate with the microprocessor and an external device. The communication unit 164 is for transmitting information between the photothermal reaction unit 10 and the external device. Preferably, the communication unit 164 may also include one or more infinite communication components, such as a Bluetooth (Blootooth ® ) component, a WIFI component, or the like. The external device can be a computer device such as a computer, a tablet computer, a smart phone, a notebook computer or the like. Still further, the user can input one or more instructions from the communication unit 164 or input one or more instructions from one or more computer devices in communication with the communication unit 164, and the microprocessor 162 retrieves the Experimental results.
該記憶體165和該微處理器162通訊。該記憶體165可用來儲存由該微處理器162而來的一作業流程或該實驗結果。較佳地,該記憶體165可為一隨機存取記憶體 (RAM)、一記憶卡或其他類似元件。The memory 165 is in communication with the microprocessor 162. The memory 165 can be used to store a workflow or the experimental results from the microprocessor 162. Preferably, the memory 165 can be a random access memory (RAM), a memory card or the like.
需特別注意的是,在圖5中的該溫度控制模組120、該加熱元件121、該樣本溫度感測器122、該冷卻元件123、該容器組件溫度感測器124、該光學模組130、該容器組件140和該樣本容器110可分別對應到圖1中具有相同編號的元件。該激發光源131為該激發光源131a和131b的集合,且該偵測器132為該偵測器132a和132b的集合。It should be noted that the temperature control module 120, the heating element 121, the sample temperature sensor 122, the cooling element 123, the container assembly temperature sensor 124, and the optical module 130 in FIG. The container assembly 140 and the sample container 110 may correspond to elements having the same number in FIG. 1, respectively. The excitation light source 131 is a collection of the excitation light sources 131a and 131b, and the detector 132 is a collection of the detectors 132a and 132b.
請見圖6,本揭露提供了一光熱反應分析儀中該光熱反應單位的一殼體。在圖1中的該光熱反應分析單元10可進一步包括一殼體170以容置該容器組件接收裝置150和該控制模組160。Please refer to FIG. 6. The present disclosure provides a housing of the photothermal reaction unit in a photothermal reaction analyzer. The photothermal reaction analyzing unit 10 in FIG. 1 may further include a housing 170 for housing the container assembly receiving device 150 and the control module 160.
請見圖7,本揭露提供了一使用上述光熱反應分析儀執行一免疫螢光反應的流程。圖7中的流程可由該光熱反應分析儀自動給予指令,或由使用者手動給予指令。Please refer to FIG. 7. The present disclosure provides a flow for performing an immunofluorescence reaction using the above photothermal reaction analyzer. The flow in Figure 7 can be automatically commanded by the photothermal reaction analyzer or manually by the user.
211步驟為決定是否加熱在該樣本容器中的該試劑。若該試劑有被加熱的必要,則該微處理器會指示該光熱反應分析儀執行213步驟。Step 211 is to determine whether to heat the reagent in the sample container. If the reagent is necessary to be heated, the microprocessor instructs the photothermal reaction analyzer to perform step 213.
該試劑可包括一種或多種待測物、螢光染劑、標記物、抗體或其他該免疫螢光反應所需或聚合酶鏈鎖反應所需之試劑。該標記物或該螢光染劑是用來凸顯該實驗結果。該標記物可特異性地和該待測物結合。較佳地,在該免疫螢光反應之中,該標記物可和一抗體或該待測物形成化學鍵結。在該免疫螢光反應之中,該螢光染劑可和一抗體或該待測物形成鍵結。該待測物可為由一種或多種生物性來源所取得的一種或多種蛋白質、多肽鏈或核酸。該生物性來源包括一種或多種生物組織、細胞、體液或體液衍生物。該生物性來源可為血液、血清、血漿、承載生物組織的玻片、承載生物細胞的玻片或其他任何生物組織衍生物。The reagent may include one or more analytes, fluorescent dyes, labels, antibodies or other reagents required for the immunofluorescence reaction or for the polymerase chain reaction. The marker or the fluorescent dye is used to highlight the results of the experiment. The label can specifically bind to the analyte. Preferably, in the immunofluorescence reaction, the label can form a chemical bond with an antibody or the analyte. In the immunofluorescence reaction, the fluorescent dye can form a bond with an antibody or the analyte. The test substance can be one or more proteins, polypeptide chains or nucleic acids taken from one or more biological sources. The biological source includes one or more biological tissues, cells, body fluids, or body fluid derivatives. The biological source can be blood, serum, plasma, slides carrying biological tissue, slides carrying biological cells, or any other biological tissue derivative.
