TW201819638A - 以表觀遺傳區分dna - Google Patents

以表觀遺傳區分dna Download PDF

Info

Publication number
TW201819638A
TW201819638A TW106127688A TW106127688A TW201819638A TW 201819638 A TW201819638 A TW 201819638A TW 106127688 A TW106127688 A TW 106127688A TW 106127688 A TW106127688 A TW 106127688A TW 201819638 A TW201819638 A TW 201819638A
Authority
TW
Taiwan
Prior art keywords
dna
bsp
aor
msre
methylation
Prior art date
Application number
TW106127688A
Other languages
English (en)
Other versions
TWI717547B (zh
Inventor
陳柏仰
嚴明仁
徐翡曼
李怡靜
Original Assignee
中央研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中央研究院 filed Critical 中央研究院
Publication of TW201819638A publication Critical patent/TW201819638A/zh
Application granted granted Critical
Publication of TWI717547B publication Critical patent/TWI717547B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6858Allele-specific amplification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/154Methylation markers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本發明係關於利用表觀遺傳資訊自多種DNA混合物中分離出一種類型的DNA之方法。本發明方法之應用包括例如偵測染色體異常(例如非整倍性、癌細胞)、鑑定基因組異常、直接偵測具有異常複本數之DNA及研發用於上文所提及之偵測及鑑定的指標。

