TW201837489A - Method and circuit for detecting abnormal clock - Google Patents

Method and circuit for detecting abnormal clock Download PDF

Info

Publication number
TW201837489A
TW201837489A TW106110369A TW106110369A TW201837489A TW 201837489 A TW201837489 A TW 201837489A TW 106110369 A TW106110369 A TW 106110369A TW 106110369 A TW106110369 A TW 106110369A TW 201837489 A TW201837489 A TW 201837489A
Authority
TW
Taiwan
Prior art keywords
clock signal
delayed clock
delayed
output
abnormal
Prior art date
Application number
TW106110369A
Other languages
Chinese (zh)
Other versions
TWI637186B (en
Inventor
林湛斐
李奕廷
林煥儒
Original Assignee
奇景光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 奇景光電股份有限公司 filed Critical 奇景光電股份有限公司
Priority to TW106110369A priority Critical patent/TWI637186B/en
Application granted granted Critical
Publication of TWI637186B publication Critical patent/TWI637186B/en
Publication of TW201837489A publication Critical patent/TW201837489A/en

Links

Landscapes

  • Manipulation Of Pulses (AREA)

Abstract

A method for detecting an abnormal clock is configured to detect whether an output clock of a chip is abnormal. The method includes: providing a first delay clock signal and a second delay clock signal in accordance with the output clock, in which the phases of the output clock, the first delay clock signal, and the second delay clock signal are different from each other; sampling the first delay clock signal with the second delay clock signal to detect whether the output clock is abnormal.

Description

異常時脈偵測方法及其電路  Abnormal clock detection method and circuit thereof  

本揭露實施例是有關於一種異常時脈偵測方法及其電路,且特別是有關於一種應用於晶片中的異常時脈偵測方法及其電路。 The present disclosure relates to an abnormal clock detection method and a circuit thereof, and more particularly to an abnormal clock detection method and a circuit thereof applied to a wafer.

隨著科技的進步,電子產品不斷的推陳出新,而使電子產品能夠正常的運作,所依靠的就是準確的時脈信號,讓電子產品內部的晶片可以有順序的處理其所接收到的資料或信號,並於正確的時間傳送至其下一級的電路,或者正確地擷取資料。 With the advancement of technology, electronic products continue to evolve, and the electronic products can operate normally, relying on accurate clock signals, so that the chips inside the electronic products can process the data or signals they receive in sequence. And transfer to the next level of circuitry at the correct time, or to retrieve the data correctly.

在含有高速時脈信號的晶片中,時脈信號是否精準則更是需要重視的測試項目,目前常見的檢測方法是利用測試機台,然而因為受限於測試機台的能力,當時脈信號有瞬時的異常或是時脈信號有些微的失真時,通常無法被測試機台所檢測出來。 In a chip containing a high-speed clock signal, whether the clock signal is accurate or not is a test item that needs attention. The current common detection method is to use the test machine. However, because of the ability of the test machine, the pulse signal has When the transient anomaly or the clock signal is slightly distorted, it is usually not detected by the test machine.

本揭露之目的在於提出一種異常時脈偵測方法 及其電路,其應用於晶片的積體電路中,藉此讓使用者能更容易且準確地將具有異常時脈的晶片篩選掉。 The purpose of the present disclosure is to provide an abnormal clock detection method and circuit thereof, which are applied to an integrated circuit of a wafer, thereby enabling a user to more easily and accurately filter out wafers having abnormal clocks.

根據本揭露之上述目的,提出一種異常時脈偵測方法,用於偵測晶片的輸出時脈訊號是否有異常。異常時脈偵測方法包括:根據輸出時脈訊號來提供第一延遲時脈訊號與第二延遲時脈訊號,其中輸出時脈訊號、第一延遲時脈訊號與第二延遲時脈訊號的相位互不相同;以及利用第二延遲時脈訊號來對第一延遲時脈訊號進行取樣,以判斷輸出時脈訊號是否發生異常。 According to the above object of the present disclosure, an abnormal clock detection method is provided for detecting whether an output clock signal of a wafer is abnormal. The abnormal clock detection method includes: providing a first delayed clock signal and a second delayed clock signal according to the output clock signal, wherein the phase of the output clock signal, the first delayed clock signal and the second delayed clock signal are output Different from each other; and using the second delayed clock signal to sample the first delayed clock signal to determine whether an abnormality occurs in the output clock signal.

在一些實施例中,上述晶片之多相位產生電路用以根據輸出時脈訊號來產生之N個延遲時脈訊號,其中N個延遲時脈訊號與輸出時脈訊號的相位互不相同,其中N個延遲時脈訊號之其中二者係第一延遲時脈訊號與第二延遲時脈訊號,其中N為大於等於4的正整數。 In some embodiments, the multi-phase generation circuit of the chip is configured to generate N delayed clock signals according to the output clock signal, wherein the phases of the N delayed clock signals and the output clock signals are different from each other, wherein The two delayed clock signals are the first delayed clock signal and the second delayed clock signal, where N is a positive integer greater than or equal to 4.

在一些實施例中,上述第一延遲時脈訊號的相位領先第二延遲時脈訊號的相位,其中第一延遲時脈訊號與第二延遲時脈訊號的相位差係介於輸出時脈訊號的2/N週期至(N-2)/N週期之間。 In some embodiments, the phase of the first delayed clock signal leads the phase of the second delayed clock signal, wherein the phase difference between the first delayed clock signal and the second delayed clock signal is between the output clock signal 2/N cycle to (N-2)/N cycle.

