JP2009288109A - Double elastic mechanism probe card - Google Patents

Double elastic mechanism probe card Download PDF

Info

Publication number
JP2009288109A
JP2009288109A JP2008141695A JP2008141695A JP2009288109A JP 2009288109 A JP2009288109 A JP 2009288109A JP 2008141695 A JP2008141695 A JP 2008141695A JP 2008141695 A JP2008141695 A JP 2008141695A JP 2009288109 A JP2009288109 A JP 2009288109A
Authority
JP
Japan
Prior art keywords
probe
circuit board
board
substrate
probe card
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008141695A
Other languages
Japanese (ja)
Inventor
Shinichiro Furusaki
新一郎 古崎
Ryuichiro Mori
隆一郎 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Electronic Materials Corp
Original Assignee
Japan Electronic Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Electronic Materials Corp filed Critical Japan Electronic Materials Corp
Priority to JP2008141695A priority Critical patent/JP2009288109A/en
Publication of JP2009288109A publication Critical patent/JP2009288109A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Measuring Leads Or Probes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a probe card for using even a chip device having a small electrode size which is a test object, by reducing position deviation of a probe tip, concerning a probe card having a double elastic mechanism having a small-dimension probe used for inspection of an electric characteristic of chip devices integrated in high density on a semiconductor wafer. <P>SOLUTION: This probe card includes a circuit board 4; a probe substrate 3 arranged on one surface side of the circuit board, and provided with a plurality of probes 2 on a prescribed position on the surface; an elastic body 5 interposed between the probe substrate and the circuit board; and a probe substrate fixing member 8 which is a linear or belt-like flexible member having a prescribed length, arranged radially from the periphery of the probe substrate and mounted on the circuit board, for fixing the probe substrate and the circuit board so that the interval therebetween does not become longer than a prescribed value. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、半導体ウェハ上に高密度に集積されたチップデバイスの電気的特性検査に使用されるプローブカードの構造に関し、特に、プローブカードの回路基板に対して、複数のプローブを表面に備えたプローブ基板を、弾性部材を介在させて配置した、所謂二重弾性機構プローブカードの改良に関するものである。   The present invention relates to a structure of a probe card used for inspection of electrical characteristics of chip devices integrated at high density on a semiconductor wafer, and in particular, a plurality of probes are provided on the surface of a circuit board of the probe card. The present invention relates to an improvement of a so-called double elastic mechanism probe card in which a probe substrate is disposed with an elastic member interposed therebetween.

半導体ウエハ上のチップデバイスについて電気的機能試験は、被試験体であるチップデバイスの電極とプローブカードのプローブ先端との接触位置を調節し、プローブにオーバードライブを掛けて、チップデバイスの電極に圧接・導通を行い、次いで、テスタによりチップデバイスに対して電気的測定信号がプローブを経由して入出力されることにより行われている。   Electrical function tests on chip devices on semiconductor wafers are performed by adjusting the contact position between the chip device electrode, which is the device under test, and the probe tip of the probe card, overdrive the probe, and press contact with the chip device electrode. Conduction is performed, and then an electrical measurement signal is input / output via a probe to a chip device by a tester.

図4に示すように、プローブカード11は、複数のテスタ接続端子14aを有する回路基板14と、複数のプローブ12が装着されたプローブ基板13と、回路基板14の接続端子15aと各プローブ12に接続されたプローブ基板13の接続端子13aとに接触して電気的に接続するための中継接続ピン15群と、回路基板14を補強する補強板16と、回路基板14及び補強板16に対してプローブ基板13を所定位置に保持する支持体17と支持ボルト18と、さらにプローブ12群の面の傾きを調節するプローブ基板13の調節ボルト19とを備えている。この回路基板14及びプローブ基板13は、通常一定の剛性を有する円形又は方形の平板である。回路基板14に固着された中継接続ピン15は片持ち梁状で弾性を有し、支持体17、支持ボルト18の調節により生じるプローブ基板13の押圧力に比例して生じる反力により回路基板14の中継接続ピン15の先端部と、対応するプローブ基板13の接続端子13aとが接触して電気的接続が得られ、さらにプローブ12にオーバードライブ数十ミクロンを掛けるためにプローブ基板13に押圧力が加わりこれら接続端子間の電気的接続が確保される。   As shown in FIG. 4, the probe card 11 includes a circuit board 14 having a plurality of tester connection terminals 14 a, a probe board 13 to which a plurality of probes 12 are attached, a connection terminal 15 a of the circuit board 14, and each probe 12. The relay connection pins 15 for contacting and electrically connecting to the connection terminals 13a of the connected probe board 13, the reinforcing plate 16 for reinforcing the circuit board 14, and the circuit board 14 and the reinforcing board 16 A support body 17 and a support bolt 18 for holding the probe board 13 in a predetermined position, and an adjustment bolt 19 for the probe board 13 for adjusting the inclination of the surface of the probe 12 group are provided. The circuit board 14 and the probe board 13 are usually circular or rectangular flat plates having a certain rigidity. The relay connection pin 15 fixed to the circuit board 14 is cantilevered and elastic, and the circuit board 14 is caused by a reaction force proportional to the pressing force of the probe board 13 generated by adjusting the support 17 and the support bolt 18. Of the relay connection pin 15 and the corresponding connection terminal 13a of the probe board 13 are brought into contact with each other to obtain an electrical connection, and the probe board 13 is pressed to apply an overdrive of several tens of microns. Is added to ensure electrical connection between these connection terminals.

一方、チップデバイスの電極配置間隔(電極ピッチ)は、チップデバイスの高密度・高機能化に伴い、ますます小さくなっていて、例えば、記憶素子では50ミクロン間隔、論理素子では25ミクロン間隔、論理素子の中の液晶表示器を駆動する半導体素子では10ミクロン間隔が実現されるほどになっている。このようなチップデバイスを試験するためには、同程度に微小な寸法のプローブが要求される。この試験において、オーバドライブによる押圧力に対してプローブ内部に応力が発生し、プローブ寸法が微小になるに伴い内部に発生する応力が著しく大きくなり、プローブ材の許容最大応力を越えてしまう恐れがあり、これが起きるとプローブは破壊又は損傷を受けるに至る。   On the other hand, the electrode arrangement interval (electrode pitch) of the chip device is becoming smaller as the chip device has higher density and higher functionality. For example, the memory device has a 50 micron interval, the logic element has a 25 micron interval, In the semiconductor element for driving the liquid crystal display in the element, an interval of 10 microns is realized. In order to test such a chip device, a probe having the same minute size is required. In this test, stress is generated inside the probe against the pressing force due to overdrive, and as the probe size becomes small, the stress generated inside becomes extremely large, which may exceed the allowable maximum stress of the probe material. Yes, if this happens, the probe will be destroyed or damaged.

