[實施發明之形態] [0015] 以下,就本發明之液晶配向劑詳細加以說明。 [0016] <聚醯胺酸> 本發明之液晶配向劑係含有四羧酸二酐與二胺的反應物之聚醯胺酸或其醯亞胺化聚合物的至少一種聚合物。 [四羧酸二酐] 本發明中的前述四羧酸二酐係以包含芳香族四羧酸二酐為特徵。於此,芳香族四羧酸二酐係指包含鍵結於芳香環的至少1個羧基,且4個羧基經分子內脫水而得到的酸二酐。 [0017] 作為芳香族四羧酸二酐,較佳為鍵結於相同或相異之芳香環的4個羧基經分子內脫水而得到的酸二酐。芳香環數較佳為1~4。此時,芳香環若為1個,較佳為鍵結於該芳香環的4個羧基經分子內脫水而得到的酸二酐。又,芳香環若為2個以上,則較佳為鍵結於其中一個芳香環的2個羧基經分子內脫水,同時鍵結於另一個芳香環的2個羧基經分子內脫水而得到的酸二酐。 [0018] 作為此種四羧酸二酐的具體例,可舉出 苯均四酸二酐、1,4-二氟-苯均四酸二酐、2,5-三氟甲基苯均四酸二酐、三氟甲基苯均四酸二酐、1,2,5,6-萘四羧酸二酐、1,4,5,8-萘四羧酸二酐、2,3,6,7-萘四羧酸二酐、1,2,5,6-蒽四羧酸二酐、2,3,6,7-蒽四羧酸二酐、2,3,3’,4’-聯苯四羧酸二酐、3,3’,4,4’-聯苯四羧酸二酐、3,3’,4,4’-二苯醚四羧酸二酐、3,3’,4,4’-二苯碸四羧酸二酐、3,3’,4,4’-二苯基甲烷四羧酸二酐、3,3’,4,4’-二苯甲酮四羧酸二酐、2,2-雙[4-(3,4-二羧基苯氧基)苯基]丙烷二酐、乙二醇二苯甲酸酯四羧酸二酐、苯-1,4-二基雙(1,3-側氧-1,3-二氫-2-苯并呋喃-5-羧酸酯)、1,1,1,3,3,3-六氟-2,2-雙(3,4-二羧基苯基)丙烷等。 其中,較佳為苯均四酸二酐、3,3’,4,4’-聯苯四羧酸二酐、3,3’,4,4’-二苯醚四羧酸二酐、3,3’,4,4’-二苯碸四羧酸二酐、3,3’,4,4’-二苯基甲烷四羧酸二酐、3,3’,4,4’-二苯甲酮四羧酸二酐。 [0019] 如上述之芳香族四羧酸二酐可為單獨1種或2種以上之組合。 [0020] 於本發明中,前述之四羧酸二酐可僅由芳香族四羧酸二酐所構成;惟,除芳香族四羧酸二酐外,亦可包含脂肪族四羧酸二酐或脂環族四羧酸二酐的至少一者。 [0021] 脂肪族四羧酸二酐係指鍵結於鏈狀烴結構的4個羧基經分子內脫水而得到的酸二酐。惟,無需僅以鏈狀烴結構所構成,亦可於其一部分具有脂環族結構或芳香環結構。 [0022] 脂環族四羧酸二酐係指包含鍵結於脂環族結構的至少1個羧基,且4個羧基經分子內脫水而得到的酸二酐。惟,此4個羧基並非全部鍵結於芳香環。又,無需僅以脂環族結構所構成,亦可於其一部分具有鏈狀烴結構或芳香環結構。 [0023] 作為此種四羧酸二酐的具體例,脂肪族四羧酸二酐可舉出例如1,2,3,4-丁烷四羧酸二酐。又,脂環族四羧酸二酐可舉出例如1,2,3,4-環丁烷四羧酸二酐、1,2,3,4-四甲基-1,2,3,4-環丁烷四羧酸二酐、1,2-二甲基-1,2,3,4-環丁烷四羧酸二酐、1,3-二甲基-1,2,3,4-環丁烷四羧酸二酐、1,3-二苯基-1,2,3,4-環丁烷四羧酸二酐、1,2,3,4-環戊烷四羧酸二酐、1,2,4,5-環己烷四羧酸二酐、1,2,3,4-環庚烷四羧酸二酐、2,3,4,5-四氫呋喃四羧酸二酐、3,4-二羧基-1-環己基琥珀酸二酐、2,3,5-三羧基環戊基乙酸二酐、3,4-二羧基-1,2,3,4-四氫-1-萘琥珀酸二酐、雙環[3,3,0]辛烷-2,4,6,8-四羧酸二酐、雙環[4,3,0]壬烷-2,4,7,9-四羧酸二酐、雙環[4,4,0]癸烷-2,4,7,9-四羧酸二酐、雙環[4,4,0]癸烷-2,4,8,10-四羧酸二酐、三環[6.3.0.0<2,6>]十一烷-3,5,9,11-四羧酸二酐、4-(2,5-二氧四氫呋喃-3-基)-1,2,3,4-四氫化萘-1,2-二羧酸二酐、雙環[2,2,2]辛-7-烯-2,3,5,6-四羧酸二酐、5-(2,5-二氧四氫呋喃基)-3-甲基-3-環己烷-1,2-二羧酸二酐、四環[6,2,1,1,0,2,7]十二-4,5,9,10-四羧酸二酐、3,5,6-三羧基降莰烷-2:3,5:6二羧酸二酐等。 [0024] 包含如上述之脂肪族或脂環族四羧酸二酐時,此等脂肪族或脂環族四羧酸二酐可為單獨1種或2種以上之組合。 [0025] 作為四羧酸二酐,包含脂肪族或脂環族四羧酸二酐而非僅為芳香族四羧酸二酐時,芳香族四羧酸二酐的比率,相對於四羧酸二酐的總量較佳為1~99莫耳%,更佳為10~90莫耳%,再更佳為20~80莫耳%。 [0026] [二胺] 本發明中的前述二胺係以包含下述式(1)所示之化合物(以下亦稱特定二胺)為特徵。此種特定二胺可為單獨1種或2種以上之組合。 [0027][0028] 上述式(1)中,R1
及R2
分別獨立地為單鍵、 -O-、-S-、-NR3
-、酯鍵、醯胺鍵、硫酯鍵、脲鍵、碳酸酯鍵、或胺基甲酸酯鍵,R3
為氫原子或甲基;A為碳數2~20之伸烷基,在此伸烷基之碳-碳鍵間的一處以上亦可插入 -O-。 [0029] 上述式(1)中,其中基於液晶配向性觀點,R1
及R2
較佳為單鍵、-O-、-S-、-NR12
-、酯鍵、醯胺鍵,特佳為-O-。又,基於液晶配向性觀點,A較佳為碳數2~10,更佳為碳數2~6。 又,亦可插入於A之伸烷基之碳-碳鍵結間的-O-的個數,係以比A的碳數少1個的情形為其上限,例如為0~6個,較佳為0~3個,更佳為0~1個。 [0030] 以下示出-R1
-A-R2
-之具體結構的一例,但不限定於此等。此外,下述所示結構中的「*」係表示與式(1)中具有胺基之伸苯基或具有胺基之伸聯苯基的鍵結,n為2~20之整數。較佳的是n為2~10,更佳為2~6。 [0031][0032] 其中,作為-R1
-A-R2
-之結構,更佳為以下所示結構: [0033][0034] 於本發明中,前述之二胺可僅由上述之特定二胺所構成;惟,除上述之特定二胺,亦可包含其他的二胺。 [0035] 作為上述特定二胺以外的二胺,可舉出例如下述所示脂肪族二胺、脂環族二胺、芳香族二胺、二胺基有機矽氧烷等。作為此等的具體例, 脂肪族二胺可舉出例如m-苯二甲基二胺、1,3-二胺基丙烷、1,4-二胺基丁烷、1,5-二胺基戊烷、1,6-二胺基己烷、1,7-二胺基庚烷、1,8-二胺基辛烷、1,9-二胺基壬烷、1,10-二胺基癸烷、1,11-二胺基十一烷、1,12-二胺基十二烷等; 脂環族二胺可舉出例如1,4-二胺基環己烷、雙(4-胺基環己基)甲烷、雙(4-胺基-3-甲基環己基)甲烷等; 芳香族二胺可舉出例如p-伸苯二胺、2,3,5,6-四甲基-p-伸苯二胺、2,5-二甲基-p-伸苯二胺、m-伸苯二胺、2,4-二甲基-m-伸苯二胺、2,5-二胺基甲苯、2,6-二胺基甲苯、2,5-二胺基酚、2,4-二胺基酚、3,5-二胺基酚、3,5-二胺基苄醇、2,4-二胺基苄醇、4,6-二胺基間苯二酚、4,4’-二胺基聯苯、3,3’-二甲基-4,4’-二胺基聯苯、3,3’-二甲氧基-4,4’-二胺基聯苯、3,3’-二羥基-4,4’-二胺基聯苯、3,3’-二羧基-4,4’-二胺基聯苯、3,3’-二氟-4,4’-聯苯、3,3’-三氟甲基-4,4’-二胺基聯苯、3,4’-二胺基聯苯、3,3’-二胺基聯苯、2,2’-二胺基聯苯、2,3’-二胺基聯苯、4,4’-二胺基二苯甲烷、3,3’-二胺基二苯甲烷、3,4’-二胺基二苯甲烷、2,2’-二胺基二苯甲烷、2,3’-二胺基二苯甲烷、4,4’-二胺基二苯醚、3,3’-二胺基二苯醚、3,4’-二胺基二苯醚、2,2’-二胺基二苯醚、2,3’-二胺基二苯醚、4,4’-磺醯基二苯胺、3,3’-磺醯基二苯胺、雙(4-胺基苯基)矽烷、雙(3-胺基苯基)矽烷、二甲基-雙(4-胺基苯基)矽烷、二甲基-雙(3-胺基苯基)矽烷、4,4’-硫代二苯胺、3,3’-硫代二苯胺、4,4’-二胺基二苯胺、3,3’-二胺基二苯胺、3,4’-二胺基二苯胺、2,2’-二胺基二苯胺、2,3’-二胺基二苯胺、N-甲基(4,4’-二胺基二苯基)胺、N-甲基(3,3’-二胺基二苯基)胺、N-甲基(3,4’-二胺基二苯基)胺、N-甲基(2,2’-二胺基二苯基)胺、N-甲基(2,3’-二胺基二苯基)胺、4,4’-二胺基二苯甲酮、3,3’-二胺基二苯甲酮、3,4’-二胺基二苯甲酮、1,4-二胺基萘、2,2’-二胺基二苯甲酮、2,3’-二胺基二苯甲酮、1,5-二胺基萘、1,6-二胺基萘、1,7-二胺基萘、1,8-二胺基萘、2,5-二胺基萘、2,6-二胺基萘、2,7-二胺基萘、2,8-二胺基萘、1,2-雙(4-胺基苯基)乙烷、1,2-雙(3-胺基苯基)乙烷、1,3-雙(4-胺基苯基)丙烷、1,3-雙(3-胺基苯基)丙烷、1,4-雙(4-胺基苯基)丁烷、1,4-雙(3-胺基苯基)丁烷、雙(3,5-二乙基-4-胺基苯基)甲烷、1,4-雙(4-胺基苯氧基)苯、1,3-雙(4-胺基苯氧基)苯、1,4-雙(4-胺基苯基)苯、1,3-雙(4-胺基苯基)苯、1,4-雙(4-胺基苯甲基)苯、1,3-雙(4-胺基苯氧基)苯、4,4’-〔1,4-伸苯基雙(伸甲基)〕二苯胺、4,4’-〔1,3-伸苯基雙(伸甲基)〕二苯胺、3,4’-〔1,4-伸苯基雙(伸甲基)〕二苯胺、3,4’-〔1,3-伸苯基雙(伸甲基)〕二苯胺、3,3’-〔1,4-伸苯基雙(伸甲基)〕二苯胺、3,3’-〔1,3-伸苯基雙(伸甲基)〕二苯胺、1,4-伸苯基雙〔(4-胺基苯基)甲酮〕、1,4-伸苯基雙〔(3-胺基苯基)甲酮〕、1,3-伸苯基雙〔(4-胺基苯基)甲酮〕、1,3-伸苯基雙〔(3-胺基苯基)甲酮〕、1,4-伸苯基雙(4-胺基苯甲酸酯)、1,4-伸苯基雙(3-胺基苯甲酸酯)、1,3-伸苯基雙(4-胺基苯甲酸酯)、1,3-伸苯基雙(3-胺基苯甲酸酯)、雙(4-胺基苯基)對苯二甲酸酯、雙(3-胺基苯基)對苯二甲酸酯、雙(4-胺基苯基)間苯二甲酸酯、雙(3-胺基苯基)間苯二甲酸酯、N,N’-(1,4-伸苯基)雙(4-胺基苯甲醯胺)、N,N’-(1,3-伸苯基)雙(4-胺基苯甲醯胺)、N,N’-(1,4-伸苯基)雙(3-胺基苯甲醯胺)、N,N’-(1,3-伸苯基)雙(3-胺基苯甲醯胺)、N,N’-雙(4-胺基苯基)對苯二甲醯胺、N,N’-雙(3-胺基苯基)對苯二甲醯胺、N,N’-雙(4-胺基苯基)間苯二甲醯胺、N,N’-雙(3-胺基苯基)間苯二甲醯胺、9,10-雙(4-胺基苯基)蒽、4,4’-雙(4-胺基苯氧基)二苯基碸、 2,2’-雙〔4-(4-胺基苯氧基)苯基〕丙烷、2,2’-雙〔4-(4-胺基苯氧基)苯基〕六氟丙烷、2,2’-雙(4-胺基苯基)六氟丙烷、2,2’-雙(3-胺基苯基)六氟丙烷、2,2’-雙(3-胺基-4-甲基苯基)六氟丙烷、2,2’-雙(4-胺基苯基)丙烷、2,2’-雙(3-胺基苯基)丙烷、2,2’-雙(3-胺基-4-甲基苯基)丙烷、3,5-二胺基安息香酸、2,5-二胺基安息香酸、雙(4-胺基苯氧基)甲烷、1,2-雙(4-胺基苯氧基)乙烷、1,3-雙(4-胺基苯氧基)丙烷、1,3-雙(3-胺基苯氧基)丙烷、1,4-雙(4-胺基苯氧基)丁烷、1,4-雙(3-胺基苯氧基)丁烷、1,5-雙(4-胺基苯氧基)戊烷、1,5-雙(3-胺基苯氧基)戊烷、1,6-雙(4-胺基苯氧基)己烷、1,6-雙(3-胺基苯氧基)己烷、1,7-雙(4-胺基苯氧基)庚烷、1,7-(3-胺基苯氧基)庚烷、1,8-雙(4-胺基苯氧基)辛烷、1,8-雙(3-胺基苯氧基)辛烷、1,9-雙(4-胺基苯氧基)壬烷、1,9-雙(3-胺基苯氧基)壬烷、1,10-雙(4-胺基苯氧基)癸烷、1,10-雙(3-胺基苯氧基)癸烷、1,11-雙(4-胺基苯氧基)十一烷、1,11-雙(3-胺基苯氧基)十一烷、1,12-雙(4-胺基苯氧基)十二烷、1,12-雙(3-胺基苯氧基)十二烷等; 二胺基有機矽氧烷可舉出例如1,3-雙(3-胺丙基)-四甲基二矽氧烷等。 [0036] 又,作為芳香族二胺,除如上述所列舉者以外,尚可舉出國際公開公報WO2016/125871之17頁段落[0051]~22頁段落[0065]所揭示的二胺。透過使用所述二胺,可提高液晶的預傾角。 [0037] 如上述之特定二胺以外的二胺可為單獨1種或2種以上之組合。 又,作為二胺,包含特定二胺以外的二胺而非僅為特定二胺時,特定二胺的比率,相對於二胺的總量較佳為1~99莫耳%,更佳為10~90莫耳%,再更佳為20~80莫耳%。 [0038] <醯亞胺化聚合物> 本發明中的醯亞胺化聚合物為前述之聚醯胺酸所含之醯胺酸結構經脫水閉環,形成醯亞胺環或異醯亞胺環的聚合物。本發明中的醯亞胺化聚合物可為前述之聚醯胺酸所含之醯胺酸結構全部經脫水閉環而成的完全醯亞胺化物,亦可為殘留有醯胺酸結構的部分醯亞胺化物。 [0039] 本發明之液晶配向劑係含有如上述之聚醯胺酸或其醯亞胺化聚合物的至少一種聚合物(以下亦稱特定聚合物)。 [0040] <特定二胺的合成方法> 以下針對本發明中的特定二胺的主要合成法詳細加以敘述。此外,以下所說明的方法僅為一例,不限定於此。 本發明中的特定二胺可如下述反應式所示,藉由將二硝基化合物還原,將硝基轉換成胺基而得。此外,下述反應式係以實施例中所記載的二胺化合物為一例而記載。 [0041][0042] 將二硝基化合物還原的方法不特別限制,可例示使用鈀-碳、氧化鉑、雷氏鎳、鉑黑、銠-氧化鋁、硫化鉑碳等作為觸媒,在乙酸乙酯、甲苯、四氫呋喃、二噁烷、醇系等溶媒中,藉由氫氣、肼、氯化氫等來進行還原的方法。亦可視需求使用高壓釜等在加壓下進行。另一方面,供取代苯環或飽和烴部分的氫原子之取代基的結構包含不飽和鍵部位時,使用鈀碳或鉑碳等的話則有此不飽和鍵部位被還原而形成飽和鍵之虞,因此,較佳為使用還原鐵或錫、氯化錫等的過渡金屬作為觸媒的還原條件。 在二硝基化合物的合成中,係如下述反應式所示,藉由使市售之聯苯衍生物與經鹵素等離去基X取代的硝基苯反應,可獲得該二硝基化合物。作為較佳之離去基X,可舉出氟原子、氯原子、溴原子、碘原子、甲苯磺醯基 (-OTs)、甲磺醯基(-OMs)等。 [0043][0044] 上述反應可於鹼存在下進行。使用的鹼,只要可合成出來則不特別限定,可舉出碳酸鉀、碳酸鈉、碳酸銫、烷氧化鈉、烷氧化鉀、氫氧化鈉、氫氧化鉀、氫化鈉等的無機鹼、吡啶、二甲胺吡啶、三甲胺、三乙胺、三丁胺等的有機鹼等。又,視情況而定併用如二亞苄基丙酮鈀或二苯基膦二茂鐵鈀之類的鈀觸媒或銅觸媒等,則可提升產率。基於合成難易度觀點,較佳為使用碳酸鉀的方法,惟除此方法以外亦可加以合成,故合成法不特別限定。 <聚醯胺酸的合成方法> 以下針對本發明中的特定聚合物之聚醯胺酸的主要合成法詳細加以敘述。此外,以下所說明的方法僅為一個例,不限定於此。 本發明中的特定聚合物之聚醯胺酸可藉由使包含芳香族四羧酸二酐的四羧酸二酐、與包含上述式(1)所示之化合物的二胺反應而得。供予聚醯胺酸的合成反應之四羧酸二酐與二胺的使用比例,相對於二胺之胺基1當量,較佳為四羧酸二酐之酸酐基達0.5~1.5當量的比例,更佳為達0.8~1.2當量的比例。 [0045] 聚醯胺酸的合成反應較佳在有機溶媒中進行。此時的反應溫度較佳為-20℃~150℃,更佳為0~100℃。又,反應時間較佳為0.1~24小時,更佳為0.5~12小時。 [0046] 於此,就有機溶媒而言不特別限定,若要特意示出其具體例,則可舉出N-甲基-2-吡咯啶酮、N,N-二甲基乙醯胺、N,N-二甲基甲醯胺、二甲基亞碸、γ-丁內酯、四甲基尿素、六甲基磷三醯胺等的非質子性極性溶媒。 [0047] 有機溶媒的用量(a),較佳取如四羧酸二酐及二胺的合計量(b)相對於反應溶液的總量(a+b)達0.1~50重量%的量。 [0048] 如以上方式,可得溶解聚醯胺酸而成的反應溶液。此反應溶液可直接供予液晶配向劑的調製,亦可分離出反應溶液中所含的聚醯胺酸後供予液晶配向劑的調製,或者可將分離出來的聚醯胺酸純化後供予液晶配向劑的調製。要使聚醯胺酸進行脫水閉環而形成聚醯亞胺時,可將上述反應溶液直接供予脫水閉環反應,亦可分離出反應溶液中所含的聚醯胺酸後供予脫水閉環反應,或者可將分離出來的聚醯胺酸純化後供予脫水閉環反應。聚醯胺酸的分離及純化可依循周知之方法來進行。 [0049] <醯亞胺化聚合物的合成方法> 以下針對本發明中的特定聚合物之醯亞胺化聚合物的主要合成法詳細加以敘述。此外,以下所說明的方法僅為一例,不限定於此。 [0050] 本發明中的特定聚合物之醯亞胺化聚合物可藉由使如前述方式合成的聚醯胺酸脫水閉環並進行醯亞胺化而得。 聚醯胺酸的脫水閉環較佳為藉由將聚醯胺酸加熱之方法,或藉由將聚醯胺酸溶解於有機溶媒,對此溶液中添加脫水劑及脫水閉環觸媒並視需求進行加熱的方法來進行。其中,較佳藉由後者之方法。 [0051] 在對上述聚醯胺酸的溶液中添加脫水劑及脫水閉環觸媒的方法中,作為脫水劑,可使用例如乙酸酐、丙酸酐、三氟乙酸酐等的酸酐。脫水劑的用量,相對於聚醯胺酸之醯胺酸結構的1莫耳較佳取0.01~20莫耳。作為脫水閉環觸媒,可使用例如吡啶、三甲基吡啶、二甲基吡啶、三乙胺等的三級胺。脫水閉環觸媒的用量,相對於使用之脫水劑1莫耳較佳取0.01~10莫耳。作為脫水閉環反應所使用的有機溶媒,可舉出列示作為用於聚醯胺酸的合成者之有機溶媒。脫水閉環反應的反應溫度較佳為0~180℃,更佳為10~150℃。反應時間較佳為1.0~120小時,更佳為2.0~30小時。 [0052] 如此可得含有醯亞胺化聚合物的反應溶液。此反應溶液可將其直接供予液晶配向劑的調製,可由反應溶液中去除脫水劑及脫水閉環觸媒後供予液晶配向劑的調製,亦可分離出聚醯亞胺後供予液晶配向劑的調製,或者可將分離出來的醯亞胺化聚合物純化後供予液晶配向劑的調製。此等純化操作可依循周知之方法來進行。 [0053] <液晶配向劑> 本發明之液晶配向劑係含有如上述之特定聚合物作為必需成分,惟亦可視需求含有其他的成分。作為所述其他的成分,可舉出例如特定聚合物以外的聚合物(亦稱其他的聚合物)、交聯劑、密接助劑、有機溶媒等。 [0054] [其他的聚合物] 特定聚合物以外的聚合物能以對本發明之液晶配向劑或由其所得之液晶配向膜賦予液晶配向膜之電特性、膜強度、液晶配向劑之溶液特性等各種特性為目的,而使其含於液晶配向劑中。 作為特定聚合物以外的聚合物,除例如不含芳香族四羧酸二酐之四羧酸二酐與包含特定二胺之二胺的反應物之聚醯胺酸、使該聚醯胺酸脫水閉環而成的聚醯亞胺、不含特定二胺之二胺與四羧酸二酐的反應物之聚醯胺酸、使該聚醯胺酸脫水閉環而成的聚醯亞胺等以外,尚可舉出聚醯胺酸酯、聚酯、聚醯胺、聚矽氧烷、纖維素衍生物、聚縮醛、聚苯乙烯衍生物、聚(苯乙烯-苯基馬來醯亞胺)衍生物、聚(甲基)丙烯酸酯等。 此外,本發明之液晶配向劑中含有特定聚合物與其他的聚合物時,特定聚合物的摻混比率,相對於液晶配向劑中的總聚合物量較佳取5質量%以上,例如為5~95質量%,更佳為10~90質量%,再更佳為20~80質量%。 [0055] [交聯劑] 交聯劑能以對由本發明之液晶配向劑所得之液晶配向膜賦予液晶配向膜之電特性、膜強度、與密封材之接著性等各種特性為目的,而使其含於液晶配向劑中。 作為交聯劑,可舉出1分子中具有2個以上之選自由環氧基、異氰酸酯基、環氧丙烷基、環碳酸酯基、羥基、羥烷基及低級烷氧烷基所成群組的至少1種取代基之交聯性化合物、或1分子中具有2個以上之聚合性不飽和鍵之交聯性化合物等。作為其具體例,可舉出國際公開公報WO2014/092126之44頁~54頁所登載的段落[0192]~[0232]所示之交聯劑。 此外,以下示出特佳之交聯劑的實例,惟本發明不限定於此等。 [0056][0057][0058] 此外,本發明之液晶配向劑中含有交聯劑時,就其含量,相對於液晶配向劑中所有的聚合物成分100質量份,較佳為0.1~100質量份,更佳為0.1~50質量份,再更佳為1~20質量份。 [0059] [密接助劑] 密接助劑能以除提升液晶配向膜與基板之密接性外,亦對由本發明之液晶配向劑所得之液晶配向膜賦予各種特性為目的,而使其含於液晶配向劑中。 作為密接助劑,可舉出例如官能性矽烷化合物。作為官能性矽烷化合物的具體例,可舉出3-胺丙基三甲氧基矽烷、3-胺丙基三乙氧基矽烷、2-胺丙基三甲氧基矽烷、2-胺丙基三乙氧基矽烷、3-胺丙基二乙氧基甲基矽烷、N-(2-胺基乙基)-3-胺丙基三甲氧基矽烷、N-(2-胺基乙基)-3-胺丙基甲基二甲氧基矽烷、3-脲丙基三甲氧基矽烷、3-脲丙基三乙氧基矽烷、N-乙氧基羰基-3-胺丙基三甲氧基矽烷、N-乙氧基羰基-3-胺丙基三乙氧基矽烷、N-三乙氧基矽丙基三伸乙基三胺、N-三甲氧基矽丙基三伸乙基三胺、10-三甲氧基矽烷基-1,4,7-三氮雜癸烷、10-三乙氧基矽烷基-1,4,7-三氮雜癸烷、9-三甲氧基矽烷基-3,6-二氮雜壬基乙酸酯(重複)、9-三乙氧基矽烷基-3,6-二氮雜壬基乙酸酯、9-三甲氧基矽烷基-3,6-二氮雜壬酸甲酯、9-三乙氧基矽烷基-3,6-二氮雜壬酸甲酯、N-苯甲基-3-胺丙基三甲氧基矽烷、N-苯甲基-3-胺丙基三乙氧基矽烷、N-苯基-3-胺丙基三甲氧基矽烷、N-苯基-3-胺丙基三乙氧基矽烷、環氧丙氧基甲基三甲氧基矽烷、環氧丙氧基甲基三乙氧基矽烷、2-環氧丙氧基乙基三甲氧基矽烷、2-環氧丙氧基乙基三乙氧基矽烷、3-環氧丙氧基丙基三甲氧基矽烷、3-環氧丙氧基丙基三乙氧基矽烷、3-環氧丙氧基丙基二乙氧基甲基矽烷等。 此外,當本發明之液晶配向劑中含有密接助劑時,就其含量,相對於聚合物的合計100質量份較佳為0.01~20質量份,更佳為0.1~10質量份。 [0060] [有機溶媒] 有機溶媒能以使均勻的塗膜形成於基板上為目的,而使其含於液晶配向劑中。 就有機溶媒而言,作為主要用來溶解聚合物成分的有機溶媒,可舉出例如N-甲基-2-吡咯啶酮、N-乙基-2-吡咯啶酮、N-丙基-2-吡咯啶酮、N-異丙基-2-吡咯啶酮、N-丁基-2-吡咯啶酮、N-異丁基-2-吡咯啶酮、N-(三級丁基)-2-吡咯啶酮、N-戊基-2-吡咯啶酮、γ-丁內酯、γ-戊內酯、σ-戊內酯、ε-己內酯、2-吡咯啶酮、N,N-二甲基甲醯胺、N,N-二甲基乙醯胺、3-甲氧基-N,N-二甲基丙醯胺、3-丁氧基-N,N-二甲基丙醯胺、N,N,2-三甲基丙醯胺、1,3-二甲基-1-咪唑啉酮等。