在一些實施例中,上述異常時脈偵測方法係利用第二延遲時脈訊號的下降邊緣對第一延遲時脈訊號進行取樣以偵測輸出時脈訊號是否頻率過慢,其中當第二延遲時脈訊號的下降邊緣對第一延遲時脈訊號進行取樣的結果為低電壓準位則代表輸出時脈訊號頻率過慢。 In some embodiments, the abnormal clock detection method uses the falling edge of the second delayed clock signal to sample the first delayed clock signal to detect whether the output clock signal is too slow, wherein the second delay is The falling edge of the clock signal samples the first delayed clock signal, and the low voltage level indicates that the output clock signal frequency is too slow.

在一些實施例中,上述異常時脈偵測方法係利 用第二延遲時脈訊號的上升邊緣對第一延遲時脈訊號進行取樣以偵測輸出時脈訊號是否頻率過快,其中當第二延遲時脈訊號的上升邊緣對第一延遲時脈訊號進行取樣的結果為高電壓準位則代表輸出時脈訊號頻率過快。 In some embodiments, the abnormal clock detection method uses the rising edge of the second delayed clock signal to sample the first delayed clock signal to detect whether the output clock signal is too fast, wherein the second delay is The rising edge of the clock signal samples the first delayed clock signal as a result of the high voltage level, which means that the output clock signal frequency is too fast.

根據本揭露之上述目的,另提出一種異常時脈偵測電路,用以判斷晶片之輸出時脈訊號是否發生異常。異常時脈偵測電路包含多相位產生電路與取樣電路。多相位產生電路用以根據輸出時脈訊號來提供第一延遲時脈訊號與第二延遲時脈訊號,其中輸出時脈訊號、第一延遲時脈訊號與第二延遲時脈訊號的相位互不相同。取樣電路用以利用第二延遲時脈訊號來對第一延遲時脈訊號進行取樣,以判斷輸出時脈訊號是否發生異常。 According to the above object of the present disclosure, an abnormal clock detection circuit is further provided for determining whether an abnormality occurs in an output clock signal of a chip. The abnormal clock detection circuit includes a multi-phase generation circuit and a sampling circuit. The multi-phase generating circuit is configured to provide the first delayed clock signal and the second delayed clock signal according to the output clock signal, wherein the phases of the output clock signal, the first delayed clock signal and the second delayed clock signal are not mutually the same. The sampling circuit is configured to sample the first delayed clock signal by using the second delayed clock signal to determine whether an abnormality occurs in the output clock signal.

在一些實施例中,上述多相位產生電路用以根據輸出時脈訊號來產生之N個延遲時脈訊號,其中N個延遲時脈訊號與輸出時脈訊號的相位互不相同,其中N個延遲時脈訊號之其中二者係第一延遲時脈訊號與第二延遲時脈訊號,其中N為大於等於4的正整數。 In some embodiments, the multi-phase generating circuit is configured to generate N delayed clock signals according to the output clock signal, wherein the phases of the N delayed clock signals and the output clock signals are different from each other, wherein the N delays The two of the clock signals are the first delayed clock signal and the second delayed clock signal, where N is a positive integer greater than or equal to 4.

在一些實施例中,上述第一延遲時脈訊號的相位領先第二延遲時脈訊號的相位,其中第一延遲時脈訊號與第二延遲時脈訊號的相位差係介於輸出時脈訊號的2/N週期至(N-2)/N週期之間。 In some embodiments, the phase of the first delayed clock signal leads the phase of the second delayed clock signal, wherein the phase difference between the first delayed clock signal and the second delayed clock signal is between the output clock signal 2/N cycle to (N-2)/N cycle.

在一些實施例中,上述取樣電路係利用第二延遲時脈訊號的下降邊緣對第一延遲時脈訊號進行取樣以偵測輸出時脈訊號是否頻率過慢,其中當第二延遲時脈訊號的 下降邊緣對第一延遲時脈訊號進行取樣的結果為低電壓準位則代表輸出時脈訊號頻率過慢。 In some embodiments, the sampling circuit samples the first delayed clock signal by using the falling edge of the second delayed clock signal to detect whether the output clock signal is too slow, wherein the second delay clock signal The result of sampling the first delayed clock signal at the falling edge is that the low voltage level indicates that the output clock signal frequency is too slow.

在一些實施例中,上述取樣電路係利用第二延遲時脈訊號的上升邊緣對第一延遲時脈訊號進行取樣以偵測輸出時脈訊號是否頻率過快,其中當第二延遲時脈訊號的上升邊緣對第一延遲時脈訊號進行取樣的結果為高電壓準位則代表輸出時脈訊號頻率過快。 In some embodiments, the sampling circuit samples the first delayed clock signal by using the rising edge of the second delayed clock signal to detect whether the output clock signal is too fast, wherein the second delay clock signal The result of sampling the first delayed clock signal by the rising edge is that the high voltage level represents that the output clock signal frequency is too fast.

為讓本揭露的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 The above described features and advantages of the present invention will be more apparent from the following description.