Description

以表觀遺傳區分DNA
本發明係關於DNA區分法之領域。特定言之,本發明係關於利用表觀遺傳資訊自多種DNA混合物分離出一種類型DNA之方法。
在DNA合成之後,DNA甲基轉移酶將甲基自S-腺苷甲硫氨酸上轉移至胞嘧啶之5’碳位置,稱為DNA甲基化。哺乳動物DNA甲基轉移酶之主要辨識序列為5'-CpG-3'。大約有50-60%的已知基因在其啟動子區內含有成群之CpG位點,稱為CpG島。除了正常發育基因表現控制、基因銘印、X染色體默化、老化或癌症及其他病理性病症中之異常甲基化的情況之外,大部分的CpG島保持在未甲基化狀態。DNA甲基化有著組織特異性以及動態性的。基因組中之DNA甲基化模式對於癌症、表觀遺傳疾病、早期發育、營養及老化之基因組研究上是相當重要的。DNA甲基化的研究主要在探討細胞內基因體甲基化模式及特定位點的甲基化。甲基化分析的目的包括增加對癌症之理解以及開發出診斷工具,用以早期偵測、診斷及治療癌症,及其他基因體疾病(諸如唐氏症(Down syndrome))的診斷。 DNA甲基化為一種表觀遺傳修飾,可在不改變DNA序列的狀況下影響基因表現,換言之,改變表現型而不改變基因型。表觀遺傳研究之一個主要重點在於探討DNA甲基化在調控基因表現中所扮演的角色。甲基化增加(高度甲基化)及甲基化缺乏(低度甲基化)兩者均已涉及癌症及其他疾病之生成及進展。基因啟動子及上游編碼區之高度甲基化導致相對應基因表現減少。高度甲基化可減少未被細胞採用之基因的表現,亦會抑制跳躍基因及其他已嵌入基因體中之病毒及細菌的基因表現。在細胞內,高表現之基因組區通常呈現低度甲基化。相較於正常細胞,癌細胞中的腫瘤抑制基因通常呈現高度甲基化。因此,細胞可藉由調節甲基化程度來維持基因表現的平衡。 亞硫酸氫鹽定序是一種用以偵測單一核酸的甲基化狀態之實驗方法。其主要的方法是將單股DNA用亞硫酸氫鹽處理,使胞嘧啶磺化,但甲基化的胞嘧啶不受影響。之後將胞嘧啶脫胺且脫磺基成為尿嘧啶[Frommer M, McDonald LE, Millar DS, Collis CM, Watt F, Grigg GW, Molloy PL, Paul CL: A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc. Natl. Acad. Sci. USA 1992, 89:1827-1831 ]。經亞硫酸氫鹽轉化之DNA先與合適的引子結合再藉由PCR方式進行擴增,且將PCR產物直接定序且與未轉化之DNA做序列比對,由此可以判定個別胞嘧啶上的甲基化狀態。在DNA鑑別中利用甲基化差異的模式,US20050202490使用亞硫酸氫鹽將未甲基化之胞嘧啶轉化成尿嘧啶,隨後用特異性引子擴增以確定DNA甲基化狀態。混合不同的甲基化DNA可指示該等DNA來自不同來源(例如親代及子代,腫瘤及正常細胞。為藉由甲基化型式(高或低度甲基化)富集特定的DNA,US20090203002使用對甲基化敏感的限制酶來剪切具有未甲基化CpG之位點,隨後與連接子連接、自我接合及循環擴增以擴增未甲基化之DNA。WO2011082386擴增低甲基化的DNA是藉由使用對甲基化敏感的限制酶來剪切具有未甲基化CpG之位點,隨後與連接子連接、PCR擴增、連接子移除、接合分開的PCR產物以形成高分子量產物,且藉由等溫擴增放大此產物。總之,此等方法證明DNA甲基化之差異型式可用以區分在混合物中特定的DNA。 若干大型基因組研究已表明,新生兒中全染色體非整倍性之發生率為1至2% [Hook EB, Rates of chromosomal abnormalities at different maternal ages, OBstet. Gynecol. 1981, 58:282-285 Wellesley D 等人 , Rare chromosome abnormalities, prevalence and prenatal diagnosis rates from population-based congenital anomaly registers in Europe. European Journal of Human Genetics 2012, 20:521-526 ]。此類染色體異常是產前發病及死亡的重要原因,也是出生後重度發育遲緩的主要原因。常見三染色體(trisomy)異常與懷孕婦女的年齡有關,而且年齡越高越顯著,因此非整倍的染色體篩檢非常重要,可靠而價格低廉的非侵入性產前檢測方式是被迫切需要的。舉例而言,唐氏症中是一種最常見的人類染色體異常疾病,約每800個新生兒即出現1例。患者其第21對染色體有三個複本,而非正常的兩個複本,且伴隨著重度智能障礙。長期護理的需求導致了患者家庭之財務及情感負擔。傳統的侵入性產前檢查如羊膜穿刺術非常準確,但相對增加流產的風險。羊膜穿刺術通常在懷孕的16-20週之間進行。前人發現在母親血液中存在著胎兒細胞的DNA,這項發現是產前檢測中一個重要里程碑。具估計在懷孕10-21週之間,母體血漿中大約有10%是胎兒細胞的DNA [Wang E. 等人 , Gestational age and maternal weight effects on fetal cell-free DNA in maternal plasma, Prenatal Diagnosis 2013, 33:662-666 ];母體血漿中這種少量的胎兒DNA特性使得鑑定胎兒染色體極具有挑戰性,特別是偵測胎兒DNA的非整倍體。前人研發出若干技術用以純化來自母體循環的胎兒細胞,且已證明若干病狀之產前診斷之可行性。儘管如此,此類方法尚未變得切實可行,主要歸因於胎兒細胞極少,純化具有難度。基於計算位於目標染色體上之胎兒甲基化標記物的量與位於參考染色體上的胎兒遺傳標記物的量的比率,諸如US8563242之成功應用提供測定非整倍體之方法。為進一步提高信噪比(為增加顯示高/低度甲基化之特定DNA),US20120329667使用甲基化敏感限制酶(MSRE)來切割自測試及對照樣本兩者之DNA,隨後透過DNA片段大小的選擇來增幅具有不同DNA甲基化區域之DNA。US20120315633描述自子宮頸樣本增幅胎兒核酸的方法。此方法證實了使用DNA甲基化模式進行DNA鑑別之可能性。然而,由於這些方法都不能同時檢測甲基化和未甲基化的DNA,且沒有任一種被設計成與次世代定序(NGS)技術結合,因此這些方法仍不適用於全基因體診斷。 雖然已有很多研究積極的想自母體循環系統之中純化出胎兒細胞,但成功率極低。這方面的進展可大幅增進對染色體異常之偵測以用於非侵入性產前檢測及癌症診斷。
本發明提供藉由DNA之表觀遺傳標記自兩種類型之DNA混合物增幅其中一種類型之DNA的方法。 該方法應用於偵測染色體異常(例如非整倍體、癌細胞)。在鑑定基因組異常之後續應用中,提供直接偵測具有異常複本數之DNA及發育指標之方法。 本發明的其中一個用途是用於檢測甲基化差異區域(DMR),其包含使用一種或多種選自由以下組成之群的對甲基化敏感限制性核酸內切酶(MSRE):Aor 13HI、Bsp MII、Acc III、Aor 51HI、Eco 47III、Bsp T104104、Asu II、Nsp V、Eco 52I、Xma III、Plu TI、Pma CI、Pml I及Rsr II。 本發明亦可適用於檢測包含於母體DNA中之胎兒DNA是否為多染色體(polysomy)之方法,其步驟包含: (a) 自測試樣本及對照樣本分離DNA混合物; (b) 藉由用一種或多種對甲基化敏感限制性核酸內切酶(MSRE)來剪切DNA混合物獲得DNA片段; (c) 藉由對該等DNA片段進行PCR擴增特定的甲基化差異區域(DMR);及 (d) 獲得測試樣本中甲基化胎兒DNA之相對濃度與對照樣本中甲基化胎兒DNA之相對濃度的比率, 其中大於1.498的比率表示測試樣品中存在多染色體的可能性。 本發明之另一態樣係提供用於在全基因體中確定甲基化差異區域(DMR)之方法,其包含: (a) 自測試樣本分離DNA混合物; (b) 藉由用定序適配子(adapter)接合該DNA混合物,以產生經適配子接合之DNA; (c) 藉由用一種或多種對甲基化敏感限制性核酸內切酶(MSRE)來剪切經適配子接合之DNA,獲得經MSRE剪切之DNA; (d) 藉由用PCR擴增經MSRE剪切之DNA,獲得PCR產物; (e) 藉由次世代定序(NGS)來定序該等PCR產物;及 (f) 在全基因體中確定甲基化差異區域(DMR)。 在本發明之一個實施例中,該方法進一步包含計算該測試樣本之染色體複本數與對照樣本之染色體複本數之比率的步驟(g),其中比率大於1.34指示測試樣本中存在多染色體之可能性。 本發明之另一態樣係提供用於在全基因體中確定甲基化差異區域(DMR)之方法,其包含: (a) 自測試樣本分離DNA混合物; (b) 藉由用一種或多種對甲基化敏感限制性核酸內切酶(MSRE)來剪切DNA混合物,以獲得DNA片段; (c) 藉由用生物素標定之連接子接合該等DNA片段,以產生經生物素標定接合之DNA; (d) 藉由鏈黴抗生物素蛋白磁珠富集該經生物素標定接合的DNA; (e) 藉由用定序適配子接合該富集之經生物素標定接合的DNA,以獲得經適配子接合之DNA; (f) 藉由次世代定序(NGS)來定序經適配子接合之DNA;及 (g) 在全基因體中確定甲基化差異區域(DMR)。 在本發明之一個實施例中,該方法進一步包含計算該測試樣本之染色體複本數與對照樣本之染色體複本數之比率的步驟(h),其中比率大於1.34指示測試樣本中存在多染色體之可能性。 本發明之另一態樣係提供用於在全基因體中確定甲基化差異區域(DMR)之方法,其包含: (a) 自測試樣本分離DNA混合物; (b) 藉由用一種或多種對甲基化敏感限制性核酸內切酶(MSRE)來剪切該DNA混合物以獲得DNA片段,其中未甲基化胞嘧啶存在於DNA片段之末端核苷酸處,且甲基化胞嘧啶存在於該等DNA片段之中間核苷酸處; (c) 藉由用定序適配子接合該等DNA片段,以產生經定序適配子接合之DNA; (d) 藉由用PCR擴增經定序適配子接合之DNA,以獲得PCR產物; (e) 藉由次世代定序(NGS)來定序該等PCR產物;及 (f) 在全基因組體中確定甲基化差異區域(DMR)。 在本發明之一個實施例中,該方法進一步包含計算測試樣本之染色體複本數與對照樣本之染色體複本數之比率的步驟(g),其中比率大於1.34指示測試樣本中存在多染色體之可能性。 本發明之另一態樣係提供用於在全基因體中確定甲基化差異區域(DMR)之方法: (a) 自測試樣本分離DNA混合物; (b) 藉由用定序適配子接合DNA混合物,以產生經適配子接合之DNA; (c) 藉由用亞硫酸氫鹽處理經適配子連接之DNA,獲得經亞硫酸氫鹽處理之DNA; (d) 藉由用PCR擴增該經亞硫酸氫鹽處理之DNA,獲得PCR產物; (e) 藉由次世代定序(NGS)來定序該等PCR產物;及 (f) 在全基因體中確定甲基化差異區域(DMR)。 在本發明之一個實施例中,該方法進一步包含計算測試樣本之染色體複本數與對照樣本之染色體複本數之比率的步驟(g),其中比率大於1.34指示測試樣本中存在多染色體之可能性。 在本發明之一個實施例中,多染色體係三染色體。 在本發明之一個實施例中,比率大於1.36、1.38、1.40、1.42、1.44、1.46、1.48、1.49、1.498、1.50、1.52、1.54、1.56、1.58、1.60、1.65、1.70、1.80、2.00、2.2、2.4、2.6、2.8或3.0。 在本發明之一個實施例中,比率大於1.46、1.48、1.498或1.50。 在本發明之一個實施例中,當胎兒DNA之複本數與DNA混合物之總複本數之比率的濃度比率小於10%時,該方法相比於無剪切步驟的方法顯示增進至少13.5%。 在本發明之一個實施例中,當胎兒DNA之複本數與DNA混合物之總複本數之比率的濃度比率小於15%時,該方法相比於無剪切步驟的方法顯示增進至少40%。 在本發明之一個實施例中,MSRE選自由以下組成之群:Aat lI、Acc II、Fnu DII、Aci I、Acl I、Afe I、Age I、Aor 13HI、Bsp MII、Acc III、Aor 51HI、Eco 47III、Asc I、Asi SI、Ava I、Bce AI、Bmg BI、Bsa AI、Bsa HI、Bsi EI、Bsi WI、Bsm BI、Bsp DI、Bsp T104104、Asu II、Nsp V、Bsr FI、Bss HII、Bst BI、Bst UI、Cfr 10I、Cla I、Eag I、Eco 52I、Xma III、Fau I、Fse I、Fsp I、Hae II、Hga I、Hha I、Hin P1I、Hpa II、Hpy 99I、Hpy CH4IV、Kas I、Mlu I、Nae I、Nar I、Ngo MIV、Not I、Nru I、Pae R7I、Plu TI、Pma CI、Pm lI、Pvu I、Rsr II、Sac II、Sal I、Sfo I、Sgr AI、Sma I、Sna BI、Tsp MI及Zra I。 在本發明之一個實施例中,其中MSRE選自由以下組成之群:Aor 13HI、Bsp MII、Acc III、Aor 51HI、Eco 47III、Bsp T104104、Asu II、Nsp V、Eco 52I、Xma III、Plu TI、Pma CI、Pml I及Rsr II。
