TW201824304A - Magnetic material and magnetic component employing the same - Google Patents

Magnetic material and magnetic component employing the same Download PDF

Info

Publication number
TW201824304A
TW201824304A TW105144144A TW105144144A TW201824304A TW 201824304 A TW201824304 A TW 201824304A TW 105144144 A TW105144144 A TW 105144144A TW 105144144 A TW105144144 A TW 105144144A TW 201824304 A TW201824304 A TW 201824304A
Authority
TW
Taiwan
Prior art keywords
magnetic material
magnetic
oxide
alloy
core body
Prior art date
Application number
TW105144144A
Other languages
Chinese (zh)
Other versions
TWI630627B (en
Inventor
吳俊斌
唐敏注
柯文淞
Original Assignee
財團法人工業技術研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人工業技術研究院 filed Critical 財團法人工業技術研究院
Priority to TW105144144A priority Critical patent/TWI630627B/en
Priority to JP2017148768A priority patent/JP6429212B2/en
Publication of TW201824304A publication Critical patent/TW201824304A/en
Application granted granted Critical
Publication of TWI630627B publication Critical patent/TWI630627B/en

Links

Abstract

A magnetic material is provided. The magnetic material includes a core portion consisting of above 99 wt% of Fe, based on the total weight of the core portion. An alloy layer including a FeM alloy is disposed on the surface of the core portion, wherein M is Cr, Si, Al, Ti, Zr, or a combination thereof. An oxide layer including M and an oxide of M is disposed on the surface of the alloy layer. A magnetic component is also provided. The magnetic component includes a sintered product of the magnetic material and a metal.

Description

磁性材料及包含其之磁性元件  Magnetic material and magnetic component including the same  

本揭露係有關於一種磁性材料及包含其之磁性元件。 The disclosure relates to a magnetic material and a magnetic component comprising the same.

隨著對於電子裝置如智慧型手機、平板電腦等小型化的需求,電感器也走向微型化,而其所需頻率和耐電流也隨之增加。為了因應這樣的需求,目前已有文獻利用金屬取代常用的金屬氧化物(如鐵氧化物)做為電感器的磁性材料,以增加導磁率、飽和磁化量、及耐電流等特性。 With the demand for miniaturization of electronic devices such as smart phones and tablets, the inductors are also miniaturized, and the required frequency and withstand current are also increased. In order to meet such demands, the literature has now used metals to replace commonly used metal oxides (such as iron oxides) as magnetic materials for inductors to increase magnetic permeability, saturation magnetization, and withstand current.

目前用來作為磁性材料的金屬大部分為合金,其磁特性較純金屬材料差(如飽和磁化量(emu/g):FeSi=205、NiFeMo=80~160<純Fe=217)。然而應用在積層式電感器時,磁性材料需與銀共燒且不能與銀形成電通路,但純金屬容易因高溫共燒製程而部份氧化,使其磁特性下降,且會與銀形成電通路而失去電感器特性。 Most of the metals currently used as magnetic materials are alloys, and their magnetic properties are inferior to those of pure metal materials (eg, saturation magnetization (emu/g): FeSi=205, NiFeMo=80-160<pure Fe=217). However, when applied to a laminated inductor, the magnetic material needs to be co-fired with silver and cannot form an electrical path with silver. However, the pure metal is easily partially oxidized by the high-temperature co-firing process, causing the magnetic properties to be degraded and forming a flux with silver. The circuit loses its inductor characteristics.

因此,目前亟需一種具有更高性能的磁性材料,其可不僅適用於傳統的繞線式電感器,也適用於共燒型的積層式電感器或其他類型的磁性元件中。 Therefore, there is a need for a magnetic material having higher performance, which is applicable not only to a conventional wound inductor but also to a cofired laminated inductor or other type of magnetic component.

根據一實施例,本揭露提供一種磁性材料,包括:一核心主體,其包含99wt%以上之Fe,以核心主體的總重量為基準;一合金層,位於核心主體的表面,包括FeM合金,其中M為Cr、Si、Al、Ti、Zr、或前述之組合;以及一混合層,位於合金層的表面,包括M及M的氧化物。 According to an embodiment, the present disclosure provides a magnetic material comprising: a core body comprising 99 wt% or more of Fe, based on the total weight of the core body; an alloy layer on the surface of the core body, including a FeM alloy, wherein M is Cr, Si, Al, Ti, Zr, or a combination thereof; and a mixed layer on the surface of the alloy layer, including oxides of M and M.

根據一實施例,本揭露提供一種磁性材料,包括:一核心主體,其包含99wt%以上之Fe,以核心主體的總重量為基準;一第一鈍化層,位於核心主體的表面,包括FeM合金的氧化物,其中M為Cr、Si、Al、Ti、Zr、或前述之組合;以及一第二鈍化層,位於第一鈍化層的表面,包括M氧化物。 According to an embodiment, the present disclosure provides a magnetic material comprising: a core body comprising 99 wt% or more of Fe, based on the total weight of the core body; a first passivation layer on the surface of the core body, including FeM alloy An oxide, wherein M is Cr, Si, Al, Ti, Zr, or a combination thereof; and a second passivation layer on the surface of the first passivation layer, including an M oxide.

根據另一實施例,本揭露提供一種磁性元件,包括一前述之磁性材料與一金屬之燒結物。 According to another embodiment, the present disclosure provides a magnetic component comprising a magnetic material of the foregoing and a sintered metal.

為讓本揭露之上述內容和其他目的、特徵、和優點能更明顯易懂,下文特舉出較佳實施例,並配合所附圖式,作詳細說明如下: The above and other objects, features, and advantages of the present invention will become more apparent and understood.

1、2、3、4‧‧‧磁性粒子 1, 2, 3, 4‧‧‧ magnetic particles

10、20、30、40‧‧‧核心主體 10, 20, 30, 40‧‧‧ core subjects

12、32‧‧‧合金層 12, 32‧‧‧ alloy layer

14、34‧‧‧混合層 14, 34‧‧‧ mixed layer

22、42‧‧‧第一鈍化層 22, 42‧‧‧ first passivation layer

24、44‧‧‧第二鈍化層 24, 44‧‧‧ second passivation layer

100‧‧‧第一粒子 100‧‧‧First particle

200‧‧‧第二粒子 200‧‧‧Second particles

I‧‧‧第一區域 I‧‧‧First area

II‧‧‧第二區域 II‧‧‧Second area

III‧‧‧第三區域 III‧‧‧ Third Area

第1圖為根據本揭露一實施例顯示磁性材料的剖面示意圖。 1 is a schematic cross-sectional view showing a magnetic material according to an embodiment of the present disclosure.

第2圖為根據本揭露另一實施例顯示磁性材料的剖面示意圖。 2 is a schematic cross-sectional view showing a magnetic material according to another embodiment of the present disclosure.

第3A~3C圖為根據本揭露一實施例顯示製造磁性材料的中間製程示意圖。 3A-3C are schematic views showing an intermediate process for manufacturing a magnetic material according to an embodiment of the present disclosure.

第4圖為根據本揭露一些比較例及實施例之磁性材料的導磁率。 Fig. 4 is a view showing magnetic permeability of a magnetic material according to some comparative examples and examples.

第5圖為根據本揭露一些比較例及實施例之磁性材料的導磁率。 Fig. 5 is a view showing magnetic permeability of a magnetic material according to some comparative examples and examples.