若該試劑需要被加熱,該試劑可包括一種或多種產熱反應物,該產熱反應物能夠被電磁輻射照射而產熱。該反應物可為一種過渡金屬材質,且該過渡金屬材質可為一種過渡金屬氧化物,一種過渡金屬氫氧化物,或一種第三族金屬之氮化物、磷化物或砷化物摻雜過渡金屬或過渡金屬氧化物,或一種二氧化矽摻雜過渡金屬、過渡金屬氧化物或過渡金屬氫氧化物。當該反應物被紅外線照射時其溫度會升高。If the reagent needs to be heated, the reagent can include one or more thermogenic reactants that can be illuminated by electromagnetic radiation to produce heat. The reactant may be a transition metal material, and the transition metal material may be a transition metal oxide, a transition metal hydroxide, or a nitride, phosphide or arsenide doped transition metal of a Group III metal or A transition metal oxide, or a cerium oxide doped transition metal, transition metal oxide or transition metal hydroxide. The temperature of the reactants rises when it is irradiated with infrared rays.
212步驟為依據一第二溫度程式,加熱該試劑至一指定溫度。較佳地,該溫度控制模組可包括一加熱元件、一冷卻元件、一樣本溫度感測器和一容器組件溫度感測器。212步驟中的該指定溫度導向該免疫螢光反應所需的溫度。Step 212 is to heat the reagent to a specified temperature according to a second temperature program. Preferably, the temperature control module can include a heating element, a cooling element, the same temperature sensor, and a container assembly temperature sensor. The specified temperature in step 212 is directed to the temperature required for the immunofluorescence reaction.
更進一步地,212步驟需要電磁輻射以提高該反應物的溫度。該電磁輻射具有一波長範圍為200 kHz至500 THz。較佳地,該電磁輻射位於紅外光光譜之中。Still further, the 212 step requires electromagnetic radiation to increase the temperature of the reactants. The electromagnetic radiation has a wavelength in the range of 200 kHz to 500 THz. Preferably, the electromagnetic radiation is located in the spectrum of the infrared light.
在另一實施例中,該試劑的溫度可被該光熱分析儀所偵測,且該試劑在一指定溫度中停留在一指定時間區間。根據該免疫反應所需的反應時間,可設定該指定時間區間的長度。In another embodiment, the temperature of the reagent can be detected by the photothermal analyzer and the reagent stays at a specified temperature for a specified time interval. The length of the specified time interval can be set according to the reaction time required for the immune reaction.
213步驟為以一激發光源所發出的激發光進而激發該試劑中的螢光。可依照該試劑中的該螢光染劑種類決定需發出哪種激發光:若該試劑中的該螢光染劑為SYBR,則可採用波長範圍為450至495奈米的一藍光激發光;若該試劑中的螢光染劑為ROX,即可採用波長範圍為495至570奈米的一綠光激發光。Step 213 is to excite the fluorescent light in the reagent by the excitation light emitted by an excitation light source. The excitation light to be emitted may be determined according to the type of the fluorescent dye in the reagent: if the fluorescent dye in the reagent is SYBR, a blue excitation light having a wavelength range of 450 to 495 nm may be used; If the fluorescent dye in the reagent is ROX, a green light excitation light having a wavelength range of 495 to 570 nm can be used.
214步驟為使用該偵測器偵測該試劑所發出之螢光。可依照該試劑中的該螢光試劑種類決定需偵測哪種螢光:若該試劑中的該螢光染劑為SYBR,則可偵測該綠螢光;若該試劑中的該螢光染劑為ROX,則可偵測該紅螢光。Step 214 is to use the detector to detect the fluorescent light emitted by the reagent. According to the type of the fluorescent reagent in the reagent, which kind of fluorescence needs to be detected: if the fluorescent dye in the reagent is SYBR, the green fluorescent light can be detected; if the fluorescent light in the reagent When the dye is ROX, the red fluorescent light can be detected.
