TW201824579A - Compound-based solar cell and manufacturing method of light absorption layer - Google Patents

Compound-based solar cell and manufacturing method of light absorption layer Download PDF

Info

Publication number
TW201824579A
TW201824579A TW105144040A TW105144040A TW201824579A TW 201824579 A TW201824579 A TW 201824579A TW 105144040 A TW105144040 A TW 105144040A TW 105144040 A TW105144040 A TW 105144040A TW 201824579 A TW201824579 A TW 201824579A
Authority
TW
Taiwan
Prior art keywords
type doped
doped semiconductor
semiconductor layer
slurry
layer
Prior art date
Application number
TW105144040A
Other languages
Chinese (zh)
Other versions
TWI600176B (en
Inventor
鄭隆藤
王雨筠
謝東坡
Original Assignee
財團法人工業技術研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人工業技術研究院 filed Critical 財團法人工業技術研究院
Priority to TW105144040A priority Critical patent/TWI600176B/en
Priority to CN201710161133.0A priority patent/CN108269867A/en
Application granted granted Critical
Publication of TWI600176B publication Critical patent/TWI600176B/en
Publication of TW201824579A publication Critical patent/TW201824579A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • H01L31/0323Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2 characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

A compound-based solar cell including a first electrode, a second electrode, a first type doped semiconductor layer and a second type doped semiconductor layer is provided. The first type doped semiconductor layer is disposed between the first electrode and the second electrode, and the second type doped semiconductor layer is disposed between the first type doped semiconductor layer and the second electrode. The first type doped semiconductor layer has a first side adjacent to the first electrode and a second side adjacent to the second type doped semiconductor layer. The first type doped semiconductor layer includes at least one of a plurality of elements, and the elements includes Potassium, Rubidium and Cesium. The concentration of at least one of the elements on the first side is higher than the concentration on the second side. Besides, a manufacturing method of a light absorption layer is also provided.

Description

化合物太陽能電池以及光吸收層的製作方法Compound solar cell and light absorbing layer manufacturing method

本揭露是有關於一種太陽能電池,且特別是有關於一種化合物太陽能電池以及光吸收層的製作方法。The present disclosure relates to a solar cell, and more particularly to a compound solar cell and a method of fabricating the light absorbing layer.

太陽能電池經過長年的發展,在能量轉換效率(power conversion efficiency)、穩定性與各種效能指標上有長足的進步。近年來,由於因應太陽能電池薄型化的發展,許多高效率的薄膜太陽能電池亦被開發出來。薄膜太陽能電池依材料技術可分為許多種類,如非晶矽(a-Si)、碲化鎘(CdTe)、銅銦硒(CIS)、銅銦鎵硒(CIGS)薄膜太陽能電池等等。其中,銅銦鎵硒薄膜太陽能電池的光吸收層為銅銦鎵硒薄膜。銅銦鎵硒薄膜為直接能隙(direct bandgap)的半導體材料,且其可在較大範圍的太陽光譜進行光吸收,因此銅銦鎵硒薄膜太陽能電池具有高光電轉換效率。After years of development, solar cells have made great progress in power conversion efficiency, stability and various performance indicators. In recent years, many high-efficiency thin film solar cells have been developed in response to the development of thinner solar cells. Thin film solar cells can be classified into many types according to material technology, such as amorphous germanium (a-Si), cadmium telluride (CdTe), copper indium selenide (CIS), copper indium gallium selenide (CIGS) thin film solar cells, and the like. The light absorbing layer of the copper indium gallium selenide thin film solar cell is a copper indium gallium selenide film. The copper indium gallium selenide thin film is a direct bandgap semiconductor material, and it can absorb light over a wide range of solar spectra, so the copper indium gallium selenide thin film solar cell has high photoelectric conversion efficiency.

一般而言,光吸收層吸收光能後會激發產生電子電洞對,位於P/N接面(p-n junction)的電子電洞對會分離出電子與電洞,且電子與電洞通過半導體材料而被導出,進而產生電流。然而,在電子和電洞導出的過程中,容易因薄膜品質等因素而使電子電洞復合(recombination)的機率提高,而降低太陽能電池的光電轉換效率。為了保持良好的薄膜品質以降低電子電洞復合的機率,一般製作銅銦鎵硒薄膜的方法會採用真空製程,例如是共蒸鍍(co-evaporation)法以及二階段硒化(sequential method)法等製程方式。然而,真空製程會使得太陽能電池整體製造成本較高,且製程時間較長。因此,如何製作出高品質的光吸收層並符合低成本以及快速製作的原則,實為目前研發者亟欲達成之目標之一。In general, the light absorbing layer absorbs light energy and then excites electron hole pairs. The electron hole pair at the P/N junction (p junction) separates electrons and holes, and electrons and holes pass through the semiconductor material. It is derived and then generates current. However, in the process of deriving electrons and holes, it is easy to increase the probability of electron hole recombination due to factors such as film quality, and to reduce the photoelectric conversion efficiency of the solar cell. In order to maintain good film quality to reduce the probability of electron hole recombination, a general method for producing a copper indium gallium selenide film is to adopt a vacuum process, such as a co-evaporation method and a two-stage sequential method. Wait for the process. However, the vacuum process will make the solar cell overall manufacturing cost higher and the process time longer. Therefore, how to produce a high-quality light absorbing layer and meet the principle of low cost and rapid production is one of the goals that developers are currently trying to achieve.

本揭露實施例的化合物太陽能電池包括第一電極、第二電極、第一型摻雜半導體層以及第二型摻雜半導體層。第一型摻雜半導體層配置於第一電極以及第二電極之間,且第二型摻雜半導體層配置於第一型摻雜半導體層以及第二電極之間。第一型摻雜半導體層具有靠近第一電極的第一側以及靠近第二型摻雜半導體層的第二側。第一型摻雜半導體層包括多個元素的至少其中之一,且這些元素包括鉀、銣以及銫。這些元素的至少其中之一在第一側的濃度高於在第二側的濃度。The compound solar cell of the disclosed embodiment includes a first electrode, a second electrode, a first type doped semiconductor layer, and a second type doped semiconductor layer. The first type doped semiconductor layer is disposed between the first electrode and the second electrode, and the second type doped semiconductor layer is disposed between the first type doped semiconductor layer and the second electrode. The first type doped semiconductor layer has a first side adjacent to the first electrode and a second side adjacent to the second type doped semiconductor layer. The first type doped semiconductor layer includes at least one of a plurality of elements, and the elements include potassium, germanium, and antimony. At least one of the elements has a higher concentration on the first side than on the second side.

本揭露實施例的光吸收層的製作方法包括:形成前驅物層於基板上。前驅物層包括多個奈米粒子,且這些奈米粒子的材料包括銅氧化物、銦氧化物以及鎵氧化物;提供漿料於前驅物層上,其中漿料的材料包括鹼金屬化合物;以及對漿料以及前驅物層進行熱處理。The method for fabricating the light absorbing layer of the embodiment of the present disclosure includes: forming a precursor layer on the substrate. The precursor layer includes a plurality of nano particles, and the materials of the nano particles include copper oxide, indium oxide, and gallium oxide; providing a slurry on the precursor layer, wherein the material of the slurry includes an alkali metal compound; The slurry and the precursor layer are heat treated.

為讓本揭露的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the present invention will be more apparent from the following description.