第6A圖為利用掃描式電子顯微鏡(SEM)觀察所得本揭露一實施例磁性材料的剖面圖。 Fig. 6A is a cross-sectional view showing a magnetic material of an embodiment of the present invention observed by a scanning electron microscope (SEM).

第6B圖為第6A圖中方框所示區域的放大圖。 Fig. 6B is an enlarged view of a region indicated by a square in Fig. 6A.

第7A圖為利用掃描式電子顯微鏡(SEM)觀察所得本揭露另一實施例磁性材料的剖面圖。 Fig. 7A is a cross-sectional view showing a magnetic material of another embodiment of the present invention observed by a scanning electron microscope (SEM).

第7B圖為第7A圖中方框所示區域的放大圖及成分分析(EDS-Line Scan)結果。 Figure 7B is an enlarged view of the area shown in the box in Figure 7A and the results of the EDS-Line Scan.

第8A圖為利用掃描式電子顯微鏡(SEM)觀察所得比較例3磁性元件的剖面圖。 Fig. 8A is a cross-sectional view of the magnetic element of Comparative Example 3 obtained by a scanning electron microscope (SEM).

第8B圖為利用掃描式電子顯微鏡(SEM)觀察所得本揭露一實施例磁性元件的剖面圖。 Fig. 8B is a cross-sectional view showing the magnetic element of the embodiment of the present invention observed by a scanning electron microscope (SEM).

第8C圖為利用掃描式電子顯微鏡(SEM)觀察所得本揭露另一實施例磁性元件的剖面圖。 Fig. 8C is a cross-sectional view showing the magnetic element of another embodiment of the present invention observed by a scanning electron microscope (SEM).

以下依本揭露之不同特徵舉出數個不同的實施例。本揭露中特定的元件及安排係為了簡化,但本揭露並不以這些實施例為限。舉例而言,於第二元件上形成第一元件的描述可包括第一元件與第二元件直接接觸的實施例,亦包括具有額外的元件形成在第一元件與第二元件之間、使得第一元件與第二元件並未直接接觸的實施例。此外,為簡明起見,本揭露在不同例子中以重複的元件符號及/或字母表示,但不代表所述各實施例及/或結構間具有特定的關係。 Several different embodiments are set forth below in light of the different features disclosed herein. The specific elements and arrangements in the disclosure are intended to be simplified, but the disclosure is not limited to the embodiments. For example, a description of forming a first element on a second element can include an embodiment in which the first element is in direct contact with the second element, and also includes having additional elements formed between the first element and the second element such that An embodiment in which one element is not in direct contact with the second element. In addition, for the sake of brevity, the disclosure is represented by repeated element symbols and/or letters in different examples, but does not represent a particular relationship between the various embodiments and/or structures.

本揭露實施例提供一種具有高導磁率、高飽和磁化量之磁性材料,以及將此磁性材料與金屬共燒結所得之磁性元件。藉由磁性材料表面的金屬合金鈍化層保護內部金屬材料,避免內部金屬材料因氧化所導致磁特性下降的問題。 The disclosed embodiments provide a magnetic material having a high magnetic permeability and a high saturation magnetization, and a magnetic member obtained by co-sintering the magnetic material with a metal. The internal metal material is protected by the metal alloy passivation layer on the surface of the magnetic material, thereby avoiding the problem that the internal metal material is degraded due to oxidation.

本揭露一實施例提供一種磁性材料1,如第1圖所示,包括:一核心主體10;一合金層12,位於核心主體10的表面;以及一混合層14,位於合金層12的表面。磁性材料1之粒徑可為例如:0.5~50μm、或50~110μm。 An embodiment of the present invention provides a magnetic material 1, as shown in FIG. 1, comprising: a core body 10; an alloy layer 12 on the surface of the core body 10; and a mixed layer 14 on the surface of the alloy layer 12. The particle diameter of the magnetic material 1 may be, for example, 0.5 to 50 μm or 50 to 110 μm.

核心主體10包含99wt%以上之Fe,以核心主體10的總重量為基準。在一實施例中,核心主體10僅包括金屬元素Fe,即100wt%之Fe。在另一實施例中,核心主體10可包含Fe及Fe的氧化物,其中Fe的氧化物可包括氧化亞鐵(FeO)、三氧化二鐵(Fe2O3)、四氧化三鐵(Fe3O4)、或前述之組合。在此實施例中,Fe之含量可為99wt%以上,例如:99wt%、99.95wt%、或99.99wt%,而Fe的氧化物之含量可為1wt%以下,例如:0.01wt%、0.05wt%、或1wt%,以核心主體10的總重量為基準。 The core body 10 contains 99% by weight or more of Fe, based on the total weight of the core body 10. In an embodiment, the core body 10 comprises only the metallic element Fe, ie 100% by weight of Fe. In another embodiment, the core body 10 may comprise an oxide of Fe and Fe, wherein the oxide of Fe may include ferrous oxide (FeO), ferric oxide (Fe 2 O 3 ), and triiron tetroxide (Fe). 3 O 4 ), or a combination of the foregoing. In this embodiment, the content of Fe may be 99 wt% or more, for example, 99 wt%, 99.95 wt%, or 99.99 wt%, and the content of Fe oxide may be 1 wt% or less, for example, 0.01 wt%, 0.05 wt. %, or 1 wt%, based on the total weight of the core body 10.

合金層12可包括FeM合金,其中M為Cr、Si、Al、Ti、Zr、或前述之組合。其中,合金層12中M的含量可為5~80wt%,以FeM合金之總重量為基準。若M的含量太低,例如不足5wt%時,會使核心主體容易形成氧化物導致整體磁特性下降;若M的含量太高,例如超過80wt%時,會因為M的磁特性較Fe差,導致整體磁特性下降過多。合金層12的厚度可為0.05~10μm,例如:0.1μm、0.3μm、1.5μm、3μm、或5μm。 Alloy layer 12 may comprise an FeM alloy wherein M is Cr, Si, Al, Ti, Zr, or a combination of the foregoing. The content of M in the alloy layer 12 may be 5 to 80% by weight based on the total weight of the FeM alloy. If the content of M is too low, for example, less than 5% by weight, the core body is liable to form oxides, resulting in a decrease in the overall magnetic properties; if the content of M is too high, for example, more than 80% by weight, the magnetic properties of M are worse than Fe. This causes the overall magnetic properties to drop too much. The alloy layer 12 may have a thickness of 0.05 to 10 μm, for example, 0.1 μm, 0.3 μm, 1.5 μm, 3 μm, or 5 μm.

混合層14可包括M及M的氧化物,其中M為Cr、Si、 Al、Ti、Zr、或前述之組合。其中,混合層14的厚度範圍為0.05~10μm,例如:0.1μm、0.3μm、1.5μm、3μm、或5μm。若混合層14的厚度太薄,例如不足0.05μm時,會導致後續450~900℃燒結後無法形成鈍化層,而無法與銀共燒形成有效的磁性元件;若混合層14的厚度太厚,例如超過10μm時,會因為混合層14的厚度中的M與M的氧化物之磁特性較Fe差,導致整體磁特性下降過多。微觀上,混合層14可包括複數個顆粒狀突起結構。 The mixed layer 14 may include oxides of M and M, where M is Cr, Si, Al, Ti, Zr, or a combination of the foregoing. The mixed layer 14 has a thickness ranging from 0.05 to 10 μm, for example, 0.1 μm, 0.3 μm, 1.5 μm, 3 μm, or 5 μm. If the thickness of the mixed layer 14 is too thin, for example, less than 0.05 μm, the passivation layer cannot be formed after the subsequent sintering at 450 to 900 ° C, and the effective magnetic component cannot be formed by co-firing with silver; if the thickness of the mixed layer 14 is too thick, For example, when it exceeds 10 μm, the magnetic properties of the oxides of M and M in the thickness of the mixed layer 14 are inferior to Fe, resulting in an excessive decrease in the overall magnetic properties. Microscopically, the mixed layer 14 can include a plurality of granular protrusion structures.