若該樣本容器中沒有螢光染劑的話則反應時間可能較長。圖8為符合本揭露之一實施例的一樣本容器中之螢光訊號的影像。該螢光訊號可由該偵測器所捕捉並在反應中累積。圖8中的B欄為該偵測器中光電二極體所量測之該樣本容器中的該螢光訊號,圖8中的A欄為該偵測器中該影像元件所捕捉的該樣本容器之影像。在圖8上半部中,SYBR不存在於該樣本容器中的該試劑內,因此由該偵測器中該影像元件所捕捉的影像沒有由SYBR所發出的綠螢光,如圖8中A欄上半部所示。圖8B欄上半部顯示出當沒有偵測到樣本容器中SYBR所發出的綠螢光時,該免疫反應之反應時間就會較長。在圖8下半部中,SYBR在該樣本容器中的該試劑內,因此由該偵測器中該影像元件所捕捉的影像有由SYBR所發出的綠螢光,如圖8中A欄下半部所示。圖8B欄下半部顯示出當偵測到樣本容器中SYBR所發出的綠螢光時,該免疫反應之反應時間就會較具有SYBR之反應來得短。If there is no fluorescent dye in the sample container, the reaction time may be longer. Figure 8 is an image of a fluorescent signal in the same container in accordance with an embodiment of the present disclosure. The fluorescent signal can be captured by the detector and accumulated in the reaction. Column B in Figure 8 is the fluorescent signal in the sample container measured by the photodiode in the detector, and column A in Figure 8 is the sample captured by the image element in the detector. The image of the container. In the upper half of Fig. 8, the SYBR is not present in the reagent in the sample container, so the image captured by the image element in the detector has no green fluorescence emitted by the SYBR, as shown in Fig. 8 The top half of the bar is shown. The upper half of the column of Figure 8B shows that the reaction time of the immune response is longer when no green fluorescence from the SYBR in the sample container is detected. In the lower half of Figure 8, the SYBR is in the reagent in the sample container, so the image captured by the image element in the detector has green fluorescence emitted by the SYBR, as shown in column A of Figure 8. Shown in half. The lower half of the column of Figure 8B shows that when the green fluorescence emitted by the SYBR in the sample container is detected, the reaction time of the immune reaction is shorter than that of the reaction with SYBR.
在另一實施例中,211步驟更包括:將該試劑填入該樣本容器中,且將該樣本容器置於該光熱反應分析儀的該容器組件中。In another embodiment, the step 211 further comprises: filling the reagent into the sample container and placing the sample container in the container assembly of the photothermal reaction analyzer.
在另一實施例中,211步驟更包括以下的2111至2113步驟:In another embodiment, the step 211 further includes the following steps 2111 to 2113:
2111步驟為由使用者輸入一個或多個指令。該指令可為一啟動指令。較佳地,2111步驟可能包括該使用者輸入一個或多個指令至該光熱反應分析儀。該指令可為多個包括工作流程且以電腦實施的方法。該微處理器中的記憶體可儲存上述之以電腦實施的方法。Step 2111 is to enter one or more instructions by the user. This command can be a start command. Preferably, the step 2111 may include the user entering one or more instructions to the photothermal reaction analyzer. The instructions can be a plurality of methods including a workflow and implemented in a computer. The memory in the microprocessor can store the computer implemented method described above.
2112步驟為決定該試劑是否需要被加熱。如加熱是必要的,則該微處理器可傳送一個或多個指令至該溫度控制模組和該光學模組。如加熱是不必要的,則該微處理器也可傳送一個或多個指令至該溫度控制模組和該光學模組。較佳地,該光學模組可包括一個或多個偵測器和激發光源。Step 2112 is to determine if the reagent needs to be heated. If heating is necessary, the microprocessor can transmit one or more commands to the temperature control module and the optical module. If heating is not necessary, the microprocessor can also transmit one or more commands to the temperature control module and the optical module. Preferably, the optical module can include one or more detectors and an excitation light source.
較佳地,該以電腦實施的方法可由該微處理器中的記憶體載入以決定該試劑是否需被加熱。Preferably, the computer implemented method can be loaded by the memory in the microprocessor to determine if the reagent needs to be heated.
較佳地,該微處理器透過一輸出單元而傳送一個或多個指令至該溫度控制模組和該光學模組。Preferably, the microprocessor transmits one or more commands to the temperature control module and the optical module through an output unit.
在另一實施例中,214步驟更包括以下的2141至2143步驟:In another embodiment, the step 214 further includes the following steps 2141 through 2143:
2141步驟為以該微處理器取得該試劑中的一種或多種螢光資訊。Step 2141 is to obtain one or more fluorescent information of the reagent by the microprocessor.
