TW201842322A - 用於成像樣品的光失真修正 - Google Patents
用於成像樣品的光失真修正 Download PDFInfo
- Publication number
- TW201842322A TW201842322A TW107106625A TW107106625A TW201842322A TW 201842322 A TW201842322 A TW 201842322A TW 107106625 A TW107106625 A TW 107106625A TW 107106625 A TW107106625 A TW 107106625A TW 201842322 A TW201842322 A TW 201842322A
- Authority
- TW
- Taiwan
- Prior art keywords
- image
- distortion correction
- imaging data
- imaging
- correction coefficients
- Prior art date
Links
- 238000012937 correction Methods 0.000 title claims abstract description 96
- 230000003287 optical effect Effects 0.000 title claims description 47
- 238000003384 imaging method Methods 0.000 claims abstract description 189
- 238000000034 method Methods 0.000 claims abstract description 59
- PXFBZOLANLWPMH-UHFFFAOYSA-N 16-Epiaffinine Natural products C1C(C2=CC=CC=C2N2)=C2C(=O)CC2C(=CC)CN(C)C1C2CO PXFBZOLANLWPMH-UHFFFAOYSA-N 0.000 claims abstract description 33
- 230000009466 transformation Effects 0.000 claims description 31
- 238000012163 sequencing technique Methods 0.000 claims description 17
- 150000007523 nucleic acids Chemical class 0.000 claims description 10
- 102000039446 nucleic acids Human genes 0.000 claims description 9
- 108020004707 nucleic acids Proteins 0.000 claims description 9
- 238000004364 calculation method Methods 0.000 claims description 2
- 238000005352 clarification Methods 0.000 claims 1
- 238000004088 simulation Methods 0.000 claims 1
- 230000001131 transforming effect Effects 0.000 claims 1
- 239000000523 sample Substances 0.000 description 100
- 239000002585 base Substances 0.000 description 26
- 238000003860 storage Methods 0.000 description 17
- 239000000758 substrate Substances 0.000 description 15
- 238000004891 communication Methods 0.000 description 13
- 230000006870 function Effects 0.000 description 12
- 238000004422 calculation algorithm Methods 0.000 description 9
- 238000013461 design Methods 0.000 description 9
- 239000011159 matrix material Substances 0.000 description 9
- 238000012545 processing Methods 0.000 description 9
- 238000009826 distribution Methods 0.000 description 8
- 238000010223 real-time analysis Methods 0.000 description 8
- 239000012472 biological sample Substances 0.000 description 7
- 238000007493 shaping process Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 238000004590 computer program Methods 0.000 description 4
- 239000012530 fluid Substances 0.000 description 4
- 239000007850 fluorescent dye Substances 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 238000013519 translation Methods 0.000 description 4
- 230000001413 cellular effect Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000000670 limiting effect Effects 0.000 description 3
- 239000002773 nucleotide Substances 0.000 description 3
- 125000003729 nucleotide group Chemical group 0.000 description 3
- 238000012634 optical imaging Methods 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- DLRVVLDZNNYCBX-UHFFFAOYSA-N Polydextrose Polymers OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(O)O1 DLRVVLDZNNYCBX-UHFFFAOYSA-N 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000012620 biological material Substances 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 230000001427 coherent effect Effects 0.000 description 2
- 230000008094 contradictory effect Effects 0.000 description 2
- OPTASPLRGRRNAP-UHFFFAOYSA-N cytosine Chemical compound NC=1C=CNC(=O)N=1 OPTASPLRGRRNAP-UHFFFAOYSA-N 0.000 description 2
- 238000013480 data collection Methods 0.000 description 2
- 230000001627 detrimental effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- UYTPUPDQBNUYGX-UHFFFAOYSA-N guanine Chemical compound O=C1NC(N)=NC2=C1N=CN2 UYTPUPDQBNUYGX-UHFFFAOYSA-N 0.000 description 2
- 238000005286 illumination Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000013178 mathematical model Methods 0.000 description 2
- -1 polypropylene Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 238000010845 search algorithm Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- RWQNBRDOKXIBIV-UHFFFAOYSA-N thymine Chemical compound CC1=CNC(=O)NC1=O RWQNBRDOKXIBIV-UHFFFAOYSA-N 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 229930024421 Adenine Natural products 0.000 description 1
- GFFGJBXGBJISGV-UHFFFAOYSA-N Adenine Chemical compound NC1=NC=NC2=C1N=CN2 GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 description 1
- 241000226585 Antennaria plantaginifolia Species 0.000 description 1
- 238000001712 DNA sequencing Methods 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 229920001100 Polydextrose Polymers 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229960000643 adenine Drugs 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229940104302 cytosine Drugs 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000012632 fluorescent imaging Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 125000001475 halogen functional group Chemical group 0.000 description 1
- 238000003707 image sharpening Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000003064 k means clustering Methods 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 229940035035 polydextrose Drugs 0.000 description 1
- 235000013856 polydextrose Nutrition 0.000 description 1
- 239000001259 polydextrose Substances 0.000 description 1
- 229920001690 polydopamine Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 229940113082 thymine Drugs 0.000 description 1
- 238000013024 troubleshooting Methods 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/80—Geometric correction
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T3/00—Geometric image transformations in the plane of the image