また、オーバードライブによりプローブに加えられる力が大きくても問題がないようにするために、回路基板とプローブ基板の間に弾性体を介在させる二重弾性構造を採用して、オーバ−ドライブ時にプローブに加わる力をプローブと弾性体とに分担させることが行われている(文献1)。
特開2004−340617号公報〔0005〜6,0011〜13、図18〕
Also, in order to prevent any problems even if the force applied to the probe by overdrive is large, a double elastic structure in which an elastic body is interposed between the circuit board and the probe board is adopted, and the probe is used during overdrive. The force applied to the probe is shared between the probe and the elastic body (Reference 1).
JP-A-2004-340617 [0005 to 6,0011 to 13, FIG. 18]

しかしながら、二重弾性機構のプローブカードにおいて、基板間に弾性体を介在させると、プローブ基板が、基板表面に平行な面方向(XY方向)で位置決めが不安定になり、チップデバイスにプローブを接触させるたび毎に、チップデバイスの電極に対するプローブの接触位置が異なるという問題が生じてきた。すなわち、プローブ基板と回路基板との間に弾性体を介在させた二重弾性機構を有するプローブカードにおいては、弾性体が介在しているためプローブ基板の平面方向の位置が不安定になるという問題があり、そのため、対象とするチップデバイスの電極のサイズとしては必要以上に大きく設定しなければならないという問題があった。   However, in the double elastic mechanism probe card, if an elastic body is interposed between the substrates, the probe substrate becomes unstable in the plane direction (XY direction) parallel to the substrate surface, and the probe contacts the chip device. Each time it is done, there has been a problem that the contact position of the probe with the electrode of the chip device is different. That is, in a probe card having a double elastic mechanism in which an elastic body is interposed between the probe board and the circuit board, the position in the planar direction of the probe board becomes unstable because the elastic body is interposed. For this reason, there is a problem that the size of the electrode of the target chip device must be set larger than necessary.

本発明は、上記の問題を解決するために行われたもので、二重弾性機構のプローブカードにおいて、プローブ先端の位置ずれを小さくすることによって、被試験体であるチップデバイスの電極サイズの小さなものであっても使用できるプローブカードを提供することを目的とするものである。 The present invention has been made to solve the above problems, and in a probe card having a double elastic mechanism, the electrode tip of the chip device, which is a device under test, has a small electrode size by reducing the displacement of the probe tip. An object of the present invention is to provide a probe card that can be used.

この発明の二重弾性機構プローブカードにおいては、回路基板と、該回路基板の一方の面側に配置され、表面の所定位置に複数のプローブが設けられたプローブ基板と、該プローブ基板と該回路基板との間に介在された弾性体と、所定長さの可撓性を有する線状又は帯状部材であって、該プローブ基板の周辺から放射状に配置されて該回路基板に取り付けられ、該プローブ基板と該回路基板との間隔が所定値以上にならないように固定するプローブ基板固定部材とを備えたものである。   In the double elastic mechanism probe card of the present invention, a circuit board, a probe board disposed on one side of the circuit board and provided with a plurality of probes at predetermined positions on the surface, the probe board and the circuit An elastic body interposed between the substrate and a flexible linear or belt-like member having a predetermined length, which is arranged radially from the periphery of the probe substrate and attached to the circuit substrate; A probe board fixing member that fixes the distance between the board and the circuit board so as not to exceed a predetermined value is provided.

本発明によれば、プローブ基板固定部材をプローブ基板の周辺から放射状に配置して回路基板に取り付け、該プローブ基板と該回路基板との間隔が所定値以上にならないように固定することによって、回路基板に対するプローブ基板の初期位置を規定することができる。ここでいう初期位置とは、プローブがチップデバイスの電極に接触する寸前の状態を意味しており、言い換えると、プローブが何にも接触していない状態であって、試験終了後に、プローブが電極から離れた瞬間の位置は、次の試験の初期位置ということもできる。すなわち、プローブが何にも接触していない状態において、プローブの先端が常に同一の位置になるようにプローブ基板を回路基板に対して固定することができるものである。 According to the present invention, the probe board fixing member is arranged radially from the periphery of the probe board and attached to the circuit board, and fixed so that the distance between the probe board and the circuit board does not exceed a predetermined value. An initial position of the probe substrate relative to the substrate can be defined. The initial position here means a state immediately before the probe contacts the electrode of the chip device.In other words, the probe is not in contact with anything, and after the test is finished, the probe is not connected to the electrode. It can be said that the position at the moment away from is the initial position of the next test. That is, the probe board can be fixed to the circuit board so that the tip of the probe is always at the same position when the probe is not in contact with anything.

以下、本発明に係る二重弾性機構プローブカードの最良の実施形態を図面に基いて説明する。図1は、二重弾性機構プローブカードの実施形態であって、(a)は回路基板とプローブ基板間にばね状弾性体を介在させたプローブカードの模式的断面図、(b)は(a)のA矢視の模式的平面図である。図2は、二重弾性機構プローブカードの別の実施形態であって、回路基板とプローブ基板間に片持ち梁状弾性体を介在させたプローブカードの模式的断面図である。図3は、図2の別の実施形態図であって、基板固定部材の調節装置を配設したプローブカードの模式的断面図である。   Hereinafter, the best embodiment of the double elastic mechanism probe card according to the present invention will be described with reference to the drawings. FIG. 1 is an embodiment of a double elastic mechanism probe card, wherein (a) is a schematic cross-sectional view of a probe card in which a spring-like elastic body is interposed between a circuit board and a probe board, and (b) is (a) It is a typical top view of A arrow of (). FIG. 2 is a schematic cross-sectional view of a probe card according to another embodiment of the double elastic mechanism probe card, in which a cantilevered elastic body is interposed between the circuit board and the probe board. FIG. 3 is a schematic cross-sectional view of another embodiment of the probe card of FIG. 2 and a probe card provided with a substrate fixing member adjusting device.