2142步驟為以該微處理器分析該螢光資訊且取得實驗結果。Step 2142 is to analyze the fluorescent information by the microprocessor and obtain experimental results.
2143步驟為判斷該反應是否已完成。若該反應已完成,則該微處理器可送出一停止指令至該溫度控制模組和該光學模組。較佳地,2143步驟也可包括儲存該實驗結果至該記憶體。另外,該實驗結果也可被傳送到一外部裝置。Step 2143 is to determine if the reaction has been completed. If the reaction is completed, the microprocessor can send a stop command to the temperature control module and the optical module. Preferably, the step 2143 can also include storing the experimental results to the memory. In addition, the experimental results can also be transmitted to an external device.
本揭露的一實施例更提供了一種使用前述光熱反應分析儀執行一聚合酶鏈鎖反應的方法,包括:An embodiment of the present disclosure further provides a method for performing a polymerase chain reaction using the photothermal reaction analyzer described above, comprising:
221步驟為根據該第二溫度程式,以該溫度控制模組加熱該樣本容器中的該試劑。Step 221 is to heat the reagent in the sample container with the temperature control module according to the second temperature program.
該試劑可包括一種或多種聚合酶、去氧核苷三磷酸、引子、模版序列或其他任何執行一聚合酶鏈鎖反應或即時聚合酶鏈鎖反應所需的試劑。The reagent may include one or more polymerases, deoxynucleoside triphosphates, primers, template sequences, or any other reagent required to perform a polymerase chain reaction or an instant polymerase chain reaction.
該試劑可包括一種或多種產熱反應物。該產熱反應物能夠被電磁波照射而產熱。該反應物可為一種過渡金屬材質,且該過渡金屬材質可為一種過渡金屬氧化物,一種過渡金屬氫氧化物,或一種第三族金屬之氮化物、磷化物或砷化物摻雜過渡金屬或過渡金屬氧化物,或一種二氧化矽摻雜過渡金屬、過渡金屬氧化物或過渡金屬氫氧化物。當該反應物被紅外線照射時其溫度會升高。The reagent can include one or more thermogenic reactants. The heat generating reactant can be irradiated with electromagnetic waves to generate heat. The reactant may be a transition metal material, and the transition metal material may be a transition metal oxide, a transition metal hydroxide, or a nitride, phosphide or arsenide doped transition metal of a Group III metal or A transition metal oxide, or a cerium oxide doped transition metal, transition metal oxide or transition metal hydroxide. The temperature of the reactants rises when it is irradiated with infrared rays.
該第二溫度程式指示該控制模組使該加熱元件發出電磁輻射以升高該試劑的溫度至一個或多個指定溫度。該電磁輻射具有一波長範圍為200 kHz至500 THz。較佳地,該電磁輻射位於紅外光的波長範圍中。The second temperature program instructs the control module to cause the heating element to emit electromagnetic radiation to raise the temperature of the reagent to one or more specified temperatures. The electromagnetic radiation has a wavelength in the range of 200 kHz to 500 THz. Preferably, the electromagnetic radiation is in the wavelength range of the infrared light.
該指定溫度是依照該第二溫度程式所設定且為聚合酶鏈鎖反應每一階段所需的溫度。The specified temperature is set according to the second temperature program and is the temperature required for each stage of the polymerase chain reaction.
在另一實施例中,需感測該試劑溫度,且使該試劑溫度在該指定時間區間內保持在一指定溫度下。該指定時間區間是基於聚合酶鏈鎖反應的實驗準則而制定的。In another embodiment, the reagent temperature is sensed and the reagent temperature is maintained at a specified temperature for the specified time interval. The specified time interval was developed based on experimental criteria for polymerase chain reaction.
在另一實施例中,221步驟更包括:將該試劑填入該樣本容器並將該樣本容器置入該光熱反應分析儀的容器組件中。In another embodiment, the step 221 further comprises: filling the reagent container into the sample container and placing the sample container into the container assembly of the photothermal reaction analyzer.