圖1A至圖1F繪示本揭露一實施例的化合物太陽能電池的製作流程圖,請先參考圖1A。在本實施例中,首先,提供基板SUB,並且形成第一電極110於基板SUB上。具體而言,第一電極110作為化合物太陽能電池100(如圖1F所繪示)的背電極,其可以包括鉬(Molybdenum)、銀、鋁、鉻(Chromium)、鈦(Titanium)、鎳(Nickel)、金或其組合。舉例而言,第一電極110可以為鍍製於基板SUB上的鉬電極。接著,請參考圖1B,形成前驅物層PrL於基板SUB上。具體而言,前驅物層PrL形成於第一電極110上,且第一電極110位於基板SUB以及前驅物層PrL之間。在本實施例中,前驅物層PrL包括多個奈米粒子(nanoparticles, NPs),且這些奈米粒子的材料包括銅氧化物、銦(Indium)氧化物以及鎵(Gallium)氧化物。具體而言,前驅物層PrL例如是銅銦鎵(CIG)金屬前驅物,其可以例如是通過硒化(Selenization)處理、硫化(Sulfurization)處理或是硒化及硫化的任意組合後而形成銅銦鎵硒(CIGS)薄膜。舉例而言,前驅物層PrL可以通過硒化後硫化(Sulfurization After Selenization, SAS)處理後而形成銅銦鎵硒薄膜,本揭露並不以此為限。另外,在本實施例中,形成前驅物層PrL於基板SUB上的方法例如是包括塗佈前驅物於基板SUB上以形成前驅物層PrL。藉由塗佈的作法,前驅物層PrL中的這些氧化物可以保持著奈米粒子的形態。然而,在一些實施例中,亦可以藉由其他製程方法形成前驅物層PrL於基板SUB上,本揭露並不以此為限。FIG. 1A to FIG. 1F are schematic diagrams showing the fabrication of a compound solar cell according to an embodiment of the present disclosure. Please refer to FIG. 1A first. In the present embodiment, first, the substrate SUB is provided, and the first electrode 110 is formed on the substrate SUB. Specifically, the first electrode 110 serves as a back electrode of the compound solar cell 100 (as shown in FIG. 1F ), which may include molybdenum, silver, aluminum, chromium (Chromium), titanium (Titanium), and nickel (Nickel). ), gold or a combination thereof. For example, the first electrode 110 may be a molybdenum electrode plated on the substrate SUB. Next, referring to FIG. 1B, a precursor layer PrL is formed on the substrate SUB. Specifically, the precursor layer PrL is formed on the first electrode 110, and the first electrode 110 is located between the substrate SUB and the precursor layer PrL. In this embodiment, the precursor layer PrL includes a plurality of nanoparticles (NPs), and the materials of the nano particles include copper oxide, indium oxide, and gallium oxide. Specifically, the precursor layer PrL is, for example, a copper indium gallium (CIG) metal precursor, which may be formed, for example, by selenization treatment, sulfurization treatment, or any combination of selenization and vulcanization. Indium gallium selenide (CIGS) film. For example, the precursor layer PrL can be formed into a copper indium gallium selenide film by a Sulfurization After Selenization (SAS) treatment, and the disclosure is not limited thereto. In addition, in the present embodiment, the method of forming the precursor layer PrL on the substrate SUB includes, for example, coating a precursor on the substrate SUB to form a precursor layer PrL. These coatings in the precursor layer PrL can maintain the morphology of the nanoparticles by coating. However, in some embodiments, the precursor layer PrL may be formed on the substrate SUB by other process methods, and the disclosure is not limited thereto.

接著,請參考圖1C,提供漿料190於前驅物層PrL上,且漿料190的材料包括鹼金屬化合物192。具體而言,漿料190更包括溶劑194,且鹼金屬化合物192均勻散佈於溶劑194之中。詳細而言,鹼金屬化合物192包括多個元素122的至少其中之一,且這些元素122包括鉀(Potassium)、銣(Rubidium)以及銫(Cesium)。舉例而言,本實施例的鹼金屬化合物192為氟化鉀(Potassium fluoride, KF)。另外,溶劑194可以例如是包括水、醇類溶劑、酯類溶劑、酮類溶劑、醚類溶劑、胺類溶劑、酸類溶劑、鹼類溶劑或其組合,且鹼金屬化合物192在漿料190中的重量百分濃度例如是落在0.01%至0.6%的範圍內。在本實施例中,提供漿料190於前驅物層PrL上的方法包括藉由毛細管塗佈、旋轉塗佈、刷塗、刮刀塗佈、噴灑塗佈或印刷塗佈,以塗佈漿料190於前驅物層PrL上。具體而言,在一些相關實施例中,溶劑194的選擇、鹼金屬化合物192在漿料190中的濃度以及提供漿料190於前驅物層PrL上的製程方法可依據實際製程需求而加以調整,本揭露並不以此為限。另外,在本實施例中,透過均勻塗覆以提供於前驅物層PrL上的漿料190會形成膜層,且此膜層的厚度T是落在3奈米至100奈米的範圍內。然而,在一些實施例中,依據實際製程需求,塗覆至前驅物層PrL上的漿料190的膜層亦可以具有其他的厚度,本揭露亦不以此為限。Next, referring to FIG. 1C, a slurry 190 is provided on the precursor layer PrL, and the material of the slurry 190 includes an alkali metal compound 192. Specifically, the slurry 190 further includes a solvent 194, and the alkali metal compound 192 is uniformly dispersed in the solvent 194. In detail, the alkali metal compound 192 includes at least one of a plurality of elements 122, and these elements 122 include potassium (Potassium), rubidium, and cesium. For example, the alkali metal compound 192 of the present embodiment is Potassium fluoride (KF). In addition, the solvent 194 may include, for example, water, an alcohol solvent, an ester solvent, a ketone solvent, an ether solvent, an amine solvent, an acid solvent, a base solvent, or a combination thereof, and the alkali metal compound 192 is in the slurry 190. The weight percent concentration is, for example, falling within the range of 0.01% to 0.6%. In the present embodiment, the method of providing the slurry 190 on the precursor layer PrL comprises coating the slurry 190 by capillary coating, spin coating, brush coating, knife coating, spray coating or printing coating. On the precursor layer PrL. In particular, in some related embodiments, the selection of solvent 194, the concentration of alkali metal compound 192 in slurry 190, and the process of providing slurry 190 on precursor layer PrL can be adjusted according to actual process requirements. This disclosure is not limited to this. Further, in the present embodiment, the slurry 190 which is uniformly coated to be provided on the precursor layer PrL forms a film layer, and the thickness T of the film layer falls within the range of 3 nm to 100 nm. However, in some embodiments, the film layer of the slurry 190 applied to the precursor layer PrL may have other thicknesses according to actual process requirements, and the disclosure is not limited thereto.

請參考圖1D,提供漿料190於前驅物層PrL上之後,對漿料190進行乾燥處理以使溶劑194揮發。具體而言,此乾燥處理例如是對前驅物層PrL上的漿料190進行適度的加熱以促使溶劑194揮發,且其加熱的溫度例如是小於或等於攝氏100度。或者,也可以將前驅物層PrL上的漿料190靜置一段時間以使其自然風乾。Referring to FIG. 1D, after the slurry 190 is provided on the precursor layer PrL, the slurry 190 is dried to volatilize the solvent 194. Specifically, the drying treatment is, for example, moderate heating of the slurry 190 on the precursor layer PrL to promote the evaporation of the solvent 194, and the heating temperature thereof is, for example, less than or equal to 100 degrees Celsius. Alternatively, the slurry 190 on the precursor layer PrL may be allowed to stand for a period of time to allow it to air dry naturally.

接著,請參考圖1E,在本實施例中,對漿料190以及前驅物層PrL進行熱處理。具體而言,此熱處理例如是硒化處理或是硒化後硫化處理。詳細而言,漿料190以及前驅物層PrL進行此熱處理的方法包括:將漿料190以及前驅物層PrL置於氣體環境中,其中此氣體環境包括VIA族元素的氣體。另外,此氣體環境例如還包括大氣、氮氣、氫氣、氬氣及/或氨氣等氣體,且此氣體環境的氣壓例如是落在10-4 托(torr)至760托的範圍內。除此之外,此氣體環境的溫度例如是落在攝氏300度至攝氏600度的範圍內,且進行此熱處理的時間例如是落在1分鐘至300分鐘的範圍內。詳細而言,可以依據實際進行熱處理的製程需求而設置適當的氣體環境,以及設定適當的相關參數,本揭露並不以此為限。Next, referring to FIG. 1E, in the present embodiment, the slurry 190 and the precursor layer PrL are subjected to heat treatment. Specifically, the heat treatment is, for example, a selenization treatment or a post-selenization vulcanization treatment. In detail, the method of performing the heat treatment of the slurry 190 and the precursor layer PrL includes: placing the slurry 190 and the precursor layer PrL in a gaseous environment, wherein the gas environment includes a gas of a group VIA element. Further, the gas atmosphere includes, for example, a gas such as air, nitrogen, hydrogen, argon, and/or ammonia, and the gas pressure of the gas atmosphere falls within a range of, for example, 10 -4 torr to 760 Torr. In addition to this, the temperature of the gas atmosphere is, for example, falling within a range of 300 degrees Celsius to 600 degrees Celsius, and the time for performing the heat treatment is, for example, falling within a range of 1 minute to 300 minutes. In detail, the appropriate gas environment can be set according to the actual process requirements for heat treatment, and appropriate relevant parameters are set, and the disclosure is not limited thereto.