SIG‧‧‧輸出時脈訊號 SIG‧‧‧ output clock signal

ABN‧‧‧輸出端 ABN‧‧‧ output

IN1‧‧‧第一輸入端 IN1‧‧‧ first input

IN2‧‧‧第二輸入端 IN2‧‧‧ second input

TSIG‧‧‧週期 TSIG‧‧ cycle

TP‧‧‧子相位 TP‧‧‧ subphase

100‧‧‧異常時脈偵測電路 100‧‧‧Abnormal clock detection circuit

110‧‧‧多相位產生電路 110‧‧‧Multiphase generation circuit

120‧‧‧取樣電路 120‧‧‧Sampling circuit

122‧‧‧低頻時脈偵測電路 122‧‧‧Low frequency clock detection circuit

122a、122b、124a、124b‧‧‧正反器 122a, 122b, 124a, 124b‧‧‧ forward and reverse

124‧‧‧高頻時脈偵測電路 124‧‧‧High frequency clock detection circuit

600‧‧‧方法 600‧‧‧ method

610、620‧‧‧步驟 610, 620‧ ‧ steps

P1-P16‧‧‧延遲時脈訊號 P1-P16‧‧‧Delayed clock signal

VDD‧‧‧電源 VDD‧‧‧ power supply

D‧‧‧資料輸入接腳 D‧‧‧Data input pin

CLK‧‧‧時序接腳 CLK‧‧‧ timing pin

Q、Qb‧‧‧輸出接腳 Q, Qb‧‧‧ output pin

從以下結合所附圖式所做的詳細描述,可對本揭露之態樣有更佳的了解。需注意的是,根據業界的標準實務,各特徵並未依比例繪示。事實上,為了使討論更為清楚,各特徵的尺寸都可任意地增加或減少。 A better understanding of the aspects of the present disclosure can be obtained from the following detailed description taken in conjunction with the drawings. It should be noted that, according to industry standard practices, the features are not drawn to scale. In fact, in order to make the discussion clearer, the dimensions of each feature can be arbitrarily increased or decreased.

[圖1]係繪示根據本揭露的一實施例之異常時脈偵測電路的系統方塊圖。 FIG. 1 is a system block diagram of an abnormal clock detection circuit according to an embodiment of the present disclosure.

[圖2]係繪示根據本揭露的一實施例之輸出時脈訊號與延遲時脈訊號的時序圖。 FIG. 2 is a timing diagram of an output clock signal and a delayed clock signal according to an embodiment of the present disclosure.

[圖3]與[圖4]係繪示根據本揭露的一實施例之異常之輸出時脈訊號與延遲時脈訊號的時序圖。 3 and FIG. 4 are timing diagrams showing an abnormal output clock signal and a delayed clock signal according to an embodiment of the present disclosure.

[圖5]係繪示根據本揭露的一實施例之取樣電路的電路架構圖。 FIG. 5 is a circuit diagram of a sampling circuit according to an embodiment of the present disclosure.

[圖6]係繪示根據本揭露的一實施例之異常時脈偵測方法的流程圖。 FIG. 6 is a flow chart showing an abnormal clock detection method according to an embodiment of the present disclosure.

本揭露提供了許多不同的實施例或例子,用以實作此揭露的不同特徵。為了簡化本揭露,一些元件與佈局的具體例子會在以下說明。當然,這些僅僅是例子而不是用以限制本揭露。例如,若在後續說明中提到了第一特徵形成在第二特徵上面,這可包括第一特徵與第二特徵是直接接觸的實施例;這也可以包括第一特徵與第二特徵之間還形成其他特徵的實施例,這使得第一特徵與第二特徵沒有直接接觸。此外,本揭露可能會在各種例子中重複圖示符號及/或文字。此重複是為了簡明與清晰的目的,但本身並不決定所討論的各種實施例及/或設置之間的關係。 The disclosure provides many different embodiments or examples for implementing the various features disclosed herein. In order to simplify the disclosure, specific examples of components and layouts are described below. Of course, these are merely examples and are not intended to limit the disclosure. For example, if it is mentioned in the following description that the first feature is formed on the second feature, this may include an embodiment in which the first feature is in direct contact with the second feature; this may also include between the first feature and the second feature. Embodiments of other features are formed that make the first feature not in direct contact with the second feature. Moreover, the disclosure may repeat the symbols and/or text in various examples. This repetition is for the purpose of brevity and clarity, but does not in itself determine the relationship between the various embodiments and/or arrangements discussed.

再者,在空間上相對的用語,例如底下、下面、較低、上面、較高等,是用來容易地解釋在圖示中一個元件或特徵與另一個元件或特徵之間的關係。這些空間上相對的用語除了涵蓋在圖示中所繪的方向,也涵蓋了裝置在使用或操作上不同的方向。這些裝置也可被旋轉(例如旋轉90度或旋轉至其他方向),而在此所使用的空間上相對的描述同樣也可以有相對應的解釋。 Furthermore, spatially relative terms such as "lower", "lower", """"""""""" These spatially relative terms are intended to encompass different orientations of the device in use or operation, in addition to the orientation depicted in the drawings. These devices can also be rotated (e.g., rotated 90 degrees or rotated to other directions), and the spatially relative descriptions used herein can also be interpreted accordingly.

圖1係繪示根據本揭露的一實施例之異常時脈偵測電路100的系統方塊圖。異常時脈偵測電路100包含多相位產生電路110與取樣電路120。在本實施例中,異常時 脈偵測電路100係內建於晶片中,多相位產生電路110的輸入端接收晶片的輸出時脈訊號SIG,且多相位產生電路110的多個輸出端分別輸出16個延遲時脈訊號P1~P16。取樣電路120的第一輸入端IN1與第二輸入端IN2分別接收延遲時脈訊號P1與延遲時脈訊號P13。 1 is a system block diagram of an abnormal clock detection circuit 100 in accordance with an embodiment of the present disclosure. The abnormal clock detection circuit 100 includes a multi-phase generation circuit 110 and a sampling circuit 120. In this embodiment, the abnormal clock detection circuit 100 is built in the chip, and the input end of the multi-phase generation circuit 110 receives the output clock signal SIG of the chip, and the plurality of output ends of the multi-phase generation circuit 110 respectively output. 16 delayed clock signals P1~P16. The first input terminal IN1 and the second input terminal IN2 of the sampling circuit 120 receive the delayed clock signal P1 and the delayed clock signal P13, respectively.