本揭露另一實施例提供一種磁性材料2,如第2圖所示,包括:一核心主體20;一第一鈍化層22,位於核心主體20的表面;以及一第二鈍化層24,位於第一鈍化層22的表面。磁性材料2之粒徑可為例如:0.5~50μm、或50~110μm。 Another embodiment of the present disclosure provides a magnetic material 2, as shown in FIG. 2, comprising: a core body 20; a first passivation layer 22 on the surface of the core body 20; and a second passivation layer 24 located at the The surface of a passivation layer 22. The particle diameter of the magnetic material 2 may be, for example, 0.5 to 50 μm or 50 to 110 μm.

核心主體20包含99wt%以上之Fe,以核心主體20的總重量為基準。在一實施例中,核心主體20僅包括金屬元素Fe,即100wt%之Fe。在另一實施例中,核心主體20可包含Fe及Fe的氧化物,其中Fe的氧化物可包括氧化亞鐵(FeO)、三氧化二鐵(Fe2O3)、四氧化三鐵(Fe3O4)、或前述之組合。在此實施例中,Fe之含量可為99wt%以上,例如:99wt%、99.95wt%、或99.99wt%,而Fe的氧化物之含量可為1wt%以下,例如:0.01wt%、0.05wt%、或1wt%,以核心主體20的總重量為基準。 The core body 20 contains 99% by weight or more of Fe, based on the total weight of the core body 20. In an embodiment, the core body 20 comprises only the metallic element Fe, ie 100% by weight of Fe. In another embodiment, the core body 20 may comprise an oxide of Fe and Fe, wherein the oxide of Fe may include ferrous oxide (FeO), ferric oxide (Fe 2 O 3 ), and triiron tetroxide (Fe). 3 O 4 ), or a combination of the foregoing. In this embodiment, the content of Fe may be 99 wt% or more, for example, 99 wt%, 99.95 wt%, or 99.99 wt%, and the content of Fe oxide may be 1 wt% or less, for example, 0.01 wt%, 0.05 wt. %, or 1 wt%, based on the total weight of the core body 20.

第一鈍化層22可包括FeM合金的氧化物,其中M為Cr、Si、Al、Ti、Zr、或前述之組合。其中,第一鈍化層22中M的含量可為5~80wt%,以FeM合金的氧化物之總重量為基準。若M的含量太低,例如不足5wt%時,會使核心主體容易 形成氧化物導致整體磁特性下降;若M的含量太低,例如超過80wt%時,會因為M的磁特性較Fe差,導致整體磁特性下降過多。第一鈍化層22的厚度可為0.05~10μm,例如:0.1μm、0.3μm、1.5μm、3μm、或5μm。 The first passivation layer 22 may comprise an oxide of a FeM alloy, where M is Cr, Si, Al, Ti, Zr, or a combination of the foregoing. The content of M in the first passivation layer 22 may be 5 to 80 wt%, based on the total weight of the oxide of the FeM alloy. If the content of M is too low, for example, less than 5% by weight, the core body is liable to form oxides, resulting in a decrease in overall magnetic properties; if the content of M is too low, for example, more than 80% by weight, the magnetic properties of M are worse than Fe. This causes the overall magnetic properties to drop too much. The first passivation layer 22 may have a thickness of 0.05 to 10 μm, for example, 0.1 μm, 0.3 μm, 1.5 μm, 3 μm, or 5 μm.

第二鈍化層24可包括M的氧化物,其中M為Cr、Si、Al、Ti、Zr、或前述之組合。第二鈍化層24的厚度範圍為0.05~10μm,例如:0.1μm、0.3μm、1.5μm、3μm、或5μm。若第二鈍化層24太薄,例如不足0.05μm時,則當磁性材料與銀共燒時,銀易擴散進入形成電性通路,使磁性元件失效;若第二鈍化層24的厚度太厚,例如超過10μm時,會因為第二鈍化層24中M與M的氧化物之磁特性較Fe差,導致整體磁特性下降過多。微觀上,第二鈍化層24可包括複數個顆粒狀突起結構。 The second passivation layer 24 can include an oxide of M, where M is Cr, Si, Al, Ti, Zr, or a combination of the foregoing. The thickness of the second passivation layer 24 ranges from 0.05 to 10 μm, for example, 0.1 μm, 0.3 μm, 1.5 μm, 3 μm, or 5 μm. If the second passivation layer 24 is too thin, for example, less than 0.05 μm, when the magnetic material is co-fired with silver, the silver easily diffuses into the formation of an electrical path, causing the magnetic element to fail; if the thickness of the second passivation layer 24 is too thick, For example, when it exceeds 10 μm, the magnetic properties of the oxides of M and M in the second passivation layer 24 are inferior to Fe, resulting in an excessive decrease in the overall magnetic properties. Microscopically, the second passivation layer 24 can include a plurality of granular protrusion structures.

第3A~3C圖為根據本揭露一實施例顯示製造磁性材料3、4的中間製程示意圖。以下,根據一實施例描述本揭露磁性材料3、4的製造過程。然而,此實施例的描述僅為說明之用,本揭露磁性粒子的製造方法並不以此實施例為限。 3A-3C are schematic views showing an intermediate process for manufacturing magnetic materials 3, 4 according to an embodiment of the present disclosure. Hereinafter, the manufacturing process of the magnetic materials 3, 4 of the present disclosure will be described according to an embodiment. However, the description of this embodiment is for illustrative purposes only, and the method of manufacturing the magnetic particles is not limited to this embodiment.

首先,將作為外層材料的第二粒子200研磨細,例如:0.02~10μm。之後,將經研磨之第二粒子200與作為核心主體的第一粒子100進行乾式球磨混合,使第二粒子200均勻被覆於第一粒子100的表面,如第3A圖所示。第二粒子200彼此之間可具有空隙,不完全包覆第一粒子100的表面。也可利用其他合適的物理方法混合第一粒子100與第二粒子200,例如:剪切攪拌混合、高速攪拌混合等。化學方法也可將第二粒子200被覆於第一粒子100的表面,然而,其需要增加額外的清洗步 驟,可能造成溶劑殘留、材料易氧化的問題產生。 First, the second particles 200 as an outer layer material are ground fine, for example, 0.02 to 10 μm. Thereafter, the ground second particles 200 are dry-ball-mixed with the first particles 100 as a core body, and the second particles 200 are uniformly coated on the surface of the first particles 100 as shown in FIG. 3A. The second particles 200 may have voids between each other that do not completely cover the surface of the first particles 100. The first particles 100 and the second particles 200 may also be mixed by other suitable physical methods, such as shear agitation mixing, high speed agitation mixing, and the like. The chemical method may also coat the second particles 200 on the surface of the first particles 100. However, it is necessary to add an additional cleaning step, which may cause problems of solvent residue and easy oxidation of the material.

