TW201817444A - Multivalent vaccines against major swine viral diseases - Google Patents

Multivalent vaccines against major swine viral diseases Download PDF

Info

Publication number
TW201817444A
TW201817444A TW106116602A TW106116602A TW201817444A TW 201817444 A TW201817444 A TW 201817444A TW 106116602 A TW106116602 A TW 106116602A TW 106116602 A TW106116602 A TW 106116602A TW 201817444 A TW201817444 A TW 201817444A
Authority
TW
Taiwan
Prior art keywords
prv
nucleic acid
gene
acid construct
virus
Prior art date
Application number
TW106116602A
Other languages
Chinese (zh)
Other versions
TWI808940B (en
Inventor
沐坎 布拉博卡
潭雲 陸
Original Assignee
淡馬錫生命科學研究院公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 淡馬錫生命科學研究院公司 filed Critical 淡馬錫生命科學研究院公司
Publication of TW201817444A publication Critical patent/TW201817444A/en
Application granted granted Critical
Publication of TWI808940B publication Critical patent/TWI808940B/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/245Herpetoviridae, e.g. herpes simplex virus
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/53DNA (RNA) vaccination
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/55Medicinal preparations containing antigens or antibodies characterised by the host/recipient, e.g. newborn with maternal antibodies
    • A61K2039/552Veterinary vaccine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/70Multivalent vaccine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/76Viruses; Subviral particles; Bacteriophages
    • A61K35/763Herpes virus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/16011Herpesviridae
    • C12N2710/16034Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/16011Herpesviridae
    • C12N2710/16711Varicellovirus, e.g. human herpesvirus 3, Varicella Zoster, pseudorabies
    • C12N2710/16722New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/16011Herpesviridae
    • C12N2710/16711Varicellovirus, e.g. human herpesvirus 3, Varicella Zoster, pseudorabies
    • C12N2710/16733Use of viral protein as therapeutic agent other than vaccine, e.g. apoptosis inducing or anti-inflammatory
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/16011Herpesviridae
    • C12N2710/16711Varicellovirus, e.g. human herpesvirus 3, Varicella Zoster, pseudorabies
    • C12N2710/16734Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/16011Herpesviridae
    • C12N2710/16711Varicellovirus, e.g. human herpesvirus 3, Varicella Zoster, pseudorabies
    • C12N2710/16741Use of virus, viral particle or viral elements as a vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2750/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
    • C12N2750/00011Details
    • C12N2750/10011Circoviridae
    • C12N2750/10034Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/10011Arteriviridae
    • C12N2770/10034Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/24011Flaviviridae
    • C12N2770/24111Flavivirus, e.g. yellow fever virus, dengue, JEV
    • C12N2770/24134Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/24011Flaviviridae
    • C12N2770/24311Pestivirus, e.g. bovine viral diarrhea virus
    • C12N2770/24334Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Virology (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Mycology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The present invention relates to the field of vaccines. More specifically, the present invention relates to a multivalent vaccine against major swine viral diseases. In one embodiment, the multivalent vaccine is a recombinant pseudorabies viral vector.

Description

抗重大豬隻病毒疾病之多價疫苗Multivalent vaccine against major swine virus diseases

本發明係關於疫苗領域。更特定而言,本發明係關於抗重大豬隻病毒疾病之多價疫苗。在一個實施例中,多價疫苗係重組假性狂犬病病毒載體。The invention relates to the field of vaccines. More specifically, the present invention relates to multivalent vaccines against major swine virus diseases. In one embodiment, the multivalent vaccine is a recombinant pseudorabies virus vector.

