TW201819446A - Aqueous polyurethane resin composition - Google Patents

Aqueous polyurethane resin composition Download PDF

Info

Publication number
TW201819446A
TW201819446A TW106129192A TW106129192A TW201819446A TW 201819446 A TW201819446 A TW 201819446A TW 106129192 A TW106129192 A TW 106129192A TW 106129192 A TW106129192 A TW 106129192A TW 201819446 A TW201819446 A TW 201819446A
Authority
TW
Taiwan
Prior art keywords
polyurethane resin
component
resin composition
water
agent
Prior art date
Application number
TW106129192A
Other languages
Chinese (zh)
Other versions
TWI742149B (en
Inventor
伊本剛
小坂竜巳
Original Assignee
日商迪科股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商迪科股份有限公司 filed Critical 日商迪科股份有限公司
Publication of TW201819446A publication Critical patent/TW201819446A/en
Application granted granted Critical
Publication of TWI742149B publication Critical patent/TWI742149B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/80Masked polyisocyanates
    • C08G18/8061Masked polyisocyanates masked with compounds having only one group containing active hydrogen
    • C08G18/807Masked polyisocyanates masked with compounds having only one group containing active hydrogen with nitrogen containing compounds
    • C08G18/8077Oximes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • C08G18/12Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step using two or more compounds having active hydrogen in the first polymerisation step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/44Polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/80Masked polyisocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • C08L75/06Polyurethanes from polyesters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • C09J175/06Polyurethanes from polyesters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

Provided is an aqueous polyurethane resin composition characterized by including, as component (A), an urethane prepolymer which is a reactant of a polyol compound, a polyisocyanate compound, and an anionic group introducing agent, and as component (B), a blocked polyisocyanate compound, wherein the content of blocked isocyanate groups is 0.5 to 4 mmol/g based on the solid content. The polyol compound is preferably a polycarbonate diol. The content of the anionic groups in the component (A) is preferably 0.2 to 1.5 mmol/g based on the amount of the urethane prepolymer of the component (A).

Description

水系聚胺酯樹脂組合物Aqueous polyurethane resin composition

本發明係關於一種作為聚酯樹脂層與光硬化系樹脂層之易接著層之材料有用之水系聚胺酯樹脂組合物。The present invention relates to a water-based polyurethane resin composition which is useful as a material for easily bonding a polyester resin layer and a photocurable resin layer.

於液晶顯示器之背光單元中,為了提高亮度而使用角柱薄片。角柱薄片係為了將來自導光體之出射光集中於液晶面板方向而於表面形成有角柱圖案。角柱薄片通常包含形成有角柱圖案之光硬化系樹脂及聚對苯二甲酸乙二酯(PET)樹脂等聚酯樹脂膜,且係使具有角柱圖案之光硬化系樹脂密接並接著於塗佈有易接著層之聚酯樹脂膜而製造。由於角柱薄片要求透明性、用以保持夏季等高溫時之性能之耐熱性、高濕度條件下之透明性,故而角柱薄片之易接著層亦必須具有同等性能。又,對易接著層要求與光硬化系樹脂及聚酯樹脂之接著性、或耐黏連性。易接著層係使用聚胺酯樹脂,但近年來,自環境污染、勞動衛生等安全性之方面而言對水系聚胺酯樹脂(例如,參照專利文獻1~2)進行了研究。 [先前技術文獻] [專利文獻] [專利文獻1]日本專利特開2011-140139號公報 [專利文獻2]WO2013/014837A1In a backlight unit of a liquid crystal display, a corner pillar sheet is used in order to improve brightness. The corner pillar sheet is formed with a corner pillar pattern on the surface in order to concentrate the light emitted from the light guide in the direction of the liquid crystal panel. The corner pillar sheet generally includes a polyester resin film such as a light-curable resin having a corner pillar pattern and a polyethylene terephthalate (PET) resin, and the light-curing resin having a corner pillar pattern is closely adhered and then coated with It is produced by easily bonding a polyester resin film. Since the corner pillar sheet requires transparency, heat resistance to maintain performance at high temperatures such as summer, and transparency under high humidity conditions, the easy-adhesion layer of the corner pillar sheet must also have equivalent performance. In addition, the easily-adhesive layer is required to have adhesiveness with a photocurable resin and a polyester resin, or blocking resistance. Polyurethane resins are used for the easy-adhesion layer system. In recent years, aqueous polyurethane resins (for example, refer to Patent Documents 1 and 2) have been studied in terms of safety such as environmental pollution and labor hygiene. [Prior Art Document] [Patent Document] [Patent Document 1] Japanese Patent Laid-Open No. 2011-140139 [Patent Document 2] WO2013 / 014837A1

然而,水系聚胺酯樹脂與溶劑系或無溶劑系之聚胺酯樹脂相比,存在與聚酯樹脂之密接性較差之缺點,因此,於使用水系聚胺酯樹脂之情形時,必須使用接著面經電暈處理、電漿處理、輝光放電處理等進行過表面改質之聚酯樹脂膜。又,水系聚胺酯樹脂存在夏季之高溫下之保存及搬運等置於暴露於高溫之環境下之情況,因此保存穩定性必須優異。 因此,本發明之課題在於提供一種與聚酯樹脂之密接性及耐黏連性優異之水系聚胺酯樹脂,進而在於提供一種透明性亦優異之水系聚胺酯樹脂。又,本發明之課題在於提供一種保存穩定性優異之水系聚胺酯樹脂。 本發明者等人為了解決上述課題而努力研究,結果發現藉由塗佈具有特定量之封端化異氰酸基之水系聚胺酯樹脂並熱硬化可獲得與聚酯樹脂之密接性優異之易接著層,從而完成了本發明。 即,本發明提供一種水系聚胺酯樹脂組合物,其特徵在於含有作為多元醇化合物、聚異氰酸酯化合物及陰離子性基導入劑之反應物之胺基甲酸酯預聚物作為(A)成分、以及封端化聚異氰酸酯化合物作為(B)成分,且封端化異氰酸基之含量相對於固形物成分為0.5~4 mmol/g。 又,本發明提供一種包含上述水系聚胺酯樹脂組合物之聚酯樹脂膜用接著劑、及包含上述水系聚胺酯樹脂組合物之光學膜用接著劑。 又,本發明提供一種水系聚胺酯樹脂組合物之製造方法,其具有以下步驟:使多元醇化合物、聚異氰酸酯化合物及陰離子性基導入劑進行反應而製造胺基甲酸酯預聚物;使胺基甲酸酯預聚物與作為上述封端化聚異氰酸酯化合物之非自我乳化性封端化聚異氰酸酯化合物混合而製成混合物;以及將該混合物分散於水中。 又,本發明提供一種光學膜之製造方法,其具有以下步驟:將上述水系聚胺酯樹脂組合物塗佈於基材膜;將所塗佈之水系聚胺酯樹脂組合物乾燥;及使乾燥之水系聚胺酯樹脂組合物於150~250℃下熱硬化。However, compared with solvent-based or non-solvent-based polyurethane resins, water-based polyurethane resins have the disadvantage of poor adhesion to polyester resins. Therefore, in the case of using water-based polyurethane resins, it is necessary to use corona treatment on the adhesive surface. Polyester resin film with surface modification such as plasma treatment and glow discharge treatment. In addition, since the water-based polyurethane resin is exposed to a high-temperature environment such as storage and transportation at high temperatures in summer, storage stability must be excellent. Therefore, an object of the present invention is to provide a water-based polyurethane resin having excellent adhesion to a polyester resin and blocking resistance, and further to provide a water-based polyurethane resin having excellent transparency. Another object of the present invention is to provide an aqueous polyurethane resin having excellent storage stability. The present inventors have made intensive research in order to solve the above-mentioned problems, and as a result, they found that by coating a water-based polyurethane resin having a specific amount of blocked isocyanate group and heat curing, an excellent adhesion with a polyester resin can be obtained. Layer, thus completing the present invention. That is, the present invention provides an aqueous polyurethane resin composition, comprising a urethane prepolymer as a reactant of a polyol compound, a polyisocyanate compound, and an anionic group introducing agent as the component (A), and a sealant. A terminal polyisocyanate compound is used as (B) component, and content of a blocked isocyanate group is 0.5-4 mmol / g with respect to a solid component. Moreover, this invention provides the adhesive agent for polyester resin films containing the said water-based polyurethane resin composition, and the adhesive agent for optical films containing the said water-based polyurethane resin composition. The present invention also provides a method for producing an aqueous polyurethane resin composition, which comprises the steps of: reacting a polyol compound, a polyisocyanate compound, and an anionic group introducing agent to produce a urethane prepolymer; and making an amine group The formate prepolymer is mixed with the non-self-emulsifying blocked polyisocyanate compound as the blocked polyisocyanate compound described above to prepare a mixture; and the mixture is dispersed in water. In addition, the present invention provides a method for producing an optical film, comprising the steps of: applying the above-mentioned aqueous polyurethane resin composition to a substrate film; drying the applied aqueous polyurethane resin composition; and drying the dried aqueous polyurethane resin. The composition is thermally hardened at 150 to 250 ° C.