第一粒子100可為Fe、Fe的氧化物或前述之組合,例如:氧化亞鐵(FeO)、三氧化二鐵(Fe2O3)、四氧化三鐵(Fe3O4)、或前述之組合。第一粒子100為Fe時,其粒徑可為0.5~100μm。第一粒子100為Fe的氧化物時,其粒徑可為0.5~100μm。第二粒子200可為M的氧化物或氫氧化物,其中M為Cr、Si、CrSi、CrSiFe、Al、FeCr、FeSi、FeAl、Ti、Zr、或前述之組合。第二粒子200的粒徑可為0.02~10μm。第一粒子100與第二粒子200混和時的重量比可為200:1~5:1。 The first particles 100 may be Fe, Fe oxide or a combination thereof, such as ferrous oxide (FeO), ferric oxide (Fe 2 O 3 ), triiron tetroxide (Fe 3 O 4 ), or the foregoing The combination. When the first particles 100 are Fe, the particle diameter thereof may be 0.5 to 100 μm. When the first particles 100 are oxides of Fe, the particle diameter thereof may be 0.5 to 100 μm. The second particle 200 may be an oxide or hydroxide of M, wherein M is Cr, Si, CrSi, CrSiFe, Al, FeCr, FeSi, FeAl, Ti, Zr, or a combination thereof. The particle diameter of the second particles 200 may be 0.02 to 10 μm. The weight ratio when the first particles 100 are mixed with the second particles 200 may be 200:1 to 5:1.

接下來,將上述第一粒子100和第二粒子200的混合物放置於約5%的氫氣氣氛中,在約600~1200℃反應約2~15小時,形成磁性材料3。 Next, the mixture of the first particles 100 and the second particles 200 described above is placed in a hydrogen atmosphere of about 5%, and reacted at about 600 to 1200 ° C for about 2 to 15 hours to form a magnetic material 3.

氫化過程中,部分的第二粒子200會發生還原反應,使M的氧化物還原為金屬元素M。金屬元素M會擴散至第一粒子100中,與第一粒子100的成分形成合金,例如:FeM合金,進而在第一粒子100表面形成一層合金層32。合金層32的厚度可為0.05~10μm,取決於氫化反應的時間。氫化反應的時間可為2~15小時,若氫化反應時間過短,則形成之合金層32過薄,導致後續燒結後無法氧化形成鈍化層,核心主體30會容易氧化導致磁特性下降。剩餘未擴散至第一粒子100中的金屬元素M或是未還原的M的氧化物將留在合金層32的表面,在此稱之為混合層34。合金層32內部的部分則稱為核心主體30。其中,無論在第一粒子100為Fe或Fe的氧化物之實施例中,氫化反應後,Fe的氧化物幾乎都會被還原成Fe,因此核心主體30具 有Fe為主成分,故具有純金屬之良好磁特性。 During the hydrogenation process, part of the second particles 200 undergo a reduction reaction to reduce the oxide of M to the metal element M. The metal element M diffuses into the first particle 100 and forms an alloy with the composition of the first particle 100, for example, an FeM alloy, and further forms an alloy layer 32 on the surface of the first particle 100. The thickness of the alloy layer 32 may be 0.05 to 10 μm depending on the time of the hydrogenation reaction. The hydrogenation reaction time may be 2 to 15 hours. If the hydrogenation reaction time is too short, the formed alloy layer 32 is too thin, resulting in failure to oxidize to form a passivation layer after subsequent sintering, and the core body 30 is easily oxidized to cause a decrease in magnetic properties. The remaining metal element M that is not diffused into the first particle 100 or the oxide of the unreduced M will remain on the surface of the alloy layer 32, referred to herein as the mixed layer 34. The portion inside the alloy layer 32 is referred to as the core body 30. In the embodiment in which the first particles 100 are oxides of Fe or Fe, the oxides of Fe are almost always reduced to Fe after the hydrogenation reaction, so that the core body 30 has Fe as a main component, so that it has a pure metal. Good magnetic properties.

因此,經過氫化還原反應後所產生之磁性材料3,包括以Fe為主成分(99wt%以上)的核心主體30、位於核心主體30表面的合金層32、以及位於合金層32表面的混合層34,如第3B圖所示。 Therefore, the magnetic material 3 produced after the hydrogenation reduction reaction includes the core main body 30 mainly composed of Fe (99 wt% or more), the alloy layer 32 on the surface of the core main body 30, and the mixed layer 34 on the surface of the alloy layer 32. As shown in Figure 3B.

應注意的是,相較於為了使核心主體與外界絕緣而以合金做為整個核心主體的磁性材料,本揭露的磁性材料透過上述氫化還原反應,在核心主體的表面僅包括一層薄合金層,即可達到使核心主體不易氧化而導致磁特性下降之目的且可與銀於450~900℃共燒。此外,由於採用上述薄合金層保護內部核心主體,本揭露以Fe或是Fe及極少量Fe的氧化物(約1wt%以下)做為核心主體,故比起以合金做為整個核心主體的磁性材料,本揭露大幅地提升整體飽和磁化量等磁特性。 It should be noted that the magnetic material of the present disclosure, through the above hydrogenation reduction reaction, comprises only a thin alloy layer on the surface of the core body, compared to the magnetic material in which the alloy is used as the entire core body in order to insulate the core body from the outside. It can achieve the purpose of making the core body less susceptible to oxidation and causing a decrease in magnetic properties, and can be co-fired with silver at 450-900 °C. In addition, since the inner core body is protected by the above-mentioned thin alloy layer, the present disclosure uses Fe or Fe and a very small amount of Fe oxide (about 1 wt% or less) as a core body, so the magnetic properties of the whole core body are compared with the alloy. Materials, the present disclosure greatly enhances magnetic properties such as overall saturation magnetization.

接下來,將磁性材料3,放置於大氣氣氛中,在約450~900℃進行燒結約1~5小時,形成磁性材料4。 Next, the magnetic material 3 is placed in an air atmosphere and sintered at about 450 to 900 ° C for about 1 to 5 hours to form a magnetic material 4 .

經過上述燒結製程,合金層32中的合金進一步氧化成為合金的氧化物,形成第一鈍化層42,而混合層34中的金屬元素M進一步氧化成為M的氧化物,形成第二鈍化層44。因此,經過燒結後所產生之磁性材料4,包括核心主體40、位於核心主體40表面的第一鈍化層42、以及位於第一鈍化層42表面的第二鈍化層44。並且,經過燒結後,磁性材料4之間可透過第二鈍化層44結合,形成磁性材料4的聚集體,如第3C圖所示。然而,應了解的是,第3C圖雖僅繪製出兩個磁性材料4的聚集體,在一些實施例中,磁性材料4可以更多個磁性材料4的聚集 體型式存在。或者,在另一些實施例中,磁性材料4之間並未結合,而是以單體型式存在,如第2圖所示。 Through the above sintering process, the alloy in the alloy layer 32 is further oxidized to form an oxide of the alloy to form the first passivation layer 42, and the metal element M in the mixed layer 34 is further oxidized to form an oxide of M to form the second passivation layer 44. Therefore, the magnetic material 4 produced after sintering includes the core body 40, the first passivation layer 42 on the surface of the core body 40, and the second passivation layer 44 on the surface of the first passivation layer 42. Further, after sintering, the magnetic materials 4 are bonded to each other through the second passivation layer 44 to form an aggregate of the magnetic material 4 as shown in FIG. 3C. However, it should be understood that although FIG. 3C only depicts an aggregate of two magnetic materials 4, in some embodiments, the magnetic material 4 may exist in an aggregate form of more magnetic materials 4. Alternatively, in other embodiments, the magnetic materials 4 are not bonded together, but are present in a monomeric form, as shown in FIG.