在本實施例中,當輸出時脈訊號SIG發生異常現象時,取樣電路120的輸出端ABN會輸出異常訊號。因此使用者可藉由監視取樣電路120的輸出端ABN而容易且準確地將具有異常之輸出時脈訊號SIG的晶片篩選掉。 In this embodiment, when an abnormality occurs in the output clock signal SIG, the output terminal ABN of the sampling circuit 120 outputs an abnormal signal. Therefore, the user can easily and accurately filter out the wafer having the abnormal output clock signal SIG by monitoring the output terminal ABN of the sampling circuit 120.

圖2係繪示根據本揭露的一實施例之輸出時脈訊號SIG與延遲時脈訊號P1~P16的時序圖。在本實施例中,輸出時脈訊號SIG與延遲時脈訊號P1~P16皆具有相同的週期TSIG,且週期TSIG可被等分成16個子相位TP。在圖2中,兩相鄰的時脈訊號之間皆相距一個子相位TP。例如,兩相鄰的輸出時脈訊號SIG與延遲時脈訊號P1之間的相位差為TP,兩相鄰的延遲時脈訊號P1與延遲時脈訊號P2之間的相位差為TP,依此類推,且延遲時脈訊號P16與輸出時脈訊號SIG之間沒有相位差。 2 is a timing diagram of the output clock signal SIG and the delayed clock signals P1 P P16 according to an embodiment of the present disclosure. In this embodiment, the output clock signal SIG and the delayed clock signals P1 P P16 have the same period TSIG, and the period TSIG can be equally divided into 16 sub-phases TP. In Figure 2, two adjacent clock signals are separated by a sub-phase TP. For example, the phase difference between the two adjacent output clock signals SIG and the delayed clock signal P1 is TP, and the phase difference between the two adjacent delayed clock signals P1 and the delayed clock signal P2 is TP. Similarly, there is no phase difference between the delayed clock signal P16 and the output clock signal SIG.

請回到圖1,取樣電路120的第一輸入端IN1與第二輸入端IN2分別接收第一延遲時脈訊號與第二延遲時脈訊號。在本實施例中,第一延遲時脈訊號為延遲時脈訊號P1,第二延遲時脈訊號為延遲時脈訊號P13,但本揭露之實施例並不受限於此。對本揭露而言,輸出時脈訊號的週期可被等分成N個子相位,其中N為大於等於4的正整數,而第 一延遲時脈訊號與第二延遲時脈訊號的相位差可為介於輸出時脈訊號的2/N週期至(N-2)/N週期之間。值得一提的是,對本實施例而言,第一延遲時脈訊號P1與第二延遲時脈訊號P13的相位差為輸出時脈訊號SIG的12/16週期。 Referring back to FIG. 1 , the first input terminal IN1 and the second input terminal IN2 of the sampling circuit 120 respectively receive the first delayed clock signal and the second delayed clock signal. In this embodiment, the first delayed clock signal is the delayed clock signal P1, and the second delayed clock signal is the delayed clock signal P13, but the embodiment of the disclosure is not limited thereto. For the disclosure, the period of the output clock signal can be equally divided into N sub-phases, where N is a positive integer greater than or equal to 4, and the phase difference between the first delayed clock signal and the second delayed clock signal can be Outputs the 2/N cycle of the clock signal to between (N-2)/N cycles. It should be noted that, in this embodiment, the phase difference between the first delayed clock signal P1 and the second delayed clock signal P13 is 12/16 cycles of the output clock signal SIG.

在本實施例中,取樣電路120係透過第二延遲時脈訊號P13的下降邊緣對第一延遲時脈訊號P1進行取樣以偵測輸出時脈訊號SIG是否頻率過慢。請再參照圖2,當輸出時脈訊號SIG為正常時,第二延遲時脈訊號P13的下降邊緣對第一延遲時脈訊號P1進行取樣的結果為高電壓準位。圖3係繪示根據本揭露的一實施例之異常之輸出時脈訊號SIG與延遲時脈訊號P1~P16的時序圖,如圖3中所表示者為輸出時脈訊號SIG的頻率過慢,則第二延遲時脈訊號P13的下降邊緣對第一延遲時脈訊號P1進行取樣的結果為低電壓準位。值得一提的是,圖3中虛線標示者代表輸出時脈訊號SIG為正常時的時序圖。 In this embodiment, the sampling circuit 120 samples the first delayed clock signal P1 through the falling edge of the second delayed clock signal P13 to detect whether the output clock signal SIG is too slow. Referring to FIG. 2 again, when the output clock signal SIG is normal, the falling edge of the second delayed clock signal P13 samples the first delayed clock signal P1 as a high voltage level. 3 is a timing diagram of an abnormal output clock signal SIG and a delayed clock signal P1~P16 according to an embodiment of the present disclosure. As shown in FIG. 3, the frequency of the output clock signal SIG is too slow. Then, the falling edge of the second delayed clock signal P13 samples the first delayed clock signal P1 as a low voltage level. It is worth mentioning that the dotted line in Figure 3 represents the timing diagram when the output clock signal SIG is normal.

在本實施例中,取樣電路120係透過第二延遲時脈訊號P13的上升邊緣對第一延遲時脈訊號P1進行取樣以偵測輸出時脈訊號SIG是否頻率過快。請再參照圖2,當輸出時脈訊號SIG為正常時,第二延遲時脈訊號P13的上升邊緣對第一延遲時脈訊號P1進行取樣的結果為低電壓準位。圖4係繪示根據本揭露的一實施例之異常之輸出時脈訊號SIG與延遲時脈訊號P1~P16的時序圖,如圖4中所表示者為輸出時脈訊號SIG的頻率過快,則第二延遲時脈訊號P13的上升邊緣對第一延遲時脈訊號P1進行取樣的結果為高電 壓準位。值得一提的是,圖4中虛線標示者代表輸出時脈訊號SIG為正常時的時序圖。 In this embodiment, the sampling circuit 120 samples the first delayed clock signal P1 through the rising edge of the second delayed clock signal P13 to detect whether the output clock signal SIG is too fast. Referring to FIG. 2 again, when the output clock signal SIG is normal, the rising edge of the second delayed clock signal P13 samples the first delayed clock signal P1 as a low voltage level. 4 is a timing diagram of an abnormal output clock signal SIG and a delayed clock signal P1 to P16 according to an embodiment of the present disclosure. As shown in FIG. 4, the frequency of the output clock signal SIG is too fast. Then, the rising edge of the second delayed clock signal P13 samples the first delayed clock signal P1 as a high voltage level. It is worth mentioning that the dotted line in FIG. 4 represents a timing chart when the output clock signal SIG is normal.