相關申請案之參考 本申請案主張2016年8月15日申請之美國臨時申請案第62/375,358號之優先權,其揭示內容以全文引用之方式併入本文中。 本發明旨在自多種DNA之混合物區分DNA。因此,本發明包括多於一種利用表觀遺傳資訊自混合物區分一種類型DNA之方法。此等方法針對各種應用顯著地以不同方式加以實施。定義 提供以下定義以有助於理解所主張之標的。在本文中未明確定義之術語係根據其普通及一般含義使用。 除非另外規定,否則「一(a/an)」意謂「一或多」。 如本文所用,術語「個體(individual/subject)」、「主體」及「患者」可互換使用,且係指需要診斷或治療之任何哺乳動物個體,尤其人類。 通常,本文中範圍以自「約」一個特定值及/或至「約」另一特定值表示。當表示此類範圍時,一實施例包括自一個特定值及/或至另一特定值之範圍。類似地,當值以近似值(藉由使用詞語「約」)表示時,將理解特定值形成另一實施例。進一步將理解,範圍中之每一者之端點相對於另一端點且獨立於另一端點為重要的。如本文所用,術語「約」係指± 30%,較佳± 20%,更佳± 10%,且甚至更佳± 5%。 如本文所用,術語「多染色體」係指存在染色體之三個或多於三個複本而非預期的兩個複本的病狀。多染色體之實例包括三染色體、四染色體、五染色體、六染色體、七染色體、八染色體、九染色體、十染色體等。 如本文所用,術語「三染色體」係指多染色體之一種類型,其中存在特定染色體之三個複本,而非正常的兩個。人類中三染色體之最常見類型係染色體第21對三體(唐氏症)、染色體第18對三體(愛德華氏症候群(Edwards syndrome)、染色體第13對三體帕陶氏症候群(Patau syndrome)、染色體第9對三體、染色體第8對三體(Warkany症候群2)及染色體第22對三體。 如本文所用,術語「基因」指示列名「基因」所從屬之家族之任何基因,且不僅包括在公開可用資料庫中發現之基因序列,且亦涵蓋此等序列之所有轉錄物及核苷酸變體。 如本文所用,術語「全基因體」係指細胞或細胞群之整個基因體,或大部分或幾乎所有基因體。 如本文所用,術語「富集」係指擴增一部分生物樣本中所含有之多型性標靶核酸之方法。 如本文所用,術語「甲基化狀態(methylation state/methylation status)」係指核酸內之一或多個CpG二核苷酸中存在或不存在甲基化胞嘧啶殘基。 如本文所用,術語「甲基化差異區域(DMR)」係指在不同生物樣本中具有不同DNA甲基化狀態之基因組區域。 如本文所用,生物樣本係指通常源自生物體液、細胞、組織、器官或生物體之樣本,其包含具有不同甲基化型式之核酸或DNA之混合物。生物樣本包括(但不限於)組織、糞便、毛髮、血清、血漿、皮膚、尿液及全血。 如本文所用,術語「生物體液」係指獲自生物來源之液體,且包括例如血液、血清、血漿、痰、灌洗液、腦脊髓液、尿液、精液、汗液、淚液及唾液。如本文所用,術語「血液」、「血漿」及「血清」明確涵蓋其小部分或經處理部分。類似地,在樣本獲自生檢、拭子或抹片之情況下,「樣本」明確涵蓋源自生檢、拭子或抹片之經處理小部分或部分。 如本文所用,術語「母體樣本」係指獲自懷孕雌性個體之生物樣本。 如本文所用,術語「母體核酸」及「胎兒核酸」分別係指懷孕雌性個體之核酸及懷孕雌性懷有之胎兒之核酸。 如本文所用,術語「胎兒部分」係指包含胎兒及母體核酸之樣本中所存在之胎兒核酸的部分。胎兒部分通常用以表徵母親血液中存在於細胞之外的DNA (cfDNA)。 如本文所用,術語「染色體」係指活細胞之攜帶遺傳之基因載體,其衍生自染色質且包含DNA及蛋白質組成分(尤其組蛋白)。 如本文所用,術語「所關注之序列」係指與所出示序列中之差異相關之核酸序列。所關注之序列可為錯誤表現(亦即在遺傳條件下過度表現或表現不足)在染色體上之序列。所關注之序列可為染色體之一部分或整個染色體。「所關注之試驗序列」係生物樣本中之所關注之序列。 如本文所用,術語「適配子」係化學合成的短單股或雙股寡核苷酸,其可接合至其他DNA或RNA分子之末端。術語「適配子」可為用於定序所關注之序列的「定序適配子」。定序適配子之非限制性實例係「Illumina Adapter Sequences」,其在網站https://support.illumina.com/downloads/illumina-customer-sequence-letter.html上可獲得其序列資訊。 如本文所用,術語「次世代定序(NGS)」係指定序方法,其允許經選殖擴增分子及單核酸分子之高處理量平行定序。NGS之非限制性實例包括使用可逆染料終止子之經合成定序(sequencing-by-synthesis),及經接合定序(sequencing-by-ligation)。 如本文所用,術語標記物之「量改變」或標記物之「含量改變」係指相比於對照樣本中標記物之表現量或複本數,生物樣本中標記物複本數增加或減少以及一種或多種特定標記基因之表現量增加或減少。術語標記物之「量改變」亦包括相比於正常對照樣本中標記物之蛋白質含量,樣本(例如癌症樣本)中標記物之蛋白質含量增加或減少。用於自多種 DNA 混合物區分特異性 DNA 方法 此等方法使用一種或多種新穎MSRE擴增甲基化DNA或使用甲基化差異以NGS來分析整個基因組中甲基化及/或未甲基化位點。此等方法之示意圖顯示於 1 中。方法1富集具有特定標記位點之甲基化DNA;方法2富集甲基化DNA且進行全基因組篩選;方法3富集未甲基化DNA且進行全基因組篩選;方法4藉由比較不同DNA甲基化型式之MSRE切割位點,其切割位點相對於定序序列5'末端之位置來區分;與方法5分離全基因組甲基化概況以推斷不同類型DNA之基因組複本數變化。 在一個態樣中,本發明提供用於增幅及偵測生物樣本中之甲基化DNA之方法(方法1),該方法包含(a)自樣本分離DNA,(b)藉由用一種或多種對甲基化敏感限制性核酸內切酶(MSRE)來剪切DNA混合物獲得DNA片段,(c)藉由對DNA片段進行PCR擴增來放大特定的甲基化差異區域(DMR),及(d)比較測試樣本中甲基化胎兒DNA之相對濃度與對照樣本中甲基化胎兒DNA之相對濃度的比率。其中測試樣本中甲基化胎兒DNA之相對濃度大於對照樣本中甲基化胎兒DNA之相對濃度指示測試樣本中存在多染色體之可能性。在一個實施例中,該方法進一步包含獲得測試樣本中甲基化胎兒DNA之相對濃度與對照樣本中甲基化胎兒DNA之相對濃度的比率,其中比率大於1.34指示測試樣本中存在多染色體之可能性。在一些實施例中,比率大於1.36、1.38、1.40、1.42、1.44、1.46、1.48、1.49、1.498、1.50、1.52、1.54、1.56、1.58、1.60、1.65、1.70、1.80、2.00、2.2、2.4、2.6、2.8或3.0。在另一實施例中,比率大於1.46、1.48、1.498或1.50。 在一個實施例中,方法1係富集及偵測生物樣本中之甲基化DNA,且包含(a)自樣本分離DNA,(b)用一種或多種MSRE或其組合剪切DNA,(c)使用經設計用於擴增特定甲基化差異區域(DMR)的引子對進行特定基因座的PCR擴增(例如qPCR),及(d)偵測甲基化DNA之複本數。 此項技術適用於任何已知用於分離循環系統中細胞外之胎兒DNA(circulating cell-free fetal DNA;CCF)的方法。舉例而言,市售DNA萃取試劑盒可用於分離DNA。 經分離之DNA可用一種或多種甲基化敏感限制性核酸內切酶(MSRE)來剪切以獲得DNA片段。根據本發明之一個實施例,MSRE列於表1中。 表1 * 代表先前技術文獻中未報導之MSRE。 在表1中,Aor 13HI/Bsp MII/Acc III、Aor 51HI/Eco 47III、Bsp T104104/Asu II/Nsp VEco 52I/Xma III、Plu TI、Pma CI、Pml I及Rsr II係新穎MSRE。因此,本發明提供用於檢測甲基化差異區域(DMR)之方法,其包含使用一種或多種選自由以下組成之群的甲基化敏感限制性核酸內切酶(MSRE):Aor 13HI、Bsp MII、Acc III、Aor 51HI、Eco 47III、Bsp T104104、Asu II、Nsp V、Eco 52I、Xma III、Plu TI、Pma CI、Pml I及Rsr II。 在一個實施例中,該方法中使用之MSRE係Aci I、Bst UI、Hha I、Hin PlI、Hpa II或Pvu I,或其組合。在另一實施例中,MSRE係Aci I、Bst UI、Hha I、Hin PlI、Hpa II及Pvu I之組合。在另一實施例中,MSRE係Aor1 3HI、Bsp MII、Acc III、Aor 51HI、Eco 47III、Bsp T104104、Asu II、Nsp V、Eco 52I、Xma III、Plu TI、Pma CI、Pml I或Rsr II,或其組合。 在本發明之方法1之一個實施例中,分離循環無細胞胎兒(CCF)DNA並用MSRE(表1)剪切。使用經設計用於擴增胎兒甲基化區域(母體未甲基化區)之引子對來進行PCR。基因組異常之指標顯示於表2中。 在該方法之一個實例中,在如方法1中所用之DNA富集之下,正常樣本中測試染色體與對照染色體之間的染色體複本數的比率係2/22 = 0.091 (將母體DNA剪切),而三染色體樣本中染色體複本數之比率係3/22 = 0.136 (參見下文表2)。三染色體與正常樣本之間區分(1.500-1.045)/1.045 ≅ 43.5%。方法1因此顯著地提高解析度。方法1增強血漿中低含量胎兒DNA之信號,因此提供早期診斷之可能性。 在另一態樣中,本發明提供用於自生物樣本篩選擴增甲基化DNA且進行NGS以獲取分佈於全基因組之DMR的方法(方法2)。此方法包含(a)自測試樣本分離DNA混合物;(b)藉由用定序適配子接合DNA混合物以產生經適配子接合之DNA;(c)藉由用一種或多種對甲基化敏感限制性核酸內切酶(MSRE)剪切經適配子接合之DNA來獲得經MSRE剪切之DNA;(d)藉由用PCR擴增經MSRE剪切之DNA,以獲得PCR產物;(e)藉由次世代定序(NGS)來定序PCR產物;及(f)在全基因體中確定甲基化差異區域(DMR)。 