本揭露再一實施例提供一種磁性元件,其包括一磁性材料與一金屬之一燒結物。磁性材料可為前述磁性材料1或磁性材料2。所使用的金屬可包括:銀、銅、或前述之合金。於燒結物中,磁性材料可為磁性材料1或磁性材料2的粉體單體、粉體單體的碎片、粉體單體的聚集體、或前述之組合。 A further embodiment of the present disclosure provides a magnetic component comprising a magnetic material and a sinter of a metal. The magnetic material may be the aforementioned magnetic material 1 or magnetic material 2. The metal used may include: silver, copper, or an alloy of the foregoing. In the sinter, the magnetic material may be a magnetic material 1 or a powder monomer of the magnetic material 2, a fragment of the powder monomer, an aggregate of the powder monomer, or a combination thereof.

在一實施例中,可使用銀與磁性材料1或磁性材料2進行共燒結,其燒結溫度可為450~900℃。在此情況下,因會形成自生鈍化層所以不需添加有機物當做絕緣材料,而當以有機物當絕緣層時,絕緣層經高溫後會失去絕緣作用(形成碳或者二氧化碳氣體),造成磁性材料失效。然而,磁性材料與金屬共燒結的溫度可根據磁性材料外層的氧化物特性或是不同金屬材料的熔點進行調整,以磁性材料與金屬間有鈍化層為訴求。 In one embodiment, silver may be co-sintered with magnetic material 1 or magnetic material 2, and the sintering temperature may be 450 to 900 °C. In this case, since the self-generated passivation layer is formed, it is not necessary to add an organic substance as an insulating material, and when an organic substance is used as an insulating layer, the insulating layer loses the insulating effect (forms carbon or carbon dioxide gas) after being subjected to a high temperature, causing the magnetic material to fail. . However, the temperature at which the magnetic material is co-sintered with the metal can be adjusted according to the oxide property of the outer layer of the magnetic material or the melting point of the different metal materials, and the passivation layer between the magnetic material and the metal is demanded.

磁性元件可包括:積層式電感器、繞線式電感器、或電磁干擾(Electromagnetic Interference;EMI)抑制元件。然而,本揭露所述之磁性元件並不限於此。此外,根據不同類型的磁性元件,其製造方法亦有不同。以積層式電感器為例,可先將磁性材料1或磁性材料2與漿料均勻混合後,經塗佈形成薄膜。接著,藉由像是網版印刷的方法將金屬線路印刷在薄膜上。然後,將此薄膜放置於大氣氣氛中,在約450~900℃進行共燒結約0.5~10小時,形成積層式電感器。同樣地,磁性材料1或磁性材料2也可應用至其他類型的磁性元件中,有鑑於各種 磁性元件之製造方法為本技術領域具有通常知識者所熟知,可為本技術領域具有通常知識者加以修飾與運用,故不在此贅述。 The magnetic component may include a laminated inductor, a wound inductor, or an Electromagnetic Interference (EMI) suppression component. However, the magnetic element described in the present disclosure is not limited thereto. In addition, the manufacturing methods vary depending on the type of magnetic component. Taking a laminated inductor as an example, the magnetic material 1 or the magnetic material 2 may be uniformly mixed with the slurry and then coated to form a film. Next, the metal wiring is printed on the film by a method such as screen printing. Then, the film is placed in an air atmosphere, and co-sintered at about 450 to 900 ° C for about 0.5 to 10 hours to form a laminated inductor. Similarly, the magnetic material 1 or the magnetic material 2 can also be applied to other types of magnetic elements. In view of the fact that various magnetic element manufacturing methods are well known to those of ordinary skill in the art, they can be used by those of ordinary skill in the art. Modification and application, so I will not repeat them here.

本揭露提供之磁性材料以Fe或是Fe及極少量Fe的氧化物(約1wt%以下)做為核心主體,僅透過核心主體外的薄合金層及薄鈍化層達到使核心主體與外界絕緣的目的,相較於以合金做為整個核心主體的磁性材料,本揭露大幅地提升整體飽和磁化量等磁特性。因此,本揭露提供之磁性材料具有高導磁率、高飽和磁化量,且可與金屬共燒產生自生鈍化層而可形成可作用之磁性元件。此外,由本揭露提供之磁性材料所形成之磁性元件也具有高導磁率及高飽和磁化量等優點。 The magnetic material provided by the present disclosure uses Fe or Fe and a very small amount of Fe oxide (about 1 wt% or less) as a core body, and only penetrates the thin alloy layer and the thin passivation layer outside the core body to insulate the core body from the outside. The purpose is to substantially improve the magnetic properties such as the overall saturation magnetization compared to the magnetic material in which the alloy is used as the entire core body. Therefore, the magnetic material provided by the present disclosure has a high magnetic permeability, a high saturation magnetization amount, and can be co-fired with a metal to produce a self-generated passivation layer to form an active magnetic element. In addition, the magnetic element formed by the magnetic material provided by the present disclosure also has advantages of high magnetic permeability and high saturation magnetization.

以下列舉各實施例與比較例說明本揭露提供之磁性材料及其特性: The magnetic materials and characteristics thereof provided by the present disclosure are illustrated by the following examples and comparative examples:

比較例1/實施例1Comparative Example 1 / Example 1

依照表1所示內容製備比較例1及實施例1。除比較例1-1之外,第一粒子和第二粒子均以乾式球磨混合,所得混合物再依照表1所示製程形成磁性材料。 Comparative Example 1 and Example 1 were prepared in accordance with the contents shown in Table 1. Except for Comparative Example 1-1, both the first particles and the second particles were mixed by dry ball milling, and the resulting mixture was further subjected to a process shown in Table 1 to form a magnetic material.

測量比較例1-1~1-5及實施例1-1~1-8各粒子之導磁率,結果顯示於表2。. The magnetic permeability of each of the particles of Comparative Examples 1-1 to 1-5 and Examples 1-1 to 1-8 was measured, and the results are shown in Table 2. .

比較例2/實施例2Comparative Example 2 / Example 2

依照表3所示內容製備比較例2及實施例2。除比較例2-1之外,第一粒子和第二粒子均以乾式球磨混合,所得混合物再依照表3所示製程形成磁性材料。 Comparative Example 2 and Example 2 were prepared in accordance with the contents shown in Table 3. Except for Comparative Example 2-1, both the first particles and the second particles were mixed by dry ball milling, and the resulting mixture was further subjected to a process shown in Table 3 to form a magnetic material.

測量比較例2-1~2-2及實施例2-1~2-8各粒子之導磁率結果顯示於表4。 The results of measuring the magnetic permeability of each of the particles of Comparative Examples 2-1 to 2-2 and Examples 2-1 to 2-8 are shown in Table 4.