在另一實施例中,221步驟更包括以下的2211至2213步驟:In another embodiment, the step 221 further includes the following steps 2211 to 2213:
2211步驟為由使用者輸入一個或多個指令。該指令可為一啟動指令。較佳地,2111步驟可能包括該使用者輸入一個或多個指令至該光熱反應分析儀。該指令可為多個包括工作流程且以電腦實施的方法。該微處理器中的記憶體可儲存上述之以電腦實施的方法。Step 2211 is to enter one or more instructions by the user. This command can be a start command. Preferably, the step 2111 may include the user entering one or more instructions to the photothermal reaction analyzer. The instructions can be a plurality of methods including a workflow and implemented in a computer. The memory in the microprocessor can store the computer implemented method described above.
2212為由該微處理器傳送一加熱指令至該溫度控制模組。該以電腦實施的方法可由該微處理器中的記憶體載入以決定該試劑是否需被加熱。較佳地,該微處理器透過一輸出單元而傳送一個或多個指令至該溫度控制模組。2212 is a microprocessor sends a heating command to the temperature control module. The computer implemented method can be loaded by the memory in the microprocessor to determine if the reagent needs to be heated. Preferably, the microprocessor transmits one or more commands to the temperature control module through an output unit.
在另一實施例中,221步驟更包括以下的222至223步驟:In another embodiment, the step 221 further includes the following steps 222 to 223:
222步驟為判斷該反應是否已完成。若該反應已完成,則該微處理器可送出一停止指令至該溫度控制模組。較佳地,2143步驟也可包括顯示該完成訊號或傳送該實驗結果至一外部裝置。Step 222 is to determine if the reaction has been completed. If the reaction is completed, the microprocessor can send a stop command to the temperature control module. Preferably, the step 2143 may also include displaying the completion signal or transmitting the experimental result to an external device.
請見圖9,本揭露提供了一種使用上述光熱反應分析儀執行一即時聚合酶鏈鎖反應的方法。該方法包括:Referring to Figure 9, the present disclosure provides a method of performing an instant polymerase chain reaction using the photothermal reaction analyzer described above. The method includes:
231步驟為以該溫度控制模組加熱該樣本容器中的該試劑。Step 231 is to heat the reagent in the sample container with the temperature control module.
該試劑可包括一種或多種聚合酶、去氧核苷三磷酸、引子、探針、模版序列,螢光染劑或其他任何執行一即時聚合酶鏈鎖反應所需的試劑。該螢光染劑可和該探針形成鍵結。The reagent may include one or more polymerases, deoxynucleoside triphosphates, primers, probes, template sequences, fluorescent stains, or any other reagent required to perform an immediate polymerase chain reaction. The fluorescent dye can form a bond with the probe.
該試劑可包括一種或多種產熱反應物。該產熱反應物能夠被電磁輻射照射而產熱。該反應物可為一種過渡金屬材質,且該過渡金屬材質可為一種過渡金屬氧化物,一種過渡金屬氫氧化物,或一種第三族金屬之氮化物、磷化物或砷化物摻雜過渡金屬或過渡金屬氧化物,或一種二氧化矽摻雜過渡金屬、過渡金屬氧化物或過渡金屬氫氧化物。當該反應物被紅外線照射時其溫度會升高。The reagent can include one or more thermogenic reactants. The heat generating reactant can be irradiated with electromagnetic radiation to generate heat. The reactant may be a transition metal material, and the transition metal material may be a transition metal oxide, a transition metal hydroxide, or a nitride, phosphide or arsenide doped transition metal of a Group III metal or A transition metal oxide, or a cerium oxide doped transition metal, transition metal oxide or transition metal hydroxide. The temperature of the reactants rises when it is irradiated with infrared rays.
另外,為了使該試劑的溫度升高至一個或多個指定溫度,電磁輻射是必要的。該電磁輻射具有一波長範圍為200 kHz至500 THz。較佳地,該電磁輻射位於紅外光的波長範圍中。該指定溫度是依照該即時聚合酶鏈鎖反應每一階段所需的溫度而設定。Additionally, electromagnetic radiation is necessary in order to raise the temperature of the reagent to one or more specified temperatures. The electromagnetic radiation has a wavelength in the range of 200 kHz to 500 THz. Preferably, the electromagnetic radiation is in the wavelength range of the infrared light. The specified temperature is set according to the temperature required for each stage of the instant polymerase chain reaction.
在另一實施例中,需感測該試劑溫度,且使該試劑溫度在該指定時間區間內保持在一指定溫度下。該指定時間區間是基於即時聚合酶鏈鎖反應中每一階段所需的時間而制定。In another embodiment, the reagent temperature is sensed and the reagent temperature is maintained at a specified temperature for the specified time interval. The specified time interval is based on the time required for each phase of the instant polymerase chain reaction.
