TW201836473A - 誘導植物藥害的方法、套組、除草劑水溶液組成物、容器及製備除草組成物的方法 - Google Patents

誘導植物藥害的方法、套組、除草劑水溶液組成物、容器及製備除草組成物的方法 Download PDF

Info

Publication number
TW201836473A
TW201836473A TW107107364A TW107107364A TW201836473A TW 201836473 A TW201836473 A TW 201836473A TW 107107364 A TW107107364 A TW 107107364A TW 107107364 A TW107107364 A TW 107107364A TW 201836473 A TW201836473 A TW 201836473A
Authority
TW
Taiwan
Prior art keywords
plant
nutrient
acid
compound
phytotoxicity
Prior art date
Application number
TW107107364A
Other languages
English (en)
Other versions
TWI788329B (zh
Inventor
大衛 A. 柯布
Original Assignee
美商貝維德雷佛利亞股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商貝維德雷佛利亞股份有限公司 filed Critical 美商貝維德雷佛利亞股份有限公司
Publication of TW201836473A publication Critical patent/TW201836473A/zh
Application granted granted Critical
Publication of TWI788329B publication Critical patent/TWI788329B/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N37/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids
    • A01N37/02Saturated carboxylic acids or thio analogues thereof; Derivatives thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/02Sulfur; Selenium; Tellurium; Compounds thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/06Aluminium; Calcium; Magnesium; Compounds thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/14Boron; Compounds thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/26Phosphorus; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05GMIXTURES OF FERTILISERS COVERED INDIVIDUALLY BY DIFFERENT SUBCLASSES OF CLASS C05; MIXTURES OF ONE OR MORE FERTILISERS WITH MATERIALS NOT HAVING A SPECIFIC FERTILISING ACTIVITY, e.g. PESTICIDES, SOIL-CONDITIONERS, WETTING AGENTS; FERTILISERS CHARACTERISED BY THEIR FORM
    • C05G3/00Mixtures of one or more fertilisers with additives not having a specially fertilising activity
    • C05G3/60Biocides or preservatives, e.g. disinfectants, pesticides or herbicides; Pest repellants or attractants

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Chemical & Material Sciences (AREA)
  • Dentistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Agronomy & Crop Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Fertilizers (AREA)

Abstract

一些實施例是關於除草劑組成物及藉由向植物的葉面部分施予水溶液組成物來誘導植物藥害的方法。此水溶液組成物包含至少一種滋養物及至少一種佐劑,且具有約4至約7的pH。在一些實施例中,水溶液組成物包括有機酸或無機酸。在一些實施例中,藥害是局部的。在一些實施例中,藥害是全身的。在不受理論限制的情況下,所述滋養物被植物過量吸收,由此殺除植物。

