TW201825917A - Probe card assembly having die-level and pin-level compliance, and associated systems and methods - Google Patents

Probe card assembly having die-level and pin-level compliance, and associated systems and methods Download PDF

Info

Publication number
TW201825917A
TW201825917A TW106138826A TW106138826A TW201825917A TW 201825917 A TW201825917 A TW 201825917A TW 106138826 A TW106138826 A TW 106138826A TW 106138826 A TW106138826 A TW 106138826A TW 201825917 A TW201825917 A TW 201825917A
Authority
TW
Taiwan
Prior art keywords
dut
dut interface
wafer
contact
individual
Prior art date
Application number
TW106138826A
Other languages
Chinese (zh)
Inventor
瑞 萊理 桑德拜
克勞迪歐 馬汀尼茲
克里斯多夫 T 連恩
普萊薩那 瑞歐 琪圖瑞
艾莉絲坦爾 尼可拉斯 史柏克
道格拉斯 A 普萊斯頓
Original Assignee
美商川斯萊緹公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商川斯萊緹公司 filed Critical 美商川斯萊緹公司
Publication of TW201825917A publication Critical patent/TW201825917A/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • G01R1/07307Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card
    • G01R1/07364Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card with provisions for altering position, number or connection of probe tips; Adapting to differences in pitch
    • G01R1/07378Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card with provisions for altering position, number or connection of probe tips; Adapting to differences in pitch using an intermediate adapter, e.g. space transformers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/04Housings; Supporting members; Arrangements of terminals
    • G01R1/0408Test fixtures or contact fields; Connectors or connecting adaptors; Test clips; Test sockets
    • G01R1/0491Test fixtures or contact fields; Connectors or connecting adaptors; Test clips; Test sockets for testing integrated circuits on wafers, e.g. wafer-level test cartridge
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • G01R1/07307Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card
    • G01R1/0735Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card arranged on a flexible frame or film

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

Systems and methods for testing semiconductor wafers are disclosed herein. In one embodiment, an apparatus for testing dies of a semiconductor wafer includes: a tester-side printed circuit board (PCB); a wafer-side support plate having a first surface facing the tester-side PCB and a second surface facing away from the first face; and a plurality of individual probe cards (DUT-lets) supported by the wafer-side support plate. Each individual DUT-let has a DUT-let contactor that carries a plurality of contact structures for contacting at least one die of the semiconductor wafer. The individual DUT-let contactors are individually compliant with respect to the semiconductor wafer, and wherein the individual DUT-let contactors are separated.

Description

具有晶粒級及接針級順應性之探針卡總成及其相關聯系統與方法Probe card assembly with grain level and pin level compliance and associated system and method thereof

本發明係關於用於測試半導體晶圓之探針卡總成、相關聯系統與方法,且更特定而言係關於具有晶粒級及接針級順應性之探針卡總成及其相關聯系統與方法。The present invention relates to probe card assemblies, associated systems and methods for testing semiconductor wafers, and more particularly to probe card assemblies having grain level and pin level compliance and their associated System and method.