此等有機溶媒可混合2種以上。 上述有機溶媒當中,較佳為N-甲基-2-吡咯啶酮、N-乙基-2-吡咯啶酮、γ-丁內酯、1,3-二甲基-1-咪唑啉酮。 [0061] 再者,作為為了調整溶媒的蒸發速度或溶液的表面張力,使液晶配向劑的塗佈性及塗膜的表面平滑性或尺寸精度等提升而混合的有機溶媒,可舉出例如乙醇、異丙醇、1-丁醇、2-丁醇、異丁醇、三級丁醇、1-戊醇、2-戊醇、3-戊醇、2-甲基-1-丁醇、異戊醇、三級戊醇、3-甲基-2-丁醇、新戊醇、2-乙基-1-丁醇、1-己醇、2-甲基-1-戊醇、2-甲基-2-戊醇、2-甲基-2-己醇、1-庚醇、2-庚醇、3-庚醇、1-辛醇、2-辛醇、2-乙基-1-己醇、環己醇、1-甲基環己醇、2-甲基環己醇、3-甲基環己醇、2,6-二甲基-4-庚醇、1,2-乙二醇、1,2-丙二醇、1,3-丙二醇、1,2-丁二醇、1,3-丁二醇、1,4-丁二醇、2,3-丁二醇、1,5-戊二醇、2-甲基-2,4-戊二醇、2-乙基-1,3-己二醇、二乙二醇、二丙二醇、三乙二醇、二異丙醚、二丙醚、二丁醚、二己醚、二噁烷、乙二醇單甲醚、乙二醇單乙醚、乙二醇單丙醚、乙二醇單丁醚、乙二醇單異戊醚、乙二醇單己醚、乙二醇二甲醚、乙二醇二乙醚、乙二醇二丁醚、2-(甲氧甲氧基)乙醇、2-(己氧基)乙醇、二乙二醇單甲醚、二乙二醇單乙醚、二乙二醇單丙醚、二乙二醇單丁醚、二乙二醇二甲醚、二乙二醇二乙醚、二乙二醇甲基乙基醚、二乙二醇丙基甲基醚、二乙二醇丁基甲基醚、二乙二醇二丁醚、三乙二醇單甲醚、三乙二醇單乙醚、1-甲氧基-2-丙醇、1-乙氧基-2-丙醇、1-丙氧基-2-丙醇、1-丁氧基-2-丙醇、丙二醇單甲醚、丙二醇單乙醚、丙二醇單丙醚、丙二醇單丁醚、二丙二醇單甲醚、二丙二醇單乙醚、二丙二醇二甲醚、三丙二醇單甲醚、1-(丁氧乙氧基)丙醇、2-戊酮、3-戊酮、2-己酮、2-庚酮、4-庚酮、2,6-二甲基-4-庚酮、4,6-二甲基-2-庚酮、4-羥基-4-甲基-2-戊酮、4-甲氧基-4-甲基-2-戊酮、4-羥基-2-丁酮、碳酸伸乙酯、碳酸伸丙酯、乙酸甲酯、乙酸乙酯、乙酸丁酯、1-甲基戊基乙酸酯、2-乙基丁基乙酸酯、2-乙基己基乙酸酯、3-乙氧基丁基乙酸酯、乙二醇單乙酸酯、乙二醇二乙酸酯、乙二醇單甲醚乙酸酯、乙二醇單乙醚乙酸酯、乙二醇單丁醚乙酸酯、丙二醇單甲醚乙酸酯、二乙二醇乙酸酯、二乙二醇單乙醚乙酸酯、二乙二醇單丁醚乙酸酯、2-(2-乙氧乙氧基)乙基乙酸酯、3-甲氧基丙酸、3-甲氧基丙酸甲酯、3-甲氧基丙酸乙酯、3-甲氧基丙酸丙酯、3-甲氧基丙酸丁酯、3-乙氧基丙酸乙酯、3-乙氧基丙酸、3-乙氧基丙酸甲酯、3-乙氧基丙酸乙酯、丙酮酸甲酯、丙酮酸乙酯、乳酸甲酯、乳酸乙酯、乳酸丙酯、乳酸丁酯、乳酸異戊酯等。此等有機溶媒可混合2種以上。 [0062] 此等有機溶媒,除前述之有機溶媒(主要用以使聚合物成分溶解的有機溶媒)外,可取1種或混合2種以上。 上述有機溶媒當中,較佳為乙二醇單丁醚、丙二醇單丁醚、4-羥基-4-甲基-2-戊酮、二乙二醇二乙醚、二異丙醚、2,6-二甲基-4-庚醇、二丙二醇二甲醚。 [0063] 作為有機溶媒之較佳組合,可舉出N-甲基-2-吡咯啶酮與乙二醇單丁醚;N-乙基-2-吡咯啶酮與乙二醇單丁醚;N-甲基-2-吡咯啶酮與γ-丁內酯與乙二醇單丁醚;N-甲基-2-吡咯啶酮與γ-丁內酯與丙二醇單丁醚;N-乙基-2-吡咯啶酮與丙二醇單丁醚;N-甲基-2-吡咯啶酮與γ-丁內酯與4-羥基-4-甲基-2-戊酮與二乙二醇二乙醚;N-甲基-2-吡咯啶酮與γ-丁內酯與丙二醇單丁醚與二異丙醚;N-甲基-2-吡咯啶酮與γ-丁內酯與丙二醇單丁醚與2,6-二甲基-4-庚醇;N-甲基-2-吡咯啶酮與γ-丁內酯與二丙二醇二甲醚等。 [0064] 此外,當本發明之液晶配向劑中含有有機溶媒時,其含量可依據液晶配向劑的塗佈裝置、塗佈條件、塗佈環境、液晶配向劑的黏度等適宜選擇。例如以旋轉塗佈法、轉印印刷法、噴墨塗佈法等進行塗佈時,有機溶媒在液晶配向劑中所占的量較佳為90~99質量%,以固含量濃度(在液晶配向劑中,有機溶媒以外的成分所占的比例)計較佳為1~10質量%。 若示出進一步之實例,例如採旋轉塗佈法時特佳為固含量濃度1.5~4.5重量%的範圍。採轉印印刷法時,特佳將固含量濃度取3~9重量%的範圍,且將溶液黏度取12~50mPa・s的範圍。採噴墨塗佈法時,特佳將固含量濃度取1~5重量%的範圍,且將溶液黏度取3~15mPa・s的範圍。此外,溶液的黏度亦可根據液晶配向劑所含有之聚合物的分子量來調整。又,固含量濃度可依據有機溶媒的揮發性或欲獲得之液晶配向膜的厚度等而更細微地調整。 [0065] 本發明之液晶配向劑,除如以上之成分外,亦可添加供促進聚醯胺酸的醯亞胺化之醯亞胺化促進劑、或用來調整液晶配向膜的介電率或電阻之介電體或導電物質等。 [0066] <液晶配向膜> 本發明之液晶配向膜為由上述之液晶配向劑獲得者。若要舉出由液晶配向劑獲得液晶配向膜之方法的一例,則可舉出對將溶液形態之液晶配向劑塗佈於基板,並進行乾燥、燒結而得到的膜以摩擦處理法或光配向處理法實施配向處理的方法。 [0067] 作為供塗佈液晶配向劑的基板,只要是透明性高的基板則不特別限定,除玻璃基板、氮化矽基板外,亦可使用聚醯亞胺基板、丙烯酸基板、聚碳酸酯基板等的塑膠基板等。此時,若使用形成有用來驅動液晶的ITO電極等的基板,則由製程的簡化而言係較佳。又,在反射型液晶顯示元件中,只要是僅於單側之基板,則矽晶圓等的不透明物質亦可使用,此時的電極亦可使用鋁等可反射光的材料。 [0068] 液晶配向劑的塗佈方法不特別限定,工業上一般係採用網版印刷、平版印刷、柔版印刷、噴墨法等。作為其他的塗佈方法,有浸漬法、輥塗法、狹縫塗佈法、旋塗器法、噴塗法等,亦可視目的而定使用此等方法。 [0069] 將液晶配向劑塗佈於基板上後,藉由加熱板、熱循環型烘箱、IR(紅外線)型烘箱等的加熱手段使溶媒蒸發,並進行燒結。塗佈液晶配向劑後的乾燥、燒結步驟可選擇任意的溫度與時間。一般而言,為了充分去除所含之溶媒,可舉出在50~120℃進行1~10分鐘燒結,其後在150~300℃進行5~120分燒結之條件。 燒結後之液晶配向膜的厚度不特別限定,過薄的話則液晶顯示元件的可靠性會降低,因此,較佳為5~300nm,更佳為10~200nm。 [0070] <液晶顯示元件> 本發明之液晶顯示元件係製得附有由上述液晶配向劑獲得之液晶配向膜的基板後,依已知方法製作液晶胞,並使用該液晶胞作成元件者。 [0071] 作為液晶胞之製作方法的一例,茲以被動矩陣結構之液晶顯示元件為例加以說明。此外,亦可為在構成影像顯示之各畫素部分設有TFT(Thin Film Transistor)等開關元件的主動矩陣結構之液晶顯示元件。 具體而言,係準備透明的玻璃製基板,在其中一基板上設置共用電極、在另一基板上設置節段電極。此等電極可採用例如ITO電極,並經過圖型化以使其可達到所期望的影像顯示。其次,在各基板上,以被覆於共用電極與節段電極的方式設置絕緣膜。絕緣膜可採用例如由藉由溶膠-凝膠法所形成之SiO2
-TiO2
所構成的膜。接著,以如前述之條件,在各基板上形成液晶配向膜。 [0072] 其次,在形成有液晶配向膜之2片基板中的其中一基板上的既定處配置例如紫外線硬化性之密封材,並進一步在液晶配向膜面上之既定的數個部位配置液晶後,以液晶配向膜相對向的方式貼合另一基板並予以壓接而將液晶朝液晶配向膜前表面壓開後,對基板的整面照射紫外線將密封材硬化而得到液晶胞。 或者,作為在基板上形成液晶配向膜後的步驟,係在其中一基板上的既定處配置密封材時,預先設置可由外部填充液晶的開口部,並在未配置液晶下貼合基板後,透過設於密封材的開口部向液晶胞內注入液晶材料,接著將此開口部以接著劑密封而得到液晶胞。液晶材料的注入可採用真空注入法,亦可採用在大氣中利用毛細現象的方法。 就上述任一種方法,為了確保在液晶胞內填充液晶材料的空間,較佳採取:在其中一基板上設置柱狀的突起;在其中一基板上散佈間隔物;對密封材混入間隔物;或組合此等而成等的手段。 [0073] 作為上述之液晶材料,可舉出向列型液晶及矩列型液晶,其中較佳為向列型液晶,亦可採用正型液晶材料或負型液晶材料任一種。其次,進行偏光板的設置。具體而言,較佳對與2片基板之液晶層相反之一側的面黏貼一對偏光板。 [0074] 此外,本發明之液晶配向膜及液晶顯示元件,只要是使用本發明之液晶配向劑則不限定於上述之記載,亦可為以其他周知之手法所作成者。由液晶配向劑獲得液晶顯示元件前的步驟,在例如日本特開2015-135393(日本專利公開公報)之17頁[0074]~19頁[0081]等的其他諸多文獻亦有揭示。 [0075] 以上已就使用本發明之液晶配向膜的液晶顯示元件加以敘述,惟本發明之液晶配向膜非僅作為液晶顯示元件用之液晶配向膜,亦可使用於使用聚合性液晶的相位差薄膜用之液晶配向膜、或液晶天線用之液晶配向膜等。 [實施例] [0076] 以下舉出實施例,對本發明更詳細地加以說明,惟本發明不限定於此等。 本實施例及比較例中所使用之化合物的縮寫、及特性評定方法如下: [0077] NMP:N-甲基-2-吡咯啶酮 BCS:丁基溶纖劑 GBL:γ-丁內酯 [0078][0079] [二胺DA-1的合成方法] 本實施例中使用之二胺DA-1係按照以下所示2步驟路徑來合成。 [0080] 第1步驟:4-硝基‐4’‐(2-(4-硝基苯氧基)乙氧基)-1,1’-聯苯(DA-1-1)的合成 [0081][0082] 將4-羥基‐4’-硝基聯苯(10.0g、46.5mmol)溶解於DMF(40.0g),添加碳酸鉀(17.2g、69.7mmol),於80℃滴下β‐溴‐4-硝基苯乙醚(17.2g、69.7mmol)的DMF溶液(40.0g)。 直接於80℃攪拌2小時,以高效液相層析儀(以下簡稱為HPLC)確認原料的消失。其後,將反應液放置冷卻至室溫,加水(500.0g)將析出物過濾,並以水(100.0g)洗淨2次。所得過濾物係經MeOH(500.0g)洗淨2次。過濾析出物,並於50℃進行減壓乾燥,而得到4-硝基‐4’‐(2-(4-硝基苯氧基)乙氧基)-1,1’-聯苯(白色粉末,產量:17.6g,產率:99%)。1
H NMR (DMSO- d6
):δ 8.22-8.29 (m, 4H, C6
H4
), 7.94 (d,J
= 7.2 Hz, 2H, C6
H4
), 7.79 (d,J
= 8.8 Hz, 2H, C6
H4
), 7.25-7.15 (m, 4H, C6
H4
)4.54-4.45 (m, 4H, CH2
)。13
C{1
H} NMR (DMSO- d6
):δ 164.1, 159.6, 146.6, 146.5, 141.4, 130.7, 129.1, 127.5, 126.4, 124.5, 115.7, 115.6, 67.8, 66.7(each s)。 熔點(DSC):193℃ [0083] 第2步驟:4’‐(2-(4-胺基苯氧基)乙氧基)-[1,1’-聯苯]-4-胺(DA-1)的合成[0084] 將4-硝基‐4’‐(2-(4-硝基苯氧基)乙氧基)-1,1’-聯苯(5.0g、13.1mmol)溶解於四氫呋喃(100.0g),添加5%鈀-碳(0.1g),於氫氣環境下、室溫下攪拌2小時。以HPLC確認原料的消失,予以溶解於四氫呋喃(800.0g),藉由過濾去除觸媒,並濃縮濾液。將其以庚烷(200.0g)洗淨,過濾析出之固體,加以乾燥而得到DA-1(白色粉末,產量:4.0g,產率:94%)。1
H NMR (DMSO- d6
):δ 7.45 (d,J
= 8.8 Hz, 2H, C6
H4
), 7.29 (d,J
= 8.8 Hz, 2H, C6
H4
), 6.97 (d,J
= 8.8 Hz, 2H, C6
H4
), 6.70 (d,J
= 8.8 Hz, 2H, C6
H4
), 6.62 (d,J
= 8.8 Hz, 2H, C6
H4
), 6.52 (d,J
= 8.8 Hz, 2H, C6
H4
), 5.14 (s, 2H, NH2
), 4.64 (s, 2H, NH2
), 4.24 (br, 2H, CH2
), 4.16 (br, 2H, CH2
)。13
C{1
H} NMR (DMSO- d6
):δ 157.2, 150.0, 148.2, 143.1, 133.9, 127.7, 126.2, 116.3, 115.9, 115.5, 115.0, 114.4, 67.2, 66.9 (each s)。 熔點(DSC):156℃ [0085] [黏度測定] 於合成例或比較合成例中,聚醯胺酸溶液的黏度係使用E型黏度計TVE-22H(東機產業公司製),以試樣量1.1mL、錐形轉子TE-1(1°34’、R24)來測定。 [0086] [合成例1] 對附有攪拌裝置及附有氮氣導入管的50ml四頸燒瓶加入DA-1(3.20g,10mmol)後,添加NMP30.0g,一面吹送氮氣一面加以攪拌使其溶解。一面攪拌此二胺溶液一面添加CA-1(2.07g,9.5mmol),再添加7.7g的NMP後,進一步在50℃條件下攪拌12小時而得到聚醯胺酸溶液(PAA-1)。此聚醯胺酸溶液在25℃下的黏度為270mPa・s。 [0087] [合成例2] 對附有攪拌裝置及附有氮氣導入管的50ml四頸燒瓶加入DA-1(3.20g,10mmol)後,添加NMP30.0g,一面吹送氮氣一面加以攪拌使其溶解。一面攪拌此二胺溶液一面添加CA-1(0.87g,4.0mmol),添加CA-2(1.08g,5.5mmol),再添加7.6g的NMP後,進一步在50℃條件下攪拌12小時而得到聚醯胺酸溶液(PAA-2)。此聚醯胺酸溶液在25℃下的黏度為245mPa・s。 [0088] [合成例3] 對附有攪拌裝置及附有氮氣導入管的100ml四頸燒瓶加入DA-2(3.19g,16.0mmol)、DA-3(0.79g、4.0mmol)後,添加NMP58.8g,一面吹送氮氣一面加以攪拌使其溶解。一面攪拌此二胺溶液一面添加CA-3(1.20g,4.0mmol),添加CA-2(2.98g,15.2mmol)後,再添加14.7g的NMP後,進一步在室溫條件下攪拌12小時而得到聚醯胺酸溶液(PAA-3)。此聚醯胺酸溶液在25℃下的黏度為153mPa・s。 [0089] [合成例4] 分取合成例1中所得之聚醯胺酸溶液(PAA-1)11.3g,一面攪拌一面添加9.9g的NMP、7.5g的BCS、包含1重量%之3-胺丙基三乙氧基矽烷的NMP溶液1.4g,進一步在室溫下攪拌2小時而得到液晶配向劑(Q-1)。 [0090] [合成例5] 分取合成例2中所得之聚醯胺酸溶液(PAA-2)11.3g,一面攪拌一面添加9.9g的NMP、7.5g的BCS、包含1重量%之3-胺丙基三乙氧基矽烷的NMP溶液1.4g,進一步在室溫下攪拌2小時而得到液晶配向劑(Q-2)。 [0091] [合成例6] 分取合成例1中所得之聚醯胺酸溶液(PAA-1)3.8g,對其添加合成例3中所得之聚醯胺酸溶液(PAA-3)14.7g,一面攪拌一面添加16.9g的NMP、12.5g的BCS、包含1重量%之3-胺丙基三乙氧基矽烷的NMP溶液1.9g,進一步在室溫下攪拌2小時而得到液晶配向劑(Q-3)。 [0092] [比較合成例1] 對附有攪拌裝置及附有氮氣導入管的50ml四頸燒瓶加入DA-3(1.98g,10.0mmol)後,添加NMP23.1g,一面吹送氮氣一面加以攪拌使其溶解。一面攪拌此二胺溶液一面添加CA-1(0.87g,4.0mmol),添加CA-2(1.08g,5.5mmol),再添加5.7g的NMP後,進一步在50℃條件下攪拌12小時而得到聚醯胺酸溶液(PAA-4)。此聚醯胺酸溶液在25℃下的黏度為260mPa・s。 [0093] [比較合成例2] 對附有攪拌裝置及附有氮氣導入管的50ml四頸燒瓶加入DA-4(2.44g,10.0mmol)後,添加NMP27.4g,一面吹送氮氣一面加以攪拌使其溶解。一面攪拌此二胺溶液一面添加CA-1(2.12g,9.7mmol),再添加6.7g的NMP後,進一步在50℃條件下攪拌18小時而得到聚醯胺酸溶液(PAA-5)。此聚醯胺酸溶液在25℃下的黏度為320mPa・s。 [0094] [比較合成例3] 分取比較合成例1中所得之聚醯胺酸溶液(PAA-4)11.3g,一面攪拌一面添加9.9g的NMP、7.5g的BCS、包含1重量%之3-胺丙基三乙氧基矽烷的NMP溶液1.4g,進一步在室溫下攪拌2小時而得到液晶配向劑(Q-4)。 [0095] [比較合成例4] 分取比較合成例2中所得之聚醯胺酸溶液(PAA-5)3.8g,對其添加合成例3中所得之聚醯胺酸溶液(PAA-3)14.7g,一面攪拌一面添加16.9g的NMP、12.5g的BCS、包含1重量%之3-胺丙基三乙氧基矽烷的NMP溶液1.9g,進一步在室溫下攪拌2小時而得到液晶配向劑(Q-5)。 [0096] <液晶顯示元件的製作> 起初準備附有電極之基板。基板係30mm×35mm的大小,厚度為0.7mm的玻璃基板。於基板上形成有作為第1層而構成對向電極之具備固體狀之圖型的IZO電極。於第1層之對向電極上形成有作為第2層之藉由CVD法所形成的SiN(氮化矽)膜。第2層之SiN膜的膜厚為500nm,係發揮作為層間絕緣膜之機能。於第2層之SiN膜上,配置有作為第3層之將IZO膜圖型化而形成的梳齒狀之畫素電極,係形成第1畫素及第2畫素此2個畫素。各畫素的大小係長10mm、寬約5mm。此時,第1層之對向電極與第3層之畫素電極係藉由第2層之SiN膜的作用而呈電性絕緣。 [0097] 第3層之畫素電極係與日本特開2014-77845號公報(日本專利公開公報)所記載的圖同樣地具有排列多個中央部分彎曲之ㄑ字形電極要素而構成的梳齒狀之形狀。各電極要素之短邊方向的寬度為3μm,電極要素間的間隔為6μm。形成各畫素之畫素電極,由於係排列多個中央部分彎曲之ㄑ字形電極要素而構成,因此,各畫素的形狀非為長方形,而是具備與電極要素同樣地在中央部分彎曲之類似粗體的ㄑ字之形狀。而且,各畫素係以其中央的彎曲部分為界分成上下側,具有彎曲部分之上側的第1區域與下側的第2區域。 [0098] 若比較各畫素之第1區域與第2區域,則構成此等區域之畫素電極的電極要素之形成方向係相異。亦即,以後述之液晶配向膜的摩擦方向為基準時,在畫素之第1區域,畫素電極的電極要素係以夾+10°之角度(順時針)的方式形成;在畫素之第2區域,畫素電極的電極要素則以夾-10°之角度(順時計)的方式形成。亦即,在各畫素之第1區域與第2區域,畫素電極與對向電極之間藉由施加電壓所誘發之液晶在基板面內之旋轉動作(面內轉向,in-plane switching)的方向係構成為彼此相反的方向。 [0099] 其次,將所得液晶配向劑以1.0μm的過濾器濾過後,取備妥之上述附有電極之基板與對向基板在背面形成ITO膜,並分別予以旋轉塗佈於具有高度4μm之柱狀間隔物的玻璃基板上。其次,在80℃的加熱板上乾燥5分鐘後,於230℃進行20分鐘燒結而形成膜厚60nm的塗膜,而於各基板上製得聚醯亞胺膜。在此聚醯亞胺膜上,以既定的摩擦方向藉由嫘縈布進行摩擦(輥徑120mm,旋轉數500rpm,移動速度30mm/sec,壓入量0.3mm)後,於純水中進行1分鐘超音波照射,並於80℃乾燥10分鐘。 [0100] 其後,使用上述附有液晶配向膜的2種基板,以各摩擦方向呈反平行的方式加以組合,僅餘留液晶注入口而將周圍密封,製成晶胞間隙為3.8μm的空晶胞。對此空晶胞在常溫下真空注入液晶(MLC-3019,Merck公司製)後,將注入口密封而製成反平行配向之液晶胞。所得液晶胞係構成FFS模式液晶顯示元件。其後,將所得液晶胞於120℃加熱1小時,放置一夜後使用於各評定。 [0101] <液晶配向的穩定性評定> 使用此液晶胞,在60℃的恆溫環境下,以頻率30Hz施加10VPP的交流電壓168小時。其後,使液晶胞的畫素電極與對向電極之間呈短路狀態,直接在室溫下放置一天。 放置後,將液晶胞設置於偏光軸配置成正交的2片偏光板之間,在未施加電壓的狀態下預先打開背光,調整液晶胞的配置角度使透射光的輝度成最小。然後,算出使液晶胞由第1畫素之第2區域達最暗之角度旋轉至第1區域達最暗之角度時的旋轉角度作為角度Δ。第2畫素亦同樣地比較第2區域與第1區域,算出同樣的角度Δ。然後,算出第1畫素與第2畫素之角度Δ值的平均值作為液晶胞的角度Δ。此液晶胞的角度Δ的值愈低係評為良好,愈高則評為不良。 [0102] <實施例1~3> 使用合成例4~6中所得之液晶配向劑,來進行液晶配向的穩定性評定。將結果示於表1。 [0103] <比較例1~3> 使用比較合成例3~4中所得之液晶配向劑,來進行液晶配向的穩定性評定。將結果示於表1。 [0104] [Mode for Carrying Out the Invention] [0015] Hereinafter, the liquid crystal alignment agent of the present invention will be described in detail. [Polyfluorinated Acid] The liquid crystal alignment agent of the present invention is at least one polymer of polyfluorinated acid or a fluorinated polymer thereof containing a reaction product of tetracarboxylic dianhydride and diamine. [Tetracarboxylic dianhydride] The tetracarboxylic dianhydride in the present invention is characterized by containing an aromatic tetracarboxylic dianhydride. Here, the aromatic tetracarboxylic dianhydride refers to an acid dianhydride obtained by containing at least one carboxyl group bonded to an aromatic ring and dehydrating four carboxyl groups in the molecule. [0017] The aromatic tetracarboxylic dianhydride is preferably an acid dianhydride obtained by dehydrating four carboxyl groups bonded to the same or different aromatic rings by intramolecular dehydration. The number of aromatic rings is preferably 1 to 4. In this case, if there is only one aromatic ring, it is preferably an acid dianhydride obtained by dehydration of four carboxyl groups bonded to the aromatic ring. In addition, if there are two or more aromatic rings, an acid obtained by intramolecular dehydration of two carboxyl groups bonded to one of the aromatic rings and simultaneous dehydration of two carboxyl groups bonded to the other aromatic ring at the same time is preferable. Dianhydride. [0018] Specific examples of such a tetracarboxylic dianhydride include pyromellitic dianhydride, 1,4-difluoro- pyromellitic dianhydride, and 2,5-trifluoromethyl pyromellitic acid. Acid dianhydride, trifluoromethyl pyromellitic dianhydride, 1,2,5,6-naphthalenetetracarboxylic dianhydride, 1,4,5,8-naphthalenetetracarboxylic dianhydride, 2,3,6 , 7-naphthalenetetracarboxylic dianhydride, 1,2,5,6-anthracene tetracarboxylic dianhydride, 2,3,6,7-anthracene tetracarboxylic dianhydride, 2,3,3 ', 4'- Biphenyltetracarboxylic dianhydride, 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride, 3,3', 4,4'-diphenyl ether tetracarboxylic dianhydride, 3,3 ', 4,4'-diphenylhydrazone tetracarboxylic dianhydride, 3,3 ', 4,4'-diphenylmethanetetracarboxylic dianhydride, 3,3', 4,4'-benzophenone tetracarboxylic acid Acid dianhydride, 2,2-bis [4- (3,4-dicarboxyphenoxy) phenyl] propane dianhydride, ethylene glycol dibenzoate tetracarboxylic dianhydride, benzene-1,4- Diylbis (1,3-oxo-1,3-dihydro-2-benzofuran-5-carboxylic acid ester), 1,1,1,3,3,3-hexafluoro-2,2- Bis (3,4-dicarboxyphenyl) propane and the like. Among them, pyromellitic dianhydride, 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride, 3,3', 4,4'-diphenyl ether tetracarboxylic dianhydride, 3 , 3 ', 4,4'-Diphenylphosphonium tetracarboxylic dianhydride, 3,3', 4,4'-diphenylmethanetetracarboxylic dianhydride, 3,3 ', 4,4'-diphenyl Methyl ketone tetracarboxylic dianhydride. [0019] The above-mentioned aromatic tetracarboxylic dianhydride may be a single species or a combination of two or more species. [0020] In the present invention, the aforementioned tetracarboxylic dianhydride may be composed of only an aromatic tetracarboxylic dianhydride; however, in addition to the aromatic tetracarboxylic dianhydride, an aliphatic tetracarboxylic dianhydride may also be included Or at least one of alicyclic tetracarboxylic dianhydride. [0021] The aliphatic tetracarboxylic dianhydride refers to an acid dianhydride obtained by dehydration of four carboxyl groups bonded to a chain hydrocarbon structure by intramolecular dehydration. However, it is not necessary to be composed only of a chain hydrocarbon structure, and it may have an alicyclic structure or an aromatic ring structure in a part thereof. [0022] An alicyclic tetracarboxylic dianhydride refers to an acid dianhydride obtained by containing at least one carboxyl group bonded to an alicyclic structure and dehydrating four carboxyl groups in the molecule. However, not all of the four carboxyl groups are bonded to an aromatic ring. Moreover, it is not necessary to consist only of an alicyclic structure, and it may have a chain-like hydrocarbon structure or an aromatic ring structure in a part. [0023] Specific examples of such a tetracarboxylic dianhydride include 1,2,3,4-butanetetracarboxylic dianhydride. Examples of the alicyclic tetracarboxylic dianhydride include 1,2,3,4-cyclobutanetetracarboxylic dianhydride and 1,2,3,4-tetramethyl-1,2,3,4 -Cyclobutane tetracarboxylic dianhydride, 1,2-dimethyl-1,2,3,4-cyclobutane tetracarboxylic dianhydride, 1,3-dimethyl-1,2,3,4 -Cyclobutane tetracarboxylic dianhydride, 1,3-diphenyl-1,2,3,4-cyclobutane tetracarboxylic dianhydride, 1,2,3,4-cyclopentane tetracarboxylic dianhydride Anhydride, 1,2,4,5-cyclohexanetetracarboxylic dianhydride, 1,2,3,4-cycloheptane tetracarboxylic dianhydride, 2,3,4,5-tetrahydrofurantetracarboxylic dianhydride , 3,4-dicarboxy-1-cyclohexyl succinic dianhydride, 2,3,5-tricarboxycyclopentylacetic dianhydride, 3,4-dicarboxy-1,2,3,4-tetrahydro- 1-naphthalenesuccinic dianhydride, bicyclic [3,3,0] octane-2,4,6,8-tetracarboxylic dianhydride, bicyclic [4,3,0] nonane-2,4,7, 9-tetracarboxylic dianhydride, bicyclic [4,4,0] decane-2,4,7,9-tetracarboxylic dianhydride, bicyclic [4,4,0] decane-2,4,8, 10-tetracarboxylic dianhydride, tricyclo [6.3.0.0 <2,6>] undecane-3,5,9,11-tetracarboxylic dianhydride, 4- (2,5-dioxotetrahydrofuran-3 -Yl) -1,2,3,4-tetrahydronaphthalene-1,2-dicarboxylic dianhydride, bicyclic [2,2,2] oct-7-ene-2,3,5,6-tetracarboxylic Acid dianhydride, 5- (2,5-dioxotetrahydrofuranyl) -3-methyl-3-cyclohexane-1,2-dicarboxylic dianhydride Tetracyclo [6,2,1,1,0,2,7] dodec-4,5,9,10-tetracarboxylic dianhydride, 3,5,6-tricarboxynorbornane-2: 3, 5: 6 dicarboxylic dianhydride and the like. [0024] When the aliphatic or alicyclic tetracarboxylic dianhydride is contained as described above, these aliphatic or alicyclic tetracarboxylic dianhydrides may be used alone or in combination of two or more. [0025] As the tetracarboxylic dianhydride, when an aliphatic or alicyclic tetracarboxylic dianhydride is included instead of only the aromatic tetracarboxylic dianhydride, the ratio of the aromatic tetracarboxylic dianhydride to the tetracarboxylic acid The total amount of dianhydride is preferably 1 to 99 mol%, more preferably 10 to 90 mol%, and even more preferably 20 to 80 mol%. [Diamine] The diamine in the present invention is characterized by including a compound represented by the following formula (1) (hereinafter also referred to as a specific diamine). Such a specific diamine may be a single one or a combination of two or more. [0027] [0028] In the above formula (1), R 1 And R 2 Are each independently a single bond, -O-, -S-, -NR 3 -, Ester bond, amidine bond, thioester bond, urea bond, carbonate bond, or carbamate bond, R 3 Is a hydrogen atom or a methyl group; A is an alkylene group having 2 to 20 carbon atoms, and -O- may be inserted at one or more places between the carbon-carbon bonds of the alkylene group. [0029] In the above formula (1), wherein, from the viewpoint of liquid crystal alignment, R 1 And R 2 Single bond, -O-, -S-, -NR is preferred 12 -, Ester bond, amidine bond, particularly preferably -O-. From the viewpoint of liquid crystal alignment, A is preferably 2 to 10 carbon atoms, and more preferably 2 to 6 carbon atoms. The number of -O-s that can be inserted between the carbon-carbon bonds of the alkylene group of A is limited to a case where the number of carbon atoms is one less than the number of carbon atoms of A. For example, it is 0 to 6, It is preferably 0 to 3, more preferably 0 to 1. -R is shown below 1 -AR 2 -An example of a specific structure, but is not limited thereto. In addition, "*" in the structure shown below represents a bond with the phenylene group having an amine group or the phenylene group having an amine group in Formula (1), and n is an integer of 2-20. Preferably, n is 2 to 10, and more preferably 2 to 6. [0031] [0032] wherein -R 1 -AR 2 -The structure is more preferably the structure shown below: [0033] [0034] In the present invention, the aforementioned diamine may be composed of only the specific diamine described above; however, in addition to the specific diamine described above, other diamines may also be included. [0035] Examples of the diamine other than the specific diamine include aliphatic diamines, alicyclic diamines, aromatic diamines, diamine-based organosiloxanes, and the like shown below. As specific examples of these, examples of the aliphatic diamine include m-xylylenediamine, 1,3-diaminopropane, 1,4-diaminobutane, and 1,5-diamine. Pentane, 1,6-diaminohexane, 1,7-diaminoheptane, 1,8-diaminooctane, 1,9-diaminononane, 1,10-diamine Decane, 1,11-diaminoundecane, 1,12-diaminododecane, and the like; Examples of the alicyclic diamine include 1,4-diaminocyclohexane, and bis (4- Aminocyclohexyl) methane, bis (4-amino-3-methylcyclohexyl) methane, etc .; Examples of the aromatic diamine include p-phenylenediamine, 2,3,5,6-tetramethyl -p-phenylenediamine, 2,5-dimethyl-p-phenylenediamine, m-phenylenediamine, 2,4-dimethyl-m-phenylenediamine, 2,5-di Aminotoluene, 2,6-diaminotoluene, 2,5-diaminophenol, 2,4-diaminophenol, 3,5-diaminophenol, 3,5-diaminobenzyl alcohol, 2,4-diaminobenzyl alcohol, 4,6-diaminoresorcinol, 4,4'-diaminobiphenyl, 3,3'-dimethyl-4,4'-diamine Biphenyl, 3,3'-dimethoxy-4,4'-diaminobiphenyl, 3,3'-dihydroxy-4,4'-diaminobiphenyl, 3,3'-dicarboxyl -4,4'-diaminobiphenyl, 3,3'-difluoro-4,4'-biphenyl, 3,3'-trifluoro -4,4'-diaminobiphenyl, 3,4'-diaminobiphenyl, 3,3'-diaminobiphenyl, 2,2'-diaminobiphenyl, 2,3 ' -Diaminobiphenyl, 4,4'-diaminodiphenylmethane, 3,3'-diaminodiphenylmethane, 3,4'-diaminodiphenylmethane, 2,2'-diamine Diphenylmethane, 2,3'-diaminodiphenylmethane, 4,4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl ether, 3,4'-diaminodiphenyl