請繼續參考圖1E,在本實施例中,在熱處理的過程中,前驅物層PrL的這些奈米粒子會例如會成長出銅銦鎵硒晶體,而銅銦鎵硒晶體會持續長晶而形成銅銦鎵硒薄膜。具體而言,此銅銦鎵硒薄膜例如就是化合物太陽能電池100的光吸收層AL,同時也是太陽能電池100的第一型摻雜半導體層120。在一些相關實施例中,藉由前驅物層PrL的這些奈米粒子的材料選擇以及進行熱處理的氣體環境的氣體選擇,第一型摻雜半導體層120可例如是包括IB族元素、IIIA族元素、VIA族元素或其組合。或者,第一型摻雜半導體層120可例如是包括IB族元素、IIB族元素、IVA族元素、VIA族元素或其組合,本揭露並不以此為限。另外,詳細而言,在本實施例的銅銦鎵硒晶體長晶的過程中,鹼金屬化合物192的這些元素122會進入銅銦鎵硒晶體結構,而分佈於銅銦鎵硒薄膜表面、晶體結構之中及其晶界(grain boundary)之中。Referring to FIG. 1E, in the embodiment, during the heat treatment, the nano particles of the precursor layer PrL will, for example, grow a copper indium gallium selenide crystal, and the copper indium gallium selenide crystal will continue to grow. Copper indium gallium selenide film. Specifically, the copper indium gallium selenide film is, for example, the light absorbing layer AL of the compound solar cell 100, and is also the first type doped semiconductor layer 120 of the solar cell 100. In some related embodiments, the first type doped semiconductor layer 120 may include, for example, a group IB element, a group IIIA element, by material selection of the nano particles of the precursor layer PrL and gas selection of a gas environment in which the heat treatment is performed. , VIA family elements or a combination thereof. Alternatively, the first type doped semiconductor layer 120 may include, for example, a group IB element, a group IIB element, a group IVA element, a group VIA element, or a combination thereof, and the disclosure is not limited thereto. In addition, in detail, in the process of crystal growth of the copper indium gallium selenide crystal of the present embodiment, the elements 122 of the alkali metal compound 192 enter the copper indium gallium selenide crystal structure and are distributed on the surface and crystal of the copper indium gallium selenide film. Among the structures and among the grain boundaries.

請參考圖1F,在本實施例中,接著,於第一型摻雜半導體層120上依序形成第二型摻雜半導體層130、第二電極140以及電極150,藉以完成化合物太陽能電池100的製作。具體而言,化合物太陽能電池100包括上述基板SUB、第一電極110、第一型摻雜半導體層120、第二型摻雜半導體層130、第二電極140以及電極150。第一電極110配置於第一型摻雜半導體層120以及基板SUB之間。第一型摻雜半導體層120配置於第一電極110以及第二電極140之間,且第二型摻雜半導體層130配置於第一型摻雜半導體層120以及第二電極140之間。第一型摻雜半導體層120以及第二型摻雜半導體層130的其中一者為N型摻雜半導體層,且第一型摻雜半導體層120以及第二型摻雜半導體層130的其中另一者為P型摻雜半導體層。Referring to FIG. 1F, in the embodiment, the second type doped semiconductor layer 130, the second electrode 140, and the electrode 150 are sequentially formed on the first type doped semiconductor layer 120, thereby completing the compound solar cell 100. Production. Specifically, the compound solar cell 100 includes the above-described substrate SUB, the first electrode 110, the first type doped semiconductor layer 120, the second type doped semiconductor layer 130, the second electrode 140, and the electrode 150. The first electrode 110 is disposed between the first type doped semiconductor layer 120 and the substrate SUB. The first type doped semiconductor layer 120 is disposed between the first electrode 110 and the second electrode 140 , and the second type doped semiconductor layer 130 is disposed between the first type doped semiconductor layer 120 and the second electrode 140 . One of the first type doped semiconductor layer 120 and the second type doped semiconductor layer 130 is an N type doped semiconductor layer, and one of the first type doped semiconductor layer 120 and the second type doped semiconductor layer 130 One is a P-type doped semiconductor layer.

具體而言,化合物太陽能電池100例如是銅銦鎵硒薄膜太陽能電池。基板SUB例如是不鏽鋼片、鈉玻璃(soda-lime glass, SLG)等可撓基板或不可撓的基板。第一型摻雜半導體層120例如是具有P型摻雜的銅銦鎵硒薄膜並作為光吸收層AL,而第一電極110例如是適於與銅銦鎵硒薄膜形成歐姆接觸(ohmic contact)的鉬背電極。另外,第二型摻雜半導體層130例如是具有N型摻雜的硫化鎘(cadmium sulfide, CdS)緩衝層,且第二電極140例如是包括相堆疊的本質氧化鋅(intrinsic zinc oxide, i-ZnO)層142以及透明導電層144,且本質氧化鋅層142配置於透明導電層144與第二型摻雜半導體層130之間。具體而言,透明導電層144例如是摻鋁氧化鋅(Al-doped zinc oxide, AZO) 或是其他類型的透明導電薄膜,本揭露並不以此為限。另外,與第二電極140接觸的電極150例如是設計為條狀,以避免遮光。在一些實施例中,化合物太陽能電池100亦可以是其他類型的化合物太陽能電池,本揭露並不以此為限。Specifically, the compound solar cell 100 is, for example, a copper indium gallium selenide thin film solar cell. The substrate SUB is, for example, a flexible substrate such as a stainless steel sheet or a soda-lime glass (SLG) or a non-flexible substrate. The first type doped semiconductor layer 120 is, for example, a P-type doped copper indium gallium selenide film and serves as a light absorbing layer AL, and the first electrode 110 is, for example, adapted to form an ohmic contact with a copper indium gallium selenide film. Molybdenum back electrode. In addition, the second type doped semiconductor layer 130 is, for example, a cadmium sulfide (CdS) buffer layer having an N-type doping, and the second electrode 140 is, for example, an intrinsic zinc oxide (i-) including a phase stack. The ZnO) layer 142 and the transparent conductive layer 144, and the intrinsic zinc oxide layer 142 is disposed between the transparent conductive layer 144 and the second type doped semiconductor layer 130. Specifically, the transparent conductive layer 144 is, for example, Al-doped zinc oxide (AZO) or other types of transparent conductive films, and the disclosure is not limited thereto. In addition, the electrode 150 in contact with the second electrode 140 is, for example, designed in a strip shape to avoid light shielding. In some embodiments, the compound solar cell 100 can also be other types of compound solar cells, and the disclosure is not limited thereto.

在本實施例中,光例如是由第二電極140的一側進入化合物太陽能電池100。當作為光吸收層AL的第一型摻雜半導體層120吸收光能後會激發產生電子電洞對。第一型摻雜半導體層120以及第二型摻雜半導體層130之間形成P/N接面(p-n junction),而位於P/N接面的電子電洞對會分離出電子以及電洞,且電子以及電洞例如是分別通過第二型摻雜半導體層130以及第一型摻雜半導體層120而被導出,並且分別由第二電極140以及第一電極110所接收,進而產生電流。In the present embodiment, light enters the compound solar cell 100, for example, from one side of the second electrode 140. When the first type doped semiconductor layer 120, which is the light absorbing layer AL, absorbs light energy, it generates an electron hole pair. A P/N junction is formed between the first type doped semiconductor layer 120 and the second type doped semiconductor layer 130, and an electron hole pair located at the P/N junction separates electrons and holes. The electrons and the holes are respectively led out by the second type doped semiconductor layer 130 and the first type doped semiconductor layer 120, respectively, and are respectively received by the second electrode 140 and the first electrode 110, thereby generating a current.