積體電路用於一寬廣範圍之產品中。積體電路之價格持續降低且效能持續增強,普遍存在於在現代電子裝置中。效能/成本比率之此等提高係至少部分地小型化,此使得能夠利用每新一代之積體電路製造技術自一晶圓生產出更多半導體晶粒。此外,一半導體晶粒上之信號及電源/接地觸點之總數目通常隨新的更複雜之晶粒設計而增加。 在給客戶推出半導體晶粒之前,基於一統計樣本或藉由測試每一晶粒而測試積體電路之效能。對半導體晶粒進行一電測試通常包含:透過電源/接地觸點給晶粒通電、將信號傳輸至晶粒之輸入觸點及在晶粒之輸出觸點處量測所得信號。因此,在電測試期間,晶粒上之至少某些觸點必須電接觸以將晶粒連接至電源及測試信號。 圖1A及圖1B分別係根據先前技術的用於測試半導體晶圓之一探針卡110之一剖面圖及一仰視圖。在操作中,探針卡110接觸一晶圓140,使得探針接針116之一陣列與晶圓之晶粒145 (亦被稱為「受測試裝置」或「DUT」)上之晶粒觸點148 (例如,墊、焊球、銅柱或穿矽導通體(TSV))之對應陣列電接觸。接下來,一測試器150將電測試序列(例如,測試向量)透過纜線130及探針卡110發送至晶圓140之一或多個晶粒145之晶粒觸點148。回應於此等測試序列,受測試晶粒之積體電路產生輸出信號,透過探針卡110將該等輸出信號路由回至晶圓測試器150以供分析及判定一特定晶粒是否通過測試。接下來,測試接觸器移步至並行地被測試之另一晶粒或另一群組之晶粒145,且測試繼續直至測試完整個晶圓為止。一旦測試了整個晶圓140,便沿著晶圓蝕道146將晶圓上之晶粒單粒化,未通過測試之晶粒被摒棄,且封裝通過測試之晶粒並推出給客戶。 探針卡110在測試器150與晶圓140之受測試晶粒145之間為信號/電力提供一路徑。信號/電力通過一印刷電路板(PCB) 114、通過連接PCB 114與一空間變換器112之一接觸結構120、通過一空間變換器112之佈線層113而進一步到達探針卡110之探針接針116,探針接針116在操作中接觸DUT。 藉由一固持器126將空間變換器112固持在適當位置。螺釘128可調整空間變換器112相對於PCB 114之一相對位置。舉例而言,螺釘128可改良空間變換器112與PCB 114之間的平行性以改良探針接針116與受測試晶粒145之間的接觸。 在諸多應用中,探針卡110與晶圓140之晶粒之間的一可靠接觸需要晶圓與探針卡之間的一相對高接觸力。而此接觸力可使探針卡110彎曲。通常,習用空間變換器112與PCB 114相比不易彎曲,此乃因空間變換器小於PCB,且亦由比PCB 114之材料(例如,具有一環氧樹脂黏結劑之編織玻璃纖維布)更具剛性之一材料(例如,陶瓷)製成。因此,習用探針卡包含用以限制PCB 114彎曲之加強材122a/122b及螺釘124。 通常,愈來愈多數目個晶粒觸點分佈於一不斷減小之晶粒面積上方,此致使觸點變小,而該等觸點由更小距離(例如,一更小間距)間隔開。此外,測試接觸器之接觸接針之特性直徑通常隨著半導體晶粒上之接觸結構之一特性尺寸而按比例變化。因此,隨著晶粒上之接觸結構變得愈來愈小及/或具有一更小間距,測試接觸器之接觸接針亦變得愈來愈小。然而,很難顯著地減小測試接觸器之接觸接針之直徑及間距,(舉例而言)此乃因很難機械加工並組裝如此小之零件,此會導致良率低且測試接觸器之間的效能不一致。 圖2A係根據先前技術的用於測試半導體晶圓之一測試堆疊250之一部分之一分解圖。測試堆疊250將信號及電力自一測試器(未展示)路由至一晶圓140或承載一或多個受測試裝置(DUT) 145之其他基板,且然後將來自DUT (例如,半導體晶粒)之輸出信號傳送回至測試器,以供分析及判定關於一個別DUT之效能(例如,DUT是否適合於封裝並推出給客戶)。 將信號及電力自測試器通過纜線239而路由至一測試器平移器界面板(TTI板) 230、至一晶圓平移器210且進一步至晶圓140上之半導體晶粒。由一測試接觸器基板232承載之導電跡線238可將纜線239電連接至TTI基板232之相對側上之觸點236。在某些實施例中,TTI基板232可係一印刷電路板(PCB)。在操作中,TTI板230可接觸一晶圓平移器210之一查詢側213,如箭頭A所指示。在至少某些實施例中,相對大之查詢側接觸結構214可改良TTI板230之對應觸點236之對準。查詢側213處之接觸結構214透過一晶圓平移器基板212之導電跡線218與平移器210之一晶圓側215上之相對小晶圓側接觸結構216電連接。晶圓側接觸結構216之大小及/或間距適合於接觸晶圓220之對應晶粒觸點148。晶粒觸點148可係晶粒上之相對平坦表面、焊球、銅柱或由晶粒承載之其他接觸結構。箭頭B指示晶圓平移器210與晶圓140之一作用側125上之晶粒觸點148接觸之一移動。如上文所闡釋,來自測試器之信號及電力可對晶圓140之DUT施加影響,且來自受測試DUT之輸出信號可被路由回至測試器以供分析及判定關於DUT是否按照規範操作。 一晶圓卡盤240支撐晶圓140。箭頭C指示晶圓140與晶圓卡盤240配接之方向。在操作中,可使用(例如)真空式或機械式夾緊來將晶圓140固持成抵靠晶圓卡盤240。在某些情形中,晶圓平移器210之晶圓側上之接觸結構216可同時接觸晶圓140上之所有或幾乎所有晶粒145a、145b等。在某些情形中,晶圓平移器210之直徑可通常對應於晶圓140之直徑,或晶圓平移器可具有比對應受測試晶圓大之直徑。 圖2B及圖2C分別係根據當前所揭示技術之實施例而構形之一晶圓平移器之部分地示意性俯視圖及仰視圖。圖2B圖解說明晶圓平移器210之查詢側213。毗鄰查詢側接觸結構214之間的距離(例如,間距)在水平方向上表示為P1 且在垂直方向上表示為P2 。所圖解說明之查詢側接觸結構214具有一寬度D1 及一高度D2 。接觸結構214之間距、寬度及高度可統稱為「特性尺寸」。在不同實施例中,查詢側接觸結構214可係方形、矩形、圓形或其他形狀。此外,查詢側接觸結構214可具有一均勻間距(例如,跨越晶圓平移器10,P1 與P2 相等)或一不均勻間距。 圖2C圖解說明晶圓平移器210之晶圓側215。在某些實施例中,毗鄰晶圓側接觸結構216之間的間距在水平方向上可係p1 且在垂直方向上可係p2 。晶圓側接觸結構216之寬度及高度(「特性尺寸」)表示為d1 及d2 。在某些實施例中,晶圓側接觸結構216可係觸接晶圓140上之對應晶粒觸點之接針。線219對應於將晶圓140之個別晶粒彼此分離之晶圓蝕道。通常,查詢側接觸結構214之大小/間距大於晶圓側接觸結構216之大小/間距。因此,改良測試接觸器與晶圓平移器之間的對準及接觸。 然而,當接觸晶粒位於一相對大晶圓140上方(例如,位於具有150 mm、200 mm或300 mm直徑之一晶圓上方)時,可難以維持晶粒觸點148與晶圓側接觸結構216之間的始終如一之接觸。類似地,可難以維持TTI板230上之觸點236與對應查詢側接觸結構214之間的始終如一接觸。舉例而言,晶圓平移器之傾斜或起伏(波紋)可對某些觸點對214/236及/或216/148壓迫太過,而某些其他接觸結構不具有足夠接觸力或根本不接觸。通常,隨著晶圓140變得愈來愈大,且晶粒觸點148變得愈來愈小,觸點之一致性及可靠性降級。因此,需要有成本效益之測試接觸器,其可提供與晶圓上中所有受測試裝置(DUT)之始終如一接觸。Integrated circuits are used in a wide range of products. The price of integrated circuits continues to decrease and performance continues to increase, and is ubiquitous in modern electronic devices. These improvements in performance/cost ratios are at least partially miniaturized, which enables the production of more semiconductor dies from a single wafer using each new generation of integrated circuit fabrication techniques. In addition, the total number of signals and power/ground contacts on a semiconductor die typically increases with new and more complex die designs. Before the semiconductor die is introduced to the customer, the performance of the integrated circuit is tested based on a statistical sample or by testing each die. Performing an electrical test on a semiconductor die typically involves energizing the die through the power/ground contacts, transmitting the signal to the input contacts of the die, and measuring the resulting signal at the output contacts of the die. Therefore, during electrical testing, at least some of the contacts on the die must be in electrical contact to connect the die to the power supply and test signal. 1A and 1B are a cross-sectional view and a bottom view, respectively, of a probe card 110 for testing a semiconductor wafer in accordance with the prior art. In operation, the probe card 110 contacts a wafer 140 such that an array of probe pins 116 and the die of the wafer 145 (also referred to as a "tested device" or "DUT") A corresponding array of points 148 (eg, pads, solder balls, copper posts, or through-turn vias (TSVs)) are in electrical contact. Next, a tester 150 transmits an electrical test sequence (eg, a test vector) to the die contact 148 of one or more of the dies 145 via the cable 130 and the probe card 110. In response to the test sequences, the integrated circuit of the tested die produces an output signal that is routed back to the wafer tester 150 via the probe card 110 for analysis and determination of whether a particular die has passed the test. Next, the test contactor is moved to another die or another group of die 145 that is tested in parallel, and the test continues until the entire wafer is tested. Once the entire wafer 140 has been tested, the wafers on the wafer are singulated along the wafer etch 146, the untested dies are discarded, and the package passes through the tested dies and is introduced to the customer. Probe card 110 provides a path for signal/power between tester 150 and tested die 145 of wafer 140. The signal/power is further passed through a printed circuit board (PCB) 114, through a connection PCB 120 to a spatial converter 112 contact structure 120, through a spatial converter 112 wiring layer 113 to further reach the probe card 110 probe connection Needle 116, probe pin 116 contacts the DUT during operation. The space transformer 112 is held in place by a holder 126. The screw 128 can adjust the relative position of the space transformer 112 relative to one of the PCBs 114. For example, the screws 128 may improve the parallelism between the space transformer 112 and the PCB 114 to improve contact between the probe pins 116 and the tested die 145. In many applications, a reliable contact between the probe card 110 and the die of the wafer 140 requires a relatively high contact force between the wafer and the probe card. This contact force can cause the probe card 110 to bend. In general, the conventional space transformer 112 is less flexible than the PCB 114 because the space transformer is smaller than the PCB and is also more rigid than the material of the PCB 114 (for example, a woven fiberglass cloth having an epoxy resin binder). Made of one of the materials (for example, ceramic). Therefore, the conventional probe card includes reinforcing members 122a/122b and screws 124 for limiting the bending of the PCB 114. Typically, an increasing number of die contacts are distributed over a decreasing die area, which causes the contacts to become smaller, and the contacts are spaced apart by a smaller distance (eg, a smaller pitch) . In addition, the characteristic diameter of the contact pins of the test contactor typically varies proportionally with the characteristic dimensions of one of the contact structures on the semiconductor die. Therefore, as the contact structure on the die becomes smaller and/or has a smaller pitch, the contact pins of the test contactor become smaller and smaller. However, it is difficult to significantly reduce the diameter and spacing of the contact pins of the test contactor, for example, because it is difficult to machine and assemble such small parts, which results in low yield and test contactors. The performance is inconsistent. 2A is an exploded view of one portion of a test stack 250 for testing a semiconductor wafer in accordance with the prior art. Test stack 250 routes signals and power from a tester (not shown) to a wafer 140 or other substrate carrying one or more devices under test (DUT) 145, and then from a DUT (eg, a semiconductor die) The output signal is sent back to the tester for analysis and determination of the performance of a different DUT (eg, whether the DUT is suitable for packaging and is available to the customer). Signal and power from the tester are routed through cable 239 to a tester translator interface board (TTI board) 230, to a wafer translator 210 and further to semiconductor dies on wafer 140. Conductive traces 238 carried by a test contactor substrate 232 can electrically connect the cable 239 to the contacts 236 on opposite sides of the TTI substrate 232. In some embodiments, the TTI substrate 232 can be a printed circuit board (PCB). In operation, the TTI board 230 can contact one of the interrogation sides 213 of a wafer translator 210, as indicated by arrow A. In at least some embodiments, the relatively large interrogation side contact structure 214 can improve the alignment of the corresponding contacts 236 of the TTI board 230. Contact structure 214 at inquiry side 213 is electrically coupled to relatively small wafer side contact structures 216 on wafer side 215 of one of translators 210 through conductive traces 218 of a wafer translator substrate 212. The wafer side contact structures 216 are sized and/or spaced to contact corresponding die contacts 148 of the wafer 220. The die contacts 148 may be relatively flat surfaces on the die, solder balls, copper posts, or other contact structures carried by the die. Arrow B indicates that one of the wafer translator 210 contacts one of the die contacts 148 on the active side 125 of the wafer 140. As explained above, the signals and power from the tester can affect the DUT of the wafer 140, and the output signal from the tested DUT can be routed back to the tester for analysis and determination as to whether the DUT is operating according to specifications. A wafer chuck 240 supports the wafer 140. Arrow C indicates the direction in which wafer 140 is mated with wafer chuck 240. In operation, the wafer 140 can be held against the wafer chuck 240 using, for example, vacuum or mechanical clamping. In some cases, the contact structure 216 on the wafer side of the wafer translator 210 can simultaneously contact all or nearly all of the dies 145a, 145b, etc. on the wafer 140. In some cases, the diameter of the wafer translator 210 may generally correspond to the diameter of the wafer 140, or the wafer translator may have a larger diameter than the corresponding wafer under test. 2B and 2C are partial schematic top and bottom views, respectively, of a wafer translator in accordance with an embodiment of the presently disclosed technology. FIG. 2B illustrates the query side 213 of the wafer translator 210. The distance (eg, pitch) between adjacent query side contact structures 214 is represented as P 1 in the horizontal direction and P 2 in the vertical direction. The illustrated query side contact structure 214 has a width D 1 and a height D 2 . The distance, width and height of the contact structures 214 may be collectively referred to as "characteristic dimensions". In various embodiments, the query side contact structure 214 can be square, rectangular, circular, or other shape. Additionally, the query side contact structure 214 may have a uniform pitch (e.g., across the wafer translator 10, P 1 and P 2 are equal) or a non-uniform spacing. FIG. 2C illustrates wafer side 215 of wafer translator 210. In certain embodiments, the distance 216 between adjacent contact structures on the wafer side in the horizontal direction and may be line-based p 1 p 2 in the vertical direction. The width and height ("characteristic size") of the wafer side contact structure 216 are expressed as d 1 and d 2 . In some embodiments, the wafer side contact structure 216 can contact the pins of the corresponding die contacts on the wafer 140. Line 219 corresponds to a wafer etch that separates individual dies of wafer 140 from each other. Generally, the size/pitch of the query side contact structure 214 is greater than the size/pitch of the wafer side contact structure 216. Therefore, the alignment and contact between the test contactor and the wafer translator are improved. However, when the contact die is over a relatively large wafer 140 (eg, over a wafer having a 150 mm, 200 mm, or 300 mm diameter), it may be difficult to maintain the die contact 148 and wafer side contact structures. Consistent contact between 216. Similarly, it may be difficult to maintain consistent contact between the contacts 236 on the TTI board 230 and the corresponding interrogation side contact structures 214. For example, the tilt or undulation (ripple) of the wafer translator may overstress some of the contact pairs 214/236 and/or 216/148, while some other contact structures do not have sufficient or no contact at all. . Generally, as the wafer 140 becomes larger and larger, and the die contacts 148 become smaller and smaller, the consistency and reliability of the contacts are degraded. Therefore, there is a need for cost effective test contactors that provide consistent contact with all of the devices under test (DUT) on the wafer.

在一項實施例中,一種用於測試一半導體晶圓之晶粒之設備包括:一測試器側印刷電路板(PCB);一晶圓側支撐板,其具有面向該測試器側PCB之一第一表面及背對該第一面之一第二表面;及複數個個別探針卡(DUT接口(DUT-let)),其由該晶圓側支撐板支撐,每一個別DUT接口具有一DUT接口接觸器,該DUT接口接觸器承載用於接觸該半導體晶圓之至少一個晶粒之複數個接觸結構,其中該等個別DUT接口接觸器相對於該半導體晶圓而個別地具備順應性,且其中該等個別DUT接口接觸器係分離的。 在另一實施例中,一種用於測試一半導體晶圓之方法包括:將一探針卡總成對準至面向該半導體晶圓,其中該探針卡總成包括複數個個別探針卡(DUT接口),且其中每一DUT接口具有承載複數個接觸結構之一DUT接口接觸器;利用該複數個DUT接口接觸該半導體晶圓之複數個晶粒;及測試該半導體晶圓之該等晶粒,其中該等個別DUT接口接觸器相對於該半導體晶圓而個別地具備順應性,且其中該等個別DUT接口接觸器係分離的。In one embodiment, an apparatus for testing a die of a semiconductor wafer includes: a tester side printed circuit board (PCB); a wafer side support board having one of the test side PCBs facing the tester a first surface and a second surface facing away from the first surface; and a plurality of individual probe cards (DUT-let) supported by the wafer side support plate, each individual DUT interface having a a DUT interface contactor carrying a plurality of contact structures for contacting at least one die of the semiconductor wafer, wherein the individual DUT interface contactors are individually compliant with respect to the semiconductor wafer, And wherein the individual DUT interface contactors are separated. In another embodiment, a method for testing a semiconductor wafer includes aligning a probe card assembly to face the semiconductor wafer, wherein the probe card assembly includes a plurality of individual probe cards ( a DUT interface), and each of the DUT interfaces has a DUT interface contactor carrying a plurality of contact structures; contacting the plurality of dies of the semiconductor wafer with the plurality of DUT interfaces; and testing the crystals of the semiconductor wafer Particles, wherein the individual DUT interface contactors are individually compliant with respect to the semiconductor wafer, and wherein the individual DUT interface contactors are separate.