[(A)成分] 本發明之水系聚胺酯樹脂組合物中之(A)成分為胺基甲酸酯預聚物。該胺基甲酸酯預聚物係多元醇化合物、聚異氰酸酯化合物與陰離子性基導入劑之反應物。作為(A)成分之胺基甲酸酯預聚物係多元醇化合物之羥基、聚異氰酸酯化合物之異氰酸基與陰離子性基導入劑進行反應所獲得之分子量相對較低之高分子化合物。 上述胺基甲酸酯預聚物係多元醇化合物、聚異氰酸酯化合物與陰離子性基導入劑之反應物。於本發明中,作為多元醇化合物、聚異氰酸酯化合物及陰離子性基導入劑,如下所述,可使用多種多樣之化合物。因此,上述胺基甲酸酯預聚物之結構根據該胺基甲酸酯預聚物之製造所使用之原料之結構而有較大差異。因此,現狀為無法利用規律一致之種類之通式表示上述胺基甲酸酯預聚物之結構,該情況係業者之技術常識。而且,若未特定出結構,則相應地確定之該物質之特性亦不容易明白,故而亦無法利用特性來表現。因此,於本發明中,不得不以「作為多元醇化合物、聚異氰酸酯化合物及陰離子性基導入劑之反應物之胺基甲酸酯預聚物」這一表達來定義水系聚胺酯樹脂組合物所包含之胺基甲酸酯預聚物。即,關於本發明中所使用之胺基甲酸酯預聚物,「於提出申請時藉由其結構或特性直接特定出胺基甲酸酯預聚物」為不可能或大體上不實際之事情。 又,於本發明中,如下所述,存在上述胺基甲酸酯預聚物為多元醇化合物、聚異氰酸酯化合物、陰離子性基導入劑與封端劑該4種成分之反應物之情形。於使該等4種成分進行反應之情形時,封端劑將作為反應物之胺基甲酸酯預聚物中之聚異氰酸基之一部分或全部封端化。因此,4種成分之反應物與多元醇化合物、聚異氰酸酯化合物及陰離子性基導入劑該3種成分之反應物之不同方面僅在於異氰酸基是否被封端劑所封端化之差異,其他構成不存在本質差異。由於其他構成相同,故而於使用4種成分之反應物作為(A)成分之情形時,亦發揮與使用3種成分之反應物之情形相同之效果。由此,多元醇化合物、聚異氰酸酯化合物、陰離子性基導入劑與封端劑該4種成分之反應物包含於本發明之水系聚胺酯組合物所使用之(A)成分。 作為多元醇化合物,可列舉聚酯多元醇、聚碳酸酯二醇、聚醚多元醇、數量平均分子量未達200之低分子量多元醇等。 作為上述聚酯多元醇,可使用使低分子量之多元醇與多羧酸進行酯化反應所獲得之化合物、使ε-己內酯、γ-戊內酯等環狀酯化合物進行開環聚合反應所獲得之化合物、及其等之共聚合聚酯等。 作為聚酯多元醇所使用之低分子量之多元醇,例如可列舉:乙二醇、二乙二醇、三乙二醇、四乙二醇、1,2-丙二醇、1,3-丙二醇、二丙二醇、三丙二醇、1,2-丁二醇、1,3-丁二醇、1,4-丁二醇、2,3-丁二醇、1,5-戊二醇、1,5-己二醇、1,6-己二醇、2,5-己二醇、1,7-庚二醇、1,8-辛二醇、1,9-壬二醇、1,10-癸二醇、1,11-十一烷二醇、1,12-十二烷二醇、2-甲基-1,3-丙二醇、新戊二醇、2-丁基-2-乙基-1,3-丙二醇、3-甲基-1,5-戊二醇、2-乙基-1,3-己二醇、2-甲基-1,8-辛二醇等脂肪族二醇、或甘油、三羥甲基丙烷、二-三羥甲基丙烷、三-三羥甲基丙烷、季戊四醇等脂肪族多元醇;1,4-環己烷二甲醇、氫化雙酚A等脂肪族含環式結構多元醇;雙酚A、雙酚F、雙酚S等雙酚化合物及其環氧烷加成物等。作為聚酯多元醇所使用之低分子量之多元醇,就光透過性及柔軟性之方面而言,較佳為脂肪族多元醇、脂肪族含環式結構多元醇,更佳為脂肪族二醇,進而較佳為乙二醇、1,4-丁二醇、1,6-己二醇。低分子量之多元醇可僅使用1種,亦可將2種以上組合而使用。 作為聚酯多元醇所使用之多羧酸,例如可列舉:丁二酸、己二酸、辛二酸、壬二酸、癸二酸、十二烷二羧酸、二聚酸等脂肪族多羧酸;1,4-環己烷二羧酸、環己烷三羧酸等脂環族多羧酸;鄰苯二甲酸、間苯二甲酸、對苯二甲酸、1,4-萘二甲酸、2,3-萘二甲酸、2,6-萘二甲酸、聯苯二羧酸、偏苯三甲酸、均苯四甲酸等芳香族多羧酸等,多羧酸亦可使用酸酐或酯衍生物。作為聚酯多元醇所使用之多羧酸,就光透過性及柔軟性之方面而言,較佳為脂肪族多羧酸,更佳為脂肪族二羧酸,進而較佳為己二酸、癸二酸。多羧酸可僅使用1種,亦可將2種以上組合而使用。 作為上述聚碳酸酯二醇,可列舉使碳酸酯及/或碳醯氯與多元醇進行反應所獲得者。作為上述碳酸酯,例如可列舉:碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯、碳酸乙二酯、碳酸丙二酯、碳酸丁二酯、碳酸二苯酯、碳酸二萘酯、碳酸苯基萘基酯等。 作為聚碳酸酯二醇所使用之多元醇,例如可列舉:乙二醇、二乙二醇、三乙二醇、四乙二醇、1,2-丙二醇、1,3-丙二醇、二丙二醇、三丙二醇、1,2-丁二醇、1,3-丁二醇、1,4-丁二醇、2,3-丁二醇、1,5-戊二醇、1,5-己二醇、1,6-己二醇、2,5-己二醇、1,7-庚二醇、1,8-辛二醇、1,9-壬二醇、1,10-癸二醇、1,11-十一烷二醇、1,12-十二烷二醇、2-甲基-1,3-丙二醇、新戊二醇、2-丁基-2-乙基-1,3-丙二醇、3-甲基-1,5-戊二醇、2-乙基-1,3-己二醇、2-甲基-1,8-辛二醇等脂肪族二醇;1,4-環己烷二甲醇、氫化雙酚A等脂肪族含環式結構二醇;對苯二酚、間苯二酚、雙酚A、雙酚F、4,4'-聯苯酚等芳香族二羥基化合物;聚乙二醇、聚丙二醇、聚四亞甲基二醇等聚醚多元醇;聚己二酸六亞甲酯、聚丁二酸六亞甲酯、聚己內酯等之聚酯多元醇等。作為聚碳酸酯二醇所使用之多元醇,就光透過性及柔軟性之方面而言,較佳為脂肪族二醇,更佳為1,4-丁二醇、1,6-己二醇,進而較佳為1,6-己二醇。 作為上述聚醚多元醇,可使用將具有2個以上之活性氫原子之化合物之1種或2種以上作為起始劑使環氧烷進行加成聚合而成者。 作為聚醚多元醇之起始劑,例如可列舉:乙二醇、1,2-丙二醇、1,3-丙二醇、1,2-丁二醇、1,3-丁二醇、1,4-丁二醇、2,3-丁二醇、1,5-戊二醇、1,5-己二醇、1,6-己二醇、2,5-己二醇、1,7-庚二醇、1,8-辛二醇、1,9-壬二醇、1,10-癸二醇、1,11-十一烷二醇、1,12-十二烷二醇、2-甲基-1,3-丙二醇、新戊二醇、2-丁基-2-乙基-1,3-丙二醇、3-甲基-1,5-戊二醇、2-乙基-1,3-己二醇、2-甲基-1,8-辛二醇、甘油、二甘油、三羥甲基丙烷、二-三羥甲基丙烷、三-三羥甲基丙烷、1,2,6-己三醇、三乙醇胺、三異丙醇胺、季戊四醇、二季戊四醇、山梨糖醇、蔗糖、乙二胺、N-乙基二伸乙基三胺、1,2-二胺基丙烷、1,3-二胺基丙烷、1,2-二胺基丁烷、1, 3-二胺基丁烷、1,4-二胺基丁烷、二伸乙基三胺、磷酸、酸性磷酸酯等。 作為聚醚多元醇所使用之環氧烷,例如可列舉:環氧乙烷、環氧丙烷、環氧丁烷、氧化苯乙烯、表氯醇、四氫呋喃等。 作為上述數量平均分子量未達200之低分子量多元醇,例如可列舉:乙二醇、1,2-丙二醇、1,3-丙二醇、2-甲基-1,3-丙二醇、二乙二醇、三乙二醇、2-丁基-2-乙基-1,3-丙二醇、1,4-丁二醇、新戊二醇、3-甲基-2,4-戊二醇、2,4-戊二醇、1,5-戊二醇、3-甲基-1,5-戊二醇、2-甲基-2,4-戊二醇、2,4-二乙基-1,5-戊二醇、1,6-己二醇、1,7-庚二醇、3,5-庚二醇、1,8-辛二醇、2-甲基-1,8-辛二醇、1,9-壬二醇等脂肪族二醇;環己烷二甲醇、環己二醇等脂環式二醇;三羥甲基乙烷、三羥甲基丙烷、己糖醇類、戊糖醇類、甘油、季戊四醇等3價以上之多元醇等。 作為(A)成分所使用之多元醇化合物,就耐熱性及光透過性之方面而言,較佳為聚碳酸酯二醇,較佳為來自脂肪族二醇之聚碳酸酯二醇,尤佳為來自1,6-己二醇之聚碳酸酯二醇。 多元醇化合物之分子量以數量平均分子量計較佳為500~5000,更佳為600~3000,最佳為700~2000。再者,作為多元醇化合物,亦可將數量平均分子量不同之2種以上之多元醇化合物組合而使用。多元醇化合物之數量平均分子量例如可利用凝膠滲透層析法(GPC)進行測定。 作為(A)成分所使用之聚異氰酸酯化合物,例如可列舉:2,4-甲苯二異氰酸酯、2,6-甲苯二異氰酸酯、二苯甲烷-4,4'-二異氰酸酯、對苯二異氰酸酯、苯二甲基二異氰酸酯、1,5-萘二異氰酸酯、3,3'-二甲基二苯基-4,4'-二異氰酸酯、聯大茴香胺二異氰酸酯、四甲基苯二甲基二異氰酸酯等芳香族二異氰酸酯;異佛爾酮二異氰酸酯、二環己基甲烷-4,4'-二異氰酸酯、反式-1,4-環己基二異氰酸酯、降烯二異氰酸酯等脂環式二異氰酸酯;1,4-四亞甲基二異氰酸酯、1,6-六亞甲基二異氰酸酯、1,8-八亞甲基二異氰酸酯、2-甲基-1,5-五亞甲基二異氰酸酯、2,2-二甲基-1,5-五亞甲基二異氰酸酯、1,11-十一亞甲基二異氰酸酯、2,2,4-三甲基-1,6-六亞甲基二異氰酸酯、2,4,4-三甲基-1,6-六亞甲基二異氰酸酯、2,4-二甲基-1,8-八亞甲基二異氰酸酯、5-甲基-1,9-九亞甲基二異氰酸酯、離胺酸二異氰酸酯、離胺酸甲酯二異氰酸酯等脂肪族二異氰酸酯等。 作為聚異氰酸酯化合物,進而亦可列舉上述二異氰酸酯之異氰尿酸酯三聚化物、上述二異氰酸酯之三羥甲基丙烷加成物、上述二異氰酸酯之縮二脲三聚化物、上述二異氰酸酯之脲基甲酸酯化物、三苯甲烷三異氰酸酯、1-甲基苯-2,4,6-三異氰酸酯、二甲基三苯甲烷四異氰酸酯、1,5,11-十一亞甲基三-二異氰酸酯、2,4,6-甲苯三異氰酸酯等三官能以上之異氰酸酯等。 作為(A)成分所使用之聚異氰酸酯化合物,就光透過性、耐熱性及接著性之方面而言,較佳為脂環式二異氰酸酯、脂肪族二異氰酸酯,更佳為脂環式二異氰酸酯,進而較佳為二環己基甲烷-4,4'-二異氰酸酯、異佛爾酮二異氰酸酯,最佳為二環己基甲烷-4,4'-二異氰酸酯。 (A)成分所使用之陰離子性基導入劑係用以將陰離子性基導入至胺基甲酸酯預聚物之添加劑。本發明中所使用之陰離子性基導入劑具有羧基及磺酸基之陰離子性基。又,陰離子性基導入劑較佳為具有可與多元醇化合物或聚異氰酸酯化合物進行反應之官能基。作為此種官能基,例如可列舉羥基。作為(A)成分所使用之陰離子性基導入劑,例如可列舉:二羥甲基丙酸、二羥甲基丁酸、二羥甲基酪酸、二羥甲基戊酸等含有羧基之多元醇類;1,4-丁二醇-2-磺酸等含有磺酸基之多元醇類。就耐熱性及產業上之獲取容易度之方面而言,較佳為含有羧基之多元醇類,更佳為二羥甲基丙酸。 於(A)成分中之陰離子性基之含量過少之情形時,(A)成分之水分散性容易變得不充分,於過多之情形時,有耐熱性降低之虞,故而(A)成分中之陰離子性基之含量相對於(A)成分之胺基甲酸酯預聚物之量較佳為0.2~1.5 mmol/g,進而較佳為0.3~1.2 mmol/g,最佳為0.4~1.0 mmol/g。陰離子性基之含量(單位:mmol/g)可由酸值(單位:mgKOH/g)算出。即,陰離子性基之含量乘以56.1(氫氧化鉀之分子量)所得之值相當於酸值。再者,此處所謂之陰離子性基之含量係相對於(A)成分之胺基甲酸酯預聚物之量之莫耳量,於(A)成分之陰離子性基被中和而成為鹽之情形時,胺基甲酸酯預聚物中之來自陰離子性基中和劑之部位不包含於上述合計量。再者,上述(A)成分之酸值係由作為(A)成分之胺基甲酸酯預聚物之反應成分之調配量所求出之理論值。胺基甲酸酯預聚物之量於胺基甲酸酯預聚物為多元醇化合物、聚異氰酸酯化合物與陰離子性基導入劑之反應物之情形時,為多元醇化合物、聚異氰酸酯化合物及陰離子性基導入劑之合計量。又,胺基甲酸酯預聚物之量於胺基甲酸酯預聚物為多元醇化合物、聚異氰酸酯化合物、陰離子性基導入劑與封端劑之反應物之情形時,為多元醇化合物、聚異氰酸酯化合物、陰離子性基導入劑及封端劑之合計量。 於本發明中,將異氰酸基相對於羥基之莫耳比稱為NCO指數。於本發明之水系聚胺酯樹脂組合物中之(A)成分中,羥基來自多元醇化合物及陰離子性基導入劑,異氰酸基來自聚異氰酸酯化合物。一般而言,胺基甲酸酯預聚物之末端基於製造胺基甲酸酯預聚物之情形時之NCO指數大於1之情形時成為異氰酸基,於小於1之情形時成為羥基。關於胺基甲酸酯預聚物之末端基,就對水之分散性提高、鏈伸長所引起之高分子化亦變得容易之方面而言,異氰酸基較羥基更佳,因此較佳為NCO指數大於1。 但是,即便於NCO指數大於1之情形時,於非常接近1之情形時,容易獲得雖然為相對高分子量但對水之分散性較差之胺基甲酸酯預聚物,於NCO指數相當大之情形時,於分散至水中之步驟中,大量產生殘留異氰酸基與水之反應所產生之二氧化碳而引起急遽之發泡,有引起製造上之問題之虞,所獲得之水系聚胺酯組合物亦有密接性降低之虞。製造(A)成分之情形時之NCO指數較佳為1.1~2.5,進而較佳為1.2~2.0,最佳為1.3~1.8。多元醇化合物、聚異氰酸酯化合物及陰離子性基導入劑之反應比只要考慮(A)成分中之陰離子性基之含量及NCO指數而決定即可。 於(A)成分之製造中,為了使胺基甲酸酯化反應順利進行,較佳為使用公知之觸媒。作為此種觸媒,例如可列舉:N,N,N',N'-四甲基乙二胺、N,N,N',N'-四甲基丙二胺、N,N,N',N'',N''-五甲基二伸乙基三胺、N,N,N',N'',N''-五甲基-(3-胺基丙基)乙二胺、N,N,N',N'',N''-五甲基二伸丙基三胺、N,N,N',N'-四甲基胍、1,3,5-三(N,N-二甲基胺基丙基)六氫-對稱三、1,8-二氮雜雙環[5.4.0]十一碳烯-7、三乙二胺、N,N,N',N'-四甲基六亞甲基二胺、N-甲基-N'-(2-二甲基胺基乙基)哌、N,N'-二甲基哌、二甲基環己胺、N-甲基啉、N-乙基啉、雙(2-二甲基胺基乙基)醚、N,N-二甲基月桂胺、1-甲基咪唑、1,2-二甲基咪唑、1-異丁基-2-甲基咪唑、1-二甲基胺基丙基咪唑等三級胺;氯化四甲基銨等四烷基銨鹵化物、氫氧化四甲基銨鹽等四烷基銨氫氧化物、四甲基銨2-乙基己酸鹽等四烷基銨有機酸鹽類等四級銨鹽;二乙酸錫、二辛酸錫、二油酸錫、二月桂酸錫、氧化二丁基錫、二乙酸二丁基錫、二月桂酸二丁基錫、二氯化二丁基錫、二月桂酸二辛基錫、辛酸鉛、環烷酸鉛、環烷酸鎳、環烷酸鈷等有機金屬觸媒等。該等觸媒之中,就反應性良好且所獲得之聚胺酯樹脂之黃變性較少之方面而言,較佳為有機金屬觸媒,更佳為二月桂酸二丁基錫或二月桂酸二辛基錫。該等觸媒可單獨使用,亦可併用2種以上。觸媒之使用量相對於多元醇化合物、聚異氰酸酯化合物及陰離子性基導入劑之合計量較佳為0.001~1質量%,進而較佳為0.01~0.1質量%。 本發明之水系聚胺酯樹脂組合物中之(A)成分之異氰酸基就接著性提昇之方面而言,較佳為其一部分或全部經封端劑所封端化之封端化異氰酸基。作為封端劑,例如可列舉:苯酚、甲酚、二甲苯酚、氯酚、乙基苯酚等酚系封端劑;ε-己內醯胺、δ-戊內醯胺、γ-丁內醯胺、β-丁內醯胺等內醯胺系封端劑;乙醯乙酸乙酯、乙醯丙酮等活性亞甲基系封端劑;甲醇、乙醇、丙醇、丁醇、戊醇、乙二醇單甲醚、乙二醇單乙醚、丙二醇單甲醚、苄醇、乙醇酸甲酯、乙醇酸丁酯、二丙酮醇、乳酸甲酯、乳酸乙酯等醇系封端劑;甲醛肟、乙醛肟、丙酮肟、甲基乙基酮肟、雙乙醯單肟、環己烷肟等肟系封端劑;丁硫醇、己硫醇、第三丁硫醇、苯硫酚、甲基苯硫酚、乙基苯硫酚等硫醇系封端劑;乙醯胺、苯甲醯胺等醯胺系封端劑;丁二醯亞胺、順丁烯二醯亞胺等醯亞胺系封端劑;吡唑、3,5-二甲基吡唑、4-苄基-3,5-二甲基吡唑、4-硝基-3,5-二甲基吡唑、4-溴-3,5-二甲基吡唑及3-甲基-5-苯基吡唑等吡唑系封端劑;2-乙基咪唑等咪唑系封端劑等。就來自封端化異氰酸基之封端劑之背離溫度略低於胺基甲酸酯樹脂組合物之硬化溫度(下述)且容易操作之方面而言,較佳為肟系封端劑、吡唑系封端劑,進而較佳為甲基乙基酮肟、3,5-二甲基吡唑。於(A)成分中之封端化異氰酸基之含量過少之情形時,無法獲得充分之接著性提昇效果,於將全部異氰酸基轉化為封端化異氰酸基之情形時,(A)成分於下述水分散步驟中未高分子量化,接著性反而降低,故而(A)成分中之封端化異氰酸基之含量較佳為聚異氰酸酯化合物之異氰酸基相對於(A)成分之多元醇化合物及陰離子性基導入劑之羥基之過剩份之10~50莫耳%,進而較佳為15~30莫耳%。再者,於算出(A)成分中之陰離子性基之含量之情形時,陰離子性基之含量為相對於來自多元醇化合物、聚異氰酸酯化合物及陰離子性基導入劑之結構部位之質量之合計量的莫耳量,來自陰離子性基中和劑之結構部位不包含於上述合計量,但將來自封端劑之結構部位包含於上述合計量而算出。 就水分散性提昇之方面而言,(A)成分之陰離子性基較佳為被陰離子性基中和劑所中和。作為陰離子性基中和劑,可列舉:三甲胺、三乙胺、三丁胺等三烷基胺類;氨、氫氧化三甲基銨、氫氧化鈉、氫氧化鉀、氫氧化鋰等鹼性化合物等。若陰離子性基中和劑殘留於包含本發明之水系聚胺酯樹脂組合物之易接著層,則有對易接著層之耐光性造成不良影響之情形,因此作為陰離子性基中和劑,較佳為容易因熱而解離並揮發之化合物,較佳為三甲胺、三乙胺。 若陰離子性基中和劑之使用量過少,則(A)成分之水分散性未充分提昇,若過多,則有易接著層之耐光性出現不良影響之虞,故而陰離子性基中和劑之使用量相對於陰離子性基1當量較佳為0.5~2.0當量,更佳為0.8~1.5當量。 就耐久性及接著性提昇之方面而言,(A)成分較佳為經鏈伸長劑高分子化。如下所述,鏈伸長劑可與分散至水中之胺基甲酸酯預聚物之異氰酸基進行反應而將(A)成分高分子量化。 作為鏈伸長劑,例如可列舉:乙二醇、1,2-丙二醇、1,3-丙二醇、2-甲基-1,3-丙二醇、二乙二醇、三乙二醇、2-丁基-2-乙基-1,3-丙二醇、1,4-丁二醇、新戊二醇、3-甲基-2,4-戊二醇、2,4-戊二醇、1,5-戊二醇、3-甲基-1,5-戊二醇、2-甲基-2,4-戊二醇、2,4-二乙基-1,5-戊二醇、1,6-己二醇、1,7-庚二醇、3,5-庚二醇、1,8-辛二醇、2-甲基-1,8-辛二醇、1,9-壬二醇等脂肪族二醇;環己烷二甲醇、環己二醇等脂環式二醇;乙二胺、丙二胺、六亞甲基二胺、甲伸苯基二胺、哌、2-甲基哌等低分子二胺類;二伸乙基三胺、三伸乙基四胺、四伸乙基五胺等聚伸烷基聚胺;單乙醇胺、二乙醇胺、三乙醇胺、單異丙醇胺、二異丙醇胺、三異丙醇胺、2-(2-胺基乙基胺基)乙醇等烷醇胺類;聚氧丙二胺、聚氧乙二胺等聚醚二胺類;薄荷烷二胺、異佛爾酮二胺、降烯二胺、胺基乙基胺基乙醇、雙(4-胺基-3-甲基二環己基)甲烷、二胺基二環己基甲烷、雙(胺基甲基)環己烷、3,9-雙(3-胺基丙基)-2,4,8,10-四氧雜螺(5,5)十一烷等脂環式二胺類;間苯二甲胺、α-(間/對胺基苯基)乙胺、間苯二胺、二胺基二苯甲烷、二胺基二苯碸、二胺基二甲基二苯甲烷、二胺基二乙基二苯甲烷、二甲基硫基甲苯二胺、二乙基甲苯二胺、α,α'-雙(4-胺基苯基)-對二異丙基苯等芳香族二胺類之聚胺;丁二醯肼、己二醯肼、癸二醯肼、鄰苯二甲酸二醯肼、1,6-六亞甲基雙(N,N-二甲基胺脲)、1,1,1',1'-四甲基-4,4'-(亞甲基-二-對苯)二胺脲等醯肼類;水合肼等。再者,水不僅可作為分散介質發揮功能,亦可作為鏈伸長劑發揮功能,但與異氰酸基之反應未必迅速,故而於本發明中不包含於鏈伸長劑。 作為鏈伸長劑,就容易進行反應且產業上亦容易獲取之方面而言,較佳為低分子二胺類、烷醇胺類、聚伸烷基胺類、醯肼類、水合肼,進而較佳為乙二胺、單乙醇胺。關於鏈伸長劑之使用量,較佳為相對於胺基甲酸酯預聚物之異氰酸基(封端化異氰酸基除外),鏈伸長劑之可與異氰酸基進行反應之基之量以莫耳比計為0.01~1.0。 [(B)成分] 本發明之水系聚胺酯樹脂組合物中之(B)成分為封端化聚異氰酸酯化合物。於水系聚胺酯樹脂組合物中,因對水之分散性優異,故而使用自我乳化性封端化聚異氰酸酯化合物或強制乳化型封端化聚異氰酸酯化合物之情形較多。於本發明中,所謂自我乳化性封端化聚異氰酸酯化合物係指化合物本身具有對水之乳化分散性、不使用界面活性劑亦可分散於水中之封端化聚異氰酸酯化合物,所謂強制乳化型封端化聚異氰酸酯化合物係指藉由界面活性劑使非自我乳化性封端化聚異氰酸酯化合物分散於水中。又,所謂非自我乳化性封端化聚異氰酸酯化合物係指其本身並不分散於水中之封端化聚異氰酸酯化合物。再者,於自我乳化性封端化聚異氰酸酯化合物中,為了賦予自我乳化性,向分子中導入作為親水基之聚乙二醇鏈之情況較多。於使用強制乳化型封端化聚異氰酸酯化合物或自我乳化性封端化聚異氰酸酯化合物之情形時,有強制乳化型封端化聚異氰酸酯化合物之界面活性劑、或自我乳化性封端化聚異氰酸酯化合物之聚乙二醇鏈對高濕度環境下之易接著層之透明性造成不良影響之情形,故而作為本發明中之(B)成分,較佳為非自我乳化性封端化聚異氰酸酯化合物。 作為非自我乳化性封端化聚異氰酸酯化合物,可列舉利用封端劑將二異氰酸酯化合物之異氰酸基封端而成之化合物、利用封端劑將三官能以上之聚異氰酸酯化合物之異氰酸基封端而成之化合物等,就密接性之方面而言,較佳為利用封端劑將三官能以上之聚異氰酸酯化合物之異氰酸基封端而成之化合物。作為此種聚異氰酸酯化合物,可列舉(A)成分之聚異氰酸酯化合物中所例示之二異氰酸酯之異氰尿酸酯三聚化物、二異氰酸酯之三羥甲基丙烷加成物、二異氰酸酯之縮二脲三聚化物、二異氰酸酯之脲基甲酸酯化物、三苯甲烷三異氰酸酯、1-甲基苯-2,4,6-三異氰酸酯、二甲基三苯甲烷四異氰酸酯、1,5,11-十一亞甲基三-二異氰酸酯、2,4,6-甲苯三異氰酸酯等三官能以上之異氰酸酯等。又,亦可為利用多元醇化合物使三官能以上之聚異氰酸酯化合物彼此連結而成者。作為非自我乳化性封端化聚異氰酸酯化合物之封端劑,可列舉(A)成分之封端劑中所例示之化合物,就封端劑自封端化異氰酸基之背離溫度略低於胺基甲酸酯樹脂組合物之硬化溫度(下述)、容易進行操作之方面而言,較佳為肟系封端劑、吡唑系封端劑,進而較佳為甲基乙基酮肟、3,5-二甲基吡唑。作為尤佳之(B)成分,可列舉:利用甲基乙基酮肟將六亞甲基二異氰酸酯之異氰尿酸酯三聚化物封端化而成者、利用3,5-二甲基吡唑將六亞甲基二異氰酸酯之異氰尿酸酯三聚化物封端化而成者、利用聚四亞甲基二醇將六亞甲基二異氰酸酯之異氰尿酸酯三聚化物連結並利用甲基乙基酮肟進行封端化而成者、利用聚四亞甲基二醇將六亞甲基二異氰酸酯之異氰尿酸酯三聚化物連結並利用3,5-二甲基吡唑進行封端化而成者等。 關於本發明之水系聚胺酯樹脂所使用之(B)成分之封端化聚異氰酸酯化合物之重量平均分子量,並無特別限制,較佳為50000以下。若(B)成分之封端化聚異氰酸酯化合物之重量平均分子量超過50000,則封端化聚異氰酸酯化合物之黏度提高,操作性變差。封端化聚異氰酸酯化合物之重量平均分子量例如可利用凝膠滲透層析法(GPC)進行測定。 於本發明之水系聚胺酯樹脂組合物中,封端化異氰酸基之含量相對於固形物成分為0.5~4 mmol/g。於封端化異氰酸基之含量少於0.5 mmol/g之情形時,對基材之密接性變得不充分,若超過4 mmol/g,則易接著層之柔軟性降低,或者(B)成分之含量相對增多,有(B)成分之分散穩定性降低之情形。封端化異氰酸基之含量相對於固形物成分較佳為0.7 mmol/g以上,進而較佳為0.9 mmol/g以上,更佳為1.0 mmol/g以上。又,封端化異氰酸基之含量相對於固形物成分較佳為3.9 mmol/g以下,進而較佳為3.8 mmol/g以下,更佳為3.7 mmol/g,進而更佳為2 mmol/g以下,進一步較佳為1.9 mmol/g以下,尤佳為1.8 mmol/g以下,最佳為1.7 mmol/g以下。再者,於本發明中,所謂固形物成分係指組合物中之除水分、有機溶劑等揮發性成分以外之成分,例如可藉由將組合物於105℃加熱1小時之情形時之揮發殘餘物算出。 關於本發明之水系聚胺酯樹脂組合物之(A)成分與(B)成分之比,只要封端化異氰酸基之含量相對於固形物成分為0.5~4 mmol/g,則並無特別限定,若(A)成分過少,則(B)成分之分散穩定性降低,故而作為(A)成分之固形物成分之含量相對於作為(A)成分與(B)成分之固形物成分之合計量100質量份較佳為至少為20質量份,進而較佳為至少為25質量份。 本發明之水系聚胺酯樹脂組合物中之水之量若較少,則有效成分量相對增多而較佳,但若過少,則分散穩定性降低,故而本發明之水系聚胺酯樹脂組合物中之水之量相對於本發明之水系聚胺酯樹脂組合物之固形物成分100質量份較佳為60~1000質量份,進而較佳為100~400質量份,最佳為150~250質量份。 [其他添加劑] 於本發明之水系聚胺酯樹脂組合物中,可於不阻礙本發明之效果之範圍內添加公知之添加劑。作為此種添加劑,例如可使用:交聯劑、各種耐候劑(受阻胺系光穩定劑、紫外線吸收劑及抗氧化劑)、使對基材之密接性特別牢固之矽烷偶合劑、膠體氧化矽或膠體氧化鋁等無機質膠體溶膠、四烷氧基矽烷及其縮聚物、螯合劑、環氧化合物、顏料、染料、造膜助劑、硬化劑、外部交聯劑、黏度調整劑、調平劑、消泡劑、抗凝固劑、自由基捕捉劑、耐熱性賦予劑、無機或有機填充劑、塑化劑、潤滑劑、氟系或矽氧烷系等抗靜電劑、補強劑、觸媒、觸變劑、蠟類、防霧劑、抗菌劑、防黴劑、防腐蝕劑、及防銹劑等。 上述交聯劑可藉由向本發明之水系聚胺酯樹脂組合物導入交聯結構而提高耐久性。作為交聯劑,可列舉:脲、三聚氰胺化合物、苯胍胺等與甲醛之加成物、包括包含上述加成物及碳原子數為1~6之醇單位之烷基醚化合物等胺基樹脂、多官能性環氧化合物;多官能性異氰酸酯化合物;多官能性氮丙啶化合物等,就反應性優異之方面而言,較佳為三聚氰胺化合物。作為三聚氰胺化合物,例如可列舉:三聚氰胺、單羥甲基三聚氰胺、二羥甲基三聚氰胺、三羥甲基三聚氰胺、四羥甲基三聚氰胺、五羥甲基三聚氰胺、六羥甲基三聚氰胺、甲基化羥甲基三聚氰胺、丁基化羥甲基三聚氰胺、三聚氰胺樹脂等,就價格低廉且分散性優異之方面而言,較佳為三聚氰胺。 作為上述受阻胺系光穩定劑,例如可列舉:1,6-雙(2,2,6,6-四甲基-4-哌啶基胺基)己烷/二溴乙烷縮聚物、1,6-雙(2,2,6,6-四甲基-4-哌啶基胺基)己烷/2,4-二氯-6-啉基-對稱三縮聚物、1,6-雙(2,2,6,6-四甲基-4-哌啶基胺基)己烷/2,4-二氯-6-第三辛基胺基-對稱三縮聚物、1,5,8,12-四[2,4-雙(N-丁基-N-(2,2,6,6-四甲基-4-哌啶基)胺基)-對稱三-6-基]-1,5,8,12-四氮雜十二烷、1,5,8,12-四[2,4-雙(N-丁基-N-(1,2,2,6,6-五甲基-4-哌啶基)胺基)-對稱三-6-基]-1,5,8,12-四氮雜十二烷、1,6,11-三[2,4-雙(N-丁基-N-(2,2,6,6-四甲基-4-哌啶基)胺基)-對稱三-6-基胺基十一烷、1,6,11-三[2,4-雙(N-丁基-N-(1,2,2,6,6-五甲基-4-哌啶基)胺基)-對稱三-6-基胺基十一烷等。 作為上述紫外線吸收劑,例如使用:2,4-二羥基二苯甲酮、2-羥基-4-甲氧基二苯甲酮、2-羥基-4-辛氧基二苯甲酮、5,5'-亞甲基雙(2-羥基-4-甲氧基二苯甲酮)等2-羥基二苯甲酮類;2-(2-羥基-5-甲基苯基)苯并三唑、2-(2-羥基-5-第三辛基苯基)苯并三唑、2-(2-羥基-3,5-二第三丁基苯基)-5-氯苯并三唑、2-(2-羥基-3-第三丁基-5-甲基苯基)-5-氯苯并三唑、2-(2-羥基-3,5-二異丙苯基苯基)苯并三唑、2,2'-亞甲基雙(4-第三辛基-6-苯并三唑基苯酚)、2-(2-羥基-3-第三丁基-5-羧基苯基)苯并三唑之聚乙二醇酯、2-[2-羥基-3-(2-丙烯醯氧基乙基)-5-甲基苯基]苯并三唑、2-[2-羥基-3-(2-甲基丙烯醯氧基乙基)-5-第三丁基苯基]苯并三唑、2-[2-羥基-3-(2-甲基丙烯醯氧基乙基)-5-第三辛基苯基]苯并三唑、2-[2-羥基-3-(2-甲基丙烯醯氧基乙基)-5-第三丁基苯基]-5-氯苯并三唑、2-[2-羥基-5-(2-甲基丙烯醯氧基乙基)苯基]苯并三唑、2-[2-羥基-3-第三丁基-5-(2-甲基丙烯醯氧基乙基)苯基]苯并三唑、2-[2-羥基-3-第三戊基-5-(2-甲基丙烯醯氧基乙基)苯基]苯并三唑、2-[2-羥基-3-第三丁基-5-(3-甲基丙烯醯氧基丙基)苯基]-5-氯苯并三唑、2-[2-羥基-4-(2-甲基丙烯醯氧基甲基)苯基]苯并三唑、2-[2-羥基-4-(3-甲基丙烯醯氧基-2-羥基丙基)苯基]苯并三唑、2-[2-羥基-4-(3-甲基丙烯醯氧基丙基)苯基]苯并三唑等2-(2-羥基苯基)苯并三唑類;2-(2-羥基-4-甲氧基苯基)-4,6-二苯基-1,3,5-三、2-(2-羥基-4-己氧基苯基)-4,6-二苯基-1,3,5-三、2-(2-羥基-4-辛氧基苯基)-4,6-雙(2,4-二甲基苯基)-1,3,5-三、2-[2-羥基-4-(3-C12~C13混合烷氧基-2-羥基丙氧基)苯基]-4,6-雙(2,4-二甲基苯基)-1,3,5-三、2-[2-羥基-4-(2-丙烯醯氧基乙氧基)苯基]-4,6-雙(4-甲基苯基)-1,3,5-三、2-(2,4-二羥基-3-烯丙基苯基)-4,6-雙(2,4-二甲基苯基)-1,3,5-三、2,4,6-三(2-羥基-3-甲基-4-己氧基苯基)-1,3,5-三等2-(2-羥基苯基)-4,6-二芳基-1,3,5-三類;水楊酸苯酯、間苯二酚單苯甲酸酯、2,4-二第三丁基苯基-3,5-二第三丁基-4-羥基苯甲酸酯、(3,5-二第三丁基-4-羥基)苯甲酸辛酯、(3,5-二第三丁基-4-羥基)苯甲酸十二烷基酯、(3,5-二第三丁基-4-羥基)苯甲酸十四烷基酯、(3,5-二第三丁基-4-羥基)苯甲酸十六烷基酯、(3,5-二第三丁基-4-羥基)苯甲酸十八烷基酯、(3,5-二第三丁基-4-羥基)苯甲酸山萮酯等苯甲酸酯類;2-乙基-2'-乙氧基草醯替苯胺、2-乙氧基-4'-十二烷基草醯替苯胺等取代草醯替苯胺類;α-氰基-β,β-二苯基丙烯酸乙酯、2-氰基-3-甲基-3-(對甲氧基苯基)丙烯酸甲酯等氰基丙烯酸酯類;及各種金屬鹽或金屬螯合物例如鎳或鉻之鹽或螯合物類等。 作為上述抗氧化劑,可使用磷系抗氧化劑、酚系抗氧化劑、硫系抗氧化劑。作為磷系抗氧化劑,例如可使用:亞磷酸三苯酯、亞磷酸三(2,4-二第三丁基苯酯)、亞磷酸三(2,5-二第三丁基苯酯)、亞磷酸三(壬基苯酯)、亞磷酸三(二壬基苯酯)、亞磷酸三(單、二混合壬基苯酯)、酸性亞磷酸二苯酯、亞磷酸2,2'-亞甲基雙(4,6-二第三丁基苯基)辛酯、亞磷酸二苯基癸酯、亞磷酸二苯基辛酯、二(壬基苯基)季戊四醇二亞磷酸酯、亞磷酸苯基二異癸酯、亞磷酸三丁酯、亞磷酸三(2-乙基己酯)、亞磷酸三癸酯、亞磷酸三月桂酯、酸性亞磷酸二丁酯、酸性亞磷酸二月桂酯、亞磷酸三月桂基三硫基酯、雙(新戊二醇)-1,4-環己烷二甲基二亞磷酸酯、雙(2,4-二第三丁基苯基)季戊四醇二亞磷酸酯、雙(2,5-二第三丁基苯基)季戊四醇二亞磷酸酯、雙(2,6-二第三丁基-4-甲基苯基)季戊四醇二亞磷酸酯、雙(2,4-二異丙苯基苯基)季戊四醇二亞磷酸酯、二硬脂基季戊四醇二亞磷酸酯、四(C12烷基~C15烷基之混合烷基)-4,4'-亞異丙基二苯基亞磷酸酯、雙[2,2'-亞甲基雙(4,6-二戊基苯基)]-亞異丙基二苯基亞磷酸酯、四-十三烷基-4,4'-亞丁基雙(2-第三丁基-5-甲基苯酚)二亞磷酸酯、六(十三烷基)-1,1,3-三(2-甲基-5-第三丁基-4-羥基苯基)丁烷-三亞磷酸酯、四(2,4-二第三丁基苯基)聯伸苯基二亞膦酸酯、三(2-[(2,4,7,9-四第三丁基二苯并[d,f][1,3,2]二氧雜磷雜環庚烯-6-基)氧基]乙基)胺、9,10-二氫-9-氧雜-10-磷雜菲-10-氧化物、三(2-[(2,4,8,10-四第三丁基二苯并[d,f][1,3,2]二氧雜磷雜環庚烯-6-基)氧基]乙胺、2-(1,1-二甲基乙基)-6-甲基-4-[3-[[2,4,8,10-四(1,1-二甲基乙基)二苯并[d,f][1,3,2]二氧雜磷雜環庚烯-6-基]氧基]丙基]苯酚、及2-丁基-2-乙基丙二醇-2,4,6-三第三丁基苯酚單亞磷酸酯等。 作為上述酚系抗氧化劑,例如可使用:2,6-二第三丁基-對甲酚、2,6-二苯基-4-十八烷氧基苯酚、(3,5-二第三丁基-4-羥基苯基)丙酸硬脂酯、(3,5-二第三丁基-4-羥基苄基)膦酸二硬脂酯、3,5-二第三丁基-4-羥基苄基硫乙酸十三烷基酯、硫代二伸乙基雙[(3,5-二第三丁基-4-羥基苯基)丙酸酯]、4,4'-硫代雙(6-第三丁基-間甲酚)、2-辛硫基-4,6-二(3,5-二第三丁基-4-羥基苯氧基)-對稱三、2,2'-亞甲基雙(4-甲基-6-第三丁基苯酚)、雙[3,3-雙(4-羥基-3-第三丁基苯基)丁酸]乙二醇酯、4,4'-亞丁基雙(2,6-二第三丁基苯酚)、4,4'-亞丁基雙(6-第三丁基-3-甲基苯酚)、2,2'-亞乙基雙(4,6-二第三丁基苯酚)、1,1,3-三(2-甲基-4-羥基-5-第三丁基苯基)丁烷、雙[2-第三丁基-4-甲基-6-(2-羥基-3-第三丁基-5-甲基苄基)苯基]對苯二甲酸酯、1,3,5-三(2,6-二甲基-3-羥基-4-第三丁基苄基)異氰尿酸酯、1,3,5-三(3,5-二第三丁基-4-羥基苄基)異氰尿酸酯、1,3,5-三(3,5-二第三丁基-4-羥基苄基)-2,4,6-三甲基苯、1,3,5-三[(3,5-二第三丁基-4-羥基苯基)丙醯氧基乙基]異氰尿酸酯、四[亞甲基-3-(3',5'-二第三丁基-4'-羥基苯基)丙酸酯]甲烷、2-第三丁基-4-甲基-6-(2-丙烯醯氧基-3-第三丁基-5-甲基苄基)苯酚、3,9-雙[2-(3-第三丁基-4-羥基-5-甲基苯丙醯氧基)-1,1-二甲基乙基]-2,4,8,10-四氧雜螺[5.5]十一烷、三乙二醇雙[β-(3-第三丁基-4-羥基-5-甲基苯基)丙酸酯]、及生育酚等。 作為上述硫系抗氧化劑,例如可使用硫代二丙酸之二月桂酯、雙肉豆蔻酯、肉豆蔻基硬脂酯、二硬脂酯等硫代二丙酸二烷基酯類,及季戊四醇四(β-十二烷基巰基丙酸酯)等多元醇之β-烷基巰基丙酸酯類。 上述耐候劑(受阻胺系光穩定劑、紫外線吸收劑及抗氧化劑)之使用量相對於水系聚胺酯樹脂組合物之固形物成分100質量份較佳為0.001~10質量份,更佳為0.01~5質量份。若上述耐候劑之量相對於上述固形物成分100質量份少於0.001質量份,則有無法獲得充分之添加效果之情形。若上述耐候劑之量相對於上述固形物成分100質量份多於10質量份,則有對水分散穩定性或塗膜物性造成不良影響之虞。 又,包含耐候劑在內之其他添加劑之總使用量相對於水系聚胺酯樹脂組合物之固形物成分100質量份合計較佳為25質量份以下。 於使用此種公知之添加劑之情形時,有使用界面活性劑作為分散劑或乳化劑之情形。於水系聚胺酯樹脂組合物中之界面活性劑之含量較多之情形時,有對高濕度環境下之易接著層之透明性造成不良影響之情況。因此,本發明之水系聚胺酯樹脂組合物中之界面活性劑之含量相對於水系聚胺酯樹脂組合物之固形物成分100質量份較佳為1質量份以下,進而較佳為0.2質量份以下。 [製造方法] 本發明之水系聚胺酯樹脂組合物之特徵在於含有封端化聚異氰酸酯化合物作為(B)成分且以高濃度含有封端化異氰酸基。於(B)成分為自我乳化性封端化聚異氰酸酯化合物或強制乳化型封端化聚異氰酸酯化合物之情形時,即便於將(A)成分分散於水中後,亦容易調配(B)成分,但於(B)成分為非自我乳化性封端化聚異氰酸酯化合物之情形時,難以於將(A)成分分散於水中後調配(B)成分。以下,對(B)成分為非自我乳化性封端化聚異氰酸酯化合物之情形時之製造方法進行說明。 於本發明之水系聚胺酯樹脂組合物之製造中,首先,任意地添加觸媒或交聯劑使多元醇化合物、聚異氰酸酯化合物、及陰離子性基導入劑進行反應而製造(A)成分之胺基甲酸酯預聚物。胺基甲酸酯預聚物之製造可利用常規方法進行,反應溫度可設為通常之胺基甲酸酯化之反應溫度例如50~100℃,為了使反應順利進行,亦可使用不與異氰酸基進行反應之鈍性溶劑。就不阻礙胺基甲酸酯預聚物之水分散性之方面而言,製造所使用之鈍性溶劑較佳為與水之親和性較大之有機溶劑,例如較佳為丙酮、甲基乙基酮、二㗁烷、四氫呋喃、N-甲基-2-吡咯啶酮、N-乙基-2-吡咯啶酮等。溶劑之使用量相對於多元醇化合物、聚異氰酸酯化合物、及陰離子性基導入劑之合計量100質量份較佳為3~200質量份。 於利用封端劑將(A)成分之異氰酸基封端化之情形時,於製造胺基甲酸酯預聚物時,可與聚異氰酸酯化合物等同時添加封端劑而進行反應,或者亦可於胺基甲酸酯化反應之中途或結束後添加封端劑而進行反應。封端劑之反應溫度視封端劑而有所不同,於肟系封端劑或吡唑系封端劑之情形時較佳為50~100℃。 非自我乳化性封端化聚異氰酸酯不易分散於水中,故而將(A)成分之胺基甲酸酯預聚物與(B)成分之非自我乳化性封端化聚異氰酸酯混合後使其分散於水中。藉由將(A)成分與(B)成分混合後使其分散於水中,不易分散於水中之(B)成分亦可分散於水中,認為其係因(A)成分具有自我乳化性,故而(A)成分作為(B)成分之乳化劑發揮功能,藉此(B)成分變得可分散。作為分散於水中之方法,就對水之分散性良好之方面而言,較佳為預聚物混合法、轉相法。於預聚物混合法中,向(A)成分之胺基甲酸酯預聚物添加陰離子性基中和劑並混合後,將混合物投入至水中而使其分散於水中,於轉相法中,向(A)成分之胺基甲酸酯預聚物添加含有陰離子性基中和劑之水或者向(A)成分之胺基甲酸酯預聚物添加陰離子性基中和劑並混合後向混合物添加水而使其分散於水中,於任一方法中,將(A)成分與(B)成分混合之時序只要在(A)成分與水共存前,則並無特別限制,較佳為於向胺基甲酸酯預聚物添加陰離子性基中和劑並混合時,與(B)成分一併添加陰離子性基中和劑並混合。 於將(A)成分及(B)成分分散於水中時,若水之溫度過高,則有因胺基甲酸酯預聚物之異氰酸基與水之急遽之反應而出現伴隨二氧化碳之產生之發泡現象之情況,故而水之溫度較佳為75℃以下,更佳為65℃以下。 於使用鏈伸長劑之情形時,溶解於(A)成分及(B)成分之分散所使用之水而使用。於使用鏈伸長劑之情形時,若水之溫度較低,則反應需要長時間,因此生產效率降低,若過高,則如上所述有因異氰酸基與水之急遽之反應而出現伴隨二氧化碳之產生之發泡現象之情況,故而使用鏈伸長劑之情形時之水之溫度較佳為20~75℃,更佳為30~65℃。再者,作為辨別鏈伸長中之反應終點之方法,使用IR(紅外分光光度計)確認異氰酸基之消失之方法較為簡便,故而較佳。 於調配上述其他添加劑之情形時,水溶性或水分散性之添加劑較佳為於將(A)成分及(B)成分分散於水中後調配,非水溶性且非水分散性之添加劑較佳為與(B)成分同樣地與(A)成分之胺基甲酸酯預聚物混合後分散於水中。 再者,於(A)成分之製造中使用有機溶劑之情形時,水系聚胺酯樹脂組合物含有有機溶劑,但就環境污染或勞動衛生等安全性之觀點而言,水系聚胺酯樹脂組合物中之有機溶劑較佳為利用減壓蒸餾去除等方法而去除。 [用途] 本發明之水系聚胺酯樹脂組合物因與基材之密接性、耐黏連性、透明性、耐熱性等優異,故而可作為各種接著劑利用,可適宜地作為各種光學膜之易接著層使用。將目的在於透過或反射吸收光線並賦予各種效果之膜稱為光學膜。作為光學膜,可列舉:反射膜、抗反射膜、配向膜、偏光膜、偏光層保護膜、相位差膜、視角提昇膜、亮度提昇膜、電磁波屏蔽膜、遮光膜、特定頻率選擇阻斷膜、光學低通濾波器、透鏡濾波器、觸控面板用導電膜、光擴散膜、防眩膜、角柱薄片等。就透明性、柔軟性及物理強度優異之方面而言,光學膜之樹脂膜基材一般而言使用聚對苯二甲酸乙二酯(PET)、聚對苯二甲酸丙二酯(PTT)、聚對苯二甲酸丁二酯(PBT)等聚酯樹脂。關於光學膜之易接著層所使用之先前之水系聚胺酯樹脂組合物,因基材之聚酯樹脂與易接著層之密接性不充分,故而有利用電暈處理、電漿處理、輝光放電處理等對基材之表面進行表面改質之情形。本發明之水系聚胺酯樹脂組合物因與聚酯樹脂之密接性優異,故而對未經此種表面處理之基材亦獲得較高之密接性,可作為聚酯樹脂用之接著劑尤其是要求透明性及密接性之光學膜之易接著層適而宜地使用。本發明之水系聚胺酯樹脂組合物與丙烯酸系樹脂之密接性亦優異,故而可較佳地用作使用丙烯酸系樹脂之光學片材例如偏光膜、光擴散膜、反射膜、抗反射膜、防眩膜、角柱薄片等之易接著層,尤其可較佳地用作角柱薄片等之易接著層。 本發明之水系聚胺酯樹脂組合物可塗佈於基材並使其乾燥後進行熱處理而使其硬化,藉此形成易接著層。本發明之水系聚胺酯樹脂組合物之塗佈方法並無特別限定,可使用公知之方法,例如可使用簾幕式平面塗佈法或模嘴塗佈法等狹縫塗佈法、刮刀塗佈法、輥式塗佈法等。 本發明之水系聚胺酯樹脂組合物之塗膜係藉由加熱至封端劑之背離溫度以上而硬化。即,藉由加熱,封端劑自封端化異氰酸基解離而再生活性之異氰酸基,並與羥基或胺基進行反應而生成胺基甲酸酯基或脲基,藉此硬化。封端異氰酸基之解離溫度於肟系封端劑條件下為140~160℃左右,於吡唑系封端劑條件下為110~120℃左右。於溫度較高之情形時,不僅異氰酸基與胺基甲酸酯基或脲基進行反應而生成脲基甲酸酯基或縮二脲基並交聯,而且所生成之該等基使易接著層之密接性提高,故而加熱溫度較高者較佳,但於加熱溫度過高之情形時,有基材或易接著層熱劣化之情形。因此,本發明之水系聚胺酯樹脂組合物之塗膜之加熱溫度較佳為150~250℃,進而較佳為160~210℃,最佳為170~190℃。加熱時間視加熱溫度而有所不同,於加熱溫度為180℃之情形時,大致為1~30分鐘。加熱方法並無特別限定,例如可應用熱風加熱、紅外線加熱、高頻加熱等公知之加熱方法。 實施例 以下,藉由實施例對本發明進行具體說明。 再者,於以下實施例等中,只要未特別記載,則調配比率(%)意指質量基準之比率。又,下述製造例、實施例及比較例中所使用之原料如下所述。 多元醇a1:數量平均分子量2000之聚碳酸酯二醇 多元醇a2:數量平均分子量1000之聚四亞甲基二醇 單醇a'1:數量平均分子量550之聚乙二醇單甲醚 聚異氰酸酯b1:異佛爾酮二異氰酸酯 聚異氰酸酯b2:二環己基甲烷-4,4'-二異氰酸酯 聚異氰酸酯b3:六亞甲基二異氰酸酯之異氰尿酸酯三聚化物(異氰酸酯含量21.8%) 陰離子性基導入劑c1:二羥甲基丙酸 陰離子性基中和劑d1:三乙胺 鏈伸長劑e1:乙二胺 鏈伸長劑e2:單乙醇胺 封端劑f1:甲基乙基酮肟 封端劑f2:3,5-二甲基吡唑 MEK:甲基乙基酮 [製造例1:預聚物A1] 向具有攪拌機、冷卻管、氮氣導入管之玻璃製反應容器中添加313.9 g之多元醇a1、280.0 g之聚異氰酸酯b1、80.8 g之陰離子性基導入劑c1、250 g之MEK、及14.4 g之封端劑f1,並於80℃下攪拌5小時使其反應,從而製造含有溶劑之預聚物A1。預聚物A1中之陰離子性基之含量為0.642 mmol/g,將溶劑去除之情形時之陰離子性基之含量為0.875 mmol/g。又,預聚物A1中之封端化異氰酸基(以下,亦稱為B-NCO)之含量為0.177 mmol/g,封端化異氰酸基相對於預聚物A1之固形物成分之含量為0.241 mmol/g。 [製造例2~8:預聚物A2~A8] 除如表1所記載般變更各原料之添加量以外,進行與製造例1相同之操作而製造胺基甲酸酯預聚物A2~A8。 再者,表1中之各原料之添加量之數值為g數。又,關於陰離子性基及B-NCO之含量之值,上段之值為相對於預聚物之固形物成分之值,下段之()中之值為相對於含有溶劑之預聚物之值。 [表1] [製造例9:封端化聚異氰酸酯B1] 向具有攪拌機、冷卻管、氮氣導入管之玻璃製反應容器中添加506.4 g之聚異氰酸酯b3、230.9 g之封端劑f1、作為連結劑之12.7g之多元醇a2、作為溶劑之250 g之MEK,並於80℃下攪拌5小時使其反應,從而獲得含有MEK之封端化聚異氰酸酯B1。