Phenyl ether, 2,2'-diaminodiphenyl ether, 2,3'-diaminodiphenyl ether, 4,4'-sulfofluorenyl diphenylamine, 3,3'-sulfofluorenyl diphenylamine, bis (4-Aminophenyl) silane, bis (3-aminophenyl) silane, dimethyl-bis (4-aminophenyl) silane, dimethyl-bis (3-aminophenyl) silane , 4,4'-thiodiphenylamine, 3,3'-thiodiphenylamine, 4,4'-diaminodiphenylamine, 3,3'-diaminodiphenylamine, 3,4'-diamine Diphenylamine, 2,2'-diaminodiphenylamine, 2,3'-diaminodiphenylamine, N-methyl (4,4'-diaminodiphenyl) amine, N-methyl ( 3,3'-diaminodiphenyl) amine, N-methyl (3,4'-diaminodiphenyl) amine, N-methyl (2,2'-diaminodiphenyl) Amine, N-methyl (2,3'-diaminodiphenyl) amine, 4,4'-diaminobenzophenone, 3,3'-diaminodiphenyl Ketone, 3,4'-diaminobenzophenone, 1,4-diaminonaphthalene, 2,2'-diaminobenzophenone, 2,3'-diaminobenzophenone , 1,5-diaminonaphthalene, 1,6-diaminonaphthalene, 1,7-diaminonaphthalene, 1,8-diaminonaphthalene, 2,5-diaminonaphthalene, 2,6- Diaminonaphthalene, 2,7-diaminonaphthalene, 2,8-diaminonaphthalene, 1,2-bis (4-aminophenyl) ethane, 1,2-bis (3-aminobenzene ) Ethane, 1,3-bis (4-aminophenyl) propane, 1,3-bis (3-aminophenyl) propane, 1,4-bis (4-aminophenyl) butane , 1,4-bis (3-aminophenyl) butane, bis (3,5-diethyl-4-aminophenyl) methane, 1,4-bis (4-aminophenoxy) Benzene, 1,3-bis (4-aminophenoxy) benzene, 1,4-bis (4-aminophenyl) benzene, 1,3-bis (4-aminophenyl) benzene, 1, 4-bis (4-aminobenzyl) benzene, 1,3-bis (4-aminophenoxy) benzene, 4,4 '-[1,4-phenylphenylbis (methylene)] Diphenylamine, 4,4 '-[1,3-phenylenebis (methylene)] diphenylamine, 3,4'-[1,4-phenylenebis (methylene)] diphenylamine, 3 , 4 '-[1,3-phenylenebis (methyl)] diphenylamine, 3,3'-[1,4-phenylenebis (methyl)] diphenylamine, 3,3'- [1,3-phenylenebis (methylene)] diphenylamine, 1,4-phenylene Bis [(4-aminophenyl) methanone], 1,4-phenylenebis [(3-aminophenyl) methanone], 1,3-phenylenebis [(4-aminobenzene Methyl) ketone], 1,3-phenylenebis [(3-aminophenyl) methanone], 1,4-phenylenebis (4-aminobenzoate), 1,4- Phenylene bis (3-aminobenzoate), 1,3-phenylene bis (4-aminobenzoate), 1,3-phenylene bis (3-aminobenzoic acid) Ester), bis (4-aminophenyl) terephthalate, bis (3-aminophenyl) terephthalate, bis (4-aminophenyl) isophthalate , Bis (3-aminophenyl) isophthalate, N, N '-(1,4-phenylene) bis (4-aminobenzamide), N, N'-(1 , 3-phenylene) bis (4-aminobenzidine), N, N '-(1,4-phenylene) bis (3-aminobenzidine), N, N'- (1,3-phenylene) bis (3-aminobenzamide), N, N'-bis (4-aminophenyl) p-xylylenediamine, N, N'-bis (3 -Aminophenyl) p-xylylenediamine, N, N'-bis (4-aminophenyl) m-xylylenediamine, N, N'-bis (3-aminophenyl) m-phenylene Methylamine, 9,10-bis (4-aminophenyl) anthracene, 4,4'-bis (4-aminophenoxy) diphenylphosphonium, 2,2'-bis [4- ( 4-aminophenoxy) phenyl] propane, 2,2'- [4- (4-aminophenoxy) phenyl] hexafluoropropane, 2,2'-bis (4-aminophenyl) hexafluoropropane, 2,2'-bis (3-aminophenylphenyl ) Hexafluoropropane, 2,2'-bis (3-amino-4-methylphenyl) hexafluoropropane, 2,2'-bis (4-aminophenyl) propane, 2,2'-bis (3-aminophenyl) propane, 2,2'-bis (3-amino-4-methylphenyl) propane, 3,5-diaminobenzoic acid, 2,5-diaminobenzoic acid , Bis (4-aminophenoxy) methane, 1,2-bis (4-aminophenoxy) ethane, 1,3-bis (4-aminophenoxy) propane, 1,3- Bis (3-aminophenoxy) propane, 1,4-bis (4-aminophenoxy) butane, 1,4-bis (3-aminophenoxy) butane, 1,5- Bis (4-aminophenoxy) pentane, 1,5-bis (3-aminophenoxy) pentane, 1,6-bis (4-aminophenoxy) hexane, 1,6 -Bis (3-aminophenoxy) hexane, 1,7-bis (4-aminophenoxy) heptane, 1,7- (3-aminophenoxy) heptane, 1,8 -Bis (4-aminophenoxy) octane, 1,8-bis (3-aminophenoxy) octane, 1,9-bis (4-aminophenoxy) nonane, 1, 9-bis (3-aminophenoxy) nonane, 1,10-bis (4-aminophenoxy) decane, 1,10-bis (3-aminophenoxy) decane, 1 , 11-bis (4-aminophenoxy) undec , 1,11-bis (3-aminophenoxy) undecane, 1,12-bis (4-aminophenoxy) dodecane, 1,12-bis (3-aminophenoxy) ) Dodecane and the like; Examples of the diaminoorganosiloxane include 1,3-bis (3-aminopropyl) -tetramethyldisilaxane and the like. [0036] As the aromatic diamine, in addition to the above-mentioned ones, the diamine disclosed in page 17 paragraphs [0051] to 22 pages [0065] of International Publication WO2016 / 125871 can be cited. By using the diamine, the pretilt angle of the liquid crystal can be increased. [0037] Diamines other than the specific diamines described above may be used alone or in combination of two or more. When the diamine contains a diamine other than the specific diamine instead of only the specific diamine, the ratio of the specific diamine to the total amount of the diamine is preferably 1 to 99 mole%, and more preferably 10 ~ 90 mole%, even more preferably 20 ~ 80 mole%. [0038] <Amidine polymer> The amidine polymer in the present invention is the amidine structure contained in the aforementioned polyamidic acid, and the ring is closed by dehydration to form an amidine ring or an isoimide ring. Polymer. The fluorene imidized polymer in the present invention may be a complete fluorinated imide formed by dehydration and ring closure of all the fluorinated acid structures contained in the aforementioned polyfluorinated acid, or may be a portion of the fluorinated acid structure remaining Imide. [0039] The liquid crystal alignment agent of the present invention contains at least one polymer (hereinafter also referred to as a specific polymer) of the polyamidic acid or its imidized polymer as described above. [0040] <Synthesis Method of Specific Diamine> The main synthesis method of the specific diamine in the present invention will be described in detail below. The method described below is only an example, and is not limited to this. The specific diamine in the present invention can be obtained by reducing a dinitro compound and converting a nitro group into an amine group, as shown in the following reaction formula. In addition, the following reaction formula is described using the diamine compound described in the examples as an example. [0041] [0042] The method for reducing the dinitro compound is not particularly limited, and examples thereof include using palladium-carbon, platinum oxide, Rei nickel, platinum black, rhodium-alumina, platinum sulfide, and the like as catalysts in ethyl acetate, A method for reducing in a solvent such as toluene, tetrahydrofuran, dioxane, or alcohol based on hydrogen, hydrazine, hydrogen chloride, or the like. It can also be carried out under pressure using an autoclave or the like as required. On the other hand, when the structure to substitute a hydrogen atom for a benzene ring or a saturated hydrocarbon moiety includes an unsaturated bond site, the use of palladium carbon, platinum carbon, or the like may reduce the unsaturated bond site to form a saturated bond. Therefore, it is preferred to use reduced metals such as reduced iron, tin, and tin chloride as the reducing conditions for the catalyst. In the synthesis of a dinitro compound, the dinitro compound can be obtained by reacting a commercially available biphenyl derivative with a nitrobenzene substituted with a leaving group X such as a halogen, as shown in the following reaction formula. Examples of the preferred leaving group X include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a tosylsulfonyl group (-OTs), a methanesulfonyl group (-OMs), and the like. [0043] [0044] The above reaction can be performed in the presence of a base. The base used is not particularly limited as long as it can be synthesized, and examples thereof include inorganic bases such as potassium carbonate, sodium carbonate, cesium carbonate, sodium alkoxide, potassium alkoxide, sodium hydroxide, potassium hydroxide, sodium hydride, pyridine, Organic bases such as dimethylamine pyridine, trimethylamine, triethylamine, and tributylamine. Further, depending on the circumstances, the use of a palladium catalyst such as dibenzylideneacetone palladium or diphenylphosphine ferrocene palladium or a copper catalyst can improve the yield. From the viewpoint of the difficulty of synthesis, a method using potassium carbonate is preferable, but synthesis can be performed in addition to this method, and therefore the synthesis method is not particularly limited. <Synthesis method of polyamic acid> Hereinafter, the main synthetic method of polyamic acid of the specific polymer in this invention is described in detail. The method described below is only an example and is not limited to this. The polyamic acid of the specific polymer in the present invention can be obtained by reacting a tetracarboxylic dianhydride containing an aromatic tetracarboxylic dianhydride with a diamine containing a compound represented by the formula (1). The proportion of tetracarboxylic dianhydride and diamine used in the synthesis reaction of polyamic acid is 1 equivalent to the amine group of the diamine, and it is preferably a ratio of 0.5 to 1.5 equivalent of the anhydride group of the tetracarboxylic dianhydride. , More preferably a ratio of 0.8 to 1.2 equivalents. [0045] The synthesis reaction of the polyamidic acid is preferably performed in an organic solvent. The reaction temperature at this time is preferably -20 ° C to 150 ° C, and more preferably 0 to 100 ° C. The reaction time is preferably from 0.1 to 24 hours, and more preferably from 0.5 to 12 hours. [0046] Here, the organic solvent is not particularly limited. If specific