在一個實施例中,方法2進一步包含獲得測試樣本之染色體複本數與對照樣本之染色體複本數之比率的步驟(g),其中比率大於1.34指示測試樣本中存在多染色體之可能性。 方法2係用於自生物樣本篩選擴增甲基化DNA且進行NGS以獲取分佈於全基因組之甲基化差異區域(DMR),該方法包含(a)用定序適配子接合DNA片段,(b)用一種或多種MSRE或其組合剪切已和適配子接合之DNA,(c)甲基化DNA片段的PCR擴增,(d)進行NGS,且在偵測染色體異常之情況下,(e)計算獲得測試染色體與對照染色體之間的定序序列覆蓋度(DNA複本數)的比率。 在方法2之一個實施例中,程序包括:用定序適配子接合DNA片段、用一種或多種MSRE(表1)剪切經定序適配子接合之DNA、採用PCR擴增以放大甲基化DNA片段、NGS定序,且分析定序數據。 在一個實施例中,MSRE係Aci I、Bst UI、Hha I、Hin PlI、Hpa II或Pvu I,或其組合。在一個實施例中,MSRE係Aci I、Bst UI、Hha I、Hin PlI、Hpa II及Pvu I之組合。在另一實施例中,MSRE係Aor 13HI、Bsp MII、Acc III、Aor 51HI、Eco 47III、Bsp T104104、Asu II、Nsp V、Eco 52I、Xma III、Plu TI、Pma CI、Pml I或Rsr II,或其組合。 該方法中DNA之分離及DNA與適配子之接合在此項技術在本領域是已知。 MSRE及其實施例如本文所述。經MSRE剪切之DNA (亦即甲基化DNA)可藉由用一或多種甲基化敏感限制性核酸內切酶(MSRE)來剪切經銜接子頭接合之DNA而獲得。隨後,經MSRE剪切之DNA藉由PCR擴增。 藉由NGS定序PCR產物。DMR可藉由比較生物樣本中之甲基化DNA與對照樣本中之甲基化DNA來確定。 NGS方法使用平行高處理量之策略,與舊的測序方法相比,其目標是成本較低。NGS方法可大致劃分成通常使用模板擴增之方法及不使用模板擴增之方法。需要使用擴增之方法包括焦磷酸定序,如由Roche商品化之454技術平台(例如GS 20及GS-FLX)、由Illumina商品化之Solexa平台、及由Applied Biosystems商品化之受支持的負載型寡核苷酸連接及偵測(SOLiD)平台。非擴增方法,亦稱為單分子定序,由Helicos BioSciences商品化之HeliScope平台,及分別由VisiGen、Oxford Nanopore Technologies Ltd.、Life Technologies/Ion Torrent及Pacific Biosciences商品化之新興平台。 在方法2中,所有序列數據均來自甲基化DNA。針對三染色體判定,染色體異常之指標係來自同一樣本之測試染色體與對照染色體之間的染色體複本數的比率。舉例而言,如果9.09% DNA係胎兒DNA (亦即胎兒DNA與母體DNA以1比10彙集),若樣本正常,則比率係1.000,而若DNA來自三染色體樣本,則該比率傾向於1.500。藉由獲得測試染色體與對照染色體之間定序序列覆蓋度的比率,可預測基因組異常的狀態。在該實例中,方法2相較於基於單位點qPCR之方法每個位點增進43.5% (1.500-1.045)/1.045。除了進行全基因組篩檢以外,檢測能力之增進與方法1相同。 在另一態樣中,本發明提供用於在全基因體中確定甲基化差異區域(DMR)之方法(方法3),其包含:(a)自測試樣本中分離DNA混合物;(b)藉由使用一種或多種對甲基化敏感限制性核酸內切酶(MSRE)來剪切DNA混合物來獲得DNA片段;(c)藉由與標定生物素之連接子連接DNA片段以產生生物素標定接合之DNA片段;(d)用鏈黴抗生物素蛋白的磁珠富集經生物素標定接合之DNA;(e)藉由用定序適配子接合已富集之經生物素標定接合之DNA,以獲得適配子接合之DNA;(f)藉由次世代定序(NGS)來定序以適配子接合之DNA;及(g)在全基因體中確定甲基化差異區域(DMR)。 方法3係用於自混合的DNA樣本選擇性擴增未甲基化的DNA且進行NGS定序以獲取全基因組甲基化差異區域(DMR),該方法包含(a)用一種或多種對甲基化敏感性酶或其組合來剪切DNA,(b)用含有生物素標定之連接子接合經剪切DNA,(c)用鏈黴抗生物素蛋白磁珠來富集已連接之DNA片段,(d)用定序適配子接合已富集之DNA片段,(e)進行NGS定序。且在偵測染色體異常之情況下,該方法亦包含(f)分析定序數據並計算測試染色體與對照染色體之間定序序列覆蓋度(DNA複本數)的比率。 在一個實施例中,方法3進一步包含計算測試樣本之染色體複本數與對照樣本之染色體複本數之比率的步驟(g),其中比率大於1.34指示測試樣本中存在多染色體之可能性。 在一個實施例中,MSRE係Aci I、Hha I、Hin P1I、Hpa II、Hpy CH4IV或Pvu I,或其組合。在一個實施例中,MSRE係Aci I、Hha I、Hin P1I、Hpa II、Hpy CH4IV及Pvu I之組合。在另一實施例中,MSRE係Aor1 3HI、Bsp MII、Acc III、Aor 51HI、Eco 47III、Bsp T104104、Asu II、Nsp V、Eco 52I、Xma III、Plu TI、Pma CI、Pml I或Rsr II,或其組合。 在本發明之方法之一個實施例中,程序包括:用對甲基化敏感性酶來剪切DNA;用含有標定生物素之連接子接合經剪切DNA;用鏈黴抗生物素蛋白磁珠收集已連接之DNA片段;用定序適配子連接已富集之DNA片段;NGS定序;及分析定序數據。在此步驟,所有序列數據均來自未甲基化DNA。DMR可藉由比較生物樣本中之未甲基化DNA與對照樣本中之未甲基化DNA來確定。 針對三染色體判定,染色體異常之指標係來自同一樣本之測試染色體與對照染色體之間的定序序列覆蓋度的比率。舉例而言,要是9.09% DNA係胎兒DNA (亦即胎兒DNA與母體DNA以1比10彙集),若樣本正常,則比率係1.000,而若DNA來自三染色體樣本,則比率偏向於1.500。藉由計算測試染色體與對照染色體之間定序序列覆蓋度的比率,可預測基因組異常狀態。與單位點qPCR方法相比,方法3提高了43.5% (1.500-1.045)/1.045。相比於未甲基化胎兒DNA,方法3使得移除與未甲基化胎兒DNA相比已甲基化之母體DNA變得可行。此外,方法3亦實現全基因體篩檢。 在另一態樣中,本發明提供用於在全基因體中確定甲基化差異區域(DMR)之方法(方法4),其包含:(a)自測試樣本中分離DNA混合物;(b)藉由用一種或多種甲基化敏感限制性核酸內切酶(MSRE)來剪切DNA混合物來獲得DNA片段,其中未甲基化的胞嘧啶存在於DNA片段之末端核苷酸處,且甲基化的胞嘧啶存在於DNA片段之中間核苷酸處;(c)藉由用定序適配子接合DNA片段以產生和定序適配子接合之DNA;(d)藉由用PCR方式擴增已和定序適配子接合之DNA來獲得PCR產物;(e)藉由次世代定序(NGS)來定序PCR產物;及(f)在全基因體中確定甲基化差異區域(DMR)。 在一個實施例中,方法4進一步包含計算測試樣本之染色體複本數與對照樣本之染色體複本數之比率的步驟(g),其中比率大於1.34指示測試樣本中存在多染色體之可能性。 在一個實施例中,MSRE係Aci l、Hha I、Hin P1I、Hpa II或Hpy CH4IV,或其組合。在一個實施例中,MSRE係Aci l、Hha I、Hin P1I、Hpa II及Hpy CH4IV之組合。在另一實施例中,MSRE係Aor1 3HI、Bsp MII、Acc III、Aor 51HI、Eco 47III、Bsp T104104、Asu II、Nsp V、Eco 52I、Xma III、Plu TI、Pma CI、Pml I或Rsr II,或其組合。 方法4提供甲基化及未甲基化DNA兩者之定序後鑑定,該方法包含(a)用一種或多種MSRE的組合剪切DNA,(b)鈍化經剪切DNA且添加腺嘌呤至DNA片段之3'端,(c)用定序適配子接合腺嘌呤突出DNA片段,(d)NGS定序,(e)分析定序數據,其中具有未甲基化胞嘧啶之切割位點將出現於定序序列的末端,而具有甲基化胞嘧啶之切割位點將出現於定序序列的中間。為檢測染色體異常的情況下,(e) 藉由計算未甲基化定序序列(末端切割位點)和甲基化定序序列(中間切割位點)的覆蓋率來確定DNA的拷貝數,以檢測基因組異常。 在本發明之方法4之一個實施例中,程序包括:用MSRE剪切DNA,鈍化經剪切的DNA並將腺嘌呤添加到DNA片段的3'末端,將腺嘌呤突出的DNA片段與定序適配子連接;NGS定序;及分析定序數據。DMR可藉由比較生物樣本與對照樣本中各自的甲基化DNA及未甲基化DNA來確定。 具有未甲基化胞嘧啶之切割位點將存在於序列末端,而具有甲基化胞嘧啶之切割位點將存在於序列中間。在相同基因組區域,不同DNA群體之複本數可藉由計算未甲基化序列(切割位點在末端)及甲基化序列(切割位點在中間)之覆蓋度來測定。針對三染色體判定,染色體異常之指標係來自同一樣本之測試染色體與對照染色體之間的序列覆蓋度的比率(表7中第I行及第II行)。舉例而言,如果9.09% DNA係胎兒DNA (亦即胎兒DNA與母體DNA以1比10匯集),若樣本正常,則該比率是1.000,而若DNA來自三染色體樣本,則比率傾向於1.500。藉由獲得測試染色體與對照染色體之間序列覆蓋度的比率,可預測基因體異常狀態。方法4相較於先前的基於單位點qPCR之方法每個位點增進43.5%(1.500-1.045)/1.045。方法4能夠藉由偵測全基因組MSRE切割位點區分出相比於母體DNA顯示高或低甲基化之胎兒DNA。 在另一態樣中,本發明提供用於確定在全基因體中確定甲基化差異區域(DMR)之方法(方法5):(a)自測試樣本中分離DNA混合物;(b)藉由用定序適配子接合DNA混合物以產生經適配子接合之DNA;(c)藉由用亞硫酸氫鈉處理經適配子接合之DNA以獲得經亞硫酸氫鈉處理之DNA;(d)藉由用PCR擴增經亞硫酸氫鈉處理之DNA來獲得PCR產物;(e)藉由次世代定序(NGS)來定序PCR產物;及(f)在全基因組體中確定甲基化差異區域(DMR)。 在一個實施例中,方法5進一步包含計算測試樣本之染色體複本數與對照樣本之染色體複本數之比率的步驟(g),其中比率大於1.34指示測試樣本中存在多染色體之可能性。 方法5提供甲基化及未甲基化DNA之全基因組亞硫酸氫鹽定序(WGBS)後鑑定,該方法包含(a)將適配子接合至DNA,(b)用亞硫酸氫鈉處理經適配子接合之DNA,(c)PCR擴增及NGS定序,(d)藉由將定序序列分成兩個組來比對,一組來自甲基化序列,而另一組來自未甲基化序列,及(e)從兩個比對中估計複本數。為偵測染色體異常的情形下,可進行以下步驟:(f)分析DMR中的比對以區分序列是來自正常染色體及異常染色體的比率,來分離不同DNA之序列;及(g)藉由檢查與已知疾病相關之特異性DMR確定基因體異常。 亞硫酸氫鹽定序係測定個別胞嘧啶之DNA甲基化狀態的一種主要實驗方法。亞硫酸氫鹽處理後經由PCR將未甲基化胞嘧啶轉化成胸腺嘧啶,而甲基化胞嘧啶保持不變[Frommer M, McDonald LE, Millar DS, Collis CM, Watt F, Grigg GW, Molloy PL, Paul CL: A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc. Natl. Acad. Sci. USA 1992, 89 (5):1827-1831 ]。