232步驟為以一激發光源所發出的激發光進而激發該試劑中的螢光。可依照該試劑中的該螢光染劑種類決定需發出哪種激發光:若該試劑中的該螢光染劑為SYBR,則可採用波長範圍為450至495奈米的一藍光激發光;若該試劑中的螢光染劑為ROX,即可採用波長範圍為495至570奈米的一綠光激發光。Step 232 is to excite the fluorescent light in the reagent by the excitation light emitted by an excitation light source. The excitation light to be emitted may be determined according to the type of the fluorescent dye in the reagent: if the fluorescent dye in the reagent is SYBR, a blue excitation light having a wavelength range of 450 to 495 nm may be used; If the fluorescent dye in the reagent is ROX, a green light excitation light having a wavelength range of 495 to 570 nm can be used.
233步驟為使用該偵測器偵測該試劑所發出之螢光。可依照該試劑中的該螢光試劑種類決定需偵測哪種螢光:若該試劑中的該螢光染劑為SYBR,則可偵測該綠螢光;若該試劑中的該螢光染劑為ROX,則可偵測該紅螢光。Step 233 is to use the detector to detect the fluorescent light emitted by the reagent. According to the type of the fluorescent reagent in the reagent, which kind of fluorescence needs to be detected: if the fluorescent dye in the reagent is SYBR, the green fluorescent light can be detected; if the fluorescent light in the reagent When the dye is ROX, the red fluorescent light can be detected.
在另一實施例中,231步驟更包括:將該試劑填入該樣本容器中,且將該樣本容器至於該光熱反應分析儀的該容器組件中。In another embodiment, the step 231 further comprises: filling the reagent into the sample container and placing the sample container in the container assembly of the photothermal reaction analyzer.
在另一實施例中,231步驟更包括以下的2311至2313步驟:In another embodiment, the step 231 further includes the following steps 2311 to 2313:
2311步驟為由使用者輸入一個或多個指令。該指令可為一啟動指令。較佳地,2311步驟可包括該使用者輸入一個或多個指令至該光熱反應分析儀。該指令可為多個包括工作流程且以電腦實施的方法。該微處理器中的記憶體可儲存上述之以電腦實施的方法。Step 2311 is to enter one or more instructions by the user. This command can be a start command. Preferably, step 2311 can include the user inputting one or more instructions to the photothermal reaction analyzer. The instructions can be a plurality of methods including a workflow and implemented in a computer. The memory in the microprocessor can store the computer implemented method described above.
2312步驟為由該微處理器傳送一個或多個指令至該溫度控制模組和光學模組。較佳地,該以電腦實施的方法可由該微處理器中的記憶體載入,在由該微處理器決定該試劑是否需被加熱。Step 2312 is for the microprocessor to transmit one or more commands to the temperature control module and the optical module. Preferably, the computer implemented method can be loaded by a memory in the microprocessor where it is determined whether the reagent needs to be heated.
較佳地,該微處理器透過一輸出單元而傳送一個或多個指令至該溫度控制模組和該光學模組。Preferably, the microprocessor transmits one or more commands to the temperature control module and the optical module through an output unit.
在另一實施例中,233步驟更包括了以下2331至2333步驟:In another embodiment, the step 233 further includes the following steps 2331 to 2333:
2331步驟為以該微處理器取得該試劑中的一種或多種螢光資訊。Step 2331 is to obtain one or more fluorescent information of the reagent by the microprocessor.
2332步驟為以該微處理器分析該螢光資訊且取得實驗結果。Step 2332 is to analyze the fluorescent information by the microprocessor and obtain experimental results.
2333步驟為判斷該反應是否已完成。若該反應已完成,則該微處理器可送出一停止指令至該溫度控制模組和該光學模組。Step 2333 is to determine if the reaction has been completed. If the reaction is completed, the microprocessor can send a stop command to the temperature control module and the optical module.
該實驗結果接著被儲存到該記憶體中。另外,該實驗結果也可顯示在一外部裝置上或被該外部裝置所傳送。The experimental results are then stored in the memory. Alternatively, the results of the experiment can be displayed on or transmitted by an external device.