綜合上述,當第二延遲時脈訊號P13的下降邊緣對第一延遲時脈訊號P1進行取樣的結果為低電壓準位則代表晶片的輸出時脈訊號SIG頻率過慢;當第二延遲時脈訊號P13的上升邊緣對第一延遲時脈訊號P1進行取樣的結果為高電壓準位則代表晶片的輸出時脈訊號SIG頻率過快。因此,可藉由應用上述的取樣結果之判斷於電路邏輯,來實現取樣電路120之功能,以下介紹本揭露的一實施例之取樣電路120的電路架構。 In summary, when the falling edge of the second delayed clock signal P13 samples the first delayed clock signal P1, the low voltage level indicates that the output clock signal SIG frequency of the chip is too slow; when the second delay clock The result of sampling the first delayed clock signal P1 at the rising edge of the signal P13 is that the high voltage level represents that the output clock signal SIG frequency of the chip is too fast. Therefore, the function of the sampling circuit 120 can be realized by applying the above-mentioned sampling result judgment to the circuit logic. The circuit architecture of the sampling circuit 120 of an embodiment of the present disclosure is described below.

圖5係繪示根據本揭露的一實施例之取樣電路120的電路架構圖。取樣電路120包含低頻時脈偵測電路122與高頻時脈偵測電路124。低頻時脈偵測電路122用以偵測晶片的輸出時脈訊號是否頻率過慢。低頻時脈偵測電路122由兩個正反器(Filp-Flop)122a、122b組成。 FIG. 5 is a circuit diagram of a sampling circuit 120 according to an embodiment of the present disclosure. The sampling circuit 120 includes a low frequency clock detection circuit 122 and a high frequency clock detection circuit 124. The low frequency clock detection circuit 122 is configured to detect whether the output clock signal of the chip is too slow. The low frequency clock detection circuit 122 is composed of two flip-flops (Filp-Flop) 122a, 122b.

正反器122b的資料輸入接腳D連接電源VDD(即高電壓準位),正反器122b的時序接腳CLK連接正反器122a的輸出接腳Qb。因此,對正反器122b而言,只有當正反器122a的輸出接腳Qb之輸出訊號由低電壓準位上升至高電壓準位時,正反器122b的輸出接腳Q才會輸出高電壓準位。 The data input pin D of the flip-flop 122b is connected to the power supply VDD (ie, the high voltage level), and the timing pin CLK of the flip-flop 122b is connected to the output pin Qb of the flip-flop 122a. Therefore, for the flip-flop 122b, the output pin Q of the flip-flop 122b outputs a high voltage only when the output signal of the output pin Qb of the flip-flop 122a rises from the low voltage level to the high voltage level. Level.

在本實施例中,正反器122a的資料輸入接腳D接收第一延遲時脈訊號P1,正反器122a的時序接腳CLK接收反向的第二延遲時脈訊號P13。因此,對正反器122a而 言,只有當第二延遲時脈訊號P13由高電壓準位下降至低電壓準位時,正反器122a的輸出接腳Qb才會輸出反向的第一延遲時脈訊號P1。上述的動作即相當於:透過第二延遲時脈訊號P13的下降邊緣對第一延遲時脈訊號P1進行取樣。 In this embodiment, the data input pin D of the flip-flop 122a receives the first delayed clock signal P1, and the timing pin CLK of the flip-flop 122a receives the inverted second delayed clock signal P13. Therefore, for the flip-flop 122a, the output pin Qb of the flip-flop 122a outputs the reverse first delay only when the second delay pulse signal P13 falls from the high voltage level to the low voltage level. Clock signal P1. The above operation corresponds to sampling the first delayed clock signal P1 through the falling edge of the second delayed clock signal P13.

請一併參照圖2,當輸出時脈訊號SIG為正常時,延遲時脈訊號P13的下降邊緣對延遲時脈訊號P1進行取樣的結果為高電壓準位,相當於正反器122a的輸出接腳Qb輸出低電壓準位。請一併參照圖3,當輸出時脈訊號SIG頻率過慢時,延遲時脈訊號P13的下降邊緣對延遲時脈訊號P1進行取樣的結果為低電壓準位,相當於正反器122a的輸出接腳Qb輸出高電壓準位。 Referring to FIG. 2 together, when the output clock signal SIG is normal, the falling edge of the delayed clock signal P13 samples the delayed clock signal P1 as a high voltage level, which is equivalent to the output of the flip-flop 122a. Pin Qb outputs a low voltage level. Referring to FIG. 3 together, when the output clock signal SIG frequency is too slow, the falling edge of the delayed clock signal P13 samples the delayed clock signal P1 as a low voltage level, which is equivalent to the output of the flip-flop 122a. Pin Qb outputs a high voltage level.

