WO2020080477A1 - Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element using same - Google Patents

Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element using same Download PDF

Info

Publication number
WO2020080477A1
WO2020080477A1 PCT/JP2019/040943 JP2019040943W WO2020080477A1 WO 2020080477 A1 WO2020080477 A1 WO 2020080477A1 JP 2019040943 W JP2019040943 W JP 2019040943W WO 2020080477 A1 WO2020080477 A1 WO 2020080477A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
group
diamine
aligning agent
formula
Prior art date
Application number
PCT/JP2019/040943
Other languages
French (fr)
Japanese (ja)
Inventor
達哉 名木
貴裕 須賀
玲久 小西
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Priority to CN201980067855.7A priority Critical patent/CN112912792A/en
Priority to KR1020217011955A priority patent/KR20210076925A/en
Priority to JP2020553300A priority patent/JP7400728B2/en
Publication of WO2020080477A1 publication Critical patent/WO2020080477A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C217/00Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton
    • C07C217/78Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton
    • C07C217/94Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C323/00Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups
    • C07C323/23Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and nitrogen atoms, not being part of nitro or nitroso groups, bound to the same carbon skeleton
    • C07C323/31Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and nitrogen atoms, not being part of nitro or nitroso groups, bound to the same carbon skeleton having the sulfur atom of at least one of the thio groups bound to a carbon atom of a six-membered aromatic ring of the carbon skeleton
    • C07C323/33Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and nitrogen atoms, not being part of nitro or nitroso groups, bound to the same carbon skeleton having the sulfur atom of at least one of the thio groups bound to a carbon atom of a six-membered aromatic ring of the carbon skeleton having at least one of the nitrogen atoms bound to a carbon atom of the same non-condensed six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/88Carbazoles; Hydrogenated carbazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D215/00Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
    • C07D215/02Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
    • C07D215/16Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D215/38Nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D219/00Heterocyclic compounds containing acridine or hydrogenated acridine ring systems
    • C07D219/04Heterocyclic compounds containing acridine or hydrogenated acridine ring systems with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to carbon atoms of the ring system
    • C07D219/08Nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D241/00Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings
    • C07D241/36Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings condensed with carbocyclic rings or ring systems
    • C07D241/38Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings condensed with carbocyclic rings or ring systems with only hydrogen or carbon atoms directly attached to the ring nitrogen atoms
    • C07D241/40Benzopyrazines
    • C07D241/44Benzopyrazines with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to carbon atoms of the hetero ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1057Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain
    • C08G73/1064Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • C08G73/1071Wholly aromatic polyimides containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1085Polyimides with diamino moieties or tetracarboxylic segments containing heterocyclic moieties
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/56Aligning agents
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/22Ortho- or ortho- and peri-condensed systems containing three rings containing only six-membered rings
    • C07C2603/24Anthracenes; Hydrogenated anthracenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/40Ortho- or ortho- and peri-condensed systems containing four condensed rings
    • C07C2603/42Ortho- or ortho- and peri-condensed systems containing four condensed rings containing only six-membered rings
    • C07C2603/50Pyrenes; Hydrogenated pyrenes

Definitions

  • the present invention relates to a liquid crystal alignment agent, a liquid crystal alignment film, and a liquid crystal display device using the same.
  • the liquid crystal alignment film of this polyimide film is prepared by a method of applying a solution of a polyimide precursor polyamic acid or a solvent-soluble polyimide solution to a substrate and subjecting the film obtained by baking to an alignment treatment such as a rubbing treatment. ing.
  • This polyamic acid or solvent-soluble polyimide is generally produced by a polycondensation reaction between a tetracarboxylic acid derivative such as tetracarboxylic acid dianhydride and a diamine compound.
  • Diamine compounds which are raw materials such as polyamic acid and polyimide, are important because they affect the characteristics of the liquid crystal alignment film obtained therefrom, and thus the characteristics of the liquid crystal display device, and various diamine compounds have been conventionally used. Proposed.
  • Patent Document 1 proposes a liquid crystal aligning agent obtained from the following diamine compounds.
  • liquid crystal display elements have been improved in performance, area, and power consumption of display devices have been advanced.
  • liquid crystal display elements have come to be used in various environments. The characteristics that can be obtained are becoming severe.
  • the sensitivity margin means a sensitivity region in which good liquid crystal alignment characteristics can be obtained when polarized ultraviolet rays are irradiated.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a liquid crystal aligning agent capable of obtaining a liquid crystal aligning film having good liquid crystal aligning property and having an increased sensitivity margin. .
  • a liquid crystal aligning agent containing a polymer obtained from a novel diamine satisfies the above problems.
  • the present invention is based on such findings and has the following gist. From the group consisting of a polyamic acid obtained by reacting a diamine component containing a diamine having a structure represented by the following formula [1] with a tetracarboxylic dianhydride component, and a polyimide obtained by imidizing the polyamic acid.
  • a liquid crystal aligning agent comprising at least one polymer selected.
  • a 1 and A 2 are each independently a monocyclic group which may have a substituent or a condensed ring group, and A 1 and A 2 are simultaneously a monocyclic group.
  • X 1 and X 2 are each independently a single bond, an oxygen atom or a sulfur atom, Q is an alkylene group having 1 or 2 carbon atoms, and m and n are each independently. And is an integer of 1 to 3.
  • liquid crystal aligning agent of the present invention a liquid crystal aligning film having good liquid crystal aligning property can be obtained, and a sensitivity margin can be increased.
  • the diamine used as a raw material for the liquid crystal aligning agent of the present invention is a diamine having a structure represented by the following formula [1].
  • a 1 and A 2 are each independently a monocyclic group which may have a substituent or a condensed ring group, and A 1 and A 2 are simultaneously a monocyclic group. It never happens.
  • X 1 and X 2 are each independently a single bond, an oxygen atom or a sulfur atom.
  • Q is an alkylene group having 1 or 2 carbon atoms.
  • m and n are each independently an integer of 1 to 3.
  • a monocyclic group means the remaining atomic group obtained by removing two hydrogen atoms from a monocycle.
  • the monocycle include benzene; 5-membered heterocycles such as furan, thiophene, pyrrole, oxazole, thiazole, imidazole, and pyrazole; and 6-membered heterocycles such as pyran, pyrone, pyridine, pyridazine, pyrimidine, and pyrazine.
  • the monocycle is preferably benzene or pyridine. When the monocyclic ring is benzene, the monocyclic group is a phenylene group.
  • “Fused ring group” means an atomic group remaining after removing two hydrogen atoms from the condensed ring.
  • the condensed ring include condensed polycyclic aromatic hydrocarbons such as naphthalene, tetralin, indene, fluorene, anthracene, phenanthrene, and pyrene; benzofuran, thionaphthene, indole, carbazole, coumarin, benzo-pyrone, quinoline, isoquinoline, acridine, Examples include condensed polycyclic heterocycles such as phthalazine, quinazoline, quinoxaline.
  • the fused ring is preferably naphthylene, anthracene, pyrene, indole, carbazole, coumarin, benzo-pyrone, quinoline, or isoquinoline.
  • the monocyclic group and the condensed ring group may further have a substituent.
  • substituents that the monocyclic group and the condensed ring group may have include alkyl having 1 to 4 carbons, alkoxy having 1 to 4 carbons, halogen atom and the like.
  • X 1 and X 2 are preferably oxygen atoms.
  • Q is preferably alkylene having 2 carbon atoms.
  • m and n are preferably 1.
  • Specific preferred diamines include, but are not limited to, the followings.
  • tetracarboxylic acid dianhydride component a tetracarboxylic dianhydride represented by the following formula [7] (also referred to as a specific tetracarboxylic dianhydride) or a derivative thereof is used as a tetracarboxylic dianhydride component. It is preferably used as a part.
  • Z 1 is a tetravalent organic group, and examples thereof include the structures of the following formulas (X1-1) to (X1-19).
  • R 3 to R 12 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, An alkynyl group having 2 to 6 carbon atoms, a monovalent organic group having 1 to 6 carbon atoms containing a fluorine atom, or a phenyl group.
  • at least one of R 3 to R 6 is a group other than a hydrogen atom.
  • the structure of X 1 is preferably the above formula (X1-1), (X1-3) or (X1-4), and in the formula (X1-1), the following formula (X1-1) At least one selected from the structures represented by -1) to (X1-1-5) is more preferable, and the following formula (X1-1-1) is particularly preferable.
  • the tetracarboxylic acid dianhydride represented by the formula [7] or a derivative thereof may be used as a mixture of two or more kinds.
  • the use ratio of the tetracarboxylic acid dianhydride represented by the above formula [7] or a derivative thereof is preferably 50 mol% or more based on 1 mol of the tetracarboxylic acid dianhydride component used in the polymer of the present invention, 70 mol% or more is more preferable, and 80 mol% or more is still more preferable. Further, when the tetracarboxylic dianhydride component used in the polymerization of the polymer of the present invention contains the tetracarboxylic dianhydride represented by the above formula [7] or a derivative thereof, suppression of bright spots due to decomposition products It is preferable from the viewpoint of liquid crystal alignment.
  • the tetracarboxylic dianhydride component used for the polymerization of the polymer of the present invention may contain a tetracarboxylic dianhydride other than the above formula [7] or a derivative thereof.
  • the tetracarboxylic acid dianhydride or derivative thereof other than the above formula [7] may be used alone or in combination of two or more in consideration of the liquid crystal alignment property of the liquid crystal alignment film to be formed, the voltage holding property and the accumulated charge. Can be used.
  • the polymer in the present invention means a polyamic acid and / or a polyimide obtained by imidizing the polyamic acid.
  • the polyamic acid of the present invention is obtained by the reaction of a diamine component containing a specific diamine and a tetracarboxylic dianhydride component.
  • the content ratio of the specific diamine is not limited.
  • the content of the specific diamine in the diamine component may be 100%.
  • various diamines can be used in combination because they satisfy various properties required for the liquid crystal alignment film, such as a property of increasing the pretilt angle of the liquid crystal and a property of enhancing the vertical alignment property of the liquid crystal.
  • the content ratio of the specific diamine in the diamine component used for polymerization is preferably 1 to 50 mol%, particularly preferably 5 to 30 mol%.
  • diamine other than the specific diamine used together when the specific diamine is less than 100 mol%, alicyclic diamine, aromatic-aliphatic diamine, aromatic Examples thereof include diamine, heterocyclic diamine, and aliphatic diamine.
  • Examples of the alicyclic diamine include 1,4-diaminocyclohexane, 1,3-diaminocyclohexane, 4,4′-diaminodicyclohexylmethane, 4,4′-diamino-3,3′-dimethyldicyclohexylamine and isophoronediamine.
  • Examples of aromatic diamines include o-phenylenediamine, m-phenylenediamine, p-phenylenediamine, 2,4-diaminotoluene, 2,5-diaminotoluene, 3,5-diaminotoluene, 1,4-diamino.
  • aromatic-aliphatic diamines include 3-aminobenzylamine, 4-aminobenzylamine, 3-amino-N-methylbenzylamine, 4-amino-N-methylbenzylamine, 3-aminophenethylamine, 4- Aminophenethylamine, 3-amino-N-methylphenethylamine, 4-amino-N-methylphenethylamine, 3- (3-aminopropyl) aniline, 4- (3-aminopropyl) aniline, 3- (3-methylaminopropyl) Aniline, 4- (3-methylaminopropyl) aniline, 3- (4-aminobutyl) aniline, 4- (4-aminobutyl) aniline, 3- (4-methylaminobutyl) aniline, 4- (4-methyl Aminobutyl) aniline, 3- (5-aminopentyl) aniline, 4- (5-aminopentyl Aniline, 3- (5-aminopentyl) aniline, 4-
  • heterocyclic diamine examples include 2,6-diaminopyridine, 2,4-diaminopyridine, 2,4-diamino-1,3,5-triazine, 2,7-diaminodibenzofuran and 3,6-diaminocarbazole. , 2,4-diamino-6-isopropyl-1,3,5-triazine, 2,5-bis (4-aminophenyl) -1,3,4-oxadiazole and the like.
  • Examples of the aliphatic diamine include 1,2-diaminoethane, 1,3-diaminopropane, 1,4-diaminobutane, 1,5-diaminopentane, 1,6-diaminohexane, 1,7-diaminoheptane, 1,8-diaminooctane, 1,9-diaminononane, 1,10-diaminodecane, 1,3-diamino-2,2-dimethylpropane, 1,6-diamino-2,5-dimethylhexane, 1,7- Diamino-2,5-dimethylheptane, 1,7-diamino-4,4-dimethylheptane, 1,7-diamino-3-methylheptane, 1,9-diamino-5-methylnonane, 1,12-diaminododecane, Examples include 1,18-diaminooc
  • diamine which has an alkyl group, a fluorine-containing alkyl group, an aromatic ring, an aliphatic ring, a heterocycle, or the macrocyclic substitution body which consists of them in a side chain.
  • diamines represented by the following formulas [DA-101] to [DA-130] are exemplified.
  • R 6 is an alkyl group or a fluorine-containing alkyl group having 1 to 22 carbon atoms.
  • R 7 is an alkyl group, an alkoxy group, having 1 to 22 carbon atoms, It is a fluorine-containing alkyl group or a fluorine-containing alkoxy group.
  • R 8 is an alkyl group, an alkoxy group, a fluorine-containing alkyl group or a fluorine-containing alkoxy group having 1 to 22 carbon atoms.
  • R 9 is a fluorine group, a cyano group, a trifluoromethane group, a nitro group, an azo group, a formyl group, an acetyl group, an acetoxy group, or a hydroxyl group.
  • R 10 is an alkyl group having 3 to 12 carbon atoms, and the cis-trans isomerism of 1,4-cyclohexylene is in the trans form.
  • a specific diamine in combination with the above-mentioned [DA-101] to [DA-130] because a more stable pretilt angle can be obtained.
  • the diamines of the formulas [DA-110] to [DA-130] are preferred, and the diamines of [DA-110] to [DA-116] are more preferred.
  • the preferred content of these diamines is not particularly limited, but is preferably 5 to 50 mol% in the diamine component, and 5 to 30 mol% in terms of printability.
  • diamines represented by the following formulas [DA-131] to [DA-138] may be used in combination.
  • Diamine is effective in reducing accumulated electrification.
  • diaminosiloxane represented by the following formula [DA-139] and the like can also be mentioned as other diamines.
  • M is an integer of 1 to 10.
  • Y 2 is a divalent organic group having a nitrogen atom bonded to the aromatic group or a nitrogen-containing aromatic heterocycle.
  • Examples of Y 2 in the formula (8) include the following formulas (Y2-1) to (Y2-12).
  • diamines may be used alone or in combination of two or more depending on properties such as liquid crystal alignment property when the liquid crystal alignment film is formed, voltage holding property and accumulated charge.
  • a known method can be used as a method for obtaining the polyamic acid of the present invention by reacting a tetracarboxylic dianhydride component and a diamine component.
  • a known method is a method of reacting a tetracarboxylic dianhydride component and a diamine component in an organic solvent.
  • the reaction between the tetracarboxylic acid dianhydride component and the diamine proceeds in an organic solvent relatively easily, and no by-product is generated, which is advantageous.
  • the organic solvent used for the reaction between the tetracarboxylic dianhydride component and the diamine is not limited as long as it can dissolve the generated polyamic acid. Specific examples are given below. N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-methylcaprolactam, dimethylsulfoxide, tetramethylurea, pyridine, dimethylsulfone, ⁇ -butyrolactone , Isopropyl alcohol, methoxymethyl pentanol, dipentene, ethyl amyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl isoamyl ketone, methyl isopropyl ketone, methyl cellosolve, ethyl cellosolve, methyl cellosolve acetate, ethyl cellosolve acetate
  • the organic solvent is preferably dehydrated and dried.
  • the tetracarboxylic acid dianhydride component and the diamine component are reacted in an organic solvent, the solution in which the diamine component is dispersed or dissolved in the organic solvent is stirred, and the tetracarboxylic acid dianhydride component as it is, or the organic solvent
  • a method of adding by dispersing or dissolving in a solvent, a method of adding a diamine component to a solution in which a tetracarboxylic acid dianhydride component is dispersed or dissolved in an organic solvent, a tetracarboxylic acid dianhydride component and a diamine component are added.
  • Examples of the method include alternate addition, and any of these methods may be used.
  • the tetracarboxylic dianhydride component or the diamine component is composed of a plurality of types of compounds, they may be reacted in a premixed state, may be individually and sequentially reacted, and are further reacted individually to have a low molecular weight.
  • a high molecular weight body may be obtained by mixing and reacting the bodies.
  • the temperature at which the tetracarboxylic acid dianhydride component and the diamine component are reacted can be selected from any temperature of -20 to 150 ° C, but is preferably in the range of -5 to 100 ° C.
  • the reaction can be carried out at any concentration, but if the concentration is too low, it becomes difficult to obtain a high-molecular weight polymer, and if the concentration is too high, the viscosity of the reaction solution becomes too high and uniform stirring is difficult. Therefore, the total concentration of the tetracarboxylic dianhydride component and the diamine component in the reaction solution is preferably 1 to 50% by mass, more preferably 5 to 30% by mass.
  • the reaction can be performed at a high concentration in the initial stage, and then an organic solvent can be added.
  • the ratio of the total number of moles of the tetracarboxylic dianhydride component to the total number of moles of the diamine component is preferably 0.8 to 1.2, and 0.9 to 1. 1 is more preferable. Similar to the ordinary polycondensation reaction, the closer the molar ratio is to 1.0, the larger the molecular weight of the polyamic acid produced.
  • the polyimide of the present invention is a polyimide obtained by dehydrating and ring-closing the above polyamic acid, and is useful as a polymer for obtaining a liquid crystal alignment film.
  • the dehydration ring closure rate (imidization rate) of the amic acid group does not necessarily have to be 100%, and can be arbitrarily adjusted according to the application and purpose.
  • the method for imidizing the polyamic acid include a thermal imidization method in which a solution of the polyamic acid is heated as it is, and a catalytic imidization method in which a catalyst is added to the solution of the polyamic acid.
  • the temperature at which the polyamic acid is subjected to thermal imidization in a solution is 100 to 400 ° C., preferably 120 to 250 ° C., and it is preferable to remove water generated by the imidization reaction outside the system.
  • the catalytic imidization of polyamic acid can be carried out by adding a basic catalyst and an acid anhydride to a solution of polyamic acid and stirring the mixture at -20 to 250 ° C, preferably 0 to 180 ° C.
  • the amount of the basic catalyst is 0.5 to 30 times, preferably 2 to 20 times the amount of the amic acid group, and the amount of the acid anhydride is 1 to 50 times, preferably 3 to the molar amount of the amic acid group. It is 30 mol times.
  • the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Among them, pyridine is preferable because it has a basicity suitable for proceeding the reaction.
  • Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic dianhydride, and the use of acetic anhydride is preferable because purification after the reaction is easy.
  • the imidization rate by catalytic imidization can be controlled by adjusting the amount of catalyst, reaction temperature, reaction time, and the like.
  • the molecular weight of the polymer contained in the liquid crystal aligning agent of the present invention is determined by GPC (Gel Permeation Chromatography) method in consideration of the strength of the obtained coating film, the workability during coating film formation, and the uniformity of the coating film.
  • the measured weight average molecular weight is preferably 5,000 to 1,000,000, and more preferably 10,000 to 150,000.
  • the liquid crystal aligning agent of the present invention is a coating liquid for forming a liquid crystal aligning film, and is a solution in which a resin component for forming a resin film is dissolved in an organic solvent.
  • the resin component contains at least one polymer selected from the above-mentioned polymers of the present invention.
  • the content of the resin component in the liquid crystal aligning agent is preferably 1 to 20% by mass, more preferably 3 to 15% by mass, and particularly preferably 3 to 10% by mass. All of the resin components may be the polymer of the present invention, or other polymers may be mixed. At that time, the content of the other polymer in the resin component is 0.5 to 15% by mass, preferably 1 to 10% by mass. Examples of such other polymer include polyamic acid or polyimide obtained by using a diamine compound other than the specific diamine compound as the diamine component to be reacted with the tetracarboxylic dianhydride component.
  • the organic solvent used for the liquid crystal aligning agent of the present invention is not particularly limited as long as it is an organic solvent that dissolves the resin component. Specific examples are given below. N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, 2-pyrrolidone, N-ethylpyrrolidone, N-vinylpyrrolidone, dimethylsulfoxide, tetramethylurea, pyridine, Dimethyl sulfone, hexamethyl sulfoxide, ⁇ -butyrolactone, 3-methoxy-N, N-dimethylpropanamide, 3-ethoxy-N, N-dimethylpropanamide, 3-butoxy-N, N-dimethylpropanamide, 1,3 -Dimethyl-imidazolidinone, ethyl amyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl is
  • the liquid crystal aligning agent of the present invention may contain components other than the above.
  • examples thereof include compounds that improve the adhesion between the liquid crystal alignment film and the substrate, such as solvent-rich substances that improve the film thickness uniformity and surface smoothness when the liquid crystal alignment agent is applied.
  • Specific examples of the solvent (poor solvent) that improves the uniformity of the film thickness and the surface smoothness include the following.
  • Examples of the compound that improves the uniformity of the film thickness and the surface smoothness include a fluorine-based surfactant, a silicone-based surfactant, and a nonion-based surfactant. More specifically, for example, Ftop EF301, EF303, EF352 (manufactured by Tochem Products), Megafac F171, F173, R-30 (manufactured by Dainippon Ink and Chemicals), Fluorard FC430, FC431 (manufactured by Sumitomo 3M) Asahi Guard AG710, Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC106 (manufactured by Asahi Glass Co., Ltd.).
  • the use ratio of these surfactants is preferably 0.01 to 2 parts by mass, more preferably 0.01 to 1 part by mass, relative to 100 parts by mass of the resin component contained in the liquid crystal aligning agent.
  • the compound that improves the adhesion between the liquid crystal alignment film and the substrate include functional silane-containing compounds and epoxy group-containing compounds shown below.
  • phenoplast-based additive for the purpose of preventing the deterioration of the electrical characteristics due to the backlight. Specific phenoplast additives are shown below.
  • the liquid crystal aligning agent of the present invention contains a dielectric substance, a conductive substance, and further a film of a liquid crystal alignment film when it is formed into a liquid crystal alignment film for the purpose of changing electrical properties such as dielectric constant and conductivity.
  • a crosslinkable compound or the like for the purpose of increasing hardness or compactness may be added.
  • the liquid crystal aligning agent of the present invention can be used as a liquid crystal aligning film without applying alignment treatment such as rubbing treatment or light irradiation after being applied on a substrate and baked, or for vertical alignment use.
  • the substrate used is not particularly limited as long as it is a highly transparent substrate, and a glass substrate, an acrylic substrate, a plastic substrate such as a polycarbonate substrate, or the like can be used. Further, it is preferable to use a substrate on which an ITO electrode or the like for driving the liquid crystal is formed in terms of simplification of the process.
  • an opaque material such as a silicon wafer can be used as long as it is only on one side of the substrate, and in this case, a material such as aluminum that reflects light can be used as the electrode.
  • the method for applying the liquid crystal aligning agent is not particularly limited, but industrially, it is generally performed by a method such as screen printing, offset printing, flexographic printing, and inkjet. Other coating methods include dips, roll coaters, slit coaters, spinners and the like, and these may be used depending on the purpose.
  • Firing after applying the liquid crystal aligning agent on the substrate is performed at 50 to 300 ° C., preferably 80 to 250 ° C. by a heating means such as a hot plate, and the solvent can be evaporated to form a coating film. If the thickness of the coating film formed after firing is too thick, it is disadvantageous in terms of power consumption of the liquid crystal display element, and if it is too thin, the reliability of the liquid crystal display element may decrease, so that the thickness is preferably 5 to 300 nm. It is preferably 10 to 100 nm. When the liquid crystal is horizontally or tilted, the baked coating film is treated by rubbing or irradiation with polarized ultraviolet light.
  • the method for aligning a liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention may be a rubbing treatment method, but the liquid crystal aligning agent of the present invention can obtain an alignment treatment with an expanded dose margin as described above. Therefore, the photo-alignment treatment method is preferable.
  • radiation having a wavelength of 100 to 800 nm preferably ultraviolet light or visible light
  • ultraviolet rays having a wavelength of preferably 100 to 400 nm, more preferably 200 to 400 nm are used.
  • the liquid crystal display device of the present invention is a liquid crystal display device in which a liquid crystal alignment film-provided substrate is obtained from the liquid crystal alignment agent of the present invention by the above-mentioned method and then a liquid crystal cell is produced by a known method.
  • liquid crystal cell production prepare a pair of substrates on which a liquid crystal alignment film is formed, disperse spacers on the liquid crystal alignment film on one of the substrates, and place the liquid crystal alignment film surface inside.
  • examples include a method in which the other substrate is bonded and liquid crystal is injected under reduced pressure for sealing, or a method in which liquid crystal is dropped on the surface of the liquid crystal alignment film on which spacers are dispersed and then the substrate is bonded and sealed.
  • the thickness of the spacer is preferably 1 to 30 ⁇ m, more preferably 2 to 10 ⁇ m. ⁇
  • NMP N-methyl-2-pyrrolidone
  • GBL ⁇ -butyrolactone
  • BCS butyl cellosolve
  • ethyl acetate (200 g), hexane (100 g) and 1N hydrochloric acid (500 g) were added to the organic layer and added to the separated aqueous layer.
  • sodium hydroxide (80 g) was added to make it alkaline.
  • the organic layer was separated, washed with saturated aqueous sodium chloride solution, dried over sodium sulfate, filtered, and the filtrate was concentrated to obtain a crude product (154 g).
  • Ethyl acetate (462 g) was added to the crude product and the mixture was heated and dissolved at 70 ° C., hexane (770 g) was added, and the mixture was cooled.
  • GPC device Shodex (GPC-101), column: Shodex (KD803, KD805 in series), column temperature: 50 ° C, eluent: N, N-dimethylformamide (lithium bromide-water as an additive) 30 mmol / L of hydrate (LiBr.H 2 O), 30 mmol / L of phosphoric acid / anhydrous crystal (o-phosphoric acid), 10 ml / L of tetrahydrofuran (THF), flow rate: 1.0 ml / min
  • Calibration curve preparation Standard sample for use TSK standard polyethylene oxide manufactured by Tosoh Corporation (weight average molecular weight (Mw) about 900,000, 150,000, 100,000, 30,000), and polyethylene glycol manufactured by Polymer Laboratory (peak top molecular weight (Mp ) About 12,000, 4,000, 1,000). In order to avoid overlapping of peaks, the measurement was performed using a sample mixed with four kinds of 900,000, 100,000, 12,000 and 1,000
  • FFS driving liquid crystal cell In a liquid crystal cell for fringe field switching (FFS) mode, a FOP (Finger on Plate) electrode layer including a surface-shaped common electrode-insulating layer-comb-shaped pixel electrode is formed on the surface.
  • FFS fringe field switching
  • One glass substrate and a second glass substrate having a columnar spacer having a height of 4 ⁇ m on the front surface and having an ITO film for preventing electrification formed on the back surface were set as a set.
  • the pixel electrode has a comb-tooth shape in which a plurality of electrode elements each having a width of 3 ⁇ m and whose central portion is bent at an internal angle of 160 ° are arranged in parallel at intervals of 6 ⁇ m, and one pixel is It has a first region and a second region with a line connecting the bent portions of the plurality of electrode elements as a boundary.
  • the liquid crystal alignment film formed on the first glass substrate is subjected to an alignment treatment so that the direction that evenly divides the interior angle of the bent portion of the pixel and the alignment direction of the liquid crystal are orthogonal to each other, and the liquid crystal alignment film that is formed on the second glass substrate is aligned.
  • the film is subjected to alignment treatment so that the alignment direction of the liquid crystal on the first substrate and the alignment direction of the liquid crystal on the second substrate coincide with each other when the liquid crystal cell is manufactured.
  • a liquid crystal aligning agent filtered with a filter having a pore size of 1.0 ⁇ m was applied to the surface of each of the above-mentioned glass substrates by spin coating, and dried on a hot plate at 80 ° C. for 2 minutes. After that, a predetermined amount of linearly polarized UV light having a wavelength of 254 nm with an extinction ratio of 26: 1 is applied to the surface of the coating film through a polarizing plate, and then baked in a hot air circulating oven at 230 ° C. for 30 minutes to form a liquid crystal film having a thickness of 100 nm. A substrate with an alignment film was obtained.
  • a sealant was printed on one of the pair of glass substrates with a liquid crystal alignment film, the other substrate was attached so that the liquid crystal alignment film surfaces faced each other, and the sealant was cured to prepare an empty cell.
  • Liquid crystal MLC-3019 manufactured by Merck & Co., Inc.
  • the injection port was sealed to obtain an FFS driven liquid crystal cell.
  • the obtained liquid crystal cell was heated at 120 ° C. for 1 hour and left overnight, and then the afterimage characteristics were evaluated.
  • a liquid crystal cell is installed between two polarizing plates arranged so that their polarization axes are orthogonal to each other, a backlight is turned on, and the liquid crystal cell is arranged so that the transmitted light intensity in the first region of the pixel is minimized.
  • the arrangement angle was adjusted, and then the rotation angle required when the liquid crystal cell was rotated so that the transmitted light intensity of the second region of the pixel was minimized was obtained. It can be said that the smaller the value of the rotation angle, the better the afterimage characteristic due to the long-term AC drive.
  • the value of the angle ⁇ of the liquid crystal cell was 0.1 ° or less, it was evaluated as “good”.
  • A is the component (A)
  • B is the component (B)
  • C is neither the component (A) nor the component (B)
  • PI is polyimide. It means that.
  • polyimide resin powder was obtained.
  • Example 1 50 ml of 12 g by mass of the polyamic acid solution (A-1-PI) obtained in Synthesis Example 12 and 4.8 g of the 15 mass% of the polyamic acid solution (B-1) obtained in Synthesis Example 10 were used. The mixture was placed in an Erlenmeyer flask, NMP 1.20 g, GBL 6.00 g and BCS 4.00 g were added and mixed at 25 ° C. for 8 hours to obtain a liquid crystal aligning agent (1) (see Table 3 below). No abnormalities such as turbidity and precipitation were observed in this liquid crystal aligning agent, and it was confirmed that the liquid crystal aligning agent was a uniform solution.
  • Examples 2 to 16, Comparative Examples 1 and 2> By following the same procedure as in Example 1 except that the polyamic acid solution and the polyimide solution shown in Table 3 below were used instead of the polyimide acid solution (A-1-PI) and the polyamic acid solution (B-1). Thus, liquid crystal aligning agents (2) to (18) were obtained. No abnormalities such as turbidity and precipitation were observed in these liquid crystal aligning agents, and it was confirmed that they were uniform solutions.
  • Example 21 [Result of afterimage evaluation by long-term AC drive (when firing is performed before UV irradiation)] ⁇ Example 21> After filtering the liquid crystal aligning agent (1) of Example 1 with a filter having a pore size of 1.0 ⁇ m, a glass substrate having the prepared electrode-attached substrate and a columnar spacer having a height of 4 ⁇ m on which an ITO film is formed on the back surface was applied by spin coating. After drying for 2 minutes on a hot plate at 80 ° C., baking was performed for 30 minutes in a hot air circulation type oven at 230 ° C. to form a coating film having a film thickness of 100 nm.
  • This coating film surface was irradiated with linearly polarized ultraviolet light having a wavelength of 254 nm having an extinction ratio of 26: 1 through a polarizing plate and then baked in a hot air circulation oven at 230 ° C. for 30 minutes to obtain a substrate with a liquid crystal alignment film. .
  • a set of the above-mentioned two substrates is printed, a sealant is printed on the substrates, and the other substrate is bonded so that the liquid crystal alignment film surfaces face each other and the alignment direction becomes 0 °, and then a seal is formed.
  • the agent was cured to prepare an empty cell.
  • Liquid crystal MLC-3019 (manufactured by Merck & Co., Inc.) was injected into this empty cell by a reduced pressure injection method, and the injection port was sealed to obtain an FFS driven liquid crystal cell. After that, the obtained liquid crystal cell was heated at 120 ° C. for 1 hour and left overnight, and afterimage evaluation by long-term AC driving was performed.
  • the value of the angle ⁇ of the liquid crystal cell after long-term AC driving is 0.09 ° when the irradiation amount of the ultraviolet rays is 200 mJ / cm 2 , and 0.1 ° when the irradiation amount of 300 mJ / cm 2 is 300 mJ / cm 2 . Since all are 0.1 ° or less, good liquid crystal aligning property was obtained by the liquid crystal aligning agent (1) (see Table 4 below).
  • Example 21 except that the liquid crystal aligning agent shown in Table 4 below was used instead of the liquid crystal aligning agent (1) of Example 1 and the ultraviolet irradiation dose was changed to the ultraviolet irradiation dose shown in Table 4 below.
  • An FFS-driving liquid crystal cell was produced by the same method as above, and afterimage evaluation by long-term AC driving was performed. Table 4 shows the value of the angle ⁇ of the liquid crystal cell after the long-term AC driving.
  • Example 41 [Evaluation result of afterimage by long-term AC drive (when firing is not performed before UV irradiation)] ⁇ Example 41> After filtering with a filter having a pore size of 1.0 ⁇ m using the liquid crystal aligning agent (1) of Example 1, the prepared substrate with an electrode and a columnar spacer having a height of 4 ⁇ m on which an ITO film is formed on the back surface are provided. It was applied to a glass substrate by spin coating. After drying for 2 minutes on a hot plate at 80 ° C, this coating film surface was irradiated with linearly polarized ultraviolet light having a wavelength of 254 nm with an extinction ratio of 26: 1 via a polarizing plate, and then in a hot air circulation oven at 230 ° C.
  • a substrate with a liquid crystal alignment film having a film thickness of 100 nm was obtained.
  • a set of the above-mentioned two substrates is printed, a sealant is printed on the substrates, and the other substrate is bonded so that the liquid crystal alignment film surfaces face each other and the alignment direction is 0 °, and then a seal is formed.
  • the agent was cured to prepare an empty cell.
  • Liquid crystal MLC-3019 manufactured by Merck & Co., Inc.
  • the value of the angle ⁇ of the liquid crystal cell after long-term AC driving is 0.07 ° when the dose of the ultraviolet rays is 200 mJ / cm 2 , and 0.07 ° when the dose is 300 mJ / cm 2 . Since all are 0.1 ° or less, good liquid crystal aligning property was obtained by the liquid crystal aligning agent (1) (see Table 5 below).
  • Example 41 ⁇ Examples 42 to 49, Comparative Examples 41 and 42> Example 41, except that the liquid crystal aligning agent shown in Table 5 below was used in place of the liquid crystal aligning agent (1) of Example 1 and the ultraviolet irradiation dose was changed to the ultraviolet irradiation dose shown in Table 5 below.
  • An FFS-driving liquid crystal cell was produced by the same method as above, and afterimage evaluation by long-term AC driving was performed. Table 5 shows the values of the angle ⁇ of the liquid crystal cell after long-term AC driving.
  • the angle ⁇ (deg.) Is also an angle ⁇ of 0.1 ° or less, which is a good afterimage characteristic. Therefore, it is possible to improve the display quality of the liquid crystal display device. Excel.
  • the liquid crystal aligning agent of the present invention is used in a wide range of fields such as large-sized liquid crystal display devices that require high definition and low cost, and mobile liquid crystal display devices such as smartphones and mobile phones.
  • the entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2018-196761 filed on Oct. 18, 2018 are cited herein as disclosure of the specification of the present invention. , Take in.