図1(a)、(b)を用いて、本発明の実施の形態である二重弾性機構プローブカード1について説明すると、プローブカード1は、複数のテスタ接続端子4aを上面に配設すると共にテスタ接続端子4aに個々に接続された接続端子4b群を下面に配設した回路基板4と、接続端子4bに個々に対応した配線部材9が接続する端子3a群を端部に配設すると共に接続端子3aに個々に接続された複数のプローブ2を下面に配設したプローブ基板3と、回路基板4とプローブ基板3との間に介在して、プローブ基板3の中央部に偏在して配設する複数のつる巻きばね状弾性体5と、回路基板4の背面に密着して機械的強度を補強する補強板7と、補強板7上面にその端部が固定具8aで取付けられ、補強板7と回路基板4との挿通孔8dに挿通され、プローブ基板3の端部に回路基板4の挿通孔下面から水平よりやや下向き方向へ緊張して固定具8aで取付けられ、かつ、平面的にほぼ均等に放射状に配設した3以上の線状又は帯状プローブ基板固定部材8と、から構成される。   The double elastic mechanism probe card 1 according to the embodiment of the present invention will be described with reference to FIGS. 1A and 1B. The probe card 1 has a plurality of tester connection terminals 4a disposed on the upper surface. A circuit board 4 having a group of connection terminals 4b individually connected to the tester connection terminal 4a disposed on the lower surface, and a group of terminals 3a to which the wiring members 9 corresponding to the connection terminals 4b are individually connected are disposed at the ends. A plurality of probes 2 individually connected to the connection terminals 3a are disposed on the lower surface of the probe board 3, and the circuit board 4 and the probe board 3 are interposed between the probe board 3 and the probe board 3. A plurality of helical spring-like elastic bodies 5 to be provided, a reinforcing plate 7 that is in close contact with the back surface of the circuit board 4 and reinforces the mechanical strength, and an end portion of the reinforcing plate 7 is attached to the upper surface of the reinforcing plate 7 with a fixture 8a. Insert into the insertion hole 8d between the board 7 and the circuit board 4 The three or more lines that are attached to the end of the probe board 3 by the fixture 8a while being strained slightly downward from the horizontal from the lower surface of the insertion hole of the circuit board 4 and arranged radially evenly in a plane. Or a belt-like probe substrate fixing member 8.

プローブ基板3及び回路基板4の形状は所定の厚みを有する円形又は方形の平板である。また、前記基板3及び4は、一定の剛性のある合成樹脂製又はセラミック製のプリント板であって、プローブ基板3では、端部にある各接続端子3aと下面の対応するプローブ2とをプリント配線で内部接続し、一方の回路基板4でも各テスタ接続端子4aと下面の対応する接続端子4bとをプリント配線で内部接続している。円形又は方形のプローブ基板3の下面全体に、被測定物である半導体チップデバイスの電極に対応するプローブ2が秩序立って配設される。これらのプローブ2は、プローブ基板3のプローブ接続端子(図示しない)に固着されて、片持ち梁状にプローブ2本体を保持して弾性体としての機能を有し、その先にチップデバイスの電極(図示しない)と接触可能な針先を有する一体構造のものである。このプローブ2の線径は、チップデバイスの規模にもよるが、10〜100μmの範囲であり、プローブ数も数百から千本を超える規模である。プローブ2の材料としては、通常、パラジウム合金、ベリリウム銅合金、タングステン合金等から選択された一種類の合金が用いられ、主にダイス伸線で製造され、一部微細プローブはMEMSプロセスでも製造される。また、補強板7は、回路基板4の平面度を維持するための背面を補強するために用いられ、この場合、強度が高い金属製を用い、耐熱性、耐候性、耐汚染性及び被加工性の点からステンレス鋼を用いることが望ましい。   The probe board 3 and the circuit board 4 are circular or square flat plates having a predetermined thickness. The substrates 3 and 4 are printed boards made of synthetic resin or ceramic having a certain rigidity. The probe board 3 prints the connection terminals 3a at the ends and the corresponding probes 2 on the lower surface. Internal connection is made by wiring, and also on one circuit board 4, each tester connection terminal 4a and a corresponding connection terminal 4b on the lower surface are internally connected by printed wiring. Probes 2 corresponding to electrodes of a semiconductor chip device, which is an object to be measured, are arranged in an orderly manner on the entire lower surface of a circular or square probe substrate 3. These probes 2 are fixed to probe connection terminals (not shown) of the probe substrate 3 and have a function as an elastic body by holding the probe 2 main body in a cantilever shape. It has an integral structure having a needle tip that can be in contact with (not shown). Although the wire diameter of the probe 2 depends on the scale of the chip device, it is in the range of 10 to 100 μm, and the number of probes is several hundred to more than 1,000. As a material of the probe 2, one kind of alloy selected from palladium alloy, beryllium copper alloy, tungsten alloy, etc. is usually used, and it is mainly manufactured by die drawing, and a part of the fine probe is also manufactured by the MEMS process. The The reinforcing plate 7 is used to reinforce the back surface for maintaining the flatness of the circuit board 4. In this case, the reinforcing plate 7 is made of a metal having high strength, and has heat resistance, weather resistance, contamination resistance, and workability. From the viewpoint of properties, it is desirable to use stainless steel.