封端化聚異氰酸酯B1之B-NCO含量為2.60 mmol/g,相對於固形物成分之B-NCO含量為3.47 mmol/g。再者,封端化聚異氰酸酯B1為非自我乳化性封端化聚異氰酸酯化合物。 [製造例10~11及13:封端化聚異氰酸酯B2、B3、B5] 除如表2所記載般變更各原料之添加量(g)以外,進行與製造例8相同之操作而製造封端化聚異氰酸酯B2、B3及B5。再者,封端化聚異氰酸酯B2及B5為非自我乳化性封端化聚異氰酸酯,封端化聚異氰酸酯B3為自我乳化性封端化聚異氰酸酯化合物。 [製造例12:封端化聚異氰酸酯B4] 利用均質攪拌機對50 g之封端化聚異氰酸酯B1、5 g之非離子性界面活性劑(ADEKA股份有限公司製造、商品名:Adeka Nol SP-12、HLB:12.7)、45 g之水進行處理而獲得作為封端化聚異氰酸酯B1之乳化分散液之封端化聚異氰酸酯B4。封端化聚異氰酸酯B4為強制乳化型封端化聚異氰酸酯化合物。 表2中表示封端化聚異氰酸酯B1~5之各原料之添加量(g)及B-NCO之含量。再者,關於B-NCO之含量之值,上段之值為相對於封端化聚異氰酸酯之固形物成分之值,下段之()中之值為含有溶劑之值。 [表2] [實施例1] 向樹脂製容器中添加56.35 g之預聚物A1、3.65 g之陰離子性基中和劑d1、及40 g之封端化聚異氰酸酯B1並攪拌5分鐘而獲得混合物。再者,陰離子性基中和劑之使用量與預聚物中之陰離子性基導入劑為相同莫耳量。向具有攪拌機之玻璃製反應容器中添加150 g之水、0.02 g之消泡劑(ADEKA股份有限公司製造,商品名:Adeka Nate B-1016),並一面於40℃下攪拌一面耗時2分鐘添加上述混合物,進而,於40℃下攪拌30分鐘。添加0.224 g之鏈伸長劑e1之25質量%水溶液(作為鏈伸長劑e1為0.056 g)並於40℃下攪拌1小時之後,於減壓條件下將MEK去除,獲得實施例1之水系聚胺酯樹脂組合物。再者,實施例1為使用非自我乳化性封端化聚異氰酸酯化合物之實施例。 [實施例2~10、比較例1~8] 除如表3所記載般變更各原料之添加量(g)以外,進行與實施例1相同之操作而獲得實施例2~10、比較例1~8之水系聚胺酯樹脂組合物。再者,於表3中,陰離子性基中和劑之使用量與預聚物中之陰離子性基導入劑為相同莫耳量,鏈伸長劑e1及e2之添加量為25%水溶液之量。再者,實施例2~10、比較例1~8均為使用非自我乳化性封端化聚異氰酸酯化合物之實施例。 [實施例11] 向樹脂製容器中添加46.95 g之預聚物A1、3.05 g之陰離子性基中和劑d1並攪拌5分鐘而獲得混合物。向具有攪拌機之玻璃製反應容器中添加150 g之水、0.02 g之消泡劑(ADEKA股份有限公司製造,商品名:Adeka Nate B-1016),並一面於40℃下進行攪拌一面耗時2分鐘添加上述混合物,進而,於40℃下攪拌30分鐘之後,添加0.19 g之鏈伸長劑e1之25質量%水溶液並於40℃下攪拌1小時。向其添加50 g之封端化聚異氰酸酯B3並於40℃下攪拌1小時而使之分散之後,於減壓條件下將MEK去除,獲得實施例11之水系聚胺酯樹脂組合物。實施例11為使用自我乳化性封端化聚異氰酸酯化合物之實施例。 [實施例12] 向樹脂製容器中添加56.35 g之預聚物A1、3.65 g之陰離子性基中和劑d1並攪拌5分鐘而獲得混合物。向具有攪拌機之玻璃製反應容器中添加120 g之水、0.02 g之消泡劑(ADEKA股份有限公司製造,商品名:Adeka Nate B-1016)、70 g之封端化聚異氰酸酯B4,並一面於40℃下進行攪拌一面耗時2分鐘添加上述混合物。進而,於40℃下攪拌30分鐘之後,添加0.23 g之鏈伸長劑e1之25質量%水溶液並於40℃下攪拌1小時。此後,於減壓條件下將MEK去除,獲得實施例12之水系聚胺酯樹脂組合物。實施例12為使用強制乳化型封端化聚異氰酸酯化合物之實施例。 表3中表示實施例1~12及比較例1~8之水系聚胺酯樹脂組合物之各原料之添加量(g)。再者,表3之(A)/(B)比為(A)成分與(B)成分之固形物成分之質量比,B-NCO之含量之值為相對於固形物成分之值。 對於實施例1~12及比較例1~8之水系聚胺酯樹脂組合物,分別利用下述方法對保存穩定性、密接性、耐濕透明性及耐黏連性進行試驗。再者,密接性之評價係使用下述試片A~C,耐濕透明性及耐黏連性之評價係使用下述試片A。將結果示於表4。 試片A:以乾燥後之塗膜之厚度成為約1 μm之方式將水系聚胺酯樹脂組合物塗佈於市售PET膜(厚度20 μm、未電暈處理、表面之平均水接觸角70°)並於25℃下風乾之後,於180℃下加熱10分鐘而製備試片A。 試片B:利用電暈處理裝置對市售PET膜進行電暈處理直至表面之平均水接觸角成為28~32°之後,以乾燥後之塗膜之厚度成為約1 μm之方式將水系胺基甲酸酯樹脂組合物塗佈於該膜並於25℃下風乾,其後於180℃下加熱10分鐘而製備試片B。 試片C:以厚度成為約3 μm之方式將市售之丙烯酸系光硬化性樹脂(ADEKA股份有限公司製造,商品名:Adeka Optomer HC-211-9)塗佈於試片B之塗佈有胺基甲酸酯樹脂之面上並於80℃下乾燥之後,使用金屬鹵化物燈於強度600 mW/cm2 、累計光量500 mJ/cm2 之條件使其硬化而製備試片C。 <保存穩定性試驗方法> 將水系聚胺酯樹脂組合物放入密閉容器並於40℃下保存24小時之後,根據分離之有無,基於下述評價基準對保存穩定性進行評價。再者,保存穩定性不良者不進行隨後之試驗。 (評價基準) ○:未發現分離,保存穩定性良好 ×:發現分離,保存穩定性不良 <密接性試驗方法> 依據JIS K5600-5-6(塗料一般試驗方法-第5部:塗膜之機械性質-第6節:依據附著性(十字切割法)),使用間隙間隔1 mm之切割導件將試片之胺基甲酸酯系硬化膜切割成100塊。使該切割後之硬化膜附著於膠帶之後,以相對於剝離方向約60°之角度將膠帶剝離。對同一試片進行3次膠帶之附著及剝離之操作之後,對未剝落之塊數進行計數。未剝落之塊數越多,表示密接性越高。 <耐濕透明性試驗方法> 將試片A於80℃、相對濕度80%之恆溫恆濕槽中靜置250小時之後,使用霧度計(日本電色工業公司製造,型號:NDH-5000)測定霧度值(%)。將自該值減去試片A之製備所使用之市售PET膜之霧度值所得之值設為ΔH。ΔH越大,表示胺基甲酸酯系硬化膜之透明性越低,或因耐濕透明性試驗導致透明性降低。 <耐黏連性試驗方法> 使用2塊試片A,使胺基甲酸酯系硬化膜面彼此重疊並利用2塊玻璃板夾持,施加10 kgf/cm2 之負荷,並於60℃、相對濕度80%之恆溫恆濕槽中靜置24小時。其後,將重疊之試片剝離,算出胺基甲酸酯系硬化膜面之破損面之面積相對於重疊面之面積之比(%)。破損面之面積之比越小,表示耐黏連性越高。 [表3] [表4] [實施例13、14、比較例9] 除如表5所記載般變更各原料之添加量(g)以外,進行與實施例1相同之操作而獲得實施例13及14以及比較例9之水系聚胺酯樹脂組合物。再者,於表5中,陰離子性基中和劑之使用量與預聚物中之陰離子性基導入劑為相同莫耳量,鏈伸長劑e2之添加量為25%水溶液之量。 再者,實施例13及14以及比較例9均為使用非自我乳化性封端聚異氰酸酯化合物之實施例及比較例。 表5中表示實施例13及14以及比較例9之水系聚胺酯樹脂組合物之各原料之添加量(g)。再者,表5之(A)/(B)比為(A)成分與(B)成分之固形物成分之質量比,B-NCO之含量之值為相對於固形物成分之值。 對於實施例13及14以及比較例9之水系聚胺酯樹脂組合物,使用下述方法對保存穩定性進行試驗。 將水系胺基甲酸酯樹脂組合物放入密閉容器中,於40℃下保管並藉由目視對沈澱、分離進行觀察而評價保存穩定性。再者,評價基準如下所述。將結果示於表6。A:一個月以上、保存穩定性良好 B:於未達2週發現沈澱、分離,保存穩定性不良 C:於未達1週發現沈澱、分離,保存穩定性不良 進而,對於實施例13及14以及比較例9之水系聚胺酯樹脂組合物,與上述實施例1~12及比較例1~8之方法同樣地對耐濕透明性及耐黏連性進行評價。 [表5] [表6] [產業上之可利用性] 根據本發明,可提供一種與聚酯樹脂之密接性及耐黏連性優異之水系聚胺酯樹脂,進而,藉由於製造聚胺酯樹脂時使用特定之聚異氰酸酯化合物,可提供一種透明性亦優異之水系聚胺酯樹脂。又,根據本發明,可提供一種保存穩定性優異之水系聚胺酯樹脂。[Component (A)] The component (A) in the aqueous polyurethane resin composition of the present invention is a urethane prepolymer. The urethane prepolymer is a reactant of a polyol compound, a polyisocyanate compound, and an anionic group introducing agent. The (A) component of the urethane prepolymer is a polymer compound having a relatively low molecular weight obtained by reacting a hydroxyl group of a polyol compound, an isocyanate group of a polyisocyanate compound, and an anionic group introducing agent. The urethane prepolymer is a reactant of a polyol compound, a polyisocyanate compound, and an anionic group introducing agent. In the present invention, as the polyol compound, the polyisocyanate compound, and the anionic group introducing agent, various compounds can be used as described below. Therefore, the structure of the above-mentioned urethane prepolymer varies greatly depending on the structure of the raw materials used in the production of the urethane prepolymer. Therefore, the current situation is that the structure of the above-mentioned urethane prepolymer cannot be expressed by a general formula of a kind with a consistent law. This situation is technical knowledge of the industry. In addition, if the structure is not specified, the characteristics of the substance determined correspondingly are not easy to understand, so it cannot be expressed by the characteristics. Therefore, in the present invention, the expression of "urethane prepolymer as a reactant of a polyol compound, a polyisocyanate compound, and an anionic group introducing agent" has to be used to define what the aqueous polyurethane resin composition includes. Urethane prepolymer. That is, with regard to the urethane prepolymer used in the present invention, "the urethane prepolymer is directly specified by its structure or characteristics at the time of application" is impossible or substantially impractical. thing. In addition, in the present invention, as described below, the urethane prepolymer may be a reactant of the four components of a polyol compound, a polyisocyanate compound, an anionic group introducing agent, and a blocking agent. When these four components are reacted, the blocking agent partially or completely blocks a part of the polyisocyanate in the urethane prepolymer as a reactant. Therefore, the difference between the reactants of the four components and the reactants of the three components of the polyol compound, the polyisocyanate compound, and the anionic group introduction agent is only the difference in whether the isocyanate group is blocked by the blocking agent. There are no essential differences in other components. Since the other configurations are the same, the same effect as that in the case of using the three-component reactant is also exhibited when the four-component reactant is used as the (A) component. Thus, the reactant of the four components of the polyol compound, the polyisocyanate compound, the anionic group introducing agent, and the blocking agent is included in the component (A) used in the aqueous polyurethane composition of the present invention. Examples of the polyol compound include polyester polyols, polycarbonate diols, polyether polyols, and low molecular weight polyols having a number average molecular weight of less than 200. As the polyester polyol, a compound obtained by esterifying a low molecular weight polyol and a polycarboxylic acid, and a ring-opening polymerization reaction of a cyclic ester compound such as ε-caprolactone and γ-valerolactone can be used. The obtained compound, and its copolymerized polyester and the like. Examples of the low-molecular-weight polyol used as the polyester polyol include ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, and diethylene glycol. Propylene glycol, tripropylene glycol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, 1,5-pentanediol, 1,5-hexane Diols, 1,6-hexanediol, 2,5-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, 1,10-decanediol , 1,11-undecanediol, 1,12-dodecanediol, 2-methyl-1,3-propanediol, neopentyl glycol, 2-butyl-2-ethyl-1,3 -Aliphatic glycols such as propylene glycol, 3-methyl-1,5-pentanediol, 2-ethyl-1,3-hexanediol, 2-methyl-1,8-octanediol, or glycerol, Aliphatic polyols such as trimethylolpropane, di-trimethylolpropane, tri-trimethylolpropane, pentaerythritol; aliphatic cyclic structures such as 1,4-cyclohexanedimethanol and hydrogenated bisphenol A Polyols; bisphenol compounds such as bisphenol A, bisphenol F, bisphenol S, and their alkylene oxide adducts. As the low-molecular-weight polyol used as the polyester polyol, in terms of light transmission and flexibility, aliphatic polyols, aliphatic cyclic structure-containing polyols, and aliphatic diols are more preferable. Furthermore, ethylene glycol, 1,4-butanediol, and 1,6-hexanediol are more preferable. The low molecular weight polyol may be used alone or in combination of two or more. Examples of the polycarboxylic acid used in the polyester polyol include aliphatic polycarboxylic acids such as succinic acid, adipic acid, suberic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid, and dimer acid. Carboxylic acids; alicyclic polycarboxylic acids such as 1,4-cyclohexanedicarboxylic acid, cyclohexanetricarboxylic acid; phthalic acid, isophthalic acid, terephthalic acid, 1,4-naphthalenedicarboxylic acid Aromatic polycarboxylic acids such as 2,3-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, biphenylene dicarboxylic acid, trimellitic acid, pyromellitic acid, etc. Polycarboxylic acids can also be derived using anhydrides or esters Thing. As the polycarboxylic acid used in the polyester polyol, in terms of light transmittance and flexibility, an aliphatic polycarboxylic acid is preferable, an aliphatic dicarboxylic acid is more preferable, and adipic acid, Sebacic acid. The polycarboxylic acid may be used singly or in combination of two or more kinds. Examples of the polycarbonate diol include those obtained by reacting a carbonate and / or carbochlorine with a polyol. Examples of the carbonate include dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, ethylene carbonate, propylene carbonate, butylene carbonate, diphenyl carbonate, dinaphthyl carbonate, and carbonic acid. Phenylnaphthyl esters and the like. Examples of the polyhydric alcohol used in the polycarbonate diol include ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, dipropylene glycol, and the like. Tripropylene glycol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, 1,5-pentanediol, 1,5-hexanediol , 1,6-hexanediol, 2,5-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, 1 , 11-undecanediol, 1,12-dodecanediol, 2-methyl-1,3-propanediol, neopentyl glycol, 2-butyl-2-ethyl-1,3-propanediol Aliphatic diols such as 1,3-methyl-1,5-pentanediol, 2-ethyl-1,3-hexanediol, 2-methyl-1,8-octanediol; 1,4-cyclo Aliphatic cyclic structure diols such as hexanedimethanol and hydrogenated bisphenol A; aromatic dihydroxy compounds such as hydroquinone, resorcinol, bisphenol A, bisphenol F, 4,4'-biphenol ; Polyether polyols such as polyethylene glycol, polypropylene glycol, polytetramethylene glycol; polyester polyols such as hexamethylene adipate, hexamethylene succinate, and polycaprolactone Wait. As the polyhydric alcohol used for the polycarbonate diol, aliphatic diol is preferable in terms of light transmittance and flexibility, and 1,4-butanediol and 1,6-hexanediol are more preferable. And more preferably 1,6-hexanediol. As the polyether polyol, one or two or more compounds having two or more active hydrogen atoms can be used as an initiator for addition polymerization of an alkylene oxide. Examples of the initiator of the polyether polyol include ethylene glycol, 1,2-propylene glycol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, and 1,4- Butanediol, 2,3-butanediol, 1,5-pentanediol, 1,5-hexanediol, 1,6-hexanediol, 2,5-hexanediol, 1,7-heptanediol Alcohol, 1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, 1,11-undecanediol, 1,12-dodecanediol, 2-methyl -1,3-propanediol, neopentyl glycol, 2-butyl-2-ethyl-1,3-propanediol, 3-methyl-1,5-pentanediol, 2-ethyl-1,3- Hexanediol, 2-methyl-1,8-octanediol, glycerol, diglycerol, trimethylolpropane, di-trimethylolpropane, tri-trimethylolpropane, 1, 2, 6- Hexatriol, triethanolamine, triisopropanolamine, pentaerythritol, dipentaerythritol, sorbitol, sucrose, ethylenediamine, N-ethyldiethylenetriamine, 1,2-diaminopropane, 1, 3-diaminopropane, 1,2-diaminobutane, 1,3-diaminobutane, 1,4-diaminobutane, diethylene triamine, phosphoric acid, acid phosphate, etc. . Examples of the alkylene oxide used in the polyether polyol include ethylene oxide, propylene oxide, butylene oxide, styrene oxide, epichlorohydrin, and tetrahydrofuran. Examples of the low-molecular-weight polyol having a number average molecular weight of less than 200 include ethylene glycol, 1,2-propylene glycol, 1,3-propanediol, 2-methyl-1,3-propanediol, diethylene glycol, Triethylene glycol, 2-butyl-2-ethyl-1,3-propanediol, 1,4-butanediol, neopentyl glycol, 3-methyl-2,4-pentanediol, 2,4 -Pentanediol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 2-methyl-2,4-pentanediol, 2,4-diethyl-1,5 -Pentanediol, 1,6-hexanediol, 1,7-heptanediol, 3,5-heptanediol, 1,8-octanediol, 2-methyl-1,8-octanediol, Aliphatic diols such as 1,9-nonanediol; alicyclic diols such as cyclohexanedimethanol, cyclohexanediol; trimethylolethane, trimethylolpropane, hexitols, pentose Alcohols, glycerol, pentaerythritol and other trivalent polyhydric alcohols and the like. The polyol compound used as the component (A) is preferably a polycarbonate diol from the aspects of heat resistance and light transmittance, more preferably a polycarbonate diol derived from an aliphatic diol, and particularly preferably Is a polycarbonate diol from 1,6-hexanediol. The molecular weight of the polyhydric alcohol compound is preferably 500 to 5000, more preferably 600 to 3000, and most preferably 700 to 2000 in terms of number average molecular weight. Further, as the polyol compound, two or more kinds of polyol compounds having different number average molecular weights may be used in combination. The number average molecular weight of the polyol compound can be measured, for example, by gel permeation chromatography (GPC). Examples of the polyisocyanate compound used as the component (A) include 2,4-toluene diisocyanate, 2,6-toluene diisocyanate, diphenylmethane-4,4'-diisocyanate, p-phenylene diisocyanate, and benzene Dimethyl diisocyanate, 1,5-naphthalene diisocyanate, 3,3'-dimethyldiphenyl-4,4'-diisocyanate, dianisidine diisocyanate, tetramethylxylylene diisocyanate And other aromatic diisocyanates; isophorone diisocyanate, dicyclohexyl methane-4,4'-diisocyanate, trans-1,4-cyclohexyl diisocyanate, norylene diisocyanate and other alicyclic diisocyanates; 1 , 4-tetramethylene diisocyanate, 1,6-hexamethylene diisocyanate, 1,8-octamethylene diisocyanate, 2-methyl-1,5-pentamethylene diisocyanate, 2, 2-dimethyl-1,5-pentamethylene diisocyanate, 1,11-undecethylene diisocyanate, 2,2,4-trimethyl-1,6-hexamethylene diisocyanate, 2,4,4-trimethyl-1,6-hexamethylene diisocyanate, 2,4-dimethyl-1,8-octamethylene diisocyanate, 5-methyl-1,9-nine Methylene diisocyanate, lysine diisocyanate, Methyl amine diisocyanate, aliphatic diisocyanate and the like. Examples of the polyisocyanate compound include the isocyanurate trimer of the diisocyanate, the trimethylolpropane adduct of the diisocyanate, the biuret trimer of the diisocyanate, and the diisocyanate of the diisocyanate. Uremate, triphenylmethane triisocyanate, 1-methylbenzene-2,4,6-triisocyanate, dimethyltriphenylmethane tetraisocyanate, 1,5,11-undecethylenetri- Diisocyanates, 2,4,6-toluene triisocyanates and other trifunctional isocyanates. The polyisocyanate compound used as the component (A) is preferably an alicyclic diisocyanate, an aliphatic diisocyanate, and more preferably an alicyclic diisocyanate in terms of light transmittance, heat resistance, and adhesiveness. Further preferred are dicyclohexylmethane-4,4'-diisocyanate and isophorone diisocyanate, and most preferred is dicyclohexylmethane-4,4'-diisocyanate. The anionic group introducing agent used in the component (A) is an additive for introducing an anionic group into a urethane prepolymer. The anionic group introducing agent used in the present invention has an anionic group of a carboxyl group and a sulfonic acid group. The anionic group introducing agent preferably has a functional group capable of reacting with a polyol compound or a polyisocyanate compound. Examples of such a functional group include a hydroxyl group. Examples of the anionic group introducing agent used in the component (A) include carboxyl-containing polyols such as dimethylolpropionic acid, dimethylolbutyric acid, dimethylolbutyric acid, and dimethylolvaleric acid. Class; 1,4-butanediol-2-sulfonic acid and other polyols containing sulfonic acid groups. In terms of heat resistance and industrial availability, polyhydric alcohols containing a carboxyl group are preferred, and dimethylolpropionic acid is more preferred. When the content of the anionic group in the component (A) is too small, the water dispersibility of the component (A) is likely to be insufficient, and when the content is too large, the heat resistance may be reduced. Therefore, in the component (A), The content of the anionic group with respect to the amount of the urethane prepolymer of the component (A) is preferably 0. 2 ~ 1. 5 mmol / g, more preferably 0. 3 ~ 1. 2 mmol / g, the best is 0. 4 ~ 1. 