Description

發芽後除草劑
本申請案主張2017年3月9日提交的美國臨時申請案第62/469,087號及2017年12月21日提交的美國臨時申請案第62/609137號的權益,所述申請案中的每一者以全文引用的方式併入本文中。
一些實施例是關於一種出芽後非專一性除草劑,包括在水溶液中的滋養物及佐劑,且pH為約4至約7。在一些實施例中,所述出芽後非專一性除草劑是內吸性的。在一些實施例中,所述出芽後非專一性除草劑是觸殺性的,例如以乾化劑形式或以已移植生長的植物的特定生長物為目標。
除草劑包括預期控制或除滅雜草的一類農業化學品,雜草干擾經濟作物或觀賞作物的生長及發育或另外由於消防安全、美觀或其他原因需要去除的植被。對此類不合需要的植被的控制為農場與果園、公共通道、路側、道路與工業區中所需,為附帶控制園林、公園以及操場(諸如學校操場)中的雜草所需,以及為通常需要除草作用的其他應用所需。
除草劑可分類為具有阻止雜草種子出芽或殺除發芽苗木的「發芽前(pre-emergence)」作用或在非所需植物出芽後生長及發育時殺除植物的「發芽後(post-emergence)」作用。吸收至植物組織中且在植物中易位至一個深度或另一深度以達除草效果的發芽後除草劑可分類為「內吸性(systemic)」除草劑。內吸性除草劑可誘導植物的全身藥害,從而殺除或嚴重傷害整個植物,包含其根,以便阻止或顯著減少再生長。內吸性除草劑可分類為:「非選擇性的」,經調配以殺除多種多樣的目標植物物種;或「選擇性的」,經調配以僅殺滅特定目標雜草。一些發芽後除草劑也可分類為「觸殺性(topical)」除草劑,且可導致局部藥害,例如以落葉劑形式,或使植物的部分乾化或殺除植物的部分,或例如除去已移植生長的植物的嫩枝或生長物,如已移植生長的葡萄蔓藤長出的「根出條(sucker)」。
當前存在一種非內吸性發芽後「灼燒(burn-down)」除草劑,其由於對保護性表面組織的化學破壞而藉由嚴重乾化及「日光灼傷(sun burn)」而殺除植物。灼燒除草劑的商業和非有機認證實例包含:嘉磷塞(glyphosate)(例如,降低比率的「農達(Roundup),孟山都(Monsanto)」、百草枯(paraquat dichloride)(「克無蹤(Gramazone),先正達(Syngenta)」以及3,6-二氯-2-甲氧基苯甲酸(3,6-dichloro-2-methoxybenzoic acid)(「萬潰實(Vanquish),新農(Nufarm)」。在較高比率下,農達亦為有效的「內吸性」除草劑,其殺除植物的葉及根兩者且因此可阻止再生長。灼燒除草劑通常並不殺除地下組織,且可發生再生長。
由有機材料審查研究所(Organic Materials Review Institute,「OMRI」)認證為「有機」的各種除草劑的活性成分包含:家用醋乙酸5%至7%)、乙酸(例如,30%乙酸、冰醋酸)、「橘皮油(citrus oil)」、檸檬油、丁香油、肉桂油以及所述物質及類似物質的各種組合。OMRI認證的專用除草劑的活性成分可包含一種脂肪酸或脂肪酸的組合,脂肪酸的實例為羊脂酸(caprylic)及羊蠟酸(capric acid)(「殺派斯(Suppress)」,西橋農產品公司(Westbridge Agricultural Products))以及天竺葵酸(pelargonic acid)(「塞氏(Scythe)」,陶氏益農(Dow Agro Sciences))。壬酸銨鹽(Ammonium nonanoate salt)是OMRI灼燒除草劑「阿克斯(AXXE)」(生物安全公司,BioSafe Systems)的活性成分。據申請人所知,當前由OMRI認證的所有除草劑是「灼燒」除草劑,且在其作用方面表示為非內吸性的。根或地下分生組織(典型為草)不受影響、再生長且可能需要額外處理以進行控制。
一些實施例包含一種誘導植物藥害的方法。所述方法可包括向植物的葉面部分施予水溶液組成物,其中所述水溶液組成物包括至少一種滋養物化合物或基本上由至少一種滋養物化合物組成,所述至少一種滋養物化合物選自由下述所組成的族群中:鉀化合物、磷化合物、氮化合物、鎂化合物、硫化合物、鈣化合物以及微量滋養素,其中所述滋養物化合物包括滋養物。所述水溶液組成物可包括至少一種佐劑。水溶液組成物的pH可為約4至約7(霍華德等人,1998,門格爾, 2002,馬什納, 1995)。所述滋養物可由植物過量吸收,以便誘導所述植物的藥害。在一些實施例中,所述方法包括全身性施予水溶液。在一些實施例中,所述藥害包括殺除植物,且所述方法包括全身性施予水溶液,由此殺除植物。在一些實施例中,所述水溶液組成物具有全身性「灼燒」活性。在一些實施例中,所述藥害在植物的一部分,且所述方法包括局部施予水溶液,由此誘導植物的局部藥害。在一些實施例中,誘導植物的藥害包括全身性藥害及局部藥害。在一些實施例中,藥害包括植物的乾化(desiccation)。在一些實施例中,所述植物是單季晚熟且常青的作物。在一些實施例中,所述植物是由下述者所組成的族群中選出:棉花、馬鈴薯、大豆或用於產種的蔬菜。在一些實施例中,乾化發生在收穫接近所述植物的穀類作物之前。在一些實施例中,所述佐劑包括界面活性劑、保濕劑或兩者。在一些實施例中,由植物吸收的過量滋養物引起植物的末端生理學破壞及死亡。在一些實施例中,由植物吸收的過量滋養物引起植物的基質(stromata)的斷開,由此使植物乾化。在一些實施例中,水溶液組成物更包括有機酸或無機酸。在一些實施例中,組成物的pH為約4.5至約5.5。在一些實施例中,滋養物在水溶液組成物中的濃度為約1 M至約2 M。在一些實施例中,水溶液組成物包括有機酸,且所述有機酸是由下述者所組成的族群中選出:乙酸、檸檬酸、乳酸、甲酸、琥珀酸、酒石酸、蘋果酸以及草酸。如申請專利範圍第6至8項中任一項所述之方法,其中所述水溶液組成物包括無機酸,例如HCl。在一些實施例中,所述滋養物化合物是由下述者所組成的族群中選出:醋酸鉀、乳酸鉀、甲酸鉀、檸檬酸鉀以及酒石酸氫鉀,且其中所述滋養物包括鉀。在一些實施例中,所述滋養物化合物是由下述者所組成的族群中選出:鉀化合物、磷化合物、氮化合物、硫化合物、鈣化合物、微量滋養素(micronutrient)以及所列項中的兩者或多於兩者的組合。在一些實施例中,所述微量滋養素不包括Fe,例如螯合鐵(且因而,所述水溶液組成物不包括Fe及/或不包括螯合鐵)。在一些實施例中,所述滋養物化合物包括硫酸鎂,且其中所述滋養物包括鎂。在一些實施例中,所述滋養物化合物包括硫酸銨,且其中所述滋養物包括氮。在一些實施例中,滋養物化合物包括:包括K、P、N、Mg、S、Ca或微量滋養素的離子;及電性相反的離子,其中所述電性相反的離子在各種量的組成物中並非除草劑。在一些實施例中,所述滋養物化合物不包括嘉磷塞。在一些實施例中,組成物以水基噴霧形式塗覆。在一些實施例中,預先阻止滋養物的吸收達2天至4天。在一些實施例中,組成物具有低潮解點(point of deliquescence,POD),從而使組成物在植物的葉面部分上保持半液態2天至4天。在一些實施例中,所述植物是雙子葉植物。在一些實施例中,所述植物是單子葉植物。在一些實施例中,所述植物是雙子葉植物,且所述植物處於例如草的單子葉植物當中,且不殺除單子葉植物。在一些實施例中,所述滋養物化合物包括硫酸銨。在一些實施例中,所述滋養物包括在組成物中的濃度為至少2 M的氮。在一些實施例中,所述水溶液組成物更包括如本文中所描述的增溶劑。在一些實施例中,所述植物是由下述者所組成的族群中選出的至少一種:象大蒜(Allium ampeloprasum )、洋蔥(A. cepa )、韭菜(A. tuberosum )、金魚草(Antirrhinum majus )、甘藍(Brassica oleracea )、金盞花(Calendula officinalis )、萬鈴花屬(Calibrachoa sp.)、青葙屬(Celosia sp.)、馬里蒂馬氏瓜葉菊(Cineraria meritima )、依葵崔羅巴氏虎尾草(Chloris aequitrilobia )、秋英屬(Cosmos sp.)、鐃鈸花(Cymbalaria aequitriloba )、稗屬(Echinochloa sp. )、羊茅屬(Festuca sp.)、草莓(Fragaria xananassa )、香豬殃殃(Gallium odoratum )、勳章菊(Gazania rigens )、馬纓丹(Lantana camara )、濱菊(Leucanthemum paludosu )、六倍利(Lobelia erinus )、白晶菊(Paludosum )、香雪球(Lobularia maritima )、粉蝶花黑便士(Nemophila menziesii discoidalis )、菸草屬(Nicotiana sp. )、豌豆(Pisum sativum )、馬齒莧(Portulaca oleracia )、迷迭香(Rosmarina officinalis )、蛇目菊屬(Santivitalia sp.)、常春藤葉堇菜(Viola hederacea )、三色紫羅蘭(Viola xwittockiana )、多年生黑麥草(Lolium perenne )、鴨茅(Dactylis glomerata )、葦狀羊茅(Festuca arundinacea )、地下三葉草(Trifolium subterraneum )、花菱草(Eschscholzia californica )、寇林希草(Collinsia heterophyllia )、紫羅蘭(Matthiola incana )、粉蝶花斑(Nemophila maculate )以及劉易斯氏亞麻(Linum lewisii )。在一些實施例中,所述植物是由下述者所組成的族群中選出的至少一個:象大蒜、洋蔥、韭菜、金魚草、甘藍、金盞花、萬鈴花屬、青葙屬、馬里蒂馬氏瓜葉菊、秋英屬、羊茅屬、草莓、香豬殃殃、勳章菊、馬纓丹、濱菊、白晶菊、香雪球、粉蝶花黑便士、菸草屬、豌豆、蛇目菊屬、常春藤葉堇菜、三色紫羅蘭、多年生黑麥草、鴨茅、葦狀羊茅、地下三葉草、花菱草、寇林希草、粉蝶花斑以及劉易斯氏亞麻。在一些實施例中,所述方法更包括在第一次施予組成物的14天內進行第二次施予。在一些實施例中,組成物的塗覆率是20加侖每英畝至40加侖每英畝。在一些實施例中,所述組成物更包括灼燒除草劑。在一些實施例中,所述灼燒除草劑包括由下述者所組成的族群中選出的有機酸組成物:包括羊脂酸(辛酸)及羊蠟酸(癸酸)的組成物;包括天竺葵酸(壬酸)及C6 -C12 脂肪酸的組成物;以及包括壬酸銨(ammonium nonanoate)及天竺葵酸的銨鹽的組成物。在一些實施例中,所述組成物更包括第二除草劑,其中第二除草劑為非滋養物除草劑。在一些實施例中,第二除草劑包括選自表3.1的除草劑。在一些實施例中,所述滋養物包括微量滋養素,且植物處於公共通道中、路側或不存在作物或觀賞植被之處。在一些實施例中,所述滋養物包括常量滋養素(macronutrient),且其中植物處於存在作物或觀賞植被之處。在一些實施例中,所述滋養物化合物不包括螯合鐵。在一些實施例中,所述滋養物化合物不包括鐵。
一些實施例包含一種套組,所述套組包括:第一單元量的滋養物化合物,由下述者所組成的族群中選出:鉀化合物、磷化合物、氮化合物、鎂化合物、硫化合物、鈣化合物及微量滋養素,其中所述滋養物化合物包括滋養物。所述套組可包含第二單位量的有機酸、脂肪酸或無機酸。所述套組可包含佐劑。在套組中,若所述第一單位量在pH為約7的水中構成0.5至2.5的莫耳濃度,則所述第一單位量與所述第二單位量的比率被配置以達成4至7的pH。在一些實施例中,所述第一單位量包括鉀鹽,且其中所述鉀鹽是檸檬酸鉀且所述有機酸是冰醋酸,且其中檸檬酸鉀與冰醋酸的比率為約1莫耳:0.7莫耳至3.5莫耳乙酸。在一些實施例中,所述滋養物化合物是由下述者所組成的族群中選出:鉀化合物、磷化合物、氮化合物、硫化合物、鈣化合物、微量滋養素以及所列項中的兩者或多於兩者的組合。在一些實施例中,有機酸或無機酸是由下述者所組成的族群中選出:乙酸(例如,30%乙酸、冰醋酸)、檸檬酸、乳酸、甲酸、琥珀酸、酒石酸、蘋果酸以及草酸。在一些實施例中,所述第一單位量是鉀化合物的量,且其中所述鉀化合物是由下述者所組成的族群中選出:醋酸鉀、乳酸鉀、甲酸鉀、檸檬酸鉀以及酒石酸氫鉀。在一些實施例中,所述第一單位量是氮化合物的量,且其中所述氮化合物是硝酸銨。在一些實施例中,所述第一單位量是鎂化合物的量,且其中所述鎂化合物是硫酸鎂。在一些實施例中,所述滋養物化合物包括:包括K、P、N、Mg、S、Ca或微量滋養素的離子;及電性相反的離子,其中若第一單位量構成約0.5 M至2.0 M的滋養物濃度,則電性相反的離子並非除草劑。在一些實施例中,所述套組不包括嘉磷塞。在一些實施例中,所述套組更包括如本文中所描述的增溶劑。在一些實施例中,所述滋養物化合物不包括螯合鐵。在一些實施例中,所述滋養物化合物不包括鐵。
一些實施例包含一種除草劑水溶液組成物,其包括至少一種滋養物化合物或基本上由至少一種滋養物化合物組成,所述至少一種滋養物化合物由下述者所組成的族群中選出:鉀化合物、磷化合物、氮化合物、鎂化合物、硫化合物、鈣化合物及微量滋養素,其中所述滋養物化合物包括在除草劑水溶液組成物中的濃度為至少約0.5 M的滋養物。所述組成物可包括有機酸或無機酸。所述組成物可包含佐劑。所述組成物可具有約4至約7的pH。在一些實施例中,所述滋養物濃度為約0.5 M至2.5 M。在一些實施例中,有機酸或無機酸是由下述者所組成的族群中選出:乙酸(例如,30%乙酸、冰醋酸)、檸檬酸、乳酸、甲酸、蘋果酸、琥珀酸、酒石酸以及草酸。在一些實施例中,所述滋養物化合物是由下述者所組成的族群中選出:鉀化合物、磷化合物、氮化合物、硫化合物、鈣化合物、微量滋養素以及所列項中的兩者或多於兩者的組合。在一些實施例中,所述滋養物化合物為由下述者所組成的族群中選出的鉀鹽:醋酸鉀、乳酸鉀、甲酸鉀、檸檬酸鉀以及酒石酸氫鉀。在一些實施例中,所述滋養物化合物是氮化合物,且其中所述氮化合物是硝酸銨。在一些實施例中,所述滋養物是鎂,且其中所述鎂化合物是硫酸鎂。在一些實施例中,所述滋養物的濃度為約0.5 M至2.5 M。在一些實施例中,所述滋養物是檸檬酸鉀且有機酸或無機酸是冰醋酸,且其中檸檬酸鉀與冰醋酸的比率為約1莫耳:0.7莫耳至3.5莫耳乙酸。在一些實施例中,滋養物化合物包括:包括K、P、N、Mg、S、Ca或微量滋養素的離子;及電性相反的離子,其中所述電性相反的離子在各種量的組成物中並非除草劑。在一些實施例中,所述除草劑水溶液組成物不含有嘉磷塞。在一些實施例中,所述佐劑包括如本文中所描述的界面活性劑。在一些實施例中,所述佐劑包括如本文中所描述的保濕劑。一些實施例包含一種容器,含有0.5公升至10公升的本文中所描述的的除草劑水溶液組成物中的任一者。在一些實施例中,所述組成物更包括如本文中所描述的增溶劑。在一些實施例中,所述滋養物化合物不包括螯合鐵。在一些實施例中,所述滋養物化合物不包括鐵。
一些實施例包含一種製備除草組成物的方法,包括:使滋養物化合物(其中所述滋養物化合物包括滋養物)與水接觸以達到至少0.5 M的滋養物濃度以便形成滋養物水溶液。所述滋養物化合物可由下述者所組成的族群中選出:鉀化合物、磷化合物、氮化合物、鎂化合物、硫化合物、鈣化合物以及微量滋養素。所述方法可更包括使用有機酸或無機酸將滋養物水溶液的pH調節到約4至約7,因此製備所述組成物。在一些實施例中,所述滋養物濃度為約0.5 M至2.5 M。在一些實施例中,所述滋養物化合物包括:包括K、P、N、Mg、S、Ca或微量滋養素的離子;及電性相反的離子,其中所述電性相反的離子在各種量的組成物中並非除草劑。在一些實施例中,所述滋養物化合物不包括螯合鐵。在一些實施例中,所述滋養物化合物不包括鐵。
本文實施例包含待以水基噴霧形式「局部」塗覆的一種發芽後非選擇性除草劑。在一些實施例中,所述除草劑誘導全身性藥害。在一些實施例中,所述除草劑誘導局部藥害(例如,以乾化劑形式)。一些實施例的除草劑包括針對目標植物的藥害濃度的常量滋養素及/或微量滋養素,且可調配為適合於目標植物的pH及黏度,以全身性吸收在生理學上過量的常量滋養素及/或微量滋養素(包含根的吸收)。本文實施例顯著不同於現存發芽後、內吸性非選擇性除草劑,例如在調配、作用模式、不存在毒素土壤殘留、對目標植物的毒性以及極微非目標除草效應方面。在一些實施例中亦獨特的是使得在用於「有機」農業及製備用以增強或避免對作物及景觀園林的季節性施肥的干擾的單獨調配物方面有資格的調配適合性。據申請人所知,當前行業中不存在具有這些特徵的除草劑。
當前市場上可獲得的是一類專用的「灼燒」除草劑,其活性成分為有機酸或其鹽中的一種或其組合。其通常非選擇性地以禾草及闊葉雜草為目標。實例包含:殺派斯® :西橋農產品公司,EPA註冊號51517-9,其活性成分是羊脂酸(辛酸)(47%)及羊蠟酸(癸酸)(32%);塞氏® :陶氏益農,EPA註冊號62719-529,其活性成分是天竺葵酸(壬酸)(57.0%)及「其他脂肪酸[C6 -C12 ]」(3%);以及阿克斯® :生物安全公司,EPA註冊號70299-23,其活性成分是壬酸銨(40%)、天竺葵酸的銨鹽。如本文提及可結合一些實施例使用的這類調配物的溶液的實例如下:
醋酸鉀+天竺葵酸的水溶液。
硝酸鉀+天竺葵酸的水溶液。
壬酸銨+檸檬酸的水溶液。
硫酸銨+癸酸的水溶液等等。
當前市場上可獲得一類專用「灼燒」除草劑,其活性成分活性產物是螯合鐵。這些產品類似於經調配以治療植物的鐵缺乏的液體產品。鐵結合在螯合劑(例如,Fe HEDTA,羥基乙二胺三乙酸)中,使其可溶且容易供植物攝取,從而引起鐵氧化。與草坪草(單子葉植物)相比,闊葉雜草(雙子葉植物)更容易地吸收Fe HEDTA且量更高。闊葉雜草幾乎即刻受到影響,而草坪保持不被傷害。鐵氧化引起嚴重組織傷害。處理後,經處理植物乾枯及死亡。(Smith-Fiola及Gill,2014)鐵基除草劑主要用於草坪中的闊葉植物控制。然而,其亦可用於控制車道、人行道及道路上的個別闊葉雜草。Fe HEDTA被視為「灼燒」除草劑。對於這些鐵基灼燒除草劑,足以產生全身性除草作用的鐵在植物體內的易位並非預期且並非必要。
專用螯合鐵除草劑的實例包含那提亞® ,拜耳(Natria® ,Bayer),67702-26-72155,其活性成分是26.5%鐵HEDTA;法伊斯塔® ,美國蔭蓋奇農業公司(Fiesta® ,Engage Agro USA),EPA註冊號67702-26-87865,其活性成分是26.5%鐵HEDTA;以及愛農X!® 選擇性雜草殺手,高登阿萊夫(Iron X! Selective Weed Killer, Gardens Alive),EPA註冊號67702-26-56872,其活性成分是26.5%鐵HEDTA。
這些「灼燒」產品的活性劑經塗覆至植物表面,但並未有效地易位至油、莖、根及其他組織。因此,植物在土壤表面下方且經保護不受「灼燒」除草噴霧影響的部分通常在之後的幾週或幾個月內使植物再生。這樣可能需要重新塗覆局部「灼燒」除草劑以供繼續進行雜草控制。(阿伯熱恩(Abouziena)等人,2009,其以全文引用的方式併入本文中)
在不受理論限制的情況下,習知非內吸性發芽後「灼燒」除草劑的除草作用源自藉由有機(例如,甲酸)或無機酸或其鹽、藉由各種油或藉由引起後續嚴重乾化的其他試劑對植物的蠟質表皮及下表皮的破壞。用這類除草劑進行處理僅殺除接收噴霧的植物組織。活性物質一般不會由植物吸收到足以在直接接收所噴灑除草劑的組織部位以外產生除草作用的程度。因此,雜草的未處理的任何表面上及所有表面下部分可存活,通常再生長,且植物必須再次被處理。
此外,在不受理論限制的情況下,對於殺除整個植物的內吸性除草劑,必須跨若干表面組織層輸送且進入葉細胞質,其隨後可自葉細胞質經傳輸而遍及所述植物。第一層通常為葉、幹、花或果的表面處的蠟質皮層,其充當用於控制自植物內的水損耗且提供對疾病、紫外輻射及潛在損害表面組織下方的植物內部組織的其他應力的抗性的被動障壁。離子跨蠟質角皮層至細胞壁的運動是藉由擴散及電化學勢驅動的非代謝過程。(奧特修斯(Oosterhuis),2009;沃西克(Wojcik),2004,其各自以全文引用的方式併入本文中)。
在角皮下方,上表皮的「鋪板細胞(pavement cell)」形成對自植物外部的滲透的下一障壁,繼之以活細胞本身的細胞壁及質膜。離子跨表皮層的輸送藉由擴散驅動,且亦藉由經胞外連絲(角皮下方的表皮壁內的結構)促進的離子交換驅動。這些極性路徑允許選擇的滋養物離子持續通過表皮到達質膜。儘管這個膜是高分子量溶質的障壁,但其允許較小滋養物離子對抗濃度梯度而選擇性地輸送到細胞質中。(伯恩特(Berndt), 1987;克里斯特森(Christensen), 2005;塔伊茲(Taiz)等人, 2015;沃西克, 2004,其各自以全文引用的方式併入本文中)。進入細胞質後,入侵離子的去向由多種物理、化學及電化學因素決定。局部細胞間和細胞內運動或「輸送」採用擴散、利用包埋於細胞膜內的孔或特殊蛋白質的主動及被動運動或其他過程。長距離「易位」利用連接到小管中的細胞,小管將水及滋養物溶液自根運載至葉(就木質小管而言),並且自葉運載至根、花、組織生長點、果實及別處(就韌皮小管而言)。具有不同大小、電化學電荷、極性等的不同分子及離子在細胞內及細胞間以及植物體內以不同的速率移動。(馬什納(Marschner),1995,其以全文引用的方式併入本文中)。
將殺除整個植物且一般可用於所有植物(不限於特定物種)的發芽後內吸性除草劑可能相對於通常需要重複施予的習知、非內吸性、發芽後「灼燒」除草劑具有優勢。在一些實施例中,發芽後內吸性除草劑包括:有機酸或無機酸或其鹽,及產生足以殺除整個植物的全身性滋養物毒性的量的可吸收常量滋養素。預期根據本文的一些實施例的所述調配物可充當一般對植物具有活性的發芽後內吸性除草劑。 除草劑
在一些實施例中,描述一種發芽後非專一性除草劑。所述除草劑可包括至少一種滋養物,所述至少一種滋養物可包括「常量滋養素」或「微量滋養素」、由「常量滋養素」或「微量滋養素」組成或基本上由「常量滋養素」或「微量滋養素」組成。除草劑可包括作為非活性成分的至少一種滲透劑、至少一種佐劑(舉例來說,包括界面活性劑及/或保濕劑、由界面活性劑及/或保濕劑組成或基本上由界面活性劑及/或保濕劑組成)或用以改良除草劑的有效性的額外佐劑。在一些實施例中,除草劑包括調配物水溶液。在一些實施例中,除草劑是內吸性的。在一些實施例中,除草劑是觸殺性的(例如,作為落葉劑)。除草劑在本文中亦可被稱作「除草劑組成物」、「除草組成物」等等。應理解,根據本文中的除草劑、套組及方法,可提供滋養物(常量滋養素及/或微量滋養素)本身或作為化合物的部分提供滋養物。如本文所用,「滋養物化合物」是指包括單獨的一或多種滋養物或一或多種滋養物外加其他物質的化合物。當在本文中使用術語「滋養物」或特定滋養物時,應理解,預期所述滋養物作為滋養物化合物(就特定滋養物而言,包括特定滋養物的滋養物化合物)的部分呈現。
如本文所用,「常量滋養素」是指植物為了最佳生長、發育及繁殖正常需要的相對大量的滋養物。實例常量滋養素展示於 1A 中。根據本文中的實施例,「常量滋養素」可包括元素常量滋養素或其化合物。
如本文所用,「微量滋養素」是指植物為了最佳生長、發育及繁殖正常需要的相對較小量或微量的滋養物。實例微量滋養素展示於 1B 中、選自但限於所述目錄且由元素微量滋養素或其化合物組成。 表1A.植物中的實例常量滋養素。(哈弗林等人,2014) 表1B. 植物中的實例微量滋養素。(哈弗林等人,2014)
本文實施例的除草劑組成物、方法及套組中的常量滋養素及/或微量滋養素可作為元素常量滋養素及/或微量滋養素提供及/或在化合物中提供。適合於本文的一些實施例的除草劑及套組的合適常量滋養素化合物的實例包含展示於表2A至表2F中的化合物。適合於本文的一些實施例的除草劑及套組的合適微量滋養素化合物的實例包含展示於表2G至表2N中的化合物。在一些實施例中,常量滋養素包括下述者、由下述者組成或基本上由下述者組成:H、C、O、N、K、Ca、Mg、P、S或所列項的組合。在一些實施例中,常量滋養素包括下述者、由下述者組成或基本上由下述者組成:H、C、O、N、K或所列項的組合。在一些實施例中,常量滋養素包括下述者、由下述者組成或基本上由下述者組成:H、C、O、N、K、Ca、P、S或所列項的組合。在一些實施例中,常量滋養素包括下述者、由下述者組成或基本上由下述者組成:H、C、O、N、K、Ca、P、S或所列項的組合。在一些實施例中,常量滋養素包括下述者、由下述者組成或基本上由下述者組成:N、K、P、S或所列項的組合。在一些實施例中,微量滋養素包括下述者、由下述者組成或基本上由下述者組成:Cl、Fe、B、Mn、Zn、Cu、Mo或所列項的組合。在一些實施例中,微量滋養素包括下述者、由下述者組成或基本上由下述者組成:Cl、Fe、B或所列項的組合。在一些實施例中,微量滋養素包括下述者、由下述者組成或基本上由下述者組成:Cl、Fe、B、Mn、Cu、Mo或所列項的組合。在一些實施例中,微量滋養素包括下述者、由下述者組成或基本上由下述者組成:B、Mn、Zn、Cu、Mo或所列項的組合。在一些實施例中,微量滋養素不包括Fe,例如螯合鐵。因而,除草劑不包括鐵,或詳言之不包括螯合鐵。