- G06T3/04—Context-preserving transformations, e.g. by using an importance map
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5027—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
- B01L3/502715—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/16—Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/645—Specially adapted constructive features of fluorimeters
- G01N21/6456—Spatial resolved fluorescence measurements; Imaging
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B21/00—Microscopes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T3/00—Geometric image transformations in the plane of the image
- G06T3/02—Affine transformations
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T3/00—Geometric image transformations in the plane of the image
- G06T3/14—Transformations for image registration, e.g. adjusting or mapping for alignment of images
- G06T3/147—Transformations for image registration, e.g. adjusting or mapping for alignment of images using affine transformations
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/73—Deblurring; Sharpening
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/20—Image preprocessing
- G06V10/24—Aligning, centring, orientation detection or correction of the image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/60—Type of objects
- G06V20/69—Microscopic objects, e.g. biological cells or cellular parts
- G06V20/695—Preprocessing, e.g. image segmentation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N1/00—Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
- H04N1/387—Composing, repositioning or otherwise geometrically modifying originals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N1/00—Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
- H04N1/40—Picture signal circuits
- H04N1/401—Compensating positionally unequal response of the pick-up or reproducing head
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N1/00—Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
- H04N1/40—Picture signal circuits
- H04N1/409—Edge or detail enhancement; Noise or error suppression
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/60—Noise processing, e.g. detecting, correcting, reducing or removing noise
- H04N25/61—Noise processing, e.g. detecting, correcting, reducing or removing noise the noise originating only from the lens unit, e.g. flare, shading, vignetting or "cos4"
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2200/00—Solutions for specific problems relating to chemical or physical laboratory apparatus
- B01L2200/02—Adapting objects or devices to another
- B01L2200/025—Align devices or objects to ensure defined positions relative to each other
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/08—Geometry, shape and general structure
- B01L2300/0809—Geometry, shape and general structure rectangular shaped
- B01L2300/0829—Multi-well plates; Microtitration plates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/08—Geometry, shape and general structure
- B01L2300/0861—Configuration of multiple channels and/or chambers in a single devices
- B01L2300/0877—Flow chambers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/08—Geometry, shape and general structure
- B01L2300/0896—Nanoscaled
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B21/00—Microscopes
- G02B21/36—Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
- G02B21/365—Control or image processing arrangements for digital or video microscopes
- G02B21/367—Control or image processing arrangements for digital or video microscopes providing an output produced by processing a plurality of individual source images, e.g. image tiling, montage, composite images, depth sectioning, image comparison
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/0025—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
- G02B27/0031—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration for scanning purposes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20021—Dividing image into blocks, subimages or windows
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30072—Microarray; Biochip, DNA array; Well plate
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/20—Image preprocessing
- G06V10/24—Aligning, centring, orientation detection or correction of the image
- G06V10/247—Aligning, centring, orientation detection or correction of the image by affine transforms, e.g. correction due to perspective effects; Quadrilaterals, e.g. trapezoids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/26—Electron or ion microscopes
- H01J2237/28—Scanning microscopes
- H01J2237/2813—Scanning microscopes characterised by the application
- H01J2237/2817—Pattern inspection
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Multimedia (AREA)
- Health & Medical Sciences (AREA)
- Signal Processing (AREA)
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Biochemistry (AREA)
- Pathology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Immunology (AREA)
- Optics & Photonics (AREA)
- Hematology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Clinical Laboratory Science (AREA)
- Dispersion Chemistry (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Geometry (AREA)
- Microscoopes, Condenser (AREA)
- Image Processing (AREA)
- Studio Devices (AREA)
- Optical Communication System (AREA)
Abstract
本發明描述用於在具有重複光點之圖案化樣品的成像期間動態地修正影像失真的技術。可在多循環成像運程之第一成像循環期間針對樣品之不同區計算影像失真修正係數之不同集合,且隨後將該些集合即時地應用於在後續循環期間產生之影像資料。在一個實施中,可藉由以下操作計算用於具有重複光點之圖案化樣品之影像的影像失真修正係數:估計該影像之仿射變換;使該影像清晰化;及反覆地搜尋用於經清晰化影像之最佳失真修正係數集合,其中反覆地搜尋用於該經清晰化影像之該最佳失真修正係數集合包括計算該影像中之光點部位的平均純度,且其中在該搜尋之每一反覆期間應用所估計仿射變換。
Description
本發明相關於用於成像樣品的光失真修正。
對相關申請案之交叉參考