0 mmol / g. The content (unit: mmol / g) of the anionic group can be calculated from the acid value (unit: mgKOH / g). That is, the content of the anionic group is multiplied by 56. The value obtained by 1 (molecular weight of potassium hydroxide) corresponds to an acid value. It should be noted that the content of the anionic group referred to herein is a molar amount relative to the amount of the urethane prepolymer of the component (A), and the anionic group of the component (A) is neutralized to form a salt. In this case, the site derived from the anionic group neutralizing agent in the urethane prepolymer is not included in the total amount. In addition, the acid value of the said (A) component is a theoretical value calculated | required from the compounding quantity of the reaction component of the urethane prepolymer which is a (A) component. The amount of the urethane prepolymer is a polyol compound, a polyisocyanate compound, and an anion when the urethane prepolymer is a reactant of a polyol compound, a polyisocyanate compound, and an anionic group introducing agent. Total amount of sex-based introduction agent. The amount of the urethane prepolymer is a polyol compound when the urethane prepolymer is a reactant of a polyol compound, a polyisocyanate compound, an anionic group introducing agent, and a blocking agent. Total amount of polyisocyanate compound, anionic group introducing agent and blocking agent. In the present invention, the molar ratio of the isocyanate group to the hydroxyl group is referred to as the NCO index. In the component (A) in the aqueous polyurethane resin composition of the present invention, the hydroxyl group is derived from a polyol compound and an anionic group introducing agent, and the isocyanate group is derived from a polyisocyanate compound. Generally speaking, the terminal of the urethane prepolymer is based on the case where the NCO index is greater than 1 when the urethane prepolymer is manufactured, and becomes an isocyanate group when it is less than 1. As for the terminal group of the urethane prepolymer, an isocyanate group is more preferable than a hydroxyl group in terms of improving water dispersibility and facilitating polymerization due to chain elongation. The NCO index is greater than 1. However, even when the NCO index is greater than 1, and when it is very close to 1, it is easy to obtain a urethane prepolymer that has a relatively high molecular weight but poor dispersibility to water, which is quite large in the NCO index. In the case, in the step of dispersing into water, a large amount of carbon dioxide generated by the reaction of residual isocyanate groups with water is generated, causing rapid foaming, which may cause manufacturing problems. The obtained water-based polyurethane composition is also There is a possibility that the adhesion is reduced. When the (A) component is manufactured, the NCO index is preferably 1. 1 to 2. 5, and further preferably 1. 2 ~ 2. 0, the best is 1. 3 ~ 1. 8. The reaction ratio of the polyol compound, the polyisocyanate compound, and the anionic group introducing agent may be determined by considering the content of the anionic group in the component (A) and the NCO index. In the production of the component (A), a known catalyst is preferably used in order to allow the urethane reaction to proceed smoothly. Examples of such a catalyst include: N, N, N ', N'-tetramethylethylenediamine, N, N, N', N'-tetramethylpropanediamine, N, N, N ' , N '', N ''-pentamethyldiethylene triamine, N, N, N ', N'',N''-pentamethyl- (3-aminopropyl) ethylenediamine, N, N, N ', N'',N''-pentamethyldiphenylpropyltriamine, N, N, N', N'-tetramethylguanidine, 1,3,5-tri (N, N-dimethylaminopropyl) hexahydro-symmetric tri, 1,8-diazabicyclo [5. 4. 0] Undecene-7, triethylenediamine, N, N, N ', N'-tetramethylhexamethylenediamine, N-methyl-N'-(2-dimethylamino (Ethyl) piper, N, N'-dimethylpiper, dimethylcyclohexylamine, N-methylline, N-ethylline, bis (2-dimethylaminoethyl) ether, N, Tertiary amines such as N-dimethyllaurylamine, 1-methylimidazole, 1,2-dimethylimidazole, 1-isobutyl-2-methylimidazole, 1-dimethylaminopropylimidazole; Tetraalkylammonium halides such as tetramethylammonium chloride, tetraalkylammonium hydroxides such as tetramethylammonium hydroxide, and tetraalkylammonium organic acid salts such as tetramethylammonium 2-ethylhexanoate And other quaternary ammonium salts; tin diacetate, tin dioctoate, tin dioleate, tin dilaurate, dibutyltin oxide, dibutyltin diacetate, dibutyltin dilaurate, dibutyltin dichloride, dioctyl dilaurate Organometallic catalysts such as tin tin, lead octoate, lead naphthenate, nickel naphthenate, and cobalt naphthenate. Among these catalysts, in terms of good reactivity and less yellowing of the obtained polyurethane resin, an organometallic catalyst is preferred, and dibutyltin dilaurate or dioctyl dilaurate is more preferred. tin. These catalysts can be used alone or in combination of two or more. The use amount of the catalyst is preferably 0 with respect to the total amount of the polyol compound, the polyisocyanate compound, and the anionic group introducing agent. 001 to 1% by mass, more preferably 0. 01 ~ 0. 1% by mass. The isocyanate group of the component (A) in the water-based polyurethane resin composition of the present invention is preferably a blocked isocyanate which is partially or completely blocked by a blocking agent in terms of improvement in adhesion. base. Examples of the capping agent include phenol-based capping agents such as phenol, cresol, xylenol, chlorophenol, and ethylphenol; ε-caprolactam, δ-valprolactam, and γ-butyrolactone Limonamine-based capping agents such as amines and β-butyrolactam; Active methylene-based capping agents such as ethyl acetate and ethyl acetate; methanol, ethanol, propanol, butanol, pentanol, ethyl Alcohol-based capping agents such as glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monomethyl ether, benzyl alcohol, methyl glycolate, butyl glycolate, diacetone alcohol, methyl lactate, ethyl lactate; formaldehyde oxime , Acetaldehyde oxime, acetoxime, methyl ethyl ketone oxime, diacetamyl oxime, cyclohexane oxime and other oxime-based capping agents; butanethiol, hexylthiol, third butanethiol, thiophenol, Thiol-based capping agents such as methylthiophenol and ethylthiophenol; fluorene-based capping agents such as acetamide and benzamide; succinimide and cis-butenediimide Imine-based capping agent; pyrazole, 3,5-dimethylpyrazole, 4-benzyl-3,5-dimethylpyrazole, 4-nitro-3,5-dimethylpyrazole, 4-bromo-3,5-dimethylpyrazole and 3-methyl-5-phenylpyrazole and other pyrazole-based capping agents; 2-ethyl Azoles imidazole-based blocking agents. An oxime-based end-capping agent is preferred because the departure temperature of the end-capping agent derived from the blocked isocyanate group is slightly lower than the curing temperature (described below) of the urethane resin composition and is easy to handle. And pyrazole-based capping agents, more preferably methyl ethyl ketoxime and 3,5-dimethylpyrazole. In the case where the content of the blocked isocyanate group in the component (A) is too small, a sufficient adhesion improvement effect cannot be obtained, and when the entire isocyanate group is converted into the blocked isocyanate group, The component (A) is not polymerized in the following water dispersion step, but the adhesion is reduced. Therefore, the content of the blocked isocyanate group in the component (A) is preferably an isocyanate group relative to the isocyanate group of the polyisocyanate compound. (A) The polyhydric alcohol compound of the component and the excess amount of the hydroxyl group of the anionic group introducing agent are 10 to 50 mol%, more preferably 15 to 30 mol%. When the content of the anionic group in the component (A) is calculated, the content of the anionic group is a total amount relative to the mass of the structural part derived from the polyol compound, the polyisocyanate compound, and the anionic group introducing agent. The amount of moire is not included in the total amount of the structural portion derived from the anionic group neutralizing agent, but is calculated by including the structural portion derived from the blocking agent in the total amount. In terms of improving water dispersibility, the anionic group of the component (A) is preferably neutralized with an anionic group neutralizing agent. Examples of the anionic neutralizing agent include trialkylamines such as trimethylamine, triethylamine, and tributylamine; bases such as ammonia, trimethylammonium hydroxide, sodium hydroxide, potassium hydroxide, and lithium hydroxide Sexual compounds. If the anionic group neutralizing agent remains in the easy-adhesive layer containing the water-based polyurethane resin composition of the present invention, it may adversely affect the light resistance of the easy-adhesive layer. Therefore, the anionic group neutralizing agent is preferably Compounds that are easily dissociated and volatilized by heat are preferably trimethylamine and triethylamine. If the amount of the anionic group neutralizing agent is too small, the water dispersibility of the component (A) is not sufficiently improved. If the amount is too large, the light resistance of the adhesive layer may be adversely affected. The amount used is preferably 0 with respect to 1 equivalent of the anionic group. 5 ~ 2. 0 equivalent, more preferably 0. 8 ~ 1. 5 equivalents. In terms of improving durability and adhesion, the component (A) is preferably polymerized with a chain elongating agent. As described below, the chain elongation agent can react with the isocyanate group of the urethane prepolymer dispersed in water to polymerize the component (A). Examples of the chain extender include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 2-methyl-1,3-propanediol, diethylene glycol, triethylene glycol, and 2-butyl glycol. 2-ethyl-1,3-propanediol, 1,4-butanediol, neopentyl glycol, 3-methyl-2,4-pentanediol, 2,4-pentanediol, 1,5- Pentylene glycol, 3-methyl-1,5-pentanediol, 2-methyl-2,4-pentanediol, 2,4-diethyl-1,5-pentanediol, 1,6- Fats such as hexanediol, 1,7-heptanediol, 3,5-heptanediol, 1,8-octanediol, 2-methyl-1,8-octanediol, 1,9-nonanediol Family diols; alicyclic diols such as cyclohexanedimethanol, cyclohexanediol; ethylenediamine, propylenediamine, hexamethylenediamine, methylenediamine, piperazine, 2-methylpiperazine And other low-molecular-weight diamines; polyalkylene polyamines such as diethylenetriamine, triethylenetetraamine, and tetraethyleneethylpentamine; monoethanolamine, diethanolamine, triethanolamine, monoisopropanolamine, Alkanolamines such as diisopropanolamine, triisopropanolamine, 2- (2-aminoethylamino) ethanol; polyetherdiamines such as polyoxypropylenediamine, polyoxyethylenediamine; mint Alkanediamine, isophoronediamine, norylenediamine, aminoethylaminoethanol, bis (4-amine -3-methyldicyclohexyl) methane, diaminodicyclohexylmethane, bis (aminomethyl) cyclohexane, 3,9-bis (3-aminopropyl) -2,4,8, 10-tetraoxaspiro (5,5) undecane and other alicyclic diamines; m-xylylenediamine, α- (m / p-aminophenyl) ethylamine, m-phenylenediamine, diamine Diphenylmethane, diaminodiphenylhydrazone, diaminodimethyldiphenylmethane, diaminodiethyldiphenylmethane, dimethylthiotoluenediamine, diethyltoluenediamine, α, α '-Bis (4-aminophenyl) -polyamines of aromatic diamines such as diisopropylbenzene; succinimide, hexamethylene dihydrazine, sebacic acid, dihydrazine phthalate , 1,6-hexamethylenebis (N, N-dimethylamine urea), 1,1,1 ', 1'-tetramethyl-4,4'-(methylene-di-p-benzene ) Hydrazines such as diamine urea; hydrazine hydrate and the like. In addition, water can function not only as a dispersion medium, but also as a chain elongating agent, but the reaction with isocyanate is not necessarily fast, and therefore it is not included in the chain elongating agent in the present invention. As the chain elongating agent, in terms of easy reaction and industrial availability, low molecular diamines, alkanolamines, polyalkyleneamines, hydrazines, and hydrazine hydrates are preferred. Preferred are ethylenediamine and monoethanolamine. Regarding the amount of the chain elongating agent, it is preferably relative to the isocyanate group (excluding the blocked isocyanate group) of the urethane prepolymer. The chain elongating agent can react with the isocyanate group. The amount of basis is 0 in mole ratio. 01 ~ 1. 0. [Component (B)] The component (B) in the aqueous polyurethane resin composition of the present invention is a blocked polyisocyanate compound. In water-based polyurethane resin compositions, self-emulsifiable blocked polyisocyanate compounds or forced emulsified blocked polyisocyanate compounds are often used because they have excellent dispersibility with water. In the present invention, the so-called self-emulsifying blocked polyisocyanate compound refers to a blocked polyisocyanate compound in which the compound itself has emulsification and dispersibility to water and can be dispersed in water without using a surfactant. A terminated polyisocyanate compound refers to a non-self-emulsifying blocked polyisocyanate compound dispersed in water by a surfactant. The non-self-emulsifying blocked polyisocyanate compound refers to a blocked polyisocyanate compound that is not itself dispersed in water. Furthermore, in the self-emulsifying blocked polyisocyanate compound, in order to impart self-emulsifying properties, a polyethylene glycol chain as a hydrophilic group is often introduced into the molecule. When a forced emulsification-type blocked polyisocyanate compound or a self-emulsifying blocked polyisocyanate compound is used, there are a surfactant for a forced-emulsion-type blocked polyisocyanate compound, or a self-emulsifying blocked polyisocyanate compound Since the polyethylene glycol chain adversely affects the transparency of the easy-adhesive layer in a high-humidity environment, the component (B) in the present invention is preferably a non-self-emulsifying blocked polyisocyanate compound. Examples of the non-self-emulsifying blocked polyisocyanate compound include a compound obtained by blocking an isocyanate group of a diisocyanate compound with a blocking agent, and an isocyanate compound having a trifunctional or higher polyisocyanate compound with a blocking agent. In terms of adhesiveness, a compound obtained by blocking the base group is preferably a compound obtained by blocking an isocyanate group of a trifunctional or higher polyisocyanate compound with a blocking agent. Examples of such polyisocyanate compounds include the isocyanurate trimer of diisocyanate, trimethylolpropane adduct of diisocyanate, and diisocyanate diisocyanate as exemplified in the polyisocyanate compound of component (A). Urea trimer, urethanate of diisocyanate, triphenylmethane triisocyanate, 1-methylbenzene-2,4,6-triisocyanate, dimethyltriphenylmethane tetraisocyanate, 1,5,11 -Tri- or higher functional isocyanates, such as undecylenyl tri-diisocyanate, 2,4,6-toluene triisocyanate, etc. Moreover, it is good also as a thing which connected the trifunctional or more polyisocyanate compound to each other using a polyol compound. Examples of the non-self-emulsifying blocked polyisocyanate compound blocking agent include the compounds exemplified in the blocking agent of component (A). The departure temperature of the self-blocking isocyanate group of the blocking agent is slightly lower than that of the amine. In terms of the hardening temperature (described below) of the urethane resin composition and ease of handling, an oxime-based blocking agent and a pyrazole-based blocking agent are preferred, and a methyl ethyl ketoxime, 3,5-dimethylpyrazole. Particularly preferred component (B) includes those obtained by blocking the isocyanurate trimer of hexamethylene diisocyanate with methyl ethyl ketoxime, and using 3,5-dimethyl A pyrazole obtained by blocking the isocyanurate trimer of hexamethylene diisocyanate, and connecting the isocyanurate trimer of hexamethylene diisocyanate with polytetramethylene glycol A methyl ethyl ketone oxime is used for blocking, polytetramethylene glycol is used to link the hexamethylene diisocyanate isocyanurate trimer, and 3,5-dimethyl Those obtained by end-capping pyrazole. The weight average molecular weight of the blocked polyisocyanate compound (B) component used in the water-based polyurethane resin of the present invention is not particularly limited, but is preferably 50,000 or less. When the weight-average molecular weight of the blocked polyisocyanate compound of the component (B) exceeds 50,000, the viscosity of the blocked polyisocyanate compound is increased, and the workability is deteriorated. The weight average molecular weight of the blocked polyisocyanate compound can be measured by, for example, gel permeation chromatography (GPC). In the aqueous polyurethane resin composition of the present invention, the content of the blocked isocyanate group relative to the solid content is 0. 5 to 4 mmol / g. The content of blocked isocyanate is less than 0. In the case of 5 mmol / g, the adhesion to the substrate becomes insufficient. If it exceeds 4 mmol / g, the flexibility of the easy-adhesive layer is reduced, or the content of the (B) component is relatively increased. When the dispersion stability is reduced. The content of the blocked isocyanate group is preferably 0 with respect to the solid content. 7 mmol / g or more, more preferably 0. Above 9 mmol / g, more preferably 1. Above 0 mmol / g. Also, the content of the blocked isocyanate group is preferably 3. with respect to the solid component. 9 mmol / g or less, more preferably 3. 8 mmol / g or less, more preferably 3. 7 mmol / g, more preferably 2 mmol / g or less, even more preferably 1. Below 9 mmol / g, especially preferred is 1. Below 8 mmol / g, the best is 1. 7 mmol / g or less. In addition, in the present invention, the solid component refers to a component other than volatile components such as moisture and organic solvents in the composition. For example, the volatile residue when the composition is heated at 105 ° C. for 1 hour.物 算。 Calculate things. Regarding the ratio of the (A) component and the (B) component of the aqueous polyurethane resin composition of the present invention, as long as the content of the blocked isocyanate group relative to the solid content component is 0. 