在一些實施例中,常量滋養素是除草劑、方法或套組的活性除草試劑。這些除草組成物可包含非活性佐劑混合物,且具有約4至約7的pH、較佳地4.5至5.5的pH。除草劑可包括無機酸及/或有機酸,所述酸可將pH調節至如本文中所描述的合適值或範圍,但這些酸一般不被視為活性成分,除非所述酸以如本文中所描述適合於充當灼燒組分的濃度及量存在。亦即,佐劑亦不被視為活性成分。這些含常量滋養素的除草組成物適合於包含作物、觀賞植被、公共通道、路側等的所有除草用途。在一些實施例中,常量滋養素包括展示於 1A 中的常量滋養素或展示於 1A 中的常量滋養素中的兩者或多於兩者的組合。常量滋養素可呈元素常量滋養素及/或化合物(例如展示於 2A 2F 中的化合物)的形式。
在一些實施例中,微量滋養素是除草劑、方法或套組的活性除草試劑。這些除草劑可包含非活性佐劑混合物,且具有約4至約7的pH、較佳地4.5至5.5的pH。除草劑可包括無機酸及/或有機酸,所述酸可用於pH調節但不被視為活性成分,除非所述酸以如本文中所描述適合於充當灼燒組分的濃度及量存在。佐劑亦不被視為活性成分。在不受任何理論限制的情況下預期少量微量滋養素可不利地影響所需植物,例如在徑流中。因此,預期在一些實施例中,這些含微量滋養素的除草組成物適合於公共通道、路側及將不會使作物或觀賞植被暴露或使其最低限度地暴露於除草劑的其他佈置。在一些實施例中,微量滋養素包括展示於 1B 中的微量滋養素或展示於 1B 中的微量滋養素中的兩者或多於兩者的組合。微量滋養素可呈元素微量滋養素及/或化合物(例如展示於 2G 2N 中的化合物)的形式。在一些實施例中,微量滋養素包括展示於 2G 2N 中的並非Fe的化合物。
在一些實施例中,常量滋養素及微量滋養素兩者是除草劑、方法或套組的活性成分。這些除草劑可包含非活性佐劑混合物,且具有約4至約7的pH,較佳地4.5至5.5的pH。在一些實施例中,pH範圍為約4至約6.5,或約4至約6,或約4至約5.5,或約4至約5,或約4.5至約7,或約4.5至約6.5,或約4.5至約6,或約4.5至約5.5,或約4.5至約5,或約5至約7,或5至約6.5,或約5至約6,或約5至約5.5,或約6至約7。除草劑可包括無機酸及/或有機酸,所述酸可用於pH調整但不被視為活性成分。佐劑亦不被視為活性成分,而是非活性佐劑混合物。由於這類組成物包括微量滋養素活性成分,出於上述原因,在不受任何理論限制的情況下,預期這些含微量滋養素的除草組成物適合於公共通道、路側及將不會使作物或觀賞植被暴露或使其最低限度地暴露於除草劑的其他佈置。在一些實施例中,常量滋養素包括展示於 1A 中的常量滋養素,或展示於 1A 中的常量滋養素中的兩者或多於兩者的組合,且微量滋養素包括展示於 1B 中的微量滋養素,或展示於 1B 中的微量滋養素中的兩者或多於兩者的組合。常量滋養素可呈元素常量滋養素及/或化合物(例如展示於 2A 2F 中的化合物)的形式。微量滋養素可呈元素微量滋養素及/或化合物(例如展示於 2G 2N 中的化合物)的形式。在一些實施例中,微量滋養素包括展示於 2G 2N 中的並非Fe的化合物。
在一些實施例中,作為除草劑的非活性組分的酸包括有機酸或無機酸、由有機酸或無機酸組成或基本上由有機酸或無機酸組成。在一些實施例中,除草劑的酸包括無機酸、由無機酸組成或基本上由無機酸組成。在一些實施例中,除草劑的酸包括有機酸、由有機酸組成或基本上由有機酸組成。另外,在一些實施例中,其他pH調節劑可包含在除草劑中以用於將pH調節至所指示範圍的目的,例如酸(諸如HCl)及/或鹼(諸如NaOH)。這些pH調節劑不被視為活性成分。因而,預期在一些實施例中,酸或其他pH調節劑(例如,鹼)可存在於除草劑中且是除草劑的非活性成份。
在一些實施例中亦涵蓋包括成分的套組,所述套組用於(例如)藉由使套組的組分與適量水接觸而構成本文中所描述的除草劑。在一些實施例中,套組包括有機酸、至少一種滋養物(常量滋養素及/或微量滋養素)及佐劑。所述套組的這些物項可溶解及/或稀釋於水溶劑中,諸如水(例如,自來水、池水、井水等等)。套組的物項可以單位量計,使得所述單位量可容易溶解及/或稀釋於水溶劑中以得到具有本文中所描述的滋養物莫耳比及pH範圍的除草劑。在一些實施例中,所述滋養物是除草劑的主要活性成分。在一些實施例中,套組的常量滋養素包括展示於 1A 中的常量滋養素或展示於 1A 中的常量滋養素中的兩者或多於兩者的組合。在一些實施例中,套組的微量滋養素包括展示於 1B 中的微量滋養素或展示於 1B 中的微量滋養素中的兩者或多於兩者的組合。常量滋養素可呈元素常量滋養素及/或化合物(例如展示於 2A 2F 中的化合物)的形式。微量滋養素可呈元素微量滋養素及/或化合物(例如展示於 2G 2N 中的化合物)的形式。在一些實施例中,微量滋養素包括展示於 2G 2N 中的並非Fe的化合物。
在一些實施例中,除草劑包括所列滋養物中的兩者或多於兩者的組合,例如K化合物及P化合物、K化合物及N化合物、K化合物及Mg化合物、K化合物及S化合物、K化合物及微量滋養素、P化合物及N化合物、P化合物及Mg化合物、P化合物及S 化合物、P化合物及微量滋養素、S化合物及Mg化合物、S化合物及微量滋養素或Mg化合物及微量滋養素。預期合適K化合物、P化合物、N化合物、S化合物及Mg化合物可包括含有K、P、N、S及Mg中的任一者的任何農業上可接受的化合物。任何農業上可接受的水溶性化合物可以是一些實施例中的滋養物的合適來源。舉例而言,K離子、P離子、Mg離子、S離子及/或N離子的鹽可包括一些實施例中的所述滋養物的合適來源。此外,在一些實施例中,針對所指示的K離子、P離子、Mg離子、S離子及/或N離子,搭配陰離子(或陽離子)不包括習知農肥。因而,預期在一些實施例中,K化合物不包括陽離子,亦即習知農肥。應注意,雖然肥料可能含有一或多種滋養物,但術語「肥料(fertilizer)」不一定可與「滋養物」互換。舉例而言,商業肥料產品可含有特定常量滋養素或微量滋養素離子本身,且亦含有其他物質。因此,經溶解肥料的塗覆不一定教示過量滋養物的塗覆或吸收。此外,預期將經溶解肥料產品簡單地塗覆至植物可對土壤及水產生不期望的毒性效應。
除草劑的活性成分可為特定滋養物或滋養物的組合(例如,本文中所描述的滋養物的滋養物鹽類),其可以獲得適合於葉面吸收的酸度的濃度溶解於包括有機酸的水溶液中。所述酸度可以是pH為約4至7,較佳地4.5至7.0,更佳地4.5至5.5。舉例而言,在一些實施例中,除草劑包括調配物水溶液,其pH為約3.5、4、4.5、5、5.5、6、6.5或7,包含任何兩個所列值之間的範圍。在不受理論限制的情況下,所述適於吸收的pH亦將由滋養物鹽類的濃縮溶液典型的高鹼度(高pH)導致的對植物表面組織的化學破壞(「灼傷」)降至最低。這種情況延長了可供葉及其他表面組織吸收特定滋養物的時間段。在一些實施例中,除草劑經組態以具有適合於吸收滋養物的pH,且更包括灼燒組分,所述組分經組態以在滋養物已經吸收遍及植物(例如在根中)後引起植物組織的破壞。在一些實施例中,灼燒組分是單一除草劑組成物的部分。在一些實施例中,灼燒組分經組態用於在吸收滋養物之後塗覆。 潮解
通過角皮層對任何物質的吸收僅發生自水溶液,而乾燥滋養物保持未被吸收(沃西克, 2004,其以全文引用的方式併入本文中)。因此,在葉面物質由於植物上的蒸發而乾燥後,所噴灑的肥料或除草劑保持未被吸收直至其被風、雨或灌溉噴霧去除。然而,所有乾燥滋養物鹽類是「吸濕的(hygroscopic)」,因為其吸收大氣水。一些滋養物鹽類是吸濕的以便由於處於正常潮濕空氣中而簡單地實現半液態,此情況被稱作「潮解(deliquescence)」。(謝弗及里德,1986)。發生所述再液化的極小相對濕度被稱為物質的「潮解點」(point of deliquescence,POD)。根據一些實施例的調配物包括各自在低相對濕度下易潮解的滋養物鹽類。在不受理論限制的情況下,在一些實施例中,當經適當調配時,潮解亦可將可溶有機酸組分維持在液態下。在一些實施例中,除草劑包括易潮解調配物、基本上由易潮解調配物組成或由易潮解調配物組成。在一些實施例中,在將易潮解調配物塗覆在植物表面組織上(例如藉由噴霧)之後,調配物保持半液態達延長時段,通常超過幾天。儘管所述物質可在初始噴霧塗覆之後由於白天的熱量而乾燥,但當濕度達到潮解的適當相對濕度時,活性組分再液化且恢復至葉的吸收。通常,所述再溶解發生在傍晚、夜間及早晨,但若存在足夠潮濕的條件,則亦可發生在白天。在一些實施例中,佐劑混合物可包含「保濕劑」,一種用以保持事物或表面潮濕及因此延長通過植物表面吸收活性成分所需的半液態的物質。可能合適的保濕劑的實例包括(但不限於)甘油、糖、蜂蜜、糖醇及聚乙二醇。在一些實施例中,保濕劑包括碳水化合物、基本上由碳水化合物組成或由碳水化合物組成。
此外,由於蒸發,活性成分於所塗覆調配物中的莫耳濃度將逐漸增大。最終,滋養物鹽類及有機酸的濃度升高達到表面組織的化學「灼傷」將破壞角皮層的程度。這樣會以類似於習知「灼燒」除草劑所引起的方式殺除地上的吸收組織。因此,在一些實施例中,除草劑的吸收持續足夠長以在角皮層受損至其不能再吸收滋養物的程度之前允許毒性量的滋養物進入植物及在植物內易位,且達到足以進行滋養物破壞的等級。若過早殺除,則將不會獲得高濃度滋養物的期望系統性效應,且植物可以自地下的未受損組織再生。本文已發現,約72小時的持續時間提供有利於足以獲得期望除草結果的滋養物吸收的條件。藉由調配「潮解點」(POD),可根據一些實施例調整除草劑的吸收率。較佳地,在一些實施例中,使用具有適當低的POD的滋養物鹽類的特定調配物,因此允許所塗覆調配物在植物表面上保持半液態達延長時段,且亦在白天發生蒸發時導致再溶解。因此,藉由調配具有低POD的滋養物組成物,所述調配物在植物表面上保持1天至5天,較佳地2天至4天,且最佳地約72小時。在一些實施例中,除草劑經調配以被吸收約3天。在一些實施例中,除草劑經調配以被吸收約1天、2天、3天、4天或5天,包含任何兩個所列值之間的範圍,例如約1天至3天、1天至4天、1天至5天、2天至3天、2天至4天、2天至5天、3天至4天、3天至5天。 滋養物藥害
在不受理論限制的情況下,使用適當佐劑引起除草組成物對植物表面的徹底塗佈及進一步增強葉面吸收,這在所處理植物的表面組織上產生物理及化學條件,從而增加滋養物攝取以產生根據被稱為「滋養物藥害」的過程足以引起植物死亡的滋養物毒性等級。佐劑亦可包括氮源以進一步增強葉面攝取。這些氮源可包含但不一定受限於常見商業肥料尿素、尿素+硝酸銨(urea+ammonium nitrate,UAN)、多磷酸銨或硫酸銨。(夏甲及麥克格拉莫力(Hager and McGlamery), 1997,其以全文引用的方式併入本文中)簡言之,植物的滋養物藥害類似於可由動物攝取過量維生素而導致的動物中毒及死亡(例如人類的維生素A、維生素B或維生素D中毒)或甚至食物導致的動物中毒及死亡(由於食用1000個棉花糖)。在植物中,生理學上僅需要少量的活性礦物質可由於過量而變得有毒或致死(植物中的氯及硒)。 滋養物含量
當然,所有滋養物對於植物的最佳生長及發育皆是必需的,且一旦被吸收及在合適的生長條件下,所有滋養物將適當地分佈在植物體內。植物所需特定滋養物的量可相對較大(「常量滋養素」)或較小(「微量滋養素」)。此外,每一不同滋養物的量可由於組織及生長季節而不同。在不受理論限制的情況下,可想像,植物內的滋養物破壞可由任何常量滋養素或微量滋養素(單獨或組合)的過量吸收導致。根據本文實施例,涵蓋描述任何及所有植物滋養物的毒性注入的滋養物破壞的概念。
本文的一些實施例的除草劑使用葉面塗覆滋養物注入來產生正常維持生命的滋養物化學品(例如鉀、氮、磷、硫或鎂)的有毒內部濃度。在一些實施例中,除草劑包括常量滋養素。在一些實施例中,除草劑包括微量滋養素。在一些實施例中,除草劑包括常量滋養素及微量滋養素。在一些實施例中,除草劑包括下述者中的至少一種:鉀、氮、磷、硫、鎂或這些中的兩者或多於兩者的組合,例如,鉀及氮、鉀及磷、鉀及硫、鉀及鎂或甚至鉀及氮與磷、硫及鎂的組合。
在不受理論限制的情況下,預期如本文中所描述塗覆至葉面組織且由植物吸收時足夠高以破壞代謝的滋養物含量遠高於在本文的一些實施例中習知葉面肥料的滋養物含量。在一些實施例中,除草劑的滋養物含量比葉面肥料高一個數量級。舉例而言,習知葉面肥料的滋養物含量可為約2%,且一些實施例的除草劑的滋養物含量可為約20%。在一些實施例中,除草劑具有1 M至2.5 M的數量級的滋養物莫耳濃度。一些實施例的除草劑的滋養物(例如,K+ 、Mg2 + 、Ca2 + 、氮、磷、硫或這些中的兩者或多於兩者的組合)的濃度為約1.0 M至約2.5 M。在一些實施例中,除草劑中的滋養物濃度為約0.5 M、0.6 M、0.7 M、0.8 M、0.9 M、1.0 M、1.1 M、1.2 M、1.3 M、1.4 M、1.5 M、1.6 M、1.7 M、1.8 M、1.9 M、2.0 M、2.1 M、2.2 M、2.3 M、2.4 M或2.5 M,包含任何兩個所列值之間的範圍,例如0.5 M至2.5 M、0.8 M至2.2 M、0.9 M至2.1 M、1.0 M至1.8 M、1.0 M至2.0 M、1.2 M至1.8 M、1.2 M至2.0 M等。因此,在一些實施例中的除草劑含有比葉面肥料中所含有的滋養物多若干數量級的滋養物。舉例而言,在滋養物包括鉀的一些實施例中,除草劑含有比葉面鉀肥中所含有的K+ 多若干數量級的K+ 。然而,若習知葉面鉀肥打算用作除草劑且以這些實施例的高莫耳濃度塗覆,則所有經噴灑的地上植物組織將在數小時內被化學灼傷,從而阻止吸收足夠的K+ 以便充當內吸性除草劑。本發明能夠誘導吸收高含量的包含K+ 的某些滋養物且延遲植物組織的化學灼傷,這使本發明與商業葉面肥料調配物以及習知灼燒除草劑區別開來。
選擇常量滋養素鉀(K)進行初始實驗(參見例如本文實例 2 實例 7 )。鉀(K)具有適合作為根據本文實施例的除草劑的組分的多種特性。在不受理論限制的情況下,原因包含:
1、K被視為「常量滋養素」且為植物存活所需。K與大多數其他植物滋養物的差異在於其並非植物中的化合物的組分。(哈弗林(Havlin)等人, 2014,其以全文引用的方式併入本文中)其通常僅以溶液中的K+ 離子的形式被發現或結合至各種組織表面上的負電荷。因此,K+ 的效應可與植物細胞中的離子強度相關。在這期間,K實質上參與對於所有植物的生長、發育及繁殖至關重要的許多生理學過程。(塔伊茲等人,2015)
2、K+ 由於其陽離子狀態以及由於K+ 相對於其他滋養物離子及分子的較小直徑而在植物體內高度流動。(阿布爾諾(Abou El-Nour), 2002;博羅夫斯基及米卡雷克(Borowski and Michalek), 2009;布科瓦茨及維特維爾(Bukovac and Wittwer), 1957;克里斯特森, 2005;馬什納, 1995;門格爾, 2002;沃西克, 2004,其各者以全文引用的方式併入本文中)在由根吸收或就葉面塗覆而言由表面組織吸收之後,K+ 在整個植物體內以及個別細胞內快速移動(馬什納, 1986,其以全文引用的方式併入本文中)。
3、K+ 在水及經溶解滋養物至根的高效吸收及其自植物的根至地上部分的易位中起到重要作用。K+ 由於若干功能而對於光合作用至關重要,所述功能包含放射能至化學能的轉換、光合酶的產生及活性及葉綠體中產生ATP期間對電中性的維持。(塔伊茲等人,2015)
4、K+ 實質上參與超過40種植物酶的功能,所述酶包含參與能量利用、呼吸、氮代謝及澱粉合成的許多酶。在二氧化碳(CO2 )在光合作用期間轉化成糖之後,糖使用需要K+ 進行其合成的ATP來易位至根、果實、籽粒及塊莖。K+ 對於韌皮部及木質部兩者中的汁液及水的最佳流動亦至關重要。(哈弗林等人, 2014;馬什納, 1986;塔伊茲等人, 2015,其各自以全文引用的方式併入本文中)。
5、在葉表面,K+ 調節氣孔的開合以調整氧及二氧化碳與空氣的交換,且調節水自植物至空氣的輸送(「蒸散」)。(塔伊茲等人,2015)蒸散產生吸收及分佈活的植物所需的水及經溶解滋養物的力。然而,在不受理論限制的情況下,發現葉中的過量K誘導氣孔保護細胞的膨脹、延長的氣孔開放及由於不可控蒸散的過量水損耗。這又導致維持植物直立及有用的形體所需的內部膨壓的全身性損耗(枯萎)。嚴重枯萎導致對細胞的不可逆機械傷害、正常細胞功能的停止、植物的完全坍倒及死亡。(塔伊茲等人, 2015)已在本申請案中以實驗方式報告說明過量K在這種破壞性進程中的作用,且所述作用預期適用於本文的各種實施例的除草劑組成物、方法及套組。
在不受理論限制的情況下,已針對獲得保護單元中過量K+ 的拖延的方式的機制,但這種現象仍在研究中。舉例而言,這可由保護細胞質膜外部的過量K+ 離子達到干擾氣孔閉合與對葉的水損耗控制所需的自保護細胞的K+ 流出的程度導致。(塔伊茲,同上。)
在不受理論限制的情況下,K+ 在植物體內的高移動性以及需要滋養物以供植物代謝的大量化學、酶及電化學功能使得鉀很好地適用於根據一些實施例的滋養物藥害。膨壓損失是有意誘發的K毒性的直接結果。然而,在正常生長條件下,通常不會產生直接K毒性。確切而言,對植物生長及發育的不利影響是由過量K造成的陽離子失衡引起的根滋養物攝取抑制的結果。這可導致多種滋養物缺乏,最常見的是氮以及鎂、錳及鈣的缺乏。(麥考利(McCauley)等人, 2017;尼科爾森(Nicholson), 2017,其各自以全文引用的方式併入本文中)這就是說,據申請人所知,幾乎沒有研究或公佈日期涉及有意誘導除草作用的K或其他滋養物的過高濃度。在本申請案中報告的實驗提供支持由於高組織K導致植物毒性及死亡的證據。在一些實施例中,超過對於植物生長及發育最佳的量的某一量的K+ 的充分吸收可殺除整個植物。
K亦具有不與其在植物中的生理學作用直接相關且使其在本文的一些實施例中的使用更加可取的多種有益特徵。
1、可獲得的許多K源具有低毒性且美國食品藥物管理局「普遍認為對人類安全」(普遍認為安全,GRAS)。適合於本文的一些實施例的活性成分被認為在按建議調配及塗覆時對環境的傷害最低。因此,預期根據本文的實施例的多種除草劑調配物將取得有機材料審查研究所(Organic Materials Review Institute,OMRI)註冊及在有機生長操作中使用的資格。
2、預期K+ 在土壤以及地表水與地下水中的效應是良性的。K通常結合在上部幾公分的土壤中的土壤黏粒中,且相較於其他滋養物在土壤中的遷移更有限,因此到達地下水及地表水的可能性較小。(哈弗林等人, 2014;卡爾圖若(Kurtural)等人, 無日期;門格爾, 1985,其各自以全文引用的方式併入本文中)。曼森及沃納(Munson and Werner)(1963)表明對於西部及中西部的粉砂壤土或更細質土壤,K的瀝取「實際上將為零」。
3、在水生及海洋系統中,K一般已經以水生生物必需的足夠量存在,且因此通常並非「限制性滋養物」,所述限制性滋養物的添加可觸發僅藉由關鍵滋養物的缺乏來抑制的富營養化(水生生物的過度生長及繁殖)。(埃爾瑟(Elser)等人, 2007;匿名, 2016,其各自以全文引用的方式併入本文中)。在有效濃度及/或量的一些實施例的除草劑由於事故或由於未結合在表面土壤中的K的徑流而到達地表水的情況下,與其他常量滋養素相比,K較不可能促成富營養化。
4、與習知除草劑相比,根據一些實施例的包括滋養物的除草劑較不可能對非目標植物有害。在一些實施例中,有效性取決於毒性濃度的根據本文實施例的除草劑滋養物至目標雜草的塗覆。低於這個濃度,如可能為漂移滋養物再沈積的濃度,所述物質作為除草劑無效,且因此不大可能嚴重傷害非目標植物。
5、儘管活性成分是以除草濃度塗覆至目標雜草的植物滋養物,但每英畝塗覆的滋養物量占維持施肥或補救施肥程序中正常塗覆的滋養物的較小百分比,且不大可能干擾施肥方案的目標。然而,在需要時,除草劑的滋養物比重可經調配以補充作物對於生長及發育的特定階段的施肥需求的小部分。
有效的K基滋養物破壞性除草劑在理論上可由許多鉀鹽及有機酸調配物製備,且這些包含在本專利申請案下。由於這些活性組分之間的差異,包含溶解度、吸濕性、潮解鹽中K的百分比及莫耳質量,某些調配物將更適合於用作葉面除草劑。可能較適合用作滋養物破壞性K除草劑且按甲酸鉀鹽、乳酸鉀鹽及醋酸鉀鹽計的多個調配物的實例包含在本申請案中以作為許多可能合適的滋養物化合物的實例。參見下文反應方程式。
除草劑在一些實施例中以水溶液形式製備,以噴霧形式局部塗覆,酸度通常為最初用於測試及說明本文中涵蓋的除草劑的有效性的pH 4與pH 7之間以供葉面吸收K調配物。特定除草滋養物調配物的所選酸度是在本申請案中根據一些實施例的除草劑的另一顯著特徵,原因在於合適的酸度減少且延遲由過高鹼度(高pH)或過高酸度(低pH)導致的植物組織的化學灼傷。這些中等等級的酸度及鹼度亦增大除草劑對於其使用者的安全性,典型地具有包含蘋果、香蕉、花椰菜、黃瓜、櫻桃、無花果及四季豆的許多新鮮水果及蔬菜的汁液酸度。(USDA, 2007)。 反應方程式
醋酸鉀+乙酸(I)
醋酸鉀+檸檬酸(II)
乳酸鉀+乙酸(III)
乳酸鉀+檸檬酸(IV)
甲酸鉀+乙酸(V)
甲酸鉀+檸檬酸(VI)
醋酸鉀+琥珀酸(VII)
檸檬酸鉀+乳酸(VIII)
檸檬酸鉀+檸檬酸(IX)
醋酸鉀+草酸(X)
KOH +酒石酸氫鉀(XI)
KOH +琥珀酸(XII)
硫酸銨(XIII)
硫酸錳(XIV)
在一些實施例中合適的其他K+ 化合物包含但不一定限於 2A 中所列的那些化合物,包含 2A 中的化合物中的任何兩者或多於兩者的組合。此時尚未以實驗方式充分研究或測試所述K+ 化合物對於根據一些實施例的除草劑的適合性,包含溶解度、分子量、潮解、搬運期間的安全性、儲存期間的穩定性及其他物理及化學特徵。因此,在一些實施例中,除草劑包括 2A 的鉀化合物且因此包括作為唯一滋養物的鉀。在一些實施例中,除草劑包括 2A 的兩種或多於兩種鉀化合物的組合(哈弗林等人,2014)。
預期農業上可接受的額外水溶性K化合物亦為根據本文的一些實施例的合適k化合物。表2A。另外,預期含有N、P、S、Mg及/或微量滋養素或微量元素的農業上可接受的水溶性化合物亦為根據一些實施例的除草劑的可接受滋養物源。 2B 2N 。在一些實施例中,除草劑、方法或套組包括選自 2A 2N 中的任一者或所列表中的兩者或多於兩者(例如所有 2A 2N )的滋養物。在一些實施例中,在如本文中所描述的除草劑、方法或套組中, 2A 2N 的一或多種化合物溶解於水溶液中。在不受理論限制的情況下,應注意,一些經標註化合物的溶解度受水溶液的pH影響,使得所述化合物在酸性pH下比在約7的pH下可具有更大溶解度。在一些實施例中,除草劑、方法或套組中的水溶液包括增溶劑或載劑,例如雙性分子(amphiphilic molecule)(例如,清潔劑)以促進將 2A 2N 的一或多種化合物含於水溶液中。 表2A:可能適合於一些實施例的除草劑的鉀(K)化合物的實例。 表2B:可能適合於除草組成物的常量滋養素磷(P)化合物的實例。 表2C:可能適合於除草劑組成物的常量滋養素氮(N)化合物的實例。 表2D:可能適合於除草劑組成物的常量滋養素鎂(Mg)化合物的實例。 表2E:可能適合於除草劑組成物的常量滋養素鈣(Ca)化合物的實例。 表2F:可能適合於除草劑組成物的常量滋養素硫(S)化合物的實例。 表2G:可能適合於除草劑組成物的微量滋養素鐵(Fe)化合物的實例。 表2H:可能適合於除草劑組成物的微量滋養素鋅(Zn)化合物的實例。 表2I:可能適合於除草劑組成物的微量滋養素銅(Cu)化合物的實例。 表2J:可能適合於除草劑組成物的微量滋養素錳(Mn)化合物的實例。 表2K:可能適合於除草劑組成物的微量滋養素硼(B)化合物的實例。 表2L:可能適合於除草劑組成物的微量滋養素氯(Cl)化合物的實例。 表2M:可能適合於除草劑組成物的微量滋養素鉬(Mo)化合物的實例。 表2N:可能適合於除草劑組成物的其他微量滋養素的實例。 酸度及酸