本発明は、許容最大オーバドライブを増加するために、プローブ基板3と回路基板4との間に弾性体5を介在させて、測定試験時に、弾性体5が動作できるようにしたプローブ2と弾性体5との二重の弾性機構をもつプローブカード構造を採用した。プローブ基板3と回路基板4との間に弾性体5群を介在させて、それが動作する場合、このプローブカード1は全体としてプローブ2群という「ばね」と、介在させた弾性体5の「ばね」を直列に結合した弾性体と見なすことができる。プローブ1本のばね定数をk1、プローブ総数をN本、プローブ基板3と回路基板4との間に介在させる弾性体5群全体のばね定数をK2とすると、プローブ2群全体のばね定数K1はK1=k1×Nであり、ウェハからみたプローブカード1全体のばね定数をKとすると、ウェハからみたプローブカード1全体のばね定数: K=(K×K)/(K+K2)となる。この弾性体5群を介在させることにより、プローバ又はウエハからみたばね定数は小さくなり、その分、プローブ2による所定の押圧力を得るためのオーバドライブが多く要することになる。同時にプローブ2単体の許容最大オーバドライブに対応する許容最大応力に達するまでのプローバからみたオーバドライブはその分だけ大きくすることができる。これがプローブ基板3と回路基板4との間に弾性体5を介在させる作用及びその効果である。 In the present invention, in order to increase the maximum allowable overdrive, the elastic body 5 is interposed between the probe board 3 and the circuit board 4 so that the elastic body 5 can operate during the measurement test. A probe card structure having a double elastic mechanism with the body 5 was adopted. When an elastic body 5 group is interposed between the probe board 3 and the circuit board 4 and operates, this probe card 1 is composed of a “spring” called a probe 2 group as a whole, and a “spring” of the interposed elastic body 5. The “spring” can be regarded as an elastic body coupled in series. If the spring constant of one probe is k 1 , the total number of probes is N, and the spring constant of the entire group of elastic bodies 5 interposed between the probe board 3 and the circuit board 4 is K 2 , the spring constant of the entire probe 2 group K 1 is K 1 = k 1 × N, where K is the spring constant of the entire probe card 1 viewed from the wafer, and K = (K 1 × K 2 ) / ( K 1 + K 2 ). By interposing this group of elastic bodies 5, the spring constant viewed from the prober or the wafer becomes small, and accordingly, an overdrive for obtaining a predetermined pressing force by the probe 2 is required. At the same time, the overdrive viewed from the prober until the maximum allowable stress corresponding to the maximum allowable overdrive of the probe 2 alone can be increased. This is the action and effect of interposing the elastic body 5 between the probe board 3 and the circuit board 4.

また、本発明に係る二重弾性機構プローブカード1において、片持ち梁状プローブ2群の総合ばね定数(K)と対応する弾性体5である片持ち梁状弾性体群又はつる巻きばね状弾性体群の総合ばね定数(K)の比(K/K)が0.5〜2.0の範囲であると、測定試験において、プローブ2群のオーバドライブと、それに伴うプローブ基板3のオーバドライブのバランスがよく、プローバ又はウエハのオーバドライブ操作がし易いし、プローブ2の許容最大オーバドライブの余裕代が十分とれ、かつ、許容最大応力にも余裕をとることができる。また、介在させる弾性体5をプローブ基板3の中央部のみに偏在して配置させると、ウェハ面とプローブ面とが互いに傾きを持っていた場合でも、プローブ基板3がその傾きに倣うように移動して、均等にオーバドライブする効果が得られる。また、介在する弾性体5をプローブ基板3の全面に均等に配置させることも可能である。 Further, in the double elastic mechanism probe card 1 according to the present invention, a cantilever-like elastic body group or a helical spring shape which is an elastic body 5 corresponding to the total spring constant (K 1 ) of the cantilever-like probe 2 group. When the ratio (K 1 / K 2 ) of the total spring constant (K 2 ) of the elastic body group is in the range of 0.5 to 2.0, in the measurement test, the overdrive of the probe 2 group and the probe substrate associated therewith 3 is well balanced, the prober or wafer is overdriven easily, the allowance for the allowable maximum overdrive of the probe 2 is sufficient, and the allowable maximum stress can be secured. Further, when the elastic body 5 to be interposed is unevenly arranged only at the center portion of the probe substrate 3, even if the wafer surface and the probe surface are inclined, the probe substrate 3 moves so as to follow the inclination. Thus, the effect of overdriving evenly can be obtained. It is also possible to arrange the interposed elastic bodies 5 evenly on the entire surface of the probe substrate 3.

また、プローブ基板3と回路基板4との間に介在する複数のつる巻きばね状弾性体5は、プローブ2と同様に金属製が好ましく、弾性体5群の総合ばね定数(K=k×N、k:一個のつる巻きばね状弾性体5のばね定数、N:弾性体の総数)はプローブ2群の総合ばね定数(K=k×N、k:一個のプローブ2のばね定数、N:プローブの総数)の0.5〜2.0の範囲にあるのが、プローバにより負荷するオーバドライブをプローブ2とプローブ基板3とにバランスよく分配することができる。また、直線状のつる巻きばねのばね定数はk=Gd/8Nd(因みに、G:横弾性係数、D:コイル平均径、d:線径、N:巻数)で表わされ、横弾性係数はBe−Cu合金が4.5×10kgf/mm、ばね用青銅が4×10kgf/mm、鋼が8×10kgf/mmであるから、つる巻きばねの諸元と総数はプローブ2の材質、弾性体5の配設総数等から適宜設計される。また、つる巻きばね状弾性体5の各基板3,4への取付けはばね座を設けても、エポキシ樹脂等で接着してもよい。 The plurality of helical spring-like elastic bodies 5 interposed between the probe board 3 and the circuit board 4 are preferably made of metal like the probe 2, and the total spring constant (K 2 = k 2 of the elastic bodies 5 group). × N, k 2 : spring constant of one helical spring-like elastic body 5, N: total number of elastic bodies) is the total spring constant of the two groups of probes (K 1 = k 1 × N, k 1 : one probe 2 The overdrive loaded by the prober can be distributed between the probe 2 and the probe substrate 3 in a well-balanced manner. Further, the spring constant of the linear helical spring is represented by k = Gd 4 / 8Nd 3 (where G is the transverse elastic modulus, D is the coil average diameter, d is the wire diameter, and N is the number of turns). The coefficients are 4.5 × 10 3 kgf / mm 2 for Be—Cu alloy, 4 × 10 3 kgf / mm 2 for spring bronze, and 8 × 10 3 kgf / mm 2 for steel. The original and total number are appropriately designed from the material of the probe 2 and the total number of the elastic bodies 5 provided. The helical spring-like elastic body 5 may be attached to each of the substrates 3 and 4 by providing a spring seat or bonding with an epoxy resin or the like.