Abstract

Provided is a liquid crystal aligning agent that: is capable of yielding a liquid crystal alignment film having good liquid crystal aligning properties; and has an increased sensitivity margin. The liquid crystal aligning agent is characterized by containing at least one polymer selected from the group consisting of: polyamic acids obtained by reacting a diamine component, containing a diamine having a structure represented by formula [1] below, with a tetracarboxylic acid dianhydride component; and polyimides obtained by imidizing said polyamic acids. (In formula [1], A1 and A2 are each independently a monocyclic group or condensed ring group optionally comprising a substituent, and A1 and A2 are not simultaneously monocyclic groups. X1 and X2 are each independently a single bond, an oxygen atom, or a sulfur atom. Q is an alkylene group comprising 1 or 2 carbon atoms. M and n are each independently integers from 1 to 3.)

Description

液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display device using the same
 本発明は、液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子に関する。 The present invention relates to a liquid crystal alignment agent, a liquid crystal alignment film, and a liquid crystal display device using the same.
 現在、液晶表示素子に用いられる液晶配向膜には、多くの場合、ポリイミド膜が使用されている。このポリイミド膜の液晶配向膜は、ポリイミドの前駆体であるポリアミック酸の溶液又は溶媒可溶性のポリイミドの溶液を基板に塗布し、焼成して得られる膜をラビング処理などの配向処理する方法により作製されている。このポリアミック酸や溶媒可溶性のポリイミドは、一般的に、テトラカルボン酸二無水物などのテトラカルボン酸誘導体と、ジアミン化合物との縮重合反応によって製造されている。 Currently, polyimide films are often used for liquid crystal alignment films used in liquid crystal display devices. The liquid crystal alignment film of this polyimide film is prepared by a method of applying a solution of a polyimide precursor polyamic acid or a solvent-soluble polyimide solution to a substrate and subjecting the film obtained by baking to an alignment treatment such as a rubbing treatment. ing. This polyamic acid or solvent-soluble polyimide is generally produced by a polycondensation reaction between a tetracarboxylic acid derivative such as tetracarboxylic acid dianhydride and a diamine compound.
 かかるポリアミック酸やポリイミドなどの原料であるジアミン化合物は、これから得られる液晶配向膜の特性、ひいては、液晶表示素子の特性に影響するので重要であり、従来から種々のジアミン化合物が使用されており、提案されている。 Diamine compounds, which are raw materials such as polyamic acid and polyimide, are important because they affect the characteristics of the liquid crystal alignment film obtained therefrom, and thus the characteristics of the liquid crystal display device, and various diamine compounds have been conventionally used. Proposed.
 例えば、特許文献1には、以下のジアミン化合物から得られた液晶配向剤が提案されている。
Figure JPOXMLDOC01-appb-C000011
For example, Patent Document 1 proposes a liquid crystal aligning agent obtained from the following diamine compounds.
Figure JPOXMLDOC01-appb-C000011
日本特開2005-157346号公報Japanese Patent Laid-Open No. 2005-157346
 しかしながら、近年、液晶表示素子の高性能化、大面積化、表示デバイスの省電力化等が進み、それに加えて様々な環境下で液晶表示素子が使用されるようになり、液晶配向膜に求められる特性も厳しいものになってきている。とりわけ、液晶表示素子の利用が進むにつれ、良好な液晶配向性を確保するのが困難となる問題や、液晶配向膜を作製する際の感度マージンが小さい問題が顕著となってくる。なお、ここで感度マージンとは、偏光紫外線を照射した際に良好な液晶配向特性を得ることが出来る感度領域の事を言う。 However, in recent years, liquid crystal display elements have been improved in performance, area, and power consumption of display devices have been advanced. In addition, liquid crystal display elements have come to be used in various environments. The characteristics that can be obtained are becoming severe. In particular, as the use of liquid crystal display elements progresses, it becomes more difficult to secure good liquid crystal alignment, and the problem of a small sensitivity margin when forming a liquid crystal alignment film becomes significant. Here, the sensitivity margin means a sensitivity region in which good liquid crystal alignment characteristics can be obtained when polarized ultraviolet rays are irradiated.
 良好な液晶配向性を確保できなくなると、光抜けや配向不良が発生しやすくなる。また、感度マージンが小さいと、長期駆動時の表示ムラや、紫外線照射機の照度ムラから液晶配向方位の面内バラつきを引き起こし、黒表示にした際に光抜けやムラの原因となる。このため、良好な液晶配向性や向上した感度マージンに対して強い要求があるものの、従来提案されている技術では、かかる要求を十分に満たすことができない。 If it becomes impossible to secure a good liquid crystal alignment, light leakage and alignment failure will occur easily. In addition, if the sensitivity margin is small, display unevenness during long-term driving and in-plane unevenness of the liquid crystal alignment direction are caused by unevenness of the illuminance of the ultraviolet irradiator, which causes light leakage and unevenness when black display is performed. Therefore, although there is a strong demand for good liquid crystal alignment and an improved sensitivity margin, the conventionally proposed technology cannot sufficiently satisfy such demand.
 本発明は、上記の事情を鑑みてなされたものであり、良好な液晶配向性を有する液晶配向膜を得ることができ、且つ、感度マージンが増大した液晶配向剤を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a liquid crystal aligning agent capable of obtaining a liquid crystal aligning film having good liquid crystal aligning property and having an increased sensitivity margin. .
 本発明者らは、上記課題を解決するために鋭意検討を行った結果、新規なジアミンから得られる重合体を含有する液晶配向剤が、上記の課題を満たすことを見出した。
 本発明は、かかる知見に基づくものであり、下記を要旨とするものである。
 下記式[1]で表される構造を有するジアミンを含有するジアミン成分とテトラカルボン酸二無水物成分との反応で得られるポリアミック酸、及び該ポリアミック酸をイミド化して得られるポリイミドからなる群より選ばれる少なくとも1つの重合体を含有することを特徴とする液晶配向剤。
Figure JPOXMLDOC01-appb-C000012
(式[1]中、A及びAは、それぞれ独立して、置換基を有していてもよい単環基又は縮合環基であり、A及びAは、同時に単環基であることはない。X及びXは、それぞれ独立して、単結合、酸素原子又は硫黄原子である。Qは、炭素数1又は2のアルキレン基である。m及びnは、それぞれ独立して、1~3の整数である。)
As a result of intensive studies to solve the above problems, the present inventors have found that a liquid crystal aligning agent containing a polymer obtained from a novel diamine satisfies the above problems.
The present invention is based on such findings and has the following gist.
From the group consisting of a polyamic acid obtained by reacting a diamine component containing a diamine having a structure represented by the following formula [1] with a tetracarboxylic dianhydride component, and a polyimide obtained by imidizing the polyamic acid. A liquid crystal aligning agent comprising at least one polymer selected.
Figure JPOXMLDOC01-appb-C000012
(In the formula [1], A 1 and A 2 are each independently a monocyclic group which may have a substituent or a condensed ring group, and A 1 and A 2 are simultaneously a monocyclic group. X 1 and X 2 are each independently a single bond, an oxygen atom or a sulfur atom, Q is an alkylene group having 1 or 2 carbon atoms, and m and n are each independently. And is an integer of 1 to 3.)
 本発明の液晶配向剤によれば、良好な液晶配向性を有する液晶配向膜を得ることができ、且つ、感度マージンを増大させることができる。 According to the liquid crystal aligning agent of the present invention, a liquid crystal aligning film having good liquid crystal aligning property can be obtained, and a sensitivity margin can be increased.
<本発明の特定ジアミン>
 本発明の液晶配向剤の原料として使用されるジアミンは、下記の式[1]で表される構造を有するジアミンである。
Figure JPOXMLDOC01-appb-C000013
 上記式[1]中、A及びAは、それぞれ独立して、置換基を有していてもよい単環基又は縮合環基であり、A及びAは、同時に単環基であることはない。X及びXは、それぞれ独立に単結合、酸素原子又は硫黄原子である。Qは、炭素数1又は2のアルキレン基である。m及びnは、それぞれ独立して、1~3の整数である。
<Specific diamine of the present invention>
The diamine used as a raw material for the liquid crystal aligning agent of the present invention is a diamine having a structure represented by the following formula [1].
Figure JPOXMLDOC01-appb-C000013
In the above formula [1], A 1 and A 2 are each independently a monocyclic group which may have a substituent or a condensed ring group, and A 1 and A 2 are simultaneously a monocyclic group. It never happens. X 1 and X 2 are each independently a single bond, an oxygen atom or a sulfur atom. Q is an alkylene group having 1 or 2 carbon atoms. m and n are each independently an integer of 1 to 3.
 単環基とは、単環から水素原子を2個除いた残りの原子団をいう。単環としては、例えば、ベンゼン;フラン、チオフェン、ピロール、オキサゾール、チアゾール、イミダゾール、ピラゾール等の5員複素環;ピラン、ピロン、ピリジン、ピリダジン、ピリミジン、ピラジン等の6員複素環が挙げられる。単環は、好ましくは、ベンゼン又はピリジンである。なお、単環がベンゼンである場合、単環基はフェニレン基である。 ㆍ A monocyclic group means the remaining atomic group obtained by removing two hydrogen atoms from a monocycle. Examples of the monocycle include benzene; 5-membered heterocycles such as furan, thiophene, pyrrole, oxazole, thiazole, imidazole, and pyrazole; and 6-membered heterocycles such as pyran, pyrone, pyridine, pyridazine, pyrimidine, and pyrazine. The monocycle is preferably benzene or pyridine. When the monocyclic ring is benzene, the monocyclic group is a phenylene group.
 縮合環基とは、縮合環から水素原子を2個除いた残りの原子団をいう。縮合環としては、例えば、ナフタレン、テトラリン、インデン、フルオレン、アントラセン、フェナントレン、ピレン等の縮合多環芳香族炭化水素;ベンゾフラン、チオナフテン、インドール、カルバゾール、クマリン、ベンゾ-ピロン、キノリン、イソキノリン、アクリジン、フタラジン、キナゾリン、キノキサリン等の縮合多環式複素環が挙げられる。縮合環は、好ましくは、ナフチレン、アントラセン、ピレン、インドール、カルバゾール、クマリン、ベンゾ-ピロン、キノリン、又はイソキノリンである。 “Fused ring group” means an atomic group remaining after removing two hydrogen atoms from the condensed ring. Examples of the condensed ring include condensed polycyclic aromatic hydrocarbons such as naphthalene, tetralin, indene, fluorene, anthracene, phenanthrene, and pyrene; benzofuran, thionaphthene, indole, carbazole, coumarin, benzo-pyrone, quinoline, isoquinoline, acridine, Examples include condensed polycyclic heterocycles such as phthalazine, quinazoline, quinoxaline. The fused ring is preferably naphthylene, anthracene, pyrene, indole, carbazole, coumarin, benzo-pyrone, quinoline, or isoquinoline.
 単環基及び縮合環基は、更に置換基を有していてもよい。単環基及び縮合環基が有していてもよい置換基としては、炭素数1~4のアルキル、炭素数1~4のアルコキシ、ハロゲン原子等が挙げられる。 The monocyclic group and the condensed ring group may further have a substituent. Examples of the substituent that the monocyclic group and the condensed ring group may have include alkyl having 1 to 4 carbons, alkoxy having 1 to 4 carbons, halogen atom and the like.
 X及びXは、好ましくは、酸素原子である。Qは、液晶配向規制力の観点から、好ましくは、炭素数2のアルキレンである。m及びnは、好ましくは、1である。 X 1 and X 2 are preferably oxygen atoms. From the viewpoint of the liquid crystal alignment regulating force, Q is preferably alkylene having 2 carbon atoms. m and n are preferably 1.
 特定ジアミンの好ましい具体例としては、以下のものが挙げられるが、これらに限定されない。
Figure JPOXMLDOC01-appb-C000014
Specific preferred diamines include, but are not limited to, the followings.
Figure JPOXMLDOC01-appb-C000014
<テトラカルボン酸二無水物成分>
 本発明のポリイミド前駆体を得るためには、下記式[7]で表されるテトラカルボン酸二無水物(特定テトラカルボン酸二無水物ともいう)又はその誘導体をテトラカルボン酸二無水物成分の一部として用いることが好ましい。
<Tetracarboxylic acid dianhydride component>
In order to obtain the polyimide precursor of the present invention, a tetracarboxylic dianhydride represented by the following formula [7] (also referred to as a specific tetracarboxylic dianhydride) or a derivative thereof is used as a tetracarboxylic dianhydride component. It is preferably used as a part.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 式[7]中、Zは、4価の有機基であり、例えば、下記式(X1-1)~(X1-19)の構造が挙げられる。 In the formula [7], Z 1 is a tetravalent organic group, and examples thereof include the structures of the following formulas (X1-1) to (X1-19).
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 上記式(X1-1)及び(X1-2)において、R~R12はそれぞれ独立して、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、フッ素原子を含有する炭素数1~6の1価の有機基、又はフェニル基である。但し、R~Rの少なくとも一つは水素原子以外の基である。 In the formulas (X1-1) and (X1-2), R 3 to R 12 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, An alkynyl group having 2 to 6 carbon atoms, a monovalent organic group having 1 to 6 carbon atoms containing a fluorine atom, or a phenyl group. However, at least one of R 3 to R 6 is a group other than a hydrogen atom.
 液晶配向性の観点から、Xの構造は、上記式(X1-1)、(X1-3)、(X1-4)が好ましく、(X1-1)の中では、下記式(X1-1-1)~(X1-1-5)で表される構造から選ばれる少なくとも1種がより好ましく、下記式(X1-1-1)が特に好ましい。式[7]で表されるテトラカルボン酸二無水物又はその誘導体は2種以上を混合して用いてもよい。 From the viewpoint of liquid crystal alignment, the structure of X 1 is preferably the above formula (X1-1), (X1-3) or (X1-4), and in the formula (X1-1), the following formula (X1-1) At least one selected from the structures represented by -1) to (X1-1-5) is more preferable, and the following formula (X1-1-1) is particularly preferable. The tetracarboxylic acid dianhydride represented by the formula [7] or a derivative thereof may be used as a mixture of two or more kinds.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 上記式[7]で表されるテトラカルボン酸二無水物又はその誘導体の使用割合は、本発明の重合体に用いられるテトラカルボン酸二無水物成分1モルに対して50モル%以上が好ましく、70モル%以上がより好ましく、80モル%以上が更に好ましい。
 また、本発明の重合体の重合に用いられるテトラカルボン酸二無水物成分は、上記式[7]で表されるテトラカルボン酸二無水物又はその誘導体を含むと、分解物による輝点の抑制や液晶配向性の観点から好ましい。
The use ratio of the tetracarboxylic acid dianhydride represented by the above formula [7] or a derivative thereof is preferably 50 mol% or more based on 1 mol of the tetracarboxylic acid dianhydride component used in the polymer of the present invention, 70 mol% or more is more preferable, and 80 mol% or more is still more preferable.
Further, when the tetracarboxylic dianhydride component used in the polymerization of the polymer of the present invention contains the tetracarboxylic dianhydride represented by the above formula [7] or a derivative thereof, suppression of bright spots due to decomposition products It is preferable from the viewpoint of liquid crystal alignment.
 本発明の重合体の重合に用いられるテトラカルボン酸二無水物成分は、上記式[7]以外のテトラカルボン酸二無水物又はその誘導体を含有していてもよい。
 上記式[7]以外のテトラカルボン酸二無水物又はその誘導体は、形成される液晶配向膜の液晶配向性、電圧保持特性及び蓄積電荷などの特性を考慮して、1種又は2種以上を用いることができる。
The tetracarboxylic dianhydride component used for the polymerization of the polymer of the present invention may contain a tetracarboxylic dianhydride other than the above formula [7] or a derivative thereof.
The tetracarboxylic acid dianhydride or derivative thereof other than the above formula [7] may be used alone or in combination of two or more in consideration of the liquid crystal alignment property of the liquid crystal alignment film to be formed, the voltage holding property and the accumulated charge. Can be used.
<本発明の重合体>
 本発明における重合体とは、ポリアミック酸、及び/又は該ポリアミック酸をイミド化して得られるポリイミドを意味する。
<Polymer of the present invention>
The polymer in the present invention means a polyamic acid and / or a polyimide obtained by imidizing the polyamic acid.
<ポリアミック酸>
 本発明のポリアミック酸は、特定ジアミンを含有するジアミン成分とテトラカルボン酸二無水物成分との反応によって得られる。
 上記テトラカルボン酸二無水物成分との反応によりポリアミック酸を得るためのジアミン成分において、特定ジアミンの含有割合に制限はない。ジアミン成分における特定ジアミンの含有量は、100%であってもよい。しかし、液晶配向膜に要求される種々の特性、例えば、液晶のプレチルト角を大きくする特性、液晶の垂直配向性を高める、などの特性を満足させることから、種々のジアミンが併用することができる。重合に用いられるジアミン成分における特定ジアミンの含有割合は、1~50mol%が好ましく、特に好ましくは5~30mol%が好ましい。
<Polyamic acid>
The polyamic acid of the present invention is obtained by the reaction of a diamine component containing a specific diamine and a tetracarboxylic dianhydride component.
In the diamine component for obtaining the polyamic acid by the reaction with the tetracarboxylic acid dianhydride component, the content ratio of the specific diamine is not limited. The content of the specific diamine in the diamine component may be 100%. However, various diamines can be used in combination because they satisfy various properties required for the liquid crystal alignment film, such as a property of increasing the pretilt angle of the liquid crystal and a property of enhancing the vertical alignment property of the liquid crystal. . The content ratio of the specific diamine in the diamine component used for polymerization is preferably 1 to 50 mol%, particularly preferably 5 to 30 mol%.
 上記ジアミン成分において、特定ジアミンが100mol%未満の場合に併用される、特定ジアミン以外のジアミン(以下、その他のジアミンともいう。)としては、脂環式ジアミン、芳香族-脂肪族ジアミン、芳香族ジアミン、複素環式ジアミン、脂肪族ジアミンなどが挙げられる。 In the above diamine component, as the diamine other than the specific diamine (hereinafter also referred to as other diamine) used together when the specific diamine is less than 100 mol%, alicyclic diamine, aromatic-aliphatic diamine, aromatic Examples thereof include diamine, heterocyclic diamine, and aliphatic diamine.
 脂環式ジアミンの例としては、1,4-ジアミノシクロヘキサン、1,3-ジアミノシクロヘキサン、4,4’-ジアミノジシクロヘキシルメタン、4,4’-ジアミノ-3,3’-ジメチルジシクロヘキシルアミン、イソホロンジアミン等が挙げられる。
 芳香族ジアミン類の例としては、o-フェニレンジアミン、m-フェニレンジアミン、p-フェニレンジアミン、2,4-ジアミノトルエン、2,5-ジアミノトルエン、3,5-ジアミノトルエン、1,4-ジアミノ-2-メトキシベンゼン、2,5-ジアミノ-p-キシレン、1,3-ジアミノ-4-クロロベンゼン、3,5-ジアミノ安息香酸、1,4-ジアミノ-2,5-ジクロロベンゼン、4,4’-ジアミノ-1,2-ジフェニルエタン、4,4’-ジアミノ-2,2’-ジメチルビベンジル、4,4’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、4,4’-ジアミノ-3,3’―ジメチルジフェニルメタン、2,2’-ジアミノスチルベン、4,4’-ジアミノスチルベン、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルフィド、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、4,4’-ジアミノベンゾフェノン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、3,5-ビス(4-アミノフェノキシ)安息香酸、4,4’-ビス(4-アミノフェノキシ)ビベンジル、2,2-ビス[(4-アミノフェノキシ)メチル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフロロプロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、1,1-ビス(4-アミノフェニル)シクロヘキサン、α、α’-ビス(4-アミノフェニル)-1,4-ジイソプロピルベンゼン、9,9-ビス(4-アミノフェニル)フルオレン、2,2-ビス(3-アミノフェニル)ヘキサフロロプロパン、2,2-ビス(4-アミノフェニル)ヘキサフロロプロパン、4,4’-ジアミノジフェニルアミン、2,4-ジアミノジフェニルアミン、1,8-ジアミノナフタレン、1,5-ジアミノナフタレン、1,5-ジアミノアントラキノン、1,3-ジアミノピレン、1,6-ジアミノピレン、1,8―ジアミノピレン、2,7-ジアミノフルオレン、1,3-ビス(4-アミノフェニル)テトラメチルジシロキサン、ベンジジン、2,2’-ジメチルベンジジン、1,2-ビス(4-アミノフェニル)エタン、1,3-ビス(4-アミノフェニル)プロパン、1,4-ビス(4-アミノフェニル)ブタン、1,5-ビス(4-アミノフェニル)ペンタン、1,6-ビス(4-アミノフェニル)ヘキサン、1,7-ビス(4-アミノフェニル)ヘプタン、1,8-ビス(4-アミノフェニル)オクタン、1,9-ビス(4-アミノフェニル)ノナン、1,10-ビス(4-アミノフェニル)デカン、1,3-ビス(4-アミノフェノキシ)プロパン、1,4-ビス(4-アミノフェノキシ)ブタン、1,5-ビス(4-アミノフェノキシ)ペンタン、1,6-ビス(4-アミノフェノキシ)ヘキサン、1,7-ビス(4-アミノフェノキシ)ヘプタン、1,8-ビス(4-アミノフェノキシ)オクタン、1,9-ビス(4-アミノフェノキシ)ノナン、1,10-ビス(4-アミノフェノキシ)デカン、ジ(4-アミノフェニル)プロパン-1,3-ジオエート、ジ(4-アミノフェニル)ブタン-1,4-ジオエート、ジ(4-アミノフェニル)ペンタン-1,5-ジオエート、ジ(4-アミノフェニル)ヘキサン-1,6-ジオエート、ジ(4-アミノフェニル)ヘプタン-1,7-ジオエート、ジ(4-アミノフェニル)オクタン-1,8-ジオエート、ジ(4-アミノフェニル)ノナン-1,9-ジオエート、ジ(4-アミノフェニル)デカン-1,10-ジオエート、1,3-ビス〔4-(4-アミノフェノキシ)フェノキシ〕プロパン、1,4-ビス〔4-(4-アミノフェノキシ)フェノキシ〕ブタン、1,5-ビス〔4-(4-アミノフェノキシ)フェノキシ〕ペンタン、1,6-ビス〔4-(4-アミノフェノキシ)フェノキシ〕ヘキサン、1,7-ビス〔4-(4-アミノフェノキシ)フェノキシ〕ヘプタン、1,8-ビス〔4-(4-アミノフェノキシ)フェノキシ〕オクタン、1,9-ビス〔4-(4-アミノフェノキシ)フェノキシ〕ノナン、1,10-ビス〔4-(4-アミノフェノキシ)フェノキシ〕デカンなどが挙げられる。
Examples of the alicyclic diamine include 1,4-diaminocyclohexane, 1,3-diaminocyclohexane, 4,4′-diaminodicyclohexylmethane, 4,4′-diamino-3,3′-dimethyldicyclohexylamine and isophoronediamine. Etc.
Examples of aromatic diamines include o-phenylenediamine, m-phenylenediamine, p-phenylenediamine, 2,4-diaminotoluene, 2,5-diaminotoluene, 3,5-diaminotoluene, 1,4-diamino. -2-methoxybenzene, 2,5-diamino-p-xylene, 1,3-diamino-4-chlorobenzene, 3,5-diaminobenzoic acid, 1,4-diamino-2,5-dichlorobenzene, 4,4 '-Diamino-1,2-diphenylethane, 4,4'-diamino-2,2'-dimethylbibenzyl, 4,4'-diaminodiphenylmethane, 3,3'-diaminodiphenylmethane, 3,4'-diaminodiphenylmethane , 4,4'-diamino-3,3'-dimethyldiphenylmethane, 2,2'-diaminostilbene, 4,4'-diaminostilbene, 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl sulfide, 4,4'-diaminodiphenyl sulfone, 3,3'-diaminodiphenyl sulfone, 4,4'-diaminobenzophenone 1,3-bis (3-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene, 3,5-bis (4-aminophenoxy) ) Benzoic acid, 4,4'-bis (4-aminophenoxy) bibenzyl, 2,2-bis [(4-aminophenoxy) methyl] propane, 2,2-bis [4- (4-aminophenoxy) phenyl] Hexafluoropropane, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, bis [4- (3-aminophen) Enoxy) phenyl] sulfone, bis [4- (4-aminophenoxy) phenyl] sulfone, 1,1-bis (4-aminophenyl) cyclohexane, α, α′-bis (4-aminophenyl) -1,4- Diisopropylbenzene, 9,9-bis (4-aminophenyl) fluorene, 2,2-bis (3-aminophenyl) hexafluoropropane, 2,2-bis (4-aminophenyl) hexafluoropropane, 4,4 ' -Diaminodiphenylamine, 2,4-diaminodiphenylamine, 1,8-diaminonaphthalene, 1,5-diaminonaphthalene, 1,5-diaminoanthraquinone, 1,3-diaminopyrene, 1,6-diaminopyrene, 1,8- Diaminopyrene, 2,7-diaminofluorene, 1,3-bis (4-aminophenyl) tetramethyldisi Xanthane, benzidine, 2,2'-dimethylbenzidine, 1,2-bis (4-aminophenyl) ethane, 1,3-bis (4-aminophenyl) propane, 1,4-bis (4-aminophenyl) butane 1,5-bis (4-aminophenyl) pentane, 1,6-bis (4-aminophenyl) hexane, 1,7-bis (4-aminophenyl) heptane, 1,8-bis (4-aminophenyl) ) Octane, 1,9-bis (4-aminophenyl) nonane, 1,10-bis (4-aminophenyl) decane, 1,3-bis (4-aminophenoxy) propane, 1,4-bis (4- Aminophenoxy) butane, 1,5-bis (4-aminophenoxy) pentane, 1,6-bis (4-aminophenoxy) hexane, 1,7-bis (4-aminophenoxy) heptane 1,8-bis (4-aminophenoxy) octane, 1,9-bis (4-aminophenoxy) nonane, 1,10-bis (4-aminophenoxy) decane, di (4-aminophenyl) propane-1, 3-dioate, di (4-aminophenyl) butane-1,4-dioate, di (4-aminophenyl) pentane-1,5-dioate, di (4-aminophenyl) hexane-1,6-dioate, di (4-aminophenyl) heptane-1,7-dioate, di (4-aminophenyl) octane-1,8-dioate, di (4-aminophenyl) nonane-1,9-dioate, di (4-aminophenyl) ) Decane-1,10-dioate, 1,3-bis [4- (4-aminophenoxy) phenoxy] propane, 1,4-bis [4- (4-aminopheno) Si) phenoxy] butane, 1,5-bis [4- (4-aminophenoxy) phenoxy] pentane, 1,6-bis [4- (4-aminophenoxy) phenoxy] hexane, 1,7-bis [4- (4-Aminophenoxy) phenoxy] heptane, 1,8-bis [4- (4-aminophenoxy) phenoxy] octane, 1,9-bis [4- (4-aminophenoxy) phenoxy] nonane, 1,10- Examples thereof include bis [4- (4-aminophenoxy) phenoxy] decane.