具體而言,在本實施例中,第一型摻雜半導體層120具有靠近第一電極110的第一側S1以及靠近第二型摻雜半導體層130的第二側S2。第一型摻雜半導體層120包括多個元素122(如前述鹼金屬化合物192的多個元素122)的至少其中之一,且這些元素122包括鉀、銣以及銫。舉例而言,本實施例的鹼金屬化合物192為氟化鉀,而經由熱處理後,至少大部分的氟(fluorine)會揮發掉,而使得形成的第一型摻雜半導體層120(光吸收層AL)所包括的元素122為鉀,且鉀會分佈於第一型摻雜半導體層120的銅銦鎵硒薄膜表面、晶體結構之中及其晶界之中。具體而言,由於這些元素122的至少其中之一會在熱處理的過程中,藉由熱擴散而通過前驅物層PrL的這些奈米粒子之間的縫隙並向下移動,因此這些元素122的至少其中之一在第一型摻雜半導體層120會有適當的濃度分佈。詳細而言,這些元素122的至少其中之一在第一側S1的濃度高於在第二側S2的濃度。也就是說,在本實施例中,鉀分佈於第一型摻雜半導體層120(光吸收層AL)在靠近基板SUB的濃度高於遠離基板SUB的濃度。具體而言,鉀分佈於第一型摻雜半導體層120在靠近第一電極110的第一側S1的濃度高於在靠近第二型摻雜半導體層130的第二側S2的濃度。在一些實施例中,亦可由上述製程方法形成前驅物層PrL於基板SUB上,並以上述相同的實施步驟形成一光吸收層AL在基板SUB之上,其中上述光吸收層AL中的這些元素122的至少其中之一在靠近基板SUB的濃度高於遠離基板SUB的濃度。Specifically, in the present embodiment, the first type doped semiconductor layer 120 has a first side S1 close to the first electrode 110 and a second side S2 close to the second type doped semiconductor layer 130. The first type doped semiconductor layer 120 includes at least one of a plurality of elements 122 (such as the plurality of elements 122 of the foregoing alkali metal compound 192), and these elements 122 include potassium, germanium, and antimony. For example, the alkali metal compound 192 of the present embodiment is potassium fluoride, and after heat treatment, at least a majority of fluorine is volatilized, so that the formed first type doped semiconductor layer 120 (light absorbing layer) is formed. The element 122 included in AL) is potassium, and potassium is distributed in the surface, crystal structure and grain boundaries of the copper indium gallium selenide film of the first type doped semiconductor layer 120. Specifically, since at least one of the elements 122 passes through the gap between the nano particles of the precursor layer PrL and moves downward by heat diffusion during heat treatment, at least one of the elements 122 One of them has a proper concentration distribution in the first type doped semiconductor layer 120. In detail, at least one of the elements 122 has a higher concentration on the first side S1 than on the second side S2. That is, in the present embodiment, potassium is distributed in the first type doped semiconductor layer 120 (light absorbing layer AL) at a concentration closer to the substrate SUB than from the substrate SUB. Specifically, the concentration of potassium distributed in the first type doped semiconductor layer 120 near the first side S1 of the first electrode 110 is higher than the concentration near the second side S2 of the second type doped semiconductor layer 130. In some embodiments, the precursor layer PrL may be formed on the substrate SUB by the above-described process method, and a light absorbing layer AL is formed on the substrate SUB in the same embodiment as described above, wherein the elements in the light absorbing layer AL are At least one of the 122 is at a higher concentration near the substrate SUB than at a distance away from the substrate SUB.

在本實施例中,由於第一型摻雜半導體層120的銅銦鎵硒薄膜表面、晶體結構及其晶界有適當的鉀濃度分佈,因此材料介面(例如是第一型摻雜半導體層120以及第二型摻雜半導體層130)或第一型摻雜半導體層120的晶界上的缺陷(defect)的能帶(bandgap)會落在費米能階(Fermi level)以下。也就是說,鉀可以提供材料介面和晶界的鈍化(passivation)效果。當載子通過上述材料介面或上述晶界時,載子發生復合(recombination)的機率得以降低。除此之外,在本實施例中,在對漿料190以及前驅物層PrL進行熱處理以形成第一型摻雜半導體層120(銅銦鎵硒晶體結構)的過程中,鉀會先佔據晶格之中銅的空缺。當硫化鎘(第二型摻雜半導體層130)以沉積的方式形成於銅銦鎵硒晶體結構上時,鎘也會佔據銅的空缺。此時,原本佔據銅的空缺的鉀會離開,產生更多可供鎘佔據的銅的空缺。因此,較多的鎘可以佔據銅的空缺,使得銅銦鎵硒晶體薄膜表面以及硫化鎘之間的P/N接面能達到更加良好的能階匹配。在本實施例中,基於載子復合機率降低以及P/N接面能階匹配改良等因素,化合物太陽能電池100可以在採用非真空製程的情況下,具備較高的開路電壓(open circuit voltage, Voc )和填充因子(fill factor, FF),進而具有較佳的能量轉換效率(power conversion efficiency, PCE)。In the present embodiment, since the surface, crystal structure and grain boundary of the copper indium gallium selenide film of the first type doped semiconductor layer 120 have an appropriate potassium concentration distribution, the material interface (for example, the first type doped semiconductor layer 120) And the bandgap of the defect on the grain boundary of the second type doped semiconductor layer 130) or the first type doped semiconductor layer 120 may fall below the Fermi level. That is, potassium can provide a passivation effect of the material interface and grain boundaries. When the carrier passes through the above material interface or the above grain boundary, the probability of carrier recombination is reduced. In addition, in the present embodiment, in the process of heat-treating the slurry 190 and the precursor layer PrL to form the first-type doped semiconductor layer 120 (copper indium gallium selenide crystal structure), potassium will occupy the crystal first. The vacancy of copper in the grid. When cadmium sulfide (second-type doped semiconductor layer 130) is deposited on the copper indium gallium selenide crystal structure by deposition, cadmium also occupies copper vacancies. At this point, the potassium that originally occupied the copper vacancies will leave, creating more vacancies for copper that can be occupied by cadmium. Therefore, more cadmium can occupy the copper vacancy, so that the P/N junction between the surface of the copper indium gallium selenide crystal film and the cadmium sulfide can achieve a better energy level matching. In the present embodiment, the compound solar cell 100 can have a high open circuit voltage (non-vacuum process) based on factors such as a decrease in carrier composite probability and improved P/N junction energy level matching. V oc ) and fill factor (FF), which in turn has better power conversion efficiency (PCE).

圖2繪示圖1F實施例的化合物太陽能電池的光吸收層在不同深度的元素含量分析,請參考圖2。圖2的縱軸表示測定化合物太陽能電池100元素含量的訊號強度大小,其單位為計數/秒,而橫軸表示化合物太陽能電池100由第二電極140起算並朝向第一電極110延伸的深度,其單位為奈米。圖2中二虛線間界定的深度範圍表示第一型摻雜半導體層120所在的深度範圍。另外,圖2標示的「S」、「Se」、「Ga」、「In」、「Cu」、「Na」以及「K」分別表示硫、硒、鎵、銦、銅、鈉以及鉀元素。在本實施例中,可以看到鉀分佈於第一型摻雜半導體層120靠近第一電極110的一側的濃度大致高於靠近第二型摻雜半導體層130的一側的濃度。2 is a graph showing the element content of the light absorbing layer of the compound solar cell of the embodiment of FIG. 1F at different depths, please refer to FIG. 2 . The vertical axis of FIG. 2 represents the magnitude of the signal intensity for determining the element content of the compound solar cell 100, and the unit is count/second, and the horizontal axis represents the depth at which the compound solar cell 100 is calculated from the second electrode 140 and extends toward the first electrode 110. The unit is nanometer. The depth range defined between the two dashed lines in FIG. 2 indicates the depth range in which the first type doped semiconductor layer 120 is located. In addition, "S", "Se", "Ga", "In", "Cu", "Na", and "K" indicated in Fig. 2 indicate sulfur, selenium, gallium, indium, copper, sodium, and potassium, respectively. In the present embodiment, it can be seen that the concentration of potassium distributed on the side of the first type doped semiconductor layer 120 close to the first electrode 110 is substantially higher than the concentration of the side close to the second type doped semiconductor layer 130.