5 to 4 mmol / g, there is no particular limitation. If the component (A) is too small, the dispersion stability of the component (B) decreases. Therefore, the content of the solid component as the component (A) is relative to the component (A). The total amount of 100 parts by mass with the solid component of the component (B) is preferably at least 20 parts by mass, and more preferably at least 25 parts by mass. If the amount of water in the water-based polyurethane resin composition of the present invention is small, the amount of active ingredient is relatively increased and preferred, but if it is too small, the dispersion stability is reduced. Therefore, the water in the water-based polyurethane resin composition of the present invention is The amount is preferably 60 to 1,000 parts by mass, more preferably 100 to 400 parts by mass, and most preferably 150 to 250 parts by mass with respect to 100 parts by mass of the solid content of the aqueous polyurethane resin composition of the present invention. [Other additives] In the aqueous polyurethane resin composition of the present invention, known additives can be added within a range that does not inhibit the effect of the present invention. As such additives, for example, cross-linking agents, various weather-resistant agents (hindered amine light stabilizers, ultraviolet absorbers, and antioxidants), silane coupling agents that have particularly strong adhesion to the substrate, colloidal silica, or Colloidal alumina and other inorganic colloidal sols, tetraalkoxysilanes and their polycondensates, chelating agents, epoxy compounds, pigments, dyes, film-forming aids, hardeners, external cross-linking agents, viscosity modifiers, leveling agents, Antifoaming agent, anticoagulant, free radical scavenger, heat resistance imparting agent, inorganic or organic filler, plasticizer, lubricant, antistatic agent such as fluorine or siloxane, reinforcing agent, catalyst, catalyst Modifiers, waxes, anti-fog agents, antibacterial agents, anti-mildew agents, anti-corrosive agents, and rust inhibitors. The said crosslinking agent can improve durability by introducing a crosslinking structure into the water-based polyurethane resin composition of this invention. Examples of the crosslinking agent include amine-based resins such as urea, melamine compounds, benzoguanamine, and formaldehyde adducts, and alkyl ether compounds including the above-mentioned adducts and alcohol units having 1 to 6 carbon atoms. Polyfunctional epoxy compounds; polyfunctional isocyanate compounds; polyfunctional aziridine compounds; and the like, in terms of excellent reactivity, melamine compounds are preferred. Examples of the melamine compound include melamine, monomethylol melamine, dimethylol melamine, trimethylol melamine, tetramethylol melamine, pentamethylol melamine, hexamethylol melamine, and methylated hydroxyl Methyl melamine, butylated methylol melamine, melamine resin, and the like are preferably melamine in terms of low cost and excellent dispersibility. Examples of the hindered amine-based light stabilizer include 1,6-bis (2,2,6,6-tetramethyl-4-piperidinylamino) hexane / dibromoethane condensation polymer, 1 , 6-Bis (2,2,6,6-tetramethyl-4-piperidinylamino) hexane / 2,4-dichloro-6-linyl-symmetric tricondensate, 1,6-bis (2,2,6,6-tetramethyl-4-piperidinylamino) hexane / 2,4-dichloro-6-third octylamino-symmetric tricondensate, 1,5,8 , 12-tetra [2,4-bis (N-butyl-N- (2,2,6,6-tetramethyl-4-piperidinyl) amino) -symmetric tri-6-yl] -1 , 5,8,12-tetraazadodecane, 1,5,8,12-tetra [2,4-bis (N-butyl-N- (1,2,2,6,6-pentamethyl) Methyl-4-piperidinyl) amino) -symmetric tri-6-yl] -1,5,8,12-tetraazadodecane, 1,6,11-tri [2,4-bis (N -Butyl-N- (2,2,6,6-tetramethyl-4-piperidinyl) amino) -symmetric tri-6-ylaminoundecane, 1,6,11-tri [2 , 4-bis (N-butyl-N- (1,2,2,6,6-pentamethyl-4-piperidinyl) amino) -symmetric tri-6-ylaminoundecane and the like. As the ultraviolet absorber, for example, 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-octyloxybenzophenone, 5, 5'-methylenebis (2-hydroxy-4-methoxybenzophenone) and other 2-hydroxybenzophenones; 2- (2-hydroxy-5-methylphenyl) benzotriazole , 2- (2-hydroxy-5-third octylphenyl) benzotriazole, 2- (2-hydroxy-3,5-di-third-butylphenyl) -5-chlorobenzotriazole, 2- (2-hydroxy-3-tert-butyl-5-methylphenyl) -5-chlorobenzotriazole, 2- (2-hydroxy-3,5-dicumylphenyl) benzene Benzotriazole, 2,2'-methylenebis (4-third octyl-6-benzotriazolylphenol), 2- (2-hydroxy-3-third butyl-5-carboxyphenyl) ) Polyethylene glycol esters of benzotriazole, 2- [2-hydroxy-3- (2-propenyloxyethyl) -5-methylphenyl] benzotriazole, 2- [2-hydroxy -3- (2-Methacrylacetoxyethyl) -5-Third-butylphenyl] benzotriazole, 2- [2-hydroxy-3- (2-Methacrylacetoxyethyl) ) -5-Third octylphenyl] benzotriazole, 2- [2-hydroxy-3- (2-methacryloxyethyl) -5-third butylphenyl] -5- Chlorobenzotriazole, 2- [2-hydroxy-5- (2-methacryloxyethyl) phenyl] Benzotriazole, 2- [2-hydroxy-3-tertiarybutyl-5- (2-methacryloxyethyl) phenyl] benzotriazole, 2- [2-hydroxy-3- Tertiary pentyl-5- (2-methylpropenyloxyethyl) phenyl] benzotriazole, 2- [2-hydroxy-3-tert-butyl-5- (3-methacrylic acid) Oxypropyl) phenyl] -5-chlorobenzotriazole, 2- [2-hydroxy-4- (2-methylpropenyloxymethyl) phenyl] benzotriazole, 2- [2 -Hydroxy-4- (3-methacryloxy-2-hydroxypropyl) phenyl] benzotriazole, 2- [2-hydroxy-4- (3-methacryloxyoxypropyl) Phenyl] benzotriazole and other 2- (2-hydroxyphenyl) benzotriazoles; 2- (2-hydroxy-4-methoxyphenyl) -4,6-diphenyl-1,3 , 5-tri, 2- (2-hydroxy-4-hexyloxyphenyl) -4,6-diphenyl-1,3,5-tri, 2- (2-hydroxy-4-octyloxybenzene Group) -4,6-bis (2,4-dimethylphenyl) -1,3,5-tri, 2- [2-hydroxy-4- (3-C12 ~ C13 mixed alkoxy-2- Hydroxypropoxy) phenyl] -4,6-bis (2,4-dimethylphenyl) -1,3,5-tri, 2- [2-hydroxy-4- (2-propenyloxy) Ethoxy) phenyl] -4,6-bis (4-methylphenyl) -1,3,5-tri, 2- (2,4-dihydroxy-3-allylphenyl) -4 , 6-bis (2,4-dimethylphenyl) -1,3,5-tri, 2,4,6-tri (2-hydroxy-3-methyl-4) -Hexyloxyphenyl) -1,3,5-three-class 2- (2-hydroxyphenyl) -4,6-diaryl-1,3,5-three types; phenyl salicylate, m- Resorcinol monobenzoate, 2,4-di-tert-butylphenyl-3,5-di-tert-butyl-4-hydroxybenzoate, (3,5-di-tert-butyl- 4-Hydroxy) octyl benzoate, (3,5-di-third-butyl-4-hydroxy) benzoic acid dodecyl ester, (3,5-di-third-butyl-4-hydroxy) benzoic acid Tetraalkyl ester, (3,5-di-third-butyl-4-hydroxy) benzoic acid hexadecyl ester, (3,5-di-third-butyl-4-hydroxy) benzoic acid octadecyl ester , (3,5-Di-tert-butyl-4-hydroxy) benzoic acid behenate, and other benzoic acid esters; 2-ethyl-2'-ethoxyoxabendibenzidine, 2-ethoxy-4 Substituted oxafenidine such as' -dodecyl chlorfenidamine; α-cyano-β, β-diphenylethyl acrylate, 2-cyano-3-methyl-3- (p-methoxy Cyanoacrylates such as methyl phenyl) methyl acrylate; and various metal salts or metal chelates such as nickel or chromium salts or chelates. Examples of the antioxidant include phosphorus-based antioxidants, phenol-based antioxidants, and sulfur-based antioxidants. As the phosphorus-based antioxidant, for example, triphenyl phosphite, tris (2,4-di-tert-butylphenyl) phosphite, tris (2,5-di-tert-butylphenyl) phosphite, Tris (nonylphenyl) phosphite, tris (dinonylphenyl) phosphite, tris (mono and di-nonylphenyl) phosphite, acid diphenylphosphite, 2,2'-phosphite Methylbis (4,6-di-tert-butylphenyl) octyl ester, diphenyldecyl phosphite, diphenyloctyl phosphite, bis (nonylphenyl) pentaerythritol diphosphite, phosphorous acid Phenyl diisodecyl ester, tributyl phosphite, tri (2-ethylhexyl) phosphite, tridecyl phosphite, trilauryl phosphite, acid dibutyl phosphite, acid dilauryl phosphite , Trilauryl phosphite, bis (neopentyl glycol) -1,4-cyclohexanedimethyldiphosphite, bis (2,4-di-tert-butylphenyl) pentaerythritol di Phosphite, bis (2,5-di-tert-butylphenyl) pentaerythritol diphosphite, bis (2,6-di-tert-butyl-4-methylphenyl) pentaerythritol diphosphite, bis (2,4-Dicumylphenyl) pentaerythritol diphosphite, distearyl pentaerythritol di Phosphate, tetra (Mixed alkyl of C12 alkyl to C15 alkyl) -4,4'-isopropylidene diphenyl phosphite, bis [2,2'-methylenebis (4,6- Dipentylphenyl)]-isopropylidene diphenyl phosphite, tetra-tridecyl-4,4'-butylenebis (2-third butyl-5-methylphenol) Phosphate, hexa (tridecyl) -1,1,3-tris (2-methyl-5-third butyl-4-hydroxyphenyl) butane-triphosphite, tetra (2,4- Di-tert-butylphenyl) biphenylphenyl phosphinate, tris (2-[(2,4,7,9-tetra-tert-butyldibenzo [d, f] [1,3, 2] Dioxaphosphoheptene-6-yl) oxy] ethyl) amine, 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, tris (2- [(2,4,8,10-tetratert-butyldibenzo [d, f] [1,3,2] dioxaphosphoheptene-6-yl) oxy] ethylamine, 2 -(1,1-dimethylethyl) -6-methyl-4- [3-[[2,4,8,10-tetra (1,1-dimethylethyl) dibenzo [d , f] [1,3,2] Dioxaphosphoheptene-6-yl] oxy] propyl] phenol, and 2-butyl-2-ethylpropanediol-2,4,6-tri Third butylphenol monophosphite, etc. As the phenolic antioxidant, for example, 2,6-di-tert-butyl-p-cresol, 2,6-diphenyl-4-octadecane can be used. Phenol, (3,5-di-third-butyl-4-hydroxyphenyl) stearate, (3,5-di-third-butyl-4-hydroxybenzyl) phosphonate distearyl, 3,5-Di-tert-butyl-4-hydroxybenzylthioacetic acid tridecyl ester, thiodiethylene bis [(3,5-di-tert-butyl-4-hydroxyphenyl) propionic acid Esters], 4,4'-thiobis (6-third-butyl-m-cresol), 2-octylthio-4,6-bis (3,5-di-third-butyl-4-hydroxybenzene (Oxy) -symmetric tris, 2,2'-methylenebis (4-methyl-6-third-butylphenol), bis [3,3-bis (4-hydroxy-3-third-butylbenzene) Butyl) butyric acid] ethylene glycol ester, 4,4'-butylenebis (2,6-di-third-butylphenol), 4,4'-butylenebis (6-third-butyl-3-methyl) Phenol), 2,2'-ethylenebis (4,6-di-tert-butylphenol), 1,1,3-tris (2-methyl-4-hydroxy-5-tert-butylbenzene) Group) butane, bis [2-third butyl-4-methyl-6- (2-hydroxy-3-third butyl-5-methylbenzyl) phenyl] terephthalate, 1,3,5-tris (2,6-dimethyl-3-hydroxy-4-third-butylbenzyl) isocyanurate, 1,3,5-tris (3,5-di-third Butyl-4-hydroxybenzyl) isocyanurate, 1,3,5-tris (3,5-di-third-butyl-4-hydroxybenzyl) -2,4,6-trimethylbenzene , 1,3,5-three [( 3,5-di-tert-butyl-4-hydroxyphenyl) propanyloxyethyl] isocyanurate, tetra [methylene-3- (3 ', 5'-di-tert-butyl- 4'-hydroxyphenyl) propionate] methane, 2-tert-butyl-4-methyl-6- (2-propenyloxy-3-tert-butyl-5-methylbenzyl) phenol , 3,9-bis [2- (3-Third-butyl-4-hydroxy-5-methylphenylpropanyloxy) -1,1-dimethylethyl] -2,4,8,10 -Tetraoxaspira [5. 5] Undecane, triethylene glycol bis [β- (3-thirdbutyl-4-hydroxy-5-methylphenyl) propionate], and tocopherol. Examples of the sulfur-based antioxidant include dilauryl thiodipropionate such as dilauryl thiodipropionate, dimyristate, myristyl stearate, and distearyl ester, and pentaerythritol Β-alkylmercaptopropionates of polyhydric alcohols such as tetrakis (β-dodecylmercaptopropionate). The usage-amount of the said weathering agent (hindered amine light stabilizer, ultraviolet absorber, and antioxidant) is preferably 0 to 100 parts by mass of the solid content of the water-based polyurethane resin composition. 001 to 10 parts by mass, more preferably 0. 01 to 5 parts by mass. If the amount of the weathering agent is less than 0 with respect to 100 parts by mass of the solid component. 001 parts by mass, it may not be possible to obtain a sufficient additive effect. If the amount of the weathering agent is more than 10 parts by mass relative to 100 parts by mass of the solid component, there is a possibility that the water dispersion stability or the coating film physical properties may be adversely affected. The total amount of other additives including the weathering agent is preferably 25 parts by mass or less based on 100 parts by mass of the solid content of the water-based polyurethane resin composition. When such a known additive is used, a surfactant may be used as a dispersant or emulsifier. When the content of the surfactant in the water-based polyurethane resin composition is large, the transparency of the easily-adhesive layer in a high humidity environment may be adversely affected. Therefore, the content of the surfactant in the water-based polyurethane resin composition of the present invention is preferably 1 part by mass or less with respect to 100 parts by mass of the solid matter component of the water-based polyurethane resin composition, and more preferably 0. 2 parts by mass or less. [Manufacturing method] The aqueous polyurethane resin composition of the present invention contains a blocked polyisocyanate compound as the component (B) and contains a blocked isocyanate group at a high concentration. When the component (B) is a self-emulsifying blocked polyisocyanate compound or a forced-emulsion-type blocked polyisocyanate compound, it is easy to prepare the component (B) even after dispersing the component (A) in water, but When the component (B) is a non-self-emulsifying blocked polyisocyanate compound, it is difficult to prepare the component (B) after dispersing the component (A) in water. Hereinafter, the manufacturing method in the case where (B) component is a non-self-emulsifiable blocked polyisocyanate compound is demonstrated. In the production of the aqueous polyurethane resin composition of the present invention, first, a catalyst or a crosslinking agent is arbitrarily added to react a polyol compound, a polyisocyanate compound, and an anionic group introducing agent to produce an amine group of the component (A). Formate prepolymer. The production of the urethane prepolymer can be performed by a conventional method, and the reaction temperature can be set to a normal urethane reaction temperature, for example, 50 to 100 ° C. In order to make the reaction proceed smoothly, it can also be used without any difference. A passive solvent in which the cyano group reacts. In terms of not hindering the water dispersibility of the urethane prepolymer, the inert solvent used in the production is preferably an organic solvent having a high affinity with water, for example, acetone and methyl ethyl are preferred. Ketones, dioxane, tetrahydrofuran, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone and the like. The use amount of the solvent is preferably 3 to 200 parts by mass based on 100 parts by mass of the total amount of the polyol compound, the polyisocyanate compound, and the anionic group introducing agent. When the isocyanate group of the component (A) is blocked by a blocking agent, when a urethane prepolymer is produced, a blocking agent may be added simultaneously with a polyisocyanate compound or the like to perform a reaction, or The reaction may be performed by adding a blocking agent during or after the urethane reaction. The reaction temperature of the capping agent varies depending on the capping agent. In the case of an oxime-based capping agent or a pyrazole-based capping agent, it is preferably 50 to 100 ° C. The non-self-emulsifying blocked polyisocyanate is difficult to disperse in water, so the urethane prepolymer of component (A) and the non-self-emulsifying blocked polyisocyanate of (B) component are mixed and dispersed in In the water. The component (A) and the component (B) are mixed and dispersed in water, and the component (B) that is not easily dispersed in water can also be dispersed in water. It is considered that the component (A) has self-emulsifying properties, so ( The component A) functions as an emulsifier of the component (B), whereby the component (B) becomes dispersible. As a method for dispersing in water, a prepolymer mixing method and a phase inversion method are preferred in terms of good dispersibility in water. In the prepolymer mixing method, an anionic neutralizing agent is added to the urethane prepolymer of component (A) and mixed, and then the mixture is poured into water to disperse it in water, and in the phase inversion method After adding water containing an anionic neutralizing agent to the urethane prepolymer of component (A) or adding an anionic neutralizing agent to the urethane prepolymer of (A) component and mixing Water is added to the mixture to disperse it in water. In any method, the timing of mixing (A) component and (B) component is not particularly limited as long as (A) component and water coexist, and it is preferably When an anionic group neutralizing agent is added to the urethane prepolymer and mixed, an anionic group neutralizing agent is added together with the component (B) and mixed. When the component (A) and the component (B) are dispersed in water, if the temperature of the water is too high, the rapid reaction between the isocyanate group of the urethane prepolymer and water may cause the generation of carbon dioxide. In the case of foaming, the temperature of water is preferably 75 ° C or lower, and more preferably 65 ° C or lower. When a chain elongating agent is used, it is used by dissolving in water used for the dispersion of the component (A) and the component (B). In the case of using a chain elongating agent, if the temperature of water is low, the reaction takes a long time, so the production efficiency is reduced. If it is too high, as mentioned above, there may be accompanying carbon dioxide due to the rapid reaction between isocyanate and water. In the case of foaming phenomenon, the temperature of water when using a chain elongating agent is preferably 20 to 75 ° C, and more preferably 30 to 65 ° C. In addition, as a method for discriminating the end point of the reaction in chain elongation, a method of confirming the disappearance of an isocyanate group using an IR (infrared spectrophotometer) is relatively simple and therefore preferable. In the case of blending the other additives described above, the water-soluble or water-dispersible additives are preferably formulated after dispersing the component (A) and (B) in water. The water-insoluble and non-water-dispersible additives are preferably formulated. It mixes with the urethane prepolymer of (A) component like (B) component, and is disperse | distributed in water. When an organic solvent is used in the production of the component (A), the aqueous polyurethane resin composition contains an organic solvent. However, from the viewpoints of safety such as environmental pollution and labor hygiene, the organic resin in the aqueous polyurethane resin composition is an organic solvent. The solvent is preferably removed by a method such as distillation under reduced pressure. [Application] The water-based polyurethane resin composition of the present invention is excellent in adhesion to a substrate, blocking resistance, transparency, heat resistance, etc., and thus can be used as various adhesives, and can be suitably used as an easy-to-adhesive agent for various optical films. Layer used. An optical film is a film which aims at absorbing light through transmission or reflection and giving various effects. Examples of the optical film include a reflection film, an anti-reflection film, an alignment film, a polarizing film, a polarizing layer protective film, a retardation film, a viewing angle enhancement film, a brightness enhancement film, an electromagnetic wave shielding film, a light shielding film, and a specific frequency selective blocking film. , Optical low-pass filter, lens filter, conductive film for touch panel, light diffusion film, anti-glare film, corner pillar sheet, etc. In