本申請案主張在2017年3月7日申請且題為「用於成像樣品的光失真修正(Optical Distortion Correction for Imaged Samples)」之美國臨時專利申請案第62/468,347號的權益,該申請案以全文引用的方式併入本文中。本申請案亦主張在2017年5月5日申請且題為「用於成像樣品的光失真修正(Optical Distortion Correction for Imaged Samples)」之荷蘭專利申請案第N2018852號的權益。
用光學透鏡進行成像之一個問題係透鏡之幾何形狀誘發影像中之不同類型的失真。舉例而言,此類失真可包括放大失真、偏斜失真、平移失真及非線性失真,諸如桶形失真及枕形失真。此等失真一般在進一步偏心於影像中心之影像點中更明顯。
在沿一個方向掃描樣品之平面的行掃描器(line scanner)中,在沿經掃描影像之垂直於掃描方向之邊緣的一個維度上,失真可最明顯。舉例而言,由光學系統之物鏡或其他光學組件引起的像差可引入「拉伸失真」,由 此放大率沿一個軸線(例如,x軸,在沿彼軸線掃描之行的狀況下)而變化。此失真對於具有大量(例如,數千、數百萬、數十億等)圖案化光點之基板的多循環成像尤其不利,此係因為其可使經掃描影像上之光點的實際位置移位遠離光點之預期位置。此可導致在多循環成像運程(imaging run)期間資料輸送量之下降及錯誤率之增加。此問題由圖1A至圖1B說明。圖1A展示具有複數個樣品區之圖案化目標的經掃描影像之中心,該複數個樣品區具有螢光染料。在影像之中心處,不存在光點50之可偵測失真。圖1B展示圖1A之經掃描影像的右側。在右側,光點50之光學失真變得明顯。
本文中所揭示之實例係有關於用於修正成像樣品中之光學失真的技術。
在一第一實例中,一種方法包括:執行包含複數個光點之一圖案化樣品的一第一成像循環;將在該第一成像循環期間產生之一第一成像資料集合分成第一複數個成像資料子集,該第一複數個成像資料子集中之每一者對應於該圖案化樣品之一各別區,該圖案化樣品之該些各別區中之每一者包含複數個光點;針對該第一複數個成像資料子集中之每一者計算影像失真修正係數之一集合;執行該圖案化樣品之一第二成像循環以產生一第二成像資料集合;及將在該第二成像循環期間產生之該第二成像資料集合分成第二複數個成像資料子集,該第二複數個成像資料子集中之每一者對應於該圖案化樣品之與該第一複數個成像資料子集中之一者相同的該各別區;及對於該第二複數個成像資料子集中之每一者,應用針對該第一複數個成像資料子集中對應於該圖案化樣品之相同各別區的一者而計算的該些失真修正係數。
在該第一實例之一個實施中,該圖案化樣品之該些光點中之每 一者包括螢光標記核酸,該第一成像循環係一第一定序循環且該第二成像循環係一第二定序循環。
在該第一實例之一個實施中,該第一成像資料集合及該第二成像資料集合各自分別包括一第一色彩通道之成像資料及一第二色彩通道之成像資料,且針對該第一複數個成像資料子集中之每一者計算影像失真修正係數之一集合包括針對每一成像資料子集之每一色彩通道判定失真修正係數之一集合。
在該第一實例之一個實施中,針對該第一複數個成像資料子集中之每一者計算影像失真修正係數之一集合包括:估計該成像資料子集之一仿射變換;使該成像資料子集清晰化;及反覆地搜尋用於該成像資料子集之一最佳失真修正係數集合。
在該第一實例之一個實施中,該第一成像資料集合及該第二成像資料集合係至少使用該樣品上之基準物的位置來劃分,且該第一複數個成像資料子集中之每一者的該仿射變換係使用該些基準物來估計。
在一第二實例中,一種用於修正包含複數個光點之一圖案化樣品的一影像中之光學失真的方法包括:估計該影像之一仿射變換;使該影像清晰化;及反覆地搜尋用於經清晰化影像之一最佳失真修正係數集合,其中反覆地搜尋用於該經清晰化影像之該最佳失真修正係數集合包括計算該影像中之複數個光點部位的一平均純度,且其中在該搜尋之每一反覆期間應用所估計仿射變換。
在該第二實例之一個實施中,反覆地搜尋用於該經清晰化影像之一最佳失真修正係數集合包括:產生用於該影像之光學失真修正係數之一集合;將該所估計仿射變換應用於該影像中之該複數個光點部位;及在應用該所估計仿射變換之後,將光學失真修正係數之該集合應用於該複數個光點部位中 之每一者。在另一實施中,該方法包括:在將光學失真修正係數之該集合應用於該複數個光點部位中之每一者之後,提取該複數個光點部位中之每一者的一信號強度。在又一實施中,該方法包括:正規化所提取信號強度;及至少使用該些經正規化信號強度計算該複數個光點部位之一平均純度。
在該第二實例之一特定實施中,至少使用該些經正規化信號強度計算該複數個光點部位之一平均純度包括:對於該複數個光點部位中之每一者,至少使用自對應於光點部位之經正規化信號強度之一點至一高斯質心的一距離來判定一純度。
在該第二實例之一特定實施中,反覆地搜尋用於該經清晰化影像之一最佳失真修正係數集合包括對該影像中之複數個光點進行子取樣,其中若該經清晰化影像之一列中的一光點經子取樣,則該經清晰化影像之該列中的所有光點經子取樣。
所揭示技術之其他特徵及態樣自結合藉助於實例說明根據所揭示技術之實例之特徵的隨附圖式進行的以下實施方式將變得顯而易見。發明內容並不意欲限制本文中所描述之任何發明的範圍,該些發明由申請專利範圍及等效物來界定。
應瞭解,前述概念之所有組合(限制條件為此等概念並不相互矛盾)預期為本文中所揭示之本發明主題的部分。特定而言,在本發明結尾處出現之所主張主題的所有組合預期為本文中所揭示之本發明主題的部分。
50‧‧‧光點
100‧‧‧成像系統/流體遞送模組或裝置
110‧‧‧樣品容器
120‧‧‧廢料閥
130‧‧‧溫度站致動器
135‧‧‧加熱器/冷卻器
140‧‧‧攝影機系統
141‧‧‧雷射
142‧‧‧物鏡
145‧‧‧濾光片切換總成
150‧‧‧聚焦雷射/聚焦雷射總成
160‧‧‧光源
165‧‧‧低瓦燈
170‧‧‧樣品台
175‧‧‧聚焦(z軸)組件
185‧‧‧反向二向色件
200‧‧‧兩通道線掃描模組化光學成像系統
210‧‧‧線產生模組(LGM)
211‧‧‧光源/雷射源
212‧‧‧光源/雷射源
213‧‧‧光束塑形透鏡
214‧‧‧鏡面
215‧‧‧半反射鏡面
216‧‧‧快門元件
220‧‧‧攝影機模組(CAM)
221‧‧‧光學感測器
225‧‧‧即時分析模組
230‧‧‧發射光學模組(EOM)
231‧‧‧濾光片元件
232‧‧‧鏡筒透鏡
233‧‧‧半反射鏡面
234‧‧‧半反射鏡面
235‧‧‧物鏡
236‧‧‧z台
240‧‧‧聚焦追蹤模組(FTM)
250‧‧‧目標
251‧‧‧半透明蓋板
252‧‧‧液體層
300‧‧‧圖案化樣品
310‧‧‧光點或特徵
400‧‧‧用於在成像運程期間動態地修正影像失真的方法
410‧‧‧操作
430‧‧‧操作
443‧‧‧影像光點
445‧‧‧影像塊/成像資料子集
450‧‧‧操作/計算用於由成像系統產生之成像資料之失真修正係數的方法
451‧‧‧操作
452‧‧‧操作
460‧‧‧搜尋操作
461‧‧‧操作
462‧‧‧操作
463‧‧‧操作
464‧‧‧操作
465‧‧‧操作
466‧‧‧操作
468‧‧‧決策/失真修正係數
470‧‧‧操作
490‧‧‧操作
500‧‧‧影像塊
510‧‧‧靶環狀基準物
600‧‧‧用於判定可用以最佳化成像透鏡之設計之光學失真修正參數的方法
610‧‧‧操作
620‧‧‧操作
630‧‧‧操作
640‧‧‧操作
1000‧‧‧運算裝置/運算模組
1002‧‧‧匯流排
1004‧‧‧處理器
1008‧‧‧主記憶體
1010‧‧‧資訊儲存機構
1012‧‧‧媒體驅動機
1014‧‧‧儲存媒體
1020‧‧‧儲存單元介面
1022‧‧‧儲存單元
1024‧‧‧通信介面
1028‧‧‧通道
根據一或多個各種實例,參看以下諸圖詳細描述本發明。僅出於說明之目的提供諸圖,且其僅描繪典型或實例實施。
圖1A展示在一個實例中的具有複數個樣品區之圖案化目標的經掃描影像之 中心,該複數個樣品區具有螢光染料。
圖1B展示圖1A之經掃描影像的右側。
圖2A說明在一個實例中的可實施本文中所揭示之系統及方法的實例影像掃描系統之一般方塊圖。
圖2B係可實施於特定實施中之實例兩通道行掃描模組化光學成像系統的方塊圖。
圖3說明可根據本文中所揭示之實施成像的圖案化樣品之實例組態。
圖4係說明根據本發明的可實施以用於在成像運程期間動態地修正影像失真的實例方法之操作流程圖。
圖5在視覺上說明在一個實例中的對於對具有光點陣列之樣品進行成像的N通道成像系統,成像資料可如何分成複數個成像資料子集。
圖6係說明計算用於由成像系統產生之成像資料之失真修正係數的實例方法之操作流程圖。
圖7說明包括六個基準物之實例影像塊。
圖8說明在一個定序循環期間自兩通道鹼基識別(base calling)導出之實例雲狀物。
圖9A說明在一個實例中的出現在使用流量槽之兩通道定序儀器上的用於光學件之影像塊之集合的失真曲線集。
圖9B說明在一個實例中的出現在使用流量槽之另一兩通道定序儀器上的用於光學件之影像塊之集合的失真曲線集。
圖9C說明在一個實例中的出現在使用流量槽之四通道定序儀器上的用於光學件之影像塊之集合的對應於兩個不同色彩通道的四個失真曲線。
圖10A係說明使用行掃描器定序的流量槽之多少百分比的光點通過純度濾光片(%PF)而無失真修正、跨越影像塊關於X之視場而分組化的實例實驗結 果之盒鬚圖。
圖10B係展示在失真修正之後經定序流量槽之多少百分比的光點通過純度濾光片的實例實驗結果之盒鬚圖。
圖11係說明用於判定可用以最佳化成像透鏡(例如,物鏡)之設計之光學失真修正參數的實例方法之操作流程圖。
圖12係展示在應用五階多項式以修正失真之後跨越透鏡之視場的像素中之實例殘餘光學失真的殘餘失真曲線圖。
圖13說明可用以實施描述於本發明中之實施之各種特徵的實例運算模組。
諸圖並非係詳盡的且不將本發明限於所揭示之精確形式。
如本文中用以指樣品,術語「光點」或「特徵」意欲意謂圖案中可根據相對部位區別於其他點或區域的點或區域。個別光點可包括特定類型之一或多個分子。舉例而言,光點可包括具有特定序列之單一目標核酸分子,或光點可包括具有相同序列(及/或其互補序列)之若干核酸分子。
如本文中所使用,術語「基準物」意欲意謂物件中或物件上之可區別參考點。參考點可存在於物件之影像中或自偵測物件導出之另一資料集中。參考點可藉由物件平面中之x及/或y座標來指定。替代地或另外,參考點可藉由與xy平面正交之z座標來指定,例如由物件與偵測器之相對部位來界定。可相對於物件或自物件導出之影像或其他資料集的一或多個其他特徵指定參考點之一或多個座標。
如本文中所使用,術語「影像塊」一般係指樣品之相同區的一或多個影像,其中一或多個影像中之每一者表示各別色彩通道。影像塊可形成一個成像循環之成像資料集的成像資料子集。
如本文中所使用,術語「純度(chastity)」一般係指提供影像塊上之光點部位的總體「品質」之量測的得分量度。可在將失真修正係數應用於光點部位之前及之後兩者判定純度。平均純度係指影像塊上之所有光點部位或光點部位子集上的純度之平均值。
如本文中所使用,術語「xy平面」意欲意謂笛卡爾座標系中由直線軸線x及y界定之2維區域。當參考偵測器及由偵測器觀測到之物件使用時,區域可進一步指定為正交於偵測器與正偵測之物件之間的觀測方向。當在本文中使用以指行掃描器時,術語「y方向」係指掃描方向。
如本文中所使用,術語「z座標」意欲意謂指定點、線或區域沿正交於xy平面之軸線之部位的資訊。在特定實施中,z軸正交於由偵測器觀測之物件的區域。舉例而言,光學系統之聚焦方向可沿z軸指定。
如本文中所使用,術語「掃描一行」意欲意謂偵測物件在xy平面中之2維橫截面,該橫截面係矩形或長方形,且引起橫截面與物件之間的相對移動。舉例而言,在螢光成像之狀況下,在掃描中之給定時間點,可特定地激發物件之具有矩形或長方形形狀的區域(排除其他區域)及/或可特定地獲取來自該區域之發射(排除其他區域)。
本文中所揭示之實施係有關於在對具有複數個重複光點之圖案化樣品進行成像期間動態地修正影像失真。可在多週期成像運程(例如,定序運程)之第一成像循環期間計算影像失真修正係數,且隨後將該些係數即時地應用於在後續循環期間產生之影像資料。
在第一實施中,可將在樣品之校準(例如,第一)成像循環期間產生之成像資料分成對應於圖案化樣品之各別區的複數個成像資料子集(例如,影像塊)。每一影像塊可含有對應於圖案化樣品之區中之各別複數個經取樣光點的複數個光點。可針對每一影像塊計算失真修正係數之集合。在影像塊 包括多個色彩通道之成像資料的狀況下,可針對影像塊之每一色彩通道產生失真修正係數之集合。在圖案化樣品之後續成像循環期間,在校準成像循環期間計算之失真係數的每一集合可應用於各別影像塊。以此方式,可獨立地修正樣品之不同區的影像失真。此區特定失真修正准許修正未能考慮全域剛性對齊之失真。舉例而言,可由透鏡之形狀誘發非線性失真(未由線性仿射變換考量)。此外,經成像基板亦可由於製造製程而引入圖案中之失真,例如藉由阱之結合或移動(由於基板之非剛性)引入之3D浴缸效應。最後,線性仿射變換未考量固持器內之基板的傾斜。