圖3A至圖3D繪示圖1F實施例的化合物太陽能電池的光電轉換的不同參數對氟化鉀在漿料裡的濃度的作圖,以呈現當提供具有不同濃度氟化鉀的漿料190於前驅物層PrL上時,化合物太陽能電池100的光電轉換的表現。詳細而言,圖3A繪示化合物太陽能電池100的開路電壓對氟化鉀在漿料190裡的濃度的作圖。圖3A的縱軸表示開路電壓,其單位為毫伏,而橫軸表示氟化鉀在漿料裡的濃度,其單位為百分比。圖3B繪示化合物太陽能電池100的短路電流對氟化鉀在漿料裡的濃度的作圖。圖3B的縱軸表示短路電流(short-circuit current, Jsc ),其單位為毫安培/平方公分,而橫軸表示氟化鉀在漿料裡的濃度,其單位為百分比。圖3C繪示化合物太陽能電池100的填充因子對氟化鉀在漿料裡的濃度的作圖。圖3C的縱軸表示填充因子,其單位為百分比,而橫軸表示氟化鉀在漿料裡的濃度,其單位為百分比。圖3D繪示化合物太陽能電池100的能量轉換效率對氟化鉀在漿料裡的濃度的作圖。圖3D的縱軸表示能量轉換效率,其單位為百分比,而橫軸表示氟化鉀在漿料裡的濃度,其單位為百分比。在圖3A至圖3D中,氟化鉀在漿料裡的濃度在0%、0.25%、0.5%、0.75%以及1%的實驗條件分別對應於以不同形狀標示的實驗數據點。舉例而言,在圖3A中,同樣以圓形標示的實驗數據點是表示氟化鉀在漿料裡的濃度在0.25%時不同次實驗所得的數據點。由從圖3A至圖3D可以看出,當漿料190的材料包括鹼金屬化合物如氟化鉀時,化合物太陽能電池100的開路電壓以及填充因子都會增加,且化合物太陽能電池100具有較高的能量轉換效率。3A to 3D are graphs showing the different parameters of photoelectric conversion of the compound solar cell of the embodiment of FIG. 1F versus the concentration of potassium fluoride in the slurry to present a slurry 190 having different concentrations of potassium fluoride. The performance of photoelectric conversion of the compound solar cell 100 when the precursor layer is on PrL. In detail, FIG. 3A plots the open circuit voltage of the compound solar cell 100 versus the concentration of potassium fluoride in the slurry 190. The vertical axis of Fig. 3A represents the open circuit voltage in millivolts, and the horizontal axis represents the concentration of potassium fluoride in the slurry, the unit of which is a percentage. 3B is a graph plotting the short circuit current of the compound solar cell 100 versus the concentration of potassium fluoride in the slurry. The vertical axis of Fig. 3B represents short-circuit current (J sc ) in milliamps/cm 2 , and the horizontal axis represents the concentration of potassium fluoride in the slurry in units of percentage. 3C is a graph showing the fill factor of the compound solar cell 100 versus the concentration of potassium fluoride in the slurry. The vertical axis of Fig. 3C represents the fill factor in units of percentage, and the horizontal axis represents the concentration of potassium fluoride in the slurry in units of percentage. Figure 3D is a graph plotting the energy conversion efficiency of compound solar cell 100 versus the concentration of potassium fluoride in the slurry. The vertical axis of Fig. 3D represents the energy conversion efficiency in units of percentage, and the horizontal axis represents the concentration of potassium fluoride in the slurry in units of percentage. In Figures 3A through 3D, experimental conditions at concentrations of potassium fluoride in the slurry of 0%, 0.25%, 0.5%, 0.75%, and 1% correspond to experimental data points labeled with different shapes, respectively. For example, in Figure 3A, the experimental data points, also indicated by circles, represent the data points obtained for different experiments at a concentration of potassium fluoride in the slurry of 0.25%. As can be seen from FIGS. 3A to 3D, when the material of the slurry 190 includes an alkali metal compound such as potassium fluoride, the open circuit voltage and the filling factor of the compound solar cell 100 are increased, and the compound solar cell 100 has higher energy. Conversion efficiency.

圖4A繪示有無氟化鉀的化合物太陽能電池的光吸收層在不同深度的元素含量分析,請參考圖4A。圖4A的縱軸和橫軸的標示說明分別相同於圖2的縱軸和橫軸的標示說明,在此不再贅述。圖4中標示的「Cu」以及「Cd」分別表示銅以及鎘元素。標示「有氟化鉀」的曲線表示如圖1F實施例的化合物太陽能電池100,而標示「無氟化鉀」的曲線表示一比較實施例的化合物太陽能電池。此比較實施例的化合物太陽能電池的製程中並未以包括氟化鉀的漿料塗佈於前驅物層上。詳細而言,圖4A中的虛線位置表示化合物太陽能電池的P/N接面附近所在的位置。由圖4A可以看出,在區域A中,由於圖1F實施例的化合物太陽能電池100其第一型摻雜半導體層120具有適當的鉀濃度分佈,因此更多在P/N接面附近的鎘可以佔據銅的空缺,使得在區域A中,化合物太陽能電池100的鎘元素含量高於比較實施例的化合物太陽能電池的鎘元素含量。4A is a graph showing the element content analysis of the light absorbing layer of a compound solar cell with or without potassium fluoride at different depths, please refer to FIG. 4A. The indications of the vertical axis and the horizontal axis of FIG. 4A are the same as those of the vertical axis and the horizontal axis of FIG. 2, respectively, and are not described herein again. "Cu" and "Cd" indicated in Fig. 4 indicate copper and cadmium, respectively. The curve indicating "with potassium fluoride" indicates the compound solar cell 100 of the embodiment of Fig. 1F, and the curve labeled "no potassium fluoride" indicates a compound solar cell of a comparative example. The slurry of the compound solar cell of this comparative example was not coated on the precursor layer with a slurry including potassium fluoride. In detail, the position of the broken line in FIG. 4A indicates the position of the vicinity of the P/N junction of the compound solar cell. As can be seen from FIG. 4A, in the region A, since the compound solar cell 100 of the embodiment of FIG. 1F has the first type doped semiconductor layer 120 having an appropriate potassium concentration distribution, more cadmium near the P/N junction The vacancy of copper can be occupied, so that in the region A, the cadmium element content of the compound solar cell 100 is higher than that of the compound solar cell of the comparative example.

圖4B繪示有無氟化鉀的化合物太陽能電池的電流對電壓曲線(I-V curve),請參考圖4B。圖4B的縱軸表示電流密度,其單位為毫安培/平方公分,而橫軸表示電壓,其單位為毫伏。標示「有氟化鉀」的曲線表示如圖1F實施例的化合物太陽能電池100,而標示「無氟化鉀」的曲線表示一比較實施例的化合物太陽能電池。此比較實施例的化合物太陽能電池的製程中並未以包括氟化鉀的漿料塗佈於前驅物層上。詳細而言,點P1以及點P2所對應的電壓分別為化合物太陽能電池100以及比較實施例的化合物太陽能電池的開路電壓。由圖4B可知,化合物太陽能電池100的開路電壓大於比較實施例的化合物太陽能電池的開路電壓。4B shows the current versus voltage curve (I-V curve) of a compound solar cell with or without potassium fluoride, please refer to FIG. 4B. The vertical axis of Fig. 4B represents the current density in milliamps per square centimeter, and the horizontal axis represents the voltage in millivolts. The curve indicating "with potassium fluoride" indicates the compound solar cell 100 of the embodiment of Fig. 1F, and the curve labeled "no potassium fluoride" indicates a compound solar cell of a comparative example. The slurry of the compound solar cell of this comparative example was not coated on the precursor layer with a slurry including potassium fluoride. Specifically, the voltages corresponding to the points P1 and P2 are the open circuit voltages of the compound solar cell 100 and the compound solar cell of the comparative example, respectively. 4B, the open circuit voltage of the compound solar cell 100 is larger than the open circuit voltage of the compound solar cell of the comparative example.

圖5A至圖5D繪示一比較實施例的化合物太陽能電池的光電轉換的不同參數的表現。此比較實施例的化合物太陽能電池的製程中,包含氟化鉀的漿料是塗覆在已經由熱處理形成的光吸收層上,並再透過退火(annealing)製程使鉀進入光吸收層中。詳細而言,圖5A繪示此比較實施例的化合物太陽能電池的開路電壓對氟化鉀在漿料裡的濃度的作圖。圖5A的縱軸表示開路電壓,其單位為毫伏,而橫軸表示氟化鉀在漿料裡的濃度,其單位為百分比。圖5B繪示此比較實施例的化合物太陽能電池的短路電流對氟化鉀在漿料裡的濃度的作圖。圖5B的縱軸表示短路電流,其單位為毫安培/平方公分,而橫軸表示氟化鉀在漿料裡的濃度,其單位為百分比。圖5C繪示此比較實施例的化合物太陽能電池的填充因子對氟化鉀在漿料裡的濃度的作圖。圖5C的縱軸表示填充因子,其單位為百分比,而橫軸表示氟化鉀在漿料裡的濃度,其單位為百分比。圖5D繪示此比較實施例的化合物太陽能電池的能量轉換效率對氟化鉀在漿料裡的濃度的作圖。圖5D的縱軸表示能量轉換效率,其單位為百分比,而橫軸表示氟化鉀在漿料裡的濃度,其單位為百分比。將圖3A至圖3D與圖5A至圖5D進行比較,可知化合物太陽能電池100具有較良好的元件表現,且化合物太陽能電池100具有較高的能量轉換效率。5A to 5D illustrate the performance of different parameters of photoelectric conversion of a compound solar cell of a comparative example. In the process of the compound solar cell of this comparative example, the slurry containing potassium fluoride is coated on the light absorbing layer which has been formed by the heat treatment, and is further subjected to an annealing process to cause potassium to enter the light absorbing layer. In detail, FIG. 5A is a graph showing the open circuit voltage of the compound solar cell of this comparative example versus the concentration of potassium fluoride in the slurry. The vertical axis of Fig. 5A represents the open circuit voltage in millivolts, and the horizontal axis represents the concentration of potassium fluoride in the slurry, the unit of which is a percentage. Figure 5B is a graph showing the short circuit current of the compound solar cell of this comparative example versus the concentration of potassium fluoride in the slurry. The vertical axis of Fig. 5B represents the short-circuit current in milliamperes per square centimeter, and the horizontal axis represents the concentration of potassium fluoride in the slurry in units of percentage. Figure 5C is a graph showing the fill factor of the compound solar cell of this comparative example versus the concentration of potassium fluoride in the slurry. The vertical axis of Fig. 5C represents the fill factor in units of percentage, and the horizontal axis represents the concentration of potassium fluoride in the slurry in units of percentage. Figure 5D is a graph plotting the energy conversion efficiency of a compound solar cell of this comparative example versus the concentration of potassium fluoride in the slurry. The vertical axis of Fig. 5D represents the energy conversion efficiency in units of percentage, and the horizontal axis represents the concentration of potassium fluoride in the slurry in units of percentage. Comparing FIGS. 3A to 3D with FIGS. 5A to 5D, it is understood that the compound solar cell 100 has better component performance, and the compound solar cell 100 has higher energy conversion efficiency.