terms of excellent transparency, softness, and physical strength, the resin film substrates of optical films generally use polyethylene terephthalate (PET), polytrimethylene terephthalate (PTT), Polyester resin such as polybutylene terephthalate (PBT). As for the conventional water-based polyurethane resin composition used for the easy-adhesion layer of the optical film, there is insufficient adhesion between the polyester resin of the base material and the easy-adhesion layer, so corona treatment, plasma treatment, and glow discharge treatment are used. When the surface of the substrate is surface-modified. The water-based polyurethane resin composition of the present invention has excellent adhesiveness with polyester resin, and therefore also obtains high adhesiveness to a substrate without such a surface treatment. It can be used as an adhesive for polyester resins, and particularly requires transparency. The easy-to-adhesive layer of the optical film with good adhesion and adhesion is suitably used. The water-based polyurethane resin composition of the present invention is also excellent in adhesion with an acrylic resin, so it can be preferably used as an optical sheet using an acrylic resin such as a polarizing film, a light diffusion film, a reflective film, an anti-reflective film, and anti-glare. The easy-adhesion layer of a film, a corner pillar sheet, and the like is particularly preferably used as an easy-adhesion layer of a corner pillar sheet and the like. The aqueous polyurethane resin composition of the present invention can be applied to a substrate, dried, and then heat-treated to harden it, thereby forming an easy-adhesive layer. The coating method of the water-based polyurethane resin composition of the present invention is not particularly limited, and a known method can be used. For example, a slit coating method such as a curtain-type flat coating method or a die coating method, or a doctor blade coating method can be used. , Roll coating method, etc. The coating film of the water-based polyurethane resin composition of the present invention is hardened by heating to a temperature higher than the departure temperature of the blocking agent. That is, by heating, the blocking agent dissociates from the blocked isocyanate group to regenerate an active isocyanate group, and reacts with a hydroxyl group or an amino group to form a urethane group or a urea group, thereby hardening. The dissociation temperature of the blocked isocyanate group is about 140-160 ° C under the condition of the oxime-based blocking agent, and about 110-120 ° C under the condition of the pyrazole-based blocking agent. When the temperature is high, not only the isocyanate group and the urethane group or the ureido group react to form a urethane group or a biuret group and crosslink, but also the generated groups make The adhesion of the easy-adhesive layer is improved, so a higher heating temperature is preferred, but when the heating temperature is too high, the substrate or the easy-adhesive layer may be thermally deteriorated. Therefore, the heating temperature of the coating film of the water-based polyurethane resin composition of the present invention is preferably 150 to 250 ° C, more preferably 160 to 210 ° C, and most preferably 170 to 190 ° C. The heating time varies depending on the heating temperature. When the heating temperature is 180 ° C, it is approximately 1 to 30 minutes. The heating method is not particularly limited, and known heating methods such as hot air heating, infrared heating, and high-frequency heating can be applied, for example. EXAMPLES Hereinafter, the present invention will be specifically described by examples. In addition, in the following Examples etc., unless otherwise stated, a compounding ratio (%) means the ratio of a mass standard. The raw materials used in the following production examples, examples, and comparative examples are as follows. Polyol a1: Polycarbonate diol with a number average molecular weight of 2000 Polyol a2: Polytetramethylene glycol monool with a number average molecular weight of 1,000 a'1: Polyethylene glycol monomethyl ether polyisocyanate with a number average molecular weight of 550 b1: isophorone diisocyanate polyisocyanate b2: dicyclohexylmethane-4,4'-diisocyanate polyisocyanate b3: isocyanurate trimer of hexamethylene diisocyanate (isocyanate content 21. 8%) anionic group introduction agent c1: dimethylolpropionic acid anionic group neutralizing agent d1: triethylamine chain elongation agent e1: ethylenediamine chain elongation agent e2: monoethanolamine capping agent f1: methyl ethyl Ketone oxime blocking agent f2: 3,5-dimethylpyrazole MEK: methyl ethyl ketone [Production Example 1: Prepolymer A1] In a glass reaction container with a stirrer, a cooling tube, and a nitrogen introduction tube Added 313. 9 g of polyol a1, 280. 0 g of polyisocyanate b1, 80. 8 g of anionic group introducing agent c1, 250 g of MEK, and 14. 4 g of the end-capping agent f1 was stirred at 80 ° C. for 5 hours for reaction to produce a solvent-containing prepolymer A1. The content of the anionic group in the prepolymer A1 is 0. 642 mmol / g, the content of anionic group when the solvent is removed is 0. 875 mmol / g. Also, the content of the blocked isocyanate group (hereinafter, also referred to as B-NCO) in the prepolymer A1 is 0. 177 mmol / g, the content of the blocked isocyanate group relative to the solid content of the prepolymer A1 is 0. 241 mmol / g. [Production Examples 2 to 8: Prepolymers A2 to A8] The urethane prepolymers A2 to A8 were produced in the same manner as in Production Example 1 except that the amount of each raw material added was changed as described in Table 1. . In addition, the numerical value of the addition amount of each raw material in Table 1 is a g number. Regarding the values of the content of the anionic group and B-NCO, the values in the upper stage are relative to the solid content of the prepolymer, and the values in () in the lower stage are relative to the prepolymer containing the solvent. [Table 1] [Production Example 9: Blocked polyisocyanate B1] To a glass reaction container having a stirrer, a cooling tube, and a nitrogen introduction tube, 506.4 g of polyisocyanate b3, 230.9 g of a blocking agent f1, and 12.7 g of a binding agent were added. Polyol a2, 250 g of MEK as a solvent, and stirred at 80 ° C. for 5 hours for reaction to obtain a blocked polyisocyanate B1 containing MEK. The B-NCO content of the blocked polyisocyanate B1 was 2.60 mmol / g, and the B-NCO content relative to the solid component was 3.47 mmol / g. The blocked polyisocyanate B1 is a non-self-emulsifying blocked polyisocyanate compound. [Manufacturing Examples 10 to 11 and 13: Blocked Polyisocyanate B2, B3, B5] The same operation as in Manufacturing Example 8 was performed to produce a cap, except that the addition amount (g) of each raw material was changed as described in Table 2. Polyisocyanates B2, B3 and B5. Furthermore, the blocked polyisocyanates B2 and B5 are non-self-emulsifying blocked polyisocyanates, and the blocked polyisocyanate B3 is a self-emulsifying blocked polyisocyanate compound. [Manufacturing Example 12: Blocked polyisocyanate B4] 50 g of blocked polyisocyanate B1 and 5 g of nonionic surfactant (manufactured by ADEKA Corporation, trade name: Adeka Nol SP-12) using a homomixer. HLB: 12.7) and 45 g of water were treated to obtain a blocked polyisocyanate B4 as an emulsion dispersion of the blocked polyisocyanate B1. The blocked polyisocyanate B4 is a forced emulsified blocked polyisocyanate compound. Table 2 shows the addition amount (g) of each raw material of the blocked polyisocyanate B1 to 5 and the content of B-NCO. In addition, regarding the value of the content of B-NCO, the value in the upper stage is a value relative to the solid content of the blocked polyisocyanate, and the value in () in the lower stage is a value containing a solvent. [Table 2] [Example 1] 56.35 g of prepolymer A1, 3.65 g of anionic group neutralizing agent d1, and 40 g of blocked polyisocyanate B1 were added to a resin container and stirred for 5 minutes to obtain a mixture. The amount of the anionic group neutralizing agent used is the same as that of the anionic group introducing agent in the prepolymer. 150 g of water and 0.02 g of an antifoaming agent (made by ADEKA Corporation, trade name: Adeka Nate B-1016) were added to a glass reaction container with a stirrer, and it took 2 minutes to stir while stirring at 40 ° C. The mixture was added, and further stirred at 40 ° C for 30 minutes. After adding 0.224 g of a 25% by mass aqueous solution of chain elongation agent e1 (0.056 g as chain elongation agent e1) and stirring at 40 ° C for 1 hour, MEK was removed under reduced pressure to obtain an aqueous polyurethane resin of Example 1. combination. In addition, Example 1 is an example using a non-self-emulsifying blocked polyisocyanate compound. [Examples 2 to 10 and Comparative Examples 1 to 8] Except that the addition amount (g) of each raw material was changed as described in Table 3, Examples 2 to 10 and Comparative Example 1 were obtained by performing the same operation as in Example 1. ~ 8 water-based polyurethane resin composition. Furthermore, in Table 3, the amount of the anionic group neutralizing agent used is the same as that of the anionic group introducing agent in the prepolymer, and the amount of the chain elongating agents e1 and e2 is the amount of 25% aqueous solution. In addition, Examples 2 to 10 and Comparative Examples 1 to 8 are examples using non-self-emulsifying blocked polyisocyanate compounds. [Example 11] 46.95 g of prepolymer A1 and 3.05 g of anionic group neutralizing agent d1 were added to a resin container and stirred for 5 minutes to obtain a mixture. Add 150 g of water and 0.02 g of an antifoaming agent (made by ADEKA Corporation, trade name: Adeka Nate B-1016) to a glass reaction vessel with a stirrer, and it takes time to stir while stirring at 40 ° C. 2 The above mixture was added in minutes, and further stirred at 40 ° C. for 30 minutes, and then 0.19 g of a 25% by mass aqueous solution of a chain elongation agent e1 was added and stirred at 40 ° C. for 1 hour. After adding 50 g of the blocked polyisocyanate B3 and stirring at 40 ° C. for 1 hour to disperse it, MEK was removed under reduced pressure to obtain an aqueous polyurethane resin composition of Example 11. Example 11 is an example using a self-emulsifying blocked polyisocyanate compound. [Example 12] 56.35 g of prepolymer A1 and 3.65 g of anionic group neutralizing agent d1 were added to a resin container and stirred for 5 minutes to obtain a mixture. Add 120 g of water, 0.02 g of defoamer (made by ADEKA Corporation, trade name: Adeka Nate B-1016), and 70 g of blocked polyisocyanate B4 to a glass reaction vessel with a stirrer. The mixture was added over 2 minutes while stirring at 40 ° C. After further stirring at 40 ° C for 30 minutes, 0.23 g of a 25% by mass aqueous solution of a chain elongation agent e1 was added and stirred at 40 ° C for 1 hour. Thereafter, MEK was removed under reduced pressure to obtain an aqueous polyurethane resin composition of Example 12. Example 12 is an example using a forced-emulsion-type blocked polyisocyanate compound. Table 3 shows the amount (g) of each raw material of the water-based polyurethane resin composition of Examples 1 to 12 and Comparative Examples 1 to 8. In addition, the ratio (A) / (B) of Table 3 is the mass ratio of the solid component of (A) component and (B) component, and the value of B-NCO content is a value with respect to a solid component. The water-based polyurethane resin compositions of Examples 1 to 12 and Comparative Examples 1 to 8 were tested for storage stability, adhesion, moisture resistance and transparency, and blocking resistance by the following methods, respectively. In addition, the evaluation of adhesiveness was performed using the following test pieces A to C, and the evaluation of moisture resistance and transparency and blocking resistance was performed using the following test piece A. The results are shown in Table 4. Test piece A: A water-based polyurethane resin composition was coated on a commercially available PET film so that the thickness of the dried coating film became about 1 μm (thickness 20 μm, without corona treatment, and the average water contact angle on the surface was 70 °). After air-drying at 25 ° C, the test piece A was prepared by heating at 180 ° C for 10 minutes. Test piece B: Corona treatment was performed on a commercially available PET film using a corona treatment device until the average water contact angle on the surface became 28 to 32 °, and the aqueous amine group was formed so that the thickness of the dried coating film became about 1 μm. A formate resin composition was applied to the film, air-dried at 25 ° C, and then heated at 180 ° C for 10 minutes to prepare a test piece B. Test piece C: A commercially available acrylic photocurable resin (manufactured by ADEKA Corporation, trade name: Adeka Optomer HC-211-9) was coated on the test piece B so that the thickness became about 3 μm. After the surface of the urethane resin was dried at 80 ° C, a metal halide lamp was used at an intensity of 600 mW / cm 2 Cumulative light intensity: 500 mJ / cm 2 The test piece C was prepared by curing under the conditions. <Storage stability test method> After the aqueous polyurethane resin composition was put into a closed container and stored at 40 ° C. for 24 hours, the storage stability was evaluated based on the presence or absence of separation based on the following evaluation criteria. In addition, those with poor storage stability were not subjected to subsequent tests. (Evaluation Criteria) ○: No separation was found and storage stability was good ×: Separation was found and storage stability was poor <adhesion test method> According to JIS K5600-5-6 (General test methods for coatings-Part 5: Coating film machinery Properties-Section 6: According to the adhesion (cross cutting method), the urethane-based hardened film of the test piece was cut into 100 pieces using cutting guides with a gap of 1 mm. After the cut cured film was attached to the tape, the tape was peeled at an angle of about 60 ° with respect to the peeling direction. After performing the operation of attaching and peeling the tape three times to the same test piece, the number of pieces that did not peel off was counted. The larger the number of unpeeled pieces, the higher the adhesion. <Test method for moisture resistance and transparency> After leaving test piece A in a constant temperature and humidity tank at 80 ° C and a relative humidity of 80% for 250 hours, a haze meter (manufactured by Nippon Denshoku Industries, Ltd., model: NDH-5000) was used. Determine the haze value (%). A value obtained by subtracting a haze value of a commercially available PET film used for the preparation of the test piece A from this value was set to ΔH. The larger ΔH, the lower the transparency of the urethane-based cured film, or the lowered the transparency due to the moisture resistance and transparency test. <Testing method for blocking resistance> Using two test pieces A, the urethane-based hardened film surfaces were overlapped with each other, sandwiched between two glass plates, and 10 kgf / cm was applied 2 The load was allowed to stand in a constant temperature and humidity tank at 60 ° C and a relative humidity of 80% for 24 hours. Thereafter, the overlapping test pieces were peeled off, and the ratio (%) of the area of the damaged surface of the urethane-based cured film surface to the area of the overlapping surface was calculated. The smaller the area ratio of the damaged surface, the higher the blocking resistance. [table 3] [Table 4] [Examples 13, 14, and Comparative Example 9] Except that the addition amount (g) of each raw material was changed as described in Table 5, the same operations as in Example 1 were performed to obtain the water systems of Examples 13 and 14 and Comparative Example 9. Polyurethane resin composition. In Table 5, the amount of the anionic group neutralizing agent used is the same as the amount of the anionic group introducing agent in the prepolymer, and the amount of the chain elongating agent e2 is an amount of 25% aqueous solution. In addition, Examples 13 and 14 and Comparative Example 9 are Examples and Comparative Examples using a non-self-emulsifying blocked polyisocyanate compound. Table 5 shows the addition amount (g) of each raw material of the water-based polyurethane resin composition of Examples 13 and 14 and Comparative Example 9. In addition, the ratio (A) / (B) in Table 5 is the mass ratio of the solid component of the (A) component and the (B) component, and the value of the content of B-NCO is relative to the solid component. The water-based polyurethane resin compositions of Examples 13 and 14 and Comparative Example 9 were tested for storage stability by the following method. The aqueous urethane resin composition was put in a closed container, stored at 40 ° C, and the sedimentation and separation were visually observed to evaluate storage stability. The evaluation criteria are as follows. The results are shown in Table 6. A: More than one month and good storage stability B: Precipitation and separation found within 2 weeks, poor storage stability C: Precipitation and separation found within 1 week, poor storage stability Further, for Examples 13 and 14 The water-based polyurethane resin composition of Comparative Example 9 was evaluated for moisture resistance, transparency, and blocking resistance in the same manner as in the methods of Examples 1 to 12 and Comparative Examples 1 to 8. [table 5] [TABLE 6] [Industrial Applicability] According to the present invention, it is possible to provide a water-based polyurethane resin excellent in adhesiveness and blocking resistance with a polyester resin, and further, by using a specific polyisocyanate compound when manufacturing a polyurethane resin, it is possible to provide A water-based polyurethane resin with excellent transparency. Moreover, according to this invention, the water-based polyurethane resin excellent in storage stability can be provided.