此申請案主張以下美國臨時申請案之權益:2016年11月10日提出申請之第62/420116號、2017年2月3日提出申請之第62/454420號、2017年4月12日提出申請之第62/484750號、2017年4月13日提出申請之第62/485104號、2017年7月17日提出申請之第62/533469號及2017年10月17日提出申請之第62/573507號,上述申請案特此以其全文引用方式併入。 下文闡述代表性探針卡總成及相關聯方法之數項實施例之具體細節。熟習相關技術者亦將理解,發明性技術可具有額外實施例,且可在無下文參考圖3至圖25所闡述之實施例之數個細節之情況下實踐該技術。 發明性技術大體而言係關於半導體晶圓測試裝備。更特定而言,本技術係關於用於使用探針卡總成來接觸(「探測」)半導體晶圓之晶粒之方法及系統。在某些實施例中,一探針卡總成包含用於接觸半導體晶圓上之受測試晶粒(DUT)之多個個別探針卡。一個別探針卡(亦被稱為「DUT接口」)可接觸矽晶圓之一或多個晶粒。 在某些實施例中,DUT接口具有晶粒級及接針級順應性。舉例而言,個別DUT接口(亦即,DUT接口接觸器)可個別地樞轉以提供順應性及/或與晶圓上之個別晶粒之更好接觸。通常,個別探針卡DUT接口之個別樞轉可改良抵靠晶圓之對應晶粒之X-Y及垂直對準。此外,DUT接口之接針與個別晶粒之觸點之間的一橫向運動(亦被稱為一「擦磨(scrub)」)可改良DUT接口之接針與晶粒之觸點之間的電接觸。在某些實施例中,DUT接口接觸器之樞軸可係不對稱的以改良擦磨。在某些實施例中,DUT接口之垂直位置(亦即,Z位置或DUT接口距矽晶圓之距離)亦可係可調整的。通常,一個別DUT接口之接針具有某些垂直及某些橫向接針級順應性。 在某些實施例中,DUT接口可承載用於信號/電力調節之電組件(例如,電容器、電阻器、主動電路等)。此外,接近於DUT放置之電組件可執行通常由測試器執行之某些功能。舉例而言,測試向量可儲存於由DUT接口承載之記憶體晶片上,且此等向量可以相對小之返程延遲執行測試,此乃因與DUT與測試器之間的長信號路徑相比DUT與電組件之間的信號路徑較短。來自個別DUT接口之信號可被路由通過其對應個別接觸器(例如,撓性印刷電路板(PCB))到達探針卡總成之共同PCB,且進一步到達測試器。 圖3係根據當前所揭示技術之實施例而構形之一探針卡總成3000之一仰視等角視圖。所圖解說明之探針卡總成3000包含面向半導體晶圓(未展示)上之晶粒之多個個別探針卡(DUT接口) 700。一晶圓側支撐板600為個別DUT接口700提供機械支撐。一PCB 500為晶圓之晶粒(DUT)與測試器之間的信號/電力提供路由路徑。在操作中,一個別DUT接口700可接觸(「探測」)矽晶圓之一個或數個晶粒。 圖4係根據當前所揭示技術之實施例而構形之探針卡總成3000之一俯視等角視圖。一外加強材300 (在產業中有時被稱為一「蛛足架」)可為探針卡總成3000之元件提供結構支撐。在某些實施例中,外加強材300可由不銹鋼或不變鋼製成。探針卡總成3000之元件可至少部分地藉由緊固件310保持在一起。 圖5係根據當前所揭示技術之實施例之探針卡總成3000之一側視剖面圖。通常,在測試開始之前,將外加強材300附接至一探針器(例如,至探針器之一頂板)。在操作中,探針器卡盤使半導體晶圓140與探針卡總成3000之個別DUT接口700接觸以建立測試器與半導體晶圓140之晶粒之間的電路徑。 在某些實施例中,每一DUT接口700面向半導體晶圓140之一個晶粒145。在其他實施例中,一個DUT接口700可並行地測試兩個晶粒145、並行地測試三個晶粒145等。在某些實施例中,DUT接口700可散佈於探針卡總成3000上,使得(舉例而言) DUT接口700觸及半導體晶圓140之每隔一個晶粒145。因此,整個半導體晶圓140係以兩個步驟(亦被稱為「晶粒觸及(touch down)」)進行測試,方式係在各次晶粒觸及之間將探針卡總成3000移步一個晶粒。類似地,具有觸接半導體晶圓140之每三個晶粒145之DUT接口700之探針卡總成3000分三步測試整個半導體晶圓。面向半導體晶圓140之晶粒145之DUT接口700中其他組合亦係可能的。 在所圖解說明實施例中,晶圓側支撐板600結構性地支撐DUT接口700。在某些實施例中,晶圓側支撐板600可由不變鋼、不銹鋼、陶瓷或其他材料製成。在某些實施例中,不變鋼(鎳鐵)合金可具有低熱膨脹係數(CTE)或可與矽晶圓自身之CTE相媲美之一CTE。因此,熱探針卡總成3000與矽晶圓140之間的不匹配被減小。 PCB 500在半導體晶圓140之受測試晶粒(DUT) 145與測試器之間為信號及電力提供路由路徑。PCB 500可由一支承板400且進一步由外加強材300結構性地支撐。在某些實施例中,支承板400由金屬或陶瓷製成。支承板400可具有用以自DUT接口700至測試器對纜線或其他導體進行佈線之開口。 圖6係圖5中所展示之探針卡總成3000之一詳細視圖。所圖解說明之探針卡總成3000包含DUT接口700、晶圓側支撐板600、測試器側PCB 500、支承板400及外加強材300。DUT接口700面向半導體晶圓140之受測試晶粒145。在操作中,接觸結構712接觸受測試晶粒145之接觸墊(或其他接觸結構)。在某些實施例中,半導體晶圓140之所有晶粒145可受到其對應DUT接口700同時接觸。在其他實施例中,半導體晶圓140之一子組晶粒145受到其對應DUT接口700同時接觸。在不同實施例中,接觸結構712可係接針、微機電系統(MEMS)或其他電接觸結構。圖7中展示DUT接口700之細節。 圖7係圖6中所展示之DUT接口700之一詳細視圖。在某些實施例中,DUT接口700包含承載接觸結構712之一佈線基板710。佈線基板710可係具有電跡線之一基板,舉例而言,一PCB (例如,亦被稱為一「撓曲件」之一相對薄撓性PCB)、一陶瓷基板、一玻璃基板、一矽基板或具有電跡線之其他可平坦化且可拋光材料。 在某些實施例中,佈線基板710承載用於接觸DUT之接觸結構712。佈線基板710可承載用於信號/電力調節之電組件714 (例如,電容器、電阻器、記憶體、主動電路等)。在某些應用中,當電組件714放置成相對接近於受測試晶粒(DUT)時,DUT之可測試性得以改良。 在某些實施例中,一DUT接口加強材730結構性地支撐佈線基板710。一黏合組件720可將DUT接口加強材730附接至佈線基板710。DUT接口加強材730、黏合組件720、接觸結構712及佈線基板710承載接觸結構712之部分統稱為一DUT接口接觸器709。在某些實施例中,一環架740及一圓頂750抵靠晶圓側支撐板600而支撐DUT接口。一黏合劑(未展示)可連接環架740與DUT接口加強材730。在某些實施例中,可在適當位置或與環架740及圓頂750結合使用一可控微射流元件。 在某些實施例中,佈線基板710提供受測試晶粒與一中介層770之間的電路徑,中介層770位於佈線基板710與測試器側PCB 500之間。佈線基板710可穿過晶圓側支撐板600中之一開口610。在某些實施例中,中介層770包含中介層接針772,中介層接針772接觸基板710之對應接觸墊716。中介層770之相對側可包含類似接針,該等類似接針用以將電力/信號自中介層墊774路由至測試器側PCB 500之電跡線510,且進一步使電力/信號來往於測試器之間。一上部加強材760可抵靠晶圓側支撐板600而結構性地支撐佈線基板710。 圖8係根據當前所揭示技術之實施例之個別DUT接口之一部分等角視圖。所圖解說明之個別DUT接口700-1、700-2各自承載接觸結構712之一陣列,但接觸結構712之其他佈局係可能的,具體情形取決於受測試晶粒(DUT)上之觸點之佈局。在操作中,DUT接口700-1、700-2接觸一或多個受測試晶粒145以測試器與受測試晶粒(DUT)之間的電路徑。DUT接口700-1、700-2被結構性地分離,且因此其各別DUT接口接觸器709具有獨立晶粒級順應性。舉例而言,DUT接口700-1與700-2在接觸其對應受測試晶粒之前可處於不同高度(亦即,距矽晶圓之距離不同)處及/或不平行。舉例而言,DUT接口700-1可在DUT接口700-2觸點其對應晶粒145之前接觸對應晶粒145。然而,由於DUT接口700-1、700-2被結構性地分離,因此甚至當在探針卡總成3000內DUT接口互相異面時,DUT接口700-1、700-2兩者(及總成之其他DUT接口)仍可接觸其各別受測試晶粒。因此,在探針卡總成3000內DUT接口接觸高度平面度之容差可係寬鬆的,且DUT接口700與受測試晶粒145之間的接觸可得以改良。一個別DUT接口之接觸結構712亦具有某些垂直及某些橫向接針級順應性,該順應性進一步改良DUT接口700與受測試晶粒145之間的接觸。DUT接口700-1、700-2由晶圓側支撐板600支撐。 圖9係根據當前所揭示技術之實施例之個別DUT接口之一部分等角視圖。為了更好地看到其他組件,未展示晶圓側支撐板600。在某些實施例中,一保持器夾776將中介層770保持在適當位置且抵靠基板710之接觸墊716而對準中介層。在某些實施例中,測試器側PCB 500與中介層770電接觸。 圖10係根據當前所揭示技術之實施例之中介層770之一等角視圖。在某些實施例中,中介層770係具有彈簧形或彈簧加壓式中介層接針774之一電接觸器。中介層770之基板可係PCB、陶瓷或其他材料。當探針卡總成3000經組裝時,中介層接針774與測試器側PCB 500之對應接觸墊716電接觸。 圖11至圖15係根據當前所揭示技術之實施例之個別探針卡之部分示意性剖面圖。為簡單及清晰起見,圖11至圖15展示一個DUT接口700接觸受測試晶粒(DUT) 145,然而在操作中,探針卡總成3000包含多個DUT接口接觸其對應受測試晶粒或受測試晶粒145之群組。 圖11展示與受測試晶粒145接觸之DUT接口700。在操作中,環架740及圓頂750可改良DUT接口700抵靠受測試晶粒145的對準。舉例而言,環架740與圓頂750之組合可提供接觸結構712之一樞轉運動,因此補償DUT接口觸點712與對應受測試晶粒145之間的某些平面度差異。在某些實施例中,環架740之一剪力模數可限制DUT接口700橫向運動,使得接觸結構712不會行進超出晶粒145之對應接觸結構。此外,圓頂750之撓性及變形性可補償個別DUT接口700與晶圓140之間的垂直距離之某些不準確性。在某些實施例中,環架740與圓頂750係藉由(舉例而言)熔接、硬銲、軟銲或藉由一黏合元件745連接。 圖12展示與受測試晶粒145接觸之DUT接口700。在某些實施例中,圓頂750可係一卡扣圓頂,其中在圓頂750中具有用於卡扣環架740之一開口。在某些實施例中,圓頂/環架組合可係一原子筆之一球窩子總成,其通常以一相對低成本(例如,零點幾美元)及施加至球窩子總成之一相對低力下而具有球及承窩之相對高準確性(例如,微米級準確性)。 在操作中,環架740可橫向彎曲(例如,回應於一離心負荷),因此改良抵靠受測試晶粒145之接觸結構之橫向擦磨。在某些實施例中,DUT接口700包含一DUT接口基板725,DUT接口基板725具有用於電連接接觸結構712與佈線基板710之通孔726。佈線基板725可係一PCB或一陶瓷基板。 圖13展示與受測試晶粒145接觸之DUT接口700。在某些實施例中,DUT接口700包含多個環架740-1、740-2。在某些實施例中,環架740-1、740-2具有不同剖面、不同材料性質及/或不對稱地分佈。因此,DUT接口接觸器709可具有一較佳樞轉方向,因此,至少在某些情形中,改良接觸結構712與晶圓上之DUT之對應接觸結構之間的對準。在某些實施例中,不對稱環架740-1、740-2改良接觸結構712之橫向擦磨。 圖14展示與受測試晶粒145接觸之DUT接口700。所圖解說明之DUT接口700包含連接DUT接口基板725與晶圓側支撐板600之環架740。在某些實施例中,可藉由(舉例而言)使環架740之中間部分比其上部端及下部端更窄來塑形環架740以促進其彎曲。因此,當接觸結構712接觸受測試晶粒145時,可改良接觸結構712之樞轉。 圖15展示與受測試晶粒145接觸之DUT接口700。所圖解說明之DUT接口包含線結合711,線結合711用於電連接DUT接口基板725與佈線基板710。在某些實施例中,線結合可附接至DUT接口基板725之通孔726 (或墊附接至通孔726)。 圖16及圖17分別係根據當前所揭示技術之實施例而構形之DUT接口700之仰視及俯視等角視圖。DUT接口700由晶圓側支撐板600支撐。在操作中,探針卡總成3000中可包含多個DUT接口700。 圖18係根據當前所揭示技術之實施例而構形之DUT接口700之一部分分解圖。在操作中,DUT接口700之接觸結構712突出穿過一開口615以與矽晶圓140之受測試晶粒145電接觸,因此在受測試晶粒145與測試器之間提供電路徑。一夾板780可結構性地支撐抵靠晶圓側支撐板600之佈線基板710。在某些實施例中,緊固件762將夾板780與晶圓側支撐板600及DUT接口700嚙合。 圖19及圖20分別係根據當前所揭示技術之實施例而構形之DUT接口700之俯視及仰視等角視圖。為了使此等視圖更清晰,未展示晶圓側支撐板600及夾板780。 圖21係根據當前所揭示技術之實施例之DUT接口700之一分解等角視圖。在操作中,佈線基板710與測試器側PCB 500且進一步與測試器電連接。 自視圖之底部開始,接觸結構712面向矽晶圓(未展示)之個別DUT。接觸結構712由佈線基板710支撐。在某些實施例中,佈線基板710可係一撓性PCB。在探針卡總成3000中,佈線基板710與測試器側PCB 500且進一步與測試器150電連接。 在所圖解說明之實施例中,DUT接口加強材730結構性地支撐佈線基板710之背側。黏合組件720可將DUT接口加強材730附接至佈線基板710。黏合組件720可係一彈性體,其提供少量總順應性或減輕不平面度。 在某些實施例中,DUT接口700包含多個樞轉結構,舉例而言,具有圓頂750及一圓頂熔接件752之一第一樞轉結構及具有一上部圓頂754及一上部圓頂外殼756之一第二樞轉結構。在具有第一樞轉結構750/752之情況下,DUT接口接觸器709可在圓頂750之表面處樞轉。在具有第二樞轉結構754/756之情況下,上部圓頂754可在上部圓頂外殼756之一凹陷部757中樞轉。上部圓頂754可附接至一撓曲座架748,因此亦允許撓曲座架748樞轉。在某些實施例中,兩個樞轉結構750/752及754/756之存在促進DUT接口700與受測試晶粒之觸點的較佳對準及/或接觸。在某些實施例中,可將圓頂750之一個隅角點式熔接至圓頂熔接件752上。在操作中,當加強材730壓迫樞轉結構750/752時,圓頂750可向側面(遠離圓頂熔接件752處之熔接點)移動以提供對受測試晶粒之對應結構上方之接觸結構712之橫向擦磨。 圖22係根據當前所揭示技術之實施例之DUT接口700之一仰視平面圖。下文參考圖23至圖25論述剖面圖23至25。 圖23係圖22中所展示之DUT接口700之一剖面圖23 – 23。在某些實施例中,藉由包含圓頂750及圓頂熔接件752之第一樞轉結構以及包含上部圓頂754及上部圓頂外殼756之第二樞轉結構改良接觸結構712與受測試晶粒之對應接觸結構之間的接觸。 圖24係圖22中所展示之DUT接口700之一剖面圖24 – 24。在某些實施例中,DUT接口700包含具有接針743之定位螺釘744,接針743之高度可調整。在操作中,定位螺釘744可經調整使得接針743朝向DUT接口加強材730延伸且與DUT接口加強材730接觸。在某些實施例中,藉由延伸接針743且接觸DUT接口加強材730,可調整DUT接口加強材730之平面且因此調整接觸結構712之平面。因此,接觸結構712可更好地對準抵靠受測試晶粒之對應接觸結構。 圖25係圖22中所展示之DUT接口700之一剖面圖25 – 25。在某些實施例中,DUT接口700包含調平螺釘742,調平螺釘742可調整撓曲座架748之平面。舉例而言,DUT接口700可包含三個調平螺釘742,該三個調平螺釘742界定撓曲座架748之調平平面,其繼而界定接觸結構712之調平平面。 在某些實施例中,DUT接口700包含調整螺釘746,調整螺釘746可調整撓曲座架748之平面之一角度。在某些實施例中,調整螺釘746亦可調整撓曲座架748距上部加強材760之一距離,因此調整接觸結構712距受測試晶粒之對應接觸結構之一垂直距離。因此,接觸結構712可達成相對於受測試晶粒之對應接觸結構之較佳對準及/或更精確距離。 上文所闡述技術之諸多實施例可呈電腦或控制器可執行指令形式,包含由一可程式化電腦或控制器執行之常式。熟習此項技術者將瞭解,除了下文所展示及所闡述之裝置之外,技術亦可在電腦/控制器系統上實踐。技術可體現為一特殊應用電腦、控制器或資料處理器中,該資料處理器經專門程式化、經構形或經建構以執行下文所闡述之電腦可執行指令中之一或多者。因此,本文中通常所使用之術語「電腦」及「控制器」係指任何資料處理器且可包含網際網路器具及手持式裝置(包含掌上型電腦、可穿戴式電腦、蜂巢或行動電話、多處理器系統、基於處理器之或可程式化消費型電子器件、網路電腦、迷你電腦等)。由此等電腦處置之可資訊由任何適合顯示媒體(包含一CRT顯示器或LCD)呈現。 依據前述內容,將瞭解,雖然本文中已出於圖解說明目的而闡述技術之具體實施例,但可在不背離本發明之情況下做出各種修改。此外,雖然上文已在彼等實施例之內容脈絡中闡述了與特定實施例相關聯之各種優勢及特徵,但其他實施例亦可展現此等優勢及/或特徵,且並非所有實施例皆必須展現在本技術範疇內中之此等優勢及/或特徵。因此,本發明可涵蓋本文中未明確展示或闡述之其他實施例。This application claims the following U.S. Provisional Application: No. 62/420116, filed on November 10, 2016, No. 62/454420, filed on February 3, 2017, and application on April 12, 2017 No. 62/484750, No. 62/485104, filed on April 13, 2017, No. 62/533,469, filed on July 17, 2017, and No. 62/573,507, filed on October 17, 2017 The above application is hereby incorporated by reference in its entirety. Specific details of several embodiments of representative probe card assemblies and associated methods are set forth below. It will also be apparent to those skilled in the art that the inventive technology may have additional embodiments and that the techniques may be practiced without the details of the embodiments set forth below with reference to Figures 3-25. The inventive technology is generally related to semiconductor wafer test equipment. More particularly, the present technology relates to methods and systems for contacting ("probing") a die of a semiconductor wafer using a probe card assembly. In some embodiments, a probe card assembly includes a plurality of individual probe cards for contacting a tested die (DUT) on a semiconductor wafer. A different probe card (also known as a "DUT interface") can contact one or more of the wafers. In some embodiments, the DUT interface has grain level and pin level compliance. For example, individual DUT interfaces (ie, DUT interface contacts) can be individually pivoted to provide compliance and/or better contact with individual dies on the wafer. In general, individual pivoting of individual probe card DUT interfaces can improve X-Y and vertical alignment of corresponding dies against the wafer. In addition, a lateral movement between the contacts of the DUT interface and the contacts of the individual dies (also referred to as a "scrub") improves the contact between the contacts of the DUT interface and the contacts of the die. Electrical contact. In some embodiments, the pivot of the DUT interface contactor can be asymmetric to improve scrubbing. In some embodiments, the vertical position of the DUT interface (ie, the Z position or the distance of the DUT interface from the wafer) may also be adjustable. Typically, the pins of one other DUT interface have some vertical and some lateral pin level compliance. In some embodiments, the DUT interface can carry electrical components (eg, capacitors, resistors, active circuits, etc.) for signal/power conditioning. In addition, electrical components placed close to the DUT can perform certain functions typically performed by the tester. For example, test vectors can be stored on a memory chip hosted by a DUT interface, and such vectors can perform tests with relatively small return delays due to the long signal path between the DUT and the tester compared to the DUT and The signal path between the electrical components is short. Signals from individual DUT interfaces can be routed through their respective individual contactors (eg, flexible printed circuit boards (PCBs)) to the common PCB of the probe card assembly and further to the tester. 