WGBS首次發表於2008年[Lister R, O'Malley RC, Tonti-Filippini J, Gregory BD, Berry CC, Millar AH, Ecker JR: Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 2008, 133 (3):523-536 ],且與NGS結合已成為用於在單鹼基解析度下剖析全基因組DNA甲基化的最先進的方法[Yong WS, Hsu FM, Chen PY. Profiling genome-wide DNA methylation. Epigenetics & Chromatin, 2016, 9:26 ]。 在本發明之方法5之一個實施例中,WGBS之比對分成兩個組:一組來自甲基化定序序列而另一組來自未甲基化定序序列。由兩個比對估計複本數。針對三染色體判定,染色體異常之指標是與胎兒特異性甲基化模式之比對。舉例而言,要是9.09%的DNA是胎兒DNA(亦即胎兒DNA與母體DNA以1比10彙集),若樣本是正常的,則比率係1.000,而若DNA來自三染色體樣本,則比率傾向於1.500。藉由計算測試染色體與對照染色體之間序列覆蓋度的比率,可預測基因體異常狀態。方法5相較於基於單位點qPCR之方法增進43.5%(1.500-1.045)/1.045,且全基因體篩檢是可行的。 本發明以顯著增進的靈敏度及準確性以檢測基因體異常,本發明可應用於個人化醫療。舉例而言,本發明可應用於非侵入性產前檢測(Non-Invasive Prenatal Testing, NIPT)或癌症診斷。本發明之方法之應用 本發明經設計成基於DNA甲基化型式區分DNA,且特別適用於(但不限於)需要檢測基因體變異及異常之應用,包括以NIPT來檢測唐氏症及其他非整倍體、性別鑑定(gender typing)及癌細胞偵測。 本發明亦可應用於癌細胞篩檢。癌症,亦稱為惡性腫瘤,由異常細胞增殖導致。基因突變、複本數增加及特定基因之DNA甲基化型式的改變可能誘導異常的細胞增殖。腫瘤細胞壞死將其DNA釋放至周邊血液中,但量遠遠不及原來的血液DNA。另外,癌前病變也可能含有具有部分基因組異常的突變DNA。本發明極有可能提高來自腫瘤或病變之DNA之比例並用於癌症篩檢測試,因此提高準確性且允許早期階段的診斷。實例 實例 1 用於富集及偵測甲基化 DNA 方法 1 步驟 1. 剪切 未甲基化 DNA 將DNA混合物用MSRE剪切,MSRE係諸如Aci I、Bst UI、Hha I、Hin PlI、Hpa II及Pvu I,或其相容的組合。剪切反應通常包含於1× NEBuffer (NEB)中之10 ng-1 μg的基因組DNA,及約1-25 U之限制性核酸內切酶。混合物在37℃下培育約1-12 hr(視酵素活性而定)以確保完全進行剪切。在適當時,遵循各酶之製造商推薦之步驟的方法使酶失活,且進行純化步驟以獲得純化的已剪切DNA。在一較佳實施例中,未經剪切DNA直接用於片段定量。 步驟 2. 定量 PCR 測定 使用目標DMR區域之特定引子的定量PCR,用以檢測樣本中甲基化DNA之複本數。表2顯示本發明之方法1之異常指標的截止值。 表2 1. 測試代表來自具有假設異常之染色體2. 對照代表來自正常染色體(諸如染色體1) 舉例而言,在無任何DNA富集之三染色體判定中,若母體血漿含有胎兒DNA與母體DNA之混合比率為2:20的DNA混合物,考慮到人類染色體是二倍體(亦即9.09%之混合DNA是胎兒DNA),在無複本數變化之正常樣本中測試染色體與對照染色體(例如染色體1,最大染色體)之間的染色體複本數的比率係22/22 = 1.000。在一個染色體是三重複(triplicated)之三染色體樣本之情況下,母體血漿含有的DNA混合物包含,其中三重複的染色體(例如唐氏症候群中之第21號染色體)的胎兒DNA與母體DNA之混合比率為3:20。因此,測試染色體(三重複)與對照染色體之間的染色體複本數的比率為23/22 = 1.045。在區分三染色體與正常樣本之間的方法是比較其染色體複本數比率,該等比率為1.045/1.000 = 1.045,顯示0.045之極小差異。在該小差異之情況下,當存在實驗雜訊時難以區分DNA樣本。 相比之下,方法1提供了使用差異DNA甲基化模式與多種新型MSRE區分DNA混合物的可能性。然而,方法1受限於目標位點必須顯示出甲基化差異模式及必須位於MSRE切割位點內。以下三種方法利用NGS來篩檢全基因組變異以檢查所有MSRE切割位點,且相較於方法1大為增進。 驗證 吾人驗證之目標係證明MSRE可顯著減少來自DNA混合物的未甲基化DNA。吾人首先擴增測試片段及對照片段。測試片段含可被MSRE剪切的Pml I切割位點。目的是證明可藉由MSRE剪切可以將特定類型DNA自DNA混合物之區分出來。對照片段不含Pml I切割位點,因此無MSRE剪切發生。對照片段經設計成代表未富集特定類型DNA之原始DNA混合物。 吾人使若干DNA片段甲基化,以在母體血流之比率(未甲基化:甲基化= 10:1)來混合甲基化及未甲基化片段,用MSRE剪切片段,且藉由qPCR定量甲基化DNA。 選擇新穎MSREPml I用於驗證。吾人使用PCR擴增含有一個Pml I切割位點之832 bp的DNA片段(測試片段)。PCR產物的DNA是無甲基化的,且等分成兩個管。吾人使用Sss I甲基轉移酶使在其中一個管中之DNA甲基化,而在另一管中之DNA保持未甲基化。 3 係指未剪切或藉由新穎MSREPml I剪切之PCR產物之電泳結果。如所預期,Pml I將未甲基化DNA剪切成2個片段(544 bp及288 bp),而甲基化DNA序列未受到剪切,表明DNA在使用Pml I剪切時可依據其甲基化狀態而加以有效區分出。 將擴增832 bp的測試片段且將一個等分試樣甲基化。將未甲基化的片段可被剪切,而甲基化片段保持完整,表明測試片段中有一個Pml I的切割位點。 為在母體DNA:胎兒DNA係10:1(無非整倍性)之母體血流中區分母體及胎兒DNA,吾人匯集11份的片段,亦即10份未甲基化測試片段及1份甲基化測試片段(母體:胎兒=10:1)。為模擬非整倍性條件,吾人匯集11.5份片段包含1.5份甲基化測試片段及10份未甲基化片段。測試片段係具有一個Pml I切割位點之832 bp PCR產物,而對照片段係無Pml I切割位點之536 bp之PCR產物。吾人添加11份對照片段至所有測試樣本。由於對照片段內部沒有Pml I位點,因此即使未甲基化,對照片段也不應被剪切。將模擬兩種條件之匯集之DNA分成兩個管。使用測試酶對一個管進行剪切,且另一管保持未剪切。後者經稀釋且作為模板用於qPCR。由於對照片段無Pml I切割位點,因此未甲基化及甲基化對照片段之比率不應受Pml I剪切所影響。設計引子用於qPCR,以定量正常及非整倍體條件兩者之剪切及未剪切組。 正常對比三染色體條件之剪切片段及未剪切片段之qPCR擴增圖分別顯示於 4A 4B 中。吾人在正常及非整倍體條件中,在經剪切測試片段之閾值(Ct)的週期中發現明顯差異( 4A ),而未剪切片段未顯示差異( 4B )。表3顯示驗證結果之彙總。針對各樣本,吾人計算測試DNA之相對濃度(1/2^Ct測試 -Ct對照 )。 剪切方法在三染色體與正常樣本之間(測試/對照)顯示1.498倍變化,而未剪切方法在三染色體與正常樣本之間顯示1.32倍變化。理論上,三染色體與正常之間的相對比率係1.5 (1.5/1.0),且由吾人之結果,來自採用剪切之方法的1.498更接近1.5,而非來自無剪切之方法的1.32。由於其他多染色體(四染色體、五染色體、六染色體等)具有多於三個染色體複本,因此預期多染色體與正常之間的相對比率大於1.498。 具有Pml I剪切之方法顯示準確性增進13.5% [(1.498-1.32)/1.32]。由此確認Pml I可自DNA之母體/胎兒混合DNA中富集胎兒DNA(甲基化DNA),且因此進一步提高該方法之測試準確性。 表3 實例 2 用於選擇性擴增甲基化 DNA 方法 2 步驟 1. 適配子接合 經分離之DNA具有至少三種類型之末端:3'突出端、5'突出端及平端。為了將適配子(Illumina, Inc.)接合至目標DNA,需要對DNA片段之末端進行修補。經純化之無細胞DNA片段首先藉由T4 DNA聚合酶在40 µM dNTP的存在之下填補其末端,隨後添加5'-磷酸酯至寡核苷酸且藉由T4聚核苷酸激酶移除3'-磷醯基,隨後在200 µM dATP的存在下用Klenow片段DNA聚合酶(不具有3'→5'外切功能(exo-))處理,以產生3'端腺嘌呤DNA片段。雙股適配子寡核苷酸隨後接合至末端經修補且已加上腺嘌呤之DNA的5'及和3'這兩端。此等寡核苷酸可根據不同定序平台設計。 步驟 2. 剪切 未甲基化 DNA 將DNA混合物用一種或多種MSRE剪切,MSRE係諸如Aci I、Bst UI、Hha I、Hin PlI、Hpa II及Pvu I,或其相容組合。剪切反應通常包括10 ng-1 μg之基因組DNA於1 × NEBuffer (NEB)中及約1-25 U之限制性核酸內切酶。混合物在37℃下培育約1-12 hr (視酶而定)以確保完全剪切。在剪切完成時,遵循各酶之製造商推薦之步驟使酶不活化,且進行純化步驟以獲得純的已剪切DNA。在一較佳實施例中,未剪切DNA樣本直接用於PCR富集。 步驟 3.PCR 富集 NGS 對適配子序列設計特定引子用於擴增甲基化DNA。擴增之DNA隨後加以定序,如 5 中所示。表4顯示在有或沒有DNA富集的情況下,本發明之方法2的異常指標的截止值。 表4 1. 測試代表來自具有假設異常之染色體之定序序列2. 對照代表來自正常染色體之定序序列(諸如染色體1) 方法2藉由差異DNA甲基化模式提供自混合物富集甲基化DNA之可能性。 驗證 吾人驗證之目標係證明方法2可以使用NGS技術顯著減少來自DNA混合物的未甲基化DNA。吾人首先擴增經過MSRE剪切之含有Pvu I切割位點之測試片段。目的係證明可藉由MSRE剪切自DNA混合物區分特定類型DNA。 測試片段的PCR產物無DNA甲基化,且等分成兩管。吾人使用Sss I甲基轉移酶使在其中一個管中之DNA甲基化,而在另一管中之DNA保持未甲基化。吾人隨後以1:1比率混合甲基化片段及未甲基化片段、進行NGS建庫(包括末端經修復、加末端腺嘌呤接合有定序適配子之片段)、用MSRE剪切已建庫的DNA,且量化甲基化DNA及未甲基化DNA。 為區分甲基化DNA及未甲基化DNA,吾人使用帶有條碼的引子去標記甲基化DNA及未甲基化DNA。吾人使用PCR擴增含有一個Pvu I切割位點之568 bp的DNA片段(測試片段)。此PCR產物不含甲基化的DNA。使用Sss I甲基轉移酶來產生有甲基化之測試DNA。剪切結果顯示於 6 中。如所預期,Pvu I將未甲基化DNA剪切成2個片段(353 bp及215 bp),而未將甲基化DNA序列剪切,表明DNA可使用Pvu I剪切來有效區分其甲基化狀態。 匯集的DNA含有甲基化測試及未甲基化測試之DNA,用於使用標準步驟進行NGS建庫。在建庫之後,建庫的DNA接而用Pvu I處理以剪切未甲基化DNA片段。在經過PCR擴增之後,DNA隨後使用NGS定序。定序序列使用Bowtie 2進行定位且計算甲基化及未甲基化DNA片段之定序序列數目。吾人由NGS總共產生28,524個片段;其中27,395個係甲基化DNA而1,129個係未甲基化DNA片段,比率係33.12:1 ( 7 )。理論上,吾人預期結果沒有未甲基化DNA片段(0%),但吾人獲得2.9%之來自未甲基化DNA之定序序列。這小部分的預期改善已可歸因於MSRE效率。然而,吾人之結果確認吾人之方法可自DNA混合物富集甲基化DNA,此係因為甲基化DNA與未甲基化DNA之比率自1減小至1,129/27,395 = 0.04。