Claims (10)

一種水系聚胺酯樹脂組合物,其特徵在於含有作為(A)成分之作為多元醇化合物、聚異氰酸酯化合物及陰離子性基導入劑之反應物之胺基甲酸酯預聚物、以及作為(B)成分之封端化聚異氰酸酯化合物,且封端化異氰酸基之含量相對於固形物成分為0.5~4 mmol/g。An aqueous polyurethane resin composition comprising a urethane prepolymer as a reactant of a polyol compound, a polyisocyanate compound, and an anionic group introducing agent as a component (A), and a component (B) The blocked polyisocyanate compound has a content of the blocked isocyanate group of 0.5 to 4 mmol / g relative to the solid content. 如請求項1之水系聚胺酯樹脂組合物,其中上述多元醇化合物為聚碳酸酯二醇。The aqueous polyurethane resin composition according to claim 1, wherein the polyol compound is a polycarbonate diol. 如請求項1之水系聚胺酯樹脂組合物,其中(A)成分中之陰離子性基之含量相對於(A)成分之胺基甲酸酯預聚物之量為0.2~1.5 mmol/g。The aqueous polyurethane resin composition according to claim 1, wherein the content of the anionic group in the component (A) is 0.2 to 1.5 mmol / g with respect to the amount of the urethane prepolymer of the component (A). 如請求項1之水系聚胺酯樹脂組合物,其中(A)成分中之異氰酸基之一部分或全部為經封端劑進行封端化之封端化異氰酸基。The aqueous polyurethane resin composition according to claim 1, wherein part or all of the isocyanate groups in the component (A) are blocked isocyanate groups blocked by a blocking agent. 如請求項1之水系聚胺酯樹脂組合物,其中(B)成分為非自我乳化性封端化聚異氰酸酯化合物。The aqueous polyurethane resin composition according to claim 1, wherein the component (B) is a non-self-emulsifying blocked polyisocyanate compound. 如請求項1之水系聚胺酯樹脂組合物,其中上述封端化異氰酸基之封端劑為肟系封端劑或吡唑系封端劑。The aqueous polyurethane resin composition according to claim 1, wherein the blocking agent of the blocked isocyanate group is an oxime-based blocking agent or a pyrazole-based blocking agent. 一種聚酯樹脂用接著劑,其包含如請求項1之水系聚胺酯樹脂組合物。An adhesive for polyester resins, comprising the water-based polyurethane resin composition according to claim 1. 一種光學膜用接著劑,其包含如請求項1之水系聚胺酯樹脂組合物。An adhesive for optical films, comprising the water-based polyurethane resin composition according to claim 1. 一種水系聚胺酯樹脂組合物之製造方法,其係如請求項5之水系聚胺酯樹脂組合物之製造方法,且具有以下步驟:使多元醇化合物、聚異氰酸酯化合物及陰離子性基導入劑進行反應而製造胺基甲酸酯預聚物;將胺基甲酸酯預聚物與非自我乳化性封端化聚異氰酸酯化合物混合而製成混合物;以及將該混合物分散於水中。A method for producing an aqueous polyurethane resin composition, which is the method for producing an aqueous polyurethane resin composition according to claim 5, and has the following steps: reacting a polyol compound, a polyisocyanate compound, and an anionic group introducing agent to produce an amine A urethane prepolymer; mixing a urethane prepolymer with a non-self-emulsifying blocked polyisocyanate compound to make a mixture; and dispersing the mixture in water. 一種光學膜之製造方法,其具有以下步驟:將如請求項1之水系聚胺酯樹脂組合物塗佈於基材膜;使所塗佈之水系聚胺酯樹脂組合物乾燥;及使乾燥後之水系聚胺酯樹脂組合物於150~250℃下熱硬化。An optical film manufacturing method comprising the steps of: coating an aqueous polyurethane resin composition as claimed in claim 1 on a substrate film; drying the applied aqueous polyurethane resin composition; and drying the dried aqueous polyurethane resin The composition is thermally hardened at 150 to 250 ° C.
TW106129192A 2016-09-27 2017-08-28 Aqueous polyurethane resin composition TWI742149B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP??2016-188481 2016-09-27
JP2016188481 2016-09-27