在第二實施中,描述一種用於產生用於影像塊之失真修正係數的特定方法。該方法包括以下步驟:使用影像塊中之基準物估計影像塊之單一仿射變換;使該影像塊清晰化;及運行對最大化影像塊中之複數個光點之平均純度的失真修正係數之搜尋。藉由僅執行影像之單一仿射變換,所揭示方法可顯著減少搜尋最佳失真修正係數集合所需的時間。在特定實施中,對失真修正係數之搜尋可反覆進行以下步驟:產生失真修正係數之集合;將所產生之失真修正係數應用於影像中之每一光點部位;提取影像中之每一光點部位的信號強度;在空間上正規化該些信號強度;計算影像塊中之複數個光點部位的平均純度;及至少使用經計算平均純度判定是否反覆進行對失真修正係數之搜尋。
在特定實施中,用於產生失真修正係數之所揭示方法可用以修正包括兩個不同色彩通道影像之影像資料中的影像失真,該兩個不同色彩通道影像將四個不同樣品(例如,四個不同DNA鹼基類型)之身分編碼為兩個影像之強度的組合。
在描述本文中所揭示之系統及方法的各種實施之前,描述可實施本文中所揭示之技術的實例環境係有用的。一個此實例環境係圖2A中所說明之成像系統100之環境。實例成像系統可包括用於獲得或產生樣品之影像的裝 置。圖2A中所概述之實例展示背光設計實施之實例成像組態。應注意,儘管本文中可在實例成像系統100之上下文中不時地描述系統及方法,但此等僅係可實施本文中所揭示之影像失真修正方法之實施的實例。
如圖2A之實例中可見,受試樣品位於樣品容器110(例如,如本文中所描述之流量槽)上,該樣品容器定位於樣品台170上處於物鏡142下方。光源160及相關聯光學件將諸如雷射光之光束引導至樣品容器110上的所選樣品部位。樣品發螢光且所得光藉由物鏡142收集並被引導至攝影機系統140之影像感測器以偵測螢光。樣品台170相對於物鏡142移動以將樣品容器110上之下一樣品部位定位於物鏡142之焦點處。樣品台170相對於物鏡142之移動可藉由移動樣品台自身、物鏡、成像系統之某其他組件或前述各者之任何組合來達成。其他實施亦可包括在靜止樣品上方移動整個成像系統。
流體遞送模組或裝置100將試劑(例如,經螢光標記之核苷酸、緩衝劑、酶、分裂試劑等)流引導至(及通過)樣品容器110及廢料閥120。樣品容器110可包括一或多個基板,其上提供有樣品。舉例而言,在系統要分析大量不同的核酸序列之狀況下,樣品容器110可包括一或多個基板,待定序之核酸係結合、附接或關聯於該一或多個基板上。在各種實施中,基板可包括核酸可附接至的任何惰性基板或基質,諸如玻璃表面、塑膠表面、乳膠、聚葡萄糖、聚苯乙烯表面、聚丙烯表面、聚丙烯醯胺凝膠、金表面及矽晶圓。在一些應用中,基板係在跨越樣品容器110以矩陣或陣列形成的複數個部位處的通道或其他區域內。
在一些實施中,樣品容器110可包括使用一或多種螢光染料成像之生物樣品。舉例而言,在特定實施中,樣品容器110可實施為包括半透明蓋板、基板及包夾於其間之液體的圖案化流量槽,且生物樣品可位於半透明蓋板之內表面或基板之內表面處。流量槽可包括大量(例如,數千、數百萬或數十 億)阱或區,其以界定陣列(例如,六邊形陣列、矩形陣列等)圖案化至基板中。每一區可形成諸如DNA、RNA或可例如使用合成定序進行定序之另一基因組材料的生物樣品之簇(例如,單克隆簇)。流量槽可進一步分成數個隔開的通路(例如,八個通路),每一通路包括簇之六邊形陣列。可用於本文中所揭示之實施中的實例流量槽描述於美國專利第8,778,848號中。
該系統亦包含溫度站致動器130及加熱器/冷卻器135,該兩者可視情況調節樣品容器110內之流體的溫度條件。可包括攝影機系統140以監視及追蹤樣品容器110之定序。攝影機系統140可實施為例如電荷耦合裝置(CCD)攝影機(例如,時間延遲積分(TDI)CCD攝影機),其可與濾光片切換總成145內之各種濾光片、物鏡142及聚焦雷射/聚焦雷射總成150互動。攝影機系統140不限於CCD攝影機,且可使用其他攝影機及影像感測器技術。在特定實施中,攝影機感測器可具有介於約5與約15μm之間的像素大小。
可將來自攝影機系統140之感測器的輸出資料傳達至可實施為軟體應用程式之即時分析模組(圖中未示),該軟體應用程式分析影像資料(例如,影像品質得分),將雷射光束之特性(例如,焦點、形狀、強度、功率、亮度、位置)報告或顯示至圖形使用者介面(GUI),且如下文進一步所描述,動態地修正影像資料中之失真。
可包括光源160(例如,視情況包含多個雷射之總成內的激發雷射)或其他光源以經由穿過光纖界面(其可視情況包含一或多個重新成像透鏡、光纖安裝件等)之照明來照明樣品內之螢光定序反應。低瓦燈165、聚焦雷射150及反向二向色件185亦呈現於所展示之實例中。在一些實施中,聚焦雷射150可在成像期間關閉。在其他實施中,替代聚焦組態可包括第二聚焦攝影機(圖中未示),其可係象限偵測器、位置敏感偵測器(PSD)或用以與資料收集並行地量測自表面反射之散射光束之部位的類似偵測器。
儘管說明為背光裝置,但其他實例可包括來自雷射或其他光源之光,該光經引導穿過物鏡142到達樣品容器110上之樣品上。樣品容器110可最終安裝於樣品台170上,以提供樣品容器110相對於物鏡142之移動及對準。樣品台可具有一或多個致動器以允許樣品台在三個維度中之任一者中移動。舉例而言,就笛卡爾座標系而言,可提供致動器以允許該台相對於物鏡在X、Y及Z方向上移動。此可允許樣品容器110上之一或多個樣品部位定位成與物鏡142光學對準。
聚焦(z軸)組件175在此實例中展示為經包括以控制光學組件在聚焦方向(典型地被稱作z軸或z方向)上相對於樣品容器110的定位。聚焦組件175可包括一或多個致動器,其在實體上耦接至光學台或樣品台或其兩者以相對於光學組件(例如,物鏡142)移動樣品台170上之樣品容器110,從而為成像操作提供適當聚焦。舉例而言,致動器可諸如藉由與各別台直接或間接地進行機械、磁性、流體或其他附接或接觸而在實體上耦接至該台。該一或多個致動器可經組態以使台在z方向上移動,同時將樣品台維持在同一平面中(例如,維持垂直於光軸的水平(level或horizontal)姿態)。該一或多個致動器亦可經組態以使台傾斜。舉例而言,可進行此傾斜,使得可動態地調平樣品容器110以考量其表面中之任何斜度。
系統之聚焦一般指使物鏡之焦平面與所選樣品部位處待成像之樣品對準。然而,聚焦亦可指對系統進行調整以獲得樣品之表示的所要特性,諸如測試樣品之影像的所要等級之清晰度或對比度。因為物鏡之焦平面的有用場深度可能較小(有時約1μm或小於1μm),所以聚焦組件175緊密地遵循成像之表面。因為樣品容器並非完全平整地固定在儀器中,所以聚焦組件175在沿掃描方向(通常被稱作y軸)移動時可遵循此輪廓進行設置。
可將自正經成像之樣品部位處之測試樣品發出的光引導至攝影 機系統140之一或多個偵測器。可包括及定位光圈以僅允許自聚焦區域發出的光傳遞至偵測器。可包括光圈以藉由濾出自在該聚焦區域外之區域發出的光分量來改良影像品質。可在濾光片切換總成145中包括發射濾光片,可選擇該些發射濾光片以記錄經判定發射波長且切除任何雜散的雷射光。
儘管未說明,但可提供控制器以控制掃描系統之操作。可實施控制器以控制系統操作之態樣,諸如聚焦、台移動及成像操作。在各種實施中,可使用硬體、演算法(例如,機器可執行指令)或前述各者之組合來實施控制器。舉例而言,在一些實施中,控制器可包括一或多個CPU或處理器以及相關聯的記憶體。作為另一實例,控制器可包含硬體或其他電路系統以控制操作,諸如電腦處理器及上面儲存有機器可讀指令之非暫時性電腦可讀媒體。舉例而言,此電路系統可包括以下各者中之一或多者:場可程式化閘陣列(FPGA)、特殊應用積體電路(ASIC)、可程式化邏輯裝置(PLD)、複雜可程式化邏輯裝置(CPLD)、可程式化邏輯陣列(PLA)、可程式化陣列邏輯(PAL)或其他類似的處理裝置或電路系統。作為又一實例,控制器可包含此電路系統與一或多個處理器之組合。
圖2B係可實施於特定實施中之實例兩通道行掃描模組化光學成像系統200的方塊圖。應注意,儘管本文中可在實例成像系統200之上下文中不時地描述系統及方法,但此等僅係可實施本文中所揭示之技術之實施的實例。
在一些實施中,系統200可用於核酸定序。可應用的技術包括核酸附接於呈陣列之固定部位(例如,流量槽之阱)處且陣列經重複成像的那些技術。在此等實施中,系統200可獲得兩個不同色彩通道中之影像,其可用以區別一特定核苷酸鹼基類型與另一類型。更特定而言,系統200可實施被稱作「鹼基識別」之程序,其一般係指在成像循環內針對影像之給定光點部位判定鹼基識別(例如,腺嘌呤(A)、胞嘧啶(C)、鳥嘌呤(G)或胸腺嘧啶 (T))的程序。在兩通道鹼基識別期間,自兩個影像提取之影像資料可用以藉由將鹼基身分編碼為兩個影像之強度的組合來判定四個鹼基類型中之一者的存在。對於兩個影像中之每一者中的給定光點或部位,可基於信號身分之組合係[打開,打開]、[打開,關閉]、[關閉,打開]抑或[關閉,關閉]而判定鹼基身分。
再次參看成像系統200,該系統包括線產生模組(LGM)210,其具有安置於其中之兩個光源211及212。光源211及212可為相干光源,諸如輸出雷射光束之雷射二極體。光源211可發射第一波長(例如,紅色波長)之光,且光源212可發射第二波長(例如,綠色波長)之光。自雷射源211及212輸出之光束可被引導穿過一或多個光束塑形透鏡213。在一些實施中,單一光塑形透鏡可用以對自兩個光源輸出之光束塑形。在其他實施中,可針對每一光束使用單獨的光束塑形透鏡。在一些實例中,光束塑形透鏡為鮑威爾透鏡(Powell lens),使得光束經塑形成線圖案。LGM 210或其他光學組件成像系統之光束塑形透鏡經組態以將由光源211及212發射之光塑形成線圖案(例如,藉由使用一或多個鮑威爾透鏡或其他光束塑形透鏡、繞射或散射組件)。
LGM 210可進一步包括經組態以引導光束穿過單一界面通口到達發射光學模組(EOM)230之鏡面214及半反射鏡面215。光束可穿過快門元件216。EOM 230可包括物鏡235及z台236,該z台使物鏡235縱向地移動成更接近或更遠離目標250。舉例而言,目標250可包括液體層252及半透明蓋板251,且生物樣品可位於半透明蓋板的內表面處以及位於液體層下方之基板層的內表面處。該z台接著可移動物鏡以便將光束聚焦至流量槽之任一內表面上(例如,聚焦於生物樣品上)。如此項技術中已知的,生物樣品可為回應於光學定序的DNA、RNA、蛋白質或其他生物材料。
EOM 230可包括半反射鏡面233以將自聚焦追蹤模組(FTM) 240發射之聚焦追蹤光束反射至目標250上,接著將自目標250返回之光反射回至FTM 240中。FTM 240可包括聚焦追蹤光學感測器,以偵測返回的聚焦追蹤光束之特性且產生回饋信號以最佳化物鏡235在目標250上之聚焦。
EOM 230亦可包括半反射鏡面234以引導光穿過物鏡235,同時允許光自目標250返回穿過物鏡。在一些實施中,EOM 230可包括鏡筒透鏡232。透射穿過鏡筒透鏡232之光可穿過濾光片元件231且傳遞至攝影機模組(CAM)220中。CAM 220可包括一或多個光學感測器221以偵測回應於入射光束而自生物樣品發射之光(例如,回應於自光源211及212接收到之紅光及綠光的螢光)。
可將來自CAM 220之感測器的輸出資料傳達至即時分析模組225。在各種實施中,即時分析模組執行電腦可讀指令,該些電腦可讀指令用於分析影像資料(例如,影像品質得分、鹼基識別等),將光束之特性(例如,焦點、形狀、強度、功率、亮度、位置)報告或顯示至圖形使用者介面(GUI)等。此等操作可在成像循環期間即時地執行以最少化下游分析時間且在成像運程期間提供即時回饋及故障診斷。在實施中,即時分析模組可為以通信方式耦接至成像系統200且控制成像系統之運算裝置(例如,運算裝置1000)。在下文進一步描述之實施中,即時分析模組225可另外執行用於修正自CAM 220接收到之輸出影像資料中之失真的電腦可讀指令。
圖3說明可根據本文中所揭示之實施成像的圖案化樣品300之實例組態。在此實例中,樣品300經圖案化有可在成像運程期間同時成像之有序光點或特徵310的六邊形陣列。儘管在此實例中說明六邊形陣列,但在其他實施中,可使用直線陣列、圓形陣列、八邊形陣列或某其他陣列圖案來圖案化樣品。為易於說明,樣品300係說明為具有數十至數百個光點310。然而,如熟習此項技術者將瞭解的,樣品300可具有經成像之數千、數百萬或數十億光點 310。此外,在一些情況下,樣品300可包含在成像運程期間取樣之光點310之多個平面(垂直於聚焦方向)的多平面樣品。
在特定實施中,樣品300可係圖案化有分成通路之數百萬或數十億阱的流量槽。在此特定實施中,流量槽之每一阱可含有使用合成定序進行定序之生物材料。
如上文所論述,光學失真對於具有大量光點之圖案化樣品300的多循環成像可能尤其不利,此係因為其可使經掃描影像之光點的實際位置移位遠離光點之預期位置。此失真效應沿視場之邊緣可變得尤其明顯,潛在地使來自此等光點之成像資料不可用。此可導致在多循環成像運程期間資料輸送量之下降及錯誤率之增加。下文所描述之實施係有關於在成像運程(例如,定序運程)期間動態地修正影像失真,藉此在成像運程期間改良資料輸送量及減少錯誤率。
圖4係說明根據本發明的可實施以用於在成像運程期間動態地修正影像失真的實例方法400之操作流程圖。儘管將在兩通道成像系統(例如,成像系統200)之上下文中不時地描述方法400,但方法400可應用於具有任何數目個通道(例如,一個通道、三個通道、四個通道等)之成像系統。