綜合上述,當輸出時脈訊號SIG頻率過慢時,正反器122a的輸出接腳Qb由低電壓準位上升至高電壓準位,則正反器122b的輸出接腳Q輸出高電壓準位。如此一來,使用者可藉由監視正反器122b的輸出接腳Q來得知晶片的輸出時脈訊號SIG是否發生頻率過慢的異常現象。具體來說,在本實施中,當正反器122b的輸出接腳Q輸出高電壓準位時,即代表取樣電路120輸出異常訊號,使用者可藉此得知晶片的輸出時脈訊號發生異常。 In summary, when the output clock signal SIG frequency is too slow, the output pin Qb of the flip-flop 122a rises from the low voltage level to the high voltage level, and the output pin Q of the flip-flop 122b outputs a high voltage level. In this way, the user can monitor whether the output clock signal SIG of the chip is abnormally slow due to the output pin Q of the flip-flop 122b. Specifically, in the present embodiment, when the output pin Q of the flip-flop 122b outputs a high voltage level, the sampling circuit 120 outputs an abnormal signal, and the user can know that the output clock signal of the chip is abnormal. .

請回到圖5,高頻時脈偵測電路124用以偵測晶片的輸出時脈訊號是否頻率過快,高頻時脈偵測電路124由兩個正反器124a、124b組成。高頻時脈偵測電路124的工作原理與低頻時脈偵測電路122類似,故在此不贅述。當輸出時脈訊號SIG頻率過快時,正反器124a的輸出接腳Q由低 電壓準位上升至高電壓準位,則正反器124b的輸出接腳Q輸出高電壓準位。如此一來,使用者可藉由監視正反器124b的輸出接腳Q來得知晶片的輸出時脈訊號SIG是否發生頻率過快的異常現象。具體來說,在本實施中,當正反器124b的輸出接腳Q輸出高電壓準位時,即代表取樣電路120輸出異常訊號,使用者可藉此得知晶片的輸出時脈訊號發生異常。 Referring back to FIG. 5, the high frequency clock detection circuit 124 is configured to detect whether the output clock signal of the chip is too fast, and the high frequency clock detection circuit 124 is composed of two flip-flops 124a and 124b. The working principle of the high frequency clock detection circuit 124 is similar to that of the low frequency clock detection circuit 122, and therefore will not be described herein. When the output clock signal SIG frequency is too fast, the output pin Q of the flip-flop 124a rises from the low voltage level to the high voltage level, and the output pin Q of the flip-flop 124b outputs a high voltage level. In this way, the user can monitor the output pin Q of the flip-flop 124b to know whether the output pulse signal SIG of the chip has an abnormal frequency. Specifically, in the present embodiment, when the output pin Q of the flip-flop 124b outputs a high voltage level, the sampling circuit 120 outputs an abnormal signal, and the user can know that the output clock signal of the chip is abnormal. .

圖6係繪示根據本揭露的一實施例之異常時脈偵測方法600的流程圖。異常時脈偵測方法600用以偵測晶片的輸出時脈訊號是否有異常。首先,於步驟610,根據晶片的輸出時脈訊號來提供第一延遲時脈訊號與第二延遲時脈訊號。請一併參照圖1,在本實施例中,內建於晶片的多相位產生電路110根據晶片的輸出時脈訊號SIG提供第一延遲時脈訊號P1與第二延遲時脈訊號P13給取樣電路120。接者,於步驟620,利用第二延遲時脈訊號來對第一延遲時脈訊號進行取樣,以判斷晶片的輸出時脈訊號是否發生異常。請一併參照圖1,在本實施例中,取樣電路120利用第二延遲時脈訊號P13來對第一延遲時脈訊號P1進行取樣來偵測晶片的輸出時脈訊號SIG是否發生異常現象,其中當輸出時脈訊號SIG發生異常現象時,取樣電路120的輸出端ABN輸出一異常訊號。 FIG. 6 is a flow chart of an abnormal clock detection method 600 according to an embodiment of the present disclosure. The abnormal clock detection method 600 is used to detect whether the output clock signal of the chip is abnormal. First, in step 610, the first delayed clock signal and the second delayed clock signal are provided according to the output clock signal of the chip. Referring to FIG. 1 together, in the embodiment, the multi-phase generating circuit 110 built in the chip provides the first delayed clock signal P1 and the second delayed clock signal P13 to the sampling circuit according to the output clock signal SIG of the chip. 120. Then, in step 620, the first delayed clock signal is sampled by using the second delayed clock signal to determine whether an abnormality occurs in the output clock signal of the chip. Referring to FIG. 1 together, in the embodiment, the sampling circuit 120 uses the second delayed clock signal P13 to sample the first delayed clock signal P1 to detect whether an abnormality occurs in the output clock signal SIG of the chip. When an abnormality occurs in the output clock signal SIG, the output terminal ABN of the sampling circuit 120 outputs an abnormal signal.

綜合上述,本揭露提出一種異常時脈偵測方法及其電路,應用於晶片的積體電路中,用以偵測晶片的輸出時脈訊號是否發生異常現象,藉此讓使用者能更容易且準確 地將具有異常時脈的晶片篩選掉。 In summary, the present disclosure provides an abnormal clock detection method and a circuit thereof, which are applied to an integrated circuit of a chip to detect whether an abnormality occurs in the output clock signal of the chip, thereby making the user easier and The wafers with abnormal clocks are accurately screened out.

以上概述了數個實施例的特徵,因此熟習此技藝者可以更了解本揭露的態樣。熟習此技藝者應了解到,其可輕易地把本揭露當作基礎來設計或修改其他的製程與結構,藉此實現和在此所介紹的這些實施例相同的目標及/或達到相同的優點。熟習此技藝者也應可明白,這些等效的建構並未脫離本揭露的精神與範圍,並且他們可以在不脫離本揭露精神與範圍的前提下做各種的改變、替換與變動。 The features of several embodiments are summarized above, and those skilled in the art will be able to understand the aspects of the disclosure. Those skilled in the art will appreciate that the present disclosure can be readily utilized as a basis for designing or modifying other processes and structures, thereby achieving the same objectives and/or achieving the same advantages as the embodiments described herein. . It should be understood by those skilled in the art that the invention may be made without departing from the spirit and scope of the disclosure.