綜上所述,本創作符合發明專利要件,爰依法提出專利申請。惟,以上所述者僅為本創作之較佳實施例,本創作之範圍並不以上述實施例為限,舉凡熟習本案技藝之人士爰依本創作之精神所作之等效修飾或變化,皆應涵蓋於以下申請專利範圍內。In summary, the creation meets the requirements of the invention patent, and the patent application is filed according to law. However, the above description is only a preferred embodiment of the present invention, and the scope of the present invention is not limited to the above embodiments, and those skilled in the art will be equivalently modified or changed according to the spirit of the present invention. It should be covered by the following patent application.
10,20‧‧‧光熱反應單位 10,20‧‧‧Photothermal reaction unit
110‧‧‧樣本容器 110‧‧‧ sample container
120‧‧‧溫度控制模組 120‧‧‧temperature control module
121‧‧‧加熱元件 121‧‧‧ heating element
122‧‧‧樣本溫度感測器 122‧‧‧sample temperature sensor
123‧‧‧冷卻元件 123‧‧‧Cooling element
124‧‧‧容器組件溫度感測器 124‧‧‧Container component temperature sensor
130‧‧‧光學模組 130‧‧‧Optical module
131,131a,131b‧‧‧激發光源 131,131a,131b‧‧‧Excitation source
132,132a,132b‧‧‧偵測器 132, 132a, 132b‧‧‧Detector
140‧‧‧容器組件 140‧‧‧Container components
141,251‧‧‧槽 141,251‧‧‧ slots
142a,142b,252a,252b‧‧‧開口 142a, 142b, 252a, 252b‧‧‧ openings
150‧‧‧容器組件接收裝置 150‧‧‧Container assembly receiving device
151‧‧‧凹處 151‧‧‧ recess
30‧‧‧光熱反應分析儀 30‧‧‧Photothermal Reaction Analyzer
250‧‧‧容器組件塊體 250‧‧‧Container module block
160‧‧‧控制模組 160‧‧‧Control Module
161‧‧‧輸入單元 161‧‧‧ input unit
162‧‧‧微處理器 162‧‧‧Microprocessor
163‧‧‧輸出單元 163‧‧‧Output unit
164‧‧‧通訊單元 164‧‧‧Communication unit
165‧‧‧記憶體 165‧‧‧ memory
170‧‧‧殼體 170‧‧‧Shell
本說明將可由以下之敘述配合附圖以更佳地理解,其中: 圖1為符合本揭露的一實施例之一種光熱反應分析儀結構的爆炸圖。 圖2為符合本揭露的一實施例之一激發光源、一樣本容器和一螢光偵測元件之間的光學組態示意圖。 圖3為圖1中光熱反應分析儀中容器組件接收裝置的外觀圖。 圖4為符合本揭露的一實施例之另一種光熱反應分析儀結構的爆炸圖。 圖5為圖1中光熱反應分析儀之各元件間功能關係的流程圖。 圖6為符合本揭露的一實施例之一種光熱反應分析儀的殼體之示意圖。 圖7為符合本揭露的一實施例之一種使用光熱反應分析儀執行免疫螢光反應的流程圖。 圖8為圖7中免疫螢光反應之實驗結果。 圖9為符合本揭露的一實施例之一種使用光熱反應分析儀執行一聚合酶鏈鎖反應的方法之流程圖。The description will be better understood from the following description in conjunction with the accompanying drawings in which: FIG. 1 is an exploded view of a photothermal reaction analyzer structure consistent with an embodiment of the present disclosure. 2 is a schematic diagram showing the optical configuration between an excitation light source, an identical container, and a fluorescent detecting element in accordance with an embodiment of the present disclosure. 3 is an external view of a container assembly receiving device in the photothermal reaction analyzer of FIG. 1. 4 is an exploded view of another photothermal reaction analyzer configuration consistent with an embodiment of the present disclosure. Figure 5 is a flow chart showing the functional relationship between the components of the photothermal reaction analyzer of Figure 1. 6 is a schematic view of a housing of a photothermal reaction analyzer in accordance with an embodiment of the present disclosure. 7 is a flow chart of performing an immunofluorescence reaction using a photothermal reaction analyzer in accordance with an embodiment of the present disclosure. Figure 8 is an experimental result of the immunofluorescence reaction of Figure 7. 9 is a flow chart of a method for performing a polymerase chain reaction using a photothermal reaction analyzer in accordance with an embodiment of the present disclosure.