3 is a bottom isometric view of one of the probe card assemblies 3000 configured in accordance with an embodiment of the presently disclosed technology. The illustrated probe card assembly 3000 includes a plurality of individual probe cards (DUT interfaces) 700 that face the die on a semiconductor wafer (not shown). A wafer side support plate 600 provides mechanical support for the individual DUT interface 700. A PCB 500 provides a routing path for signals/power between the die of the wafer (DUT) and the tester. In operation, a different DUT interface 700 can contact ("probe") one or more dies of the 矽 wafer. 4 is a top isometric view of one of the probe card assemblies 3000 configured in accordance with an embodiment of the presently disclosed technology. An outer reinforcement 300 (sometimes referred to in the industry as a "spider foot") provides structural support for the components of the probe card assembly 3000. In certain embodiments, the outer reinforcement 300 can be made of stainless steel or constant steel. The components of probe card assembly 3000 can be held together at least in part by fasteners 310. FIG. 5 is a side cross-sectional view of one of the probe card assemblies 3000 in accordance with an embodiment of the presently disclosed technology. Typically, the outer reinforcement 300 is attached to a prober (eg, to the top of one of the probers) prior to the start of the test. In operation, the prober chuck contacts the semiconductor wafer 140 with the individual DUT interface 700 of the probe card assembly 3000 to establish an electrical path between the tester and the die of the semiconductor wafer 140. In some embodiments, each DUT interface 700 faces one die 145 of semiconductor wafer 140. In other embodiments, one DUT interface 700 can test two dies 145 in parallel, three dies 145 in parallel, and the like. In some embodiments, the DUT interface 700 can be interspersed on the probe card assembly 3000 such that, for example, the DUT interface 700 touches every other die 145 of the semiconductor wafer 140. Therefore, the entire semiconductor wafer 140 is tested in two steps (also referred to as "touch down") by moving the probe card assembly 3000 between each of the die touches. Grain. Similarly, a probe card assembly having a DUT interface 700 that contacts every three dies 145 of semiconductor wafer 140 tests the entire semiconductor wafer in three steps. Other combinations of DUT interfaces 700 for the die 145 of the semiconductor wafer 140 are also possible. In the illustrated embodiment, wafer side support plate 600 structurally supports DUT interface 700. In some embodiments, the wafer side support plate 600 can be made of constant steel, stainless steel, ceramic, or other materials. In certain embodiments, the invariable steel (nickel-iron) alloy may have a low coefficient of thermal expansion (CTE) or may be comparable to one of the CTEs of the tantalum wafer itself. Therefore, the mismatch between the thermal probe card assembly 3000 and the germanium wafer 140 is reduced. The PCB 500 provides routing paths for signals and power between the tested die (DUT) 145 of the semiconductor wafer 140 and the tester. The PCB 500 can be structurally supported by a support plate 400 and further by an outer reinforcement 300. In some embodiments, the support plate 400 is made of metal or ceramic. The support plate 400 can have openings for routing cables or other conductors from the DUT interface 700 to the tester. 6 is a detailed view of one of the probe card assemblies 3000 shown in FIG. The illustrated probe card assembly 3000 includes a DUT interface 700, a wafer side support plate 600, a tester side PCB 500, a support plate 400, and an outer reinforcement 300. DUT interface 700 faces test die 145 of semiconductor wafer 140. In operation, the contact structure 712 contacts the contact pads (or other contact structures) of the test die 145. In some embodiments, all of the dies 145 of the semiconductor wafer 140 can be simultaneously contacted by their corresponding DUT interface 700. In other embodiments, a subset of the die 145 of the semiconductor wafer 140 is simultaneously contacted by its corresponding DUT interface 700. In various embodiments, the contact structure 712 can be attached to a pin, microelectromechanical system (MEMS), or other electrical contact structure. Details of the DUT interface 700 are shown in FIG. Figure 7 is a detailed view of one of the DUT interfaces 700 shown in Figure 6. In some embodiments, the DUT interface 700 includes a wiring substrate 710 that carries a contact structure 712. The wiring substrate 710 may be one substrate having an electrical trace, for example, a PCB (for example, also referred to as a "flexible member" which is relatively thin flexible PCB), a ceramic substrate, a glass substrate, and a A germanium substrate or other planarizable and polishable material with electrical traces. In some embodiments, the wiring substrate 710 carries a contact structure 712 for contacting the DUT. The wiring substrate 710 can carry electrical components 714 (eg, capacitors, resistors, memory, active circuitry, etc.) for signal/power conditioning. In some applications, the testability of the DUT is improved when the electrical component 714 is placed relatively close to the test die (DUT). In some embodiments, a DUT interface stiffener 730 structurally supports the wiring substrate 710. An adhesive assembly 720 can attach the DUT interface reinforcement 730 to the wiring substrate 710. The portions of the DUT interface reinforcement 730, the bonding assembly 720, the contact structure 712, and the wiring substrate 710 carrying the contact structure 712 are collectively referred to as a DUT interface contact 709. In some embodiments, a ring frame 740 and a dome 750 support the DUT interface against the wafer side support plate 600. A binder (not shown) can be coupled to the ring frame 740 and the DUT interface reinforcement 730. In some embodiments, a controllable microfluidic element can be used in place or in combination with the ring frame 740 and the dome 750. In some embodiments, the wiring substrate 710 provides an electrical path between the tested die and an interposer 770, and the interposer 770 is between the wiring substrate 710 and the tester side PCB 500. The wiring substrate 710 may pass through one of the openings 610 in the wafer side support plate 600. In some embodiments, the interposer 770 includes interposer pins 772 that contact the corresponding contact pads 716 of the substrate 710. The opposite side of the interposer 770 can include similar pins for routing power/signals from the interposer pad 774 to the electrical traces 510 of the tester side PCB 500, and further enabling power/signal to be tested Between the devices. An upper reinforcing member 760 can structurally support the wiring substrate 710 against the wafer side support plate 600. 8 is a partial isometric view of one of the individual DUT interfaces in accordance with an embodiment of the presently disclosed technology. The illustrated individual DUT interfaces 700-1, 700-2 each carry an array of contact structures 712, but other arrangements of contact structures 712 are possible, depending on the contacts on the test die (DUT). layout. In operation, DUT interfaces 700-1, 700-2 contact one or more tested dies 145 to electrically route between the tester and the tested die (DUT). The DUT interfaces 700-1, 700-2 are structurally separated, and thus their respective DUT interface contactors 709 have independent grain level compliance. For example, DUT interfaces 700-1 and 700-2 may be at different heights (ie, different distances from the wafer) and/or non-parallel prior to contacting their corresponding test dies. For example, DUT interface 700-1 can contact corresponding die 145 before DUT interface 700-2 contacts its corresponding die 145. However, since the DUT interfaces 700-1, 700-2 are structurally separated, even when the DUT interfaces are out of plane with each other within the probe card assembly 3000, both DUT interfaces 700-1, 700-2 (and total The other DUT interfaces are still accessible to their respective tested dies. Thus, the tolerance of the DUT interface contact height flatness within the probe card assembly 3000 can be relaxed, and the contact between the DUT interface 700 and the tested die 145 can be improved. Contact structure 712 of an alternate DUT interface also has some vertical and some lateral pin level compliance that further improves contact between DUT interface 700 and tested die 145. The DUT interfaces 700-1, 700-2 are supported by the wafer side support plate 600. 9 is a partial isometric view of one of the individual DUT interfaces in accordance with an embodiment of the presently disclosed technology. The wafer side support plate 600 is not shown for better viewing of other components. In some embodiments, a holder clip 776 holds the interposer 770 in place and abuts the contact pads 716 of the substrate 710 to align the interposer. In some embodiments, the tester side PCB 500 is in electrical contact with the interposer 770. FIG. 10 is an isometric view of an interposer 770 in accordance with an embodiment of the presently disclosed technology. In some embodiments, the interposer 770 has one of the electrical contacts of the spring-shaped or spring-loaded interposer 774. The substrate of the interposer 770 can be a PCB, ceramic or other material. When the probe card assembly 3000 is assembled, the interposer pin 774 is in electrical contact with the corresponding contact pad 716 of the tester side PCB 500. 