 芳香族-脂肪族ジアミンの例としては、3-アミノベンジルアミン、4-アミノベンジルアミン、3-アミノ-N-メチルベンジルアミン、4-アミノ-N-メチルベンジルアミン、3-アミノフェネチルアミン、4-アミノフェネチルアミン、3-アミノ-N-メチルフェネチルアミン、4-アミノ-N-メチルフェネチルアミン、3-(3-アミノプロピル)アニリン、4-(3-アミノプロピル)アニリン、3-(3-メチルアミノプロピル)アニリン、4-(3-メチルアミノプロピル)アニリン、3-(4-アミノブチル)アニリン、4-(4-アミノブチル)アニリン、3-(4-メチルアミノブチル)アニリン、4-(4-メチルアミノブチル)アニリン、3-(5-アミノペンチル)アニリン、4-(5-アミノペンチル)アニリン、3-(5-メチルアミノペンチル)アニリン、4-(5-メチルアミノペンチル)アニリン、2-(6-アミノナフチル)メチルアミン、3-(6-アミノナフチル)メチルアミン、2-(6-アミノナフチル)エチルアミン、3-(6-アミノナフチル)エチルアミンなどが挙げられる。 Examples of aromatic-aliphatic diamines include 3-aminobenzylamine, 4-aminobenzylamine, 3-amino-N-methylbenzylamine, 4-amino-N-methylbenzylamine, 3-aminophenethylamine, 4- Aminophenethylamine, 3-amino-N-methylphenethylamine, 4-amino-N-methylphenethylamine, 3- (3-aminopropyl) aniline, 4- (3-aminopropyl) aniline, 3- (3-methylaminopropyl) Aniline, 4- (3-methylaminopropyl) aniline, 3- (4-aminobutyl) aniline, 4- (4-aminobutyl) aniline, 3- (4-methylaminobutyl) aniline, 4- (4-methyl Aminobutyl) aniline, 3- (5-aminopentyl) aniline, 4- (5-aminopentyl Aniline, 3- (5-methylaminopentyl) aniline, 4- (5-methylaminopentyl) aniline, 2- (6-aminonaphthyl) methylamine, 3- (6-aminonaphthyl) methylamine, 2- (6 -Aminonaphthyl) ethylamine, 3- (6-aminonaphthyl) ethylamine and the like can be mentioned.
 複素環式ジアミンの例としては、2,6-ジアミノピリジン、2,4-ジアミノピリジン、2,4-ジアミノ-1,3,5-トリアジン、2,7-ジアミノジベンゾフラン、3,6-ジアミノカルバゾール、2,4-ジアミノ-6-イソプロピル-1,3,5-トリアジン、2,5-ビス(4-アミノフェニル)-1,3,4-オキサジアゾールなどが挙げられる。
 脂肪族ジアミンの例としては、1,2-ジアミノエタン、1,3-ジアミノプロパン、1,4-ジアミノブタン、1,5-ジアミノペンタン、1,6-ジアミノヘキサン、1,7-ジアミノヘプタン、1,8-ジアミノオクタン、1,9-ジアミノノナン、1,10-ジアミノデカン、1,3-ジアミノ-2,2-ジメチルプロパン、1,6-ジアミノ-2,5-ジメチルヘキサン、1,7-ジアミノ-2,5-ジメチルヘプタン、1,7-ジアミノ-4,4-ジメチルヘプタン、1,7-ジアミノ-3-メチルヘプタン、1,9-ジアミノ-5-メチルノナン、1,12-ジアミノドデカン、1,18-ジアミノオクタデカン、1,2-ビス(3-アミノプロポキシ)エタンなどが挙げられる。
Examples of the heterocyclic diamine include 2,6-diaminopyridine, 2,4-diaminopyridine, 2,4-diamino-1,3,5-triazine, 2,7-diaminodibenzofuran and 3,6-diaminocarbazole. , 2,4-diamino-6-isopropyl-1,3,5-triazine, 2,5-bis (4-aminophenyl) -1,3,4-oxadiazole and the like.
Examples of the aliphatic diamine include 1,2-diaminoethane, 1,3-diaminopropane, 1,4-diaminobutane, 1,5-diaminopentane, 1,6-diaminohexane, 1,7-diaminoheptane, 1,8-diaminooctane, 1,9-diaminononane, 1,10-diaminodecane, 1,3-diamino-2,2-dimethylpropane, 1,6-diamino-2,5-dimethylhexane, 1,7- Diamino-2,5-dimethylheptane, 1,7-diamino-4,4-dimethylheptane, 1,7-diamino-3-methylheptane, 1,9-diamino-5-methylnonane, 1,12-diaminododecane, Examples include 1,18-diaminooctadecane and 1,2-bis (3-aminopropoxy) ethane.
 側鎖にアルキル基、フッ素含有アルキル基、芳香環、脂肪族環、複素環、又はそれらからなる大環状置換体を有するジアミンを併用してもよい。具体的には、下記の式[DA-101]~[DA-130]で示されるジアミンを例示される。
Figure JPOXMLDOC01-appb-C000018
(Rは、炭素数1~22を有する、アルキル基又はフッ素含有アルキル基である。)
You may use together the diamine which has an alkyl group, a fluorine-containing alkyl group, an aromatic ring, an aliphatic ring, a heterocycle, or the macrocyclic substitution body which consists of them in a side chain. Specifically, diamines represented by the following formulas [DA-101] to [DA-130] are exemplified.
Figure JPOXMLDOC01-appb-C000018
(R 6 is an alkyl group or a fluorine-containing alkyl group having 1 to 22 carbon atoms.)
Figure JPOXMLDOC01-appb-C000019
(Sは、-COO-、-OCO-、-CONH-、-NHCO-、-CH-、-O-、-CO-、又はNH-であり、Rは炭素数1~22を有する、アルキル基若しくはフッ素含有アルキル基である。)
Figure JPOXMLDOC01-appb-C000019
(S 5 is —COO—, —OCO—, —CONH—, —NHCO—, —CH 2 —, —O—, —CO—, or NH—, and R 6 has 1 to 22 carbon atoms. , An alkyl group or a fluorine-containing alkyl group.)
Figure JPOXMLDOC01-appb-C000020
(Sは、-O-、-OCH-、-CHO-、-COOCH-、又はCHOCO-であり、Rは炭素数1~22を有する、アルキル基、アルコキシ基、フッ素含有アルキル基若しくはフッ素含有アルコキシ基である。)
Figure JPOXMLDOC01-appb-C000020
(S 6 is —O—, —OCH 2 —, —CH 2 O—, —COOCH 2 —, or CH 2 OCO—, and R 7 is an alkyl group, an alkoxy group, having 1 to 22 carbon atoms, It is a fluorine-containing alkyl group or a fluorine-containing alkoxy group.)
Figure JPOXMLDOC01-appb-C000021
(Sは、-COO-、-OCO-、-CONH-、-NHCO-、-COOCH-、-CHOCO-、-CHO-、-OCH-、又はCH-であり、Rは炭素数1~22を有する、アルキル基、アルコキシ基、フッ素含有アルキル基若しくはフッ素含有アルコキシ基である。)
Figure JPOXMLDOC01-appb-C000021
(S 7 is —COO—, —OCO—, —CONH—, —NHCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2 O—, —OCH 2 —, or CH 2 —, R 8 is an alkyl group, an alkoxy group, a fluorine-containing alkyl group or a fluorine-containing alkoxy group having 1 to 22 carbon atoms.)
Figure JPOXMLDOC01-appb-C000022
(Sは、-COO-、-OCO-、-CONH-、-NHCO-、-COOCH-、-CHOCO-、-CHO-、-OCH-、-CH-、-O-、又はNH-であり、Rはフッ素基、シアノ基、トリフルオロメタン基、ニトロ基、アゾ基、ホルミル基、アセチル基、アセトキシ基、又は水酸基である。)
Figure JPOXMLDOC01-appb-C000022
(S 8 is —COO—, —OCO—, —CONH—, —NHCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2 O—, —OCH 2 —, —CH 2 —, —O -Or NH-, and R 9 is a fluorine group, a cyano group, a trifluoromethane group, a nitro group, an azo group, a formyl group, an acetyl group, an acetoxy group, or a hydroxyl group.)
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
(R10は炭素数3~12のアルキル基であり、1,4-シクロへキシレンのシス-トランス異性は、それぞれトランス体である。)
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
(R 10 is an alkyl group having 3 to 12 carbon atoms, and the cis-trans isomerism of 1,4-cyclohexylene is in the trans form.)
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 光により配向処理する場合においては、特定ジアミンと上記[DA-101]~[DA-130]のジアミンを併用させることで、更に安定したプレチルト角を得ることができるため好ましい。併用できるより好ましいジアミンとしては、式[DA-110]~[DA-130]が好ましく、より好ましくは[DA-110]~[DA-116]のジアミンである。これらのジアミンの好ましい含有量は、特に限定はされないが、ジアミン成分中の5~50mol%が好ましく、印刷性の点では5~30mol%が好ましい。
 また、以下の式[DA-131]~[DA-138]で表されるジアミンを併用させてもよい。
In the case of aligning with light, it is preferable to use a specific diamine in combination with the above-mentioned [DA-101] to [DA-130] because a more stable pretilt angle can be obtained. As more preferred diamines that can be used in combination, the diamines of the formulas [DA-110] to [DA-130] are preferred, and the diamines of [DA-110] to [DA-116] are more preferred. The preferred content of these diamines is not particularly limited, but is preferably 5 to 50 mol% in the diamine component, and 5 to 30 mol% in terms of printability.
Further, diamines represented by the following formulas [DA-131] to [DA-138] may be used in combination.
Figure JPOXMLDOC01-appb-C000027
(mは0~3の整数であり、式[DA-138]中、nは1~5の整数である)。
Figure JPOXMLDOC01-appb-C000027
(M is an integer of 0 to 3, and n is an integer of 1 to 5 in the formula [DA-138]).
 式[DA-131]、式[DA-132]等のジアミンを含有させることにより、液晶配向膜とした際の電圧保持特性を向上させることができ、式[DA-133]~[DA-138]のジアミンは蓄積電化の低減に効果がある。 By containing a diamine of the formula [DA-131] or the formula [DA-132], it is possible to improve the voltage holding property when used as a liquid crystal alignment film, and to formula [DA-133] to [DA-138]. ] Diamine is effective in reducing accumulated electrification.
 更に、下記の式[DA-139]で表されるジアミノシロキサンなども、その他のジアミンとして挙げることができる。
Figure JPOXMLDOC01-appb-C000028
(mは、1~10の整数である。)
Furthermore, diaminosiloxane represented by the following formula [DA-139] and the like can also be mentioned as other diamines.
Figure JPOXMLDOC01-appb-C000028
(M is an integer of 1 to 10.)
 更に、下記の式(8)で表されるジアミンも、その他のジアミンとして挙げることができる。
Figure JPOXMLDOC01-appb-C000029
(式(8)中、Yは芳香族基に結合する窒素原子又は含窒素芳香族複素環を有する2価の有機基である。)
Furthermore, the diamine represented by the following formula (8) can also be mentioned as another diamine.
Figure JPOXMLDOC01-appb-C000029
(In the formula (8), Y 2 is a divalent organic group having a nitrogen atom bonded to the aromatic group or a nitrogen-containing aromatic heterocycle.)
 式(8)中のYの例としては、下記式(Y2-1)~(Y2-12)が挙げられる。
Figure JPOXMLDOC01-appb-C000030
Examples of Y 2 in the formula (8) include the following formulas (Y2-1) to (Y2-12).
Figure JPOXMLDOC01-appb-C000030
 その他のジアミンは、液晶配向膜とした際の液晶配向性、電圧保持特性、蓄積電荷などの特性に応じて、1種、又は2種以上を混合して使用することもできる。 Other diamines may be used alone or in combination of two or more depending on properties such as liquid crystal alignment property when the liquid crystal alignment film is formed, voltage holding property and accumulated charge.
<ポリアミック酸の製造>
 テトラカルボン酸二無水物成分とジアミン成分との反応により、本発明のポリアミック酸を得る方法は、既知の手法を用いることができる。例えば、テトラカルボン酸二無水物成分とジアミン成分とを有機溶媒中で反応させる方法である。この場合、テトラカルボン酸二無水物成分とジアミンとの反応は、有機溶媒中で比較的容易に進行し、かつ副生成物が発生しない点で有利である。
<Production of polyamic acid>
As a method for obtaining the polyamic acid of the present invention by reacting a tetracarboxylic dianhydride component and a diamine component, a known method can be used. For example, it is a method of reacting a tetracarboxylic dianhydride component and a diamine component in an organic solvent. In this case, the reaction between the tetracarboxylic acid dianhydride component and the diamine proceeds in an organic solvent relatively easily, and no by-product is generated, which is advantageous.
 テトラカルボン酸二無水物成分とジアミンとの反応に用いる有機溶媒としては、生成したポリアミック酸が溶解するものであれば限定されない。その具体例を以下に挙げる。
 N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-メチルカプロラクタム、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、γ-ブチロラクトン、イソプロピルアルコール、メトキシメチルペンタノール、ジペンテン、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、メチルイソプロピルケトン、メチルセルソルブ、エチルセルソルブ、メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3-メチル-3-メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、ジオキサン、n-へキサン、n-ペンタン、n-オクタン、ジエチルエーテル、シクロヘキサノン、エチレンカーボネート、プロピレンカーボネート、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、ジグライム、4-ヒドロキシ-4-メチル-2-ペンタノン、3-メトキシ-N,N-ジメチルプロパンアミド、3-エトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミドなどが挙げられる。これらは単独で使用しても、混合して使用してもよい。更に、ポリアミック酸を溶解させない溶媒であっても、生成したポリアミック酸が析出しない範囲で上記溶媒に混合して使用してもよい。
The organic solvent used for the reaction between the tetracarboxylic dianhydride component and the diamine is not limited as long as it can dissolve the generated polyamic acid. Specific examples are given below.
N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-methylcaprolactam, dimethylsulfoxide, tetramethylurea, pyridine, dimethylsulfone, γ-butyrolactone , Isopropyl alcohol, methoxymethyl pentanol, dipentene, ethyl amyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl isoamyl ketone, methyl isopropyl ketone, methyl cellosolve, ethyl cellosolve, methyl cellosolve acetate, ethyl cellosolve acetate, butyl carbitol, ethyl Carbitol, ethylene glycol, ethylene glycol monoacetate, ethylene glycol monoisopropyl ether, ethylene glycol monobutyl ether Propylene glycol, propylene glycol monoacetate, propylene glycol monomethyl ether, propylene glycol tert-butyl ether, dipropylene glycol monomethyl ether, diethylene glycol, diethylene glycol monoacetate, diethylene glycol dimethyl ether, dipropylene glycol monoacetate monomethyl ether, dipropylene glycol monomethyl ether , Dipropylene glycol monoethyl ether, dipropylene glycol monoacetate monoethyl ether, dipropylene glycol monopropyl ether, dipropylene glycol monoacetate monopropyl ether, 3-methyl-3-methoxybutyl acetate, tripropylene glycol methyl ether , 3-methyl-3-methoxybutanol, diisopropyl ether, ethyl isobutyl ether, diisobutylene, amyl acetate, butyl butyrate, butyl ether, diisobutyl ketone, methylcyclohexene, propyl ether, dihexyl ether, dioxane, n-hexane, n -Pentane, n-octane, diethyl ether, cyclohexanone, ethylene carbonate, propylene carbonate, methyl lactate, ethyl lactate, methyl acetate, ethyl acetate, n-butyl acetate, propylene glycol monoethyl ether acetate, methyl pyruvate, ethyl pyruvate, Methyl 3-methoxypropionate, methyl ethyl 3-ethoxypropionate, ethyl 3-methoxypropionate, 3-ethoxypropionic acid, 3-methoxypropione , Propyl 3-methoxypropionate, butyl 3-methoxypropionate, diglyme, 4-hydroxy-4-methyl-2-pentanone, 3-methoxy-N, N-dimethylpropanamide, 3-ethoxy-N, N-dimethyl Examples include propanamide and 3-butoxy-N, N-dimethylpropanamide. These may be used alone or in combination. Furthermore, even a solvent that does not dissolve the polyamic acid may be used as a mixture with the above solvent as long as the generated polyamic acid does not precipitate.
 また、有機溶媒中の水分は重合反応を阻害し、更には生成したポリアミック酸を加水分解させる原因となるので、有機溶媒はなるべく脱水乾燥させたものが好ましい。
 テトラカルボン酸二無水物成分とジアミン成分とを有機溶媒中で反応させる際には、ジアミン成分を有機溶媒に分散あるいは溶解させた溶液を攪拌させ、テトラカルボン酸二無水物成分をそのまま、又は有機溶媒に分散あるいは溶解させて添加する方法、逆にテトラカルボン酸二無水物成分を有機溶媒に分散あるいは溶解させた溶液にジアミン成分を添加する方法、テトラカルボン酸二無水物成分とジアミン成分とを交互に添加する方法などが挙げられ、これらのいずれの方法を用いても良い。また、テトラカルボン酸二無水物成分又はジアミン成分が複数種の化合物からなる場合は、あらかじめ混合した状態で反応させても良く、個別に順次反応させても良く、更に個別に反応させた低分子量体を混合反応させ高分子量体としても良い。
Further, since water in the organic solvent inhibits the polymerization reaction and causes hydrolysis of the generated polyamic acid, the organic solvent is preferably dehydrated and dried.
When the tetracarboxylic acid dianhydride component and the diamine component are reacted in an organic solvent, the solution in which the diamine component is dispersed or dissolved in the organic solvent is stirred, and the tetracarboxylic acid dianhydride component as it is, or the organic solvent A method of adding by dispersing or dissolving in a solvent, a method of adding a diamine component to a solution in which a tetracarboxylic acid dianhydride component is dispersed or dissolved in an organic solvent, a tetracarboxylic acid dianhydride component and a diamine component are added. Examples of the method include alternate addition, and any of these methods may be used. Further, when the tetracarboxylic dianhydride component or the diamine component is composed of a plurality of types of compounds, they may be reacted in a premixed state, may be individually and sequentially reacted, and are further reacted individually to have a low molecular weight. A high molecular weight body may be obtained by mixing and reacting the bodies.
 テトラカルボン酸二無水物成分とジアミン成分とを反応させる温度は-20~150℃のうちの任意の温度を選択することができるが、好ましくは-5~100℃の範囲である。また、反応は任意の濃度で行うことができるが、濃度が低すぎると高分子量の重合体を得ることが難しくなり、濃度が高すぎると反応液の粘性が高くなり過ぎて均一な攪拌が困難となるので、テトラカルボン酸二無水物成分とジアミン成分の反応溶液中での合計濃度は、好ましくは1~50質量%、より好ましくは5~30質量%である。反応初期は高濃度で行い、その後、有機溶媒を追加することができる。
 ポリアミック酸の重合反応においては、テトラカルボン酸二無水物成分の合計モル数とジアミン成分の合計モル数との比は、0.8~1.2であることが好ましく、0.9~1.1がより好ましい。通常の重縮合反応と同様に、このモル比が1.0に近いほど生成するポリアミック酸の分子量は大きくなる。
The temperature at which the tetracarboxylic acid dianhydride component and the diamine component are reacted can be selected from any temperature of -20 to 150 ° C, but is preferably in the range of -5 to 100 ° C. The reaction can be carried out at any concentration, but if the concentration is too low, it becomes difficult to obtain a high-molecular weight polymer, and if the concentration is too high, the viscosity of the reaction solution becomes too high and uniform stirring is difficult. Therefore, the total concentration of the tetracarboxylic dianhydride component and the diamine component in the reaction solution is preferably 1 to 50% by mass, more preferably 5 to 30% by mass. The reaction can be performed at a high concentration in the initial stage, and then an organic solvent can be added.
In the polymerization reaction of the polyamic acid, the ratio of the total number of moles of the tetracarboxylic dianhydride component to the total number of moles of the diamine component is preferably 0.8 to 1.2, and 0.9 to 1. 1 is more preferable. Similar to the ordinary polycondensation reaction, the closer the molar ratio is to 1.0, the larger the molecular weight of the polyamic acid produced.
<ポリイミド>
 本発明のポリイミドは、前記のポリアミック酸を脱水閉環させて得られるポリイミドであり、液晶配向膜を得るための重合体として有用である。
 本発明のポリイミドにおいて、アミド酸基の脱水閉環率(イミド化率)は、必ずしも100%である必要はなく、用途や目的に応じて任意に調整することができる。
 ポリアミック酸をイミド化させる方法としては、ポリアミック酸の溶液をそのまま加熱する熱イミド化法、及びポリアミック酸の溶液に触媒を添加する触媒イミド化法が挙げられる。
 ポリアミック酸を溶液中で熱イミド化させる場合の温度は、100~400℃、好ましくは120~250℃であり、イミド化反応により生成する水を系外に除きながら行うのが好ましい。
<Polyimide>
The polyimide of the present invention is a polyimide obtained by dehydrating and ring-closing the above polyamic acid, and is useful as a polymer for obtaining a liquid crystal alignment film.
In the polyimide of the present invention, the dehydration ring closure rate (imidization rate) of the amic acid group does not necessarily have to be 100%, and can be arbitrarily adjusted according to the application and purpose.
Examples of the method for imidizing the polyamic acid include a thermal imidization method in which a solution of the polyamic acid is heated as it is, and a catalytic imidization method in which a catalyst is added to the solution of the polyamic acid.
The temperature at which the polyamic acid is subjected to thermal imidization in a solution is 100 to 400 ° C., preferably 120 to 250 ° C., and it is preferable to remove water generated by the imidization reaction outside the system.
 ポリアミック酸の触媒イミド化は、ポリアミック酸の溶液に、塩基性触媒と酸無水物とを添加し、-20~250℃、好ましくは0~180℃で攪拌することにより行うことができる。塩基性触媒の量は、アミド酸基の0.5~30モル倍、好ましくは2~20モル倍であり、酸無水物の量は、アミド酸基の1~50モル倍、好ましくは3~30モル倍である。塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミンなどを挙げることができ、中でもピリジンは反応を進行させるのに適した塩基性を持つので好ましい。酸無水物としては、無水酢酸、無水トリメリット酸、無水ピロメリット酸などを挙げることができ、中でも無水酢酸を用いると反応終了後の精製が容易となるので好ましい。触媒イミド化によるイミド化率は、触媒量、反応温度、反応時間等を調節することにより制御することができる。 The catalytic imidization of polyamic acid can be carried out by adding a basic catalyst and an acid anhydride to a solution of polyamic acid and stirring the mixture at -20 to 250 ° C, preferably 0 to 180 ° C. The amount of the basic catalyst is 0.5 to 30 times, preferably 2 to 20 times the amount of the amic acid group, and the amount of the acid anhydride is 1 to 50 times, preferably 3 to the molar amount of the amic acid group. It is 30 mol times. Examples of the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Among them, pyridine is preferable because it has a basicity suitable for proceeding the reaction. Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic dianhydride, and the use of acetic anhydride is preferable because purification after the reaction is easy. The imidization rate by catalytic imidization can be controlled by adjusting the amount of catalyst, reaction temperature, reaction time, and the like.
 本発明の液晶配向剤に含有される重合体の分子量は、得られる塗膜の強度、塗膜形成時の作業性、及び塗膜の均一性を考慮した場合、GPC(Gel Permeation Chromatography)法で測定した重量平均分子量で5,000~1,000,000とするのが好ましく、より好ましくは、10,000~150,000である。 The molecular weight of the polymer contained in the liquid crystal aligning agent of the present invention is determined by GPC (Gel Permeation Chromatography) method in consideration of the strength of the obtained coating film, the workability during coating film formation, and the uniformity of the coating film. The measured weight average molecular weight is preferably 5,000 to 1,000,000, and more preferably 10,000 to 150,000.
<液晶配向剤>
 本発明の液晶配向剤は、液晶配向膜を形成するための塗布液であり、樹脂被膜を形成するための樹脂成分が有機溶媒に溶解した溶液である。ここで、前記の樹脂成分は、上記した本発明の重合体から選ばれる少なくとも一種の重合体を含む。樹脂成分の液晶配向剤中の含有量は、1~20質量%が好ましく、より好ましくは3~15質量%、特に好ましくは3~10質量%である。
 樹脂成分は、全てが本発明の重合体であってもよく、それ以外の他の重合体が混合されていてもよい。その際、樹脂成分中における前記他の重合体の含有量は0.5~15質量%、好ましくは1~10質量%である。
 かかる他の重合体は、例えば、テトラカルボン酸ニ無水物成分と反応させるジアミン成分として、特定ジアミン化合物以外のジアミン化合物を使用して得られるポリアミック酸又はポリイミドなどが挙げられる。
<Liquid crystal aligning agent>
The liquid crystal aligning agent of the present invention is a coating liquid for forming a liquid crystal aligning film, and is a solution in which a resin component for forming a resin film is dissolved in an organic solvent. Here, the resin component contains at least one polymer selected from the above-mentioned polymers of the present invention. The content of the resin component in the liquid crystal aligning agent is preferably 1 to 20% by mass, more preferably 3 to 15% by mass, and particularly preferably 3 to 10% by mass.
All of the resin components may be the polymer of the present invention, or other polymers may be mixed. At that time, the content of the other polymer in the resin component is 0.5 to 15% by mass, preferably 1 to 10% by mass.
Examples of such other polymer include polyamic acid or polyimide obtained by using a diamine compound other than the specific diamine compound as the diamine component to be reacted with the tetracarboxylic dianhydride component.
 本発明の液晶配向剤に用いる有機溶媒は、樹脂成分を溶解させる有機溶媒であれば特に限定されない。その具体例を以下に挙げる。
 N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-メチルカプロラクタム、2-ピロリドン、N-エチルピロリドン、N-ビニルピロリドン、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルスルホキシド、γ-ブチロラクトン、3-メトキシ-N,N-ジメチルプロパンアミド、3-エトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド、1,3-ジメチル-イミダゾリジノン、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、メチルイソプロピルケトン、シクロヘキサノン、エチレンカーボネート、プロピレンカーボネート、ジグライム、4-ヒドロキシ-4-メチル-2-ペンタノンなどが挙げられる。これらは単独で使用しても、混合して使用してもよい。
The organic solvent used for the liquid crystal aligning agent of the present invention is not particularly limited as long as it is an organic solvent that dissolves the resin component. Specific examples are given below.
N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, 2-pyrrolidone, N-ethylpyrrolidone, N-vinylpyrrolidone, dimethylsulfoxide, tetramethylurea, pyridine, Dimethyl sulfone, hexamethyl sulfoxide, γ-butyrolactone, 3-methoxy-N, N-dimethylpropanamide, 3-ethoxy-N, N-dimethylpropanamide, 3-butoxy-N, N-dimethylpropanamide, 1,3 -Dimethyl-imidazolidinone, ethyl amyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl isoamyl ketone, methyl isopropyl ketone, cyclohexanone, ethylene carbonate, propylene carbonate, diglyme, 4-hydroxy-4 Such as methyl-2-pentanone and the like. These may be used alone or in combination.
 本発明の液晶配向剤は、上記以外の成分を含有してもよい。その例としては、液晶配向剤を塗布した際の膜厚均一性や表面平滑性を向上させる溶媒多物質など、液晶配向膜と基板との密着性を向上させる化合物などである。
 膜厚の均一性や表面平滑性を向上させる溶媒(貧溶媒)の具体例としては、次のものが挙げられる。
The liquid crystal aligning agent of the present invention may contain components other than the above. Examples thereof include compounds that improve the adhesion between the liquid crystal alignment film and the substrate, such as solvent-rich substances that improve the film thickness uniformity and surface smoothness when the liquid crystal alignment agent is applied.