在操作410處,執行圖案化樣品之校準成像循環。在校準成像循環期間,可藉由用一或多個相干光源掃描樣品區域(例如,使用行掃描器)來收集整個樣品之影像資料。藉由實例,成像系統200可協同系統之光學件使用LGM 210以用具有紅色光譜內之波長的光來行掃描樣品,且用具有綠色光譜內之波長的光來行掃描樣品。回應於行掃描,位於樣品之不同光點處的螢光染料可發螢光,且所得光可由物鏡235收集且被引導至CAM 220之影像感測器以偵測螢光。舉例而言,每一光點之螢光可由CAM 220之幾個像素偵測。可接著將自CAM 220輸出之影像資料傳達至即時分析模組225以用於影像失真修正(例 如,修正由物鏡235之幾何形狀引起的影像失真)。
在各種實施中,校準成像循環可係多循環成像運程(例如,DNA定序運程)之第一成像循環。特定而言,成像系統可在每個成像運程之開始期間自動地判定失真修正係數,藉此防止成像系統隨時間之失真漂移。
在操作430處,將由校準成像循環產生之成像資料分成對應於圖案化樣品之各別區的複數個成像資料子集(例如,影像塊)。換言之,成像資料子集包含一個成像循環之成像資料集的像素之子集。圖5在視覺上說明對於對具有光點陣列之樣品(例如,樣品300)進行成像的N通道成像系統,成像資料可如何分成複數個成像資料子集。為簡單起見,圖5未說明影像失真。如所展示,對於每一通道,影像資料可再分成對應於樣品之區的複數個影像塊445或成像資料子集。每一成像資料子集自身包含可自其在樣品上之預期位置失真的複數個影像光點443(特定而言,沿影像塊之邊緣)。藉由實例,2通道成像器之成像資料子集可包括每一通道之樣品之各別區的影像資料(例如,通道1之右上方影像塊及通道2之右上方影像塊)。如由圖5所說明,對於每一色彩通道,將成像資料分成28個影像塊。將影像資料分成複數個影像塊445准許影像處理操作之並行化。另外,如下文進一步所描述,此准許對樣品之每一區的獨立失真修正,其可修正樣品上之局部額外失真(亦即,並非由於光學件引起之失真)。此類失真可由以下各者引入:流量槽之傾斜,或由流量槽之諸如浴缸形狀之3D曲率誘發的傾斜。
在各種實施中,可使用基準標記或基準物在成像系統之視場中、在樣品中或在樣品上的置放來判定成像資料子集之大小。可劃分成像資料子集,使得每一成像資料子集或影像塊之像素具有預定數目個基準物(例如,至少三個基準物、四個基準物、六個基準物、八個基準物等。)舉例而言,可基於成像資料子集之邊界與基準物之間的預定像素距離預先判定成像資料子集 之像素的總數。圖7說明包括六個基準物510之影像塊500的一個此實例。如下文進一步所描述,此等基準物可用作用於對準影像及判定失真係數之參考點。
在操作450(下文進一步描述其特定實施)處,針對每一成像資料子集獨立地計算影像失真修正係數之集合。在成像資料子集包括多個色彩通道之情況下,可針對每一色彩通道計算失真修正係數之單獨集合。可應用此等影像失真修正係數以修正校準成像循環中之影像資料的失真。
在操作470處,執行圖案化樣品之下一成像循環,且產生新影像資料。在操作490處,將在校準成像循環期間計算之失真修正係數應用於當前成像循環之成像資料以修正失真。可將經計算失真係數之每一集合應用於當前循環之成像資料中的對應影像塊。此後,可反覆進行操作470及490。因而,可將在初始成像循環期間計算之失真修正係數應用於後續成像循環以獨立地修正成像資料之不同影像塊中的失真。
圖6係說明計算用於由成像系統產生之成像資料之失真修正係數的實例方法450之操作流程圖。應注意,儘管實例方法450說明為應用於成像資料子集445,但實務上,其可應用於完整的成像資料集(例如,整個樣品之影像資料)。
方法450獲取在成像循環期間產生的對應於樣品之區的成像資料子集445作為輸入,且輸出可經應用以修正以下各者之失真的多項式之失真修正係數468之集合:i)成像資料子集;及ii)在後續成像循環期間獲取之樣品之同一區的成像資料。在成像資料子集包含第一色彩通道之成像資料及第二色彩通道之成像資料的情況下,可針對成像資料子集之每一通道產生失真修正係數之集合。儘管將主要參考判定用於兩通道成像資料之失真修正係數來描述方法450之實施,但應注意,可應用方法450以判定用於對應於任何數目個通道之成像資料的失真修正係數。亦應注意,在多聲道成像系統中,可針對對應於每一 通道之成像資料獨立地執行操作451至452及461至465。因而,為簡單起見,此等操作將主要描述為如同針對單一通道執行該些操作。為另外簡單起見,方法450之描述將成像資料子集445稱作影像。
在操作451處,使用影像基準物估計影像之仿射變換。舉例而言,如圖7中所說明,靶環狀基準物510(光環由暗邊界包圍以增強對比度)可見於影像中以判定其在影像中之實際部位。在實施中,可藉由執行與參考虛擬基準物之部位的交叉相關及獲取交叉相關得分最大之部位來找出影像中之基準物的部位。可使用離散函數之交叉相關等式(等式(1))來執行交叉相關
其中可使用得分等式(2)計算影像中之基準物與虛擬基準物之間的擬合優度之量測:得分=1-(RunnerUp_CC-Minimum_CC)/(Maximum_CC-MInimum_CC), (2) 其中Minimum_CC係交叉相關之最小值,Maximum_CC係交叉相關之最大值,且RunnerUp_CC係與Maximum_CC之部位相距4個像素之半徑外部的最大交叉相關值。用於判定基準物之部位的特定方法較詳細地描述於美國專利申請案第14/530,299號中。
假定先驗瞭解基準物之理論部位(例如,基於基準物之間應存在多少等間隔之光點),可判定將基準物之理論部位映射至其在影像上之實際部位的仿射變換。所估計仿射變換可映射自基準物之預期位置的平移、旋轉及放大。
給定影像之理論部位x i ,y i (亦即,在該些部位處,基準物之像素應使用實際樣品組態)及實際影像部位x w ,y w (在該些部位處,基準物之像素 實際上出現於影像上),仿射變換可在數學上由等式(3)表示:
其中第一矩陣係平移矩陣,第二矩陣係在x方向上以比例因子sx及在y方向上以比例因子sy按比例調整影像點的按比例調整矩陣,且第三矩陣係將影像點繞z軸(亦即,在垂直於影像之聚焦方向上)旋轉角度θ之旋轉矩陣。替代地,仿射變換可由等式(4)表示:
其中係數a11及a23提供影像點沿x及y方向之平移,且其他四個係數提供影像點之按比例調整及放大的組合。給定影像上之三個基準物的實際部位(u1,v1),、(u2,v2)、(u3,v3)及該三個基準物之理論部位(x1,y1)、(x2,y2)、(x3,y3),可藉由解算等式(5)來估計仿射變換:
等式(5)可藉由解算最小平方等式(6)來解算:
獲取誤差函數關於六個變數中之每一者的六個偏導數及將此表達式設定成零,此藉由等式(7)給出矩陣形式之六等式表示:
在操作452處,使影像清晰化。舉例而言,可使用拉普拉斯卷積或此項技術中已知之其他影像清晰化技術來使影像清晰化。
在操作460處,運行對最大化影像中之複數個光點之平均純度的失真修正係數之反覆搜尋。在各種實施中,該搜尋可係圖案化搜尋。替代地,可應用此項技術中已知之其他合適的搜尋演算法。下文進一步描述搜尋操作460之步驟。
在某些實施中,可藉由對影像內之光點進行子取樣來加速搜尋演算法。在此等實施之特定兩通道實施中,子取樣必須包括某數目個列中之每個光點。進行子取樣可解決具有[關閉、關閉]信號強度之信號(例如,鹼基識別)之兩通道(兩色彩)編碼所特有的問題。在鹼基識別之狀況下,指明為「關閉」(未標記)簇之G基簇可不正確地記為「打開」。替代地,可自簇之間的空間(亦即,阱之間的區域)提取信號且將其記為「關閉」信號。此問題藉由對一列及足夠數目個列中之每個阱進行取樣來解決,使得G基簇不驅動純度成本函數。
在操作461處,產生失真修正係數之集合。失真修正係數可提供影像之失真修正功能的多項式表示。在實施中,失真修正係數可對應於二階多項式、三階多項式、四階多項式或五階多項式或甚至更高階多項式。在成像系統係行掃描器之實施中,失真修正可在數學上由等式(8)表示:
其中(,)係具有影像座標(x,y)之影像內的失真修正位置,a 1…a n 係描述n階多項式之失真修正係數,且c x 係關於x之影像中的中心點,且其中y係行掃描器之掃描方向。在此實施中,可關於x量測y中之失真,此係因為其係具有最大失真之維度。在y中之失真可忽略(例如,如由成像要求判定)之一些情況下,可假定dy=0且影像內之失真修正位置簡化為等式(9):
在實施中,搜尋操作460可在搜尋之第一步驟期間以失真修正係數之0值開始(亦即,假定影像中無失真)。替代地,先前獲悉的係數值之集合可用以開始搜尋。
在操作462處,將在操作451處估計之仿射變換應用於影像中之光點部位。舉例而言,可根據上文所描述之等式(4)應用仿射變換。
在操作463處,在將所估計仿射變換應用於光點部位之後,將所產生之失真修正係數應用於影像中之光點部位。舉例而言,在針對行掃描器在兩個維度中修正失真之情況下,可應用等式(8)。替代地,若y中之失真可忽略,則可應用等式(9)。
在操作464處,提取影像中之每一光點部位的信號強度。舉例而言,對於給定光點部位,可藉由判定光點部位中之像素之強度的加權平均值來提取信號強度。舉例而言,可執行中心像素及相鄰像素之加權平均,諸如雙線性內插。在實施中,影像中之每一光點部位可包含幾個像素(例如,1至5個像素)。
在可選操作465處,在空間上正規化所提取之信號強度以考量跨越經成像之樣品的照明變化。舉例而言,可正規化強度值使得第5及第95百分位數分別具有值0及1。
在操作466處,影像的經正規化信號強度(例如,每一通道之經正規化強度)可用以計算影像中之複數個光點的平均純度。下文進一步描述用於計算平均純度之實例方法。
在一個實施中,可針對實施鹼基識別之兩通道系統計算平均純度,該鹼基識別如上文所描述一般係指在成像循環期間針對影像之給定光點部位判定鹼基識別(例如,A、C、G或T)的程序。可藉由使數學模型擬合強度資料來執行鹼基識別。可使用的合適數學模型包括例如k均值群集演算法、類k均值群集演算法、期望最大化群集演算法、基於直方圖之方法及其類似者。四個高斯分佈可擬合兩通道強度資料之集合,使得針對在資料集中表示之四個核苷酸中之每一者應用一個分佈。
在一個特定實施中,可應用期望最大化(EM)演算法。作為EM演算法之結果,對於每一X、Y值(分別參考兩個通道強度中之每一者),可產生表示某X、Y強度值屬於資料所擬合的四個高斯分佈中之一者的可能性的值。在四個鹼基產生四個單獨分佈之情況下,每一X、Y強度值亦將具有四個相關聯之可能性值,四個鹼基中之每一者一個可能性值。四個可能性值中之最大值指示鹼基識別。此由圖8說明,該圖展示若簇在兩個通道中「關閉」,則鹼基識別係G。若該簇在一個通道中「關閉」且在另一通道中「打開」,則鹼基識別係C或T(取決於哪一通道打開),且若該簇在兩個通道中「打開」,則鹼基識別係A。
更一般而言,對於涉及任何數目個通道之鹼基識別實施,可至少使用通道之強度點至其各別高斯分佈之中心的距離來判定給定影像光點之純 度。影像光點之強度點離經識別鹼基之分佈之中心愈近,經識別鹼基準確之可能性愈大且其純度值愈高。在四通道實施中,給定光點之鹼基識別的品質(亦即,純度值)可表達為最高強度值除以最高值加上次高值。在兩通道實施中,給定資料點之鹼基識別的品質或純度可表達為至最近質心之距離除以至次最近質心之距離的函數。在數學上,兩通道實施之給定點的純度可由等式(10)表達:C=1.0-D1/(D1+D2) , (10)其中D1係至最近高斯平均值之距離,且D2係至高斯平均值之次最近距離。可使用馬哈拉諾比斯(Mahalanobis)方法(其考量沿由每一高斯質心及考慮中之點界定的線的分佈之寬度)來量測距離。
在決策468處,判定搜尋460是否應反覆進行。在各種實施中,此判定可取決於平均純度判定是否已收斂於失真修正係數之最佳集合,搜尋460是否已反覆預定數目次,是否已計算出預定平均純度值,或其某一組合。舉例而言,若係數之集合改良總平均純度,則那些係數可變為新係數集合之搜尋及取樣的下一反覆之開始點。在特定實施中,搜尋460可反覆數十、數百或甚至數千次(例如,使用圖案化搜尋)。
圖9A至圖9B各自分別說明出現於使用流量槽之兩通道定序儀器上的用於光學件之影像塊之集合的失真曲線集。圖9A來自一個儀器且圖9B來自另一儀器,其展示儀器間之變化性。該些曲線由表面(第一數目)及通路(第二數目)兩者完成。如曲線圖說明,失真可因流量槽之通路及表面兩者而變化。圖9C說明出現在使用流量槽之四通道定序儀器上的用於光學件之影像塊中之單一者的對應於兩個不同色彩通道的四個失真曲線。因而,根據本文中所揭示之實施的流量槽之不同區中的影像失真(根據區及色彩通道兩者)之獨立修正可進一步改良影像品質。
圖10A係說明使用行掃描器定序的流量槽之多少百分比的光點通過純度濾光片(%PF)而無失真修正、跨越影像塊關於X之視場而分組化的實例實驗結果之盒鬚曲線。可在成像循環期間應用純度濾光以濾出來自「不良影像品質」光點之資料。舉例而言,若在某數目個定序循環之後光點不超過預定純度值,則可忽視該光點作為資料點。在圖10A中,子影像塊分組數目指示相對於影像塊影像之中心的在光點之x方向上的距離。對於給定x方向,在影像塊之所有ys(其中y係掃描方向)上對結果求平均。如所展示,在無失真修正之情況下,在影像塊之邊緣處的較小百分比的光點通過純度濾光片,且用於那些光點之資料變得不可用。圖10B係展示在具有根據本發明之失真修正的情況下經定序流量槽之多少百分比的光點通過純度濾光片的實驗結果之盒狀圖。如所說明,通過純度濾光片之光點之數目朝向影像塊之邊緣得到顯著改良。