11 through 15 are partial schematic cross-sectional views of individual probe cards in accordance with embodiments of the presently disclosed technology. For simplicity and clarity, Figures 11 through 15 show a DUT interface 700 contacting a test die (DUT) 145, however, in operation, the probe card assembly 3000 includes a plurality of DUT interfaces contacting its corresponding tested die. Or a group of tested dies 145. FIG. 11 shows DUT interface 700 in contact with tested die 145. In operation, the ring frame 740 and the dome 750 can improve the alignment of the DUT interface 700 against the tested die 145. For example, the combination of the ring 740 and the dome 750 can provide one of the pivotal movements of the contact structure 712, thus compensating for some of the flatness differences between the DUT interface contacts 712 and the corresponding tested die 145. In some embodiments, one of the shear modulus of the ring frame 740 can limit lateral movement of the DUT interface 700 such that the contact structure 712 does not travel beyond the corresponding contact structure of the die 145. Moreover, the flexibility and deformability of the dome 750 can compensate for some inaccuracies in the vertical distance between the individual DUT interface 700 and the wafer 140. In some embodiments, the ring frame 740 and the dome 750 are joined by, for example, welding, brazing, soldering, or by an adhesive element 745. FIG. 12 shows DUT interface 700 in contact with tested die 145. In some embodiments, the dome 750 can be a snap dome with an opening in the dome 750 for the snap ring bracket 740. In some embodiments, the dome/ring combination can be a ball and socket assembly of one of the ball pens, which is typically applied at a relatively low cost (eg, a few tenths of a dollar) and applied to the ball and socket subassembly. Relatively low force with relatively high accuracy of the ball and socket (eg, micron accuracy). In operation, the ring frame 740 can be laterally curved (e.g., in response to a centrifugal load), thereby improving lateral rubbing against the contact structure of the test die 145. In some embodiments, the DUT interface 700 includes a DUT interface substrate 725 having vias 726 for electrically connecting the contact structures 712 to the wiring substrate 710. The wiring substrate 725 can be a PCB or a ceramic substrate. FIG. 13 shows DUT interface 700 in contact with tested die 145. In some embodiments, the DUT interface 700 includes a plurality of ring frames 740-1, 740-2. In certain embodiments, the ring frames 740-1, 740-2 have different profiles, different material properties, and/or asymmetric distribution. Thus, the DUT interface contact 709 can have a preferred pivoting orientation, thus, at least in some cases, improving the alignment between the contact structure 712 and the corresponding contact structure of the DUT on the wafer. In certain embodiments, the asymmetric ring frames 740-1, 740-2 improve lateral wiping of the contact structure 712. FIG. 14 shows DUT interface 700 in contact with tested die 145. The illustrated DUT interface 700 includes a ring frame 740 that connects the DUT interface substrate 725 to the wafer side support plate 600. In some embodiments, the ring frame 740 can be shaped to facilitate bending thereof by, for example, making the intermediate portion of the ring frame 740 narrower than its upper and lower ends. Thus, when the contact structure 712 contacts the test die 145, the pivoting of the contact structure 712 can be improved. FIG. 15 shows DUT interface 700 in contact with tested die 145. The illustrated DUT interface includes a wire bond 711 for electrically connecting the DUT interface substrate 725 to the wiring substrate 710. In some embodiments, the wire bond can be attached to the through hole 726 of the DUT interface substrate 725 (or the pad is attached to the via 726). 16 and 17 are bottom and top isometric views, respectively, of a DUT interface 700 configured in accordance with an embodiment of the presently disclosed technology. The DUT interface 700 is supported by the wafer side support plate 600. In operation, a plurality of DUT interfaces 700 can be included in the probe card assembly 3000. 18 is a partially exploded view of a DUT interface 700 configured in accordance with an embodiment of the presently disclosed technology. In operation, the contact structure 712 of the DUT interface 700 protrudes through an opening 615 to make electrical contact with the tested die 145 of the germanium wafer 140, thus providing an electrical path between the tested die 145 and the tester. A cleat 780 can structurally support the wiring substrate 710 against the wafer side support plate 600. In some embodiments, the fastener 762 engages the splint 780 with the wafer side support plate 600 and the DUT interface 700. 19 and 20 are top and bottom isometric views, respectively, of a DUT interface 700 configured in accordance with an embodiment of the presently disclosed technology. In order to make these views clearer, the wafer side support plate 600 and the splint 780 are not shown. 21 is an exploded isometric view of one of the DUT interfaces 700 in accordance with an embodiment of the presently disclosed technology. In operation, the wiring substrate 710 is electrically connected to the tester side PCB 500 and further to the tester. Starting from the bottom of the view, the contact structure 712 faces the individual DUTs of the germanium wafer (not shown). The contact structure 712 is supported by the wiring substrate 710. In some embodiments, the wiring substrate 710 can be a flexible PCB. In the probe card assembly 3000, the wiring substrate 710 is electrically connected to the tester side PCB 500 and further to the tester 150. In the illustrated embodiment, the DUT interface stiffener 730 structurally supports the back side of the wiring substrate 710. The bonding assembly 720 can attach the DUT interface reinforcement 730 to the wiring substrate 710. Adhesive assembly 720 can be an elastomer that provides a small amount of total compliance or less unevenness. In some embodiments, the DUT interface 700 includes a plurality of pivoting structures, for example, having a first pivoting structure of a dome 750 and a dome weld 752 and having an upper dome 754 and an upper dome A second pivoting structure of one of the outer casings 756. With the first pivoting structure 750/752, the DUT interface contactor 709 can pivot at the surface of the dome 750. With the second pivoting structure 754/756, the upper dome 754 can pivot in a recess 757 in one of the upper dome housings 756. The upper dome 754 can be attached to a flex mount 748, thus also allowing the flex mount 748 to pivot. In some embodiments, the presence of the two pivot structures 750/752 and 754/756 facilitates better alignment and/or contact of the DUT interface 700 with the contacts of the tested die. In some embodiments, a corner of the dome 750 can be welded to the dome weld 752. In operation, when the stiffener 730 compresses the pivoting structure 750/752, the dome 750 can be moved to the side (away from the splice point at the dome weld 752) to provide a contact structure over the corresponding structure of the tested die. 712 horizontal rubbing. 22 is a bottom plan view of one of the DUT interfaces 700 in accordance with an embodiment of the presently disclosed technology. Cross-sectional views 23 through 25 are discussed below with reference to FIGS. 23 through 25. 23 is a cross-sectional view of FIGS. 23-23 of the DUT interface 700 shown in FIG. In some embodiments, the contact structure 712 is modified and tested by a first pivoting structure comprising a dome 750 and a dome weld 752 and a second pivoting structure comprising an upper dome 754 and an upper dome housing 756. Contact between the corresponding contact structures of the grains. Figure 24 is a cross-sectional view of Figures 24-24 of the DUT interface 700 shown in Figure 22. In some embodiments, the DUT interface 700 includes a set screw 744 having a pin 743 that is adjustable in height. In operation, the set screw 744 can be adjusted such that the pin 743 extends toward the DUT interface reinforcement 730 and contacts the DUT interface reinforcement 730. In some embodiments, by extending the pin 743 and contacting the DUT interface stiffener 730, the plane of the DUT interface stiffener 730 can be adjusted and thus the plane of the contact structure 712 can be adjusted. Thus, the contact structure 712 can be better aligned against the corresponding contact structure of the tested die. Figure 25 is a cross-sectional view of Figures 25-25 of the DUT interface 700 shown in Figure 22. In some embodiments, the DUT interface 700 includes a leveling screw 742 that adjusts the plane of the flexure mount 748. For example, the DUT interface 700 can include three leveling screws 742 that define a leveling plane of the flexing mount 748 that in turn defines a leveling plane of the contact structure 712. In some embodiments, the DUT interface 700 includes an adjustment screw 746 that adjusts an angle of the plane of the flex mount 748. In some embodiments, the adjustment screw 746 can also adjust the distance of the flexure mount 748 from the upper reinforcement 760, thereby adjusting the vertical distance of the contact structure 712 from one of the corresponding contact structures of the test die. Thus, the contact structure 712 can achieve a better alignment and/or a more precise distance relative to the corresponding contact structure of the die being tested. Many embodiments of the techniques set forth above may be in the form of computer or controller executable instructions, including routines executed by a programmable computer or controller. Those skilled in the art will appreciate that the techniques can be practiced on a computer/controller system in addition to the devices shown and described below. The technology may be embodied in a special application computer, controller or data processor that is specially programmed, configured or constructed to perform one or more of the computer-executable instructions set forth below. Therefore, the terms "computer" and "controller" as used herein generally refer to any data processor and may include internet appliances and handheld devices (including palmtop computers, wearable computers, cellular or mobile phones, Multiprocessor systems, processor-based or programmable consumer electronics, network computers, minicomputers, etc.). The information that can be disposed of by such a computer is presented by any suitable display medium (including a CRT display or LCD). In view of the foregoing, it will be appreciated that the specific embodiments of the invention are described herein, and the various modifications may be made without departing from the invention. In addition, while the various advantages and features associated with a particular embodiment are set forth in the context of the embodiments, other embodiments may exhibit such advantages and/or features, and not all embodiments These advantages and/or features must be exhibited within the scope of the technology. Accordingly, the present invention may encompass other embodiments not explicitly shown or described herein.