圖6A至圖6D繪示另一比較實施例的化合物太陽能電池的光電轉換的不同參數的表現。此比較實施例的化合物太陽能電池的製程中,氟化鉀是以真空蒸鍍加上退火的方式進入已經由熱處理形成的光吸收層中。詳細而言,圖6A繪示此比較實施例的化合物太陽能電池的開路電壓對不同退火溫度的作圖。圖6A的縱軸表示開路電壓,其單位為毫伏,而橫軸表示不同的退火溫度。圖6B繪示此比較實施例的化合物太陽能電池的短路電流對不同退火溫度的作圖。圖6B的縱軸表示短路電流,其單位為毫安培/平方公分,而橫軸表示不同的退火溫度。圖6C繪示此比較實施例的化合物太陽能電池的填充因子對不同退火溫度的作圖。圖6C的縱軸表示填充因子,其單位為百分比,而橫軸表示不同的退火溫度。圖6D繪示此比較實施例的化合物太陽能電池的能量轉換效率對不同退火溫度的作圖。圖6D的縱軸表示能量轉換效率,其單位為百分比,而橫軸表示不同的退火溫度。另外,在圖6A至圖6D中,標示「參考」表示未蒸鍍氟化鉀的對照組條件。標示「375°C KF」表示氟化鉀蒸鍍於銅銦鎵硒表面時的基板溫度為攝氏375度。標示「375°C KF (KCN)」表示銅銦鎵硒表面先以氰化鉀(Potassium cyanide)進行蝕刻後,再於其蝕刻後的表面蒸鍍氟化鉀,且蒸鍍氟化鉀時的基板溫度為攝氏375度。標示「425°C KF」表示氟化鉀蒸鍍於銅銦鎵硒表面時的基板溫度為攝氏425度。另外,標示「425°C KF (KCN)」表示銅銦鎵硒表面先以氰化鉀進行蝕刻後,再於其蝕刻後的表面蒸鍍氟化鉀,且蒸鍍氟化鉀時的基板溫度為攝氏425度。具體而言,將圖3A至圖3D與圖6A至圖6D進行比較,可知化合物太陽能電池100具有較良好的元件表現,且化合物太陽能電池100具有較高的能量轉換效率。6A to 6D illustrate the performance of different parameters of photoelectric conversion of a compound solar cell of another comparative embodiment. In the process of the compound solar cell of this comparative example, potassium fluoride was introduced into the light absorbing layer which had been formed by heat treatment in a vacuum evaporation plus annealing manner. In detail, FIG. 6A is a graph showing the open circuit voltage of the compound solar cell of this comparative example versus different annealing temperatures. The vertical axis of Fig. 6A represents the open circuit voltage in millivolts, and the horizontal axis represents different annealing temperatures. Figure 6B is a graph showing the short circuit current of the compound solar cell of this comparative example versus different annealing temperatures. The vertical axis of Fig. 6B represents the short-circuit current in units of milliamperes per square centimeter, and the horizontal axis represents different annealing temperatures. Figure 6C is a graph showing the fill factor of the compound solar cell of this comparative example versus different annealing temperatures. The vertical axis of Fig. 6C represents the fill factor, the unit of which is a percentage, and the horizontal axis represents the different annealing temperatures. Figure 6D is a graph plotting the energy conversion efficiencies of the compound solar cells of this comparative example versus different annealing temperatures. The vertical axis of Fig. 6D represents the energy conversion efficiency, the unit of which is a percentage, and the horizontal axis represents a different annealing temperature. In addition, in FIGS. 6A to 6D, the reference "reference" indicates a control condition in which potassium fluoride is not evaporated. The label "375 ° C KF" indicates that the substrate temperature of potassium fluoride deposited on the surface of the copper indium gallium selenide is 375 degrees Celsius. The label "375 °C KF (KCN)" indicates that the surface of the copper indium gallium selenide is first etched with potassium cyanide (Potassium cyanide), and then the surface of the etched surface is vapor-deposited with potassium fluoride, and when potassium fluoride is evaporated. The substrate temperature is 375 degrees Celsius. The label "425 ° C KF" indicates that the substrate temperature of potassium fluoride deposited on the surface of the copper indium gallium selenide is 425 degrees Celsius. In addition, the label "425 ° C KF (KCN)" indicates that the surface of the copper indium gallium selenide is first etched with potassium cyanide, and then the surface of the etched surface is vapor-deposited with potassium fluoride, and the substrate temperature at the time of vapor deposition of potassium fluoride It is 425 degrees Celsius. Specifically, comparing FIGS. 3A to 3D with FIGS. 6A to 6D, it is understood that the compound solar cell 100 has better component performance, and the compound solar cell 100 has higher energy conversion efficiency.

圖7繪示本揭露一實施例的光吸收層的製作方法,請參考圖7。在本實施例中,所述光吸收層的製作方法至少可以應用於圖1F實施例的化合物太陽能電池100的光吸收層AL(第一型摻雜半導體層120)。所述光吸收層的製作方法如下步驟。在步驟S710中,形成前驅物層於基板上,前驅物層包括多個奈米粒子,且這些奈米粒子的材料包括銅氧化物、銦氧化物以及鎵氧化物。在步驟S720中,提供漿料於前驅物層上,其中漿料的材料包括鹼金屬化合物。另外,在步驟S730中,對漿料以及前驅物層進行熱處理。具體而言,本揭露之實施例的光吸收層的製作方法至少可以由圖1A至圖1F之實施例的敘述中獲致足夠的教示、建議與實施說明,因此不再贅述。FIG. 7 illustrates a method of fabricating a light absorbing layer according to an embodiment of the present disclosure. Please refer to FIG. 7. In the present embodiment, the method of fabricating the light absorbing layer can be applied at least to the light absorbing layer AL (first type doped semiconductor layer 120) of the compound solar cell 100 of the embodiment of FIG. 1F. The method for fabricating the light absorbing layer is as follows. In step S710, a precursor layer is formed on the substrate, the precursor layer includes a plurality of nano particles, and the materials of the nano particles include copper oxide, indium oxide, and gallium oxide. In step S720, a slurry is provided on the precursor layer, wherein the material of the slurry includes an alkali metal compound. Further, in step S730, the slurry and the precursor layer are subjected to heat treatment. Specifically, the method for fabricating the light absorbing layer of the embodiment of the present disclosure can at least be sufficiently taught, suggested, and implemented by the description of the embodiment of FIG. 1A to FIG. 1F, and thus will not be described again.

綜上所述,本揭露實施例的光吸收層的製作方法中,前驅物層包括多個奈米粒子,且這些奈米粒子的材料包括銅氧化物、銦氧化物以及鎵氧化物。另外,光吸收層的製作方法包括提供漿料於此前驅物層上,且漿料的材料包括鹼金屬化合物。本揭露實施例的化合物太陽能電池以透過上述製作方法所製作的光吸收層來作為第一型摻雜半導體層,因此第一型摻雜半導體層包括多個元素的至少其中之一,且這些元素包括鉀、銣以及銫等鹼金屬元素。此外,這些鹼金屬元素的至少其中之一在第一型摻雜半導體層之中具有適當的濃度分布。由於鹼金屬元素可以在熱處理如硒化、硫化或是硒化及硫化的任意組合的過程中,分佈於光吸收層的表面、晶體結構和晶界之中,使得光吸收層的材料介面和晶界的鈍化效果得以產生,而可以降低電子電洞的復合機率。此外,P/N接面也能達到更加良好的能階匹配。因此,化合物太陽能電池可以在採用非真空製程的情況下,具備較高的開路電壓和填充因子,進而具有較佳的能量轉換效率。In summary, in the method for fabricating the light absorbing layer of the embodiment, the precursor layer includes a plurality of nano particles, and the materials of the nano particles include copper oxide, indium oxide, and gallium oxide. In addition, the method of fabricating the light absorbing layer includes providing a slurry on the precursor layer, and the material of the slurry includes an alkali metal compound. The compound solar cell of the embodiment of the present invention uses the light absorbing layer fabricated by the above manufacturing method as the first type doped semiconductor layer, and thus the first type doped semiconductor layer includes at least one of a plurality of elements, and these elements It includes alkali metal elements such as potassium, strontium and barium. Further, at least one of these alkali metal elements has an appropriate concentration distribution among the first type doped semiconductor layers. Since the alkali metal element can be distributed in the surface, crystal structure and grain boundary of the light absorbing layer during heat treatment such as selenization, vulcanization or any combination of selenization and vulcanization, the material interface and crystal of the light absorbing layer are made. The passivation effect of the boundary is generated, and the composite probability of the electron hole can be reduced. In addition, the P/N junction can achieve a better energy level matching. Therefore, the compound solar cell can have a higher open circuit voltage and a fill factor in a non-vacuum process, and thus has better energy conversion efficiency.