Claims (10)

一種異常時脈偵測方法,用於偵測一晶片的一輸出時脈訊號是否有異常,其中該異常時脈偵測方法包括:根據該輸出時脈訊號來提供一第一延遲時脈訊號與一第二延遲時脈訊號,其中該輸出時脈訊號、該第一延遲時脈訊號與該第二延遲時脈訊號的相位互不相同;以及利用該第二延遲時脈訊號來對該第一延遲時脈訊號進行取樣,以判斷該輸出時脈訊號是否發生異常。  An abnormal clock detection method for detecting whether an output clock signal of a chip is abnormal, wherein the abnormal clock detection method comprises: providing a first delayed clock signal according to the output clock signal a second delayed clock signal, wherein the output clock signal, the first delayed clock signal, and the second delayed clock signal have different phases; and the second delayed clock signal is used to The delayed clock signal is sampled to determine whether the output clock signal is abnormal.   如申請專利範圍第1項所述之異常時脈偵測方法,其中該晶片之一多相位產生電路用以根據該輸出時脈訊號來產生之N個延遲時脈訊號,其中該N個延遲時脈訊號與該輸出時脈訊號的相位互不相同,其中該N個延遲時脈訊號之其中二者係該第一延遲時脈訊號與該第二延遲時脈訊號,其中N為大於等於4的正整數。  The abnormal clock detection method of claim 1, wherein the polyphase generation circuit of the chip is configured to generate N delayed clock signals according to the output clock signal, wherein the N delay times The phase of the pulse signal is different from the phase of the output clock signal, wherein the two delayed clock signals are the first delayed clock signal and the second delayed clock signal, where N is greater than or equal to 4. A positive integer.   如申請專利範圍第2項所述之異常時脈偵測方法,其中該第一延遲時脈訊號的相位領先該第二延遲時脈訊號的相位,其中該第一延遲時脈訊號與該第二延遲時脈訊號的相位差係介於該輸出時脈訊號的2/N週期至(N-2)/N週期之間。  The abnormal clock detection method of claim 2, wherein the phase of the first delayed clock signal leads the phase of the second delayed clock signal, wherein the first delayed clock signal and the second The phase difference of the delayed clock signal is between 2/N cycles and (N-2)/N cycles of the output clock signal.   如申請專利範圍第1項所述之異常時脈偵 測方法,其中該異常時脈偵測方法係利用該第二延遲時脈訊號的下降邊緣對該第一延遲時脈訊號進行取樣以偵測該輸出時脈訊號是否頻率過慢,其中當該第二延遲時脈訊號的下降邊緣對該第一延遲時脈訊號進行取樣的結果為低電壓準位則代表該輸出時脈訊號頻率過慢。  The abnormal clock detection method of claim 1, wherein the abnormal clock detection method uses the falling edge of the second delayed clock signal to sample the first delayed clock signal to detect Whether the frequency of the output clock signal is too slow, wherein when the falling edge of the second delay clock signal samples the first delayed clock signal, the low voltage level indicates that the output clock signal frequency is too slow.   如申請專利範圍第1項所述之異常時脈偵測方法,其中該異常時脈偵測方法係利用該第二延遲時脈訊號的上升邊緣對該第一延遲時脈訊號進行取樣以偵測該輸出時脈訊號是否頻率過快,其中當該第二延遲時脈訊號的上升邊緣對該第一延遲時脈訊號進行取樣的結果為高電壓準位則代表該輸出時脈訊號頻率過快。  The abnormal clock detection method of claim 1, wherein the abnormal clock detection method uses the rising edge of the second delayed clock signal to sample the first delayed clock signal to detect Whether the frequency of the output clock signal is too fast, and the result of sampling the first delayed clock signal when the rising edge of the second delay clock signal is a high voltage level means that the output clock signal frequency is too fast.   一種異常時脈偵測電路,用以判斷一晶片之一輸出時脈訊號是否發生異常,其中該異常時脈偵測電路包含:一多相位產生電路,用以根據該輸出時脈訊號來提供一第一延遲時脈訊號與一第二延遲時脈訊號,其中該輸出時脈訊號、該第一延遲時脈訊號與該第二延遲時脈訊號的相位互不相同;以及一取樣電路,用以利用該第二延遲時脈訊號來對該第一延遲時脈訊號進行取樣,以判斷該輸出時脈訊號是否發生異常。  An abnormal clock detection circuit for determining whether an output clock signal of one of the wafers is abnormal. The abnormal clock detection circuit includes: a multi-phase generation circuit for providing a signal according to the output clock signal a first delayed clock signal and a second delayed clock signal, wherein the output clock signal, the first delayed clock signal and the second delayed clock signal have different phases; and a sampling circuit is used for The first delayed clock signal is sampled by the second delayed clock signal to determine whether the output clock signal is abnormal.   如申請專利範圍第6項所述之異常時脈偵測電路,其中該多相位產生電路用以根據該輸出時脈訊號來產生之N個延遲時脈訊號,其中該N個延遲時脈訊號與該輸出時脈訊號的相位互不相同,其中該N個延遲時脈訊號之其中二者係該第一延遲時脈訊號與該第二延遲時脈訊號,其中N為大於等於4的正整數。  The abnormal clock detection circuit of claim 6, wherein the multi-phase generation circuit is configured to generate N delayed clock signals according to the output clock signal, wherein the N delayed clock signals are The phases of the output clock signals are different from each other, wherein the two delayed clock signals are the first delayed clock signal and the second delayed clock signal, where N is a positive integer greater than or equal to 4.   如申請專利範圍第7項所述之異常時脈偵測電路,其中該第一延遲時脈訊號的相位領先該第二延遲時脈訊號的相位,其中該第一延遲時脈訊號與該第二延遲時脈訊號的相位差係介於該輸出時脈訊號的2/N週期至(N-2)/N週期之間。  The abnormal clock detection circuit of claim 7, wherein the phase of the first delayed clock signal leads the phase of the second delayed clock signal, wherein the first delayed clock signal and the second The phase difference of the delayed clock signal is between 2/N cycles and (N-2)/N cycles of the output clock signal.   如申請專利範圍第6項所述之異常時脈偵測電路,其中該取樣電路係利用該第二延遲時脈訊號的下降邊緣對該第一延遲時脈訊號進行取樣以偵測該輸出時脈訊號是否頻率過慢,其中當該第二延遲時脈訊號的下降邊緣對該第一延遲時脈訊號進行取樣的結果為低電壓準位則代表該輸出時脈訊號頻率過慢。  The abnormal clock detection circuit of claim 6, wherein the sampling circuit samples the first delayed clock signal by using a falling edge of the second delayed clock signal to detect the output clock. Whether the frequency of the signal is too slow, wherein when the falling edge of the second delayed clock signal samples the first delayed clock signal, the low voltage level indicates that the output clock signal frequency is too slow.   如申請專利範圍第6項所述之異常時脈偵測電路,其中該取樣電路係利用該第二延遲時脈訊號的上升邊緣對該第一延遲時脈訊號進行取樣以偵測該輸出時脈訊號是否頻率過快,其中當該第二延遲時脈訊號的上升 邊緣對該第一延遲時脈訊號進行取樣的結果為高電壓準位則代表該輸出時脈訊號頻率過快。  The abnormal clock detection circuit of claim 6, wherein the sampling circuit samples the first delayed clock signal by using a rising edge of the second delayed clock signal to detect the output clock. Whether the frequency of the signal is too fast, wherein when the rising edge of the second delayed clock signal samples the first delayed clock signal, the high voltage level indicates that the output clock signal frequency is too fast.  
TW106110369A 2017-03-28 2017-03-28 Method and circuit for detecting abnormal clock TWI637186B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106110369A TWI637186B (en) 2017-03-28 2017-03-28 Method and circuit for detecting abnormal clock