examples are specifically shown, N-methyl-2-pyrrolidone, N, N-dimethylacetamide, Non-protonic polar solvents such as N, N-dimethylformamide, dimethylmethane, γ-butyrolactone, tetramethylurea, hexamethylphosphotriamide, etc. [0047] The amount (a) of the organic solvent is preferably an amount such that the total amount of the tetracarboxylic dianhydride and diamine (b) is 0.1 to 50% by weight relative to the total amount of the reaction solution (a + b). [0048] As described above, a reaction solution obtained by dissolving polyamic acid can be obtained. This reaction solution can be directly supplied to the preparation of the liquid crystal alignment agent, or the polyamic acid contained in the reaction solution can be separated, and then the liquid crystal alignment agent can be prepared, or the separated polyamino acid can be purified and supplied. Preparation of liquid crystal alignment agent. When the polyamidic acid is subjected to dehydration and ring closure to form a polyimide, the above reaction solution may be directly supplied to the dehydration ring closure reaction, or the polyamidic acid contained in the reaction solution may be separated and then supplied to the dehydration ring closure reaction. Alternatively, the isolated polyamidic acid can be purified and then subjected to a dehydration ring-closing reaction. Isolation and purification of polyamic acid can be performed according to a known method. [0049] <Synthesis method of fluorene imidized polymer> The main synthesis method of the fluorene imidized polymer of the specific polymer in the present invention will be described in detail below. The method described below is only an example, and is not limited to this. [0050] The fluorinated polymer of the specific polymer in the present invention can be obtained by dehydrating and closing the polyfluorinated acid synthesized as described above, and performing fluorination. Dehydration ring closure of polyamic acid is preferably by heating the polyamic acid, or by dissolving polyamic acid in an organic solvent, adding a dehydrating agent and a dehydrating ring-closing catalyst to this solution, and performing as required. The heating method is performed. Among them, the latter method is preferred. [0051] In the method of adding a dehydrating agent and a dehydrating ring-closing catalyst to the solution of the polyamic acid, as the dehydrating agent, for example, acid anhydrides such as acetic anhydride, propionic anhydride, and trifluoroacetic anhydride can be used. The amount of the dehydrating agent is preferably 0.01 to 20 moles relative to 1 mole of the amino acid structure of the polyamidate. As the dehydration ring-closing catalyst, for example, tertiary amines such as pyridine, trimethylpyridine, dimethylpyridine, and triethylamine can be used. The amount of dehydrated closed-loop catalyst is preferably 0.01 to 10 moles relative to 1 mole of the dehydrating agent used. Examples of the organic solvent used in the dehydration ring-closing reaction include organic solvents listed as those used in the synthesis of polyamic acid. The reaction temperature of the dehydration ring-closing reaction is preferably 0 to 180 ° C, and more preferably 10 to 150 ° C. The reaction time is preferably 1.0 to 120 hours, and more preferably 2.0 to 30 hours. [0052] In this way, a reaction solution containing a fluorene imidized polymer can be obtained. This reaction solution can be directly supplied to the preparation of the liquid crystal alignment agent, and the preparation of the liquid crystal alignment agent can be performed after removing the dehydrating agent and the dehydration closed-loop catalyst from the reaction solution, or the polyimide can be separated and supplied to the liquid crystal alignment agent. Or the preparation of the fluorene imidized polymer that has been isolated and used as a liquid crystal alignment agent. These purification operations can be performed according to well-known methods. [0053] <Liquid Crystal Alignment Agent> The liquid crystal alignment agent of the present invention contains the above-mentioned specific polymer as an essential component, but may contain other components as required. Examples of the other components include polymers other than specific polymers (also referred to as other polymers), crosslinking agents, adhesion promoters, organic solvents, and the like. [Other polymers] Polymers other than specific polymers can impart electrical characteristics, film strength, and liquid crystal alignment agent solution properties to the liquid crystal alignment agent of the present invention or the liquid crystal alignment film obtained therefrom. Various characteristics are included in the liquid crystal alignment agent for the purpose. As a polymer other than the specific polymer, for example, polycarboxylic acid which does not contain a reaction product of an aromatic tetracarboxylic dianhydride and a tetracarboxylic dianhydride and a diamine containing a specific diamine is used to dehydrate the polyamic acid. Other than polyimide formed by ring closure, polyamic acid obtained by reacting a diamine without a specific diamine and a tetracarboxylic dianhydride, and polyimide obtained by dehydrating and closing the polyamine, Other examples include polyamides, polyesters, polyamides, polysiloxanes, cellulose derivatives, polyacetals, polystyrene derivatives, poly (styrene-phenylmaleimide) Derivatives, poly (meth) acrylates, etc. In addition, when the liquid crystal alignment agent of the present invention contains the specific polymer and other polymers, the blending ratio of the specific polymer is preferably 5 mass% or more relative to the total polymer amount in the liquid crystal alignment agent, for example, 5 to 95% by mass, more preferably 10 to 90% by mass, and even more preferably 20 to 80% by mass. [Crosslinking Agent] The crosslinking agent can make the liquid crystal alignment film obtained from the liquid crystal alignment agent of the present invention impart various characteristics such as electrical characteristics, film strength, and adhesiveness to the sealing material of the liquid crystal alignment film, so that It is contained in a liquid crystal alignment agent. Examples of the crosslinking agent include two or more molecules selected from the group consisting of an epoxy group, an isocyanate group, a propylene oxide group, a cyclic carbonate group, a hydroxyl group, a hydroxyalkyl group, and a lower alkoxyalkyl group. A crosslinkable compound having at least one kind of substituent, or a crosslinkable compound having two or more polymerizable unsaturated bonds in one molecule. As a specific example, the cross-linking agent shown in paragraphs [0192] to [0232] of pages 44 to 54 of International Publication WO2014 / 092126 can be cited. Examples of particularly preferred crosslinking agents are shown below, but the present invention is not limited to these. [0056] [0057] [0058] In addition, when the liquid crystal alignment agent of the present invention contains a cross-linking agent, its content is preferably 0.1 to 100 parts by mass, more preferably 0.1 to 100 parts by mass relative to all polymer components in the liquid crystal alignment agent. ~ 50 parts by mass, more preferably 1 to 20 parts by mass. [0059] [Adhesion Adhesive] The adhesion adjuvant can not only improve the adhesion between the liquid crystal alignment film and the substrate, but also impart various characteristics to the liquid crystal alignment film obtained from the liquid crystal alignment agent of the present invention, and make it contained in the liquid crystal. In the alignment agent. Examples of the adhesion assistant include a functional silane compound. Specific examples of the functional silane compound include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 2-aminopropyltrimethoxysilane, and 2-aminopropyltriethyl. Oxysilane, 3-aminopropyldiethoxymethylsilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, N- (2-aminoethyl) -3 -Aminopropylmethyldimethoxysilane, 3-ureapropyltrimethoxysilane, 3-ureapropyltriethoxysilane, N-ethoxycarbonyl-3-aminopropyltrimethoxysilane, N-ethoxycarbonyl-3-aminopropyltriethoxysilane, N-triethoxysilyltriethylenetriamine, N-trimethoxysilyltriethylenetriamine, 10 -Trimethoxysilyl-1,4,7-triazadecane, 10-triethoxysilyl-1,4,7-triazadecane, 9-trimethoxysilyl-3, 6-Diazanonylacetate (repeated), 9-triethoxysilyl-3,6-diazanonylacetate, 9-trimethoxysilyl-3,6-diazepine Hexanononanoic acid methyl ester, 9-triethoxysilyl-3,6-diazanonanoic acid methyl ester, N-benzyl-3-aminopropyltrimethoxysilane, N-benzyl-3 -Aminopropyltriethoxysilane, N-phenyl-3- Propyltrimethoxysilane, N-phenyl-3-aminopropyltriethoxysilane, glycidoxymethyltrimethoxysilane, glycidoxymethyltriethoxysilane, 2- Glycidoxyethyltrimethoxysilane, 2-glycidoxyethyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyl Triethoxysilane, 3-glycidoxypropyldiethoxymethylsilane, etc. When the liquid crystal alignment agent of the present invention contains an adhesion promoter, the content thereof is preferably 0.01 to 20 parts by mass, and more preferably 0.1 to 10 parts by mass, based on 100 parts by mass of the total polymer. [Organic Solvent] The organic solvent can be contained in a liquid crystal alignment agent for the purpose of forming