雖然本揭露已以實施例揭露如上,然其並非用以限定本揭露,任何所屬技術領域中具有通常知識者,在不脫離本揭露的精神和範圍內,當可作些許的更動與潤飾,故本揭露的保護範圍當視後附的申請專利範圍所界定者為準。The present disclosure has been disclosed in the above embodiments, but it is not intended to limit the disclosure, and any person skilled in the art can make some changes and refinements without departing from the spirit and scope of the disclosure. The scope of protection of this disclosure is subject to the definition of the scope of the appended claims.

100‧‧‧化合物太陽能電池100‧‧‧ compound solar cells

110‧‧‧第一電極110‧‧‧First electrode

120‧‧‧第一型摻雜半導體層120‧‧‧First type doped semiconductor layer

122‧‧‧元素122‧‧‧ elements

130‧‧‧第二型摻雜半導體層130‧‧‧Second type doped semiconductor layer

140‧‧‧第二電極140‧‧‧second electrode

142‧‧‧本質氧化鋅層142‧‧‧ Essential zinc oxide layer

144‧‧‧透明導電層144‧‧‧Transparent conductive layer

150‧‧‧電極150‧‧‧electrode

190‧‧‧漿料190‧‧‧Slurry

192‧‧‧鹼金屬化合物192‧‧‧Alkali metal compounds

194‧‧‧溶劑194‧‧‧ solvent

A‧‧‧區域A‧‧‧ area

AL‧‧‧光吸收層AL‧‧‧Light absorbing layer

P1、P2‧‧‧點P1, P2‧‧ points

PrL‧‧‧前驅物層PrL‧‧‧ precursor layer

S1‧‧‧第一側S1‧‧‧ first side

S2‧‧‧第二側S2‧‧‧ second side

S710、S720、S730‧‧‧光吸收層的製作方法的步驟Steps for making S710, S720, S730‧‧‧ light absorbing layer

SUB‧‧‧基板SUB‧‧‧ substrate

T‧‧‧厚度T‧‧‧ thickness

圖1A至圖1F繪示本揭露一實施例的化合物太陽能電池的製作流程圖。 圖2繪示圖1F實施例的化合物太陽能電池的光吸收層在不同深度的元素含量分析。 圖3A至圖3D繪示圖1F實施例的化合物太陽能電池的光電轉換的不同參數對氟化鉀在漿料裡的濃度的作圖。 圖4A繪示有無氟化鉀的化合物太陽能電池的光吸收層在不同深度的元素含量分析。 圖4B繪示有無氟化鉀的化合物太陽能電池的電流對電壓曲線(I-V curve)。 圖5A至圖5D繪示一比較實施例的化合物太陽能電池的光電轉換的不同參數的表現。 圖6A至圖6D繪示另一比較實施例的化合物太陽能電池的光電轉換的不同參數的表現。 圖7繪示本揭露一實施例的光吸收層的製作方法。1A-1F are flow diagrams showing the fabrication of a compound solar cell according to an embodiment of the present disclosure. 2 is a graph showing element content analysis of light absorbing layers of the compound solar cell of the embodiment of FIG. 1F at different depths. 3A to 3D are graphs showing the different parameters of photoelectric conversion of the compound solar cell of the embodiment of FIG. 1F versus the concentration of potassium fluoride in the slurry. 4A is a graph showing element content analysis of light absorption layers of compound solar cells with or without potassium fluoride at different depths. Figure 4B shows the current versus voltage curve (I-V curve) for a compound solar cell with or without potassium fluoride. 5A to 5D illustrate the performance of different parameters of photoelectric conversion of a compound solar cell of a comparative example. 6A to 6D illustrate the performance of different parameters of photoelectric conversion of a compound solar cell of another comparative embodiment. FIG. 7 illustrates a method of fabricating a light absorbing layer according to an embodiment of the present disclosure.

Claims (16)