また、前記介在させる弾性体5をプローブ基板3の中央部のみに偏在して配置させると、ウェハ30面とプローブ2面とが互いに傾きを持っていた場合でも、プローブ基板3がその傾きに倣うように移動してオーバドライブする作用効果が得られる。また、介在させる弾性体5をプローブ基板3の全面に均等に配置させることも十分可能である。   Further, when the interposing elastic body 5 is unevenly arranged only in the central portion of the probe substrate 3, even when the wafer 30 surface and the probe 2 surface are inclined, the probe substrate 3 follows the inclination. Thus, the effect of moving and overdriving can be obtained. It is also possible to arrange the interposed elastic body 5 evenly over the entire surface of the probe substrate 3.

また、本発明の二重弾性機構のプローブカードでは、プローブ2先端部の位置精度(X-Y)を維持できるプローブ基板3の支持機構として、二重弾性機構プローブカード1のプローブ基板3の固定は、引張方向の伸びが極端に小さい複数の線状又は帯状のプローブ基板固定部材8により、プローブ基板3の中心から平面的にほぼ均等に放射状に伸びる線上の位置に相当する端部固定具8aからやや上向き方向に引張って、回路基板4及び補強板7に開けた挿通孔8dを通して補強板7上の固定具8aで固定する構造とする。また、線状又は帯状のプローブ基板固定部材8は、プローブ基板3に対しては少なくとも3本以上を用いるのが、プローブ基板3を緊張固定するのに適切である。また、プローブ基板3は、そのプローブ2が試験されるウェハ30のチップデバイスの電極に正確に対応するように、線状又は帯状のプローブ基板固定部材8の引張りを調整することにより位置調整が行われる。そのために、固定の際の位置決めを確実にするために、補強板8上面に固定されたマイクロネジ機構をとりつけた調節装置8bを設けている。さらに、プローブ基板3と回路基板4との間に空間があると、オーバドライブが掛けられたときにプローブ基板3は自重に相当する荷重のみをウェハに与えて、それ以上のオーバドライブがかかると、プローブ基板固定部材8は引っ張り方向には大きな張力をもつがその方向と概略垂直の方向であるオーバドライブの方向へはほとんど力を作用させることがない。したがって、オーバドライブ操作に際して、プローブ基板3は上方へ容易に移動し、オーバドライブが解除されると、もとの位置に容易にもどるが、このときXY平面におけるプローブ2の位置は、プローブ基板固定部材8の張力により厳格に決まっているため、正確にもとの位置にもどる。   Moreover, in the probe card of the double elastic mechanism of the present invention, as a support mechanism of the probe board 3 that can maintain the positional accuracy (XY) of the probe 2 tip, the probe board 3 of the double elastic mechanism probe card 1 is fixed. By a plurality of linear or belt-like probe substrate fixing members 8 with extremely small elongation in the tensile direction, the end fixture 8a corresponding to a position on the line extending radially almost uniformly from the center of the probe substrate 3 is slightly The structure is fixed by a fixture 8a on the reinforcing plate 7 through an insertion hole 8d opened in the circuit board 4 and the reinforcing plate 7 by pulling upward. Further, at least three or more linear or belt-like probe substrate fixing members 8 are used for the probe substrate 3 in order to fix the probe substrate 3 in tension. Further, the position of the probe substrate 3 is adjusted by adjusting the tension of the linear or belt-like probe substrate fixing member 8 so that the probe 2 accurately corresponds to the electrode of the chip device of the wafer 30 to be tested. Is called. For this purpose, in order to ensure the positioning at the time of fixing, an adjusting device 8b having a micro screw mechanism fixed to the upper surface of the reinforcing plate 8 is provided. Further, if there is a space between the probe board 3 and the circuit board 4, when the overdrive is applied, the probe board 3 applies only a load corresponding to its own weight to the wafer, and further overdrive is applied. The probe substrate fixing member 8 has a large tension in the pulling direction, but hardly exerts a force in the overdrive direction which is a direction substantially perpendicular to the direction. Therefore, in the overdrive operation, the probe board 3 easily moves upward, and when the overdrive is released, the probe board 3 easily returns to the original position. At this time, the position of the probe 2 in the XY plane is fixed to the probe board. Since it is strictly determined by the tension of the member 8, it returns to its original position accurately.

前述のように、プローブ基板3は、回路基板4との間で、線状又は帯状のプローブ基板固定部材8によりやや上向き方向に引張られ、かつ、介在する複数のつる巻きばね状弾性体5の反力とのバランスで上下方向の位置が定められる。この状態からオーバドライブが掛けられると、プローブ基板固定部材8は引張り方向には大きな張力をもつがその方向と概略垂直の方向であるオーバドライブの方向へはほとんど力を作用させることができないので、プローブ基板3は介在する複数のつる巻きばね状弾性体5を押圧して上方へ移動する。オーバドライブが解除されると、このときXY平面におけるプローブの位置は、プローブ基板固定部材8の張力により厳格に決まっているため、正確にもとの位置にもどる。また、プローブ基板固定部材8は、高さ方向へは、プローブ2およびプローブ基板3のオーバドライブ時の上方への移動を考慮して、やや斜め上方向に引っ張るように固定しなければならない。   As described above, the probe board 3 is slightly pulled upward by the linear or belt-like probe board fixing member 8 between the circuit board 4 and the intervening plurality of helical spring-like elastic bodies 5. The position in the vertical direction is determined by the balance with the reaction force. When overdrive is applied from this state, the probe board fixing member 8 has a large tension in the pulling direction, but almost no force can be applied to the overdrive direction which is substantially perpendicular to the direction. The probe substrate 3 moves upward by pressing a plurality of interposing helical springs 5. When the overdrive is released, the position of the probe in the XY plane at this time is strictly determined by the tension of the probe substrate fixing member 8, and thus returns to the original position accurately. In addition, the probe substrate fixing member 8 must be fixed so as to be pulled slightly upward in the height direction in consideration of upward movement of the probe 2 and the probe substrate 3 during overdrive.