Publications (2)

Publication Number Publication Date
TW201819446A true TW201819446A (en) 2018-06-01
TWI742149B TWI742149B (en) 2021-10-11

Family

ID=61760486

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106129192A TWI742149B (en) 2016-09-27 2017-08-28 Aqueous polyurethane resin composition

Country Status (5)

Country Link
JP (1) JP6946314B2 (en)
KR (1) KR102385074B1 (en)
CN (1) CN109415482B (en)
TW (1) TWI742149B (en)
WO (1) WO2018061524A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7206101B2 (en) * 2018-12-04 2023-01-17 旭化成株式会社 Polyisocyanate composition, coating composition and coating film
JP7287795B2 (en) * 2019-03-07 2023-06-06 旭化成株式会社 Block polyisocyanate composition, water-based coating composition and coating film
JP7335589B2 (en) * 2019-07-12 2023-08-30 オート化学工業株式会社 One-component moisture-curing adhesive composition for flooring
EP3783041B1 (en) * 2019-08-02 2023-09-06 Asahi Kasei Kabushiki Kaisha Blocked polyisocyanate composition, hydrophilic polyisocyanate composition, resin composition, resin film and laminated body
CN110615882B (en) * 2019-09-24 2022-09-02 浙江华峰热塑性聚氨酯有限公司 Polyhydroxy nitrogen-phosphorus synergistic flame retardant, flame-retardant PU hot melt adhesive and preparation method thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4449038B2 (en) * 2004-09-30 2010-04-14 三井化学株式会社 Method for producing aqueous polyurethane composition
JP5170499B2 (en) * 2006-08-18 2013-03-27 日本ポリウレタン工業株式会社 Emulsion composition containing blocked isocyanate, method for producing the same, and composition for baking type paint or adhesive
WO2010098317A1 (en) * 2009-02-26 2010-09-02 宇部興産株式会社 Aqueous polyurethane resin dispersion and method for producing same
JP5720088B2 (en) * 2009-09-16 2015-05-20 宇部興産株式会社 Modified urethane resin curable composition and cured product thereof
JP5568992B2 (en) 2010-01-06 2014-08-13 東洋紡株式会社 Easy-adhesive polyester film for optics
JP2011157414A (en) * 2010-01-29 2011-08-18 Tosoh Corp Catalyst for blocking-agent dissociation comprising aluminum compound and metal compound other than aluminum and its application
CN102821954A (en) * 2010-04-19 2012-12-12 三菱树脂株式会社 Laminated polyester film
JP5808971B2 (en) 2011-07-22 2015-11-10 株式会社Adeka Water-based polyurethane resin composition, easy-adhesive polyester film formed by applying this
EP3015486B1 (en) * 2013-06-27 2018-11-07 Asahi Kasei Kabushiki Kaisha Polyisocyanate composition and method for production thereof, block polyisocyanate composition and method for production thereof, resin composition, curable resin composition, and cured article

Also Published As

Publication number Publication date
TWI742149B (en) 2021-10-11
WO2018061524A1 (en) 2018-04-05
CN109415482A (en) 2019-03-01
KR20190055780A (en) 2019-05-23
CN109415482B (en) 2021-06-18
JP6946314B2 (en) 2021-10-06
KR102385074B1 (en) 2022-04-11
JPWO2018061524A1 (en) 2019-07-04

Similar Documents

Publication Publication Date Title
TW201819446A (en) Aqueous polyurethane resin composition
EP1798248B1 (en) Water-dispersed polyurethane composition
TWI534166B (en) Aqueous polyurethane resin composition, and easily adhesive polyester film coating the same
BRPI0720519A2 (en) COSOLVENT FREE, self-regulating PUR DISPERSIONS.
JP5643613B2 (en) Water-based polyurethane resin composition, paint and coated article using the composition
CN103038297B (en) Thermosetting coating compositions
JP5053718B2 (en) Solvent-free aqueous polyurethane resin composition and method for producing the same
JP2012201787A (en) Urethane prepolymer composition for aqueous polyurethane resin and aqueous polyurethane resin composition containing the same
ES2462547T3 (en) Coating agents
TWI681012B (en) Water-based polyurethane resin composition and optical film using the same
JP7340921B2 (en) Water-based polyurethane resin composition
KR20180031601A (en) Optical film with high adhesiveness, and polarizing plate comprising the same
CN110225933B (en) Aqueous polyurethane resin composition
JP3588375B2 (en) Method for producing discoloration-resistant aqueous urethane composition
JP6025333B2 (en) Method for producing water-based acrylic urethane resin composition, water-based acrylic urethane resin composition produced by the method, cured product obtained by curing the resin composition, and article whose surface is protected by the cured product
US10266639B2 (en) Polyisocyanate composition, method for producing the same, coating composition, aqueous coating composition, and coated substrate
JP4665529B2 (en) Polyurethane resin composition and method for producing the same
JP2004137412A (en) Water-dispersible polyurethane composition
JP7171957B1 (en) Aqueous polyurethane resin composition and method for producing the same
JP6475073B2 (en) Water-based urethane resin composition, and dielectric elastomer and actuator using the same
JP2023032555A (en) Anionic prepolymer, anionic polyurethane, and aqueous polyurethane composition containing anionic polyurethane