一種化合物太陽能電池,包括: 一第一電極; 一第二電極; 一第一型摻雜半導體層,配置於該第一電極以及該第二電極之間,以及一第二型摻雜半導體層,配置於該第一型摻雜半導體層以及該第二電極之間,其中該第一型摻雜半導體層具有靠近該第一電極的一第一側以及靠近該第二型摻雜半導體層的一第二側,該第一型摻雜半導體層包括多個元素的至少其中之一,且該些元素包括鉀、銣以及銫,其中該些元素的至少其中之一在該第一側的濃度高於在該第二側的濃度。A compound solar cell comprising: a first electrode; a second electrode; a first type doped semiconductor layer disposed between the first electrode and the second electrode, and a second type doped semiconductor layer, Disposed between the first type doped semiconductor layer and the second electrode, wherein the first type doped semiconductor layer has a first side close to the first electrode and a first type close to the second type doped semiconductor layer a second side, the first type doped semiconductor layer includes at least one of a plurality of elements, and the elements include potassium, germanium, and germanium, wherein at least one of the elements has a high concentration on the first side The concentration on the second side. 如申請專利範圍第1項所述的化合物太陽能電池,其中該第一型摻雜半導體層包括IB族元素、IIIA族元素、VIA族元素或其組合,或IB族元素、IIB族元素、IVA族元素、VIA族元素或其組合。The compound solar cell according to claim 1, wherein the first type doped semiconductor layer comprises a group IB element, a group IIIA element, a group VIA element or a combination thereof, or a group IB element, a group IIB element, or a group IVA. Element, group VIA element, or a combination thereof. 如申請專利範圍第1項所述的化合物太陽能電池,其中該第一電極包括鉬、銀、鋁、鉻、鈦、鎳、金或其組合。The compound solar cell of claim 1, wherein the first electrode comprises molybdenum, silver, aluminum, chromium, titanium, nickel, gold or a combination thereof. 如申請專利範圍第1項所述的化合物太陽能電池,其中該第一型摻雜半導體層以及該第二型摻雜半導體層的其中一者為P型摻雜半導體層,且該第一型摻雜半導體層以及該第二型摻雜半導體層的其中另一者為N型摻雜半導體層。The compound solar cell of claim 1, wherein one of the first type doped semiconductor layer and the second type doped semiconductor layer is a P type doped semiconductor layer, and the first type is doped The other of the hetero semiconductor layer and the second type doped semiconductor layer is an N-type doped semiconductor layer. 如申請專利範圍第1項所述的化合物太陽能電池,更包括一基板,且該第一電極配置於該第一型摻雜半導體層以及該基板之間。The compound solar cell of claim 1, further comprising a substrate, wherein the first electrode is disposed between the first type doped semiconductor layer and the substrate. 一種光吸收層的製作方法: 形成一前驅物層於一基板上,該前驅物層包括多個奈米粒子,且該些奈米粒子的材料包括銅氧化物、銦氧化物以及鎵氧化物; 提供一漿料於該前驅物層上,其中該漿料的材料包括一鹼金屬化合物;以及 對該漿料以及該前驅物層進行一熱處理。A method for fabricating a light absorbing layer: forming a precursor layer on a substrate, the precursor layer comprising a plurality of nano particles, and the materials of the nano particles comprise copper oxide, indium oxide and gallium oxide; A slurry is provided on the precursor layer, wherein the material of the slurry comprises an alkali metal compound; and the slurry and the precursor layer are subjected to a heat treatment. 如申請專利範圍第6項所述的光吸收層的製作方法,其中形成該前驅物層於該基板上的方法包括: 塗佈一前驅物於該基板上以形成該前驅物層。The method of fabricating a light absorbing layer according to claim 6, wherein the method of forming the precursor layer on the substrate comprises: coating a precursor on the substrate to form the precursor layer. 如申請專利範圍第6項所述的光吸收層的製作方法,其中提供該漿料於該前驅物層上的方法包括: 藉由毛細管塗佈、旋轉塗佈、刷塗、刮刀塗佈、噴灑塗佈或印刷塗佈以塗佈該漿料於該前驅物層上。The method for fabricating a light absorbing layer according to claim 6, wherein the method for providing the slurry on the precursor layer comprises: by capillary coating, spin coating, brush coating, blade coating, spraying Coating or printing is applied to coat the slurry onto the precursor layer. 如申請專利範圍第6項所述的光吸收層的製作方法,其中該漿料更包括一溶劑,且該鹼金屬化合物均勻散佈於該溶劑之中。The method for producing a light absorbing layer according to claim 6, wherein the slurry further comprises a solvent, and the alkali metal compound is uniformly dispersed in the solvent. 如申請專利範圍第9項所述的光吸收層的製作方法,其中該溶劑包括水、醇類溶劑、酯類溶劑、酮類溶劑、醚類溶劑、胺類溶劑、酸類溶劑、鹼類溶劑或其組合。The method for producing a light absorbing layer according to claim 9, wherein the solvent comprises water, an alcohol solvent, an ester solvent, a ketone solvent, an ether solvent, an amine solvent, an acid solvent, a base solvent or Its combination. 如申請專利範圍第6項所述的光吸收層的製作方法,其中該鹼金屬化合物在該漿料中的重量百分濃度是落在0.01%至0.6%的範圍內。The method for producing a light absorbing layer according to claim 6, wherein the alkali metal compound has a concentration by weight in the slurry of 0.01% to 0.6%. 如申請專利範圍第9項所述的光吸收層的製作方法,更包括: 提供該漿料於該前驅物層上之後,對該漿料進行一乾燥處理以使該溶劑揮發。The method for fabricating a light absorbing layer according to claim 9, further comprising: after the slurry is provided on the precursor layer, the slurry is subjected to a drying treatment to volatilize the solvent. 如申請專利範圍第6項所述的光吸收層的製作方法,其中該鹼金屬化合物包括多個元素的至少其中之一,且該些元素包括鉀、銣以及銫。The method for producing a light absorbing layer according to claim 6, wherein the alkali metal compound comprises at least one of a plurality of elements, and the elements include potassium, rubidium, and cesium. 如申請專利範圍第6項所述的光吸收層的製作方法,其中提供於該前驅物層上的該漿料形成一膜層,且該膜層的厚度是落在3奈米至100奈米的範圍內。The method for fabricating a light absorbing layer according to claim 6, wherein the slurry provided on the precursor layer forms a film layer, and the film layer has a thickness of from 3 nm to 100 nm. In the range. 如申請專利範圍第13項所述的光吸收層的製作方法,其中對該漿料以及該前驅物層進行該熱處理的方法包括: 將該漿料以及該前驅物層置於一氣體環境中以形成一光吸收層,其中該氣體環境包括VIA族元素的氣體,且該氣體環境的溫度是落在攝氏300度至攝氏600度的範圍內。The method for fabricating a light absorbing layer according to claim 13, wherein the method of performing the heat treatment on the slurry and the precursor layer comprises: placing the slurry and the precursor layer in a gas atmosphere A light absorbing layer is formed, wherein the gas environment comprises a gas of a Group VIA element, and the temperature of the gas environment falls within a range of 300 degrees Celsius to 600 degrees Celsius. 如申請專利範圍第15項所述的光吸收層的製作方法,其中該光吸收層包括該些元素的至少其中之一,且該些元素的至少其中之一在靠近該基板的濃度高於遠離該基板的濃度。The method for fabricating a light absorbing layer according to claim 15, wherein the light absorbing layer comprises at least one of the elements, and at least one of the elements is at a concentration higher than the substrate The concentration of the substrate.
TW105144040A 2016-12-30 2016-12-30 Compound-based solar cell and manufacturing method of light absorption layer TWI600176B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW105144040A TWI600176B (en) 2016-12-30 2016-12-30 Compound-based solar cell and manufacturing method of light absorption layer
CN201710161133.0A CN108269867A (en) 2016-12-30 2017-03-17 Compound solar cell and method for manufacturing light absorption layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105144040A TWI600176B (en) 2016-12-30 2016-12-30 Compound-based solar cell and manufacturing method of light absorption layer

Publications (2)

Publication Number Publication Date
TWI600176B TWI600176B (en) 2017-09-21
TW201824579A true TW201824579A (en) 2018-07-01

Family

ID=60719758

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105144040A TWI600176B (en) 2016-12-30 2016-12-30 Compound-based solar cell and manufacturing method of light absorption layer

Country Status (2)

Country Link
CN (1) CN108269867A (en)
TW (1) TWI600176B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI688112B (en) * 2018-12-20 2020-03-11 國立清華大學 Method for making flexible thin film solar cell and the product made therefrom

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111509065A (en) * 2019-01-31 2020-08-07 神华(北京)光伏科技研发有限公司 Solar cell containing alkali metal doped copper indium gallium selenide absorption layer

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7306823B2 (en) * 2004-09-18 2007-12-11 Nanosolar, Inc. Coated nanoparticles and quantum dots for solution-based fabrication of photovoltaic cells
TW201119074A (en) * 2009-11-18 2011-06-01 Nexpower Technology Corp Thin film solar cell and manufacturing method thereof
US8840770B2 (en) * 2010-09-09 2014-09-23 International Business Machines Corporation Method and chemistry for selenium electrodeposition
TW201300322A (en) * 2011-06-28 2013-01-01 Shanghai Inst Ceramics A method for preparing light absorption layer of copper-indium-gallium-sulfur-selenium thin film solar cells
BR112015014939B1 (en) * 2012-12-21 2021-10-19 Flisom Ag METHOD FOR MANUFACTURING THIN FILM OPTOELECTRONIC DEVICES AND VAPOR DEPOSITION ZONE APPARATUS
CN105742412A (en) * 2016-04-28 2016-07-06 中国科学院上海微系统与信息技术研究所 Alkali metal doping method for thin-film solar cell absorption layer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI688112B (en) * 2018-12-20 2020-03-11 國立清華大學 Method for making flexible thin film solar cell and the product made therefrom

Also Published As

Publication number Publication date
CN108269867A (en) 2018-07-10
TWI600176B (en) 2017-09-21

Similar Documents

Publication Publication Date Title
US7632701B2 (en) Thin film solar cells by selenization sulfurization using diethyl selenium as a selenium precursor
US20110240123A1 (en) Photovoltaic Cells With Improved Electrical Contact
US20100243043A1 (en) Light Absorbing Layer Of CIGS Solar Cell And Method For Fabricating The Same
TW201108425A (en) Solar cell and fabrication method thereof
US9748419B2 (en) Back contact design for solar cell, and method of fabricating same
JP2001044464A (en) METHOD OF FORMING Ib-IIIb-VIb2 COMPOUND SEMICONDUCTOR LAYER AND MANUFACTURE OF THIN-FILM SOLAR CELL
TWI600176B (en) Compound-based solar cell and manufacturing method of light absorption layer
KR101103894B1 (en) Solar cell and method of fabricating the same
JP6377338B2 (en) Photoelectric conversion element, method for manufacturing photoelectric conversion element, and solar cell
KR101415251B1 (en) Multiple-Layered Buffer, and Its Fabrication Method, and Solor Cell with Multiple-Layered Buffer.
CN107112377B (en) Layer structure for thin-film solar cells and method for producing the same
KR101667180B1 (en) Solar cell based on chalcogenide using new conceptional structure and manufacturing method thereof
KR101181095B1 (en) Solar cell and method for manufacturing the same
US8809105B2 (en) Method of processing a semiconductor assembly
KR101412150B1 (en) Tandem structure cigs solar cell and method for manufacturing the same
US9520530B2 (en) Solar cell having doped buffer layer and method of fabricating the solar cell
KR102057234B1 (en) Preparation of CIGS thin film solar cell and CIGS thin film solar cell using the same
KR101971398B1 (en) Bifacial CdS/CdTe thin film solar cell and method for the same
KR101283240B1 (en) Solar cell and method of fabricating the same
US20180190845A1 (en) Compound-based solar cell and manufacturing method of light absorption layer
KR102212042B1 (en) Solar cell comprising buffer layer formed by atomic layer deposition and method of fabricating the same
US9653628B2 (en) Absorber layer for photovoltaic device, and method of making the same
KR101428469B1 (en) Fabrication Method for CIGS Solar Cell having Double Texturing Electrode Layer.
KR102076544B1 (en) Method of fabricating absorption layer
Song et al. Spray pyrolysis of semi-transparent backwall superstrate CuIn (S, Se) 2 solar cells