參照表2、4,由比較例1-1及2-1的結果可發現,雖然金屬Fe原本具有良好的導磁率,但經過燒結製程後,上述性質明顯變差。類似地,由比較例1-2及2-2的結果也可發現,雖然第一粒子Fe和第二粒子Cr2O3的混合物原本具有良好的導磁率,但經過燒結製程後,上述性質也明顯變差。由比較例1-3可發現,利用三氧化二鐵(Fe2O3)做為第一粒子和以Cr2O3做為第二粒子的混合物,導磁率不佳。 Referring to Tables 2 and 4, it was found from the results of Comparative Examples 1-1 and 2-1 that although the metal Fe originally had a good magnetic permeability, the above properties were remarkably deteriorated after the sintering process. Similarly, from the results of Comparative Examples 1-2 and 2-2, it was also found that although the mixture of the first particles Fe and the second particles Cr 2 O 3 originally had a good magnetic permeability, after the sintering process, the above properties were also Significantly worse. From Comparative Example 1-3, it was found that the ferromagnetic permeability was poor by using ferric oxide (Fe 2 O 3 ) as the first particle and Cr 2 O 3 as the second particle mixture.

由上述可知,儘管以金屬Fe為第一粒子(如比較例1-1、1-2),經過燒結製程之後(如比較例2-1、2-2),原本金屬Fe的良好導磁率都會大幅受到影響。此外,以三氧化二鐵(Fe2O3)做為第一粒子(如比較例1-3),不具有良好的導磁率。 From the above, it can be seen that although the metal Fe is the first particles (such as Comparative Examples 1-1 and 1-2), after the sintering process (such as Comparative Examples 2-1 and 2-2), the good magnetic permeability of the original metal Fe will be Greatly affected. Further, ferric oxide (Fe 2 O 3 ) was used as the first particles (e.g., Comparative Examples 1-3), and did not have good magnetic permeability.

然而,參照表2,對照實施例1-1~1-8與比較例1-1的結果可發現,以第一粒子(Fe、Fe2O3)和不同的第二粒子 (Cr2O3、Al(OH)3、SiO2、Fe2O3)以球磨混合後之混合物,經過氫化反應後,其導磁率(@ 10MHz)相較於比較例1-1均有明顯的提升。此外,對照實施例1-1~1-8與比較例1-4、1-5的結果更可發現,相較於以Fe合金(FeSi、FeNiMo)為第一粒子的比較例1-4、1-5,實施例1-1~1-5所得之磁性粒子導磁率(@ 1MHz、@ 10MHz)都較為優異。值得一提的是,實施例1-5雖然是以Fe2O3為第一粒子,但是經過氫化反應之後,其導磁率(@ 1MHz、@ 10MHz)相較於比較例1-3都大幅提升。 However, referring to Table 2, the results of Comparative Examples 1-1 to 1-8 and Comparative Example 1-1 revealed that the first particles (Fe, Fe 2 O 3 ) and the different second particles (Cr 2 O 3 ) The mixture of Al(OH) 3 , SiO 2 , Fe 2 O 3 ) was ball milled, and after the hydrogenation reaction, the magnetic permeability (@ 10 MHz) was significantly improved compared with Comparative Example 1-1. Further, the results of Comparative Examples 1-1 to 1-8 and Comparative Examples 1-4 and 1-5 were found to be found in comparison with Comparative Examples 1-4 in which Fe alloys (FeSi, FeNiMo) were the first particles, 1-5. The magnetic particles obtained in Examples 1-1 to 1-5 were excellent in magnetic permeability (@1 MHz, @10 MHz). It is worth mentioning that although Example 1-5 uses Fe 2 O 3 as the first particle, after the hydrogenation reaction, the magnetic permeability (@ 1 MHz, @ 10 MHz) is greatly improved compared with Comparative Example 1-3. .

第4圖顯示比較例1-1及實施例1-1、1-5之磁性材料的導磁率。可看出實施例1-1、1-5相較於比較例1-1在高頻率下(如1MHz~100MHz),導磁率均獲得提升。 Fig. 4 shows the magnetic permeability of the magnetic materials of Comparative Example 1-1 and Examples 1-1 and 1-5. It can be seen that the magnetic permeability of the examples 1-1 and 1-5 is improved at a high frequency (for example, 1 MHz to 100 MHz) compared with the comparative example 1-1.

接著,參照表4,對照實施例2-1~2-8與比較例2-1的結果可發現,以第一粒子(Fe、Fe2O3)和不同的第二粒子(Cr2O3、Al(OH)3、SiO2、Fe2O3)以球磨混合後之混合物,在燒結製程前先進行氫化反應的情況下,其導磁率(@ 1MHz、@ 10MHz)相較於比較例2-1均有明顯的提升。此外,對照實施例2-1~2-8與比較例2-2的結果可發現,以第一粒子(Fe、Fe2O3)和不同的第二粒子(Cr2O3、Al(OH)3、SiO2、Fe2O3)以球磨混合後之混合物,在燒結製程前先進行氫化反應的情況下,其導磁率(@ 1MHz)相較於比較例2-2也都有明顯的提升。 Next, referring to Table 4, it can be found by comparing the results of Examples 2-1 to 2-8 with Comparative Example 2-1 that the first particles (Fe, Fe 2 O 3 ) and the different second particles (Cr 2 O 3 ) , Al(OH) 3 , SiO 2 , Fe 2 O 3 ), the mixture after ball milling, in the case of hydrogenation reaction before the sintering process, the magnetic permeability (@ 1 MHz, @ 10 MHz) compared to Comparative Example 2 -1 has a significant improvement. Further, the results of Comparative Examples 2-1 to 2-8 and Comparative Example 2-2 revealed that the first particles (Fe, Fe 2 O 3 ) and the different second particles (Cr 2 O 3 , Al (OH) 3 ) SiO 2 , Fe 2 O 3 ) The mixture after ball milling is subjected to a hydrogenation reaction before the sintering process, and the magnetic permeability (@ 1 MHz) is also significantly higher than that of Comparative Example 2-2. Upgrade.

第5圖顯示比較例2-1、2-2及實施例2-1、2-5之磁性材料的導磁率。可看出實施例2-1、2-5相較於比較例2-1、2-2在高頻率下(如1MHz~100MHz),導磁率均獲得提升。 Fig. 5 shows the magnetic permeability of the magnetic materials of Comparative Examples 2-1 and 2-2 and Examples 2-1 and 2-5. It can be seen that the magnetic permeability of the examples 2-1 and 2-5 is improved at a high frequency (for example, 1 MHz to 100 MHz) compared with the comparative examples 2-1 and 2-2.

掃描式電子顯微鏡(SEM)觀察結果Scanning electron microscope (SEM) observation

第6A圖顯示實施例2-1所製得磁性材料之掃描式電子顯微鏡(SEM)剖面圖。可看見有一合金區均勻分佈主體核心周圍第6B圖為第6A圖中方框所示區域的放大圖,其中第I區域為Fe,第II區域為包含FeCr氧化物之鈍化層,第III區域為包含Cr氧化物(Cr2O3)之鈍化層。 Fig. 6A is a scanning electron microscope (SEM) sectional view showing the magnetic material obtained in Example 2-1. It can be seen that there is an alloy region uniformly distributed around the core of the main body. Fig. 6B is an enlarged view of the region indicated by the square in Fig. 6A, wherein the first region is Fe, the second region is a passivation layer containing FeCr oxide, and the third region is included. Passivation layer of Cr oxide (Cr 2 O 3 ).