Specific examples of the solvent (poor solvent) that improves the uniformity of the film thickness and the surface smoothness include the following.
 例えば、イソプロピルアルコール、メトキシメチルペンタノール、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチルカルビトールアセテート、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、ジプロピレングリコールジメチルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3-メチル-3-メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、1-ヘキサノール、n-へキサン、n-ペンタン、n-オクタン、ジエチルエーテル、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、1-ブトキシ-2-プロパノール、2-ブトキシ-1-プロパノール、2,6-ジメチル-4-ヘプタノール、1-フェノキシ-2-プロパノール、プロピレングリコールモノアセテート、プロピレングリコールジアセテート、プロピレングリコール-1-モノメチルエーテル-2-アセテート、プロピレングリコール-1-モノエチルエーテル-2-アセテート、ジプロピレングリコール、2-(2-エトキシプロポキシ)プロパノール、乳酸メチルエステル、乳酸エチルエステル、乳酸n-プロピルエステル、乳酸n-ブチルエステル、乳酸イソアミルエステルなどの低表面張力を有する溶媒などが挙げられる。
 これらの貧溶媒は1種類でも複数種類を混合して用いてもよい。上記溶媒を用いる場合は、液晶配向剤に含まれる溶媒全体の5~80質量%であることが好ましく、より好ましくは20~60質量%である。
For example, isopropyl alcohol, methoxymethyl pentanol, methyl cellosolve, ethyl cellosolve, butyl cellosolve, methyl cellosolve acetate, ethyl cellosolve acetate, butyl carbitol, ethyl carbitol, ethyl carbitol acetate, ethylene glycol, ethylene glycol monoacetate, ethylene glycol mono Isopropyl ether, ethylene glycol monobutyl ether, propylene glycol, propylene glycol monoacetate, propylene glycol monomethyl ether, propylene glycol-tert-butyl ether, dipropylene glycol monomethyl ether, diethylene glycol, diethylene glycol monoacetate, diethylene glycol dimethyl ether, dipro Len glycol monoacetate monomethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol monoacetate monoethyl ether, dipropylene glycol monopropyl ether, dipropylene glycol monoacetate monopropyl ether, dipropylene glycol dimethyl ether, 3-methyl-3-methoxybutyl acetate, tripropylene glycol methyl ether, 3-methyl-3-methoxybutanol, diisopropyl ether, ethyl isobutyl ether, diisobutylene, amyl acetate, butyl butyrate, butyl ether, diisobutyl ketone, methylcyclohexene , Propyl ether, dihexyl ether, 1-hexanol, -Hexane, n-pentane, n-octane, diethyl ether, methyl lactate, ethyl lactate, methyl acetate, ethyl acetate, n-butyl acetate, propylene glycol monoethyl ether acetate, methyl pyruvate, ethyl pyruvate, 3-methoxy Methyl propionate, methyl ethyl 3-ethoxypropionate, ethyl 3-methoxypropionate, 3-ethoxypropionic acid, 3-methoxypropionic acid, propyl 3-methoxypropionate, butyl 3-methoxypropionate, 1-methoxy-2 -Propanol, 1-ethoxy-2-propanol, 1-butoxy-2-propanol, 2-butoxy-1-propanol, 2,6-dimethyl-4-heptanol, 1-phenoxy-2-propanol, propylene glycol monoacetate, propylene Glycol diacetate, propylene glycol-1-monomethyl ether-2-acetate, propylene glycol-1-monoethyl ether-2-acetate, dipropylene glycol, 2- (2-ethoxypropoxy) propanol, lactic acid methyl ester, lactic acid ethyl ester , Lactate n-propyl ester, lactate n-butyl ester, lactate isoamyl ester, and other solvents having a low surface tension.
These poor solvents may be used alone or in combination of two or more. When the above solvent is used, it is preferably 5 to 80% by mass, and more preferably 20 to 60% by mass, based on the whole solvent contained in the liquid crystal aligning agent.
 膜厚の均一性や表面平滑性を向上させる化合物としては、フッ素系界面活性剤、シリコーン系界面活性剤、ノ二オン系界面活性剤などが挙げられる。
 より具体的には、例えば、エフトップEF301、EF303、EF352(トーケムプロダクツ社製)、メガファックF171、F173、R-30(大日本インキ社製)、フロラードFC430、FC431(住友スリーエム社製)、アサヒガードAG710、サーフロンS-382、SC101、SC102、SC103、SC104、SC105、SC106(旭硝子社製)などが挙げられる。これらの界面活性剤の使用割合は、液晶配向剤に含有される樹脂成分の100質量部に対して、好ましくは0.01~2質量部、より好ましくは0.01~1質量部である。
Examples of the compound that improves the uniformity of the film thickness and the surface smoothness include a fluorine-based surfactant, a silicone-based surfactant, and a nonion-based surfactant.
More specifically, for example, Ftop EF301, EF303, EF352 (manufactured by Tochem Products), Megafac F171, F173, R-30 (manufactured by Dainippon Ink and Chemicals), Fluorard FC430, FC431 (manufactured by Sumitomo 3M) Asahi Guard AG710, Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC106 (manufactured by Asahi Glass Co., Ltd.). The use ratio of these surfactants is preferably 0.01 to 2 parts by mass, more preferably 0.01 to 1 part by mass, relative to 100 parts by mass of the resin component contained in the liquid crystal aligning agent.
 液晶配向膜と基板との密着性を向上させる化合物の具体例としては、次に示す官能性シラン含有化合物、エポキシ基含有化合物などが挙げられる。
 例えば、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、2-アミノプロピルトリメトキシシラン、2-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリメトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリエトキシシラン、N-トリエトキシシリルプロピルトリエチレントリアミン、N-トリメトキシシリルプロピルトリエチレントリアミン、10-トリメトキシシリル-1,4,7-トリアザデカン、10-トリエトキシシリル-1,4,7-トリアザデカン、9-トリメトキシシリル-3,6-ジアザノニルアセテート、9-トリエトキシシリル-3,6-ジアザノニルアセテート、N-ベンジル-3-アミノプロピルトリメトキシシラン、N-ベンジル-3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリエトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリメトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリエトキシシラン、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、2,2-ジブロモネオペンチルグリコールジグリシジルエーテル、1,3,5,6-テトラグリシジル-2,4-ヘキサンジオール、N,N,N’,N’,-テトラグリシジル-m-キシレンジアミン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、N,N,N’,N’,-テトラグリシジル-4,4’-ジアミノジフェニルメタン等が挙げられる。
Specific examples of the compound that improves the adhesion between the liquid crystal alignment film and the substrate include functional silane-containing compounds and epoxy group-containing compounds shown below.
For example, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 2-aminopropyltrimethoxysilane, 2-aminopropyltriethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane , N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, N-ethoxycarbonyl-3-aminopropyltrimethoxysilane, N-ethoxy Carbonyl-3-aminopropyltriethoxysilane, N-triethoxysilylpropyltriethylenetriamine, N-trimethoxysilylpropyltriethylenetriamine, 10-trimethoxysilyl-1,4,7-triazadecane, 10-to Ethoxysilyl-1,4,7-triazadecane, 9-trimethoxysilyl-3,6-diazanonyl acetate, 9-triethoxysilyl-3,6-diazanonyl acetate, N-benzyl-3-aminopropyltri Methoxysilane, N-benzyl-3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, N-phenyl-3-aminopropyltriethoxysilane, N-bis (oxyethylene) -3-amino Propyltrimethoxysilane, N-bis (oxyethylene) -3-aminopropyltriethoxysilane, ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether , Polypropylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, glycerin diglycidyl ether, 2,2-dibromoneopentyl glycol diglycidyl ether, 1,3,5,6-tetra Glycidyl-2,4-hexanediol, N, N, N ', N',-tetraglycidyl-m-xylenediamine, 1,3-bis (N, N-diglycidylaminomethyl) cyclohexane, N, N, N Examples include ', N',-tetraglycidyl-4,4'-diaminodiphenylmethane and the like.
 更に、基板と膜の密着性向上に加え、バックライトによる電気特性低下などを防ぐ目的で、以下のようなフェノプラスト系の添加剤を含有させることが好ましい。具体的なフェノプラスト系添加剤を以下に示す。
Figure JPOXMLDOC01-appb-C000031
Furthermore, in addition to improving the adhesion between the substrate and the film, it is preferable to contain the following phenoplast-based additive for the purpose of preventing the deterioration of the electrical characteristics due to the backlight. Specific phenoplast additives are shown below.
Figure JPOXMLDOC01-appb-C000031
 基板との密着性を向上させる化合物を使用する場合、その使用量は、樹脂成分の100質量部に対して0.1~30質量部であることが好ましく、より好ましくは1~20質量部である。使用量が0.1質量部未満であると密着性向上の効果は期待できず、30質量部よりも多くなると液晶の配向性が悪くなる場合がある。
 本発明の液晶配向剤には、上記の他、液晶配向膜の誘電率、導電性などの電気特性を変化させる目的で、誘電体、導電物質、更には、液晶配向膜にした際の膜の硬度や緻密度を高める目的の架橋性化合物等を添加してもよい。
When a compound that improves the adhesion to the substrate is used, its amount is preferably 0.1 to 30 parts by mass, more preferably 1 to 20 parts by mass, relative to 100 parts by mass of the resin component. is there. If the amount used is less than 0.1 parts by mass, the effect of improving the adhesiveness cannot be expected, and if it exceeds 30 parts by mass, the orientation of the liquid crystal may deteriorate.
In addition to the above, the liquid crystal aligning agent of the present invention contains a dielectric substance, a conductive substance, and further a film of a liquid crystal alignment film when it is formed into a liquid crystal alignment film for the purpose of changing electrical properties such as dielectric constant and conductivity. A crosslinkable compound or the like for the purpose of increasing hardness or compactness may be added.
<液晶配向膜及び液晶表示素子>
 本発明の液晶配向剤は、基板上に塗布し、焼成した後、ラビング処理や光照射などで配向処理をし、又は垂直配向用途などでは配向処理無しで液晶配向膜として用いることができる。この際、用いる基板としては透明性の高い基板であれば特に限定されず、ガラス基板、アクリル基板、ポリカーボネート基板などのプラスチック基板などを用いることができる。また、液晶駆動のためのITO電極などが形成された基板を用いることがプロセスの簡素化の点から好ましい。また、反射型の液晶表示素子では片側の基板のみにならばシリコンウエハー等の不透明な物でも使用でき、この場合の電極はアルミニウム等の光を反射する材料も使用できる。
 液晶配向剤の塗布方法は、特に限定されないが、工業的には、スクリーン印刷、オフセット印刷、フレキソ印刷、インクジェットなどの方法で行うが一般的である。その他の塗布方法としては、ディップ、ロールコーター、スリットコーター、スピンナーなどがあり、目的に応じてこれらを用いてもよい。
<Liquid crystal alignment film and liquid crystal display element>
The liquid crystal aligning agent of the present invention can be used as a liquid crystal aligning film without applying alignment treatment such as rubbing treatment or light irradiation after being applied on a substrate and baked, or for vertical alignment use. At this time, the substrate used is not particularly limited as long as it is a highly transparent substrate, and a glass substrate, an acrylic substrate, a plastic substrate such as a polycarbonate substrate, or the like can be used. Further, it is preferable to use a substrate on which an ITO electrode or the like for driving the liquid crystal is formed in terms of simplification of the process. Further, in the reflection type liquid crystal display element, an opaque material such as a silicon wafer can be used as long as it is only on one side of the substrate, and in this case, a material such as aluminum that reflects light can be used as the electrode.
The method for applying the liquid crystal aligning agent is not particularly limited, but industrially, it is generally performed by a method such as screen printing, offset printing, flexographic printing, and inkjet. Other coating methods include dips, roll coaters, slit coaters, spinners and the like, and these may be used depending on the purpose.
 液晶配向剤を基板上に塗布した後の焼成は、ホットプレートなどの加熱手段により50~300℃、好ましくは80~250℃で行い、溶媒を蒸発させて、塗膜を形成させることができる。焼成後に形成される塗膜の厚みは、厚すぎると液晶表示素子の消費電力の面で不利となり、薄すぎると液晶表示素子の信頼性が低下する場合があるので、好ましくは5~300nm、より好ましくは10~100nmである。液晶を水平配向や傾斜配向させる場合は、焼成後の塗膜をラビング又は偏光紫外線の照射などで処理する。
 本発明の液晶配向剤から得られる液晶配向膜を配向処理する方法は、ラビング処理法でもよいが、本発明の液晶配向剤では、上記のように、拡大された照射量マージンで配向処理が得られるために光配向処理法が好適である。光配向処理法の好ましい例としては、前記液晶配向膜の表面に、100~800nmの波長を有する放射線、好ましくは紫外線又は可視光線を用いることができる。なかでも、好ましくは100~400nm、より好ましくは、200~400nmの波長を有する紫外線である。
 光配向処理法における光照射量は、1~10,000mJ/cmが好ましく、なかでも100~5,000mJ/cmがより好ましく、特に、100~2000mJ/cmが好ましい。
 本発明の液晶表示素子は、上記した手法により本発明の液晶配向剤から液晶配向膜付き基板を得た後、公知の方法で液晶セルを作製し、液晶表示素子としたものである。
Firing after applying the liquid crystal aligning agent on the substrate is performed at 50 to 300 ° C., preferably 80 to 250 ° C. by a heating means such as a hot plate, and the solvent can be evaporated to form a coating film. If the thickness of the coating film formed after firing is too thick, it is disadvantageous in terms of power consumption of the liquid crystal display element, and if it is too thin, the reliability of the liquid crystal display element may decrease, so that the thickness is preferably 5 to 300 nm. It is preferably 10 to 100 nm. When the liquid crystal is horizontally or tilted, the baked coating film is treated by rubbing or irradiation with polarized ultraviolet light.
The method for aligning a liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention may be a rubbing treatment method, but the liquid crystal aligning agent of the present invention can obtain an alignment treatment with an expanded dose margin as described above. Therefore, the photo-alignment treatment method is preferable. As a preferred example of the photo-alignment treatment method, radiation having a wavelength of 100 to 800 nm, preferably ultraviolet light or visible light, can be used on the surface of the liquid crystal alignment film. Among them, ultraviolet rays having a wavelength of preferably 100 to 400 nm, more preferably 200 to 400 nm are used.
Light irradiation amount in the photo-alignment treatment method, 1 preferably ~ 10,000 / cm 2, more preferably 100 ~ 5,000mJ / cm 2 Of these, particularly preferably 100 ~ 2000mJ / cm 2.
The liquid crystal display device of the present invention is a liquid crystal display device in which a liquid crystal alignment film-provided substrate is obtained from the liquid crystal alignment agent of the present invention by the above-mentioned method and then a liquid crystal cell is produced by a known method.
 液晶セル作製の一例を挙げるならば、液晶配向膜の形成された1対の基板を用意し、片方の基板の液晶配向膜上にスペーサーを散布し、液晶配向膜面が内側になるように、もう片方の基板を貼り合わせ、液晶を減圧注入して封止する方法、又は、スペーサーを散布した液晶配向膜面に液晶を滴下した後に基板を貼り合わせて封止する方法などが例示できる。スペーサーの厚みは、好ましくは1~30μm、より好ましくは2~10μmである。   To give an example of liquid crystal cell production, prepare a pair of substrates on which a liquid crystal alignment film is formed, disperse spacers on the liquid crystal alignment film on one of the substrates, and place the liquid crystal alignment film surface inside. Examples include a method in which the other substrate is bonded and liquid crystal is injected under reduced pressure for sealing, or a method in which liquid crystal is dropped on the surface of the liquid crystal alignment film on which spacers are dispersed and then the substrate is bonded and sealed. The thickness of the spacer is preferably 1 to 30 μm, more preferably 2 to 10 μm. ――
 以下に実施例を挙げ、本発明を更に具体的に説明するが、本発明はこれらに限定されるものではない。以下における化合物の略号及び各特性の測定方法は、次のとおりである。
 NMP:N-メチル-2-ピロリドン、 GBL:γ―ブチロラクトン、
 BCS:ブチルセロソルブ、
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited thereto. The abbreviations of the compounds and the measuring methods of the respective properties below are as follows.
NMP: N-methyl-2-pyrrolidone, GBL: γ-butyrolactone,
BCS: butyl cellosolve,
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
1.化合物[DA―3]の合成例
 以下のスキームに従って化合物[DA-3]を合成した。
1. Synthesis Example of Compound [DA-3] Compound [DA-3] was synthesized according to the following scheme.
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
化合物[1]の合成
 ジメチルホルムアミド(1050g)に対して、6-ブロモナフタレン-2-オール(150g、672mmol)を加え、氷冷下に冷やした。それに対して水素化ナトリウム(60%、29.6g)を少しずつ加え、氷冷下で1時間撹拌した後、ベンジルブロミド(121g)を加え、室温で1時間撹拌した。更に、水冷下、純水(750g)を少しずつ加えて撹拌し、結晶を析出させた。得られる結晶を含む液を濾過し、濾物をメタノール(750g)でスラリー洗浄し、濾過し、濾物を乾燥させることで化合物[1]を得た(収量:207g、収率:98%、白色結晶)。
1H-NMR(400MHz, DMSO-d6, δppm):8.13(d, 1H, J = 2.0 Hz), 7.85(d, 1H, J = 9.2 Hz), 7.78(d, 1H, J = 8.8 Hz), 7.58(dd, 1H, J = 8.8 Hz, 2.4Hz), 7.53-7.48(m, 3H), 7.44-7.40(m, 2H), 7.38-7.33(m, 1H), 7.30(dd, 1H, J = 9.0 Hz, 2.6 Hz), 5.22(s, 2H).
Synthesis of Compound [1] 6-Bromonaphthalen-2-ol (150 g, 672 mmol) was added to dimethylformamide (1050 g), and the mixture was cooled under ice cooling. On the other hand, sodium hydride (60%, 29.6 g) was added little by little, the mixture was stirred under ice cooling for 1 hour, benzyl bromide (121 g) was added, and the mixture was stirred at room temperature for 1 hour. Further, under water cooling, pure water (750 g) was added little by little and stirred to precipitate crystals. The obtained crystal-containing liquid was filtered, the residue was slurry-washed with methanol (750 g), filtered, and the residue was dried to obtain compound [1] (yield: 207 g, yield: 98%, White crystals).
1H-NMR (400MHz, DMSO-d6, δppm): 8.13 (d, 1H, J = 2.0 Hz), 7.85 (d, 1H, J = 9.2 Hz), 7.78 (d, 1H, J = 8.8 Hz), 7.58 (dd, 1H, J = 8.8 Hz, 2.4Hz), 7.53-7.48 (m, 3H), 7.44-7.40 (m, 2H), 7.38-7.33 (m, 1H), 7.30 (dd, 1H, J = 9.0 Hz, 2.6 Hz), 5.22 (s, 2H).
化合物[2]の合成
 テトラヒドロフラン(1000g)に対して、tert-ブトキシナトリウム(82.6g)及びベンゾフェノンイミン(126g)を加え、室温で30分撹拌した。これに対して化合物[1](207g、661mmol)、Pd(dba)(3.03g)及びBINAP(6.17g)を加え、窒素雰囲気下、65℃で23時間撹拌した。室温まで冷却した後、1規定塩酸(1000g)を加え、室温で15分撹拌し、水層を分取した。更に有機層に対し、酢酸エチル(200g)、ヘキサン(100g)及び1規定塩酸(500g)を加えて、分取した水層に加えた。水冷下、水酸化ナトリウム(80g)を加えてアルカリ性とした。有機層を分取し、飽和塩化ナトリウム水溶液で洗浄した後、硫酸ナトリウムで乾燥させ、濾過し、濾液を濃縮することで粗体を得た(154g)。粗体に対し、酢酸エチル(462g)を加えて70℃で加熱溶解させた後、ヘキサン(770g)を加え、冷却した。そして、濾過し、濾物を乾燥させることで化合物[2]を得た(収量:124g、収率:74%、薄茶色結晶)。
1H-NMR(400MHz, DMSO-d6, δppm):7.50-7.43(m, 4H), 7.42-7.37(m, 2H), 7.35-7.30(m, 1H), 7.19(d, 1H, J = 2.8 Hz), 7.04(dd, 1H, J = 8.8 Hz, 2.8 Hz), 6.90(dd, 1H, J = 8.8 Hz, 2.0 Hz), 6.80(d, 1H, J = 2.0 Hz), 5.13(br, 4H).
Synthesis of Compound [2] To tetrahydrofuran (1000 g), tert-butoxy sodium (82.6 g) and benzophenone imine (126 g) were added, and the mixture was stirred at room temperature for 30 minutes. To this, compound [1] (207 g, 661 mmol), Pd 2 (dba) 3 (3.03 g) and BINAP (6.17 g) were added, and the mixture was stirred at 65 ° C. for 23 hours under a nitrogen atmosphere. After cooling to room temperature, 1N hydrochloric acid (1000 g) was added, the mixture was stirred at room temperature for 15 minutes, and the aqueous layer was separated. Further, ethyl acetate (200 g), hexane (100 g) and 1N hydrochloric acid (500 g) were added to the organic layer and added to the separated aqueous layer. Under water cooling, sodium hydroxide (80 g) was added to make it alkaline. The organic layer was separated, washed with saturated aqueous sodium chloride solution, dried over sodium sulfate, filtered, and the filtrate was concentrated to obtain a crude product (154 g). Ethyl acetate (462 g) was added to the crude product and the mixture was heated and dissolved at 70 ° C., hexane (770 g) was added, and the mixture was cooled. Then, the mixture was filtered and the residue was dried to obtain the compound [2] (yield: 124 g, yield: 74%, light brown crystal).
1H-NMR (400MHz, DMSO-d6, δppm): 7.50-7.43 (m, 4H), 7.42-7.37 (m, 2H), 7.35-7.30 (m, 1H), 7.19 (d, 1H, J = 2.8 Hz ), 7.04 (dd, 1H, J = 8.8 Hz, 2.8 Hz), 6.90 (dd, 1H, J = 8.8 Hz, 2.0 Hz), 6.80 (d, 1H, J = 2.0 Hz), 5.13 (br, 4H) .
化合物[3]の合成
 ジクロロメタン(1000g)に対して、化合物[2](124g、497mmol)及び二炭酸ジ-tert-ブチル(130g)を加え、室温で20時間撹拌した。反応が完結していなかったため、二炭酸ジ-tert-ブチル(10g)を追加添加し、更に室温で20時間撹拌した。飽和炭酸水素ナトリウム水溶液(1000mL)及びジクロロメタン(300g)を加え、分液した。有機層を純水(450mL)、飽和塩化ナトリウム水溶液(300mL)の順に洗浄し、硫酸ナトリウムで乾燥させた後、濾過し、濾液を濃縮することで粗体を得た(198g)。粗体に対し、酢酸エチル(600g)を加えて70℃で加熱溶解させた後、ヘキサン(1000g)を加え、冷却した。そして、濾過し、濾物を乾燥させることで化合物[3]を得た(収量:142g、収率:82%、白色結晶)。
1H-NMR(400MHz, DMSO-d6, δppm):9.46(s, 1H), 8.02(s, 1H), 7.69(t, 2H, J = 8.6 Hz), 7.52-7.49(m, 2H), 7.45(dd, 1H, J = 9.0 Hz, 2.2 Hz), 7.43-7.39(m, 2H), 7.37-7.32(m, 2H), 7.17(dd, 1H, J = 9.0 Hz, 2.6 Hz), 5.18(s, 2H), 1.50(s, 9H).
Synthesis of Compound [3] Compound [2] (124 g, 497 mmol) and di-tert-butyl dicarbonate (130 g) were added to dichloromethane (1000 g), and the mixture was stirred at room temperature for 20 hours. Since the reaction was not completed, additional di-tert-butyl dicarbonate (10 g) was added, and the mixture was further stirred at room temperature for 20 hours. A saturated aqueous sodium hydrogencarbonate solution (1000 mL) and dichloromethane (300 g) were added, and the layers were separated. The organic layer was washed with pure water (450 mL) and saturated aqueous sodium chloride solution (300 mL) in this order, dried over sodium sulfate, filtered, and the filtrate was concentrated to obtain a crude product (198 g). Ethyl acetate (600 g) was added to the crude product, and the mixture was heated and dissolved at 70 ° C., hexane (1000 g) was added, and the mixture was cooled. Then, the mixture was filtered and the residue was dried to obtain the compound [3] (yield: 142 g, yield: 82%, white crystals).
1H-NMR (400MHz, DMSO-d6, δppm): 9.46 (s, 1H), 8.02 (s, 1H), 7.69 (t, 2H, J = 8.6Hz), 7.52-7.49 (m, 2H), 7.45 ( dd, 1H, J = 9.0 Hz, 2.2 Hz), 7.43-7.39 (m, 2H), 7.37-7.32 (m, 2H), 7.17 (dd, 1H, J = 9.0 Hz, 2.6 Hz), 5.18 (s, 2H), 1.50 (s, 9H).
化合物[4]の合成
 エタノール(976g)に対して、化合物[3](122g、349mmol)及び5%パラジウムカーボン(12.2g)を加え、水素雰囲気下、40℃で96時間撹拌した。得られる撹拌液から触媒を濾別し、濾液を濃縮することで化合物[4]を得た(収量:89.3g、収率:99%、白色結晶)。
1H-NMR(400MHz, DMSO-d6, δppm):9.52(s, 1H), 9.37(s, 1H), 7.94(s, 1H), 7.62-7.59(m, 1H), 7.56(d, 1H, J = 9.2 Hz), 7.39(dd, 1H, J = 9.0 Hz, 2.2 Hz), 7.04-7.00(m, 2H), 1.50(s, 9H).
Synthesis of Compound [4] Compound [3] (122 g, 349 mmol) and 5% palladium carbon (12.2 g) were added to ethanol (976 g), and the mixture was stirred at 40 ° C. for 96 hours under a hydrogen atmosphere. The catalyst was filtered off from the resulting stirred liquid, and the filtrate was concentrated to obtain compound [4] (yield: 89.3 g, yield: 99%, white crystals).
1H-NMR (400MHz, DMSO-d6, δppm): 9.52 (s, 1H), 9.37 (s, 1H), 7.94 (s, 1H), 7.62-7.59 (m, 1H), 7.56 (d, 1H, J = 9.2 Hz), 7.39 (dd, 1H, J = 9.0 Hz, 2.2 Hz), 7.04-7.00 (m, 2H), 1.50 (s, 9H).
化合物[5]の合成
 ジメチルスルホキシド(500g)に対して、4-クロロニトロベンゼン(100g、635mmol)、エチレングリコール(551g)及び水酸化ナトリウム(23.1g)を加え、100℃で19時間撹拌した。室温まで冷却した後、酢酸エチル(560g)及び純水(700g)を加え、分液した。上層を回収したうえで、下層に酢酸エチル(300g)を加えて分液し、上層を合わせた。合わせた上層に純水(400g)及び飽和塩化ナトリウム水溶液(200g)を加えて再度分液し、酢酸エチル層を硫酸ナトリウムで乾燥後、濾過し、濾液を濃縮することで粗体を得た(110g)。粗体に対し、酢酸エチル(330g)を加えて60℃で加熱溶解させた後、ヘキサン(550g)を加え、冷却した。そして、得られる液を濾過し、濾物を乾燥させることで化合物[5]を得た(収量:64.2g、収率:55%、淡黄色結晶)。
1H-NMR(400MHz, DMSO-d6, δppm):8.21(d, 2H, J = 9.4 Hz), 7.16(d, 2H, J = 9.4 Hz), 4.97(t, 1H, J = 5.6 Hz), 4.15(t, 2H, J = 4.8 Hz), 3.77-3.73(m, 2H).