實例 3 用於選擇性擴增未甲基化 DNA 方法 3 步驟 1. 剪切 未甲基化 DNA 將DNA用一種或多種MSRE(諸如Aci I、Hha I、Hin P1I、Hpa II、Hpy CH4IV及Pvu I)剪切,以產生5'突出端或3'突出端。剪切反應通常包含10 ng-1 μg之基因組DNA、1 × NEBuffer(NEB)及約1-25 U之限制性核酸內切酶。將混合物在37℃下培育約1至12小時(視酶而定)以確保完全剪切。當剪切完成時,將酶失活。 步驟 2. 連接子接合 設計以下接合程序與已用限制酶剪切並產生具有5'突出端或3'突出端末端之DNA一起作用。連接子之結構是基於由限制性核酸內切酶產生之末端類型。連接子由兩個寡核苷酸構成,該等寡核苷酸在沿其長度之區彼此雜交。短寡核苷酸之長度係約7 bp至約15 bp,在5'端具有生物素標定。連接子之結構經研發成彼此之接合減至最少,使用5 bp的5'突出端使連接子防止反向接合。典型接合步驟含有使用約1至約100 ng的DNA、1 × T4 DNA連接酶緩衝液、約10-100 pmol的連接子及約400-2,000單位之T4 DNA連接酶來培育。此接合步驟在25℃下進行1小時,隨後在75℃放置15分鐘下使連接酶失活。 步驟 3. 生物素化之 DNA 片段 富集 將接合產物與100 µg M-280 磁珠(dynabead)混合且在室溫下培育30分鐘。在培育之後,使用70 μl之TE緩衝液洗滌磁珠4次,用70 μl之新鮮配製之0.1 N KOH洗滌2次,用80 μl之TE緩衝液洗滌4次。為自鏈黴抗生物素蛋白磁珠解離經生物素化之核酸,使磁珠在95%甲醯胺 + 10 mM EDTA,pH 8.2中在65℃下作用5分鐘。 步驟 4. 適配子接合 DNA片段使用T4 DNA聚合酶填補末端,隨後Klenow DNA聚合酶(外切)作用,以產生具3'端腺嘌呤DNA片段。雙股適配子寡核苷酸接合至末端經修補DNA之5'端及3'端兩端。此等寡核苷酸可根據不同定序平台進行設計。 步驟 5.PCR 富集 及次世代定序 對適配子序列使用特定引子擴增甲基化DNA。擴增之DNA隨後加以定序,如 8 中所示。表5顯示有或沒有DNA富集之方法3之異常指標的截止值。 表5 1. 測試代表來自具有假設異常之染色體之定序序列2. 對照代表來自正常染色體之定序序列(諸如染色體1)實例 4 用於選擇性擴增未甲基化 DNA 方法 4 步驟 1. 剪切 未甲基化 DNA 將DNA用MSRE (諸如Aci l、Hha I、Hin P1I、Hpa II及Hpy CH4IV)剪切,以產生5'突出端或3'突出端。剪切反應通常包含10 ng至1 μg之基因組DNA、25-100 μl之1 × NEBuffer (NEB)、及約1至約25單位之限制性核酸內切酶。混合物在37℃下培育2 h以確保完全剪切。在適當時,使酶在65℃下15分鐘失活,且使樣本沈澱及再回溶至最終濃度1至50 ng/μl。步驟 2. 適配子接合 為了將適配子接合至目標DNA,需要修補DNA片段的末端。DNA片段首先藉由T4 DNA聚合酶在40 µM dNTP存在下填補末端,添加5'-磷酸酯且藉由T4多聚核苷酸激酶自寡核苷酸移除3'-磷醯基,隨後在200 µM dATP存在下用Klenow片段DNA聚合酶(3'→5'外切)處理,以產生3'端腺嘌呤DNA片段。雙股適配子寡核苷酸隨後接合至末端經修補且已在末端加腺嘌呤之DNA的5'及3'兩端。此等寡核苷酸可根據不同定序平台設計。 步驟 3.PCR 富集 及次世代定序 對適配子序列使用具有特定的引子擴增DNA庫。擴增之DNA隨後加以定序,如 9 中所示。表6顯示有或沒有DNA富集之本發明之方法4的異常指標的截止值。 表6 1. 測試代表來自具有假設異常之染色體之定序序列2. 對照代表來自正常染色體之定序序列(諸如染色體1) 方法4藉由甲基化差異模式提供自DNA混合物區分甲基化及未甲基化DNA之NGS後鑑定方法。 驗證 吾人驗證之目標係證明方法4可使用NGS技術自DNA混合物區分甲基化及未甲基化DNA。吾人首先擴增經過MSRE剪切之含有Pvu I切割位點之測試片段。目的是證明可藉由MSRE剪切自DNA混合物區分出特定類型DNA。 PCR產物不含甲基化的DNA,且等分成兩管。吾人使用Sss I甲基轉移酶使在其中一個管中之DNA甲基化,而在另一管中之DNA保持未甲基化。吾人以1:1比率混合甲基化片段及未甲基化片段,隨後用MSRE剪切DNA,且純化未剪切之甲基化DNA及經剪切之未甲基化DNA。此等經純化之DNA片段用於進行NGS建庫(包括末端經修復、加末端腺嘌呤且接合有定序適配子之片段)。 為使用NGS區分甲基化DNA及未甲基化DNA,吾人使用帶條碼引子來標記甲基化DNA及未甲基化DNA。吾人使用PCR擴增含有一個Pvu I切割位點之568 bp的DNA片段(測試片段)。PCR產物沒有甲基化的DNA。使用Sss I甲基轉移酶產生具甲基化的測試DNA。剪切結果顯示於 6 中。如所預期,Pvu I將未甲基化的DNA剪切成2個片段(353 bp及215 bp),而未將甲基化DNA序列剪切,這表明DNA依據其甲基化狀態可使用Pvu I剪切的方式加以有效區分。 含有甲基化測試DNA及未甲基化測試DNA之匯集DNA首先用Pvu I處理,Pvu I剪切未甲基化DNA。經酶處理之DNA隨後用於使用標準步驟進行NGS建庫。在PCR擴增之後,建立的DNA庫隨後使用於NGS定序。定序序列藉由附接之條碼分成甲基化及未甲基化,且使用Bowtie 2相對於參考序列加以定位。未剪切DNA之定序序列(568 bp,全長)將含有Pvu I位點,且在比對中經剪切DNA之定序序列(353 bp及215 bp)將定位至無Pvu I位點的情況下的相同位置。針對甲基化DNA庫,吾人由NGS得到6,208個片段,其中6135個是全長片段而73個是經過剪切的片段( 10 ;表7)。理論上,吾人預期經剪切DNA片沒有來自甲基化DNA之片段,然而吾人獲得之定序序列的98%係全長DNA片段。此小於預期增進之情況已可歸因於甲基化效率。針對未甲基化DNA,吾人生成4,703個片段,其中190個係全長片段而4,513個(353 bp:4,439個 + 215 bp:74個)係經剪切片段(表7)。理論上,吾人預期所有來自未甲基化DNA之DNA片段均已剪切,而96%之定序序列係經剪切DNA片段。然而,吾人之結果確認方法4可自DNA混合物區分甲基化DNA及未甲基化DNA。表7顯示方法4驗證之統計分析。 表7 實例 5 用於選擇性擴增未甲基化 DNA 方法 5 步驟 1. 適配子接合 反應通常包含10 ng至1 μg之基因組DNA。DNA片段首先藉由T4 DNA聚合酶在40 µM dNTP存在下修補末端;添加5'-磷酸酯且藉由T4聚核苷酸激酶自寡核苷酸移除3'-磷醯基,隨後在200 µM dATP存在下用Klenow片段DNA聚合酶 (3'→5'外切)處理,以產生3'端腺嘌呤DNA片段。雙股適配子寡核苷酸隨後接合至末端經修補且已在末端加腺嘌呤之DNA的5'及3'兩端。此等寡核苷酸可根據不同定序平台設計。 步驟 2. 亞硫酸氫鹽轉化 根據製造商步驟(Qiagen EpiTect快速亞硫酸氫鹽轉化套組)是用亞硫酸氫鹽處理適配子接合之DNA (參見圖11)。 步驟 3.PCR 富集 及次世代定序 對適配子序列使用具有特定的引子擴增DNA庫。DNA庫隨後加以定序。表8顯示有或沒有DNA富集之本發明之方法5的異常指標的截止值。 表8 1. 測試代表來自具有假設異常之染色體之定序序列2. 對照代表來自正常染色體之定序序列(諸如染色體1) 方法5藉由差異DNA甲基化模式提供自DNA混合中區分甲基化及未甲基化DNA之可能性。 驗證 吾人驗證之目標係證明吾人之方法5可使用WGBS技術自DNA混合物區分甲基化DNA及未甲基化DNA。吾人首先擴增含有甲基化CpG位點之測試片段。目的是顯示可藉由亞硫酸氫鹽轉化自DNA混合物區分特定類型DNA。製備RRBS庫(reduced representation bisulfite sequencing libraries)用於基因組規模DNA甲基化剖析先前已描述於Nature Protocols. 第6卷, 第468-481頁中。 PCR產物不含甲基化DNA,且等分成兩個管。吾人使用Sss I甲基轉移酶將一個管中之DNA進行甲基化,而在另一管中之DNA保持未甲基化。吾人以1:1比率混合甲基化及未甲基化片段,建立WGBS庫,且隨後量化甲基化定序序列及未甲基化定序序列。 為使用NGS區分甲基化DNA及未甲基化DNA,吾人使用帶條碼引子標記甲基化DNA及未甲基化DNA。吾人使用PCR擴增來放大含有CpG位點之636 bp的DNA片段(測試片段)。PCR產物不含甲基化DNA。甲基化測試DNA是使用Sss I甲基轉移酶所產生。 含有甲基化測試DNA及未甲基化測試DNA之匯集DNA用於使用標準步驟進行WGBS建庫。在PCR擴增之後,DNA隨後使用NGS加以定序。定序序列藉由附接之條碼分成甲基化及未甲基化且使用經設計用於亞硫酸氫鹽定序分析之BS-seeker 2相對於參考基因組定位。針對甲基化DNA,吾人得到435個片段,其中398個是甲基化片段(C)且37個係未甲基化片段(T)( 12 ;表9)。理論上,吾人預期所有DNA片段均已甲基化;然而,只有91%的定序序列有甲基化。此小於預期增進之情況已可歸因於甲基化效率。針對未甲基化DNA,吾人由NGS中得到1,399個片段,其中所有1,399個片段係未甲基化片段(T)(表9)。如所預期,吾人獲得100%之未甲基化定序序列。由此確認方法5可自混合的DNA中區分甲基化DNA及未甲基化DNA。表9顯示方法5驗證之統計分析。 表9
1 係指本發明之方法(方法1至方法5)之示意圖。 2 係指本發明之方法1之概念。使甲基化DNA富集且隨後藉由定量PCR (qPCR)定量。各點表示一個核苷酸。由深色圓點組成之八個核苷酸表示限制性核酸內切酶識別位點且斜紋圓點()表示甲基化胞嘧啶。 3 係指未剪切或藉由新穎MSREPml I剪切之PCR產物之電泳結果。縮寫「M」指示「甲基化測試DNA」。縮寫「UM」指示「未甲基化測試DNA」。 4A (有MSRE剪切)及 4B (無MSRE剪切)係指方法1驗證之qPCR結果。 5 係指本發明之方法2之概念。使甲基化DNA富集且隨後藉由定量PCR (qPCR)定量。由深色圓點組成之八個核苷酸表示限制性核酸內切酶識別位點且斜紋圓點()表示甲基化胞嘧啶,小點圓點()表示Y形定序適配子。 6 係指未剪切或藉由MSREPvu I剪切之PCR產物之電泳結果。縮寫「M」指示「甲基化測試DNA」。縮寫「UM」指示「未甲基化測試DNA」。 7 係指基因體瀏覽器之影像,顯示來自本發明之方法2之甲基化及未甲基化DNA定序序列的豐度。 8 係指本發明之方法3之概念。使未甲基化DNA富集且隨後藉由NGS定序。各點表示一個核苷酸。由深色圓點組成之八個核苷酸表示限制性核酸內切酶識別位點,斜紋圓點()表示甲基化胞嘧啶,波浪圓點()表示標定生物素之連接子,小點圓點()表示Y形定序適配子。 9 係指用於甲基化及未甲基化DNA之定序後鑑定之本發明之方法4的概念。各點表示一個核苷酸。由深色圓點組成之八個核苷酸表示限制性核酸內切酶識別位點,斜紋圓點()表示甲基化胞嘧啶,小點圓點()表示Y形定序適配子。 10 係指基因組瀏覽器之影像,顯示來自本發明之方法4之甲基化及未甲基化DNA。 11 顯示亞硫酸氫鹽轉化之機制。在亞硫酸氫鹽轉化及PCR之後,未甲基化胞嘧啶將轉化為胸腺嘧啶,而甲基化胞嘧啶保持不變。 12 係指基因組瀏覽器之影像,顯示來自本發明之方法5之甲基化及未甲基化DNA。箭頭指示顯示出甲基化差異之位點。