23-23‧‧‧剖面圖23-23‧‧‧ Sectional view

24-24‧‧‧剖面圖24-24‧‧‧ Sectional view

25-25‧‧‧剖面圖25-25‧‧‧ Sectional view

110‧‧‧探針卡110‧‧‧ probe card

112‧‧‧空間變換器112‧‧‧ space transformer

114‧‧‧印刷電路板114‧‧‧Printed circuit board

116‧‧‧探針接針116‧‧‧ probe pin

120‧‧‧接觸結構(印刷電路板至空間變換器)120‧‧‧Contact structure (printed circuit board to space transformer)

122a‧‧‧加強材122a‧‧‧Strength

122b‧‧‧加強材122b‧‧‧Strength

124‧‧‧螺釘124‧‧‧ screws

125‧‧‧作用側125‧‧‧Action side

126‧‧‧固持器/用於空間變換器之固持器126‧‧‧Retainer/Retainer for space transformer

128‧‧‧螺釘128‧‧‧ screws

130‧‧‧纜線130‧‧‧ cable

140‧‧‧晶圓/半導體晶圓/矽晶圓140‧‧‧Wafer/Semiconductor Wafer/矽 Wafer

145‧‧‧晶粒/受測試晶粒/受測試裝置145‧‧‧Grade/tested die/tested device

145a‧‧‧晶粒145a‧‧‧ grain

145b‧‧‧晶粒145b‧‧‧ grain

146‧‧‧晶圓蝕道146‧‧‧ Wafer etch

148‧‧‧晶粒觸點/觸點148‧‧‧die contacts/contacts

150‧‧‧測試器/晶圓測試器150‧‧‧Tester/Wab Tester

210‧‧‧晶圓平移器/平移器210‧‧‧Wafer Translator/Translator

212‧‧‧晶圓平移器基板212‧‧‧ wafer translator substrate

213‧‧‧查詢側213‧‧ Query side

214‧‧‧接觸結構/查詢側接觸結構/觸點對214‧‧‧Contact structure/inquiry side contact structure/contact pair

215‧‧‧晶圓側215‧‧‧ Wafer side

216‧‧‧接觸結構/晶圓側接觸結構/觸點對216‧‧‧Contact structure/wafer side contact structure/contact pair

218‧‧‧導電跡線218‧‧‧ conductive traces

219‧‧‧線219‧‧‧ line

230‧‧‧測試器平移器界面板230‧‧‧Tester Translator Interface Board

232‧‧‧測試接觸器基板/測試器平移器界面基板232‧‧‧Test contactor substrate/tester translator interface substrate