Synthesis of Compound [5] 4-Chloronitrobenzene (100 g, 635 mmol), ethylene glycol (551 g) and sodium hydroxide (23.1 g) were added to dimethyl sulfoxide (500 g), and the mixture was stirred at 100 ° C. for 19 hours. After cooling to room temperature, ethyl acetate (560 g) and pure water (700 g) were added and the layers were separated. After collecting the upper layer, ethyl acetate (300 g) was added to the lower layer to separate the layers, and the upper layers were combined. Pure water (400 g) and saturated aqueous sodium chloride solution (200 g) were added to the combined upper layers, and the layers were separated again. The ethyl acetate layer was dried over sodium sulfate, filtered, and the filtrate was concentrated to obtain a crude product ( 110 g). Ethyl acetate (330 g) was added to the crude product and the mixture was heated and dissolved at 60 ° C., hexane (550 g) was added, and the mixture was cooled. Then, the obtained liquid was filtered, and the residue was dried to obtain compound [5] (yield: 64.2 g, yield: 55%, pale yellow crystal).
1H-NMR (400MHz, DMSO-d6, δppm): 8.21 (d, 2H, J = 9.4Hz), 7.16 (d, 2H, J = 9.4Hz), 4.97 (t, 1H, J = 5.6Hz), 4.15 (t, 2H, J = 4.8 Hz), 3.77-3.73 (m, 2H).
化合物[6]の合成
 ジクロロメタン(1264g)に対して、化合物[5](63.2g、345mmol)を加え、氷冷下に冷やした。これに対してトリエチルアミン(52.4g)、トシルクロリド(69.0g)及び4-ジメチルアミノピリジン(1.26g)を加え、室温で19時間撹拌した。純水(632g)を加え、分液してジクロロメタン層を回収し、1規定塩酸(300g)、純水(300g)、飽和塩化ナトリウム水溶液(300g)の順に分液洗浄し、無水硫酸ナトリウムで乾燥させて、濾過し、濾液を濃縮することで化合物[6]を得た(収量:108g、収率:93%、白色結晶)。
1H-NMR(400MHz, DMSO-d6, δppm):8.18(d, 2H, J = 9.2 Hz), 7.80(d, 2H, J = 8.6 Hz), 7.47(d, 2H, J = 8.6 Hz), 7.05(d, 2H, J = 9.2 Hz), 4.40-4.37(m, 2H), 4.35-4.31(m, 2H), 2.41(s, 3H).
Synthesis of Compound [6] Compound [5] (63.2 g, 345 mmol) was added to dichloromethane (1264 g), and the mixture was cooled under ice cooling. To this, triethylamine (52.4 g), tosyl chloride (69.0 g) and 4-dimethylaminopyridine (1.26 g) were added, and the mixture was stirred at room temperature for 19 hours. Pure water (632 g) was added, and liquid separation was performed to collect a dichloromethane layer, and 1N hydrochloric acid (300 g), pure water (300 g), and saturated sodium chloride aqueous solution (300 g) were sequentially separated and washed, and dried over anhydrous sodium sulfate. The mixture was filtered, and the filtrate was concentrated to obtain compound [6] (yield: 108 g, yield: 93%, white crystals).
1H-NMR (400MHz, DMSO-d6, δppm): 8.18 (d, 2H, J = 9.2 Hz), 7.80 (d, 2H, J = 8.6 Hz), 7.47 (d, 2H, J = 8.6 Hz), 7.05 (d, 2H, J = 9.2 Hz), 4.40-4.37 (m, 2H), 4.35-4.31 (m, 2H), 2.41 (s, 3H).
化合物[7]の合成
 ジメチルホルムアミド(360g)に対して、化合物[4](45.0g、174mmol)、化合物[6](61.5g)及び炭酸カリウム(36.0g)を加え、80℃で21時間撹拌した。室温まで冷却した後、純水(720g)を加えて結晶を析出させた。得られる結晶を含む液を濾過し、濾物をメタノール(360g)でスラリー洗浄し、濾過し、濾物を乾燥させることで化合物[7]を得た(収量:67.2g、収率:91%、淡黄土色結晶)。
1H-NMR(400MHz, DMSO-d6, δppm):9.47(s, 1H), 8.23(d, 2H, J = 9.2 Hz), 8.02(s, 1H), 7.72-7.69(m, 2H), 7.46(dd, 1H, J = 8.8 Hz, 2.0 Hz), 7.31(d, 1H, J = 2.4 Hz), 7.24(d, 2H, J = 9.2 Hz), 7.14(dd, 1H, J = 9.0 Hz, 2.6 Hz), 4.56-4.53(m, 2H), 4.46-4.43(m, 2H), 1.50(s, 9H).
Synthesis of compound [7] To dimethylformamide (360 g), compound [4] (45.0 g, 174 mmol), compound [6] (61.5 g) and potassium carbonate (36.0 g) were added, and the mixture was heated at 80 ° C. Stir for 21 hours. After cooling to room temperature, pure water (720 g) was added to precipitate crystals. The resulting crystal-containing liquid was filtered, the residue was washed with methanol (360 g) in a slurry, filtered, and the residue was dried to obtain compound [7] (yield: 67.2 g, yield: 91). %, Pale ocher crystals).
1H-NMR (400MHz, DMSO-d6, δppm): 9.47 (s, 1H), 8.23 (d, 2H, J = 9.2 Hz), 8.02 (s, 1H), 7.72-7.69 (m, 2H), 7.46 ( dd, 1H, J = 8.8 Hz, 2.0 Hz), 7.31 (d, 1H, J = 2.4 Hz), 7.24 (d, 2H, J = 9.2 Hz), 7.14 (dd, 1H, J = 9.0 Hz, 2.6 Hz ), 4.56-4.53 (m, 2H), 4.46-4.43 (m, 2H), 1.50 (s, 9H).
化合物[8]の合成
 クロロホルム(1096g)に対して、化合物[7](73.1g、172mmol)を加えて、水冷下で撹拌しながら、トリフルオロ酢酸(98.1g)を加え、50℃で19時間撹拌した。得られる撹拌液を室温まで冷却した後、トリエチルアミン(87.0g)及び純水(1096g)を加えて結晶を析出させた。得られる結晶を含む液を濾過し、濾物をメタノール(365g)でスラリー洗浄した後、濾過し、濾物を乾燥させることで粗体を得た(49.5g)。粗体に対し、ジメチルホルムアミド(124g)を加え、80℃で加熱溶解させた後、メタノール(248g)を加えて冷却し、結晶を析出させた。得られる結晶を含む液を濾過し、濾物を乾燥させることで化合物[8]を得た(収量:47.3g、収率:85%、橙色結晶)。
1H-NMR(400MHz, DMSO-d6, δppm):8.23(d, 2H, J = 9.2 Hz), 7.51(dd, 1H, J = 8.8 Hz, 2.4 Hz), 7.45(dd, 1H, J = 8.8 Hz, 2.4 Hz), 7.24(dd, 2H, J = 9.2 Hz, 2.4 Hz), 7.27(s, 1H), 7.01(d, 1H, J = 9.2 Hz), 6.91(d, 1H, J = 8.8 Hz), 6.80(s, 1H), 5.15(br, 2H), 4.55-4.51(m, 2H), 4.41-4.37(m, 2H).
Synthesis of Compound [8] To chloroform (1096 g), compound [7] (73.1 g, 172 mmol) was added, and trifluoroacetic acid (98.1 g) was added with stirring under water cooling, and at 50 ° C. Stir for 19 hours. The resulting stirred liquid was cooled to room temperature, and triethylamine (87.0 g) and pure water (1096 g) were added to precipitate crystals. The obtained crystal-containing liquid was filtered, and the residue was washed with a slurry of methanol (365 g), filtered, and the residue was dried to obtain a crude product (49.5 g). Dimethylformamide (124 g) was added to the crude product, and the mixture was heated and dissolved at 80 ° C., then methanol (248 g) was added and cooled to precipitate crystals. The liquid containing the obtained crystals was filtered, and the residue was dried to obtain compound [8] (yield: 47.3 g, yield: 85%, orange crystal).
1H-NMR (400MHz, DMSO-d6, δppm): 8.23 (d, 2H, J = 9.2 Hz), 7.51 (dd, 1H, J = 8.8 Hz, 2.4 Hz), 7.45 (dd, 1H, J = 8.8 Hz) , 2.4 Hz), 7.24 (dd, 2H, J = 9.2 Hz, 2.4 Hz), 7.27 (s, 1H), 7.01 (d, 1H, J = 9.2 Hz), 6.91 (d, 1H, J = 8.8 Hz) , 6.80 (s, 1H), 5.15 (br, 2H), 4.55-4.51 (m, 2H), 4.41-4.37 (m, 2H).
化合物[DA―3]の合成
 ジメチルホルムアミド(371g)に対して、化合物[8](46.4g、143mmol)及び5%パラジウムカーボン(4.6g)を加え、水素雰囲気下、60℃で19時間撹拌した。反応があまり進行していなかったため、オートクレーブ中、0.4MPa水素雰囲気下、60℃で8時間撹拌した。窒素置換した後、触媒を濾別し、濾液を濃縮させて内容量を80gとした。ジメチルホルムアミド(46g)を加え、90℃で加熱溶解させた後、メタノール(210g)を加えて冷却し、結晶を析出させた。そして、得られる結晶を含む液を濾過し、濾物を乾燥させることで、化合物[DA―3]を得た(収量:33.4g、収率:79%、淡紫色結晶)。
1H-NMR(400MHz, DMSO-d6, δppm):7.50(d, 1H, J = 8.8 Hz), 7.44(d, 1H, J = 8.8 Hz), 7.13(d, 1H, J = 2.8 Hz), 7.00(dd, 1H, J = 8.8 Hz, 2.8 Hz), 6.90(dd, 1H, J = 8.8 Hz, 2.4 Hz), 6.79(d, 1H, J = 2.4 Hz), 6.71(d, 2H, J = 8.8 Hz), 6.52(d, 2H, J = 8.8 Hz), 5.13(br, 2H), 4.63(br, 2H), 4.28-4.25(m, 2H), 4.20-4.17(m, 2H).
Synthesis of Compound [DA-3] Compound [8] (46.4 g, 143 mmol) and 5% palladium carbon (4.6 g) were added to dimethylformamide (371 g), and the mixture was heated in a hydrogen atmosphere at 60 ° C. for 19 hours. It was stirred. Since the reaction did not proceed so much, the mixture was stirred in an autoclave under a hydrogen atmosphere of 0.4 MPa at 60 ° C. for 8 hours. After substituting with nitrogen, the catalyst was filtered off and the filtrate was concentrated to a content of 80 g. Dimethylformamide (46 g) was added and the mixture was heated and dissolved at 90 ° C., then methanol (210 g) was added and cooled to precipitate crystals. Then, the obtained crystal-containing liquid was filtered, and the residue was dried to obtain compound [DA-3] (yield: 33.4 g, yield: 79%, light purple crystals).
1H-NMR (400MHz, DMSO-d6, δppm): 7.50 (d, 1H, J = 8.8 Hz), 7.44 (d, 1H, J = 8.8 Hz), 7.13 (d, 1H, J = 2.8 Hz), 7.00 (dd, 1H, J = 8.8 Hz, 2.8 Hz), 6.90 (dd, 1H, J = 8.8 Hz, 2.4 Hz), 6.79 (d, 1H, J = 2.4 Hz), 6.71 (d, 2H, J = 8.8 Hz), 6.52 (d, 2H, J = 8.8 Hz), 5.13 (br, 2H), 4.63 (br, 2H), 4.28-4.25 (m, 2H), 4.20-4.17 (m, 2H).
2.化合物[DA―4]の合成例
 以下のスキームに従って化合物[DA-4]を合成した。
2. Synthesis Example of Compound [DA-4] Compound [DA-4] was synthesized according to the following scheme.
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
化合物[4]の合成
 化合物[3]の合成中間体である化合物[4]を使用した。
Synthesis of Compound [4] Compound [4], which is a synthetic intermediate for Compound [3], was used.
化合物[9]の合成
 ジメチルホルムアミド(607g)中、エチレングリコールジトシラート(60.7g、164mmol)、化合物[4](89.3g)及び炭酸カリウム(56.7g)加え、80℃で22時間撹拌した。撹拌液を室温まで冷却した後、純水(1200g)を加えて結晶を析出させた。そして、得られる結晶を含む液を濾過し、濾物をメタノール(450g)でスラリー洗浄し、濾過し、濾物を乾燥させることで粗体を得た(83.9g)。粗体に対し、ジメチルホルムアミド(839g)を加え、90℃で加熱溶解させた後、メタノール(839g)を加えて冷却し、結晶を析出させた。そして、得られる結晶を含むを濾過し、濾物を乾燥させることで化合物[9]を得た(収量:71.2g、収率:80%、橙色結晶)。
1H-NMR(400MHz, DMSO-d6, δppm):9.43(s, 2H), 7.99(br, 2H), 7.67(d, 4H, J = 8.8 Hz), 7.43(dd, 2H, J = 8.8 Hz, 2.4 Hz), 7.28(d, 2H, J = 2.4 Hz), 7.12(dd, 2H, J = 8.8Hz, 2.4 Hz), 4.42(s, 4H), 1.47(s, 18H).
Synthesis of Compound [9] Ethylene glycol ditosylate (60.7 g, 164 mmol), compound [4] (89.3 g) and potassium carbonate (56.7 g) were added to dimethylformamide (607 g), and the mixture was heated at 80 ° C. for 22 hours. It was stirred. After cooling the stirred liquid to room temperature, pure water (1200 g) was added to precipitate crystals. Then, the liquid containing the obtained crystals was filtered, the residue was washed with methanol (450 g) in a slurry, filtered, and the residue was dried to obtain a crude product (83.9 g). Dimethylformamide (839 g) was added to the crude product, and the mixture was heated and dissolved at 90 ° C., then methanol (839 g) was added and cooled to precipitate crystals. The liquid containing the obtained crystals was filtered, and the residue was dried to obtain compound [9] (yield: 71.2 g, yield: 80%, orange crystal).
1H-NMR (400MHz, DMSO-d6, δppm): 9.43 (s, 2H), 7.99 (br, 2H), 7.67 (d, 4H, J = 8.8 Hz), 7.43 (dd, 2H, J = 8.8 Hz, 2.4 Hz), 7.28 (d, 2H, J = 2.4 Hz), 7.12 (dd, 2H, J = 8.8Hz, 2.4 Hz), 4.42 (s, 4H), 1.47 (s, 18H).
化合物[DA-4]の合成
 クロロホルム(1143g)中、化合物[9](71.2g、129mmol)を加えて、水冷下に冷やした。これにトリフルオロ酢酸(160g)を加え、50℃で24時間撹拌した。室温まで冷却した後、トリエチルアミン(142g)及び純水(1143g)を加えて結晶を析出させた。そして、得られる結晶を含む液を濾過し、濾物をメタノール(400g)でスラリー洗浄し、濾過し、濾物を乾燥させることで粗体を得た(37.5g)。粗体に対し、ジメチルホルムアミド(225g)を加え、90℃で加熱溶解させた後、メタノール(225g)を加えて冷却し、結晶を析出させた。得られる結晶を含む液を濾過し、濾物を乾燥させることで化合物[DA―4]を得た(収量:33.5g、収率:75%、淡赤紫色結晶)。
1H-NMR(400MHz, DMSO-d6, δppm):7.51(d, 2H, J = 8.8 Hz), 7.45(d, 2H, J = 8.8 Hz), 7.17(d, 2H, J = 2.4 Hz), 7.02(dd, 2H, J = 8.8 Hz, 2.4 Hz), 6.91(dd, 2H, J = 8.8Hz, 2.4 Hz), 6.80(d, 2H, J = 2.4 Hz), 5.14(br, 4H), 4.37(s, 4H).
Synthesis of Compound [DA-4] Compound [9] (71.2 g, 129 mmol) was added to chloroform (1143 g), and the mixture was cooled under water cooling. Trifluoroacetic acid (160 g) was added thereto, and the mixture was stirred at 50 ° C. for 24 hours. After cooling to room temperature, triethylamine (142 g) and pure water (1143 g) were added to precipitate crystals. Then, the liquid containing the obtained crystals was filtered, the residue was washed with methanol (400 g) in a slurry, filtered, and the residue was dried to obtain a crude product (37.5 g). Dimethylformamide (225 g) was added to the crude product, and the mixture was heated and dissolved at 90 ° C., then methanol (225 g) was added and cooled to precipitate crystals. The liquid containing the obtained crystals was filtered, and the residue was dried to obtain compound [DA-4] (yield: 33.5 g, yield: 75%, pale reddish purple crystals).
1H-NMR (400MHz, DMSO-d6, δppm): 7.51 (d, 2H, J = 8.8 Hz), 7.45 (d, 2H, J = 8.8 Hz), 7.17 (d, 2H, J = 2.4 Hz), 7.02 (dd, 2H, J = 8.8 Hz, 2.4 Hz), 6.91 (dd, 2H, J = 8.8Hz, 2.4 Hz), 6.80 (d, 2H, J = 2.4 Hz), 5.14 (br, 4H), 4.37 ( s, 4H).
3.化合物[DA―5]の合成例
 以下のスキームに従って化合物[DA―5]を合成した。
3. Synthesis Example of Compound [DA-5] Compound [DA-5] was synthesized according to the following scheme.
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
化合物[4]の合成
 化合物[3]の合成中間体である化合物[4]を使用した。
Synthesis of Compound [4] Compound [4], which is a synthetic intermediate for Compound [3], was used.
化合物[10]の合成
 ジメチルホルムアミド(35g)中、4-ヒドロキシ-4’-ニトロビフェニル(5.00g、23.2mmol)及び炭酸カリウム(8.02g)を加え、80℃で30分撹拌した。そこに、2-ブロモエタノール(4.35g)のジメチルホルムアミド(5g)溶液を加え、100℃で16時間撹拌した。室温まで冷却した後、純水(80g)を加えて撹拌し、析出物を濾別した。濾物をメタノール(35g)でスラリー洗浄し、濾過し、濾物を乾燥させることで化合物[10]を得た(収量:4.35g、収率:72%、黄色結晶)。
1H-NMR(400MHz, DMSO-d6, δppm):8.27(d, 2H, J = 7.2 Hz), 7.92(d, 2H, J = 7.2 Hz), 7.76(d, 2H, J = 6.8 Hz), 7.09(d, 2H, J = 6.8 Hz), 4.90(t, 1H, J = 4.2Hz), 4.07(t, 2H, J = 4.0 Hz), 3.77-3.73(m, 2H).
Synthesis of Compound [10] 4-Hydroxy-4′-nitrobiphenyl (5.00 g, 23.2 mmol) and potassium carbonate (8.02 g) were added to dimethylformamide (35 g), and the mixture was stirred at 80 ° C. for 30 minutes. A solution of 2-bromoethanol (4.35 g) in dimethylformamide (5 g) was added thereto, and the mixture was stirred at 100 ° C for 16 hours. After cooling to room temperature, pure water (80 g) was added and stirred, and the precipitate was filtered off. The residue was washed with a slurry of methanol (35 g), filtered, and the residue was dried to obtain compound [10] (yield: 4.35 g, yield: 72%, yellow crystals).
1H-NMR (400MHz, DMSO-d6, δppm): 8.27 (d, 2H, J = 7.2Hz), 7.92 (d, 2H, J = 7.2Hz), 7.76 (d, 2H, J = 6.8Hz), 7.09 (d, 2H, J = 6.8 Hz), 4.90 (t, 1H, J = 4.2Hz), 4.07 (t, 2H, J = 4.0 Hz), 3.77-3.73 (m, 2H).
化合物[11]の合成
 ジクロロメタン(80g)中、化合物[10](4.00g、15.4mmol)を加え、氷冷下に冷やした。これにトリエチルアミン(2.34g)、トシルクロリド(3.09g)及び4-ジメチルアミノピリジン(0.06g)を加え、室温で21時間撹拌した。純水(40g)を加え、分液してジクロロメタン層を回収し、1規定塩酸(40g)、純水(40g)、飽和塩化ナトリウム水溶液(20g)の順に分液洗浄し、無水硫酸マグネシウムで乾燥させて、濾過し、濾液を濃縮することで化合物[11]を得た(収量:6.10g、収率:96%、橙色固体)。
1H-NMR(400MHz, DMSO-d6, δppm):8.27(d, 2H, J = 7.2 Hz), 7.92(d, 2H, J = 7.2 Hz), 7.81(d, 2H, J = 6.8 Hz), 7.74(d, 2H, J = 7.2 Hz), 7.48(d, 2H, J = 6.8 Hz), 7.00(d, 2H, J = 7.2 Hz), 4.39-4.36(m, 2H), 4.26-4.23(m, 2H), 2.09(s, 3H).
Synthesis of Compound [11] Compound [10] (4.00 g, 15.4 mmol) was added in dichloromethane (80 g), and the mixture was cooled under ice cooling. Triethylamine (2.34 g), tosyl chloride (3.09 g) and 4-dimethylaminopyridine (0.06 g) were added thereto, and the mixture was stirred at room temperature for 21 hours. Pure water (40 g) was added, and liquid separation was carried out to recover a dichloromethane layer, and 1N hydrochloric acid (40 g), pure water (40 g) and saturated aqueous sodium chloride solution (20 g) were separated and washed in that order, and dried over anhydrous magnesium sulfate. Then, the mixture was filtered and the filtrate was concentrated to obtain compound [11] (yield: 6.10 g, yield: 96%, orange solid).
1H-NMR (400MHz, DMSO-d6, δppm): 8.27 (d, 2H, J = 7.2Hz), 7.92 (d, 2H, J = 7.2Hz), 7.81 (d, 2H, J = 6.8Hz), 7.74 (d, 2H, J = 7.2 Hz), 7.48 (d, 2H, J = 6.8 Hz), 7.00 (d, 2H, J = 7.2 Hz), 4.39-4.36 (m, 2H), 4.26-4.23 (m, 2H), 2.09 (s, 3H).
化合物[12]の合成
 ジメチルホルムアミド(36g)中、化合物[4](3.64g、14.0mmol)、化合物[11](6.10g)及び炭酸カリウム(2.91g)を加え、80℃で21時間撹拌した。室温まで冷却した後、純水(72g)を加えて結晶を析出させた。濾過し、濾物をメタノール(36g)でスラリー洗浄し、濾過し、濾物を乾燥させることで化合物[12]を得た(収量:5.80g、収率:83%、淡黄色結晶)。
1H-NMR(400MHz, DMSO-d6, δppm):9.44(s, 1H), 8.27(d, 2H, J = 7.2 Hz), 8.01(s, 1H), 7.94(d, 2H, J = 7.2 Hz), 7.80-7.77(m, 2H), 7.71(d, 2H, J = 7.2 Hz), 7.47(dd, 1H, J = 7.2 Hz, 1.6 Hz), 7.31(d, 1H, J = 1.6 Hz), 7.19-7.15(m, 3H), 4.46-4.44(m, 4H), 1.50(s, 9H).
Synthesis of Compound [12] Compound [4] (3.64 g, 14.0 mmol), compound [11] (6.10 g) and potassium carbonate (2.91 g) were added to dimethylformamide (36 g), and the mixture was heated at 80 ° C. Stir for 21 hours. After cooling to room temperature, pure water (72 g) was added to precipitate crystals. After filtration, the filtered material was washed with methanol (36 g) as a slurry, filtered, and the filtered material was dried to obtain compound [12] (yield: 5.80 g, yield: 83%, pale yellow crystals).
1H-NMR (400MHz, DMSO-d6, δppm): 9.44 (s, 1H), 8.27 (d, 2H, J = 7.2Hz), 8.01 (s, 1H), 7.94 (d, 2H, J = 7.2Hz) , 7.80-7.77 (m, 2H), 7.71 (d, 2H, J = 7.2 Hz), 7.47 (dd, 1H, J = 7.2 Hz, 1.6 Hz), 7.31 (d, 1H, J = 1.6 Hz), 7.19 -7.15 (m, 3H), 4.46-4.44 (m, 4H), 1.50 (s, 9H).
化合物[13]の合成
 クロロホルム(87g)中、化合物[12](5.80g、11.6mmol)を加えて、水冷下に冷やした。そこに、トリフルオロ酢酸(6.61g)を加え、50℃で22時間撹拌した。室温まで冷却した後、トリエチルアミン(5.86g)及び純水(87g)を加えて結晶を析出させた。得られる結晶を含む液を濾過し、濾物をメタノール(60g)でスラリー洗浄した後、濾過し、濾物を乾燥させることで粗体を得た(4.3g)。粗体に対し、ジメチルホルムアミド(43g)を加え、80℃で加熱撹拌した後、メタノール(43g)を加えて冷却し、濾過し、濾物を乾燥させることで化合物[13]を得た(収量:4.13g、収率:89%、橙色結晶)。
1H-NMR(400MHz, DMSO-d6, δppm):8.27(d, 2H, J = 6.8 Hz), 7.94(d, 2H, J = 6.8 Hz), 7.78(d, 2H, J = 6.8 Hz), 7.52(d, 1H, J = 6.8 Hz), 7.46(d, 1H, J = 6.8 Hz), 7.47-7.45(m, 3H), 7.03(d, 1H, J = 6.8 Hz), 6.92(d, 1H, J = 6.8 Hz), 6.82(s, 1H), 5.22(br, 2H), 4.46-4.42(m, 2H), 4.40-4.37(m, 2H).
Synthesis of Compound [13] Compound [12] (5.80 g, 11.6 mmol) was added to chloroform (87 g), and the mixture was cooled with water. Trifluoroacetic acid (6.61 g) was added thereto, and the mixture was stirred at 50 ° C for 22 hours. After cooling to room temperature, triethylamine (5.86 g) and pure water (87 g) were added to precipitate crystals. The liquid containing the obtained crystals was filtered, and the residue was washed with a slurry of methanol (60 g), then filtered, and the residue was dried to obtain a crude product (4.3 g). Dimethylformamide (43 g) was added to the crude product, and the mixture was heated with stirring at 80 ° C., methanol (43 g) was added, the mixture was cooled, filtered, and the residue was dried to obtain compound [13] (yield. : 4.13 g, yield: 89%, orange crystal).
1H-NMR (400MHz, DMSO-d6, δppm): 8.27 (d, 2H, J = 6.8Hz), 7.94 (d, 2H, J = 6.8Hz), 7.78 (d, 2H, J = 6.8Hz), 7.52 (d, 1H, J = 6.8 Hz), 7.46 (d, 1H, J = 6.8 Hz), 7.47-7.45 (m, 3H), 7.03 (d, 1H, J = 6.8 Hz), 6.92 (d, 1H, J = 6.8 Hz), 6.82 (s, 1H), 5.22 (br, 2H), 4.46-4.42 (m, 2H), 4.40-4.37 (m, 2H).
化合物[DA―5]の合成
 ジメチルホルムアミド(41g)中、化合物[13](4.13g、10.3mmol)及び5%パラジウムカーボン(0.41g)を加え、水素雰囲気下、室温で25時間撹拌した。窒素置換した後、ジメチルホルムアミド(82g)を加えて120℃に加熱し、熱時濾過により触媒を濾別し、濾液を濃縮することで粗体を得た(3.84g)。粗体に対し、ジメチルホルムアミド(19g)を加えて100℃で加熱溶解させた後、メタノール(31g)を少しずつ加えて冷却し、結晶を析出させた。得られる結晶を含む液を濾過し、濾物を乾燥させることで、化合物[DA―5]を得た(収量:3.33g、収率:87%、茶色結晶)。
1H-NMR(400MHz, DMSO-d6, δppm):7.51(d, 1H, J = 6.8 Hz), 7.47-7.44(m, 3H), 7.29(d, 2H, J = 6.8 Hz), 7.16(d, 1H, J = 1.6 Hz), 7.03-6.99(m, 3H), 6.91(dd, 1H, J = 6.8 Hz, 1.6 Hz), 6.80(d, 1H, J = 1.6 Hz), 6.62(d, 2H, J = 6.8 Hz), 5.11(br, 4H), 4.35(br, 4H).
Synthesis of Compound [DA-5] Compound [13] (4.13 g, 10.3 mmol) and 5% palladium carbon (0.41 g) were added to dimethylformamide (41 g), and the mixture was stirred at room temperature for 25 hours under a hydrogen atmosphere. did. After purging with nitrogen, dimethylformamide (82 g) was added and the mixture was heated to 120 ° C., the catalyst was filtered off by hot filtration, and the filtrate was concentrated to obtain a crude product (3.84 g). Dimethylformamide (19 g) was added to the crude product and the mixture was heated and dissolved at 100 ° C., then methanol (31 g) was added little by little and cooled to precipitate crystals. The liquid containing the obtained crystals was filtered, and the residue was dried to obtain compound [DA-5] (yield: 3.33 g, yield: 87%, brown crystal).
1H-NMR (400MHz, DMSO-d6, δppm): 7.51 (d, 1H, J = 6.8 Hz), 7.47-7.44 (m, 3H), 7.29 (d, 2H, J = 6.8 Hz), 7.16 (d, 1H, J = 1.6 Hz), 7.03-6.99 (m, 3H), 6.91 (dd, 1H, J = 6.8 Hz, 1.6 Hz), 6.80 (d, 1H, J = 1.6 Hz), 6.62 (d, 2H, J = 6.8 Hz), 5.11 (br, 4H), 4.35 (br, 4H).
4.化合物[DA-14]の合成例
 1,2-エチレンジオールを1,3-プロパンジオールに変更したこと以外は、化合物[DA-3]の合成方法と同様の合成方法によって、化合物[DA-14]を得た。
4. Synthesis Example of Compound [DA-14] Compound [DA-14] was prepared in the same manner as compound [DA-3] except that 1,2-ethylenediol was changed to 1,3-propanediol. ] Was obtained.
5.化合物[DA-15]の合成例
 エチレングリコールジトシラートを1,3-プロパンジオールジトシラートに変更したこと以外は、化合物[DA-4]の合成方法と同様の合成方法によって、化合物[DA-15]を得た。
5. Synthesis Example of Compound [DA-15] Compound [DA-15] was prepared in the same manner as compound [DA-4] except that ethylene glycol ditosylate was changed to 1,3-propanediol ditosylate. -15] was obtained.
[粘度]
 E型粘度計TVE-22H(東機産業社製)を用い、サンプル量1.1mL、コーンロータTE-1(1°34’、R24)、温度25℃で測定した。
[分子量]
 GPC(常温ゲル浸透クロマトグラフィー)装置によって測定し、ポリエチレングリコール、ポリエチレンオキシド換算値として数平均分子量(Mn)と重量平均分子量(Mw)を算出した。
 GPC装置:Shodex社製(GPC-101)、カラム:Shodex社製(KD803、KD805の直列)、カラム温度:50℃、溶離液:N,N-ジメチルホルムアミド(添加剤として、臭化リチウム-水和物(LiBr・HO)が30mmol/L、リン酸・無水結晶(o-リン酸)が30mmol/L、テトラヒドロフラン(THF)が10ml/L)、流速:1.0ml/分
 検量線作成用標準サンプル:東ソー社製 TSK 標準ポリエチレンオキサイド(重量平均分子量(Mw) 約900,000、150,000、100,000、30,000)、及び、ポリマーラボラトリー社製 ポリエチレングリコール(ピークトップ分子量(Mp)約12,000、4,000、1,000)。測定は、ピークが重なるのを避けるため、900,000、100,000、12,000、1,000の4種類を混合したサンプル、及び150,000、30,000、4,000の3種類を混合したサンプルの2サンプルを別々に測定した。
[viscosity]
Using an E-type viscometer TVE-22H (manufactured by Toki Sangyo Co., Ltd.), the sample amount was 1.1 mL, the cone rotor TE-1 (1 ° 34 ', R24), and the temperature was 25 ° C.
[Molecular weight]
The number average molecular weight (Mn) and the weight average molecular weight (Mw) were calculated as GPC (normal temperature gel permeation chromatography) equipment and converted into polyethylene glycol and polyethylene oxide.
GPC device: Shodex (GPC-101), column: Shodex (KD803, KD805 in series), column temperature: 50 ° C, eluent: N, N-dimethylformamide (lithium bromide-water as an additive) 30 mmol / L of hydrate (LiBr.H 2 O), 30 mmol / L of phosphoric acid / anhydrous crystal (o-phosphoric acid), 10 ml / L of tetrahydrofuran (THF), flow rate: 1.0 ml / min Calibration curve preparation Standard sample for use: TSK standard polyethylene oxide manufactured by Tosoh Corporation (weight average molecular weight (Mw) about 900,000, 150,000, 100,000, 30,000), and polyethylene glycol manufactured by Polymer Laboratory (peak top molecular weight (Mp ) About 12,000, 4,000, 1,000). In order to avoid overlapping of peaks, the measurement was performed using a sample mixed with four kinds of 900,000, 100,000, 12,000 and 1,000 and three kinds of 150,000, 30,000 and 4,000. Two of the mixed samples were measured separately.