さらに、図1bに示すように、プローブ基板3から回路基板4への柔軟性のある電気配線部材9がある場合は、プローブ基板固定部材8はその配線部材9の位置を避けるように配置する必要がある。プローブ基板固定部材8はプローブ基板3の周辺全てに固定する必要がないため、これらが互いに干渉しないように配置することは可能であって、例えば、プローブ基板3が四辺形をなす場合は、その4つのコーナー部にプローブ基板固定部材8をとりつけ、4辺のほとんどの部分を柔軟な電気配線部材9の接続領域であてることができる。あるいは、プローブ基板固定部材8と配線部材9とを、高さ方向の位置を変えて(干渉しない層状に構成)配置することも可能である。また、プローブ基板固定部材8に高張力鋼のように高張力を持たせれば、線状又は帯状のプローブ基板固定部材8を細く又は狭くしても、引張り力が確保できるので、プローブ基板固定部材8の配設が電気配線部材9と錯綜することなく容易に配設できる。また、緊張力に対してプローブ基板固定部材8の伸びを抑えることができるので、プローブ基板3、ひいてはプローブ2の位置精度を維持しやすい。   Further, as shown in FIG. 1b, when there is a flexible electrical wiring member 9 from the probe board 3 to the circuit board 4, the probe board fixing member 8 needs to be arranged so as to avoid the position of the wiring member 9 There is. Since the probe substrate fixing member 8 does not need to be fixed to the entire periphery of the probe substrate 3, it can be arranged so that they do not interfere with each other. For example, when the probe substrate 3 forms a quadrilateral, The probe board fixing member 8 can be attached to the four corner portions, and most of the four sides can be used as the connection region of the flexible electric wiring member 9. Alternatively, the probe board fixing member 8 and the wiring member 9 can be arranged by changing the position in the height direction (configured in a layer shape that does not interfere). In addition, if the probe substrate fixing member 8 is made to have a high tension like high tensile steel, a tensile force can be secured even if the linear or belt-like probe substrate fixing member 8 is narrowed or narrowed. 8 can be easily arranged without confusion with the electric wiring member 9. Further, since the extension of the probe substrate fixing member 8 can be suppressed against the tension force, it is easy to maintain the positional accuracy of the probe substrate 3 and thus the probe 2.

また、図2、図3を用いて、本発明に係わる二重弾性機構プローブカードの別の実施形態であるプローブカード1について、図1(a)、(b)と相違する点について説明すると、プローブカード1は、複数のテスタ接続端子4aを上面に配設すると共にテスタ接続端子4aに個々に接続された接続端子4b群を下面に配設した回路基板4と、接続端子4bに個々に対応した接続端子3a群を上面に配設すると共に接続端子3aに個々に接続された複数のプローブ2を下面に配設したプローブ基板3と、回路基板4の接続端子4b群に個々に根元を固着して、先端部をプローブ基板3の接続端子3a群に接触して電気的に接続する片持ち梁状弾性体である中継接続ピン6群と、回路基板4の背面に密着して機械的強度を補強する補強板7と、補強板7上面に端部が固定具8aで取付けられ、補強板7と回路基板4との挿通孔8dに挿通され、プローブ基板3の端部に回路基板4の挿通孔下面から水平よりやや下向き方向へ緊張して固定具8aで取付けられ、かつ、平面的にほぼ均等に放射状に配設した3本以上の線状又は帯状プローブ基板固定部材8と、から構成される。   2 and 3, the probe card 1 which is another embodiment of the double elastic mechanism probe card according to the present invention will be described with respect to points different from FIGS. 1 (a) and 1 (b). The probe card 1 has a plurality of tester connection terminals 4a on the upper surface, and a circuit board 4 in which a group of connection terminals 4b individually connected to the tester connection terminals 4a is disposed on the lower surface, and corresponds to the connection terminals 4b individually. The connection terminal 3a group is disposed on the upper surface, and a plurality of probes 2 individually connected to the connection terminal 3a are disposed on the lower surface, and the base is individually fixed to the connection terminal 4b group on the circuit board 4. Then, the front end portion contacts the group of connection terminals 3a of the probe board 3 and is electrically connected to the relay connection pin 6 group, which is a cantilever-like elastic body, and the back surface of the circuit board 4 is in close contact with the mechanical strength. Reinforcing plate 7 for reinforcing An end portion is attached to the upper surface of the strong plate 7 with a fixture 8a, and is inserted into an insertion hole 8d between the reinforcing plate 7 and the circuit board 4. The end portion of the probe board 3 is slightly downward from the horizontal from the lower surface of the insertion hole of the circuit board 4. It is composed of three or more linear or strip-like probe substrate fixing members 8 that are tensioned in the direction and are attached by a fixing tool 8a, and are arranged almost uniformly in a plane.

また、プローブ基板3と回路基板4との間に介在する複数の片持ち梁状弾性体6は、良導電性の金属製がよく、例えばBe−Cu合金等である。片持ち梁状弾性体6の総合ばね定数(K=k×N、因みに、k:一個の片持ち梁状弾性体6のばね定数、N:弾性体の総数)はプローブ群の総合ばね定数(K=k×N、因みに、k:一個のプローブ2のばね定数、N:プローブの総数)の0.5〜2.0の範囲にあるのが、プローバによって負荷するオーバドライブをプローブとプローブ基板にバランスよく分配することができる。また、回路基板4の接続端子4bに固着された片持ち梁状弾性体6は中継接続の役割も果たし、押圧力に比例して生ずる反力によりプローブ基板3の接続端子3aと電気的接続を確保する。片持ち梁状弾性体6は、押圧力により上方への移動が生ずると共に、対応する接続端子3aとの水平方向の位置関係がずれなくする形状が求められるから、片持ち梁状のカンチレバー型が製作容易な点でよく、また、コイルバネ型でもよい。片持ち梁状弾性体6の材料は、弾性があり、電気伝導性が良好な材料が望ましく、銅系の燐系銅合金、ベリリウム系銅合金、ニッケル合金等が用いられる。 The plurality of cantilevered elastic bodies 6 interposed between the probe substrate 3 and the circuit board 4 are preferably made of a highly conductive metal, such as a Be-Cu alloy. The total spring constant of the cantilevered elastic body 6 (K 2 = k 2 × N, where k 2 is the spring constant of one cantilevered elastic body 6 and N is the total number of elastic bodies) is the total of the probe group. The spring constant (K 1 = k 1 × N, where k 1 is the spring constant of one probe 2 and N is the total number of probes) is in the range of 0.5 to 2.0. The drive can be distributed in a balanced manner between the probe and the probe substrate. The cantilevered elastic body 6 fixed to the connection terminal 4b of the circuit board 4 also serves as a relay connection, and is electrically connected to the connection terminal 3a of the probe board 3 by a reaction force generated in proportion to the pressing force. Secure. The cantilever-like elastic body 6 is required to have a shape in which the cantilever-like elastic body 6 is moved upward by a pressing force and the horizontal positional relationship with the corresponding connection terminal 3a is not shifted. It may be easy to manufacture or may be a coil spring type. The material of the cantilevered elastic body 6 is preferably a material having elasticity and good electrical conductivity, such as a copper-based phosphorus-based copper alloy, a beryllium-based copper alloy, or a nickel alloy.