預期約4至約7的pH可修改以吸收除草劑而不會在吸收除草劑之前以其他方式殺除植物的急性「灼燒」效應。在一些實施例中,使用合適量的一或多種有機酸及/或無機酸獲得某一pH。舉例而言,預期為了將「灼燒」效應降至最低或延遲,多種弱有機酸及/或無機酸中的任一者應以足以獲得除草劑溶液中的最佳酸度的量存在。
在一些實施例中,使用酸將所述酸度維持在期望範圍內,所述酸例如無機酸或有機H+ 供體,諸如但不一定限於甲酸、乙酸、蘋果酸、酒石酸、乳酸或檸檬酸。在一些實施例中,適合於除草劑的有機酸中,檸檬酸由於下述者而成為較佳選擇:其作為高溶解度的乾燥結晶固體的可獲得性;在噴灑在暴露土壤上時以及自腐爛植物組織釋放至環境後的預期良性環境效應;低成本;以及其以「有機」形式或作為檸檬果汁的主要組分的可獲得性。乙酸出於類似原因而成為另一合適的有機酸。
根據一些實施例用於調節酸度的目的的可能適合於除草劑且包含在除草劑中的有機酸為 3 中所列的那些有機酸,但不一定受限於那些有機酸。此時尚未以實驗方式充分研究所有可能合適的有機酸的適合性,包含溶解度、分子量、潮解、搬運期間的安全性、儲存期間的穩定性及其他物理及化學特徵。根據一些實施例,除草劑包括 3 的有機酸,或 3 的兩種或多於兩種有機酸的組合。 表3.可能適合於調節一些實施例的除草劑的酸度的有機酸
應注意,可調整酸(有機及/或無機)在除草劑中的含量以得到期望範圍中的pH。應瞭解,可基於酸的解離常數、酸的量及促成酸度的其他離子(例如)使用亨德森-哈塞爾巴爾赫方程式(Henderson-Hasselbalch equation)估計包括酸的水溶液的pH: pH = pKa + log10 (([A- ]/[HA])) (XV) 其中HA及A- 是有機酸的各別解離酸及共軛鹼,且pKa 是酸的解離常數。 佐劑
一些實施例中的除草劑組成物以水溶液形式製備。在不受理論限制的情況下,水基溶液難以滲透大多數植物上的蠟質表層。為了促進通過蠟質層的攝取,已研發出分類為「佐劑」的產品。在一些實施例中用於除草劑及套組的合適佐劑的實例包含界面活性劑、黏展劑、作物油、消泡化合物、緩衝劑以及相容劑及保濕劑,包含所列項中的兩者或多於兩者的組合(參見恰爾諾塔及托馬斯(Czarnota and Thomas), 2013;佐林格(Zollinger), 2014,其各自以全文引用的方式併入本文中)。在一些實施例中,除草劑(或套組)包含量足以增強塗佈、滲透植物表面、植物中准許吸收的除草劑對濕氣的保持性及/或本文中所描述的除草劑的總體使用的一或多種佐劑。量足以增強除草劑的葉面攝取的尿素或其他氮源亦可包含在調配物中。(參見例如沃西克, 2004)。在一些實施例中,量足以使除草劑的液態或半液態保持期望的持續時間的保濕劑亦包含在除草劑組成物中。在不受理論限制的情況下,預期保濕劑減緩根據本文的一些實施例的葉面除草劑的乾燥,使得活性成分保持液態更長時間,因此准許活性成分由植物吸收更長時間段。適合於本文的一些實施例的除草劑組成物、方法及套組的保濕劑的實例包含(但不限於):糖,諸如葡萄糖、果糖、蜂蜜(果糖及葡萄糖的組合)、蔗糖(食糖);以及甘油、甘油醇、六偏磷酸鈉、各種其他市售產品以及所列項中的任兩者或多於兩者的組合。應注意,除在一些實施例中充當滋養物外,硼亦可增強諸如鉀的其他滋養物的攝取。因此,在一些實施例中,除草劑組成物亦包含量足以增強K+ 的攝取的硼,所述K+ 亦可包含在除草劑組成物中。(霍華德(等人, 1998,其以全文引用的方式併入本文中)。因而,在一些實施例中,除草劑組成物、套組或方法包括作為非活性成份、或作為活性成分的硼以及某一活性成分(舉例而言,若K+ 亦存在)。
用於一些實施例的除草劑、套組及方法的合適佐劑的實例包含(但不限於):作物油濃縮物,乳化劑,滲透劑(例如,乳化的甲基化種子油(methylated seed oil,MSO)或LI700滲透劑(拉夫蘭公司)),及界面活性劑(例如,壬基苯酚乙氧基化物;苄基椰油烷基二甲基四級銨鹽(benzylcocoalkyldimethyl quaternary ammonium salt);石油烴、烷基酯、有機酸及/或無機酸及陰離子界面活性劑的摻混物;C9-C11烷基多糖苷;磷酸鹽化的醇乙氧基化物;天然一級醇(C12-C16)乙氧基化物;二-二級丁基苯酚EO-PO嵌段共聚物;聚矽氧烷-甲基化學蓋;壬基苯酚乙氧基化物;十三醇乙氧基化物;動物脂胺乙氧基化物PEG400、二油酸酯99;蔬菜或種子油及其酯;清潔劑,例如十二烷基硫酸鈉),以及可增強吸收的尿素硝酸銨。在一些實施例中,所述佐劑更包括如本文中所描述的保濕劑。在一些實施例中,例如糖的保濕劑以下述濃度存在於組成物中:至少約0.1 M,例如至少約0.1 M、0.5 M、1 M、1.5 M、2 M、2.5 M、3 M、3.5 M、4 M、4.5 M或5 M,包含任何兩個所列值之間的範圍,例如約0.1 M至5 M、0.1 M至4 M、0.1 M至3 M、0.1 M至2 M、0.5 M至5 M、0.5 M至4 M、0.5 M至3 M、0.5 M至2 M、1 M至5 M、1 M至4 M、1 M至3 M、1 M至2 M、1.5 M至5 M、1.5 M至4 M、1.5 至3M或1.5 M至2 M。在一些實施例中,佐劑包括下述者、由下述者組成或基本上由下述者組成:尿素及聚矽氧界面活性劑(例如,維特仕聚矽氧界面活性劑,拉夫蘭公司)。在一些實施例中,佐劑包括下述者、由下述者組成或基本上由下述者組成:尿素及滲透劑(例如,LI700滲透劑,拉夫蘭公司)。在一些實施例中,佐劑包括下述者、由下述者組成或基本上由下述者組成:菜籽油及清潔劑(例如,寶潔Ô液體清潔劑)。在一些實施例中,佐劑包括下述者、由下述者組成或基本上由下述者組成:聚矽氧界面活性劑(例如,維特仕® 聚矽氧界面活性劑,拉夫蘭公司)及甲基化種子油(MSO)。在一些實施例中,佐劑包括下述者、由下述者組成或基本上由下述者組成:聚矽氧界面活性劑(例如,科尼迪克® 聚矽氧界面活性劑)、尿素及蔗糖。在一些實施例中,佐劑包括下述者、由下述者組成或基本上由下述者組成:菜籽油及清潔劑(例如,寶潔Ô液體清潔劑)。在一些實施例中,佐劑更包括保濕劑,例如如本文中所描述糖保濕劑。
預期在製備一些實施例中的除草劑的調配物時,在打算使用時或之前不久合併一或多種佐劑與乾燥組分及水溶劑。在提交本專利申請案時,批准用於農業用途的許多合適的佐劑可以液體形式獲得,包含先前段落中所包含的合適佐劑。當前存在乾燥形式的聚矽氧界面活性劑(羅伯特等人199),但在北美尚未批准用於農業用途。在批准用於農業用途之後,希望可獲得乾燥形式以作為供併入本文的一些實施例的調配物的選項。 除草劑產品
根據本文的一些實施例的除草劑可為多種合適「除草劑產品」的部分或可容易地由多種合適「除草劑產品」製備。因此,一些實施例包含一種除草劑產品。這種除草劑產品可獲得的且經調節比例以供消費者使用及/或商業用途,且其包含(但不限於):
乾燥產品。一些實施例包含適合於在使用時或即將使用時溶解於適當體積的水(自來水、池水、井水等等)中的乾燥經封裝產品。此外,這種乾燥經封裝產品可包括:至少一種滋養物(例如,常量滋養素,例如K、N、S、Mg或P;及/或微量滋養素,諸如硼、鋅、鉬或鐵)、有機酸或無機酸及一種佐劑或佐劑的組合,且可藉由添加水構成。
乾燥經封裝物料。一些實施例包含乾燥封裝,其包括用於溶解於適當體積的水(自來水、池水、井水等等)中的滋養物及有機酸,且在使用的地方及使用時添加合適的佐劑。在一些實施例中佐劑包括界面活性劑。
在一些實施例中,如本文中所描述的乾燥產品或乾燥封裝物料提供於套組中,所述套組包括某一莫耳比的單位量的滋養物、有機酸或無機酸及佐劑,以使得將滋養物、酸及佐劑溶解或稀釋於規定體積的水中將得到具有本文中所描述的滋養物莫耳濃度及pH值的除草劑組成物。在一些實施例中,pH為約4至約7。
液體調配物。一些實施例包含液體調配物,例如「即用」或「接近即用」調配物。液體調配物可經封裝。在一些實施例中,以濃縮形式提供液體調配物,以供稀釋於適當體積的水(自來水、池水、井水等等)中,且在使用的地方及使用時添加合適的液體佐劑。因而,液體調配物可含有佐劑。在一些實施例中,以供立即使用的濃度以除草劑的完整液體調配物形式提供所述液體調配物。這種除草劑可包括滋養物及有機酸或無機酸以及一種指定佐劑或指定佐劑的組合。
應注意,過量習知肥料的意外或故意葉面塗覆可起到灼燒除草劑的作用。然而,這可能會有土壤污染、作物傷害及/或有害量的肥料進入地表水與地下水的風險。處於這些原因,習知肥料作為除草劑的使用在美國可能不被行業準則或政府法規所准許。在一些實施例中,除草劑不同於習知肥料,且相對於習知肥料的灼燒除草劑效應提供額外優勢。在一些實施例中,除草劑提供足以殺除雜草的滋養物含量,但直接到達土壤的所噴灑滋養物的量及自經分解死亡雜草釋放至土壤的滋養物的量占在經由植物根部進行正常季節性土壤施肥期間塗覆至作物的所述滋養物的量的小部分(估計1%至2%)。因此,根據本文實施例的組成物不大可能干擾施肥方案。然而,若選擇季節上適當的滋養物作為除草劑配方的活性組分,則這些組成物可向所述程序提供少量肥料。在一些實施例中,除草劑經調配包括適合於在作物發育及成熟的特定階段控制作物當中生長的雜草的滋養物組合,使得除草滋養物亦適合於處於生長發育或成熟的所述階段的作物。舉例而言,對於許多作物,鉀基除草劑調配物在生長季節早期可能較佳,氮基調配物在所述季節的晚期較佳。(約翰遜(Johnson), 2016)對於在發育早期需要Zn肥的作物,可根據本文的一些實施例塗覆Zn基除草調配物。
一些實施例的額外有利特徵在於由基於所述滋養物的除草劑的漂移而導致對非目標植物的意外傷害的機會降低。除草效應來源於塗覆至目標雜草的高滋養物濃度的噴霧調配物。除草劑噴霧至並非直接目標的作物的漂移將在除草劑的無效稀釋濃度下發生,所述濃度更類似於葉面肥料且不大可能對經濟作物或所需景觀植物產生有害效應。
迄今為止的實驗已證明各種實施例的各種配方的強勁除草效應,其中在溫室與野外的多個物種的單子葉植物及雙子葉植物中觀察到徹底殺除及無再生長(參見實例1至實例8)。
K基肥料產品常用於農業及園藝中以供作為葉面施肥噴霧塗覆至經濟作物、景觀植物及園林。然而,這些產品必須經專門調配以避免對目標物種的組織傷害,且因此所塗覆及因此可用於吸收與延遲灼燒的K+ 的量遠低於根據本文的一些實施例的除草調配物的濃度(克里斯特森, 2005)。舉例而言,KNO3 或K2 SO4 的葉面塗覆(通常推薦為6磅至10磅產品於100加侖水中(哈弗林等人, 2014))產生0.07 M與0.12 M之間的K葉面肥料溶液(就KNO3 而言)及0.03 M與0.05 M之間的K葉面肥料溶液(就K2 SO4 而言)。KCl或K2 S2 O3 的葉面塗覆(取決於作物通常為2磅至4磅產品於100加侖水中(哈弗林,同前文所引))產生0.03 M與0.6 M之間的葉面肥料溶液(就KCl而言)及0.01 M與0.02 M之間的葉面肥料溶液(就K2 S2 O3 而言)。
相比之下,預期在一些實施例中,除草劑適合於具有在由葉面組織吸收後有效地破壞代謝過程的莫耳濃度的下限處或接近所述下限的滋養物莫耳濃度。
在一些實施例中,除草劑較佳地具有約1.5莫耳濃度至約2.5莫耳濃度的滋養物莫耳濃度及約pH 4.0與約pH 7.0之間的酸度(其可在需要時使用合適的有機酸或無機酸獲得)。一些實施例中的包括活性成分鉀的除草劑經調配具有範圍為約1.5至約2.0(例如,約1.5、1.6、1.7、1.8、1.9及2.0包含任何兩個所列值之間的範圍)的溶液莫耳濃度,使用有機酸或無機酸滴定至大約pH 5.5的酸度。低於大約1.0 M,則處理不能引起K+ 的充分吸收。高於大約2.0 M,則處理會過快地傷害角皮以妨礙最佳K+ 攝取。除草劑可更包括合適量的佐劑,所述佐劑包括液體滲透劑、矽基界面活性劑或另一界面活性劑或其他組分。在不受理論限制的情況下,預期建議將界面活性劑用於除草劑有益地散佈在植物表面上。除草劑可更包括尿素或另一氮基肥料。在不受理論限制的情況下,預期尿素或氮基肥料可增強K+ 的吸收。除草劑可更包括合適量的保濕劑,所述保濕劑包括諸如糖的碳水化合物。在不受理論限制的情況下,預期保濕劑可擴展諸如葉的植物表面吸收除草劑的活性成分的時間量。根據一些實施例的包括活性成分鉀的除草劑的實例描述於本文實例 1實例 7 中。
儘管滋養物K及N用作用於測試目的的例示性滋養物(參見實例 1 實例 9 ),但測試了基於除K或N外的滋養物的額外調配物,且根據本文的一些實施例的方法及套組涵蓋類似結果。
在一些實施例中,本文中所描述的除草劑組成物中的任一者更包括第二除草劑,其中第二除草劑為非滋養物除草劑。在不受理論限制的情況下,預期如本文中所描述的包括滋養物、由滋養物組成或基本上由滋養物組成的除草劑可結合其他類別的除草劑使用以實現目標植物的高效殺除。在一些實施例的除草劑組成物、套組及方法中,第二(非滋養物)除草劑包括下述者、由下述者組成或本上由下述者組成:展示於 3 . 1 中的除草劑,或 3 . 1 中的除草劑中的兩者或多於兩者的組合。 表3.1 殺除植物的方法
一些實施例是關於在發芽後植物中誘導藥害效應的方法(例如,殺除、使落葉及/或乾化植物或其部分)。簡言之,水溶液組成物(例如本文中所描述的除草劑)可適用於植物的葉面部分。這種水溶液組成物包含滋養物。所述滋養物可為:常量滋養素,諸如K化合物、P化合物、N化合物、Mg化合物、Ca化合物、S化合物;或微量滋養素,諸如Zn化合物、B化合物、Mo化合物、Fe化合物。亦可使用滋養物的組合。組成物亦可包含至少一種有機酸或無機酸及一或多種指定佐劑。所述組合允許植物吸收對植物有毒的量的滋養物。植物接著嚴重受損且展現藥害。在一些實施例中,所述植物死亡。在一些實施例中,藥害效應是全身性的。在一些實施例中,殺除是局部性的,從而例如以已移植生長的植物(諸如葡萄蔓藤或樹)的非所需生長物或嫩枝(例如,「根出條」)為目標。在一些實施例中,除草劑用作乾化劑,且植物由除草劑乾化。舉例而言,除草劑可用作用於生產蔬菜種子的作物(諸如棉花、馬鈴薯或大豆)或用於這些中的兩者或多於兩者的乾化劑。在一些實施例中,作物是有機的。在一些實施例中,除草劑用作用於例如某些歐洲國家的單季晚熟且長青的作物及美國南部大豆生產中的乾化劑。在一些實施例中,除草劑在穀類收穫之前用於目標雜草。在不受理論限制的情況下,除草劑可引起雜草的乾化,且有助於收穫穀類,例如使得較少葉面物質損傷聯合收割機或與收穫的作物摻混在一起。根據本文中的一些實施例的除草劑藉由添加規定量的指定滋養物鹽類與規定量的指定酸至規定體積的水而以水溶液形式製備。在將這些物質溶解於水中後,添加規定量的一或多種指定佐劑以完成混合。接著以足以充分塗佈目標植物(諸如雜草)的經暴露表面的量將混合物噴灑在目標雜草的表面組織上。在不受理論限制的情況下,預期用一些實施例的液體除草劑組成物充分塗佈目標植物可有助於如本文中所描述的滋養物的過量吸收,因此得到高效殺除。若雜草殺除對於園藝目的不充分,則可在約十四天內進行重複塗覆。
除草劑在特定部位的塗覆率將藉由所述部位的測試塗覆來判定。然而,根據一些實施例的經估計塗覆率是每英畝覆蓋度20加侖至40加侖的所製備溶液,較佳地每英畝覆蓋度約30加侖的所製備溶液。待溶解於20加侖至40加侖中的溶質的量將取決於塗覆器的目標及用途而變化。
舉例而言,當作為保護經濟作物或景觀植被的除草劑塗覆時,除草劑中的所選滋養物及活性與非活性組分的量可經調配以適應或補充受保護植被的季節性肥料方案,且同時獲得期望等級的雜草控制。
當僅針對寬泛除草控制而塗覆時,例如根據一些實施例在高速公路中央或公共通道中,可選擇不同的滋養物及除草劑中活性與非活性組分的量以獲得最經濟的除草作用。
已觀察到,根據本文的一些實施例的一些除草劑可經施予至單子葉植物(例如,草)及雙子葉植物,以便殺除雙子葉植物但不殺除單子葉植物(參見實例 8 )。因此,在一些實施例中,所述方法包括將除草劑施予至處於單子葉植物(例如,草坪或草皮)當中的雙子葉植物植物(例如,雜草),以便殺除雙子葉植物但不殺除單子葉植物。在一些實施例中,除草劑包括滋養物,所述滋養物包括氮。在一些實施例中,所述滋養物以包括硫酸銨的滋養物化合物的形式提供。在一些實施例中,除草劑中的硫酸銨濃度為約2 M。
預期,對於一些應用,一旦除草劑已由目標植物內吸性吸收,可能需要執行「灼燒」以快速根除目標植物的葉面組織。已內吸性吸收(於根及類似物中)的除草劑將阻止目標植物在灼燒之後重新長出。因此,在一些實施例中,在本文中所描述的發芽後、內吸性、非選擇性除草劑之後應用灼燒。在一些實施例中,提供一種套組,所述,包括本文中所描述的內吸性、非選擇性除草劑及灼燒產品。可在隨後塗覆至目標植物或提供於套組中的實例灼燒產品包含(但不限於):醋酸鉀+天竺葵酸的水溶液;硝酸鉀+天竺葵酸的水溶液;壬酸銨+檸檬酸的水溶液;及/或硫酸銨+癸酸的水溶液。用於一些實施例的合適商業灼燒產品的實例包含(但不限於):殺派斯® :西橋農產品公司,EPA註冊號51517-9,其活性成分是羊脂酸(辛酸)(47%)及羊蠟酸(癸酸)(32%);塞氏® :陶氏益農,EPA註冊號62719-529,其活性成分是天竺葵酸(壬酸)(57.0%)及「其他脂肪酸[C6 -C12 ]」(3%);以及阿克斯® :生物安全公司,EPA註冊號70299-23,其活性成分是壬酸銨(40%)、天竺葵酸的銨鹽。因此,在一些實施例中,灼燒產品包括下述者中的一或多者:羊脂酸(辛酸)及羊蠟酸(癸酸);包括天竺葵酸(壬酸)及C6-C12脂肪酸的組成物;以及包括壬酸銨及天竺葵酸的銨鹽的組成物。在一些實施例中,灼燒產品包括一或多種組成物,所述組成物包括:羊脂酸(辛酸)(47%)及羊蠟酸(癸酸)(32%);天竺葵酸(壬酸)(57.0%)及「其他脂肪酸[C6-C12]」(3%);或壬酸銨(40%)及天竺葵酸的銨鹽。 實例 實例 1 試驗 6 試驗 7 試驗 14 至試驗 17 試驗 21 試驗 22 試驗 30 試驗 31 - A 試驗 31 - B 試驗 32 - A 試驗 32 - B 試驗 41 - A 試驗 41 - B 試驗 44 試驗 47 試驗 50 試驗 54 試驗 56 及試驗 64 的實驗設計及總結
目前及過去檢驗滋養物的攝取及其生理學功能的科學及農業研究一直集中於適合於健康植物的生長及發育的滋養物的含量。儘管存在關於過量滋養物含量的有害效應的文獻,但所發佈的文章未揭露對植物滋養物(尤其作為除草劑)的葉面塗覆的處理。為了支援本申請案,已執行溫室實驗來測試除草調配物作為灼燒調配物及基於滋養物「藥害」假設的調配物的有效性。這些溫室實驗包含「托架試驗(bracket trial)」,其中測試調配物經製備具有假設範圍為上限過量濃度與下限低效濃度之間的濃度及成分組合。溫室試驗亦用於判定滋養物鹽類、酸化劑及用於最大化活性成分的吸收的佐劑成分的各種組合的相對有效性。溫室試驗包含幼嫩觀賞性單子葉植物與雙子葉植物、野外雜草中相同分類科或屬的觀賞性植物及自種子生長的純野外雜草。接著在野外對野外雜草的天然混合物測試根據溫室試驗有前景的調配物,以在實際情境中驗證有效性。
用於實驗調配物的K源包含各種商業肥料及一般不用於農業實踐的K源兩者。產生於這些測試的資料表明,當以適合的量及濃度塗覆時,在合適的酸度下,使用合適的佐劑,根據本文的一些實施例的除草劑在溫室及野外實驗中有效殺除目標植物。
下表4A至下表4C展示所測試的植物的各種物種且引用其使用的測試編號。 表4A:具有用於資料表及使用每一物種的試驗的參考編號的溫室試驗植物。 表4B:用於溫室試驗的「牧草」種子摻混物。
這些結果包含對各種草及闊葉植物的廣泛除草效應。「牧草」種子摻混物的組成物經提供於 4B 中,其為加利福尼亞生長的三種常見牧草、一種地下三葉草及四種常見加州野花的混合物。如上 4B 所述,在出芽後小於6週內模擬幼嫩雜草測試牧草摻混物#1。在出芽後6週以後模擬幼嫩雜草測試牧草摻混物#2。
進行至今的大部分溫室試驗具有一種基本設計:
1、將不同物種的開花植物及草的樣品暴露於根據一些實施例的除草劑的不同調配物,所述調配物以某一濃度範圍製備、結合可能合適的佐劑且以水噴霧形式塗覆。實驗植物是自當地苗圃購買、由觀賞植物及雜草種子包生長或自特別針對上述專題製備且列於 4B 中的定製摻混物的種子生長。典型測試中的實驗變數是所檢驗的滋養物鹽類的莫耳質量濃度。包含pH、氮源及界面活性劑或滲透劑的量及組成物的其他因素是試驗內的常數,除了這些因素中的一者自身是實驗中所關注的變數時。除非與特定測試不相關,否則實驗經控制。
2、採用減小實驗性誤差的標準技術,包含:使用對照;標準噴霧塗覆壓力;標準化生長條件、生長培養基、容器及灌溉水源;以及根據所需標準實驗室協定的用於實驗室分析的樣品製備及運送。
3、始終在近傍晚(溫室測試)或早晨(野外測試)使用實驗性調配物噴灑植物,觀察若干週,且由同一檢驗員在9分系統上基於毒性的可見效應對植物的可見衰弱狀態評分。( 5 。) 表5:毒性計分 *在隨後關於雜草的溫室試驗中,將9分評分轉換為10分評分以更符合行業慣例。「無可見效應」分數從「1.0-1.5」變為「0-1.5」
亦使用半值分數:0、0.5、1.0、1.5、2.0、2.5等。
4、根據塗覆後大約14天或更長時間觀察到的4.0至5.0的平均及累積分數的組合來判定調配物的估計成功除草有效性:「所有葉及花(若存在)乾枯、變褐、枯萎且葉柄或葉身倒伏;不可見綠色組織;不可見自根的再生長」。
在塗覆除草劑之後大約一週內的短期及兩週或多於兩週的長期,觀察到的效應均是自推測經殺除的經處理植物的根無可見恢復,如同除草劑的葉面塗覆一樣。
6A 6B 描述根據本文的一些實施例的葉面除草劑的測試參數及測試結果。下 6A 6B 彙總產生合適的除草效應的測試的實驗參數及結果,包含測試編號、活性滋養物、調配物代碼、滋養物的莫耳濃度、毒性評分及用於每一測試中的植物物種的參考編號。所測試的活性滋養物是鉀(K)或氮(N)。活性成分的莫耳濃度的範圍對於鉀為1.0 M至2.0 M、對於氮為2.0 M、對於鋅為1.0 M至2.0 M。實驗pH的範圍為4.02至7.75。應注意,加連字符的測試識別符(例如,31-A、31-B)在本文中亦可不加連字符(例如,31A、31B)來標識。為了易於回顧, 6A 6B 7 中的橫向形式合併至單個表格中。展示於表6A中的對圖式及/或實例編號的引用不為詳盡的,且僅提供用於快速參考。
6A 6B 中呈現的資料解釋如下:「試驗編號,樣品編號」是指專題實驗叢書(Project Lab Books)第1卷及第2卷中的實驗描述及結果。「註解」是闡明所指示試驗的任何註釋。「活性滋養物」是指為試驗焦點的主要滋養物,例如鉀、氮或鋅。「溶液調配物」為描述用於測試中的除草溶液的上文配方(I)-(XIV)中所列的化學反應方程式的關鍵。使用以莫耳/公升水計的活性滋養物的已知濃度的溶液進行所有試驗。 6B :必要時,添加無機酸或有機酸(「添加的酸/L」)將試驗溶液的酸度調節至期望pH(溶液pH)。將除草溶液塗覆至用於測試的植物之後的天數與除草效應分數(表5)指示如下:「5/4.5」指示在塗覆測試溶液之後5天,塗覆噴霧的植物產生平均可見效應分數4.5(對於植物有「猛烈至致死」的組織傷害)。14/5.0的註釋指示對於特定測試,在第14天達到平均效應分數5(「整個植物死亡」)。
1)使用試驗32A 樣本1(S-1)作為實例,所述實驗中所測試的滋養物是以用檸檬酸酸化的醋酸鉀溶液形式呈現的鉀(K)。2)醋酸鉀以用於第一實驗的2.0莫耳(196 g/L)的濃度存在,用100 g檸檬酸酸化至pH 5.01。如表中所指示,1.5 M及1.0 M亦用於試驗32A中。3)試驗32A的結果(「分數」;參考 5 )展示如下:「3/3.7」意謂在噴霧塗覆溶液32-A 3天後,觀察到的平均毒性分數3.7;「5/4.3」意謂在第5天觀察到的平均分數4.3;「9/4.2」意謂在第9天觀察到平均分數4.2,及「15/4.5」意謂在第15天觀察到平均分數4.5。如所述,試驗32A在第15天結束。4)用於試驗32-A的植物為18(香雪球)、17(白晶菊)、6(「紅寶石」卷心菜)、2洋蔥(「紅魚雷」)及22(牧草摻混物#2)。(參考 4A至 4 C鑑別植物測試物種)。 表6A:試驗結果總結(第I部分) 表6B:試驗結果總結(第II部分)
試驗32A的觀察到的效應是:短期:在塗覆除草劑之後的若干天地上組織的完全灼燒,及長期:自推測經殺除的經處理植物的根幾乎無恢復,如同除草劑的葉面塗覆一樣。 實例2:試驗的毒性分數的總結