<イミド化率の測定>
 ポリイミド粉末20mgをNMRサンプル管(NMRサンプリングチューブスタンダード,φ5(草野科学社製))に入れ、重水素化ジメチルスルホキシド(DMSO-d6,0.05%TMS(テトラメチルシラン)混合品)(0.53ml)を添加し、超音波をかけて完全に溶解させた。この溶液をNMR測定機(JNW-ECA500、日本電子データム社製)にて500MHzのプロトンNMRを測定した。イミド化率は、イミド化前後で変化しない構造に由来するプロトンを基準プロトンとして決め、このプロトンのピーク積算値と、9.5ppm~10.0ppm付近に現れるアミド酸のNH基に由来するプロトンピーク積算値とを用い以下の式によって求めた。
 イミド化率(%)=(1-α・x/y)×100
 上記式において、xはアミド酸のNH基由来のプロトンピーク積算値であり、yは基準プロトンのピーク積算値であり、αはポリアミド酸(イミド化率が0%)の場合におけるアミド酸のNH基プロトン1個に対する基準プロトンの個数割合である。
<Measurement of imidization ratio>
20 mg of polyimide powder was put into an NMR sample tube (NMR sampling tube standard, φ5 (Kusano Scientific Co., Ltd.)), and deuterated dimethyl sulfoxide (DMSO-d6, 0.05% TMS (tetramethylsilane) mixed product) (0. (53 ml) was added and ultrasonic waves were applied to completely dissolve. This solution was measured for proton NMR at 500 MHz with an NMR measuring device (JNW-ECA500, manufactured by JEOL Datum). The imidization ratio is determined by using a proton derived from a structure that does not change before and after imidization as a reference proton, and the integrated value of the peak of this proton and the proton peak derived from the NH group of amic acid that appears near 9.5 ppm to 10.0 ppm. It was calculated by the following formula using the integrated value.
Imidization rate (%) = (1-α · x / y) × 100
In the above formula, x is the proton peak integrated value derived from the NH group of amic acid, y is the peak integrated value of the reference proton, and α is the NH of the amic acid in the case of polyamic acid (imidization ratio is 0%). It is the ratio of the number of reference protons to one base proton.
[FFS駆動液晶セルの構成]
 フリンジフィールドスィッチング(Fringe Field Switching:FFS)モード用の液晶セルは、面形状の共通電極-絶縁層-櫛歯形状の画素電極からなるFOP(Finger on Plate)電極層が表面に形成されている第1のガラス基板と、表面に高さ4μmの柱状スペーサーを有し裏面に帯電防止の為のITO膜が形成されている第2のガラス基板とを、一組とした。上記の画素電極は、中央部分が内角160°で屈曲した幅3μmの電極要素が6μmの間隔を開けて平行になるように複数配列された櫛歯形状を有しており、1つの画素は、複数の電極要素の屈曲部を結ぶ線を境に第1領域と第2領域を有している。
 なお、第1のガラス基板に形成する液晶配向膜は、画素屈曲部の内角を等分する方向と液晶の配向方向とが直交するように配向処理し、第2のガラス基板に形成する液晶配向膜は、液晶セルを作製した時に第1の基板上の液晶の配向方向と第2の基板上の液晶の配向方向とが一致するように配向処理する。
[Configuration of FFS driving liquid crystal cell]
In a liquid crystal cell for fringe field switching (FFS) mode, a FOP (Finger on Plate) electrode layer including a surface-shaped common electrode-insulating layer-comb-shaped pixel electrode is formed on the surface. One glass substrate and a second glass substrate having a columnar spacer having a height of 4 μm on the front surface and having an ITO film for preventing electrification formed on the back surface were set as a set. The pixel electrode has a comb-tooth shape in which a plurality of electrode elements each having a width of 3 μm and whose central portion is bent at an internal angle of 160 ° are arranged in parallel at intervals of 6 μm, and one pixel is It has a first region and a second region with a line connecting the bent portions of the plurality of electrode elements as a boundary.
The liquid crystal alignment film formed on the first glass substrate is subjected to an alignment treatment so that the direction that evenly divides the interior angle of the bent portion of the pixel and the alignment direction of the liquid crystal are orthogonal to each other, and the liquid crystal alignment film that is formed on the second glass substrate is aligned. The film is subjected to alignment treatment so that the alignment direction of the liquid crystal on the first substrate and the alignment direction of the liquid crystal on the second substrate coincide with each other when the liquid crystal cell is manufactured.
[液晶セルの作製]
 上記一組のガラス基板それぞれの表面に、孔径1.0μmのフィルターで濾過した液晶配向剤をスピンコート塗布にて塗布し80℃のホットプレート上で2分間乾燥させた。その後、塗膜面に偏光板を介して消光比26:1の直線偏光した波長254nmの紫外線を所定量照射し、次いで230℃の熱風循環式オーブンで30分間焼成を行い、膜厚100nmの液晶配向膜付き基板を得た。
 次に、上記一組の液晶配向膜付きガラス基板の一方にシール剤を印刷し、もう一方の基板を液晶配向膜面が向き合うように貼り合わせ、シール剤を硬化させて空セルを作製した。この空セルに減圧注入法によって、液晶MLC-3019(メルク社製)を注入し、注入口を封止して、FFS駆動液晶セルを得た。その後、得られた液晶セルを120℃で1時間加熱し、一晩放置してから残像特性の評価を実施した。
[Production of liquid crystal cell]
A liquid crystal aligning agent filtered with a filter having a pore size of 1.0 μm was applied to the surface of each of the above-mentioned glass substrates by spin coating, and dried on a hot plate at 80 ° C. for 2 minutes. After that, a predetermined amount of linearly polarized UV light having a wavelength of 254 nm with an extinction ratio of 26: 1 is applied to the surface of the coating film through a polarizing plate, and then baked in a hot air circulating oven at 230 ° C. for 30 minutes to form a liquid crystal film having a thickness of 100 nm. A substrate with an alignment film was obtained.
Next, a sealant was printed on one of the pair of glass substrates with a liquid crystal alignment film, the other substrate was attached so that the liquid crystal alignment film surfaces faced each other, and the sealant was cured to prepare an empty cell. Liquid crystal MLC-3019 (manufactured by Merck & Co., Inc.) was injected into this empty cell by a reduced pressure injection method, and the injection port was sealed to obtain an FFS driven liquid crystal cell. After that, the obtained liquid crystal cell was heated at 120 ° C. for 1 hour and left overnight, and then the afterimage characteristics were evaluated.
[長期交流駆動による残像特性評価]
 上記で作製したFFS駆動液晶セルに対し、60℃の恒温環境下、周波数60Hzで±5Vの交流電圧を120時間印加した。その後、液晶セルの画素電極と対向電極との間をショートさせた状態にし、そのまま室温に一日放置した。
 上記の処理を行った液晶セルに関して、電圧無印加状態における、画素の第1領域の液晶の配向方向と第2領域の液晶の配向方向とのずれを角度として算出した。
 具体的には、偏光軸が直交するように配置された2枚の偏光板の間に液晶セルを設置し、バックライトを点灯させ、画素の第1領域の透過光強度が最も小さくなるように液晶セルの配置角度を調整し、次に画素の第2領域の透過光強度が最も小さくなるように液晶セルを回転させたときに要する回転角度を求めた。
 長期交流駆動による残像特性は、この回転角度の値が小さいほど良好であると言える。液晶セルの角度Δの値が0.1°以下の場合には「良好」と評価した。
[Evaluation of afterimage characteristics by long-term AC drive]
An AC voltage of ± 5 V at a frequency of 60 Hz was applied to the FFS-driven liquid crystal cell produced above under a constant temperature environment of 60 ° C. for 120 hours. Then, the pixel electrode and the counter electrode of the liquid crystal cell were short-circuited and left at room temperature for one day.
With respect to the liquid crystal cell that has been subjected to the above processing, the deviation between the alignment direction of the liquid crystal in the first region of the pixel and the alignment direction of the liquid crystal in the second region when no voltage is applied was calculated as an angle.
Specifically, a liquid crystal cell is installed between two polarizing plates arranged so that their polarization axes are orthogonal to each other, a backlight is turned on, and the liquid crystal cell is arranged so that the transmitted light intensity in the first region of the pixel is minimized. The arrangement angle was adjusted, and then the rotation angle required when the liquid crystal cell was rotated so that the transmitted light intensity of the second region of the pixel was minimized was obtained.
It can be said that the smaller the value of the rotation angle, the better the afterimage characteristic due to the long-term AC drive. When the value of the angle Δ of the liquid crystal cell was 0.1 ° or less, it was evaluated as “good”.
[ポリアミック酸及びポリイミドの合成例]
 以下、ポリアミック酸及びポリイミドの合成例を示す。なお、それらの命名において、Aは(A)成分であること、Bは(B)成分であること、Cは(A)成分と(B)成分のいずれでもないこと、及びPIはポリイミドであることを表す。
[Synthesis example of polyamic acid and polyimide]
Hereinafter, synthesis examples of polyamic acid and polyimide will be shown. In these nomenclature, A is the component (A), B is the component (B), C is neither the component (A) nor the component (B), and PI is polyimide. It means that.
<合成例1>
 撹拌装置付き及び窒素導入管付きの200mL四つ口フラスコに、DA-1を1.95g(8.00mmol)、DA-2を1.30g(12.0mmol)、DA-3を3.53g(12.0mmol)及びDA-7を1.90g(8.00mmol)を取り、NMPを99.73g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながら、CA-1を7.35g(32.8mmol)、CA-2を1.50g(6.0mmol)添加し、40℃で24時間撹拌してポリアミック酸溶液(A-1)(粘度:460mPa・s)を得た。ポリアミック酸の分子量は、Mn=9100、Mw=28000であった。
<Synthesis example 1>
In a 200 mL four-necked flask equipped with a stirrer and a nitrogen introduction tube, 1.95 g (8.00 mmol) of DA-1, 1.30 g (12.0 mmol) of DA-2 and 3.53 g of DA-3 ( 12.0 mmol) and DA-7 (1.90 g, 8.00 mmol) were taken, NMP (99.73 g) was added, and the mixture was dissolved by stirring while feeding nitrogen. While stirring this diamine solution, 7.35 g (32.8 mmol) of CA-1 and 1.50 g (6.0 mmol) of CA-2 were added, and the mixture was stirred at 40 ° C. for 24 hours to obtain a polyamic acid solution (A- 1) (viscosity: 460 mPa · s) was obtained. The molecular weight of the polyamic acid was Mn = 9100 and Mw = 28000.
<合成例2~11、16~19>
 ジアミン成分及びテトラカルボン酸成分を下記表1に示すものに変更したこと以外は、合成例1と同様に実施することにより、下記表1に示すポリアミック酸溶液(A-2)~(A-11)、(B-1)~(B-4)を得た。得られたポリアミック酸の粘度、及び分子量は、下記表1に示す。
<Synthesis Examples 2 to 11, 16 to 19>
A polyamic acid solution (A-2) to (A-11) shown in Table 1 below was prepared in the same manner as in Synthesis Example 1 except that the diamine component and the tetracarboxylic acid component were changed to those shown in Table 1 below. ) And (B-1) to (B-4) were obtained. The viscosity and molecular weight of the obtained polyamic acid are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000039
<合成例12>
 撹拌装置付き及び窒素導入管付きの3L四つ口フラスコに得られたポリアミック酸溶液(A-1)を100g取り、NMPを50g加え、30分撹拌した。得られたポリアミック酸溶液に、無水酢酸を16.30g、ピリジンを5.05g加えて、50℃で3時間加熱し、化学イミド化を行った。得られた反応液を600mlのメタノールに撹拌しながら投入し、析出した沈殿物を濾取し、同様の操作を2回実施することで樹脂粉末を洗浄した後、60℃で12時間乾燥することで、ポリイミド樹脂粉末を得た。このポリイミド樹脂粉末のイミド化率は71%であり、Mn=11000、Mw=38000であった。得られたポリイミド樹脂粉末3.60gを100ml三角フラスコに取り、固形分濃度が12%になるようにNMPを26.4g加え、70℃で24時間撹拌し溶解させてポリイミド溶液(A-1-PI)を得た(下記表2参照)。
<Synthesis example 12>
100 g of the obtained polyamic acid solution (A-1) was placed in a 3 L four-necked flask equipped with a stirrer and equipped with a nitrogen introducing tube, 50 g of NMP was added, and the mixture was stirred for 30 minutes. 16.30 g of acetic anhydride and 5.05 g of pyridine were added to the obtained polyamic acid solution, and the mixture was heated at 50 ° C. for 3 hours for chemical imidization. The obtained reaction solution is poured into 600 ml of methanol while stirring, the deposited precipitate is collected by filtration, and the same operation is performed twice to wash the resin powder, and then dried at 60 ° C. for 12 hours. Then, a polyimide resin powder was obtained. The imidation ratio of this polyimide resin powder was 71%, Mn = 11,000 and Mw = 38,000. 3.60 g of the obtained polyimide resin powder was placed in a 100 ml Erlenmeyer flask, 26.4 g of NMP was added so that the solid content concentration was 12%, and the mixture was stirred and stirred at 70 ° C. for 24 hours to dissolve the polyimide solution (A-1- PI) was obtained (see Table 2 below).
<合成例13~15、20~21>
 ポリアミック酸溶液(A-1)の代わりに、下記表2のポリアミックを使用したこと、及びイミド化条件を下記表2のイミド化条件に変更したこと以外は、合成例8と同様に実施することにより、ポリイミド溶液(A-2-PI)~ポリイミド溶液(A-11-PI)を得た。得られたポリイミドの分子量は、下記表2に示す。
<Synthesis Examples 13 to 15, 20 to 21>
The same procedure as in Synthesis Example 8 was performed except that the polyamic acid in Table 2 below was used instead of the polyamic acid solution (A-1) and the imidization conditions were changed to those in Table 2 below. Thus, a polyimide solution (A-2-PI) to a polyimide solution (A-11-PI) were obtained. The molecular weight of the obtained polyimide is shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000040
[液晶配向剤の製造]
<実施例1>
 合成例12で得られた12質量%のポリイミド酸溶液(A-1―PI)4.0g、及び合成例10で得られた15質量%のポリアミック酸溶液(B-1)4.8gを50ml三角フラスコに取り、NMP1.20g、GBL6.00g及びBCS4.00gを加え、25℃にて8時間混合して、液晶配向剤(1)を得た(下記表3参照)。この液晶配向剤には、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
[Production of liquid crystal aligning agent]
<Example 1>
50 ml of 12 g by mass of the polyamic acid solution (A-1-PI) obtained in Synthesis Example 12 and 4.8 g of the 15 mass% of the polyamic acid solution (B-1) obtained in Synthesis Example 10 were used. The mixture was placed in an Erlenmeyer flask, NMP 1.20 g, GBL 6.00 g and BCS 4.00 g were added and mixed at 25 ° C. for 8 hours to obtain a liquid crystal aligning agent (1) (see Table 3 below). No abnormalities such as turbidity and precipitation were observed in this liquid crystal aligning agent, and it was confirmed that the liquid crystal aligning agent was a uniform solution.
<実施例2~16、比較例1~2>
 ポリイミド酸溶液(A-1―PI)及びポリアミック酸溶液(B-1)の代わりに、下記表3のポリアミック酸溶液及びポリイミド溶液を用いたこと以外は、実施例1と同様に実施することにより、液晶配向剤(2)~(18)を得た。これらの液晶配向剤には、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<Examples 2 to 16, Comparative Examples 1 and 2>
By following the same procedure as in Example 1 except that the polyamic acid solution and the polyimide solution shown in Table 3 below were used instead of the polyimide acid solution (A-1-PI) and the polyamic acid solution (B-1). Thus, liquid crystal aligning agents (2) to (18) were obtained. No abnormalities such as turbidity and precipitation were observed in these liquid crystal aligning agents, and it was confirmed that they were uniform solutions.
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000041
[長期交流駆動による残像評価結果(紫外線照射前に焼成を行った場合)]
<実施例21>
 実施例1の液晶配向剤(1)を孔径1.0μmのフィルターで濾過した後、準備された上記電極付き基板と裏面にITO膜が成膜されている高さ4μmの柱状スペーサーを有するガラス基板に、スピンコート塗布にて塗布した。80℃のホットプレート上で2分間乾燥させた後、230℃の熱風循環式オーブンで30分間焼成を行い、膜厚100nmの塗膜を形成させた。この塗膜面に偏光板を介して消光比26:1の直線偏光した波長254nmの紫外線を照射した後、230℃の熱風循環式オーブンで30分間焼成させて、液晶配向膜付き基板を得た。得られた上記2枚の基板を一組とし、基板上にシール剤を印刷し、もう1枚の基板を、液晶配向膜面が向き合い配向方向が0°になるようにして張り合わせた後、シール剤を硬化させて空セルを作製した。この空セルに減圧注入法によって、液晶MLC-3019(メルク社製)を注入し、注入口を封止して、FFS駆動液晶セルを得た。その後、得られた液晶セルを120℃で1時間加熱し、一晩放置して、長期交流駆動による残像評価を実施した。長期交流駆動後におけるこの液晶セルの角度Δの値は、上記紫外線の照射量が200mJ/cmの場合には、0.09°であり、300mJ/cmの場合には、0.1°であり、いずれも0.1°以下であるから、液晶配向剤(1)によれば良好な液晶配向性が得られた(下記表4参照)。
[Result of afterimage evaluation by long-term AC drive (when firing is performed before UV irradiation)]
<Example 21>
After filtering the liquid crystal aligning agent (1) of Example 1 with a filter having a pore size of 1.0 μm, a glass substrate having the prepared electrode-attached substrate and a columnar spacer having a height of 4 μm on which an ITO film is formed on the back surface Was applied by spin coating. After drying for 2 minutes on a hot plate at 80 ° C., baking was performed for 30 minutes in a hot air circulation type oven at 230 ° C. to form a coating film having a film thickness of 100 nm. This coating film surface was irradiated with linearly polarized ultraviolet light having a wavelength of 254 nm having an extinction ratio of 26: 1 through a polarizing plate and then baked in a hot air circulation oven at 230 ° C. for 30 minutes to obtain a substrate with a liquid crystal alignment film. . A set of the above-mentioned two substrates is printed, a sealant is printed on the substrates, and the other substrate is bonded so that the liquid crystal alignment film surfaces face each other and the alignment direction becomes 0 °, and then a seal is formed. The agent was cured to prepare an empty cell. Liquid crystal MLC-3019 (manufactured by Merck & Co., Inc.) was injected into this empty cell by a reduced pressure injection method, and the injection port was sealed to obtain an FFS driven liquid crystal cell. After that, the obtained liquid crystal cell was heated at 120 ° C. for 1 hour and left overnight, and afterimage evaluation by long-term AC driving was performed. The value of the angle Δ of the liquid crystal cell after long-term AC driving is 0.09 ° when the irradiation amount of the ultraviolet rays is 200 mJ / cm 2 , and 0.1 ° when the irradiation amount of 300 mJ / cm 2 is 300 mJ / cm 2 . Since all are 0.1 ° or less, good liquid crystal aligning property was obtained by the liquid crystal aligning agent (1) (see Table 4 below).
<実施例22~32、比較例21、22>
 実施例1の液晶配向剤(1)の代わりに、下記表4に示した液晶配向剤を用いたこと、及び紫外線照射量を下記表4の紫外線照射量に変更したこと以外は、実施例21と全く同様の方法によってFFS駆動液晶セルを作製し、長期交流駆動による残像評価を実施した。それぞれにおける長期交流駆動後におけるこの液晶セルの角度Δの値を表4に示す。
<Examples 22 to 32, Comparative Examples 21 and 22>
Example 21 except that the liquid crystal aligning agent shown in Table 4 below was used instead of the liquid crystal aligning agent (1) of Example 1 and the ultraviolet irradiation dose was changed to the ultraviolet irradiation dose shown in Table 4 below. An FFS-driving liquid crystal cell was produced by the same method as above, and afterimage evaluation by long-term AC driving was performed. Table 4 shows the value of the angle Δ of the liquid crystal cell after the long-term AC driving.
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000042
[長期交流駆動による残像評価結果(紫外線照射前に焼成を行わなかった場合)]
<実施例41>
 実施例1の液晶配向剤(1)を用いて孔径1.0μmのフィルターで濾過した後、準備された上記電極付き基板と裏面にITO膜が成膜されている高さ4μmの柱状スペーサーを有するガラス基板に、スピンコート塗布にて塗布した。80℃のホットプレート上で2分間乾燥させた後、この塗膜面に偏光板を介して消光比26:1の直線偏光した波長254nmの紫外線を照射した後、230℃の熱風循環式オーブンで30分間焼成させて、膜厚100nmの液晶配向膜付き基板を得た。得られた上記2枚の基板を一組とし、基板上にシール剤を印刷し、もう1枚の基板を、液晶配向膜面が向き合い配向方向が0°になるようにして張り合わせた後、シール剤を硬化させて空セルを作製した。この空セルに減圧注入法によって、液晶MLC-3019(メルク社製)を注入し、注入口を封止して、FFS駆動液晶セルを得た。その後、得られた液晶セルを120℃で1時間加熱し、一晩放置して、長期交流駆動による残像評価を実施した。長期交流駆動後におけるこの液晶セルの角度Δの値は、上記紫外線の照射量が200mJ/cmの場合には、0.07°であり、300mJ/cmの場合には、0.07°であり、いずれも0.1°以下であるから、液晶配向剤(1)によれば良好な液晶配向性が得られた(下記表5参照)。
[Evaluation result of afterimage by long-term AC drive (when firing is not performed before UV irradiation)]
<Example 41>
After filtering with a filter having a pore size of 1.0 μm using the liquid crystal aligning agent (1) of Example 1, the prepared substrate with an electrode and a columnar spacer having a height of 4 μm on which an ITO film is formed on the back surface are provided. It was applied to a glass substrate by spin coating. After drying for 2 minutes on a hot plate at 80 ° C, this coating film surface was irradiated with linearly polarized ultraviolet light having a wavelength of 254 nm with an extinction ratio of 26: 1 via a polarizing plate, and then in a hot air circulation oven at 230 ° C. After baking for 30 minutes, a substrate with a liquid crystal alignment film having a film thickness of 100 nm was obtained. A set of the above-mentioned two substrates is printed, a sealant is printed on the substrates, and the other substrate is bonded so that the liquid crystal alignment film surfaces face each other and the alignment direction is 0 °, and then a seal is formed. The agent was cured to prepare an empty cell. Liquid crystal MLC-3019 (manufactured by Merck & Co., Inc.) was injected into this empty cell by a reduced pressure injection method, and the injection port was sealed to obtain an FFS driven liquid crystal cell. After that, the obtained liquid crystal cell was heated at 120 ° C. for 1 hour and left overnight, and afterimage evaluation by long-term AC driving was performed. The value of the angle Δ of the liquid crystal cell after long-term AC driving is 0.07 ° when the dose of the ultraviolet rays is 200 mJ / cm 2 , and 0.07 ° when the dose is 300 mJ / cm 2 . Since all are 0.1 ° or less, good liquid crystal aligning property was obtained by the liquid crystal aligning agent (1) (see Table 5 below).
<実施例42~49、比較例41、42>
 実施例1の液晶配向剤(1)の代わりに、下記表5に示した液晶配向剤を用いたこと、及び紫外線照射量を下記表5の紫外線照射量に変更したこと以外は、実施例41と全く同様の方法によってFFS駆動液晶セルを作製し、長期交流駆動による残像評価を実施した。それぞれにおける長期交流駆動後におけるこの液晶セルの角度Δの値を表5に示す。
<Examples 42 to 49, Comparative Examples 41 and 42>
Example 41, except that the liquid crystal aligning agent shown in Table 5 below was used in place of the liquid crystal aligning agent (1) of Example 1 and the ultraviolet irradiation dose was changed to the ultraviolet irradiation dose shown in Table 5 below. An FFS-driving liquid crystal cell was produced by the same method as above, and afterimage evaluation by long-term AC driving was performed. Table 5 shows the values of the angle Δ of the liquid crystal cell after long-term AC driving.
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000043
 表4及び表5に示すように、実施例1~12は角度Δ(deg.)も0.1°以下の角度Δであり良好な残像特性であることから、液晶表示素子の表示品位改善に優れる。 As shown in Tables 4 and 5, in Examples 1 to 12, the angle Δ (deg.) Is also an angle Δ of 0.1 ° or less, which is a good afterimage characteristic. Therefore, it is possible to improve the display quality of the liquid crystal display device. Excel.
 本発明の液晶配向剤は、高精細化、低コスト化が要求される大型液晶表示素子や、スマートフォン、携帯電話などのモバイル用液晶表示素子などの広範な分野で使用される。
 なお、2018年10月18日に出願された日本特許出願2018-196761号の明細書、特許請求の範囲、図面、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
INDUSTRIAL APPLICABILITY The liquid crystal aligning agent of the present invention is used in a wide range of fields such as large-sized liquid crystal display devices that require high definition and low cost, and mobile liquid crystal display devices such as smartphones and mobile phones.
The entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2018-196761 filed on Oct. 18, 2018 are cited herein as disclosure of the specification of the present invention. , Take in.