236‧‧‧觸點/觸點對236‧‧‧Contact/contact pairs

238‧‧‧導電跡線238‧‧‧ conductive traces

239‧‧‧纜線239‧‧‧ Cable

240‧‧‧晶圓卡盤240‧‧‧wafer chuck

250‧‧‧測試堆疊250‧‧‧Test stack

300‧‧‧外加強材300‧‧‧External reinforcement

310‧‧‧緊固件310‧‧‧fasteners

400‧‧‧支承板400‧‧‧support plate

500‧‧‧印刷電路板/測試器側印刷電路板500‧‧‧Printed circuit board/tester side printed circuit board

510‧‧‧電跡線510‧‧‧Electric trace

600‧‧‧晶圓側支撐板600‧‧‧ Wafer side support plate

610‧‧‧開口610‧‧‧ openings

615‧‧‧開口615‧‧‧ openings

700‧‧‧個別探針卡/受測試晶粒接口700‧‧‧Individual probe card/tested die interface

700-1‧‧‧受測試晶粒接口700-1‧‧‧Tested die interface

700-2‧‧‧受測試晶粒接口700-2‧‧‧Tested die interface

709‧‧‧受測試晶粒接口接觸器709‧‧‧Tested die interface contactors

710‧‧‧佈線基板/基板(例如,撓曲印刷電路板)710‧‧‧Wiring substrate/substrate (for example, flex printed circuit board)

711‧‧‧線結合711‧‧‧ line combination

712‧‧‧接觸結構/受測試晶粒接口觸點(接針、微機電系統等)712‧‧‧Contact structure/tested die interface contacts (pins, MEMS, etc.)

714‧‧‧電組件714‧‧‧Electric components

716‧‧‧接觸墊716‧‧‧Contact pads

720‧‧‧黏合組件720‧‧‧bonding components

725‧‧‧受測試晶粒接口基板725‧‧‧Tested die interface substrate

726‧‧‧通孔726‧‧‧through hole

730‧‧‧受測試晶粒接口加強材/加強材730‧‧‧Tested die interface reinforcement/reinforced material

740‧‧‧環架740‧‧‧ ring rack

740-1‧‧‧環架/不對稱環架740-1‧‧‧Ring frame/Asymmetric ring frame

740-2‧‧‧環架/不對稱環架740-2‧‧‧Ring/Asymmetric Ring Frame

742‧‧‧調平螺釘(例如,3個螺釘)742‧‧‧ Leveling screws (for example, 3 screws)

743‧‧‧接針743‧‧‧ pin

744‧‧‧定位螺釘744‧‧‧Setting screws

745‧‧‧黏合元件745‧‧‧Adhesive components

746‧‧‧調整螺釘746‧‧‧Adjustment screws

748‧‧‧撓曲座架748‧‧‧Flexing frame

750‧‧‧圓頂/第一樞轉結構/樞轉結構750‧‧‧Dome/first pivoting structure/pivoting structure

752‧‧‧圓頂熔接件/第一樞轉結構/樞轉結構752‧‧‧Dome Fusion / First Pivot Structure / Pivot Structure

754‧‧‧上部圓頂/第二樞轉結構/樞轉結構754‧‧‧Upper dome/second pivoting structure/pivoting structure

756‧‧‧上部圓頂外殼/第二樞轉結構/樞轉結構756‧‧‧Upper dome housing/second pivoting structure/pivoting structure

757‧‧‧凹陷部757‧‧‧Depression

760‧‧‧上部加強材760‧‧‧Upper reinforcement

762‧‧‧緊固件762‧‧‧fasteners

770‧‧‧中介層770‧‧‧Intermediary

772‧‧‧中介層接針772‧‧‧Intermediate layer pin

774‧‧‧中介層墊/彈簧形或彈簧加壓式中介層接針/中介層接針774‧‧‧Interposer pad/spring or spring-loaded interposer pin/interposer pin

776‧‧‧保持器夾776‧‧‧Retainer clip

780‧‧‧夾板780‧‧‧ splint

3000‧‧‧探針卡總成/熱探針卡總成3000‧‧‧Probe card assembly/thermal probe card assembly

A‧‧‧箭頭A‧‧‧ arrow

B‧‧‧箭頭B‧‧‧ arrow

C‧‧‧箭頭C‧‧‧ arrow

D1‧‧‧寬度D 1 ‧‧‧Width

d1‧‧‧寬度d 1 ‧‧‧Width

D2‧‧‧高度D 2 ‧‧‧ Height

d2‧‧‧高度d 2 ‧‧‧height

P1‧‧‧距離P 1 ‧‧‧Distance

P2‧‧‧距離P 2 ‧‧‧ distance

參考以下圖式可更好地理解本發明之態樣。圖式中之組件未必按比例。而是,重點在於清晰地圖解說明本發明之原理。 圖1A係根據先前技術的用於測試半導體晶圓之一測試堆疊之一部分之一側視剖面圖。 圖1B係根據先前技術的用於測試半導體晶圓之一測試堆疊之一部分之一仰視圖。 圖2A係根據先前技術的用於測試半導體晶圓之一測試堆疊之一部分之一分解圖。 圖2B係根據先前技術之一晶圓平移器之一部分示意性俯視圖。 圖2C係根據先前技術之一晶圓平移器之一部分示意性仰視圖。 圖3係根據當前所揭示技術之實施例而構形之一探針卡總成之一仰視等角視圖。 圖4係根據當前所揭示技術之實施例而構形之一探針卡總成之一俯視等角視圖。 圖5係圖4中所展示之一探針卡總成之一側視剖面圖。 圖6係圖5中所展示之一探針卡總成之一詳細視圖。 圖7係圖6中所展示之一個別探針卡(DUT接口)之一詳細視圖。 圖8及圖9係根據當前所揭示技術之實施例之個別探針卡之部分等角視圖。 圖10係根據當前所揭示技術之實施例之一中介層之一等角視圖。 圖11至圖15係根據當前所揭示技術之實施例之個別探針卡之部分示意性剖面圖。 圖16係根據當前所揭示技術之實施例而構形之一個別探針卡之一仰視等角視圖。 圖17係根據當前所揭示技術之實施例而構形之一個別探針卡之一俯視等角視圖。 圖18係根據當前所揭示技術之實施例而構形之一個別探針卡之一部分分解圖。 圖19係根據當前所揭示技術之實施例而構形之一個別探針卡之一俯視等角視圖。 圖20係根據當前所揭示技術之實施例而構形之一個別探針卡之一仰視等角視圖。 圖21係根據當前所揭示技術之實施例之一個別探針卡之一分解等角視圖。 圖22係根據當前所揭示技術之實施例之一個別探針卡之一仰視平面圖。 圖23至圖25係圖22中所展示之個別探針卡之剖面圖。The aspects of the invention can be better understood with reference to the following drawings. The components in the drawings are not necessarily to scale. Rather, the focus is on a clear understanding of the principles of the invention. 1A is a side cross-sectional view of one of the portions of a test stack for testing a semiconductor wafer in accordance with the prior art. 1B is a bottom plan view of one portion of a test stack for testing a semiconductor wafer in accordance with the prior art. 2A is an exploded view of one portion of a test stack for testing a semiconductor wafer in accordance with the prior art. 2B is a partially schematic top plan view of a wafer translator in accordance with one of the prior art. 2C is a partially schematic bottom view of a wafer translator in accordance with one of the prior art. 3 is a bottom isometric view of one of the probe card assemblies configured in accordance with an embodiment of the presently disclosed technology. 4 is a top isometric view of one of the probe card assemblies configured in accordance with an embodiment of the presently disclosed technology. Figure 5 is a side cross-sectional view of one of the probe card assemblies shown in Figure 4. Figure 6 is a detailed view of one of the probe card assemblies shown in Figure 5. Figure 7 is a detailed view of one of the individual probe cards (DUT interfaces) shown in Figure 6. 8 and 9 are partial isometric views of individual probe cards in accordance with embodiments of the presently disclosed technology. Figure 10 is an isometric view of one of the interposers in accordance with an embodiment of the presently disclosed technology. 11 through 15 are partial schematic cross-sectional views of individual probe cards in accordance with embodiments of the presently disclosed technology. 16 is an upward isometric view of one of the individual probe cards configured in accordance with an embodiment of the presently disclosed technology. 17 is a top isometric view of one of the individual probe cards configured in accordance with an embodiment of the presently disclosed technology. Figure 18 is a partially exploded view of one of the individual probe cards configured in accordance with an embodiment of the presently disclosed technology. 19 is a top isometric view of one of the individual probe cards configured in accordance with an embodiment of the presently disclosed technology. 20 is a bottom isometric view of one of the individual probe cards configured in accordance with an embodiment of the presently disclosed technology. 21 is an exploded isometric view of one of the individual probe cards in accordance with one embodiment of the presently disclosed technology. 22 is a bottom plan view of one of the individual probe cards in accordance with an embodiment of the presently disclosed technology. 23 through 25 are cross-sectional views of the individual probe cards shown in Fig. 22.