在其他實施中,可藉由最佳化成像系統中之成像透鏡(例如,物鏡)的光學設計來減少成像系統中之光學失真。可藉由至少使用應用於由透鏡獲取之影像的預定影像失真修正演算法(例如,本文中所描述之影像失真修正演算法)定製光學透鏡之設計來最佳化該設計。舉例而言,若影像失真修正演算法預期透鏡中之0.2至0.4個像素的失真,則相較於無失真,設計具有預期失真程度之透鏡可係有利的。
圖11係說明用於判定可用以最佳化成像透鏡(例如,物鏡)之設計之光學失真修正參數的實例方法600之操作流程圖。方法600接收透鏡之視場及影像感測器之像素大小作為輸入,且輸出最大絕對光學失真及與五階多項式之擬合位置的最大誤差。
在操作610處,計算點散佈函數(point spread function)質心之向量。點散佈函數之向量可藉由將最大失真(DistMax)變數初始化為零及在Dist>DistMax時反覆進行以下步驟來計算: ˙計算場高F處之近軸Y高度(Yref);˙計算惠更斯(Huygens)點散佈函數之質心(Yreal);˙計算失真:Dist=100 * ABSO(Yreal-Yret)/Yref;及˙以向量(Vyreal)儲存Yreal及以向量(VF)儲存F。
在操作620處,計算點散佈函數之多項式擬合。在特定實施中,可藉由計算如下形式之VF及Vyreal的五階多項式擬合來計算此多項式擬合:Vyreal=a1*F+a3*F^3+a5*F^5,其中a1表示放大率,a3係三階係數,且a5係五階係數。
在操作630處,每一質心可與擬合位置進行比較。可藉由將與擬合位置之最大誤差變數(ErrMax)初始化為零且在Err>ErrMax時反覆進行以下步驟來進行此比較:˙計算場高F之近軸Y高度(Yref);˙計算惠更斯點散佈函數之質心(Yreal);˙自a1、a3及a5計算預期質心部位(Yexp);及˙計算誤差Err=abs(Yexp-Yreal)/Spix,其中Spix係影像感測器之像素大小。
在此實例中,在操作640處,至少使用經判定之與擬合位置的最大誤差及經判定之最大絕對失真來最佳化透鏡之設計。在實施中,此最佳化可基於最小平方最小化技術,其對經判定之最大誤差及經判定之最大絕對失真與波前誤差求和的平方根(rss)。
圖12係展示在應用五階多項式以修正失真之後跨越透鏡之視場的像素中之殘餘光學失真的殘餘失真曲線圖。
圖13說明實例運算組件,其可用以實施本文中所揭示之系統及方法的各種特徵,諸如方法400及450之一或多個態樣的前述特徵及功能性。舉 例而言,運算組件可實施為即時分析模組225。
如本文中所使用,術語模組可描述可根據本申請案之一或多個實施執行的給定功能性單元。如本文中所使用,可利用任何形式之硬體、軟體或其組合來實施模組。舉例而言,一個或多個處理器、控制器、ASIC、PLA、PAL、CPLD、FPGA、邏輯組件、軟體常式或其他機構可經實施以組成模組。在實施中,本文中所描述之各種模組可實施為離散模組,或所描述之功能及特徵可在一或多個模組間部分或全部地共用。換言之,如一般熟習此項技術者在閱讀本說明書之後將顯而易見的,本文中所描述之各種特徵及功能性可實施於任何給定應用中,且可以各種組合及排列實施於一或多個單獨或共用模組中。即使功能性之各種特徵或要素可個別地描述或主張為單獨模組,但一般熟習此項技術者將理解,此等特徵及此功能性可在一或多個共同軟體及硬體元件間共用,且此描述不應需要或暗示單獨硬體或軟體組件用以實施此等特徵或此功能性。
在使用軟體全部或部分地實施本申請案之組件或模組的情況下,在一個實施中,可實施此等軟體元件以藉由能夠進行關於其所描述之功能性的運算或處理模組操作。一個此實例運算模組展示於圖13中。各種實施係關於此實例運算模組1000而描述。在閱讀本說明書之後,如何使用其他運算模組或架構來實施本申請案對於相關領域之技術人員將變得顯而易見。
現參看圖13,運算模組1000可表示例如可見於以下各者內的運算或處理能力:桌上型電腦、膝上型電腦、筆記型電腦及平板電腦;手持型運算裝置(平板電腦、PDA、智慧型手機、蜂巢式電話、掌上型電腦等);大型電腦、超級電腦、工作站或伺服器;或任何其他類型之專用或通用運算裝置,如可能為給定應用或環境所需或適合的。運算模組1000亦可表示嵌入於給定裝置內或以其他方式可用於給定裝置之運算能力。舉例而言,運算模組可見於諸 如以下各者之其他電子裝置中:數位攝影機、導航系統、蜂巢式電話、攜帶型運算裝置、數據機、路由器、WAP、終端機及可包括某一形式之處理能力的其他電子裝置。
運算模組1000可包括例如一或多個處理器、控制器、控制模組或其他處理裝置,諸如處理器1004。可使用諸如微處理器、控制器或其他邏輯控制之通用或專用處理引擎來實施處理器1004。在所說明之實例中,處理器1004連接至匯流排1002,但任何通信媒體可用以促進與運算模組1000之其他組件的互動或用以在外部通信。
運算模組1000亦可包括一或多個記憶體模組,其在本文中被簡單地稱作主記憶體1008。舉例而言,較佳地,隨機存取記憶體(RAM)或其他動態記憶體可用於儲存資訊及待由處理器1004執行之指令。主記憶體1008亦可用於在待由處理器1004執行之指令之執行期間儲存暫時性變數或其他中間資訊。運算模組1000同樣可包括耦接至匯流排1002以用於儲存用於處理器1004之靜態資訊及指令的唯讀記憶體(「ROM」)或其他靜態儲存裝置。
運算模組1000亦可包括一或多種各種形式之資訊儲存機構1010,其可包括例如媒體驅動機1012及儲存單元介面1020。媒體驅動機1012可包括驅動機或其他機構以支援固定或抽取式儲存媒體1014。舉例而言,可提供硬碟機、固態磁碟機、磁帶機、光碟機、CD或DVD驅動機(R或RW)或其他抽取式或固定媒體驅動機。因此,儲存媒體1014可包括例如硬碟、固態磁碟機、磁帶、卡匣、光碟、CD、DVD或藍光,或藉由媒體驅動機1012讀取、寫入至媒體驅動機或由媒體驅動機存取之其他固定或抽取式媒體。如此等實例說明,儲存媒體1014可包括電腦可用儲存媒體,其中儲存有電腦軟體或資料。
在替代實施中,資訊儲存機構1010可包括用於允許電腦程式或其他指令或資料載入至運算模組1000中的其他類似工具。此等工具可包括例如 固定或抽取式儲存單元1022及介面1020。此等儲存單元1022及介面1020之實例可包括程式卡匣及卡匣介面、抽取式記憶體(例如,快閃記憶體或其他抽取式記憶體模組)及記憶體槽、PCMCIA槽及卡,以及允許軟體及資料自儲存單元1022傳送至運算模組1000的其他固定或抽取式儲存單元1022及介面1020。
運算模組1000亦可包括通信介面1024。通信介面1024可用以允許軟體及資料在運算模組1000與外部裝置之間傳送。通信介面1024之實例可包括數據機或軟數據機、網路介面(諸如,乙太網路、網路介面卡、WiMedia、IEEE 802.XX或其他介面)、通信埠(諸如,USB埠、IR埠、RS232埠、Bluetooth®介面或其他埠)或其他通信介面。經由通信介面1024傳送之軟體及資料可典型地攜載於信號上,該些信號可係能夠藉由給定通信介面1024進行交換之電子、電磁(包括光學)或其他信號。此等信號可經由通道1028提供至通信介面1024。此通道1028可攜載信號且可使用有線或無線通信媒體來實施。通道之一些實例可包括電話線、蜂巢式鏈路、RF鏈路、光學鏈路、網路介面、區域或廣域網路,及其他有線或無線通信通道。
在此文件中,術語「電腦可讀媒體」、「電腦可用媒體」及「電腦程式媒體」一般用以指非暫時性的揮發性或非揮發性媒體,諸如記憶體1008、儲存單元1022及媒體1014。此等及其他各種形式之電腦程式媒體或電腦可用媒體可與攜載一或多個指令之一或多個序列至處理裝置以供執行有關。體現於媒體上之此等指令一般被稱作「電腦程式碼」或「電腦程式產品」(其可以電腦程式或其他群組之形式來分群)。此等指令在執行時可使運算模組1000能夠執行如本文中所論述的本申請案之特徵或功能。
儘管上文就各種例示性實施及實施進行了描述,但應理解,在個別實施中之一或多者中所描述之各種特徵、態樣及功能性在其適用性上不限於對其進行描述時所涉及之特定實施,而是可單獨或以各種組合應用於本申請 案之其他實施中之一或多者,無論此等實施是否進行了描述,以及此等特徵是否作為所描述實施之一部分而呈現。因此,本申請案之廣度及範圍不應由上述例示性實施中之任一者來限制。
應瞭解,前述概念之所有組合(限制條件為此等概念並不相互矛盾)預期為本文中所揭示之本發明主題的部分。特定而言,在本發明結尾處出現之所主張主題的所有組合預期為本文中所揭示之本發明主題的部分。
貫穿包括申請專利範圍之本發明而使用的術語「實質上」及「約」用以描述並考量諸如歸因於處理中之變化的小波動。舉例而言,其可指小於或等於±5%,諸如小於或等於±2%、諸如小於或等於±1%、諸如小於或等於±0.5%、諸如小於或等於±0.2%、諸如小於或等於±0.1%、諸如小於或等於±0.05%。
在適用範圍內,術語「第一」、「第二」、「第三」等在本文中僅用以展示藉由此等術語描述為單獨實體的各別物件,且並不意圖意味著時間次序之意義,除非本文中以其他方式明確地陳述。
除非另外明確地陳述,否則本文件中所使用之術語及片語及其變體應解釋為與限制性相反之開放式。作為前述內容之實例:術語「包括」應理解為意謂「包括但不限於」或其類似者;術語「實例」用以提供所論述之項目的例示性例項,而非該項目之詳盡或限制性清單;術語「一(a或an)」應理解為意謂「至少一個」、「一或多個」或其類似者;且諸如「習知」、「傳統」、「常規」、「標準」、「已知」及具類似含義之術語的形容詞不應解釋為將所描述項目限於給定時間段或限於截至給定時間可獲得之項目,而是應理解為涵蓋現在或在未來之任何時間可獲得或已知的習知、傳統、常規或標準技術。同樣地,在本文件提及一般熟習此項技術者將顯而易見或已知之技術時,此等技術涵蓋現在或在未來之任何時間對熟練技術人員顯而易見或已知之技 術。
在一些情況下,拓寬詞語及片語,諸如「一或多個」、「至少」、「但不限於」或其他類似片語之存在不應理解為意謂在可能不存在此等拓寬片語之情況下預期或需要較狹窄狀況。術語「模組」之使用並不暗示描述或主張作為模組之部分的組件或功能性全部組態在共同封裝中。實際上,模組之各種組件中之任一者或全部(無論控制邏輯或其他組件)可組合在單一封裝中或分離地維持,且可進一步分佈於多個群組或封裝中或跨多個部位分佈。
另外,本文所闡述之各種實施係關於例示性方塊圖、流程圖及其他說明而描述。如一般熟習此項技術者在閱讀本文件之後將變得顯而易見,可實施所說明之實施及其各種替代例而不限於所說明之實例。舉例而言,方塊圖及其隨附描述不應被視為要求特定架構或組態。
雖然上文已描述了本發明之各種實施,但應理解,該些實施已僅藉由實例呈現且並非限制性的。同樣地,各圖可描繪用於本發明之實例架構或其他組態,可進行描繪以輔助理解可包括於本發明中之特徵及功能性。本發明不限於所說明之實例架構或組態,而是所要特徵可使用多種替代架構及組態來實施。實際上,熟習此項技術者將顯而易見可如何實施替代功能性、邏輯或實體分割及組態以實施本發明之所要特徵。又,除本文中所描繪之名稱外的眾多不同構成模組名稱可應用於各種分區。另外,關於流程圖、操作描述及方法請求項,除非上下文另外規定,否則步驟在本文中呈現之次序不應要求各種實施經實施為以相同次序執行所敍述功能性。
Claims (20)
- 一種方法,其包含:執行包含複數個光點之圖案化樣品的第一成像循環;將在該第一成像循環期間產生之第一成像資料集合分成第一複數個成像資料子集,該第一複數個成像資料子集中之每一者對應於該圖案化樣品之各別區,該圖案化樣品之該些各別區中之每一者包含複數個光點;針對該第一複數個成像資料子集中之每一者計算影像失真修正係數之集合;執行該圖案化樣品之第二成像循環以產生第二成像資料集合;及將在該第二成像循環期間產生之該第二成像資料集合分成第二複數個成像資料子集,該第二複數個成像資料子集中之每一者對應於該圖案化樣品之與該第一複數個成像資料子集中之一者相同的該各別區;及對於該第二複數個成像資料子集中之每一者,應用針對該第一複數個成像資料子集中對應於該圖案化樣品之相同各別區的一者而計算的該些失真修正係數。
- 如請求項1所述之方法,其中該圖案化樣品之該複數個光點中之每一者包含螢光標記核酸,其中該第一成像循環為第一定序循環且其中該第二成像循環為第二定序循環。
- 如請求項1所述之方法,其中該第一成像資料集合及該第二成像資料集合各自分別包含第一色彩通道之成像資料及第二色彩通道之成像資料,且其中針對該第一複數個成像資料子集中之每一者計算該影像失真修正係數之集合包含針對每一成像資料子集之每一色彩通道判定失真修正係數之集合。
- 如請求項1所述之方法,其中針對該第一複數個成像資料子集中之每一者計算該影像失真修正係數之集合包含: 估計該成像資料子集之仿射變換;使該成像資料子集清晰化;及反覆地搜尋用於該成像資料子集之最佳失真修正係數集合。
- 如請求項4所述之方法,其中反覆地搜尋用於該成像資料子集之該最佳失真修正係數集合包含:在該搜尋之每一反覆期間應用所估計的該仿射變換。
- 如請求項4所述之方法,其中該第一成像資料集合及該第二成像資料集合係至少使用該樣品上之基準物的位置來劃分,且其中該第一複數個成像資料子集中之每一者的該仿射變換係使用該些基準物來估計。
- 一種用於修正包含複數個光點之圖案化樣品的影像中之光學失真的方法,其包含:估計該影像之仿射變換;使該影像清晰化;及反覆地搜尋用於經清晰化影像之最佳失真修正係數集合,其中反覆地搜尋用於該經清晰化影像之該最佳失真修正係數集合包含計算該影像中之複數個光點部位的一平均純度,且其中在該搜尋之每一反覆期間應用所估計的該仿射變換。