a uniform coating film on a substrate. As the organic solvent, examples of the organic solvent mainly used to dissolve the polymer component include N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, and N-propyl-2. -Pyrrolidone, N-isopropyl-2-pyrrolidone, N-butyl-2-pyrrolidone, N-isobutyl-2-pyrrolidone, N- (tertiary butyl) -2 -Pyrrolidone, N-pentyl-2-pyrrolidone, γ-butyrolactone, γ-valerolactone, σ-valerolactone, ε-caprolactone, 2-pyrrolidone, N, N- Dimethylformamide, N, N-dimethylacetamide, 3-methoxy-N, N-dimethylpropanamide, 3-butoxy-N, N-dimethylpropanidine Amines, N, N, 2-trimethylpropanamine, 1,3-dimethyl-1-imidazolinone, and the like. These organic solvents may be mixed in two or more kinds. Among the above organic solvents, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, γ-butyrolactone, and 1,3-dimethyl-1-imidazolinone are preferred. [0061] In addition, as an organic solvent mixed for the purpose of adjusting the evaporation rate of the solvent or the surface tension of the solution to improve the coatability of the liquid crystal alignment agent and the surface smoothness or dimensional accuracy of the coating film, for example, ethanol , Isopropanol, 1-butanol, 2-butanol, isobutanol, tertiary butanol, 1-pentanol, 2-pentanol, 3-pentanol, 2-methyl-1-butanol, iso Amyl alcohol, tertiary pentanol, 3-methyl-2-butanol, neopentyl alcohol, 2-ethyl-1-butanol, 1-hexanol, 2-methyl-1-pentanol, 2-methyl Methyl-2-pentanol, 2-methyl-2-hexanol, 1-heptanol, 2-heptanol, 3-heptanol, 1-octanol, 2-octanol, 2-ethyl-1-hexanol Alcohol, cyclohexanol, 1-methylcyclohexanol, 2-methylcyclohexanol, 3-methylcyclohexanol, 2,6-dimethyl-4-heptanol, 1,2-ethylene glycol , 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, 1,5-pentanediol Diol, 2-methyl-2,4-pentanediol, 2-ethyl-1,3-hexanediol, diethylene glycol, dipropylene glycol, triethylene glycol, diisopropyl ether, dipropyl ether , Dibutyl ether, dihexyl ether, dioxane, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, Glycol monobutyl ether, ethylene glycol monoisoamyl ether, ethylene glycol monohexyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dibutyl ether, 2- (methoxymethoxy) Ethanol, 2- (hexyloxy) ethanol, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monopropyl ether, diethylene glycol monobutyl ether, diethylene glycol dimethyl ether, Diethylene glycol diethyl ether, diethylene glycol methyl ethyl ether, diethylene glycol propyl methyl ether, diethylene glycol butyl methyl ether, diethylene glycol dibutyl ether, triethylene glycol monomethyl ether , Triethylene glycol monoethyl ether, 1-methoxy-2-propanol, 1-ethoxy-2-propanol, 1-propoxy-2-propanol, 1-butoxy-2-propanol Alcohol, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol dimethyl ether, tripropylene glycol monomethyl ether, 1- (butoxyethyl (Oxy) propanol, 2-pentanone, 3-pentanone, 2-hexanone, 2-heptanone, 4-heptanone, 2,6-dimethyl-4-heptanone, 4,6-dimethyl 2-Heptanone, 4-hydroxy-4-methyl-2-pentanone, 4-methoxy-4-methyl-2-pentanone, 4-hydroxy-2-butanone, ethyl carbonate Propylene carbonate Ester, methyl acetate, ethyl acetate, butyl acetate, 1-methylpentyl acetate, 2-ethylbutyl acetate, 2-ethylhexyl acetate, 3-ethoxybutyl Acetate, ethylene glycol monoacetate, ethylene glycol diacetate, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether acetate, propylene glycol Monomethyl ether acetate, diethylene glycol acetate, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, 2- (2-ethoxyethoxy) ethyl ethyl Acid ester, 3-methoxypropionic acid, methyl 3-methoxypropionate, ethyl 3-methoxypropionate, propyl 3-methoxypropionate, butyl 3-methoxypropionate , Ethyl 3-ethoxypropionate, 3-ethoxypropionate, methyl 3-ethoxypropionate, ethyl 3-ethoxypropionate, methyl pyruvate, ethyl pyruvate, lactic acid Methyl ester, ethyl lactate, propyl lactate, butyl lactate, isoamyl lactate and the like. These organic solvents may be mixed in two or more kinds. [0062] In addition to the aforementioned organic solvents (organic solvents mainly used to dissolve polymer components), these organic solvents may be used alone or in combination of two or more. Among the above organic solvents, ethylene glycol monobutyl ether, propylene glycol monobutyl ether, 4-hydroxy-4-methyl-2-pentanone, diethylene glycol diethyl ether, diisopropyl ether, 2,6- Dimethyl-4-heptanol, dipropylene glycol dimethyl ether. [0063] Preferred combinations of organic solvents include N-methyl-2-pyrrolidone and ethylene glycol monobutyl ether; N-ethyl-2-pyrrolidone and ethylene glycol monobutyl ether; N-methyl-2-pyrrolidone with γ-butyrolactone and ethylene glycol monobutyl ether; N-methyl-2-pyrrolidone with γ-butyrolactone and propylene glycol monobutyl ether; N-ethyl 2-Pyrrolidone and propylene glycol monobutyl ether; N-methyl-2-pyrrolidone and γ-butyrolactone and 4-hydroxy-4-methyl-2-pentanone and diethylene glycol diethyl ether; N-methyl-2-pyrrolidone and γ-butyrolactone and propylene glycol monobutyl ether and diisopropyl ether; N-methyl-2-pyrrolidone and γ-butyrolactone and propylene glycol monobutyl ether and 2 , 6-dimethyl-4-heptanol; N-methyl-2-pyrrolidone and γ-butyrolactone and dipropylene glycol dimethyl ether and the like. [0064] In addition, when the liquid crystal alignment agent of the present invention contains an organic solvent, its content may be appropriately selected according to the coating device, coating conditions, coating environment, viscosity of the liquid crystal alignment agent, etc. of the liquid crystal alignment agent. For example, when coating is performed by a spin coating method, a transfer printing method, an inkjet coating method, or the like, the amount of the organic solvent in the liquid crystal alignment agent is preferably 90 to 99% by mass. The proportion of components other than the organic solvent in the alignment agent) is preferably 1 to 10% by mass. If further examples are shown, for example, the spin coating method is particularly preferably in the range of a solid content concentration of 1.5 to 4.5% by weight. In the transfer printing method, it is particularly preferable to set the solid content concentration in the range of 3 to 9% by weight and the solution viscosity to be in the range of 12 to 50 mPa · s. In the inkjet coating method, it is particularly preferable to set the solid content concentration in the range of 1 to 5 wt% and the solution viscosity to be in the range of 3 to 15 mPa · s. In addition, the viscosity of the solution can also be adjusted according to the molecular weight of the polymer contained in the liquid crystal alignment agent. In addition, the solid content concentration can be finely adjusted according to the volatility of the organic solvent or the thickness of the liquid crystal alignment film to be obtained. [0065] In addition to the components described above, the liquid crystal alignment agent of the present invention can also be added with a fluorination promoter for promoting the fluorination of polyamic acid, or used to adjust the dielectric constant of the liquid crystal alignment film. Or a resistive dielectric or conductive substance. [0066] <Liquid crystal alignment film> The liquid crystal alignment film of the present invention is obtained from the liquid crystal alignment agent described above. To give an example of a method for obtaining a liquid crystal alignment film from a liquid crystal alignment agent, a film obtained by applying a liquid crystal alignment agent in the form of a solution to a substrate and drying and sintering may be rubbed or photo-aligned. Processing method A method of performing alignment processing. [0067] The substrate to which the liquid crystal alignment agent is applied is not particularly limited as long as it is a substrate having high transparency. In addition to a glass substrate and a silicon nitride substrate, a polyimide substrate, an acrylic substrate, and a polycarbonate can also be used. Plastic substrates such as substrates. At this time, if a substrate on which an ITO electrode or the like for driving liquid crystal is formed is used, it is preferable from the viewpoint of simplification of the manufacturing process. Moreover, in a reflective liquid crystal display element, as long as it is a substrate on only one side, an opaque substance such as a silicon wafer may be used, and an electrode at this time may also use a material that reflects light. [0068] The coating method of the liquid crystal alignment agent is not particularly limited, and generally, screen printing, lithography, flexographic printing, inkjet, and the like are used in industry. As other coating methods, there are a dipping method, a roll coating method, a slit coating method, a spin coater method, a spray coating method, and the like, and these methods may be used depending on the purpose. [0069] After the liquid crystal alignment agent is coated on the substrate, the solvent is evaporated by a heating means such as a hot plate, a thermal cycle type oven, an IR (infrared) type oven, and sintered. The drying and sintering steps after applying the liquid crystal alignment agent can be selected at any temperature and time. In general, in order to sufficiently remove the contained solvent, conditions such as sintering at 50 to 120 ° C for 1 to 10 minutes and then sintering at 150 to 300 ° C for 5 