7 僅彙總產生4.0至5.0的極佳藥害效應的那些測試。 7 中不呈現使用未產生期望效應的調配物的試驗,亦不呈現使用對於產生除草效應過低的莫耳濃度的特定試驗的結果。將如下使用 7 中用於試驗14的資料流舉例解釋 7 中的資訊。:
舉例而言,試驗編號14(額外細節參見實例 )檢驗包括醋酸鉀(莫耳濃度2.0(「T14,S1」)、1.5(「T14,S2」)、1.0(「T14,S3」);pH為大約5.3,藉由冰醋酸調節)及專用佐劑混合物的除草劑的效應。展示試驗14中的所測試三種植物(21、22、10,對應於牧草摻混物1及牧草摻混物2以及馬里蒂馬氏瓜葉菊(「銀灰」銀葉菊)的平均毒性分數(參考 4A 4B )(亦參見實例 4 、表 9 以及圖 2 )。S-1對應於所測試的活性滋養物的最高濃度,S-3對應於所測試滋養物的最低濃度,以及S-2表示中間等級。行「塗覆後的天數/平均分數」呈現塗覆除草劑溶液S-1、S-2、S-3以及兩個對照之後的7天、11天、15天以及22天的毒性。 表7:測試完成時的分數的結果及總結 實例3:試驗13的結果:檸檬酸鉀+呈檸檬汁形式的檸檬酸
在試驗13中,除草劑包括檸檬酸鉀及檸檬汁。詳言之,除草劑使用檸檬酸鉀(莫耳濃度1.5、1.0、0.5;pH為大約5.9,藉由凍乾檸檬汁調節)及專用佐劑混合物調配。參考實驗叢書第1卷,第109頁。測試植物(參考 4A 4B ):P1、P7、P10。試驗13的結果展示於 1 8 中。 表8:關於溶液及莫耳濃度的試驗13結果 * 加粗斜體毒性值指示 猛烈至致命”的毒性等級。
試驗 13 的結果 參考圖 1 :1.5 M的溶液在第11天產生4.3(「猛烈至致死」)的極佳藥害控制,且1.0 M的溶液在第11天產生4.0(「猛烈」)的藥害控制。對照在第11天測試結束時未顯示可見效應。 實例4:試驗14的結果:醋酸鉀+冰醋酸
試驗14中,除草劑包括醋酸鉀(莫耳濃度2.0、1.5、1.0;pH大約5.3,藉由冰醋酸調節)及專用佐劑混合物。參考實驗叢書第1卷,第113頁。測試植物(參考 4A 4B ):P1、P2、P10。
9 2 展示 試驗14中所測試的三種植物(21、22[對應於牧草摻混物1及牧草摻混物2]及10馬里蒂馬氏瓜葉菊(「銀灰」銀葉菊)的平均毒性分數。S-1對應於所測試的活性滋養物的最高濃度,S-3對應於所測試滋養物的最低濃度,以及S-2表示中間等級。 表9:試驗14:塗覆後平均毒性分數(1至5)
試驗 14 的結果 :如 2 9 中所示,在2.0 M的溶液濃度下於第1天及第11天產生4.0至4.7(「猛烈至致死」)的極佳藥害效應;在1.5 M的濃度下於第1天及第11天產生4至4.8的極佳藥害效應;以及在1.0 M的濃度下於第7天及第11天產生4.3至4.0的藥害效應。Controls sprayed with water and adjuvant mix only showed no effects. 實例5:試驗31A及試驗31B的結果:醋酸鉀+檸檬酸
試驗31A中,除草劑包括醋酸鉀(莫耳濃度2.0、1.5、1.0;pH大約5.0,藉由檸檬酸調節)及專用佐劑混合物A。參考實驗叢書第1卷,第195頁。測試植物(參考 4A 4B ):P2、P1、P5、P16、P23。
試驗31B中,除草劑包括醋酸鉀(莫耳濃度2.0、1.5、1.0;pH大約5.0,藉由檸檬酸調節)及專用佐劑混合物B。參考實驗叢書第1卷,第195頁。測試植物(參考 4A 4B ):P2、P1、P5、P16、P23。
10A 4A 展示試驗31A的結果。 10B 4B 展示試驗31B的結果,包含使用鉀作為滋養物測試的5種植物的平均毒性等級。如自表格可見,在第4天,2.0 M的所測試最高濃度的毒性等級是猛烈至致死。在第8天,所有植物在所有所測試的濃度(1.0 M至2.0 M)下達到猛烈至致死毒性等級。這些結果以圖形方式示於圖2中。在2.0 M的溶液濃度下於第6天至第20天產生4.2至4.6(「猛烈至致死」)的極佳毒性等級;在1.5 M的溶液濃度下於第6天至第20天產生4.1至4.9的極佳毒性等級;以及在1.0 M的溶液濃度下產生4.0至4.1的極佳毒性等級。所測試的植物是牧草摻混物2( 4A至表4 B)、象大蒜(「美國香蒲」韭蔥)、甘藍(「恐龍」羽衣甘藍)、馬纓丹(白色馬纓丹)及青豆(荷蘭豆)。 表10A:試驗31A:塗覆後平均毒性等級(1至5) 表10B:試驗31B:塗覆後平均毒性等級(1至5)
試驗 31A 的結果 在2.0 M的溶液濃度下於第4天至第20天產生4.0至4.6(「猛烈至致死」)的極佳藥害控制;在1.5 M的濃度下於第8天至第20天產生4.1至4.4的極佳藥害控制;以及在1.0 M的溶液濃度下於第20天產生4.4的極佳藥害控制。在第2天後取出對照以供實驗室分析,但那時未顯示可見效應。
試驗 31B 的結果 :在2.0 M的溶液濃度下於第6天至第20天產生4.2至4.6(「猛烈至致死」)的極佳藥害控制;在1.5 M的溶液濃度下於第6天至第20天產生4.1至4.9的極佳藥害控制;以及在1.0 M的溶液濃度下產生4.0至4.1的極佳藥害控制。在第2天後取出對照以供實驗室分析,但那時未顯示可見效應。 實例6:試驗22:醋酸鉀+琥珀酸
試驗22中,除草劑包括醋酸鉀(莫耳濃度範圍1.0至2.0;pH大約5.0,使用琥珀酸調節)及專用佐劑混合物。
11 展示試驗22中所測試的三種植物(22、15、13、19,對應於牧草摻混物2、勳章菊(「貝達」)、草莓(「永香」草莓」)及粉蝶花黑便士(藍色粉蝶花)的平均毒性分數。S-1對應於所測試的活性滋養物的最高濃度,S-3對應於所測試滋養物的最低濃度,以及S-2表示中間等級。資料在下文以圖形方式呈現於 3 中。 表11:試驗22:塗覆後平均毒性等級(1至5) **加粗斜體毒性值指示「猛烈至致死」的毒性等級。
試驗 22 的結果 :在2.0 M的溶液濃度下於第5天及第7天產生4.3及4.4(「猛烈至致死」的極佳藥害控制,及在1.5 M的溶液濃度下於第5天及第7天產生4.1的極佳藥害控制。1.0 M溶液在第3天至第7天獲得強勁藥害結果。僅使用水及佐劑混合物噴灑的對照未顯示效應。 實例7:試驗25:醋酸鉀+冰醋酸
試驗25中,除草劑包括醋酸鉀(莫耳濃度1.5;酸度使用冰醋酸調節至大約pH 4.3、pH 5.0、pH 6.0及pH 7.0)及專用佐劑混合物。測試植物(參考 4A 4B ):P-1、P14、P12、P19。
6 及下 12 中所示,試驗25的結果指示pH 4.3及pH 5.0下的溶液於第5天測試結束時具有極佳藥害效應(「猛烈至致死」)。 表12:試驗25結果 **加粗斜體毒性值指示「猛烈至致死」的毒性等級。
試驗 25 的結果 使用pH 4.3及pH 5.0的溶液在第5天測試結束時產生最佳藥害效應(「猛烈至致死」)。 實例8:試驗41:硫酸銨
試驗41中,除草劑包括硫酸銨([(NH4 )3 SO4 ];莫耳濃度2.0;未調節的pH大約5.5)及專用佐劑混合物A(S-1)及混合物B(S-2)。參考實驗室叢書第2卷,第27頁。測試植物(參考 4A 4B ):P2、P2、P3、P10。
對於植物3及植物10,在2.0 M的溶液「B」濃度下於第23天測試結束時產生極佳毒性等級(「猛烈至致死」)。植物P-2及植物2反應相當小。僅使用水及佐劑混合物噴灑的對照未顯示效應。在 5 13 中展示結果。 表13:試驗41:S-2B的平均毒性及H2 O控制(單子葉植物「M」及雙子葉植物「D」的結果)
13 中,M是指單子葉植物及「D」是指雙子葉植物。
*加粗斜體毒性值指示「猛烈至致死」的毒性等級。
試驗 41 的結果 :對於2.0莫耳濃度下的闊葉(雙子葉)物種的樣本S-1,在第3天至第23天試驗結束時產生4.0至5.0(「猛烈至致死」)的極佳藥害效應。對於在2.0莫耳濃度下的草及百合科(單子葉「M」)物種的樣本S-2,噴霧的初始中等效應降低至2.3(「輕微」)。僅使用水及佐劑混合物噴灑的對照未顯示效應。包含在牧草2樣本中的雙子葉植物(「D」)S-1及S-2在第7天全部死亡,但資料未包含在此圖表中。 實例9:包括氮化合物的除草劑
包括活性組分硫酸銨[(NH4 )2 SO4 ]以及非活性組分檸檬酸[C6 H8 O7 ]及界面活性劑的水溶液藉由將硫酸銨及檸檬酸溶解在水中及添加界面活性劑來製備,且接著經噴灑至土壤中生長的雜草上。水溶液對雜草植物具有除草效應。 實例10:包括氮化合物的除草劑
包括活性組分硝酸銨[NH4 NO3 ]以及非活性組分檸檬酸[C6 H8 O7 ]及界面活性劑的水溶液藉由將活性及非活性組分溶解在水中及添加界面活性劑來製備,且接著經噴灑至土壤中生長的雜草上。水溶液對雜草植物具有除草效應。 實例11:包括鎂化合物的除草劑
包括活性組分硝酸鎂[Mg(NO3 )2 ]以及活性組分檸檬酸[C6 H8 O7 ]及界面活性劑的水溶液藉由將活性及非活性組分溶解在水中及添加界面活性劑來製備,且接著經噴灑至土壤中生長的雜草上。水溶液對雜草植物具有除草效應。 實例12:包括鈣化合物的除草劑
包括活性組分硝酸鈣[Ca(NO3 )2 ]以及非活性組分檸檬酸[C6 H8 O7 ]及界面活性劑的水溶液藉由將活性及非活性組分溶解在水中及添加界面活性劑來製備,且接著經噴灑至土壤中生長的雜草上。水溶液對植物具有除草效應。 實例13:包括微量滋養素的除草劑
製備除草水溶液組成物且如實例1中所描述將其塗覆至植物,但微量滋養素鹽一水硫酸鋅ZnSO4 -H2 O經鉀鹽取代。如 7 中所描述執行毒性計分。在3天至30天的時段之後,觀察到植物死亡。 實例14:試驗47:醋酸鉀
試驗47中,除草劑包括醋酸鉀(莫耳濃度的範圍為1.0至2.5;pH 5.03至5.05,使用冰醋酸調節)及專用佐劑混合物。參考實驗室叢書第2卷,第42頁。測試植物(參考 4A 4B ):5、11b、13、22、23b
14 展示試驗47中所測試的四種植物(5、11b、13、22、23b)的平均毒性分數,所述植物對應於甘藍(羽衣甘藍)、馬蹄金(馬蹄金屬)、草莓(「永香」草莓)、牧草摻混物2及迷迭香(Rosemarina officinalis / Rosemary)。S-1對應於所測試的活性滋養物的最高濃度,S-4對應於所測試滋養物的最低濃度,以及S-1及S-2表示中間等級。資料在下文以圖形方式呈現於 8 中。 表14:試驗47:塗覆後平均毒性等級(1至5) **加粗斜體毒性值指示「猛烈至致死」的毒性等級。
試驗 47 的結果 :在2.5 M的溶液濃度下於第5天、第9天至第14天試驗結束時產生4.5、4.8及4.9(「猛烈至致死」)的極佳藥害控制,在1.5 M的溶液濃度下於第5天、第9天及第14天產生4.0、4.8及5.0的極佳藥害控制,且在1.0 M的濃度下產生4.3至4.4、4.4及4.8的極佳藥害控制。僅使用水及佐劑混合物噴灑的對照未顯示藥害效應。 實例15:試驗46-磷酸二氫鉀
試驗46中,除草劑包括磷酸二氫鉀(KH2 PO4 );莫耳濃度2.0及1.0,大約pH 4.1,未添加酸。佐劑包括維特仕聚矽氧界面活性劑及MSO。測試植物(參考 4A )是P2、P5、P11a、P13。
1.0 M及1.5 M溶液如 9 15 中所示在第8天至第18天產生極佳藥害效應(「猛烈至致死」)。 表15:試驗46-平均毒性 15 中,「M」是指單子葉植物及「D」是指雙子葉植物。 *加粗斜體毒性值指示「猛烈至致死」的毒性等級。
試驗 46 的結果: 在第8天至第18天自2.0及1.5莫耳的測試溶液的塗覆觀察到極佳藥害控制(「猛烈至致死」),但僅針對闊葉樣本(雙子葉植物)。塗覆至P-2中的草的相同溶液在這個時段期間的效應極微。對照似乎不受影響。 實例16:試驗56:醋酸鉀。
試驗56中,除草劑包括醋酸鉀(莫耳濃度1.5;pH 5.52,使用檸檬酸調節)及專用佐劑混合物。參考實驗室叢書第2卷,第69頁。測試植物(參考 4A 4B ):P26、P3、P10、P11a。
16 展示所測試的四種植物(26、3、10、11a)的平均毒性分數,所述植物對應於三色紫羅蘭(堇菜屬)、金魚草(龍口花)、馬里蒂馬氏瓜葉菊(銀葉菊)及鐃鈸花(蔓柳穿魚屬)、(馬齒菜)、稗屬(狗牙草)及虎尾草(羽指草)。所有植物使用1.5 M的溶液濃度噴灑。對照溶液僅用水。資料在下文以圖形方式呈現於 10 中。1.5莫耳濃度在第3天產生強勁藥害控制,及在第4天至第15天試驗結束時產生極佳藥害控制。 表16:試驗56:塗覆後平均毒性等級(1至5) **加粗斜體毒性值指示「猛烈至致死」的毒性等級。
試驗 56 的結果 :在1.5 M的溶液濃度下於第4天至第15天試驗結束時產生4.0至5.0(「猛烈至致死」)的極佳藥害控制。僅使用水噴灑的對照未顯示藥害效應。 實例17:試驗64:四水八硼酸二鈉
在試驗64中,除草劑包括四水八硼酸二鈉(Na2 B8 O13 × 4H2 O)(速樂硼â )(莫耳濃度0.5,pH ≌ 7.78)、科尼迪克â 、尿素及蔗糖佐劑。試驗植物(參考 4A )是5、18a、22、23b、26。
在0.5莫耳濃度下,對於試驗中的所有闊葉物種於第12天至第34天試驗結束時觀察到極佳藥害控制。在試驗中的草物種當中觀察到在此時段期間的部分控制。在 14 17 中展示結果。 表17:試驗64:塗覆後平均藥害等級(1至5) 實例18:試驗44:硫酸鋅。
試驗44中,除草劑包括ZnSO4(莫耳濃度的範圍為1.0至2.0;pH 5.10至5.64,不添加酸)及專用佐劑混合物。參考實驗室叢書第2卷,第33頁。測試植物(參考 4A 及表 4B ):22、2、10、3。
18 展示試驗44中所測試的四種植物(22、2、10、3)的平均毒性分數,所述植物對應於牧草摻混物2、洋蔥(Allium cepa / Onion)、馬里蒂馬氏瓜葉菊(「銀灰」銀葉菊)及金魚草(龍口花)。S-1對應於所測試的活性滋養物的最高濃度,S-3對應於所測試滋養物的最低濃度,以及S-2表示中間等級。資料在下文以圖形方式呈現於 13 中。試驗44中:2.0莫耳溶液在第9天產生3.9的強勁控制,及在第21天至第32天產生4.6至5.0的極佳控制。1.5莫耳及1.0莫耳溶液各在第21天至第32天試驗結束產生大約4.5的極佳控制。 表18:試驗44:塗覆後平均毒性等級(1至5) **加粗斜體毒性值指示「猛烈至致死」的毒性等級。
試驗 44 的結果 :在2.0M M的溶液濃度下於第21天至第32天試驗結束時產生4.6至5.0(「猛烈至致死」)的極佳藥害控制,在1.5 M的溶液濃度下於第21天至第32天產生4.5至4.8的極佳藥害控制且在1.0 M的濃度下於第521天至第32天產生4.3、4.4及4.2的極佳藥害控制。僅使用水及佐劑混合物噴灑的對照未顯示藥害效應。 實例19:試驗50:醋酸鉀,成熟野外雜草
試驗50中,除草劑包括醋酸鉀(莫耳濃度範圍1.5、2.0及2.5;pH 5.0,使用檸檬酸調節)及專用佐劑混合物。參考實驗室叢書第2卷,第48頁。測試植物是成熟的野外雜草。
19 展示野外雜草的平均毒性分數。S-1對應於所測試的活性滋養物的最高濃度,S-3對應於所測試滋養物的最低濃度,以及S-2表示中間等級。資料在下文以圖形方式呈現於 11 中。 表19:試驗50:塗覆後平均毒性等級(1至5)
試驗 50 的結果 :在2.0 M的溶液濃度下於第3天及第10天試驗結束時產生3.6的強勁藥害控制,在2.5 M的溶液濃度下於第3天及第10天觀察到2.8的降低藥害結果。僅使用水及佐劑混合物噴灑的對照未顯示藥害效應。 實例20:試驗54:醋酸鉀及溫室中的幼嫩雜草。
試驗54中,除草劑包括醋酸鉀(莫耳濃度2.0;pH 5.04,使用檸檬酸調節)及專用佐劑混合物。參考實驗室叢書第2卷,第65頁。測試植物(參考 4A 4B ):23A、11C、9A。用於此試驗中的植物的高度為大約4吋至8吋。
20 展示所測試的三種雜草(54、23A、11C、9A)的平均毒性分數,所述雜草對應於馬齒莧(馬齒菜)、稗屬(狗牙草)及虎尾草(羽指草)。所有植物溶液為2.0 M及pH 5.04。對照溶液僅為水。資料在下文以圖形方式呈現於 12 中。 表20:試驗54:塗覆後平均毒性等級(1至5) **加粗斜體毒性值指示「猛烈至致死」的毒性等級。
試驗 54 的結果 :在2.0 M的溶液濃度下於第4天至第18天試驗結束時產生4.0至5.0(「猛烈至致死」)的極佳藥害控制。僅使用水噴灑的對照未顯示藥害效應。
在不受理論限制的情況下,預期植物通常顯然僅需要極小量的微量滋養素。微量滋養素根據一些實施例適用,例如當將鋅(Zn)及硼(B)調配物應用於需要Zn及/或B補充劑以供生長及發育的作物上以用於除草作用時。相比之下,可在用於生長作物或景觀植被的土壤中產生毒性量的殘餘微量滋養素的應用不會受關注。然而,在一些實施例中,包括微量滋養素的組成物可用於公共通道、路側或不會影響作物或觀賞植被的地方。
儘管本文已揭露各種態樣及實施例,但對於本領域的技術人員,其他態樣及實施例將顯而易見。本文中所揭露之各種態樣及實施例出於說明的目的且不打算為限制性的,其中真正範疇及精神由以下申請專利範圍指示。本領域的技術人員將瞭解,對於本文中所揭露的所述及其他過程及方法,過程及方法中執行的功能可以不同次序實施。此外,概述的步驟及操作僅作為實例提供,且在不背離所揭露實施例的實質的情況下,一些步驟及操作可視情況選用、與較少步驟及操作組合或擴展至額外步驟及操作。
儘管本文已揭露各種態樣及實施例,但對於本領域的技術人員,其他態樣及實施例將顯而易見。本文中所揭露之各種態樣及實施例出於說明的目的且不打算為限制性的,其中真正範疇及精神由以下申請專利範圍指示。
關於本文中實質上任何複數及/或單數術語的使用,本領域的技術人員可將複數解釋為單數及/或將單數解釋為複數(若對於上下文及/或申請案而言適當)。為清晰起見,本文中可明確闡述不同的單數/複數排列。
本領域的技術人員應理解,一般而言,本文中且尤其在所附申請專利範圍中使所用的術語(例如,所附申請專利範圍的主體)一般打算作為「開放式」術語(例如,術語「包含」應解釋為「包含但不限於」,術語「具有」應解釋為「至少具有」,術語「包括」應解釋為「包括但不限於」等)。本領域的技術人員將進一步理解,若希望存在特定數目的所引入請求項敍述,則此意圖將明確敍述於請求項中,且在無此敍述的情況下不存在此意圖。舉例而言,作為對理解的輔助,以下所附申請專利範圍可含有介紹性片語「至少一個」及「一或多個」的使用以介紹申請專利範圍敍述。然而,這些片語的使用不應被理解為暗示由不定冠詞「一」(a/an)對請求項敍述的引入將含有這些所引入請求項敍述的任何特定請求項限制於僅含有一個這種敍述的實施例,即使當同一請求項包含介紹性片語「一或多個」或「至少一個」以及諸如「一」(a/an)的不定冠詞時(例如,「一」(a/an)通常應被解釋為意謂「至少一個」或「一或多個」);此情況同樣適用於用以介紹請求項敍述的定冠詞的使用。另外,即使明確敍述特定數目的經引入請求項敍述,本領域的技術人員將認識到,這種敍述應解釋為意謂至少所敍述的數目(例如,不具有其他修飾語的無修飾敍述「兩個敍述」意謂至少兩個敍述或兩個或多於兩個敍述)。此外,在使用類似於「A、B及C等中的至少一者」的常規用法的情況下,一般來說,這種構造打算為本領域的技術人員將理解所述常規用法的意義(例如,「具有A、B及C中的至少一者的系統」將包含(但不限於)具有單獨的A、單獨的B、單獨的C、A及B一起、A及C一起、B及C一起及/或A、B及C一起等的系統)。在使用類似於「A、B或C等中的至少一者」的常規用法的情況下,一般來說,這種構造打算為本領域的技術人員將理解所述常規用法的意義(例如,「具有A、B或C中的至少一者的系統」將包含(但不限於)具有單獨的A、單獨的B、單獨的C、A及B一起、A及C一起、B及C一起及/或A、B及C一起等的系統)。本領域的技術人員將進一步理解,無論在描述、申請專利範圍或圖式中,幾乎任何呈現兩種或超過兩種替代性術語的分離性詞語及/或片語應理解為涵蓋包含所述術語中的一者、所述術語中的任一者或兩種術語的可能性。舉例而言,片語「A或B」應理解為包含「A」或「B」或「A及B」的可能性。
另外,在根據馬庫什群組(Markush group)描述本揭露內容的特徵或態樣時,本領域的技術人員應認識到,本揭露內容亦從而根據馬庫什群組的任何個別成員或成員子組進行描述。
本領域的技術人員應理解,出於任何及所有目的,諸如就提供書面描述而言,本文所揭露的所有範圍亦涵蓋其任何及所有可能的子範圍及子範圍組合。任何列出範圍可因足夠描述且能夠將同一範圍分解為至少相同的兩份、三份、四份、五份、十份等而容易地識別。作為非限制性實例,本文所論述的各範圍可容易地分解為下部三分之一、中間三分之一及上部三分之一等。本領域的技術人員亦將理解,例如「至多」、「至少」等的所有語言包含列舉的數目且涉及隨後可分解成如上文所討論的子範圍的範圍。最終,本領域的技術人員將理解,範圍包含每一個別成員。因此,舉例而言,具有1個至3個單元的群組是指具有1個、2個或3個單元的群組。類似地,具有1個至5個單元的群組是指具有1個、2個、3個、4個或5個單元的群組,以此類推。
從前文中應瞭解,為達成說明的目的,本揭露內容的各種實施例已在本文中予以描述,且在不背離本揭露內容的範疇及精神的情況下可進行各種修改。因此,本文所揭露的各種實施例並不打算限制藉由以下申請專利範圍指示的真實範疇及精神。參考文獻
以下參考文獻以全文引用的方式併入本文中。
阿布爾諾, E. A. A. 2002 補充鉀葉面施肥能夠降低建議鉀用量?巴基斯坦生物科學雜誌5(3):259-262(Abou El-Nour, E. A. A. 2002 Can supplemented potassium foliar feeding reduce the recommended soil potassium? Pak. J. Biol. Sci. 5(3):259-262)。
阿布擇那, H. F. A., A. A. M.奧爾馬, S. D.夏爾瑪及M.辛格 2009(Abouziena, H. F. A., A. A. M. Omar, S. D. Sharma and M. Singh. 2009)。在兩個生長階段用於雜草控制的一些新天然產物除草劑的效力對比(Efficacy comparison of some new natural-product herbicides for weed control in two growth stages)。雜草管理科技23:431-437 (Weed Manag. Tech. 23:431-437)
匿名, 2016。富營養化(Eutrophication)。可在全球資訊網en.wikipedia.org/wiki/Eutrophication維基百科獲得(Wikipedia. accessible on the world wide web at en.wikipedia.org/wiki/Eutrophication)
伯恩特, G. F. 1987(Berndt, G. F. 1987)。藉由包含佐劑而引入的葉面噴霧的功效(Efficiency of foliar sprays as influenced by the inclusion of adjuvants)。農業研究與發展(Res. Devlop. Agric. 4(3): 129-139)。
博羅夫斯基, E.及S. 米卡雷克. 2009(Borowski, E. and S. Michalek. 2009)。鉀鹽及尿素的葉面施肥在菠菜的氣體交換、葉產量及品質方面的效應(The effect of foliar feeding of potassium salts and urea in spinach on gas exchange, leaf yield and quality)。波蘭植物學報62(1): 155-162(ACTA Agrobotanica 62(1): 155-162)
布科瓦茨, M. J.及S. H. Wittwer. 1957(Bukovac, M. J. and S. H. Wittwer. 1957)。葉面塗覆滋養物的吸收及移動性(Absorption and mobility of foliar applied nutrients)。植物生理學32(5): 428-435(Plant Physiol. 32(5): 428-435)。