- 如請求項7所述之方法,其中該影像包含對應於第一色彩通道之第一影像資料集及對應於第二色彩通道之第二影像資料集,且其中估計該仿射變換及使該影像清晰化之操作係應用於該第一影像資料集及該第二影像資料集中之每一者。
- 如請求項7所述之方法,其中反覆地搜尋用於該經清晰化影像之該最佳失真修正係數集合包含:產生用於該影像之光學失真修正係數之集合; 將所估計的該仿射變換應用於該影像中之該複數個光點部位;及在應用所估計的該仿射變換之後,將該光學失真修正係數之集合應用於該複數個光點部位中之每一者。
- 如請求項6所述之方法,其進一步包含:在將該光學失真修正係數之集合應用於該複數個光點部位中之每一者之後,提取該複數個光點部位中之每一者的信號強度。
- 如請求項7所述之方法,其進一步包含:正規化所提取的該信號強度;及至少使用經正規化的該些信號強度計算該複數個光點部位之平均純度。
- 如請求項11所述之方法,其中至少使用經正規化的該些信號強度計算該複數個光點部位之該平均純度包含:對於該複數個光點部位中之每一者,至少使用自對應於該光點部位之經正規化信號強度之一點至高斯質心的距離來判定純度。
- 如請求項7所述之方法,其中反覆地搜尋用於該經清晰化影像之該最佳失真修正係數集合包含對該影像中之複數個光點進行子取樣,其中若該經清晰化影像之一列中的一光點經子取樣,則該經清晰化影像之該列中的所有光點經子取樣。
- 一種非暫時性電腦可讀媒體,其具有儲存於其上之指令,該些指令在由一或多個處理器執行時使系統進行以下操作:估計影像之仿射變換,其中該影像係包含複數個光點之圖案化樣品的影像;使該影像清晰化;及反覆地搜尋用於經清晰化影像之最佳失真修正係數集合,其中反覆地搜尋用於該經清晰化影像之該最佳失真修正係數集合包含計算該影像中之複數個光 點部位的平均純度,且其中在該搜尋之每一反覆期間應用所估計的該仿射變換。
- 如請求項14所述之非暫時性電腦可讀媒體,其中該影像包含對應於第一色彩通道之第一影像資料集及對應於第二色彩通道之第二影像資料集,且其中估計該仿射變換及使該影像清晰化之操作係應用於該第一影像資料集及該第二影像資料集中之每一者。
- 如請求項14所述之非暫時性電腦可讀媒體,其中反覆地搜尋用於該經清晰化影像之該最佳失真修正係數集合包含:產生用於該影像之光學失真修正係數之集合;將所估計的該仿射變換應用於該影像中之該複數個光點部位;及在應用所估計的該仿射變換之後,將該光學失真修正係數之集合應用於該複數個光點部位中之每一者。
- 如請求項16所述之非暫時性電腦可讀媒體,其中該些指令在由該一或多個處理器執行時進一步使該系統進行以下操作:將該光學失真修正係數之集合應用於該複數個光點部位中之每一者;及提取該複數個光點部位中之每一者的信號強度。
- 如請求項17所述之非暫時性電腦可讀媒體,其中該些指令在由該一或多個處理器執行時進一步使該系統進行以下操作:正規化所提取的該信號強度;及至少使用經正規化的該些信號強度計算該複數個光點部位之平均純度。
- 如請求項18所述之非暫時性電腦可讀媒體,其中至少使用經正規化的該些信號強度計算該複數個光點部位之該平均純度包含:對於該複數個光點部位中之每一者,至少使用自對應於該光點部位之經正規化信號強度之一點至高斯質心的距離來判定純度。
- 如請求項18所述之非暫時性電腦可讀媒體,其中該圖案化樣品之該複數個光點中之每一者包含螢光標記核酸。
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201762468347P | 2017-03-07 | 2017-03-07 | |
US62/468,347 | 2017-03-07 | ||
NL2018852A NL2018852B1 (en) | 2017-05-05 | 2017-05-05 | Optical distortion correction for imaged samples |
NL2018852 | 2017-05-05 | ||
??2018852 | 2017-05-05 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201842322A true TW201842322A (zh) | 2018-12-01 |
TWI685653B TWI685653B (zh) | 2020-02-21 |
Family
ID=59521607
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109100583A TWI728645B (zh) | 2017-03-07 | 2018-02-27 | 用於定序的方法以及用於定序的系統 |
TW107106625A TWI685653B (zh) | 2017-03-07 | 2018-02-27 | 用於修正成像樣品中的光學失真的方法、用於修正包含複數個光點之圖案化樣品的影像中之光學失真的方法以及非暫時性電腦可讀媒體 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109100583A TWI728645B (zh) | 2017-03-07 | 2018-02-27 | 用於定序的方法以及用於定序的系統 |
Country Status (15)
Country | Link |
---|---|
US (5) | US10152776B2 (zh) |
EP (2) | EP3373238B1 (zh) |
JP (2) | JP6563539B2 (zh) |
KR (2) | KR102072232B1 (zh) |
CN (2) | CN111652797B (zh) |
AU (1) | AU2018201352B2 (zh) |
BR (1) | BR102018004557A2 (zh) |
CA (2) | CA3139142C (zh) |
ES (1) | ES2948760T3 (zh) |
IL (1) | IL257826B (zh) |
NL (1) | NL2018852B1 (zh) |
NZ (1) | NZ740201A (zh) |
SA (1) | SA118390405B1 (zh) |
SG (2) | SG10202002144PA (zh) |
TW (2) | TWI728645B (zh) |
Families Citing this family (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111062400B (zh) * | 2018-10-16 | 2024-04-30 | 浙江宇视科技有限公司 | 目标匹配方法及装置 |
CN111351794B (zh) * | 2018-12-20 | 2021-12-10 | 上海微电子装备(集团)股份有限公司 | 一种物体表面检测装置及检测方法 |
EP4321922A3 (en) * | 2019-01-28 | 2024-07-17 | The General Hospital Corporation | Speckle-based image distortion correction for laser scanning microscopy |
US11210554B2 (en) | 2019-03-21 | 2021-12-28 | Illumina, Inc. | Artificial intelligence-based generation of sequencing metadata |
NL2023314B1 (en) * | 2019-03-21 | 2020-09-28 | Illumina Inc | Artificial intelligence-based quality scoring |
US11783917B2 (en) | 2019-03-21 | 2023-10-10 | Illumina, Inc. | Artificial intelligence-based base calling |
WO2020191389A1 (en) * | 2019-03-21 | 2020-09-24 | Illumina, Inc. | Training data generation for artificial intelligence-based sequencing |
NL2023316B1 (en) * | 2019-03-21 | 2020-09-28 | Illumina Inc | Artificial intelligence-based sequencing |
US11423306B2 (en) | 2019-05-16 | 2022-08-23 | Illumina, Inc. | Systems and devices for characterization and performance analysis of pixel-based sequencing |
US11593649B2 (en) | 2019-05-16 | 2023-02-28 | Illumina, Inc. | Base calling using convolutions |
EP4062372B1 (en) * | 2019-11-22 | 2024-05-08 | 10X Genomics, Inc. | Systems and methods for spatial analysis of analytes using fiducial alignment |
EP4107735A2 (en) | 2020-02-20 | 2022-12-28 | Illumina, Inc. | Artificial intelligence-based many-to-many base calling |
US11188778B1 (en) * | 2020-05-05 | 2021-11-30 | Illumina, Inc. | Equalization-based image processing and spatial crosstalk attenuator |
US11443411B2 (en) | 2020-07-08 | 2022-09-13 | Nxp Usa, Inc. | Method and system for image distortion correction using quarter and tangential lookup tables |
US11200446B1 (en) | 2020-08-31 | 2021-12-14 | Element Biosciences, Inc. | Single-pass primary analysis |
US11361194B2 (en) | 2020-10-27 | 2022-06-14 | Illumina, Inc. | Systems and methods for per-cluster intensity correction and base calling |
CN112489115B (zh) * | 2020-11-27 | 2023-09-08 | 杭州海康威视数字技术股份有限公司 | 发光模块定位方法、装置、电子设备、存储介质及系统 |
CN116745598A (zh) * | 2021-01-25 | 2023-09-12 | 纳恩泰株式会社 | 使用多通道样本薄片的微粒计数方法及实现其的微粒计数设备 |
WO2022197752A1 (en) * | 2021-03-16 | 2022-09-22 | Illumina, Inc. | Tile location and/or cycle based weight set selection for base calling |
US20220336054A1 (en) | 2021-04-15 | 2022-10-20 | Illumina, Inc. | Deep Convolutional Neural Networks to Predict Variant Pathogenicity using Three-Dimensional (3D) Protein Structures |
AU2022296802A1 (en) * | 2021-06-25 | 2024-01-04 | Illumina, Inc. | Linear fourier fiducial |
US11455487B1 (en) | 2021-10-26 | 2022-09-27 | Illumina Software, Inc. | Intensity extraction and crosstalk attenuation using interpolation and adaptation for base calling |
US20230260096A1 (en) | 2022-02-17 | 2023-08-17 | Illumina, Inc. | Ai-driven enhancement of motion blurred sequencing images |