Claims (29)

  1. 一種用於偵測甲基化差異區域(DMR)之方法,其包含使用一種或多種選自由以下組成之群的對甲基化敏感限制性核酸內切酶(MSRE):Aor 13HI、Bsp MII、Acc III、Aor 51HI、Eco 47III、Bsp T104104、Asu II、Nsp V、Eco 52I、Xma III、Plu TI、Pma CI、Pml I及Rsr II。
  2. 一種用於在包含胎兒DNA及母體DNA之測試樣本中偵測多染色體(polysomy)之方法,其包含: (a) 自該測試樣本及對照樣本分離DNA混合物; (b) 藉由用一種或多種對甲基化敏感限制性核酸內切酶(MSRE)來剪切該DNA混合物獲得DNA片段; (c) 藉由該等DNA片段進行PCR擴增特定的甲基化差異區域(DMR);及 (d) 獲得該測試樣本中甲基化胎兒DNA之相對濃度與該對照樣本中甲基化胎兒DNA之相對濃度的比率, 其中該測試樣本中甲基化胎兒DNA之相對濃度大於對照樣本中甲基化胎兒DNA之相對濃度時,指示該測試樣本中存在該多染色體之可能性。
  3. 如請求項2之方法,其中該多染色體係三染色體(trisomy)。
  4. 如請求項2之方法,其中該比率大於1.34時,指示該測試樣本中存在該多染色體之可能性。
  5. 如請求項2之方法,其中該比率大於1.49時,指示該測試樣本中存在該多染色體之可能性。
  6. 如請求項2之方法,其中當胎兒DNA之複本數與該DNA混合物之總複本數之比率的濃度比率小於10%時,該方法相比於無剪切步驟的方法顯示增進至少13.5%。
  7. 如請求項2之方法,其中當胎兒DNA之複本數與該DNA混合物之總複本數之比率的濃度比率小於15%時,該方法相比於無剪切步驟的方法顯示增進至少40%。
  8. 如請求項2之方法,其中該MSRE選自由以下組成之群:Aat lI、Acc II、Fnu DII、Aci I、Acl I、Afe I、Age I、Aor 13HI、Bsp MII、Acc III、Aor 51HI、Eco 47III、Asc I、Asi SI、Ava I、Bce AI、Bmg BI、Bsa AI、Bsa HI、Bsi EI、Bsi WI、Bsm BI、Bsp DI、Bsp T104104、Asu II、Nsp V、Bsr FI、Bss HII、Bst BI、Bst UI、Cfr 10I、Cla I、Eag I、Eco 52I、Xma III、Fau I、Fse I、Fsp I、Hae II、Hga I、Hha I、Hin P1I、Hpa II、Hpy 99I、Hpy CH4IV、Kas I、Mlu I、Nae I、Nar I、Ngo MIV、Not I、Nru I、Pae R7I、Plu TI、Pma CI、Pm lI、Pvu I、Rsr II、Sac II、Sal I、Sfo I、Sgr AI、Sma I、Sna BI、Tsp MI及Zra I。
  9. 如請求項8之方法,其中該MSRE選自由以下組成之群:Aor 13HI、Bsp MII、Acc III、Aor 51HI、Eco 47III、Bsp T104104、Asu II、Nsp V、Eco 52I、Xma III、Plu TI、Pma CI、Pml I及Rsr II。
  10. 一種用於在全基因體中確定甲基化差異區域(DMR)之方法,其包含: (a) 自測試樣本分離DNA混合物; (b) 藉由用定序適配子(adapter)接合該DNA混合物,以產生經適配子接合之DNA; (c) 藉由用一種或多種對甲基化敏感限制性核酸內切酶(MSRE)來剪切該經適配子接合之DNA,獲得經MSRE剪切之DNA; (d) 藉由用PCR擴增該經MSRE剪切之DNA,獲得PCR產物; (e) 藉由次世代定序(NGS)來定序該等PCR產物;及 (f) 在全基因體中確定甲基化差異區域(DMR)。
  11. 如請求項10之方法,其進一步包含計算該測試樣本之染色體複本數與對照樣本之染色體複本數之比率的步驟,其中比率大於1.34時,指示該測試樣本中存在多染色體之可能性。
  12. 如請求項11之方法,其中該多染色體係三染色體。
  13. 如請求項10之方法,其中該MSRE選自由以下組成之群:Aat lI、Acc II、Fnu DII、Aci I、Acl I、Afe I、Age I、Aor 13HI、Bsp MII、Acc III、Aor 51HI、Eco 47III、Asc I、Asi SI、Ava I、Bce AI、Bmg BI、Bsa AI、Bsa HI、Bsi EI、Bsi WI、Bsm BI、Bsp DI、Bsp T104104、Asu II、Nsp V、Bsr FI、Bss HII、Bst BI、Bst UI、Cfr 10I、Cla I、Eag I、Eco 52I、Xma III、Fau I、Fse I、Fsp I、Hae II、Hga I、Hha I、Hin P1I、Hpa II、Hpy 99I、Hpy CH4IV、Kas I、Mlu I、Nae I、Nar I、Ngo MIV、Not I、Nru I、Pae R7I、Plu TI、Pma CI、Pml I、Pvu I、Rsr II、Sac II、Sal I、Sfo I、Sgr AI、Sma I、Sna BI、Tsp MI及Zra I。
  14. 如請求項13之方法,其中該MSRE選自由以下組成之群:Aor 13HI、Bsp MII、Acc III、Aor 51HI、Eco 47III、Bsp T104104、Asu II、Nsp V、Eco 52I、Xma III、Plu TI、Pma CI、Pml I及Rsr II。
  15. 一種用於在全基因體中確定甲基化差異區域(DMR)之方法,其包含: (a) 自測試樣本中分離DNA混合物; (b) 藉由用一種或多種對甲基化敏感限制性核酸內切酶(MSRE)來剪切該DNA混合物,以獲得DNA片段; (c) 藉由用生物素標定之連接子接合該等DNA片段,以產生經生物素標定接合之DNA; (d) 藉由鏈黴抗生物素蛋白磁珠富集該經生物素標定接合的DNA; (e) 藉由用定序適配子接合該富集之經生物素標定接合的DNA,以獲得經適配子接合之DNA; (f) 藉由次世代定序(NGS)來定序該適配子接合之DNA;及 (g) 在全基因體中確定甲基化差異區域(DMR)。
  16. 如請求項15之方法,其進一步包含計算該測試樣本之染色體複本數與對照樣本之染色體複本數之比率的步驟,其中比率大於1.34指示該測試樣本中存在多染色體之可能性。
  17. 如請求項16之方法,其中該多染色體係三染色體。
  18. 如請求項15之方法,其中該MSRE選自由以下組成之群:Aat lI、Acc II、Fnu DII、Aci I、Acl I、Afe I、Age I、Aor 13HI、Bsp MII、Acc III、Aor 51HI、Eco 47III、Asc I、Asi SI、Ava I、Bce AI、Bmg BI、Bsa AI、Bsa HI、Bsi EI、Bsi WI、Bsm BI、Bsp DI、Bsp T104104、Asu II、Nsp V、Bsr FI、Bss HII、Bst BI、Bst UI、Cfr 10I、Cla I、Eag I、Eco 52I、Xma III、Fau I、Fse I、Fsp I、Hae II、Hga I、Hha I、Hin P1I、Hpa II、Hpy 99I、Hpy CH4IV、Kas I、Mlu I、Nae I、Nar I、Ngo MIV、Not I、Nru I、Pae R7I、Plu TI、Pma CI、Pml I、Pvu I、Rsr II、Sac II、Sal I、Sfo I、Sgr AI、Sma I、Sna BI、Tsp MI及Zra I。
  19. 如請求項18之方法,其中該MSRE選自由以下組成之群:Aor 13HI、Bsp MII、Acc III、Aor 51HI、Eco 47III、Bsp T104104、Asu II、Nsp V、Eco 52I、Xma III、Plu TI、Pma CI、Pml I及Rsr II。
  20. 一種用於在全基因體中確定甲基化差異區域(DMR)之方法,其包含: (a) 自測試樣本分離DNA混合物; (b) 藉由用一種或多種對甲基化敏感限制性核酸內切酶(MSRE)來剪切該DNA混合物以獲得DNA片段,其中未甲基化胞嘧啶存在於該等DNA片段之末端核苷酸處,且甲基化胞嘧啶存在於該等DNA片段之中間核苷酸處; (c) 藉由用定序適配子接合該等DNA片段,以產生經定序適配子接合之DNA; (d) 藉由用PCR擴增該經定序適配子接合之DNA,以獲得PCR產物; (e) 藉由次世代定序(NGS)來定序該等PCR產物;及 (f) 在全基因體中確定甲基化差異區域(DMR)。
  21. 如請求項20之方法,其進一步包含計算該測試樣本之染色體複本數與對照樣本之染色體複本數之比率的步驟,其中比率大於1.34時,指示該測試樣本中存在多染色體之可能性。
  22. 如請求項21之方法,其中該多染色體係三染色體。
  23. 如請求項20之方法,其中該MSRE選自由以下組成之群:Aat lI、Acc II、Fnu DII、Aci I、Acl I、Afe I、Age I、Aor 13HI、Bsp MII、Acc III、Aor 51HI、Eco 47III、Asc I、Asi SI、Ava I、Bce AI、Bmg BI、Bsa AI、Bsa HI、Bsi EI、Bsi WI、Bsm BI、Bsp DI、Bsp T104104、Asu II、Nsp V、Bsr FI、Bss HII、Bst BI、Bst UI、Cfr 10I、Cla I、Eag I、Eco 52I、Xma III、Fau I、Fse I、Fsp I、Hae II、Hga I、Hha I、Hin P1I、Hpa II、Hpy 99I、Hpy CH4IV、Kas I、Mlu I、Nae I、Nar I、Ngo MIV、Not I、Nru I、Pae R7I、Plu TI、Pma CI、Pml I、Pvu I、Rsr II、Sac II、Sal I、Sfo I、Sgr AI、Sma I、Sna BI、Tsp MI及Zra I。
  24. 如請求項23之方法,其中該MSRE選自由以下組成之群:Aor 13HI、Bsp MII、Acc III、Aor 51HI、Eco 47III、Bsp T104104、Asu II、Nsp V、Eco 52I、Xma III、Plu TI、Pma CI、Pml I及Rsr II。
  25. 一種用於在全基因體中確定甲基化差異區域(DMR)之方法: (a) 自測試樣本分離DNA混合物; (b) 藉由用定序適配子接合該DNA混合物,以產生經適配子接合之DNA; (c) 藉由用亞硫酸氫鹽處理該經適配子接合之DNA,獲得經亞硫酸氫鹽處理之DNA; (d) 藉由用PCR擴增該經亞硫酸氫鹽處理之DNA,獲得PCR產物; (e) 藉由次世代定序(NGS)來定序該等PCR產物;及 (f) 在全基因體中確定甲基差異化區域(DMR)。
  26. 如請求項25之方法,其進一步包含計算該測試樣本之染色體複本數與對照樣本之染色體複本數之比率的步驟,其中比率大於1.34時,指示該測試樣本中存在多染色體之可能性。
  27. 如請求項26之方法,其中該多染色體係三染色體。
  28. 如請求項25之方法,其中該MSRE選自由以下組成之群:Aat lI、Acc II、Fnu DII、Aci I、Acl I、Afe I、Age I、Aor 13HI、Bsp MII、Acc III、Aor 51HI、Eco 47III、Asc I、Asi SI、Ava I、Bce AI、Bmg BI、Bsa AI、Bsa HI、Bsi EI、Bsi WI、Bsm BI、Bsp DI、Bsp T104104、Asu II、Nsp V、Bsr FI、Bss HII、Bst BI、Bst UI、Cfr 10I、Cla I、Eag I、Eco 52I、Xma III、Fau I、Fse I、Fsp I、Hae II、Hga I、Hha I、Hin P1I、Hpa II、Hpy 99I、Hpy CH4IV、Kas I、Mlu I、Nae I、Nar I、Ngo MIV、Not I、Nru I、Pae R7I、Plu TI、Pma CI、Pml I、Pvu I、Rsr II、Sac II、Sal I、Sfo I、Sgr AI、Sma I、Sna BI、Tsp MI及Zra I。
  29. 如請求項28之方法,其中該MSRE選自由以下組成之群:Aor 13HI、Bsp MII、Acc III、Aor 51HI、Eco 47III、Bsp T104104、Asu II、Nsp V、Eco 52I、Xma III、Plu TI、Pma CI、Pml I及Rsr II。
TW106127688A 2016-08-15 2017-08-15 以表觀遺傳區分dna TWI717547B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662375358P 2016-08-15 2016-08-15
US62/375,358 2016-08-15