Claims (12)

  1.  下記式[1]で表される構造を有するジアミンを含有するジアミン成分とテトラカルボン酸二無水物成分との反応で得られるポリアミック酸、及び該ポリアミック酸をイミド化して得られるポリイミドからなる群より選ばれる少なくとも1つの重合体を含有することを特徴とする液晶配向剤。
    Figure JPOXMLDOC01-appb-C000001
    (式[1]中、A及びAは、それぞれ独立して、置換基を有していてもよい単環基又は縮合環基であり、A及びAは、同時に単環基であることはない。X及びXは、それぞれ独立して、単結合、酸素原子又は硫黄原子である。Qは、炭素数1又は2のアルキレン基である。m及びnは、それぞれ独立して、1~3の整数である。)
    From the group consisting of a polyamic acid obtained by reacting a diamine component containing a diamine having a structure represented by the following formula [1] with a tetracarboxylic dianhydride component, and a polyimide obtained by imidizing the polyamic acid. A liquid crystal aligning agent comprising at least one polymer selected.
    Figure JPOXMLDOC01-appb-C000001
    (In the formula [1], A 1 and A 2 are each independently a monocyclic group which may have a substituent or a condensed ring group, and A 1 and A 2 are simultaneously a monocyclic group. X 1 and X 2 are each independently a single bond, an oxygen atom or a sulfur atom, Q is an alkylene group having 1 or 2 carbon atoms, and m and n are each independently. And is an integer of 1 to 3.)
  2.  前記式[1]において、Qが炭素数2のアルキレン基である、請求項1に記載の液晶配向剤。 The liquid crystal aligning agent according to claim 1, wherein in the formula [1], Q is an alkylene group having 2 carbon atoms.
  3.  前記式[1]において、X及びXが酸素原子である、請求項1又は2に記載の液晶配向剤。 In the formula [1], the liquid crystal aligning agent according to claim 1 or 2, wherein X 1 and X 2 are oxygen atoms.
  4.  前記式[1]で表される構造を有するジアミンが、下記で表されるいずれかのジアミンである、請求項1~3のいずれか1項に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
    The liquid crystal aligning agent according to any one of claims 1 to 3, wherein the diamine having a structure represented by the formula [1] is any one of the following diamines.
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
  5.  前記ジアミン成分中の式[1]で表される構造を有するジアミンの含有量が、5~95mol%である、請求項1~4のいずれか1項に記載の液晶配向剤。 The liquid crystal aligning agent according to any one of claims 1 to 4, wherein the content of the diamine having the structure represented by the formula [1] in the diamine component is 5 to 95 mol%.
  6.  前記テトラカルボン酸二無水物成分が、下記式[7]で表されるテトラカルボン酸二無水物又はその誘導体である、請求項1~5のいずれか1項に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000005
    (式[7]中、Zは、4価の有機基である。)
    The liquid crystal aligning agent according to any one of claims 1 to 5, wherein the tetracarboxylic dianhydride component is a tetracarboxylic dianhydride represented by the following formula [7] or a derivative thereof.
    Figure JPOXMLDOC01-appb-C000005
    (In the formula [7], Z 1 is a tetravalent organic group.)
  7.  Zが、下記式(X1-1)~(X1-19)のいずれかで表される構造のいずれかである、請求項6に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000006
    (式(X1-1)及び(X1-2)中、R~R12はそれぞれ独立して、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、フッ素原子を含有する炭素数1~6の1価の有機基、又はフェニル基である。但し、R~Rの少なくとも一つは水素原子以外の基である。)
    7. The liquid crystal aligning agent according to claim 6, wherein Z 1 has any of the structures represented by any of the following formulas (X1-1) to (X1-19).
    Figure JPOXMLDOC01-appb-C000006
    (In formulas (X1-1) and (X1-2), R 3 to R 12 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, An alkynyl group having 2 to 6 carbon atoms, a monovalent organic group having 1 to 6 carbon atoms containing a fluorine atom, or a phenyl group, provided that at least one of R 3 to R 6 is a group other than a hydrogen atom. is there.)
  8.  Zが、式(X1-1)で表される構造である、請求項7に記載の液晶配向剤。 The liquid crystal aligning agent according to claim 7, wherein Z 1 has a structure represented by formula (X1-1).
  9.  請求項1~8のいずれかに記載の液晶配向剤から得られる液晶配向膜。 A liquid crystal alignment film obtained from the liquid crystal alignment agent according to any one of claims 1 to 8.
  10.  請求項9に記載の液晶配向膜を具備する液晶表示素子。 A liquid crystal display device comprising the liquid crystal alignment film according to claim 9.
  11.  下記式[1]で表される構造を有するジアミン。
    Figure JPOXMLDOC01-appb-C000007
    (式[1]中、A及びAは、それぞれ独立して、置換基を有していてもよい単環基又は縮合環基であり、A及びAは、同時に単環基であることはない。X及びXは、それぞれ独立して、単結合、酸素原子又は硫黄原子である。Qは、炭素数1又は2のアルキレン基である。m及びnは、それぞれ独立して、1~3の整数である。)
    A diamine having a structure represented by the following formula [1].
    Figure JPOXMLDOC01-appb-C000007
    (In the formula [1], A 1 and A 2 are each independently a monocyclic group which may have a substituent or a condensed ring group, and A 1 and A 2 are simultaneously a monocyclic group. X 1 and X 2 are each independently a single bond, an oxygen atom or a sulfur atom, Q is an alkylene group having 1 or 2 carbon atoms, and m and n are each independently. And is an integer of 1 to 3.)
  12.  前記式[1]で表される構造を有するジアミンが、下記で表されるいずれかのジアミンである請求項11に記載のジアミン。
    Figure JPOXMLDOC01-appb-C000008
    Figure JPOXMLDOC01-appb-C000009
    Figure JPOXMLDOC01-appb-C000010
    The diamine according to claim 11, wherein the diamine having the structure represented by the formula [1] is any of the diamines represented below.
    Figure JPOXMLDOC01-appb-C000008
    Figure JPOXMLDOC01-appb-C000009
    Figure JPOXMLDOC01-appb-C000010
PCT/JP2019/040943 2018-10-18 2019-10-17 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element using same WO2020080477A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980067855.7A CN112912792A (en) 2018-10-18 2019-10-17 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element using same
KR1020217011955A KR20210076925A (en) 2018-10-18 2019-10-17 Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element using same
JP2020553300A JP7400728B2 (en) 2018-10-18 2019-10-17 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018196761 2018-10-18
JP2018-196761 2018-10-18