WO2023158804A1 (en) | 2022-02-17 | 2023-08-24 | Illumina, Inc. | Ai-driven signal enhancement of sequencing images |
WO2023239917A1 (en) * | 2022-06-09 | 2023-12-14 | Illumina, Inc. | Dependence of base calling on flow cell tilt |
CN115242985B (zh) * | 2022-07-08 | 2024-05-03 | 苏州华星光电技术有限公司 | 摄像装置校正方法和摄像装置校正装置 |
WO2024153792A1 (en) * | 2023-01-19 | 2024-07-25 | Carl Zeiss Multisem Gmbh | Fast closed-loop control of multi-beam charged particle system |
KR102674967B1 (ko) | 2023-04-24 | 2024-06-13 | 주식회사 큐리오시스 | 다채널 형광 필터세트와 광원이 합쳐진 형광 필터블록 조립체 |
CN118067682B (zh) * | 2024-04-16 | 2024-07-05 | 中国人民解放军总医院 | 一种检测生长分化因子15基因表达的方法 |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06259541A (ja) | 1992-10-30 | 1994-09-16 | Toshiba Corp | 画像歪み補正方法およびそのシステム |
US6671623B1 (en) | 1999-10-15 | 2003-12-30 | Schlumberger Technology Corporation | Methods and system for characterizing the response of subsurface measurements to determine wellbore and formation characteristics |
JP4278800B2 (ja) * | 1999-10-27 | 2009-06-17 | 株式会社ミツトヨ | 撮像空間の幾何学的歪み解消方法 |
US20040146917A1 (en) * | 2001-08-03 | 2004-07-29 | Nanosphere, Inc. | Nanoparticle imaging system and method |
JP4280720B2 (ja) * | 2002-02-14 | 2009-06-17 | 日本碍子株式会社 | 試料解析装置および試料解析方法 |
JP4546830B2 (ja) * | 2002-09-30 | 2010-09-22 | アプライド マテリアルズ イスラエル リミテッド | 暗フィールド検査システム |
US8473216B2 (en) * | 2006-11-30 | 2013-06-25 | Fluidigm Corporation | Method and program for performing baseline correction of amplification curves in a PCR experiment |
US8289430B2 (en) * | 2007-02-09 | 2012-10-16 | Gentex Corporation | High dynamic range imaging device |
CN100582657C (zh) * | 2008-01-31 | 2010-01-20 | 武汉理工大学 | 三维微观形貌斜扫描方法及装置 |
US8186909B2 (en) | 2008-02-26 | 2012-05-29 | Artificial Sea-Mount Institute Corporation | Artificial sea mount |
US20100157086A1 (en) * | 2008-12-15 | 2010-06-24 | Illumina, Inc | Dynamic autofocus method and system for assay imager |
CN102483802B (zh) * | 2009-06-01 | 2014-12-31 | 生物辐射实验室股份有限公司 | 用于生物/化学样本的成像设备的校准 |
JP5415176B2 (ja) | 2009-08-06 | 2014-02-12 | 株式会社マキタ | スイッチ |
KR101569835B1 (ko) * | 2009-10-06 | 2015-11-17 | 삼성전자주식회사 | 스캐닝 이미지의 왜곡 보정 방법 |
US8965076B2 (en) * | 2010-01-13 | 2015-02-24 | Illumina, Inc. | Data processing system and methods |
JP2011182705A (ja) * | 2010-03-09 | 2011-09-22 | Toray Ind Inc | Dnaチップ解析方法および解析装置 |
JP5817378B2 (ja) | 2011-01-28 | 2015-11-18 | 東レ株式会社 | マイクロアレイの解析方法および読取り装置 |
EP2718465B1 (en) | 2011-06-09 | 2022-04-13 | Illumina, Inc. | Method of making an analyte array |
WO2013051147A1 (ja) * | 2011-10-07 | 2013-04-11 | キヤノン株式会社 | 画像取得装置の調整方法、画像取得装置および画像取得装置の製造方法 |
KR102019534B1 (ko) * | 2013-02-01 | 2019-09-09 | 케이엘에이 코포레이션 | 결함 특유의, 다중 채널 정보를 이용한 웨이퍼 상의 결함 검출 |
CN103116889A (zh) * | 2013-02-05 | 2013-05-22 | 海信集团有限公司 | 一种定位方法及电子设备 |
JP2014164004A (ja) * | 2013-02-22 | 2014-09-08 | Hitachi High-Technologies Corp | 蛍光顕微鏡 |
US20160003375A1 (en) | 2014-07-01 | 2016-01-07 | Roy Lee Robertson, Jr. | Versatile hanging system for roof support systems |
JP2016033620A (ja) * | 2014-07-31 | 2016-03-10 | キヤノン株式会社 | 画像取得装置 |
AU2015306603B2 (en) | 2014-08-27 | 2021-04-01 | Pacific Biosciences Of California, Inc. | Arrays of integrated analytical devices |
US9897791B2 (en) | 2014-10-16 | 2018-02-20 | Illumina, Inc. | Optical scanning systems for in situ genetic analysis |
-
2017
- 2017-05-05 NL NL2018852A patent/NL2018852B1/en active
-
2018
- 2018-02-23 AU AU2018201352A patent/AU2018201352B2/en active Active
- 2018-02-23 NZ NZ74020118A patent/NZ740201A/en unknown
- 2018-02-26 CA CA3139142A patent/CA3139142C/en active Active
- 2018-02-26 JP JP2018032025A patent/JP6563539B2/ja active Active
- 2018-02-26 CA CA2996541A patent/CA2996541C/en active Active
- 2018-02-27 TW TW109100583A patent/TWI728645B/zh active
- 2018-02-27 TW TW107106625A patent/TWI685653B/zh active
- 2018-02-28 SG SG10202002144PA patent/SG10202002144PA/en unknown
- 2018-02-28 SG SG10201801648VA patent/SG10201801648VA/en unknown
- 2018-03-01 US US15/909,437 patent/US10152776B2/en active Active
- 2018-03-02 IL IL257826A patent/IL257826B/en active IP Right Grant
- 2018-03-05 SA SA118390405A patent/SA118390405B1/ar unknown
- 2018-03-06 ES ES18160337T patent/ES2948760T3/es active Active
- 2018-03-06 EP EP18160337.4A patent/EP3373238B1/en active Active
- 2018-03-06 EP EP23151672.5A patent/EP4187234A1/en active Pending
- 2018-03-07 BR BR102018004557A patent/BR102018004557A2/pt not_active Application Discontinuation
- 2018-03-07 CN CN202010425476.5A patent/CN111652797B/zh active Active
- 2018-03-07 KR KR1020180026797A patent/KR102072232B1/ko active Application Filing
- 2018-03-07 CN CN201810185711.9A patent/CN108573468B/zh active Active
- 2018-11-15 US US16/192,608 patent/US10909666B2/en active Active
-
2019
- 2019-05-21 JP JP2019095280A patent/JP6871970B2/ja active Active
-
2020
- 2020-01-22 KR KR1020200008865A patent/KR102455926B1/ko active IP Right Grant
-
2021
- 2021-01-29 US US17/162,928 patent/US11568522B2/en active Active
-
2022
- 2022-12-23 US US18/088,132 patent/US11816816B2/en active Active
-
2023
- 2023-10-05 US US18/481,442 patent/US12100125B2/en active Active
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI685653B (zh) | 用於修正成像樣品中的光學失真的方法、用於修正包含複數個光點之圖案化樣品的影像中之光學失真的方法以及非暫時性電腦可讀媒體 | |
KR102478948B1 (ko) | 패턴화된 어레이의 나노웰을 가진 감소한 차수의 구조화 조명 현미경법 | |
TW201940877A (zh) | 具有線掃描的結構化照明顯微鏡 | |
JP2023548261A (ja) | 移動中の試料の画像を取得する装置及び方法 | |
NZ752391B2 (en) | Optical distortion correction for imaged samples | |
WO2024196690A2 (en) | Apparatus and method for extended depth of field | |
CN117546247A (zh) | 用于碱基检出的特化信号分析器 | |
EP4374378A1 (en) | Specialist signal profilers for base calling |