Publications (2)

Publication Number Publication Date
TW201819638A true TW201819638A (zh) 2018-06-01
TWI717547B TWI717547B (zh) 2021-02-01

Family

ID=61197404

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106127688A TWI717547B (zh) 2016-08-15 2017-08-15 以表觀遺傳區分dna

Country Status (3)

Country Link
US (1) US20200283840A1 (zh)
TW (1) TWI717547B (zh)
WO (1) WO2018035125A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113825836A (zh) * 2019-04-09 2021-12-21 阿克生物公司 用于基于核苷酸修饰的耗竭的组合物和方法
IL293202A (en) * 2022-05-22 2023-12-01 Nucleix Ltd Useful combinations of restriction enzymes

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2542698B1 (en) * 2010-03-03 2015-04-22 Zymo Research Corporation Detection of dna methylation
US8460872B2 (en) * 2011-04-29 2013-06-11 Sequenom, Inc. Quantification of a minority nucleic acid species
EP2942400A1 (en) * 2014-05-09 2015-11-11 Lifecodexx AG Multiplex detection of DNA that originates from a specific cell-type

Also Published As

Publication number Publication date
WO2018035125A1 (en) 2018-02-22
TWI717547B (zh) 2021-02-01
US20200283840A1 (en) 2020-09-10

Similar Documents

Publication Publication Date Title
JP6585117B2 (ja) 胎児の染色体異数性の診断
JP6634105B2 (ja) 非侵襲性の出生前診断のために有用な、母体サンプル由来の胎児核酸のメチル化に基づく濃縮のためのプロセスおよび組成物
JP6513622B2 (ja) 非侵襲的出生前診断に有用な母体試料由来の胎児核酸のメチル化に基づく富化のためのプロセスおよび組成物
US10612086B2 (en) Processes and compositions for methylation-based enrichment of fetal nucleic acid from a maternal sample useful for non-invasive prenatal diagnoses
JP5789605B2 (ja) 染色体異数性の検出方法
EP3608420B1 (en) Nucleic acids and methods for detecting chromosomal abnormalities
EP3541934B1 (en) Methods for preparing dna reference material and controls
EP2572003A1 (en) Methods for non-invasive prenatal ploidy calling
WO2013053183A1 (zh) 对核酸样本中预定区域进行基因分型的方法和系统
BR112013020220B1 (pt) Método para determinar o estado de ploidia de um cromossomo em um feto em gestação
TW202102687A (zh) 確定循環核酸之線性及環狀形式
TWI717547B (zh) 以表觀遺傳區分dna
TWI809213B (zh) 改善游離dna品質
US20230151409A1 (en) Methods and compositions for noninvasive prenatal diagnosis through targeted covalent labeling of genomic sites
CN111321210B (zh) 一种无创产前检测胎儿是否患有遗传疾病的方法
KR101695347B1 (ko) 유전자의 CpG 메틸화 변화를 이용한 조산 위험성 예측용 조성물 및 이의 이용
AU2015252046B2 (en) Methods for Non-Invasive Prenatal Ploidy Calling
CN117187381B (zh) 一种用于妊娠期糖尿病早期辅助诊断的甲基化区域标志物组合及其应用
Ioannides Identification and characterization of fetal specific methylated regions for non-invasive prenatal diagnosis