Publications (1)

Publication Number Publication Date
WO2020080477A1 true WO2020080477A1 (en) 2020-04-23

Family

ID=70283857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/040943 WO2020080477A1 (en) 2018-10-18 2019-10-17 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element using same

Country Status (4)

Country Link
JP (1) JP7400728B2 (en)
KR (1) KR20210076925A (en)
CN (1) CN112912792A (en)
WO (1) WO2020080477A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023286733A1 (en) * 2021-07-12 2023-01-19 日産化学株式会社 Liquid crystal aligning agent, liquid crystal alignment film, method for producing liquid crystal display element, and liquid crystal display element

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004035522A1 (en) * 2002-08-30 2004-04-29 Bf Research Institute, Inc. Diagnostic probes and remedies for diseases with accumulation of prion protein, and stains for prion protein
JP2010070537A (en) * 2008-08-20 2010-04-02 Chisso Corp Diamine, liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display device
JP2014527555A (en) * 2011-08-02 2014-10-16 ロリク アーゲーRolic Ag Photo-alignment material
CN108165281A (en) * 2017-12-29 2018-06-15 常州市尚科新材料有限公司 Aligning agent for liquid crystal and its preparation method and application

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4779339B2 (en) 2003-11-05 2011-09-28 Jnc株式会社 Liquid crystal aligning agent and liquid crystal display element using the same
US7498068B2 (en) 2004-04-28 2009-03-03 Nissan Chemical Industries, Ltd. Liquid-crystal aligning agent, liquid-crystal alignment film comprising the same, and liquid-crystal element
JP6870377B2 (en) 2016-04-25 2021-05-12 Jsr株式会社 Liquid crystal alignment agent, liquid crystal alignment film and its manufacturing method, and liquid crystal element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004035522A1 (en) * 2002-08-30 2004-04-29 Bf Research Institute, Inc. Diagnostic probes and remedies for diseases with accumulation of prion protein, and stains for prion protein
JP2010070537A (en) * 2008-08-20 2010-04-02 Chisso Corp Diamine, liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display device
JP2014527555A (en) * 2011-08-02 2014-10-16 ロリク アーゲーRolic Ag Photo-alignment material
CN108165281A (en) * 2017-12-29 2018-06-15 常州市尚科新材料有限公司 Aligning agent for liquid crystal and its preparation method and application

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MCGINTY, D. A. ET AL.: "The goitrogenic activity of some thioureas, pyrimidines, and miscellaneous compounds", THE JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS 1945 (RECEIVED DATE, vol. 84, pages 342 - 357, XP055701999 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023286733A1 (en) * 2021-07-12 2023-01-19 日産化学株式会社 Liquid crystal aligning agent, liquid crystal alignment film, method for producing liquid crystal display element, and liquid crystal display element

Also Published As

Publication number Publication date
TW202031858A (en) 2020-09-01
KR20210076925A (en) 2021-06-24
JP7400728B2 (en) 2023-12-19
JPWO2020080477A1 (en) 2021-09-30
CN112912792A (en) 2021-06-04

Similar Documents

Publication Publication Date Title
JP5387793B2 (en) Liquid crystal alignment agent
JP5651953B2 (en) Liquid crystal aligning agent and liquid crystal display element
JP7027890B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
WO2009093709A1 (en) Liquid-crystal alignment material, liquid-crystal alignment film, and liquid-crystal display element
JP6314827B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2014034790A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal display element
WO2009093704A1 (en) Diamine compound, liquid crystal aligning agent, and liquid crystal display device using the same
JP6278216B2 (en) Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element using the same
JP7081488B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
WO2018056238A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP6569872B2 (en) Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element using the same
JP7400728B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element using the same
JP6996509B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element using it
KR102597729B1 (en) Liquid crystal orientation agent, liquid crystal oriented film, and liquid crystal display element
TWI837196B (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display elements using the same
JPWO2019163904A1 (en) Manufacturing method of liquid crystal display element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19872470

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020553300

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19872470

Country of ref document: EP

Kind code of ref document: A1