克里斯特森, L.P. 2005(Christensen, L.P. 2005)。藤蔓礦物滋養物管理計劃中的葉面施肥(Foliar fertilization in vine mineral nutrient management programs)。土壤環境及藤蔓礦物滋養物(Soil Environment and Vine Mineral Nutrition)中。美國葡萄酒學報第83頁至第90頁(Amer. Soc. Enol. and Viticul. Pages 83-90)。
克里斯特森, L.彼得及威廉L.皮科克. 2000(Christensen, L. Peter and William L. Peacock. 2000)。礦物滋養物及施肥(Mineral Nutrition and Fertilization)。第14章(Ch 14)。在葡萄乾產品手冊(Raisin Production Manual)中。加利福利亞大學農業與自然研究通信服務: 102-114(Univ. Calif., Ag. And Nat'l Res. Communication Serv.: 102-114)。
恰爾諾塔、馬克及保羅托馬斯. 2013(Czarnota, Mark and Paul Thomas. 2013)。在溫室中使用界面活性劑、潤濕劑及佐劑(Using Surfactants, Wetting Agents, and Adjuvants in the Greenhouse)。佐治亞大學合作推廣辦公室, 雅典, 佐治亞出版社B-1309。第10頁(Univ. Georgia Coop. Extn., Athens, Georgia. Pub. B-1309. 10pp)。
埃爾瑟, J. J, M. E. S. 布拉肯, E. E. 克萊蘭, D. S. 格魯納, W. S. 哈波爾, H. 希勒布蘭德, J. T. 恩蓋, E. W. 賽布魯姆, J. B. 秀林及J. S.斯密斯. 2007(Elser, J. J, M. E. S. Bracken, E. E. Cleland, D. S. Gruner, W. S. Harpole, H. Hillebrand, J. T. Ngai, E. W. Seabloom, J. B. Shurin and J. S. Smith. 2007)。淡水、海洋及陸地生態系統中的主要自養有機體的氮磷限制的全球分析2007(Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. 2007)。生物學快報第 10: 8頁(Ecology Letters. 10: 8pp)。
海格, 阿倫及馬歇爾麥克格拉莫利1997(Hager, Aron and Marshal McGlamery. 1997)。芽後除草劑原理(Principles of Postemergence Herbicides)。伊利諾伊大學合作推廣服務部伊利諾伊大學厄巴納分校,第4頁(Univ. of Ill. Coop. Exten. Serv. Urbana, Ill. 4pp)。
哈弗林, J. L., S. L.蒂斯戴爾, W. E. 納爾遜及J. D. 比頓. 2014(Havlin, J. L., S. L. Tilsdale, W. E. Nelson, and J. D. Beaton. 2014)。土壤肥沃度及肥料(Soil Fertility and Fertilizers)。滋養物管理導論第8版(An Introduction to Nutrient Management. 8th ed.)普林帝斯霍爾,新澤西河上游,第516頁(Pearson Prentice Hall, Upper Saddle River, N. J. 516 pp)
霍華德, D. D. , C. O. 格梅及C. E. 薩姆斯 1998(Howard, D. D. , C. O. Gwathmey and C. E. Sams. 1998)。棉花的葉面施肥:評估鉀源、鉀溶液緩衝及硼(Foliar feeding of cotton: evaluating potassium sources, potassium solution buffering, and boron)。農學雜誌: 740-746(Agron. J.: 740-746)
約翰遜, 鮑勃 2016(Johnson, Bob. 2016)。注意施用廢料的時機(Pay attention to timing when applying fertilizer)。於2016年2月3日發行物Ag Alert(加利福利亞農業局出版社: 11-13(Calif. Farm Bur. Pub: 11-13))中。
庫圖若, S. K., J. G.斯特朗及C.米格爾(Kutural, S. K., J. G. Strang, and C. Smigell)無日期。葡萄藤蔓的施肥(Fertilization of Grapevines)。霍特法克特3104,肯塔基大學農學院合作推廣服務部,第6頁(HortFact 3104, Univ. Kentucky, Coll. Ag., Coop. Exten. Serv. 6 pp)。
馬什納, H. 1995(Marschner, H. 1995)。較高植物的礦物滋養物第2版(Mineral Nutrition of Higher Plants. 2nd ed)。倫敦學術出版社,第674頁(Academic Press. London 674pp)。
麥考利, 安, 克萊恩瓊斯及傑夫雅各布森(McCauley, Ann, Clain Jones, and Jeff Jacobsen)。2011(重印)。滋養物管理:蒙大拿州國家推廣服務部繼續教育系列自學課程(Nutrient Management: A Self-Study Course from the Montana State Extension Service Continuing Education Series)。9號滋養物管理模組,第16頁(Nut. Mgt. Module No. 9. 16pp)。
門格爾, K. 2002(Mengel, K. 2002)。葉面供應在礦物營養方面的替代或補充作用(Alternative or complementary role of foliar supply in mineral nutrition)。2002葉面營養國際學術研討會論文集(2002 Proc. Int. Symp. on Foliar Nutrition)。園藝學報594: 33-47(Acta Hort. 594: 33-47) _________. 1985. 土壤中主要滋養物的動力學及可獲得性(Dynamics and availability of major nutrients in soils)。土壤科學進展2: 63-131(Adv. Soil Sci. 2: 63-131)
芒森, R. D.及W. L.納爾遜1963(Munson, R. D. and W. L. Nelson. 1963)。施用鉀在土壤中的移動(Movement of applied potassium in soils)。農業與食品化學雜誌11(3): 193-201(J. Agri. Food Chem. 11(3): 193-201)
尼科爾森, 約瑟夫2017(Nicholson, Joseph. 2017)。植物吸收過多鉀時會發生什麼?(What happens when plats get too much potassium?)可在全球資訊網www.hunker.com獲得論文(Article accessible on the world wide web at www.hunker.com)
奧特修斯, 德里克2009(Oosterhuis, Derrick. 2009)。葉面施肥:滋養物攝取機制及量值(Foliar fertilization: the mechanisms and magnitude of nutrient uptake)。在流體肥料基金會研討會論文集(2009年2月15日至17日,第4頁)中(In Fluid Fertilizer Foundation Proc. Feb. 15-17, 2009. 4pp)
羅伯特, J. R., A. K.安德伍德, A.克拉克, R. E.麥克, J. M.托馬斯及G. C. 伏爾加1997(Roberts, J. R., A. K. Underwood, A. Clark, R. E. Mack, J. M. Thomas and G. C. Volgas. 1997)。無水濃縮物(DC)噴霧佐劑(Dry concentrate (DC) spray adjuvants)。在農藥調配物及應用系統第17卷中(In Pesticides Formulations and Application Systems: Vol. 17)。美國材料與試驗協會特殊技術出版物1328(G. R.戈斯, M. J. 霍普金森及H. M. 柯林斯編輯(ASTM STP 1328. G. R.Goss, M. J. Hopkinson and H. M. Collins, eds)。美國材料與試驗協會: 257-266(American Society for Testing and Materials: 257-266)
謝弗, W. E.及D. W. 里德1986(Shafer, W. E. and D. W. Reed. 1986)。來自有機與無機鉀載體的鉀的葉面吸收(The foliar absorption of potassium from organic and inorganic potassium carriers),植物營養學雜誌9(2): 143-157(J. Plant Nutri. 9(2): 143-157)
史密斯菲奧拉, 黛博拉及斯坦頓吉爾2014(Smith-Fiola, Deborah and Stanton Gill. 2014)。鐵基除草劑:用於景觀及草坪的雜草控制的替代材料(Iron-Based Herbicides: Alternative Materials for Weed Control in Landscapes and Lawns)。馬里蘭大學分校。第4頁(Univ. Md. Extension. 4pp)
塔伊茲, L., E. 熱格爾, I. M. 穆勒及A. 墨菲2015(Taiz, L., E. Zeiger, I. M. Moller and A. Murphy. 2015)。植物生理學與發育第6版(Plant Physiology and Development. 6 ed)。希勞爾聯合出版社,森德蘭,馬塞諸塞州,美國。第761頁+附錄(Sinauer Assoc., Sunderland, Mass. USA. 761 pp. + appendices)
美國食品藥品監督管理局2007(U. S. Food and Drug Administration. 2007)。食物與食物產品的大概pH值(Approximate pH of foods and food products)。可在全球資訊網www.foodscience.caes.uga.edu/extension/documents/fdaapproximatephoffoodslacf-phs.pdf.獲得
沃西克, 帕維爾2004(Wojcik, Pawel. 2004)。來自葉面施肥的礦物滋養物的攝取(評論)(Uptake of mineral nutrients from foliar fertilization (review))。果樹及觀賞植物研究雜誌12(特別版): 201-218(J. Fruit and Ornamental Pl. Res. 12 (spec ed.): 201-218)
佐林格, 里奇(Zollinger, Rich)。噴霧佐劑:故事之餘(Spray Adjuvants: The Rest of the Story)。加利福利亞雜草科學協會研究資料更新新聞報,2014年1月,第5頁(CWSS Res. Data Update & News, January 2014. 5 pp)。
1 是示出試驗 13 中所測試的三種植物的平均毒性分數的圖,試驗 13 測試除草劑組成物及其使用方法的實施例。植物編號為21、7以及10,對應於牧草摻混物(Pasture Blend)1、金盞花(Calendula officinalis )(大金盞花(Common marigold))及馬里蒂馬氏瓜葉菊(Cineraria meritima )(「銀灰」銀葉菊(Dusty miller “Silver Dust”))(植物物種鑑別參考 4A 4B )。溶液1(S-1)對應於1.5莫耳醋酸鉀溶液,使用凍乾檸檬汁形式的檸檬酸及非活性佐劑獲得pH 5.91,所述非活性佐劑為尿素、維特仕® (WIDESPREAD® )聚矽氧界面活性劑(拉夫蘭公司(Loveland Products))及甲基化種子油(methylated oil,MSO)。S-2是1.0莫耳濃度的類似溶液,pH 5.90。S-3是0.5莫耳濃度的類似溶液,pH 5.90。(試驗溶液、細節及結果參考 6A 6B )。試驗 13 的結果 指示:1.5 M的溶液在第11天產生4.3(「猛烈至致死」)的極佳藥害效應(毒性等級代碼參考 5 ),及1.0 M的溶液在第11天產生4.0(「猛烈」)的藥害效應。使用水和專用佐劑混合物噴灑的對照在第11天測試結束時未顯示可見效應。 2 描繪試驗 14 中所用的三種植物的平均毒性分數,試驗 14 測試除草劑組成物及其使用方法的實施例。植物編號為21、22及10,對應於牧草摻混物1、牧草摻混物2及馬里蒂馬氏瓜葉菊(「銀灰」銀葉菊,植物物種鑑別參考 4A 4B )。溶液1(S-1)對應於2.0莫耳醋酸鉀溶液,使用30%乙酸及非活性佐劑獲得pH 5.28,所述非活性佐劑為尿素及維特仕® 聚矽氧界面活性劑(拉夫蘭公司)。S-2是1.5莫耳濃度的類似溶液,pH 5.29。S-3是1.0莫耳濃度的類似溶液,pH 5.29。(試驗溶液、細節及結果參考 6A 6B )。試驗 14 的結果 指示:在2.0 M的溶液濃度下於第1天與第7天之間達到範圍為4.0至5.0(「猛烈至致死」)的極佳藥害效應;在1.5 M的濃度下於第1天與第11天之間達到4.0至4.8的毒性等級;以及在1.0 M的濃度下於第2天與第11天之間達到4.3至4.0的毒性等級。僅使用水和專用佐劑混合物噴灑的對照未顯示效應。 3 描繪試驗 22 中所用的三種植物的平均毒性分數,試驗 22 測試除草劑組成物及其使用方法的實施例。植物編號為22、13、15及19,對應於牧草摻混物2、草莓(Fragaria xananassa )(「永香」草莓(Strawberry “Eversweet”))、勳章菊(Gazania rigens )(「貝達」勳章菊(Gazania “Beda”))以及粉蝶花黑便士(Nemophila menziesii discoidalis )(藍色粉蝶花(Baby blue eyes),植物物種鑑別參考 4A 4B )。溶液1(S-1)對應於2.0莫耳醋酸鉀溶液,使用琥珀酸及非活性佐劑獲得pH 5.01,所述非活性佐劑為尿素及維特仕® 聚矽氧界面活性劑(拉夫蘭公司)。S-2是1.5莫耳濃度的類似溶液,pH 5.00。S-3是1.0莫耳濃度的類似溶液,pH 4.98。(試驗溶液、細節及結果參考 6A 6B )。試驗 22 的結果 指示:在2.0 M的溶液濃度下在第5天及第7天產生4.3及4.4(「猛烈至致死」)的極佳藥害效應,及在1.5 M的溶液濃度下在第5天及第7天產生4.1的極佳藥害效應。1.0 M溶液獲得降低的藥害效應。僅使用水和專用佐劑混合物噴灑的對照未顯示效應。 4A 4B 描繪試驗 31A試驗 31B 中所用的植物的平均毒性分數,試驗 31A試驗 31B31A31B 兩者中測試除草劑組成物及其使用方法的實施例。植物編號為22、1、5、16及23,對應於牧草摻混物2、甘藍(Brassica oleracea )(變種「恐龍」羽衣甘藍(var. Kale “Dinosaur”))、馬纓丹(Lantana camara )(白色馬纓丹(White Lantana))以及青豆(Pisum sativum var.saccharatum )(荷蘭豆(Snow pea))(植物物種鑑別參考 4A 4B )。試驗31A與試驗31B之間的唯一差異在於每個試驗採用的專用佐劑混合物的組成物。用於「A」系列的佐劑為尿素及維特仕聚矽氧界面活性劑(拉夫蘭公司)。用於「B」系列的佐劑為尿素及LI700滲透劑(拉夫蘭公司)。溶液1A及溶液1B(S-1A,S-1B)對應於2.0莫耳醋酸鉀溶液,使用檸檬酸獲得pH 5.01。S-2是1.5莫耳濃度的類似溶液,pH 5.00。S-3是1.0莫耳濃度的類似溶液,pH 4.97。(試驗溶液、細節及結果參考 6A 6B )。試驗 31 - A 的結果 指示:在2.0 M的溶液濃度下於第4天至第20天產生4.0至4.6(「猛烈至致死」)的極佳藥害效應;在1.5 M的濃度下於第8天至第20天產生4.1至4.4的極佳藥害效應;以及在1.0 M的溶液濃度下於第20天產生4.4的極佳藥害效應。使用水及佐劑混合物噴灑的對照在第2天之後取出用於實驗室分析,但在那時未顯示可見效應。試驗 31 - B 的結果 指示:在2.0 M的溶液濃度下於第6天至第20天產生4.2至4.6(「猛烈至致死」)的極佳藥害等級;在1.5 M的溶液濃度下於第6天至第20天產生4.1至4.9的極佳藥害等級;以及在1.0 M的溶液濃度下於第8天至第20天產生4.0至4.1的極佳藥害等級。使用專用佐劑混合物噴灑的對照在第2天之後取出用於實驗室分析,但在那時未顯示可見效應。在不受理論限制的情況下,試驗31A與試驗31B中的兩種聚矽氧界面活性劑化合物的有效性之間存在極少差異。 5 描繪試驗 41 中所測試的四種植物的平均毒性分數,試驗 41 測試除草劑組成物及其使用方法的實施例。植物編號為22、2、3及10,對應於混合的單子葉與雙子葉植物牧草摻混物2及洋蔥(Allium cepa )(「紅魚雷」洋蔥(“Torpedo Red”Onion))以及雙子葉植物金魚草(Antirrhinum majus )(龍口花(Snapdragon))及馬里蒂馬氏瓜葉菊(「銀灰」銀葉菊)(植物物種鑑別參考 4A 4B )。樣品S-1及樣品S-2兩者是pH為5.5的2.0莫耳的硫酸銨溶液。(試驗溶液、細節及結果參考 6A 6B )。試驗 41 的結果 :對於2.0莫耳濃度下的闊葉(雙子葉)物種的樣本S-1,自第3天至第23天試驗結束產生4.0至5.0(「猛烈至致死」)的極佳藥害效應。對於在2.0莫耳濃度下的單子葉草及百合科物種的樣本S-2,3.0的初始中等效應降低至2.3(「輕微」)。僅使用水及佐劑混合物噴灑的對照未顯示效應。包含在牧草2樣品中的雙子葉植物S-1及S-2在第7天全部死亡。然而,未記錄存在於牧草摻混物2混合物中的單子葉植物及雙子葉植物單獨的毒性結果,且未在 5 中進行呈現。 6 描繪試驗 25 中所測試的四種植物的毒性分數,試驗 25 測試除草劑組成物及其使用方法的實施例。植物編號為22、15、13及19,對應於混合的單子葉與雙子葉牧草摻混物2、勳章菊、草莓(「永香」草莓)以及粉蝶花黑便士(藍色粉蝶花)。試驗 25 檢驗單一1.5莫耳醋酸鉀溶液在四種酸度pH 4.3 (溶液1)、pH 5(溶液2)、pH 6(溶液3)及pH 7(溶液4)下的效應。每一溶液的佐劑相同且由對應於2.0莫耳醋酸鉀溶液的維特仕(拉夫蘭公司)溶液1(S-1)組成,使用琥珀酸及非活性佐劑獲得pH 5.01,所述非活性佐劑為尿素及維特仕聚矽氧界面活性劑(拉夫蘭公司)。試驗 25 的結果 :所有溶液在第5天測試終止時產生「猛烈至致死」的效應。在pH 4.3及pH 5.0下觀察到這些結果的大部分毒性。然而,pH 5.0及pH 6.0下的藥害反應經過1天至3天顯示漸進性更強的增大。這是所期望的,因為其在灼傷之前提供更多時間來通過表皮層進行吸收。 7 為了易於查看而以簡潔格式自表6A及表6B彙總數據。 8 描繪試驗 47 中所測試的五種植物的平均毒性分數,試驗 47 測試除草劑組成物及其使用方法的實施例。植物編號為P2、5、11A、13及23A,對應於單子葉與雙子葉牧草摻混物2、甘藍(羽衣甘藍)、馬蹄金(Dichondra repens )、草莓(Fragraria x ananassa,Strawberry)以及迷迭香(Rosmarina officinalis ,Rosemary)(植物物種鑑別參考表4A及表4B)。溶液S-1、S-2、S-3及S-4對應於莫耳濃度分別為2.5、2.0、1.5及1.0的醋酸鉀溶液。使用結晶檸檬酸將每一測試溶液的酸度調節至大約pH 5.0。佐劑為菜籽油及寶潔(JOY)液體清潔劑。試驗 47 的結果 指示在所有測試溶液濃度下於第5天獲得4.0(「猛烈至致死」)及5.0(「死亡」)的極佳藥害效應。然而,早在第2天就已經在五種測試物種中的三者上注意到「猛烈至致死」結果。這被認為灼燒反應過快以至於不能最佳地吸收活性成分。用於對照的測試噴霧包含佐劑。對於對照,未注意到可見效應。試驗 47 的結果: 所有莫耳濃度在第5天至第16天測試結束產生4.0至4.8的極佳控制。 9 是示出試驗 46 中所測試的五種植物的平均毒性分數的圖,試驗 46 測試除草劑組成物及其使用方法的實施例。植物編號為P2、5、11A及13,對應於牧草摻混物2、甘藍(羽衣甘藍)、馬蹄金、草莓(植物物種鑑別參考表4A及表4B)。溶液S-1及溶液S-2對應於在2.0莫耳濃度(溶液1)及1.5莫耳濃度(溶液2)下的磷酸二氫鉀(KH2 PO4 )溶液。S-1及S-2的未調節的酸度分別為4.09及4.14。試驗 46 中的佐劑是維特仕聚矽氧界面活性劑及甲基化種子油(MSO)。試驗 46 的結果 指示在於第18天完成測試時僅塗覆2.0莫耳及1.5莫耳的測試溶液的闊葉(雙子葉)樣品在第8天得到「猛烈至致死」的結果。塗覆到P-2中的三種草的相同溶液在這個時段期間的效應極微。僅使用水及佐劑混合物噴灑的對照未顯示效應。這些結果表明磷酸二氫鉀在草坪中作為闊葉除草劑的可能性。 10 描繪試驗 56 中所測試的四種植物的平均毒性分數,試驗 56 測試除草劑組成物及其使用方法的實施例。植物編號為3、10、18及26,對應於金魚草(龍口花)、馬里蒂馬氏瓜葉菊(銀葉菊)、香雪球(庭薺屬(Alyssum))及三色紫羅蘭(堇菜屬(Viola))(植物物種鑑別參考表4A及表4B)。測試溶液是濃度為1.5莫耳的醋酸鉀,使用結晶檸檬酸調節至pH 5.52。試驗 56 中的佐劑為科尼迪克(KINETIC)聚矽氧界面活性劑、尿素及蔗糖,所述蔗糖作為用以延長植物表面的測試溶液的半液態的保濕劑。試驗 56 的結果 :醋酸鉀在1.5莫耳濃度下於第3天產生強勁的藥害控制,在第4天至第15天測試結束產生極佳藥害控制。最後在第16天觀察到,經處理植物出現死亡且無再生長。對照呈現正常生長且無明顯組織傷害。 11 描繪試驗 50 中所測試的植物的平均毒性分數,試驗 50 測試除草劑組成物及其使用方法的實施例。除草劑組成物包括醋酸鉀;莫耳濃度為2.5、2.0及1.5。試驗 50 的結果 :2.0莫耳濃度及1.5莫耳濃度在第3天至第10天測試結束產生3.5至3.6的強勁控制。2.5莫耳濃度相比較低莫耳濃度產生較少藥害。 12 是示出試驗 54 中所測試的植物的平均毒性分數的圖,其中除草劑是:醋酸鉀,莫耳濃度2.0;專用佐劑混合物。試驗 54 的結果 :2.5莫耳溶液在第14天至第18天測試結束產生4.0至5.0的對所有雜草的極佳藥害控制。在第4天觀察到對雜草的強勁至極佳的藥害控制。 13 是示出試驗 44 中所測試的植物的平均毒性分數的圖,其中除草劑是:ZnSO4 ,莫耳濃度2.0、1.5、1.0;專用佐劑混合物。試驗 44 的結果 :2.0莫耳溶液在第9天產生3.9的強勁控制,及在第21天至第32天產生4.6至5.0的極佳控制。1.5莫耳及1.0莫耳溶液各在第21天至第32天測試結束產生大約4.5的極佳控制。 14 是示出試驗 64 中所測試的植物的平均毒性分數的圖,其中除草劑四水八硼酸二鈉(速樂硼® (SOLUBOR® )),0.5莫耳溶液。試驗 64 的結果 :在0.5莫耳濃度下,在所述試驗中於第12天至第34天試驗結束觀察到對所有闊葉物種的極佳藥害控制。在試驗中於草物種當中觀察到這個時段期間的部分控制。