成分分析(EDS-Line Scan)結果Component Analysis (EDS-Line Scan) results

第7A圖顯示實施例2-1所製得磁性材料之掃描式電子顯微鏡(SEM)剖面圖。第7B圖為第7A圖中方框所示區域的放大圖。對第7B圖所示區域進行成分分析(EDS-Line Scan)後,發現接近中心的第I區域中Fe元素的含量最高,僅含有少量的Cr和O元素,可證實本揭露之磁性材料中心幾乎只由Fe所組成。此外,也可看到Cr元素的含量由第III區域向中心遞減,證實磁性材料中的Cr元素的確已由第III區域擴散至第II區域。且由O元素的含量判斷,可推測第II區域包括FeCr的氧化物,而第III區域包括Cr的氧化物。另外,第7B圖中顯示之第III區域的Fe含量,可能是由於成分分析過程中探測位置的誤差所造成,理論上只有少量的Fe會在熱處理的過程中由接近中心的第I區域擴散至第II區域及第III區域。 Fig. 7A is a scanning electron microscope (SEM) sectional view showing the magnetic material obtained in Example 2-1. Fig. 7B is an enlarged view of a region indicated by a square in Fig. 7A. After performing the component analysis (EDS-Line Scan) on the area shown in Fig. 7B, it was found that the content of Fe in the first region close to the center was the highest, and only a small amount of Cr and O elements were contained, which confirmed that the magnetic material center of the present disclosure was almost It consists only of Fe. Further, it can also be seen that the content of the Cr element decreases from the third region toward the center, confirming that the Cr element in the magnetic material has indeed diffused from the third region to the second region. Judging from the content of the O element, it is presumed that the second region includes an oxide of FeCr, and the third region includes an oxide of Cr. In addition, the Fe content of the third region shown in Fig. 7B may be caused by an error in the detection position during the component analysis. Theoretically, only a small amount of Fe diffuses from the first region near the center during the heat treatment to Zone II and Zone III.

比較例3Comparative example 3

將比較例1-1所製得之磁性材料於600℃的燒結溫度下與銀共燒,形成共燒型電感器(成型條件:ψ 9mm×ψ 5mm模 具,升溫至600℃後持續燒結1hr,最後自然冷卻)。第8A圖顯示比較例3之SEM圖。由第8A圖可看見並沒有自生鈍化層形成。 The magnetic material prepared in Comparative Example 1-1 was co-fired with silver at a sintering temperature of 600 ° C to form a co-fired inductor (forming conditions: ψ 9 mm × ψ 5 mm mold, and the temperature was continued to 600 ° C and sintering was continued for 1 hr. Finally naturally cooled). Fig. 8A shows an SEM image of Comparative Example 3. It can be seen from Fig. 8A that no self-generated passivation layer is formed.

實施例3-1Example 3-1

將實施例1-6所製得之磁性材料於600℃的燒結溫度下與銀共燒,形成共燒型電感器(成型條件:ψ 9mm×ψ 5mm模具,升溫至600℃後持續燒結1hr,最後自然冷卻)。第8B圖顯示實施例3-1之SEM圖。由第8B圖可看見自生鈍化層形成(箭頭所指處)。 The magnetic material obtained in Example 1-6 was co-fired with silver at a sintering temperature of 600 ° C to form a co-fired inductor (forming conditions: ψ 9 mm × ψ 5 mm mold, and the temperature was continued to 600 ° C and sintering was continued for 1 hr. Finally naturally cooled). Fig. 8B shows an SEM image of Example 3-1. The formation of the self-generated passivation layer (indicated by the arrow) can be seen from Fig. 8B.

實施例3-2Example 3-2

將實施例1-8所製得之磁性材料於600℃的燒結溫度下與銀共燒,形成共燒型電感器(成型條件:ψ 9mm×ψ 5mm模具,升溫至600℃後持續燒結1hr,最後自然冷卻)。第8C圖顯示實施例3-2之SEM圖。由第8C圖可看見自生鈍化層形成(箭頭所指處)。 The magnetic materials prepared in Examples 1-8 were co-fired with silver at a sintering temperature of 600 ° C to form a co-fired inductor (forming conditions: ψ 9 mm × ψ 5 mm mold, and the temperature was continued to 600 ° C and sintering was continued for 1 hr. Finally naturally cooled). Figure 8C shows an SEM image of Example 3-2. The formation of the autogenous passivation layer (pointed by the arrow) can be seen from Fig. 8C.

上述結果證實本揭露所提供之磁性粒子與金屬(例如:銀)之間形成自生鈍化層,使磁性粒子與金屬之間絕緣,成功形成有效的電感器。 The above results confirm that the magnetic particles provided by the present disclosure form a self-generated passivation layer with a metal (for example, silver) to insulate the magnetic particles from the metal, and successfully form an effective inductor.

雖然本揭露已以數個較佳實施例揭露如上,然其並非用以限定本揭露,任何所屬技術領域中具有通常知識者,在不脫離本揭露之精神和範圍內,當可作任意之更動與潤飾,因此本揭露之保護範圍當視後附之申請專利範圍所界定者為準。 The present disclosure has been disclosed in the above-described preferred embodiments, and is not intended to limit the disclosure. Any one of ordinary skill in the art can make any changes without departing from the spirit and scope of the disclosure. And the scope of protection of this disclosure is subject to the definition of the scope of the patent application.

Claims (16)