前述のように、プローブ基板3は、回路基板4との間で、線状又は帯状のプローブ基板固定部材8によりやや上向き方向に引張られ、かつ、介在する複数の片持ち梁状弾性体6の反力とのバランスで上下方向の位置が定められる。この状態からオーバドライブが掛けられると、プローブ基板固定部材8は引張り方向には大きな張力をもつがその方向と概略垂直の方向であるオーバドライブの方向へはほとんど力を作用させることができないので、プローブ基板3は介在する複数の片持ち梁状弾性体6を押圧して上方へ移動する。オーバドライブが解除されると、このときXY平面におけるプローブ2の位置は、プローブ基板固定部材8の張力により厳格に決まっているため、正確にもとの位置にもどる。   As described above, the probe board 3 is pulled slightly upward by the linear or belt-like probe board fixing member 8 between the circuit board 4 and a plurality of cantilever elastic bodies 6 interposed therebetween. The position in the vertical direction is determined by the balance with the reaction force. When overdrive is applied from this state, the probe board fixing member 8 has a large tension in the pulling direction, but almost no force can be applied to the overdrive direction which is substantially perpendicular to the direction. The probe substrate 3 moves upward by pressing a plurality of interposed cantilever elastic bodies 6. When the overdrive is released, the position of the probe 2 in the XY plane at this time is strictly determined by the tension of the probe substrate fixing member 8, and thus returns to the original position accurately.

また、プローブカード1はオーバドライブにより上方に移動する時に、プローブ基板固定部材8にわずかのゆるみが生じるため水平方向の位置変動がわずかに生じる可能性があるが、電極に接触するまではプローブ2の位置は厳格に固定されており、そして電極に接触した後は、通常水平方向にプローブ基板3を動かそうとする力は生じないこと、および電極表面とプローブ2先端の間には摩擦力が生じることにより、接触後の位置変動は極めて小さいので、試験に支障はない。また、特にオーバドライブ時の位置変動を抑制するためには、図2bに示すように、プローブ基板固定部材8の引き上げ角度を小さくするために回路基板4の挿通孔8dの所に調節具8cを設ければよい。これにより高さ方向の移動量に比して水平方向の位置変動は試験に支障を生じないほど小さくすることができる。   Further, when the probe card 1 is moved upward due to overdrive, the probe board fixing member 8 is slightly loosened, so that there is a possibility that the horizontal position fluctuation slightly occurs. The position of the electrode is strictly fixed, and after contacting the electrode, there is usually no force to move the probe substrate 3 in the horizontal direction, and there is a frictional force between the electrode surface and the tip of the probe 2. As a result, the positional fluctuation after contact is extremely small, so there is no problem in the test. Further, in order to suppress the position fluctuation particularly at the time of overdrive, as shown in FIG. 2b, an adjustment tool 8c is provided at the insertion hole 8d of the circuit board 4 in order to reduce the pulling angle of the probe board fixing member 8. What is necessary is just to provide. Thereby, the position fluctuation in the horizontal direction can be made smaller than the amount of movement in the height direction so as not to hinder the test.

図1、図2、図3に示す二重弾性機構プローブカード1の組み立て製作は次のように行うことができる。補強板7と回路基板4を下に逆さまに置き、回路基板4上の所定位置につる巻きばね状弾性体5又は片持ち梁状弾性体6を固着し、次いでプローブ2を予め配設したプローブ基板3を弾性体5又は6の上に載せて接着又は仮着けをおこなう。次いで、プローブ基板3の端部に複数の線状又は帯状のプローブ基板固定部材8を放射状に取付けて、回路基板4、補強板7に通して仮固定し、同時に必要であれば配線部材9をプローブ基板3の端子3aと回路基板4の端子4bとに結線する。次いで、仮組みの上下を引っ繰り返して複数のプローブ基板固定部材8の長さ、引張り力を夫々調節して、回路基板4に対するプローブ基板3の位置及びプローブ2の位置を調節することにより二重弾性機構プローブカード1を製作する。   Assembly of the double elastic mechanism probe card 1 shown in FIGS. 1, 2, and 3 can be performed as follows. A probe in which the reinforcing plate 7 and the circuit board 4 are placed upside down, the wound spring-like elastic body 5 or the cantilever-like elastic body 6 is fixed to a predetermined position on the circuit board 4, and then the probe 2 is disposed in advance. The substrate 3 is placed on the elastic body 5 or 6 and bonded or temporarily attached. Next, a plurality of linear or belt-like probe board fixing members 8 are radially attached to the end of the probe board 3 and temporarily fixed through the circuit board 4 and the reinforcing plate 7. The terminal 3 a of the probe board 3 and the terminal 4 b of the circuit board 4 are connected. Next, the temporary assembly is repeated up and down to adjust the length and tensile force of the plurality of probe substrate fixing members 8 to adjust the position of the probe substrate 3 and the position of the probe 2 with respect to the circuit substrate 4. The elastic mechanism probe card 1 is manufactured.

半導体ウェハにおいて、特に、高集積化チップデバイスの電気的特性検査に使用するプローブカードに利用することができる。   In a semiconductor wafer, the present invention can be used particularly for a probe card used for electric characteristic inspection of a highly integrated chip device.