Claims (79)

  1. 一種誘導植物藥害的方法,所述方法包括將水溶液組成物施予至所述植物的葉面部分,其中所述水溶液組成物包括: 至少一滋養物化合物,選自由下述所組成的族群中:鉀化合物、磷化合物、氮化合物、鎂化合物、硫化合物、鈣化合物、微量滋養素及所列項中的兩者或多於兩者的組合,其中所述滋養物化合物包括滋養物;以及 至少一佐劑, 其中所述水溶液組成物的pH為約4至約7, 由此向所述植物施予過量的所述滋養物, 從而所述滋養物被所述植物過量吸收,由此誘導所述植物的藥害。
  2. 如申請專利範圍第1項所述之誘導植物藥害的方法,其中所述藥害包括殺除所述植物,所述方法包括全身性施予所述水溶液,由此殺除所述植物。
  3. 如申請專利範圍第1項所述之誘導植物藥害的方法,其中所述藥害在所述植物的一部分,所述方法包括局部施予所述水溶液,由此誘導所述植物的局部藥害。
  4. 如申請專利範圍第2項所述之誘導植物藥害的方法,其中由所述植物吸收的所述過量滋養物引起所述植物的末端生理學破壞及死亡。
  5. 如申請專利範圍第1至4項中任一項所述之誘導植物藥害的方法,其中由所述植物吸收的所述過量滋養物引起所述植物的基質的斷開,由此使所述植物乾化。
  6. 如申請專利範圍第1至5項中任一項所述之誘導植物藥害的方法,其中所述水溶液組成物更包括有機酸或無機酸。
  7. 如申請專利範圍第1至6項中任一項所述之誘導植物藥害的方法,其中所述組成物的pH為約4.5至約5.5。
  8. 如申請專利範圍第1至7項中任一項所述之誘導植物藥害的方法,其中所述滋養物在所述水溶液組成物中的濃度為約1 M至約2 M。
  9. 如申請專利範圍第6至8項中任一項所述之誘導植物藥害的方法,其中所述水溶液組成物包括所述有機酸,且所述有機酸選自下述所組成的族群:乙酸、檸檬酸、乳酸、甲酸、琥珀酸、酒石酸、蘋果酸以及草酸。
  10. 如申請專利範圍第6至8項中任一項所述之誘導植物藥害的方法,其中所述水溶液組成物包括所述無機酸,例如鹽酸。
  11. 如申請專利範圍第1至10項中任一項所述之誘導植物藥害的方法,其中所述滋養物化合物選自由下述所組成的族群:醋酸鉀、乳酸鉀、甲酸鉀、檸檬酸鉀以及酒石酸氫鉀,且其中所述滋養物包括鉀。
  12. 如申請專利範圍第1至11項中任一項所述之誘導植物藥害的方法,其中所述滋養物化合物選自由下述所組成的族群:鉀化合物、磷化合物、氮化合物、硫化合物、鈣化合物、微量滋養素以及所列項中的兩者或多於兩者的組合。
  13. 如申請專利範圍第1至10項中任一項所述之誘導植物藥害的方法,其中所述滋養物化合物包括硫酸鎂,且其中所述滋養物包括鎂。
  14. 如申請專利範圍第1至10項中任一項所述之誘導植物藥害的方法,其中所述滋養物化合物包括硫酸銨,且其中所述滋養物包括氮。
  15. 如申請專利範圍第1至14項中任一項所述之誘導植物藥害的方法,其中所述滋養物化合物包括: 包括K、P、N、Mg、S、Ca或所述微量滋養素的離子;以及 電性相反的離子,其中所述電性相反的離子在各種量的所述組成物中並非除草劑。
  16. 如申請專利範圍第1至15項中任一項所述之誘導植物藥害的方法,其中所述滋養物化合物不包括嘉磷塞。
  17. 如申請專利範圍第1至16項中任一項所述之誘導植物藥害的方法,其中所述組成物以水基噴霧形式塗覆。
  18. 如申請專利範圍第1至17項中任一項所述之誘導植物藥害的方法,其中預先阻止所述滋養物的吸收2天至4天。
  19. 如申請專利範圍第1至18項中任一項所述之誘導植物藥害的方法,其中所述組成物具有低潮解點(POD),從而使所述組成物在所述植物的所述葉面部分上保持半液態2天至4天。
  20. 如申請專利範圍第1至19項中任一項所述之誘導植物藥害的方法,其中所述植物是雙子葉植物。
  21. 如申請專利範圍第1至19項中任一項所述之誘導植物藥害的方法,其中所述植物是單子葉植物。
  22. 如申請專利範圍第1至19項中任一項所述之誘導植物藥害的方法,其中所述植物是雙子葉植物,且其中所述植物處於例如草的單子葉植物當中,且其中不殺除所述單子葉植物。
  23. 如申請專利範圍第22項所述之誘導植物藥害的方法,其中所述滋養物化合物包括硫酸銨。
  24. 如申請專利範圍第23項所述之誘導植物藥害的方法,其中所述滋養物在所述組成物中包括濃度為至少2 M的氮。
  25. 如申請專利範圍第1至19項中任一項所述之誘導植物藥害的方法,其中所述植物選自由下述所組成的族群中至少一種:象大蒜、洋蔥、韭菜、金魚草、甘藍、金盞花、萬鈴花屬、青葙屬、馬里蒂馬氏瓜葉菊、依葵崔羅巴氏虎尾草、秋英屬、鐃鈸花、稗屬、羊茅屬、草莓、香豬殃殃、勳章菊、馬纓丹、濱菊、六倍利、白晶菊、香雪球、粉蝶花黑便士、菸草屬、豌豆、馬齒莧、迷迭香、蛇目菊屬、常春藤葉堇菜、三色紫羅蘭、多年生黑麥草、鴨茅、葦狀羊茅、地下三葉草、花菱草、寇林希草、紫羅蘭、粉蝶花斑以及劉易斯氏亞麻。
  26. 如申請專利範圍第1至19項中任一項所述之誘導植物藥害的方法,其中所述植物選自由下述所組成的族群中至少一種:象大蒜、洋蔥、金魚草、甘藍、金盞花、萬鈴花屬、青葙屬、馬里蒂馬氏瓜葉菊、秋英屬、羊茅屬、草莓、香豬殃殃、勳章菊、馬纓丹、濱菊、白晶菊、香雪球、粉蝶花黑便士、菸草、豌豆、蛇目菊屬、常春藤葉堇菜、三色紫羅蘭、多年生黑麥草、鴨茅、葦狀羊茅、地下三葉草、花菱草、寇林希草、粉蝶花斑以及劉易斯氏亞麻。
  27. 如申請專利範圍第1至26項中任一項所述之誘導植物藥害的方法,更包括在第一次施予所述組成物的14天內進行第二次施予。
  28. 如申請專利範圍第1至27項中任一項所述之誘導植物藥害的方法,其中所述組成物的塗覆率是20加侖每英畝至40加侖每英畝。
  29. 如申請專利範圍第1至28項中任一項所述之誘導植物藥害的方法,所述組成物更包括灼燒除草劑。
  30. 如申請專利範圍第29項所述之誘導植物藥害的方法,其中所述灼燒除草劑包括由下述所組成的族群中選出的有機酸組成物:包括羊脂酸(辛酸)及羊蠟酸(癸酸)的組成物;包括天竺葵酸(壬酸)及C6 -C12 脂肪酸的組成物;以及包括壬酸銨及天竺葵酸的銨鹽的組成物。
  31. 如申請專利範圍第1至30項中任一項所述之誘導植物藥害的方法,所述組成物更包括第二除草劑,其中所述第二除草劑是非滋養物除草劑。
  32. 如申請專利範圍第31項所述之誘導植物藥害的方法,其中所述第二除草劑包括選自表3.1的除草劑。
  33. 一種套組,包括: 第一單位量的滋養物化合物,選自由下述所組成的族群中:鉀化合物、磷化合物、氮化合物、鎂化合物、硫化合物、鈣化合物、微量滋養素及所列項中的兩者或多於兩者的組合,其中所述滋養物化合物包括滋養物; 第二單位量的有機酸或無機酸;以及 佐劑, 其中若所述第一單位量在pH為7的水中構成0.5至2.0的滋養物莫耳濃度,則所述第一單位量與所述第二單位量的比率被配置以達成4至7的pH。
  34. 如申請專利範圍第33項所述之套組,其中所述第一單位量包括鉀鹽,且其中所述鉀鹽是檸檬酸鉀且所述有機酸是冰醋酸,且其中檸檬酸鉀與冰醋酸的比率為約1莫耳:0.7莫耳至3.5莫耳乙酸。
  35. 如申請專利範圍第33或34項所述之套組,其中所述滋養物化合物選自由下述所組成的族群:鉀化合物、磷化合物、氮化合物、硫化合物、鈣化合物、微量滋養素以及所列項中的兩者或多於兩者的組合。
  36. 如申請專利範圍第33至35項中任一項所述之套組,其中所述有機酸或無機酸選自由下述所組成的族群:乙酸、檸檬酸、乳酸、甲酸、琥珀酸、酒石酸、蘋果酸以及草酸。
  37. 如申請專利範圍第33至36項中任一項所述之套組,其中所述第一單位量是所述鉀化合物的量,且其中所述鉀化合物選自由下述所組成的族群中:醋酸鉀、乳酸鉀、甲酸鉀、檸檬酸鉀以及酒石酸氫鉀。
  38. 如申請專利範圍第33至37項中任一項所述之套組,其中所述第一單位量是所述氮化合物的量,且其中所述氮化合物是硝酸銨。
  39. 如申請專利範圍第33至38項中任一項所述之套組,其中所述第一單位量是所述鎂化合物的量,且其中所述鎂化合物是硫酸鎂。
  40. 如申請專利範圍第33至39項中任一項所述之套組,其中所述滋養物化合物包括: 包括K、P、N、Mg、S、Ca或所述微量滋養素的離子;以及 電性相反的離子,其中若所述第一單位量構成約0.5 M至2.0 M的滋養物濃度,則所述電性相反的離子並非除草劑。
  41. 如申請專利範圍第33至40項中任一項所述之套組,所述套組不包括嘉磷塞。
  42. 一種除草劑水溶液組成物,包括: 至少一種滋養物化合物,選自下述所組成的族群:鉀化合物、磷化合物、氮化合物、鎂化合物、硫化合物、鈣化合物、微量滋養素以及所述所列項中的兩者或多於兩者的組合,其中所述滋養物化合物包括滋養物,所述滋養物在所述除草劑水溶液組成物中的濃度為至少約0.5 M; 有機酸或無機酸;以及 佐劑, 其中所述組成物的pH為約4至約7。
  43. 如申請專利範圍第42項所述之除草劑水溶液組成物,其中所述有機酸或無機酸選自由下述所組成的族群:乙酸、檸檬酸、乳酸、甲酸、蘋果酸、琥珀酸、酒石酸以及草酸。
  44. 如申請專利範圍第42或43項所述之除草劑水溶液組成物,其中所述滋養物化合物是選自下述所組成的族群:鉀化合物、磷化合物、氮化合物、硫化合物、鈣化合物、微量滋養素以及所列項中的兩者或多於兩者的組合。
  45. 如申請專利範圍第42至44項中任一項所述之除草劑水溶液組成物,其中所述滋養物化合物是由下述者所組成的族群中選出的鉀鹽:醋酸鉀、乳酸鉀、甲酸鉀、檸檬酸鉀以及酒石酸氫鉀。
  46. 如申請專利範圍第42至44項中任一項所述之除草劑水溶液組成物,其中所述滋養物化合物是氮化合物,且其中所述氮化合物是硫酸銨。
  47. 如申請專利範圍第42或43項所述之除草劑水溶液組成物,其中所述滋養物是鎂,且其中所述鎂化合物為硫酸鎂。
  48. 如申請專利範圍第42至47項中任一項所述之除草劑水溶液組成物,其中所述滋養物的濃度為約0.5 M至2.5 M。
  49. 如申請專利範圍第42或48項所述之除草劑水溶液組成物,其中所述滋養物是檸檬酸鉀且所述有機酸或無機酸是冰醋酸,且其中檸檬酸鉀與冰醋酸的比率為約1莫耳:0.7莫耳至3.5莫耳乙酸。
  50. 如申請專利範圍第42至49項中任一項所述之除草劑水溶液組成物,其中所述滋養物化合物包括: 包括K、P、N、Mg、S、Ca或所述微量滋養素的離子;以及 電性相反的離子,其中所述電性相反的離子在各種量的所述組成物中並非除草劑。
  51. 如申請專利範圍第42至50項中任一項所述之除草劑水溶液組成物,其不含嘉磷塞。
  52. 如申請專利範圍第42至51項中任一項所述之除草劑水溶液組成物,其中所述佐劑包括界面活性劑。
  53. 如申請專利範圍第52至52項中任一項所述之除草劑水溶液組成物,其中所述佐劑包括保濕劑。
  54. 一種容器,含有0.5公升至10公升的如申請專利範圍第42至53項中任一項所述之除草劑水溶液組成物。
  55. 一種製備除草組成物的方法,包括: 使滋養物化合物與水接觸以達到至少0.5 M的滋養物濃度,由此形成滋養物水溶液,其中所述滋養物化合物包括滋養物,且其中所述滋養物化合物是選自下述所組成的族群:鉀化合物、磷化合物、氮化合物、鎂化合物、微量滋養素以及所列項中的兩者或多於兩者的組合; 使用有機酸或無機酸將所述滋養物水溶液的pH調節到約4至約7;以及 使佐劑與所述滋養物水溶液接觸, 由此製備除草組成物。
  56. 如申請專利範圍第55項所述之製備除草組成物的方法,其中所述有機酸或無機酸是由下述者所組成的族群中選出:乙酸、檸檬酸、乳酸、甲酸、蘋果酸、琥珀酸、酒石酸以及草酸。
  57. 如申請專利範圍第55或56項所述之製備除草組成物的方法,其中調節所述滋養物水溶液的pH為將pH調節到約4.5至5.5。
  58. 如申請專利範圍第55至57項中任一項所述之製備除草組成物的方法,其中所述滋養物濃度為約0.5 M至2.5 M。
  59. 如申請專利範圍第55至58項中任一項所述之製備除草組成物的方法,其中所述滋養物化合物選自由下述所組成的族群:鉀化合物、磷化合物、氮化合物、微量滋養素以及所列項中的兩者或多於兩者的組合。
  60. 如申請專利範圍第55至59項中任一項所述之製備除草組成物的方法,其中所述滋養物是鉀且所述鉀鹽選自由下述者所組成的族群:醋酸鉀、乳酸鉀、甲酸鉀、檸檬酸鉀以及酒石酸氫鉀。
  61. 如申請專利範圍第55至60項中任一項所述之製備除草組成物的方法,其中所述滋養物是氮且所述氮化合物是硝酸銨。
  62. 如申請專利範圍第55至61項中任一項所述之製備除草組成物的方法,其中所述滋養物是鎂且所述鎂化合物是硫酸鎂。
  63. 如申請專利範圍第1至32項中任一項所述之誘導植物藥害的方法,其中所述滋養物包括微量滋養素,且其中所述植物處於公共通道中、路側或不存在作物或觀賞植被之處。
  64. 如申請專利範圍第1至32項中任一項所述之誘導植物藥害的方法,其中所述滋養物包括常量滋養素,且其中所述植物處於存在作物或觀賞植被之處。
  65. 如申請專利範圍第1至32或55至62項中任一項所述之方法,其中所述佐劑包括界面活性劑、保濕劑或兩者。
  66. 如申請專利範圍第1至32或55至66項中任一項所述之方法,其中誘導所述植物的藥害包括全身藥害及局部藥害。
  67. 如申請專利範圍第1、3至32或55至66項中任一項所述之方法,其中所述藥害包括使所述植物乾化。
  68. 如申請專利範圍第67項所述之方法,其中所述植物是單季晚熟且常青的作物。
  69. 如申請專利範圍第67或68項所述之方法,其中所述植物選自由下述所組成的族群:棉花、馬鈴薯、大豆或用於產種的蔬菜。
  70. 如申請專利範圍第67項所述之方法,其中所述乾化在收穫接近所述植物的穀類作物之前。
  71. 如申請專利範圍第1、2、4至32或55至66項中任一項所述之方法,其中所述藥害包括灼燒活動。
  72. 如申請專利範圍第1至32或55至71項中任一項所述之方法,其中所述滋養物化合物不包括螯合鐵。
  73. 如申請專利範圍第1至32或55至71項中任一項所述之方法,其中所述滋養物化合物不包括鐵。
  74. 如申請專利範圍第33至41項中任一項所述之套組,其中所述佐劑包括界面活性劑、保濕劑或兩者。
  75. 如申請專利範圍第33至41或74項中任一項所述之套組,其中所述滋養物化合物不包括螯合鐵。
  76. 如申請專利範圍第33至41或74項中任一項所述之套組,其中所述滋養物化合物不包括鐵。
  77. 如申請專利範圍第42至53項中任一項所述之除草劑水溶液組成物,其中所述滋養物化合物不包括螯合鐵。
  78. 如申請專利範圍第42至53項中任一項所述之除草劑水溶液組成物,其中所述滋養物化合物不包括鐵。
  79. 如申請專利範圍第53項所述之除草劑水溶液組成物、如申請專利範圍第65項所述之方法或如申請專利範圍第74項所述之套組,其中所述保濕劑包括由下述所組成的族群中選出的糖:右旋糖、果糖、蔗糖或任何這些糖的組合。
TW107107364A 2017-03-09 2018-03-06 誘導植物藥害的方法、套組、除草劑水溶液組成物、容器及製備除草組成物的方法 TWI788329B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201762469087P 2017-03-09 2017-03-09
US62/469,087 2017-03-09
US201762609137P 2017-12-21 2017-12-21
US62/609,137 2017-12-21