Claims (54)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201762484994P | 2017-04-13 | 2017-04-13 | |
US62/484994 | 2017-04-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
TW201843446A true TW201843446A (en) | 2018-12-16 |
Family
ID=63792295
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW107112723A TW201843446A (en) | 2017-04-13 | 2018-04-13 | Photothermal reaction analyzer |
Country Status (2)
Country | Link |
---|---|
TW (1) | TW201843446A (en) |
WO (1) | WO2018188655A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112080414A (en) * | 2019-06-13 | 2020-12-15 | 克雷多生物医学私人有限公司 | Polymerase chain reaction device capable of detecting more than one fluorescent signal in real time |
TWI730636B (en) * | 2020-02-24 | 2021-06-11 | 高爾科技股份有限公司 | Double-sided photothermal reaction selective lock and manufacturing method thereof |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110274876A (en) * | 2019-06-04 | 2019-09-24 | 福建师范大学福清分校 | A kind of micro liquid Opto-thertnal detection device |
CN113604328B (en) * | 2021-08-09 | 2024-04-09 | 圣湘生物科技股份有限公司 | Amplification detection device and amplification detection method |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011506926A (en) * | 2007-12-06 | 2011-03-03 | エージェンシー フォー サイエンス, テクノロジー アンド リサーチ | Integrated device for performing and monitoring chemical reactions |
FI20095059A0 (en) * | 2009-01-26 | 2009-01-26 | Wallac Oy | Apparatus and method for optical measurement of samples |
AU2010237532B2 (en) * | 2009-04-15 | 2014-11-20 | Biocartis Nv | Optical detection system for monitoring rtPCR reaction |
FI20096021A0 (en) * | 2009-10-06 | 2009-10-06 | Wallac Oy | Optical measuring instrument |
EP2581728B1 (en) * | 2011-10-10 | 2013-09-18 | CYCLERtest B.V. | Calibration device for a thermal cycler |
EP2605001A1 (en) * | 2011-12-15 | 2013-06-19 | Hain Lifescience GmbH | A device and method for optically measuring fluorescence of nucleic acids in test samples and use of the device and method |
GB201401584D0 (en) * | 2014-01-29 | 2014-03-19 | Bg Res Ltd | Intelligent detection of biological entities |
-
2018
- 2018-04-13 TW TW107112723A patent/TW201843446A/en unknown
- 2018-04-13 WO PCT/CN2018/083024 patent/WO2018188655A1/en active Application Filing
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112080414A (en) * | 2019-06-13 | 2020-12-15 | 克雷多生物医学私人有限公司 | Polymerase chain reaction device capable of detecting more than one fluorescent signal in real time |
TWI730636B (en) * | 2020-02-24 | 2021-06-11 | 高爾科技股份有限公司 | Double-sided photothermal reaction selective lock and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
WO2018188655A1 (en) | 2018-10-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW201843446A (en) | Photothermal reaction analyzer | |
JP4969650B2 (en) | Gene detection determination apparatus, gene detection determination method, and gene reaction apparatus | |
JP4633730B2 (en) | Fluorescence detection system and method using a movable detection module | |
US20150165440A1 (en) | QPCR Analysis Apparatus | |
KR100840949B1 (en) | Multi-channel optical detection system | |
CN102618439B (en) | Deoxyribonucleic acid (DNA) fragment amplification and quantitative detection system based on closed reactors | |
JP6442543B2 (en) | Equipment for thermal convection polymerase chain reaction | |
US7186989B2 (en) | Low thermal mass fluorometer | |
KR102133633B1 (en) | A device for real-time detecting nucleic acids amplification products | |
JP7524061B2 (en) | PORTABLE DEVICE AND METHOD FOR ANALYZING A SAMPLE - Patent application | |
TWI656335B (en) | Temperature control module and light measuring device | |
US11565268B2 (en) | Convective PCR device | |
JP2022527250A (en) | Multi-functional analytical device | |
US10775306B2 (en) | Modular testing device for analyzing biological samples | |
CN111592982A (en) | Novel portable nucleic acid amplification analyzer | |
JP2021514051A (en) | Analysis equipment | |
US10228383B2 (en) | Test apparatus and control method thereof | |
Gransee et al. | Fluorescence detection in Lab-on-a-chip systems using ultrafast nucleic acid amplification methods | |
IE20070696A1 (en) | A qPCR analysis apparatus |