to 120 minutes can be mentioned. The thickness of the sintered liquid crystal alignment film is not particularly limited. If the thickness is too thin, the reliability of the liquid crystal display element will be reduced. Therefore, it is preferably 5 to 300 nm, and more preferably 10 to 200 nm. [0070] <Liquid crystal display element> The liquid crystal display element of the present invention is one in which a substrate with a liquid crystal alignment film obtained from the liquid crystal alignment agent is prepared, and then a liquid crystal cell is produced according to a known method, and the liquid crystal cell is used as an element. [0071] As an example of a method for manufacturing a liquid crystal cell, a liquid crystal display element having a passive matrix structure will be described as an example. In addition, a liquid crystal display element having an active matrix structure in which a switching element such as a TFT (Thin Film Transistor) is provided in each pixel portion constituting an image display. Specifically, a transparent glass substrate is prepared. A common electrode is provided on one of the substrates, and a segment electrode is provided on the other substrate. These electrodes can be, for example, ITO electrodes and patterned so that they can achieve the desired image display. Next, an insulating film is provided on each substrate so as to cover the common electrode and the segment electrode. As the insulating film, for example, SiO formed by a sol-gel method can be used. 2 -TiO 2 The composition of the film. Next, a liquid crystal alignment film is formed on each substrate under the conditions described above. [0072] Next, an ultraviolet curable sealing material is disposed at a predetermined position on one of the two substrates on which the liquid crystal alignment film is formed, and further, liquid crystal is disposed at predetermined positions on the liquid crystal alignment film surface. After laminating the other substrate in a manner that the liquid crystal alignment film faces each other and pressing it to compress the liquid crystal toward the front surface of the liquid crystal alignment film, the entire surface of the substrate is irradiated with ultraviolet rays to harden the sealing material to obtain a liquid crystal cell. Alternatively, as a step after forming a liquid crystal alignment film on a substrate, when a sealing material is arranged at a predetermined position on one of the substrates, an opening portion that can be filled with liquid crystal from the outside is set in advance, and the substrate is bonded without the liquid crystal disposed, and then transmitted. A liquid crystal material is injected into the liquid crystal cell at an opening provided in the sealing material, and then the opening is sealed with an adhesive to obtain a liquid crystal cell. The liquid crystal material can be injected using a vacuum injection method or a method using capillary phenomenon in the atmosphere. In any of the above methods, in order to ensure that the liquid crystal cell is filled with a space of the liquid crystal material, it is preferable to: set columnar protrusions on one of the substrates; spread spacers on one of the substrates; mix the spacers with the sealing material; or A combination of these means. [0073] Examples of the liquid crystal material include a nematic liquid crystal and a rectangular liquid crystal. Among them, a nematic liquid crystal is preferred, and either a positive liquid crystal material or a negative liquid crystal material may be used. Next, set the polarizing plate. Specifically, it is preferable to stick a pair of polarizing plates to the surface opposite to the liquid crystal layer of two substrates. [0074] In addition, the liquid crystal alignment film and the liquid crystal display element of the present invention are not limited to those described above as long as the liquid crystal alignment agent of the present invention is used, and they may be made by other well-known methods. The steps before obtaining a liquid crystal display element from a liquid crystal alignment agent are disclosed in many other documents such as Japanese Patent Application Laid-Open No. 2015-135393 (Japanese Patent Laid-Open Publication), pages 17 [0074] to 19 [0081]. [0075] The liquid crystal display element using the liquid crystal alignment film of the present invention has been described above, but the liquid crystal alignment film of the present invention is not only used as a liquid crystal alignment film for a liquid crystal display element, but can also be used for retardation using a polymerizable liquid crystal. Liquid crystal alignment films for thin films, liquid crystal alignment films for liquid crystal antennas, and the like. [Examples] [0076] Examples are given below to explain the present invention in more detail, but the present invention is not limited to these. The abbreviations and characteristics of the compounds used in this example and comparative examples are as follows: [0077] NMP: N-methyl-2-pyrrolidone BCS: butyl cellosolve GBL: γ-butyrolactone [0078] [Synthesis method of diamine DA-1] The diamine DA-1 used in this example was synthesized according to a two-step route shown below. [0080] Step 1: Synthesis of 4-nitro-4 '-(2- (4-nitrophenoxy) ethoxy) -1,1'-biphenyl (DA-1-1) ] [0082] 4-hydroxy-4'-nitrobiphenyl (10.0 g, 46.5 mmol) was dissolved in DMF (40.0 g), potassium carbonate (17.2 g, 69.7 mmol) was added, and β-bromo-4 was dropped at 80 ° C. -A solution of nitrophenyl ether (17.2 g, 69.7 mmol) in DMF (40.0 g). The mixture was stirred at 80 ° C for 2 hours, and the disappearance of the raw materials was confirmed by a high performance liquid chromatography (hereinafter referred to as HPLC). Thereafter, the reaction solution was left to cool to room temperature, water (500.0 g) was added to filter the precipitate, and the solution was washed twice with water (100.0 g). The obtained filtrate was washed twice with MeOH (500.0 g). The precipitate was filtered and dried under reduced pressure at 50 ° C to obtain 4-nitro-4 '-(2- (4-nitrophenoxy) ethoxy) -1,1'-biphenyl (white powder , Yield: 17.6 g, Yield: 99%). 1 H NMR (DMSO- d 6 ): δ 8.22-8.29 (m, 4H, C 6 H 4 ), 7.94 (d, J = 7.2 Hz, 2H, C 6 H 4 ), 7.79 (d, J = 8.8 Hz, 2H, C 6 H 4 ), 7.25-7.15 (m, 4H, C 6 H 4 ) 4.54-4.45 (m, 4H, CH 2 ). 13 C { 1 H} NMR (DMSO- d 6 ): δ 164.1, 159.6, 146.6, 146.5, 141.4, 130.7, 129.1, 127.5, 126.4, 124.5, 115.7, 115.6, 67.8, 66.7 (each s). Melting point (DSC): 193 ° C [0083] Second step: 4 '-(2- (4-aminophenoxy) ethoxy)-[1,1'-biphenyl] -4-amine (DA- 1) Synthesis [0084] 4-nitro-4 '-(2- (4-nitrophenoxy) ethoxy) -1,1'-biphenyl (5.0 g, 13.1 mmol) was dissolved in tetrahydrofuran (100.0 g) Then, 5% palladium-carbon (0.1 g) was added, and the mixture was stirred at room temperature under a hydrogen atmosphere for 2 hours. The disappearance of the raw materials was confirmed by HPLC, dissolved in tetrahydrofuran (800.0 g), the catalyst was removed by filtration, and the filtrate was concentrated. This was washed with heptane (200.0 g), and the precipitated solid was filtered and dried to obtain DA-1 (white powder, yield: 4.0 g, yield: 94%). 1 H NMR (DMSO- d 6 ): δ 7.45 (d, J = 8.8 Hz, 2H, C 6 H 4 ), 7.29 (d, J = 8.8 Hz, 2H, C 6 H 4 ), 6.97 (d, J = 8.8 Hz, 2H, C 6 H 4 ), 6.70 (d, J = 8.8 Hz, 2H, C 6 H 4 ), 6.62 (d, J = 8.8 Hz, 2H, C 6 H 4 ), 6.52 (d, J = 8.8 Hz, 2H, C 6 H 4 ), 5.14 (s, 2H, NH 2 ), 4.64 (s, 2H, NH 2 ), 4.24 (br, 2H, CH 2 ), 4.16 (br, 2H, CH 2 ). 13 C { 1 H} NMR (DMSO- d 6 ): δ 157.2, 150.0, 148.2, 143.1, 133.9, 127.7, 126.2, 116.3, 115.9, 115.5, 115.0, 114.4, 67.2, 66.9 (each s). Melting point (DSC): 156 ° C [0085] [Viscosity measurement] In the synthesis examples or comparative synthesis examples, the viscosity of the polyamic acid solution was measured using an E-type viscometer TVE-22H (manufactured by Toki Sangyo Co., Ltd.). An amount of 1.1 mL was measured with a tapered rotor TE-1 (1 ° 34 ', R24). [Synthesis Example 1] After adding DA-1 (3.20 g, 10 mmol) to a 50-ml four-necked flask equipped with a stirring device and a nitrogen introduction tube, 30.0 g of NMP was added, and the solution was stirred while blowing nitrogen to dissolve it. . While stirring this diamine solution, CA-1 (2.07 g, 9.5 mmol) was added, and after adding 7.7 g of NMP, it was further stirred at 50 ° C. for 12 hours to obtain a polyamic acid solution (PAA-1). The viscosity of this polyamic acid solution at 25 ° C was 270 mPa · s. [Synthesis Example 2] DA-1 (3.20 g, 10 mmol) was added to a 50-ml four-necked flask equipped with a stirring device and a nitrogen introduction tube, and then 30.0 g of NMP was added, while stirring while blowing nitrogen to dissolve it. . While stirring this diamine solution, CA-1 (0.87 g, 4.0 mmol) was added, CA-2 (1.08 g, 5.5 mmol) was added, and 7.6 g of NMP was added, followed by stirring at 50 ° C for 12 hours to obtain Polyamic acid solution (PAA-2). The viscosity of this polyamic acid solution at 25 ° C was 245 mPa · s. [Synthesis Example 3] After adding DA-2 (3.19 g, 16.0 mmol) and DA-3 (0.79 g, 4.0 mmol) to a 100 ml four-necked flask equipped with a stirring device and a nitrogen introduction tube, NMP58 was added. .8g, dissolve while blowing nitrogen while stirring. While stirring this diamine solution, CA-3 (1.20 g, 4.0 mmol) was added, CA-2 (2.98 g, 15.2 mmol) was added, and then 14.7 g of NMP was added, followed by stirring at room temperature for 12 hours. A polyamic acid solution (PAA-3) was obtained. The viscosity of this polyamic acid solution at 25 ° C was 153 mPa · s. [Synthesis Example 4] 11.3 g of the polyamic acid solution (PAA-1) obtained in Synthesis Example 1 was fractionated, and 9.9 g of NMP, 7.5 g of BCS, and 1% by weight of 3- were added while stirring. 