本発明に係わる二重弾性機構プローブカードの実施形態であって、(a)は回路基板とプローブ基板間にばね状弾性体を介在させたプローブカードの模式的断面図、(b)は(a)のA矢視の模式的平面図である。It is embodiment of the double elastic mechanism probe card | curd concerning this invention, Comprising: (a) is typical sectional drawing of the probe card which interposed the spring-like elastic body between the circuit board and the probe board, (b) is (a). It is a typical top view of A arrow of (). 本発明に係わる二重弾性機構プローブカードの別の実施形態であって、回路基板とプローブ基板間に片持ち梁状弾性体を介在させたプローブカードの模式的断面図である。It is another embodiment of the double elastic mechanism probe card according to the present invention, and is a schematic cross-sectional view of a probe card in which a cantilever elastic body is interposed between a circuit board and a probe board. 図2の別の実施形態図であって、基板固定部材の調節装置を配設したプローブカードの模式的断面図である。FIG. 3 is a schematic cross-sectional view of a probe card in which an adjustment device for a substrate fixing member is provided, which is another embodiment of FIG. 2. 従来のプローブカードの一例であって、プローブカードの模式的断面図である。It is an example of the conventional probe card, Comprising: It is typical sectional drawing of a probe card.

符号の説明Explanation of symbols

1:プローブカード 2:プローブ 3:プローブ基板
3a:接続端子 4:回路基板 4a:テスタ接続端子
4b:接続端子 5:ばね状弾性体 6:片持ち梁状弾性体 6a:接続端子 7:補強板 8:プローブ基板固定部材
8a:固定具 8b:調節装置 8c:調節具
8d:挿通孔 9:配線部材
11:プローブカード 12:プローブ 13:プローブ基板
13a:接続端子 13b:接続端子 14:回路基板
14a:テスタ接続端子 15:中継接続ピン 15a:接続端子
16:補強板 17:支持体 18:支持ボルト
19:調節ボルト
1: Probe card 2: Probe 3: Probe board 3a: Connection terminal 4: Circuit board 4a: Tester connection terminal 4b: Connection terminal 5: Spring-like elastic body 6: Cantilever-like elastic body 6a: Connection terminal 7: Reinforcing plate 8: Probe board fixing member 8a: Fixing tool 8b: Adjustment device 8c: Adjustment tool 8d: Insertion hole 9: Wiring member 11: Probe card 12: Probe 13: Probe board 13a: Connection terminal 13b: Connection terminal 14: Circuit board 14a : Tester connection terminal 15: Relay connection pin 15a: Connection terminal 16: Reinforcement plate 17: Support 18: Support bolt 19: Adjustment bolt

Claims (2)

回路基板と、該回路基板の一方の面側に配置され、表面の所定位置に複数のプローブが設けられたプローブ基板と、該プローブ基板と該回路基板との間に介在された弾性体と、所定長さの可撓性を有する線状又は帯状部材であって、該プローブ基板の周辺から放射状に配置されて該回路基板に取り付けられ、該プローブ基板と該回路基板との間隔が所定値以上にならないように固定するプローブ基板固定部材とを備えたことを特徴とする二重弾性機構プローブカード。 A circuit board, a probe board disposed on one side of the circuit board and provided with a plurality of probes at predetermined positions on the surface, an elastic body interposed between the probe board and the circuit board, A linear or belt-like member having a predetermined length, which is arranged radially from the periphery of the probe board and attached to the circuit board, and the interval between the probe board and the circuit board is a predetermined value or more A double elastic mechanism probe card, comprising: a probe board fixing member for fixing so as not to become distorted. 該プローブ基板固定部材が該回路基板の他方の面側に引き出されて長さ調整可能に固定されていることを特徴とする請求項1に記載の二重弾性機構プローブカード。 2. The double elastic mechanism probe card according to claim 1, wherein the probe board fixing member is pulled out to the other surface side of the circuit board and fixed to be adjustable in length.
JP2008141695A 2008-05-29 2008-05-29 Double elastic mechanism probe card Withdrawn JP2009288109A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008141695A JP2009288109A (en) 2008-05-29 2008-05-29 Double elastic mechanism probe card

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008141695A JP2009288109A (en) 2008-05-29 2008-05-29 Double elastic mechanism probe card

Publications (1)

Publication Number Publication Date
JP2009288109A true JP2009288109A (en) 2009-12-10

Family

ID=41457459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008141695A Withdrawn JP2009288109A (en) 2008-05-29 2008-05-29 Double elastic mechanism probe card

Country Status (1)

Country Link
JP (1) JP2009288109A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015090335A (en) * 2013-11-07 2015-05-11 日本電産リード株式会社 Inspection jig
JP2018204988A (en) * 2017-05-30 2018-12-27 株式会社オリティ Probe card

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015090335A (en) * 2013-11-07 2015-05-11 日本電産リード株式会社 Inspection jig
JP2018204988A (en) * 2017-05-30 2018-12-27 株式会社オリティ Probe card

Similar Documents

Publication Publication Date Title
TWI407119B (en) Probe card apparatus having a preselected amount of total compliance
US7956627B2 (en) Probe card, semiconductor inspecting apparatus, and manufacturing method of semiconductor device
US8134381B2 (en) Connection board, probe card, and electronic device test apparatus comprising same
US20100176831A1 (en) Probe Test Card with Flexible Interconnect Structure
TWI655438B (en) Probe card for electronic device test equipment for special temperature applications
JP6590840B2 (en) High flatness probe card for electronic device test equipment
US20080309363A1 (en) Probe assembly with wire probes
JP4974021B2 (en) Probe assembly
US7382143B2 (en) Wafer probe interconnect system
JP2005233858A (en) Probe card
KR101126690B1 (en) Test Socket fabricated by MEMS technology for using to test of semiconductor devices and manufacturing method ath the same
WO2020179596A1 (en) Electrical connection apparatus
JP2003084047A (en) Measuring jig for semiconductor device
US6255832B1 (en) Flexible wafer level probe
JP5643476B2 (en) Double elastic mechanism probe card
JP4936275B2 (en) Contact assembly
JPH0367178A (en) Probe card
JP2009288109A (en) Double elastic mechanism probe card
KR100876940B1 (en) Probe card using isolinear needle
KR20100123033A (en) A test socket having mesh structure fabricated by micro-machining technology for using to test of semiconductor devices
JP2007225581A (en) Lattice-like array probe assembly
JP2006317294A (en) Probe card
TW201825917A (en) Probe card assembly having die-level and pin-level compliance, and associated systems and methods
JP5015672B2 (en) Probe card
JP2009098153A (en) Method for manufacturing thin film probe

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110802