Claims (20)

一種用於測試一半導體晶圓之晶粒之設備,其包括: 一測試器側印刷電路板(PCB); 一晶圓側支撐板,其具有面向該測試器側PCB之一第一表面及背對該第一面之一第二表面;及 複數個個別探針卡(DUT接口),其由該晶圓側支撐板支撐,每一個別DUT接口具有一DUT接口接觸器,該等DUT接口接觸器承載用於接觸該半導體晶圓之至少一個晶粒之複數個接觸結構, 其中該等個別DUT接口接觸器相對於該半導體晶圓而個別地具備順應性,且其中該等個別DUT接口接觸器係分離的。An apparatus for testing a die of a semiconductor wafer, comprising: a tester side printed circuit board (PCB); a wafer side support board having a first surface and a back facing the tester side PCB a second surface of the first side; and a plurality of individual probe cards (DUT interfaces) supported by the wafer side support plate, each individual DUT interface having a DUT interface contact, the DUT interface contacts The device carries a plurality of contact structures for contacting at least one of the semiconductor wafers, wherein the individual DUT interface contactors are individually compliant with respect to the semiconductor wafer, and wherein the individual DUT interface contactors Separated. 如請求項1之設備,其中一個別DUT接口接觸器包括: 該複數個接觸結構,其用於接觸該半導體晶圓; 一佈線基板,其承載該等接觸結構; 一黏合組件,其具有與該佈線基板接觸之一第二面及背對該第二面之一第一面;及 一DUT接口加強材,其與該黏合組件之該第一面接觸。The device of claim 1, wherein the one DUT interface contactor comprises: the plurality of contact structures for contacting the semiconductor wafer; a wiring substrate carrying the contact structures; an adhesive component having the same The wiring substrate contacts one of the second side and the first side facing the second side; and a DUT interface reinforcement is in contact with the first surface of the bonding assembly. 如請求項1之設備,其進一步包括一樞轉結構,該樞轉結構具有: 一第一側,其附接至該DUT接口接觸器;及 一第二側,其與該第一側相對,其中該第二側附接至該晶圓側支撐板, 其中該等DUT接口接觸器之一平面可由該第一樞轉結構調整。The device of claim 1, further comprising a pivoting structure having: a first side attached to the DUT interface contact; and a second side opposite the first side Wherein the second side is attached to the wafer side support plate, wherein one of the planes of the DUT interface contactors is adjustable by the first pivoting structure. 如請求項3之設備,其中該樞轉結構之該第一側係利用該第一面而附接至該DUT接口加強材。The device of claim 3, wherein the first side of the pivoting structure is attached to the DUT interface reinforcement using the first side. 如請求項3之設備,其中該樞轉結構係一第一樞轉結構,該設備進一步包括一第二樞轉結構,其中該等DUT接口接觸器之該平面可由該第一樞轉結構且可由該第二樞轉結構調整。The apparatus of claim 3, wherein the pivoting structure is a first pivoting structure, the apparatus further comprising a second pivoting structure, wherein the plane of the DUT interface contactors is achievable by the first pivoting structure The second pivoting structure is adjusted. 如請求項3之設備,其中該樞轉結構包括一環架及一圓頂,且其中該環架藉由一環架黏合劑與該圓頂連接。The device of claim 3, wherein the pivoting structure comprises a ring frame and a dome, and wherein the ring frame is coupled to the dome by a ring binder. 如請求項3之設備,其中該樞轉結構包括一環架及一圓頂,且其中該環架卡扣至該圓頂中之一開口中。The device of claim 3, wherein the pivoting structure comprises a ring frame and a dome, and wherein the ring frame snaps into an opening in the dome. 如請求項3之設備,其中該樞轉結構包括一第一環架及一第二環架,且其中該第一環架與該第二環架具有不同剖面。The device of claim 3, wherein the pivoting structure comprises a first ring frame and a second ring frame, and wherein the first ring frame and the second ring frame have different cross sections. 如請求項1之設備,其中每一個別DUT接口包括至少兩個調平螺釘,該至少兩個調平螺釘用於調整該等DUT接口接觸器之該等接觸結構之一平面。The device of claim 1, wherein each of the individual DUT interfaces includes at least two leveling screws for adjusting a plane of the contact structures of the DUT interface contacts. 如請求項1之設備,其中每一個別DUT接口包括具有接針之複數個調整螺釘,其中在一第一位置中該等接針與該DUT接口接觸器接觸,且其中在一第二位置中該等接針不與該DUT接口接觸器接觸。The device of claim 1, wherein each of the individual DUT interfaces includes a plurality of adjustment screws having a pin, wherein the pins are in contact with the DUT interface contact in a first position, and wherein in a second position The pins are not in contact with the DUT interface contactor. 如請求項3之設備,其中該DUT接口接觸器包括複數個通孔。The device of claim 3, wherein the DUT interface contactor comprises a plurality of vias. 如請求項1之設備,其進一步包括一中介層,該中介層電連接至少一個DUT接口之一佈線基板與該測試器側PCB。The device of claim 1, further comprising an interposer electrically connected to one of the at least one DUT interface wiring substrate and the tester side PCB. 如請求項12之設備,其進一步包括: 一支承板,其用於結構性地支撐該測試器側PCB;及 一外加強材,其用於結構性地支撐該支承板。The apparatus of claim 12, further comprising: a support plate for structurally supporting the tester side PCB; and an outer reinforcement for structurally supporting the support plate. 如請求項12之設備,其中該晶圓側支撐板包含若干開口,該等開口用於將該複數個DUT接口之複數個佈線基板朝向該測試器側PCB進行佈線。The device of claim 12, wherein the wafer side support plate includes a plurality of openings for routing the plurality of wiring substrates of the plurality of DUT interfaces toward the tester side PCB. 一種用於測試一半導體晶圓之方法,其包括: 將一探針卡總成對準成面向該半導體晶圓,其中該探針卡總成包括複數個個別探針卡(DUT接口),且其中每一DUT接口具有承載複數個接觸結構之一DUT接口接觸器; 使該半導體晶圓之複數個晶粒與該複數個DUT接口接觸;及 測試該半導體晶圓之該等晶粒, 其中該等個別DUT接口接觸器相對於該半導體晶圓而個別地具備順應性,且其中該等個別DUT接口接觸器係分離的。A method for testing a semiconductor wafer, comprising: aligning a probe card assembly to face the semiconductor wafer, wherein the probe card assembly includes a plurality of individual probe cards (DUT interfaces), and Each of the DUT interfaces has a DUT interface contactor carrying a plurality of contact structures; contacting a plurality of dies of the semiconductor wafer with the plurality of DUT interfaces; and testing the dies of the semiconductor wafer, wherein The individual DUT interface contactors are individually compliant with respect to the semiconductor wafer, and wherein the individual DUT interface contactors are separate. 如請求項15之方法,其中每一DUT接口接觸該半導體晶圓之一個晶粒。The method of claim 15, wherein each DUT interface contacts a die of the semiconductor wafer. 如請求項15之方法,其中每一DUT接口接觸該半導體晶圓之多個晶粒。The method of claim 15, wherein each DUT interface contacts a plurality of dies of the semiconductor wafer. 如請求項15之方法,其中個別DUT接口至少部分地基於繞該個別DUT接口之一樞轉機構之一樞轉運動而相對於該半導體晶圓具備順應性。The method of claim 15, wherein the individual DUT interface is compliant with respect to the semiconductor wafer based at least in part on pivotal movement about one of the pivoting mechanisms of the individual DUT interface. 如請求項18之方法,其中該樞轉機構係一第一樞轉機構,且其中該個別DUT接口包含一第二樞轉機構。The method of claim 18, wherein the pivoting mechanism is a first pivoting mechanism, and wherein the individual DUT interface comprises a second pivoting mechanism. 如請求項15之方法,其進一步包括: 藉由使該DUT接口接觸器與可獨立調整之定位螺釘之接針接觸來調整該DUT接口接觸器之一平面。The method of claim 15, further comprising: adjusting a plane of the DUT interface contact by contacting the DUT interface contact with a pin of the independently adjustable set screw.
TW106138826A 2016-11-10 2017-11-09 Probe card assembly having die-level and pin-level compliance, and associated systems and methods TW201825917A (en)

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
US201662420116P 2016-11-10 2016-11-10
US62/420,116 2016-11-10
US201762454420P 2017-02-03 2017-02-03
US62/454,420 2017-02-03
US201762484750P 2017-04-12 2017-04-12
US62/484,750 2017-04-12
US201762485104P 2017-04-13 2017-04-13
US62/485,104 2017-04-13
US201762533469P 2017-07-17 2017-07-17
US62/533,469 2017-07-17
US201762573507P 2017-10-17 2017-10-17
US62/573,507 2017-10-17

Publications (1)

Publication Number Publication Date
TW201825917A true TW201825917A (en) 2018-07-16

Family

ID=62110024

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106138826A TW201825917A (en) 2016-11-10 2017-11-09 Probe card assembly having die-level and pin-level compliance, and associated systems and methods

Country Status (2)

Country Link
TW (1) TW201825917A (en)
WO (1) WO2018089659A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI668457B (en) * 2018-08-27 2019-08-11 創意電子股份有限公司 Inspecting device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116087574A (en) * 2021-11-05 2023-05-09 思达尔科技(武汉)有限公司 Probe card device and test equipment thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10060438B4 (en) * 2000-12-05 2004-09-09 Infineon Technologies Ag Test arrangement for parallel testing of a plurality of integrated circuits and test methods
US7622935B2 (en) * 2005-12-02 2009-11-24 Formfactor, Inc. Probe card assembly with a mechanically decoupled wiring substrate
US7384277B1 (en) * 2006-12-17 2008-06-10 Formfactor, Inc. Reinforced contact elements
ITMI20072399A1 (en) * 2007-12-20 2009-06-21 St Microelectronics Srl PROBE BOARD IMPROVED TO TEST INTEGRATED CIRCUITS
US7960989B2 (en) * 2008-12-03 2011-06-14 Formfactor, Inc. Mechanical decoupling of a probe card assembly to improve thermal response

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI668457B (en) * 2018-08-27 2019-08-11 創意電子股份有限公司 Inspecting device

Also Published As

Publication number Publication date
WO2018089659A1 (en) 2018-05-17

Similar Documents

Publication Publication Date Title
US6762612B2 (en) Probe contact system having planarity adjustment mechanism
US6476626B2 (en) Probe contact system having planarity adjustment mechanism
US7956627B2 (en) Probe card, semiconductor inspecting apparatus, and manufacturing method of semiconductor device
US6677771B2 (en) Probe contact system having planarity adjustment mechanism
TWI407119B (en) Probe card apparatus having a preselected amount of total compliance
US7372286B2 (en) Modular probe card
US8134381B2 (en) Connection board, probe card, and electronic device test apparatus comprising same
US7405581B2 (en) Probing system uses a probe device including probe tips on a surface of a semiconductor die
US7884634B2 (en) High density interconnect system having rapid fabrication cycle
JP2008533441A (en) High density interconnect system for IC packages and interconnect assemblies
KR20010113485A (en) Contact structure and assembly mechanism thereof
JP4022518B2 (en) Probe contact system having a planar adjustment mechanism
US20150061719A1 (en) Vertical probe card for micro-bump probing
KR20070093450A (en) High density interconnect system for ic packages and interconnect assemblies
KR20200097836A (en) Probe Card and Manufacturing Method thereof
TW201825917A (en) Probe card assembly having die-level and pin-level compliance, and associated systems and methods
US20080100323A1 (en) Low cost, high pin count, wafer sort automated test equipment (ate) device under test (dut) interface for testing electronic devices in high parallelism
KR101680319B1 (en) Probe block for testing a liquid crystal panel
KR101380162B1 (en) Film type probe card
KR102386462B1 (en) Probe card and apparatus for aligning thereof
JP2009288109A (en) Double elastic mechanism probe card
JP2020165775A (en) Probe card
JP2014202557A (en) Probe unit, probe device, and test device