1.4 g of an aminopropyltriethoxysilane NMP solution was further stirred at room temperature for 2 hours to obtain a liquid crystal alignment agent (Q-1). [Synthesis Example 5] 11.3 g of the polyamic acid solution (PAA-2) obtained in Synthesis Example 2 was fractionated, and while stirring, 9.9 g of NMP, 7.5 g of BCS, and 1% by weight of 3- 1.4 g of an aminopropyltriethoxysilane NMP solution was further stirred at room temperature for 2 hours to obtain a liquid crystal alignment agent (Q-2). [Synthesis Example 6] 3.8 g of the polyamic acid solution (PAA-1) obtained in Synthesis Example 1 was fractionated, and 14.7 g of the polyamino acid solution (PAA-3) obtained in Synthesis Example 3 was added thereto. 16.9 g of NMP, 12.5 g of BCS, and 1.9 g of NMP solution containing 1% by weight of 3-aminopropyltriethoxysilane were added while stirring, and further stirred at room temperature for 2 hours to obtain a liquid crystal alignment agent ( Q-3). [Comparative Synthesis Example 1] After adding DA-3 (1.98 g, 10.0 mmol) to a 50 ml four-necked flask equipped with a stirring device and a nitrogen introduction tube, 23.1 g of NMP was added and stirred while blowing nitrogen gas. Its dissolved. While stirring this diamine solution, CA-1 (0.87 g, 4.0 mmol) was added, CA-2 (1.08 g, 5.5 mmol) was added, and 5.7 g of NMP was added, followed by stirring at 50 ° C for 12 hours to obtain Polyamic acid solution (PAA-4). The viscosity of this polyamic acid solution at 25 ° C was 260 mPa · s. [Comparative Synthesis Example 2] After adding DA-4 (2.44 g, 10.0 mmol) to a 50-ml four-necked flask equipped with a stirring device and a nitrogen introduction tube, 27.4 g of NMP was added and stirred while blowing nitrogen gas. Its dissolved. While stirring this diamine solution, CA-1 (2.12 g, 9.7 mmol) was added, and after adding 6.7 g of NMP, it was further stirred at 50 ° C. for 18 hours to obtain a polyamic acid solution (PAA-5). The viscosity of this polyamic acid solution at 320C was 320 mPa · s. [Comparative Synthesis Example 3] 11.3 g of the polyamic acid solution (PAA-4) obtained in Comparative Synthesis Example 1 was divided, and while stirring, 9.9 g of NMP, 7.5 g of BCS, and 1% by weight were added. 1.4 g of a 3-aminopropyltriethoxysilane NMP solution was further stirred at room temperature for 2 hours to obtain a liquid crystal alignment agent (Q-4). [Comparative Synthesis Example 4] 3.8 g of the polyamic acid solution (PAA-5) obtained in Comparative Synthesis Example 2 was fractionated, and the polyamic acid solution (PAA-3) obtained in Synthesis Example 3 was added thereto. 14.7g, while stirring, add 16.9g of NMP, 12.5g of BCS, and 1.9g of NMP solution containing 1% by weight of 3-aminopropyltriethoxysilane, and stir at room temperature for 2 hours to obtain liquid crystal alignment Agent (Q-5). [0096] <Production of Liquid Crystal Display Element> A substrate with electrodes is prepared initially. The substrate is a glass substrate having a size of 30 mm × 35 mm and a thickness of 0.7 mm. An IZO electrode having a solid pattern is formed on the substrate as a first layer and constitutes a counter electrode. A SiN (silicon nitride) film formed by a CVD method as a second layer is formed on the counter electrode of the first layer. The film thickness of the SiN film of the second layer is 500 nm, which functions as an interlayer insulating film. On the SiN film of the second layer, a comb-shaped pixel electrode formed by patterning the IZO film as a third layer is arranged, and two pixels, namely, a first pixel and a second pixel are formed. The size of each pixel is 10mm in length and about 5mm in width. At this time, the counter electrode of the first layer and the pixel electrode of the third layer are electrically insulated by the action of the SiN film of the second layer. [0097] The pixel electrode of the third layer has a comb-like shape formed by arranging a plurality of zigzag-shaped electrode elements having a curved central portion, as in the figure described in Japanese Patent Application Laid-Open No. 2014-77845 (Japanese Patent Publication). Its shape. The width in the short-side direction of each electrode element is 3 μm, and the interval between the electrode elements is 6 μm. The pixel electrodes forming each pixel are formed by arranging a plurality of zigzag electrode elements bent at the central portion. Therefore, the shape of each pixel is not rectangular, but is similar to the electrode element bent at the central portion. The shape of the bold font. Each pixel is divided into upper and lower sides by a central curved portion as a boundary, and each pixel has a first region on the upper side of the curved portion and a second region on the lower side. [0098] If the first region and the second region of each pixel are compared, the formation directions of the electrode elements of the pixel electrodes constituting these regions are different. That is, when the rubbing direction of the liquid crystal alignment film described later is used as a reference, the electrode elements of the pixel electrode are formed at an angle (clockwise) of + 10 ° in the first region of the pixel; In the second area, the electrode elements of the pixel electrode are formed at an angle (clockwise) of -10 °. That is, in the first region and the second region of each pixel, the liquid crystal rotates in the plane of the substrate induced by applying a voltage between the pixel electrode and the counter electrode (in-plane switching). The directions of are configured to be opposite to each other. [0099] Next, after the obtained liquid crystal alignment agent is filtered through a 1.0 μm filter, the prepared substrate with an electrode and an opposite substrate are prepared to form an ITO film on the back surface, and are respectively spin-coated on a substrate having a height of 4 μm. Columnar spacers on a glass substrate. Next, after drying on a hot plate at 80 ° C. for 5 minutes, sintering was performed at 230 ° C. for 20 minutes to form a coating film having a thickness of 60 nm, and a polyimide film was prepared on each substrate. After rubbing on the polyimide film with a predetermined rubbing direction (roller diameter 120 mm, rotation number 500 rpm, moving speed 30 mm / sec, press-in amount 0.3 mm), it was performed in pure water. Ultrasonic irradiation was carried out for 10 minutes and dried at 80 ° C for 10 minutes. [0100] Thereafter, the two substrates with a liquid crystal alignment film described above were combined in such a manner that each rubbing direction was antiparallel, and only the liquid crystal injection port was left and the surroundings were sealed to make a cell gap of 3.8 μm. Empty unit cell. To this empty cell, a liquid crystal (MLC-3019, manufactured by Merck) is vacuum-injected at normal temperature, and then the injection port is sealed to form an anti-parallel aligned liquid crystal cell. The obtained liquid crystal cell line constitutes an FFS mode liquid crystal display element. Thereafter, the obtained liquid crystal cells were heated at 120 ° C. for 1 hour, and left for overnight to be used for each evaluation. [0101] <Stability Evaluation of Liquid Crystal Alignment> Using this liquid crystal cell, an AC voltage of 10 VPP was applied at a frequency of 30 Hz for 168 hours in a constant temperature environment of 60 ° C. Thereafter, the pixel electrode and the counter electrode of the liquid crystal cell are brought into a short-circuited state, and left to stand at room temperature for one day. After being placed, the liquid crystal cell is placed between two polarizing plates whose polarizing axes are arranged orthogonally, and the backlight is turned on in advance in a state where no voltage is applied, and the arrangement angle of the liquid crystal cell is adjusted to minimize the brightness of transmitted light. Then, the rotation angle when the liquid crystal cell is rotated from the darkest angle in the second region of the first pixel to the darkest angle in the first region is calculated as the angle Δ. Similarly, the second pixel compares the second region and the first region, and calculates the same angle Δ. Then, the average value of the angle Δ values of the first pixel and the second pixel is calculated as the angle Δ of the liquid crystal cell. The lower the value of the angle Δ of the liquid crystal cell, the better. The higher the value, the worse. [Examples 1 to 3] The liquid crystal alignment agents obtained in Synthesis Examples 4 to 6 were used to evaluate the stability of liquid crystal alignment. The results are shown in Table 1. [Comparative Examples 1 to 3] The liquid crystal alignment agents obtained in Comparative Synthesis Examples 3 to 4 were used to evaluate the stability of liquid crystal alignment. The results are shown in Table 1. [0104]