一種磁性材料,包括:一核心主體,其包含99wt%以上之Fe,以該核心主體的總重量為基準;一合金層,位於該核心主體的表面,包括FeM合金,其中M為Cr、Si、Al、Ti、Zr、或前述之組合;以及一混合層,位於該合金層的表面,包括M及M的氧化物。  A magnetic material comprising: a core body comprising 99% by weight or more of Fe, based on the total weight of the core body; an alloy layer on the surface of the core body, including FeM alloy, wherein M is Cr, Si, Al, Ti, Zr, or a combination thereof; and a mixed layer on the surface of the alloy layer, including oxides of M and M.   如申請專利範圍第1項所述之磁性材料,其中該Fe的氧化物包括:氧化亞鐵(FeO)、三氧化二鐵(Fe 2O 3)、四氧化三鐵(Fe 3O 4)、或前述之組合。 The magnetic material according to claim 1, wherein the Fe oxide comprises: ferrous oxide (FeO), ferric oxide (Fe 2 O 3 ), triiron tetroxide (Fe 3 O 4 ), Or a combination of the foregoing. 如申請專利範圍第1項所述之磁性材料,其中該磁性材料之粒徑為0.5~110μm。  The magnetic material according to claim 1, wherein the magnetic material has a particle diameter of 0.5 to 110 μm.   如申請專利範圍第1項所述之磁性材料,其中該合金層中M的含量為5~80wt%,以該FeM合金之總重量為基準。  The magnetic material according to claim 1, wherein the content of M in the alloy layer is 5 to 80% by weight based on the total weight of the FeM alloy.   如申請專利範圍第1項所述之磁性材料,其中該合金層的厚度為0.05~10μm。  The magnetic material according to claim 1, wherein the alloy layer has a thickness of 0.05 to 10 μm.   如申請專利範圍第1項所述之磁性材料,其中該混合層的厚度為0.05~10μm。  The magnetic material according to claim 1, wherein the mixed layer has a thickness of 0.05 to 10 μm.   一種磁性材料,包括:一核心主體,其包含99wt%以上之Fe,以該核心主體的總重量為基準;一第一鈍化層,位於該核心主體的表面,包括FeM合金的氧化物,其中M為Cr、Si、Al、Ti、Zr、或前述之組合;以及一第二鈍化層,位於該第一氧化層的表面,包括M的氧化 物。  A magnetic material comprising: a core body comprising 99 wt% or more of Fe, based on the total weight of the core body; a first passivation layer on the surface of the core body, comprising an oxide of a FeM alloy, wherein M Is a combination of Cr, Si, Al, Ti, Zr, or a combination thereof; and a second passivation layer on the surface of the first oxide layer, including an oxide of M.   如申請專利範圍第7項所述之磁性材料,其中該Fe的氧化物包括:氧化亞鐵(FeO)、三氧化二鐵(Fe 2O 3)、四氧化三鐵(Fe 3O 4)、或前述之組合。 The magnetic material according to claim 7, wherein the Fe oxide comprises: ferrous oxide (FeO), ferric oxide (Fe 2 O 3 ), triiron tetroxide (Fe 3 O 4 ), Or a combination of the foregoing. 如申請專利範圍第7項所述之磁性材料,其中該磁性材料之粒徑為0.5~110μm。  The magnetic material according to claim 7, wherein the magnetic material has a particle diameter of 0.5 to 110 μm.   如申請專利範圍第7項所述之磁性材料,其中該第一鈍化層中M的含量為5~80wt%,以該FeM合金的氧化物之總重量為基準。  The magnetic material according to claim 7, wherein the content of M in the first passivation layer is 5 to 80% by weight based on the total weight of the oxide of the FeM alloy.   如申請專利範圍第7項所述之磁性材料,其中該第一鈍化層的厚度為0.05~10μm。  The magnetic material according to claim 7, wherein the first passivation layer has a thickness of 0.05 to 10 μm.   如申請專利範圍第7項所述之磁性材料,其中該第二鈍化層的厚度為0.05~10μm。  The magnetic material according to claim 7, wherein the second passivation layer has a thickness of 0.05 to 10 μm.   一種磁性元件,包括一磁性材料與一金屬之一燒結物,其中該磁性材料包括如申請專利範圍第1~12項中任一項所述之磁性材料。  A magnetic element comprising a magnetic material and a sinter of a metal, wherein the magnetic material comprises the magnetic material of any one of claims 1 to 12.   如申請專利範圍第13項所述之磁性元件,其中該磁性元件包括:積層式電感器、繞線式電感器、或電磁干擾(Electromagnetic Interference;EMI)抑制元件。  The magnetic component of claim 13, wherein the magnetic component comprises: a laminated inductor, a wound inductor, or an electromagnetic interference (EMI) suppression component.   如申請專利範圍第13項所述之磁性元件,其中該金屬包括:銀、銅、或前述之合金。  The magnetic component of claim 13, wherein the metal comprises: silver, copper, or an alloy of the foregoing.   如申請專利範圍第13項所述之磁性元件,其中該燒結物中的該磁性材料為一粉體單體、該粉體單體的碎片、該粉體單體的聚集體、或前述之組合。  The magnetic component according to claim 13, wherein the magnetic material in the sintered body is a powder monomer, a fragment of the powder monomer, an aggregate of the powder monomer, or a combination thereof .  
TW105144144A 2016-12-30 2016-12-30 Magnetic material and magnetic component employing the same TWI630627B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW105144144A TWI630627B (en) 2016-12-30 2016-12-30 Magnetic material and magnetic component employing the same
JP2017148768A JP6429212B2 (en) 2016-12-30 2017-08-01 Magnetic material and magnetic component using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105144144A TWI630627B (en) 2016-12-30 2016-12-30 Magnetic material and magnetic component employing the same

Publications (2)

Publication Number Publication Date
TW201824304A true TW201824304A (en) 2018-07-01
TWI630627B TWI630627B (en) 2018-07-21

Family

ID=62844588

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105144144A TWI630627B (en) 2016-12-30 2016-12-30 Magnetic material and magnetic component employing the same

Country Status (2)

Country Link
JP (1) JP6429212B2 (en)
TW (1) TWI630627B (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007194273A (en) * 2006-01-17 2007-08-02 Jfe Steel Kk Dust core and soft magnetic metal powder therefor
JP2009088502A (en) * 2007-09-12 2009-04-23 Seiko Epson Corp Method of manufacturing oxide-coated soft magnetic powder, oxide-coated soft magnetic powder, dust core, and magnetic element
JP4802182B2 (en) * 2007-12-14 2011-10-26 Jfeスチール株式会社 Iron powder for dust cores
JP2009302165A (en) * 2008-06-11 2009-12-24 Tamura Seisakusho Co Ltd Dust core and manufacturing method thereof
KR101152042B1 (en) * 2009-12-25 2012-06-08 가부시키가이샤 다무라 세이사쿠쇼 Powder magnetic core and production method thereof
CN101996723B (en) * 2010-09-29 2012-07-25 清华大学 Composite soft magnetic powder core and preparation method thereof
JP6081051B2 (en) * 2011-01-20 2017-02-15 太陽誘電株式会社 Coil parts
JP6578083B2 (en) * 2013-11-12 2019-09-18 株式会社タムラ製作所 Low noise reactor, dust core and manufacturing method thereof
JP7015647B2 (en) * 2016-06-30 2022-02-03 太陽誘電株式会社 Magnetic materials and electronic components

Also Published As

Publication number Publication date
TWI630627B (en) 2018-07-21
JP6429212B2 (en) 2018-11-28
JP2018110210A (en) 2018-07-12

Similar Documents

Publication Publication Date Title
KR102091592B1 (en) Magnetic core and coil component using same
JP6561314B2 (en) Composite magnetic material, coil component using the same, and power supply device
KR102195949B1 (en) Magnetic core, coil component and magnetic core manufacturing method
WO2010082486A1 (en) Process for producing composite magnetic material, dust core formed from same, and process for producing dust core
US9275785B2 (en) Multilayered power inductor and method for preparing the same
JP6270509B2 (en) Multilayer coil parts
KR102048566B1 (en) Dust Core
TWI700321B (en) Composite magnetic material and coil component using same
CN106663513B (en) Magnetic core, the manufacturing method of magnetic core and coil component
US20150102888A1 (en) Multilayer electronic component
JPWO2010103709A1 (en) Powder magnetic core and magnetic element using the same
JP2013055315A (en) Multilayer inductor
JP6345146B2 (en) Coil parts
JP2008135674A (en) Soft magnetic alloy powder, compact, and inductance element
JP6493801B2 (en) Coil parts
US8890646B2 (en) Laminated-type electronic component
US9691529B2 (en) Composite magnetic material and method for manufacturing same
JP2011249628A (en) Method for producing electromagnetic interference suppression body
CN108269672B (en) Magnetic material and magnetic element comprising same
TWI630627B (en) Magnetic material and magnetic component employing the same
EP3605567B1 (en) Powder magnetic core with attached terminals and method for manufacturing the same
US20180190416A1 (en) Magnetic material and magnetic component employing the same
JP2006131462A (en) Method for manufacturing composite sintered magnetic material
JP5912278B2 (en) Electromagnetic interference suppressor
JP6407252B2 (en) Magnetic materials and devices