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106110369A TWI637186B (en) 2017-03-28 2017-03-28 Method and circuit for detecting abnormal clock

Publications (2)

Publication Number Publication Date
TWI637186B TWI637186B (en) 2018-10-01
TW201837489A true TW201837489A (en) 2018-10-16

Family

ID=64797216

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106110369A TWI637186B (en) 2017-03-28 2017-03-28 Method and circuit for detecting abnormal clock

Country Status (1)

Country Link
TW (1) TWI637186B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI678545B (en) * 2018-10-12 2019-12-01 致茂電子股份有限公司 Signal timing calibration method
US11244046B2 (en) * 2019-09-16 2022-02-08 Nuvoton Technology Corporation Data-sampling integrity check using gated clock
TWI819628B (en) * 2022-05-26 2023-10-21 瑞昱半導體股份有限公司 Speed detection circuit and associated chip

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6532561B1 (en) * 1999-09-25 2003-03-11 Advantest Corp. Event based semiconductor test system
US7088158B2 (en) * 2002-05-14 2006-08-08 Lsi Logic Corporation Digital multi-phase clock generator
US7599457B2 (en) * 2005-08-08 2009-10-06 Lattice Semiconductor Corporation Clock-and-data-recovery system having a multi-phase clock generator for one or more channel circuits
TWI592788B (en) * 2011-07-28 2017-07-21 奇景光電股份有限公司 Multi-phase clock generator
KR102163431B1 (en) * 2014-03-05 2020-10-08 에스케이하이닉스 주식회사 Semiconductor device and semiconductor system having the same

Also Published As

Publication number Publication date
TWI637186B (en) 2018-10-01

Similar Documents

Publication Publication Date Title
US9092013B2 (en) Time-to-digital converter
TWI548886B (en) Aging detection circuit and method thereof
KR100562655B1 (en) Driving limitation filter in semiconductor memory device and its method
TWI637186B (en) Method and circuit for detecting abnormal clock
US7328383B2 (en) Circuit and method for testing embedded phase-locked loop circuit
US7977965B1 (en) Soft error detection for latches
US8836366B2 (en) Method for testing integrated circuits with hysteresis
Kim et al. Low-cost gate-oxide early-life failure detection in robust systems
US11558040B2 (en) Low hold multi-bit flip-flop
US9188640B1 (en) Scan flip-flop circuit with LOS scan enable signal
US7945404B2 (en) Clock jitter measurement circuit and integrated circuit having the same
CN108732422B (en) Abnormal frequency detection method and circuit thereof
US10014849B2 (en) Clock detectors and methods of detecting clocks
US8058902B1 (en) Circuit for aligning input signals
Huang et al. PLL-assisted timing circuit for accurate TSV leakage binning
KR102505721B1 (en) Semiconductor Apparatus and Circuit for Measurement of Characteristic Therefor
TWI474152B (en) Estimation apparatus and method for estimating clock skew
US9335354B2 (en) Phase detector with metastable prevention stage
KR101474366B1 (en) Apparatus for monitoring the noise of power
US10911035B1 (en) Fixed-width pulse generator
Tianming et al. An enhanced time-to-digital conversion solution for pre-bond TSV dual faults testing
KR100834392B1 (en) Semiconductor device
Petre et al. On-chip tap-delay measurements for a digital delay-line used in high-speed inter-chip data communications
CN112583382A (en) Flip-flop
KR20030086144A (en) Test circuit for delay-locked loop