Publications (2)

Publication Number Publication Date
TW201836473A true TW201836473A (zh) 2018-10-16
TWI788329B TWI788329B (zh) 2023-01-01

Family

ID=63446277

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107107364A TWI788329B (zh) 2017-03-09 2018-03-06 誘導植物藥害的方法、套組、除草劑水溶液組成物、容器及製備除草組成物的方法

Country Status (10)

Country Link
US (4) US10182572B2 (zh)
EP (1) EP3592722A4 (zh)
KR (2) KR102446026B1 (zh)
CN (1) CN110612278A (zh)
AU (2) AU2018230620B2 (zh)
CA (1) CA3054812A1 (zh)
MX (2) MX2019010465A (zh)
TW (1) TWI788329B (zh)
WO (1) WO2018164999A1 (zh)
ZA (2) ZA202006334B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018164999A1 (en) * 2017-03-09 2018-09-13 Belvedere Foliar LLC Post-emergence herbicide
US20220174960A1 (en) * 2018-12-21 2022-06-09 Stephen Reynold Ford Agricultural compositions and methods related thereto
AU2020226507A1 (en) 2019-02-20 2021-09-23 Sumitomo Chemical Company, Limited Clethodim compositions and methods of use thereof
US11497211B2 (en) * 2019-03-20 2022-11-15 Valent U.S.A., Llc Pesticidal compositions and methods of use thereof
CO2019009062A1 (es) * 2019-08-22 2019-08-30 Cote Gomez Luis Miguel Composición herbicida biodegradable que comprende tensoactivos aniónicos, alcoholes, componentes higroscópicos, ácidos orgánicos y micronutrientes
EP3864961A1 (en) * 2020-02-12 2021-08-18 Weexit B.V. Herbicidal composition and method for controlling invasive plant species
GB2598881A (en) * 2020-03-25 2022-03-23 Bionome Tech Limited Controlling the growth of vegetation
KR102327187B1 (ko) * 2021-05-14 2021-11-17 주식회사 삼성컴퍼니 미량비료를 이용한 제초제 조성물
WO2023154183A1 (en) * 2022-02-09 2023-08-17 Jeffrey Robbins Composition including effervescent agents, biostimulant, nutrient, and pesticide

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3023096A (en) 1957-06-20 1962-02-27 Durward O Guth Method for killing weeds
DE1812497C3 (de) 1967-12-13 1978-04-13 Ciba-Geigy Ag, Basel (Schweiz) N-Phosphinothioyl-thiomethyl-carbonyl-piperidine, Verfahren zu ihrer Herstellung und diese enthaltende Mittel
US3679392A (en) * 1969-06-18 1972-07-25 Union Oil Co Plant growth stimulated by a combination of glycolic acid and gibberellin
US3681478A (en) 1970-06-25 1972-08-01 Stauffer Chemical Co Oxime carbamate phosphate, phosphonate, phosphinate and phosphoroamidates
US3771994A (en) 1970-06-25 1973-11-13 Ppg Industries Inc Method of controlling weeds with a combination of an organic herbicide and potassium azide
US3799758A (en) 1971-08-09 1974-03-26 Monsanto Co N-phosphonomethyl-glycine phytotoxicant compositions
US4137065A (en) 1972-11-30 1979-01-30 Sumitomo Chemical Company, Ltd. Amido phosphorothiolate pesticide
US3983116A (en) 1973-04-05 1976-09-28 E. I. Du Pont De Nemours And Company Herbicidal triazines
DE2604224A1 (de) 1976-02-04 1977-08-11 Hoechst Ag Herbizide mittel
US4453965A (en) 1977-07-13 1984-06-12 Patel Natu R N-Isopropylcarbanilylmethyl dithiophosphates as pre-emergent herbicides
US4456464A (en) 1982-05-19 1984-06-26 Zoecon Corporation Phenoxy- and pyridyloxy-phenoxyalkyl phosphinates and related sulfur compounds for weed control
US4994101A (en) 1982-11-17 1991-02-19 Union Oil Company Of California Systemic herbicides and methods of use
US4881967A (en) 1986-12-10 1989-11-21 E. I. Du Pont De Nemours And Company Heterocyclic 2,3-dihydrobenzofuran herbicides
US4921527A (en) 1987-07-31 1990-05-01 E. I. Du Pont De Nemours And Company Herbicidal sulfonamides
US6436165B1 (en) * 1988-11-14 2002-08-20 Kamterter Ii Llc Foliar phosphate fertilizers
AU7165591A (en) 1990-01-22 1991-08-05 E.I. Du Pont De Nemours And Company Herbicidal sulfonylureas
RU94046249A (ru) 1992-06-16 1996-10-27 Е.И.Дюпон де Немур энд Компани (US) Сухие сыпучие композиции для сельского хозяйства на основе глифосата, изготовленные без сушки конечного продукта
US5514200B1 (en) * 1994-02-07 1997-07-08 Univ Formulation of phosphorus fertilizer for plants
WO1996013977A2 (en) 1994-11-04 1996-05-17 E.I. Du Pont De Nemours And Company Herbicidal mixtures
US5917117A (en) * 1996-03-21 1999-06-29 Phytotech, Inc. Inducing hyperaccumulation of metals in plant shoots
US5759226A (en) * 1996-07-15 1998-06-02 Platte Chemical Company Neutral metal alkanoate micronutrient solutions and method of manufacturing same
IT1290062B1 (it) 1997-03-13 1998-10-19 Isagro Ricerca Srl Amminosolfoniluree ad attivita' erbicida
AU3994499A (en) 1998-05-14 1999-11-29 Kenneth Eskins Seed film coating with a starch-based polymer
MY158895A (en) * 2000-05-19 2016-11-30 Monsanto Technology Llc Potassium glyphosate formulations
US20030096708A1 (en) 2001-03-02 2003-05-22 Monsanto Technology Llc Pesticide concentrates containing etheramine surfactants
US20030044382A1 (en) * 2001-05-11 2003-03-06 Selvig Thomas A. Biologic-chemical herbicide compositions and methods of use
US6972273B2 (en) * 2002-03-01 2005-12-06 W. Neudorff Gmbh Kg Composition and method for selective herbicide
AU2002950614A0 (en) * 2002-08-07 2002-09-12 Jens Birger Nilsson A flame retardant
US9045720B2 (en) 2004-12-30 2015-06-02 Rhodia Chimie Herbicidal composition comprising an aminophosphate or aminophosphonate salt, a betaine and an amine oxide
JP2009511416A (ja) * 2005-10-14 2009-03-19 アーチャー・ダニエルズ・ミッドランド カンパニー 肥料組成物および使用方法
WO2008094568A2 (en) * 2007-01-31 2008-08-07 Valent Biosciences Corporation Enhanced abscisic acid analog and fertilizer performance
WO2008150882A2 (en) * 2007-05-30 2008-12-11 Fmc Corporation Method for post-emergence crabgrass control
WO2009075591A1 (en) 2007-12-13 2009-06-18 Donaghys Industries Limited Herbicidal formulations for combinations of dimethylamine and potassium salts of glyphosate
JP4394151B2 (ja) * 2008-06-02 2010-01-06 宮田工業株式会社 消火剤
UA104883C2 (uk) 2009-01-09 2014-03-25 Сінгента Партісіпейшнс Аг Стабілізована агрохімічна композиція
RU2621047C2 (ru) 2012-04-02 2017-05-31 ДАУ АГРОСАЙЕНСИЗ ЭлЭлСи Ароматические сложные эфиры, регулирующие снос жидких сельскохозяйственных препаратов при распылении
US8835355B2 (en) * 2013-01-15 2014-09-16 Stuart Jennings Low-concentration phytotoxic micronutrient compounds for selective control of invasive plant species
AU2014202873A1 (en) * 2013-05-28 2014-12-18 D & J Akers Pty Ltd Improved herbicide and fertiliser
WO2015094885A1 (en) 2013-12-20 2015-06-25 Dow Agrosciences Llc Herbicidal compositions containing flumioxazin, aminopyralid and fluroxypyr or 2,4-d
TW201613467A (en) 2014-02-10 2016-04-16 Dow Agrosciences Llc Stable solid herbicide delivery systems
CN103819270B (zh) * 2014-02-24 2016-05-25 陕西省蒲城美尔果农化有限责任公司 一种用于植物增强光合作用的叶面肥及其制备方法
EP3110776A4 (en) * 2014-02-24 2017-11-22 Thomas T. Yamashita Fertilizer compositions comprising a cellulose nutrient component and methods for using same
CN104524736A (zh) * 2014-12-08 2015-04-22 赵双龙 一种对人体具高安全性与高灭火性能的防火功能的灭火剂
US9420781B1 (en) * 2015-02-06 2016-08-23 Lamberti Spa Agrochemical adjuvant concentrate for herbicides
US10351481B2 (en) 2015-03-10 2019-07-16 Compass Minerals Manitoba Inc. Potassium-based starter fertilizer
WO2017044644A1 (en) * 2015-09-08 2017-03-16 Nachurs Alpine Solutions, Corp. Fertilizer for salt-sensitive crops
WO2018164999A1 (en) * 2017-03-09 2018-09-13 Belvedere Foliar LLC Post-emergence herbicide

Also Published As

Publication number Publication date
TWI788329B (zh) 2023-01-01
AU2023203158A1 (en) 2023-06-15
MX2019010465A (es) 2020-01-20
KR102362047B1 (ko) 2022-02-11
AU2018230620B2 (en) 2023-03-09
ZA202310138B (en) 2024-03-27
US20230026292A1 (en) 2023-01-26
AU2018230620A1 (en) 2019-10-17
CN110612278A (zh) 2019-12-24
KR102446026B1 (ko) 2022-09-22
EP3592722A4 (en) 2020-12-30
US10182572B2 (en) 2019-01-22
MX2021010867A (es) 2021-10-13
CA3054812A1 (en) 2018-09-13
US20200221702A1 (en) 2020-07-16
US20180255782A1 (en) 2018-09-13
EP3592722A1 (en) 2020-01-15
WO2018164999A1 (en) 2018-09-13
KR20190129897A (ko) 2019-11-20
US20190082698A1 (en) 2019-03-21
KR20220025134A (ko) 2022-03-03
US10595534B2 (en) 2020-03-24
ZA202006334B (en) 2022-01-26

Similar Documents

Publication Publication Date Title
TWI788329B (zh) 誘導植物藥害的方法、套組、除草劑水溶液組成物、容器及製備除草組成物的方法
US10793481B2 (en) Methods for treating a plant exposed to a phytotoxicant
RU2125796C1 (ru) Способ промотирования роста растений и композиция, промотирующая рост растений
BR112020021912A2 (pt) compostos de tetrapirrol macrocíclico, compostos e métodos para aumentar resistência a estresse abiótico em plantas
US20220274893A1 (en) Biostimulant agent for treating plants and/or plant seed
AU2023248153A1 (en) Composition and method of treating bacterial and viral pathogens in plants
JP2002159222A (ja) 植物用分けつ促進剤および植物の分けつ促進方法
Srivastava et al. Foliar fertilization in citrus–A review
US6911415B1 (en) Fungicidal compositions containing organic compositions derived from natural organic materials, phosphorous acid, phosphite salts and phosphate salts, methods of making same and methods of applying same to plants
RU2738483C1 (ru) Пестицид и агрохимикат на основе хелатной формы фульвовой кислоты
AU2019250264B2 (en) Weed Control Agents
US20240215585A1 (en) Post-emergence herbicide
BG67206B1 (bg) Течен листен тор и метод за дозирането му
EP2434887B1 (en) Plant nutriments
Singh et al. Effect of Adjuvants and their Concentration on Rainfastness of Glyphosate