本文中用以闡明本發明之背景或提供關於實踐之其他細節的公開案及其他材料係以引用方式併入,且為方便起見分別將其分組於參考書目中。 屬皰疹病毒科(Herpesviridae)之α孢疹病毒亞科的假性狂犬病病毒(PRV)係奧耶斯基氏病(Aujeszky’s disease)之病原體。PRV在發展中國家中甚為普遍且在養豬業中引起重大的經濟損失。活減毒PRV疫苗已在預防並根除PRV方面起到關鍵作用(Pomeranz等人,2005)。PRV Bartha-K61係減毒PRV疫苗株,其中gE及gl基因之一部分已缺失(Klupp等人,2012;Dong等人,2014)。而且,若干先前報導已闡述活減毒PRV Bartha-K61係表現異源抗原基因之優良疫苗載體(Nie等人,2011;Li等人,2008;Song等人,2007;Xu等人,2004;Jiang等人,2007)。因此,利用活減毒PRV Bartha-K61疫苗株作為載體來表現重大豬隻病毒疾病之多個抗原基因。 豬環狀病毒(PCV) (環狀病毒科(Circoviridae)之成員)係單鏈環狀DNA基因體。PCV2係受感染之豬患哺乳期後多系統性消耗性症候群(PMWS)的主要原因。該感染之特徵在於腹瀉、增重減少、猝死、淋巴結增大、呼吸窘迫及多核巨細胞形成(Liu等人,2005)。ORF2係PCV2基因體內之主要開放閱讀框之一。其編碼殼蛋白(Cap),該殼蛋白係可用作豬中疫苗研發之理想靶的免疫顯性病毒蛋白。 古典豬瘟(CSF)病毒係具有高度傳染性及經濟重要性之病毒疾病,其侵襲家豬及野豬。CSF病毒(CSFV)係正義單鏈RNA病毒且係黃病毒科(Flaviviridae)內瘟疫病毒屬(Pestivirus)之成員。套膜醣蛋白E2含有4個抗原域且其可誘導抗豬群體中CSFV之保護性免疫。因此,E2醣蛋白係用於CSFV疫苗設計之潛在候選者(Zhang等人,2014)。基於C-株之市售全滅活疫苗係有效的且提供抗3個CSFV群之完全保護,但不能提供受感染動物與經疫苗接種動物之可辨性(Zhang等人,2014)。 將豬繁殖與呼吸症候群病毒(PRRSV)歸類為網巢病毒目(Nidovirales)之動脈炎病毒科(Arteriviridae)。其係導致患豬繁殖與呼吸症候群(PRRS)之有套膜正鏈RNA病毒。感染PRRSV可引起母豬之晚期流產、大量繁殖障礙及小豬之呼吸障礙。PRRSV基因體由編碼7種結構蛋白及14種非結構蛋白之9個開放閱讀框組成。在彼等中,醣蛋白(GP) 5係由ORF5編碼之主要套膜蛋白。其係PRRSV之關鍵免疫原性蛋白之一,其對於病毒組裝、感染性及誘導中和抗體至關重要。ORF5係PRRSV基因體之最可變區之一且已廣泛用於研究PRRSV之分子流行病學。GP5亦為抗PRRSV感染之疫苗研發中之主導靶(Li等人,2012)。 目前可用之疫苗及疫苗接種程式較為複雜且難以單獨針對所有四種疾病進行免疫,從而導致多次注射及多次加強免疫。因此,研發針對四種疾病之多價疫苗將為費時且成本有效的,且亦可產生更有效的疫苗。Publications and other materials used herein to clarify the background of the invention or to provide other details about practice are incorporated by reference and are grouped separately in a bibliography for convenience. Pseudorabies virus (PRV), which belongs to the subfamily α-herpesvirus of the Herpesviridae family, is a pathogen of Aujeszky's disease. PRV is very common in developing countries and causes significant economic losses in the pig industry. Live attenuated PRV vaccines have played a key role in preventing and eradicating PRV (Pomeranz et al., 2005). The PRV Bartha-K61 is an attenuated PRV vaccine strain in which part of the gE and gl genes have been deleted (Klupp et al., 2012; Dong et al., 2014). Moreover, several previous reports have described excellent vaccine vectors for live attenuated PRV Bartha-K61 lines that display heterologous antigen genes (Nie et al., 2011; Li et al., 2008; Song et al., 2007; Xu et al., 2004; Jiang Et al., 2007). Therefore, a live attenuated PRV Bartha-K61 vaccine strain was used as a vector to express multiple antigenic genes for major porcine virus diseases. Porcine Circovirus (PCV) (a member of the Circoviridae family) is a single-stranded circular DNA genome. PCV2 is the main cause of infected multi-system wasting syndrome (PMWS) in infected pigs. The infection is characterized by diarrhea, reduced weight gain, sudden death, enlarged lymph nodes, respiratory distress, and multinucleated giant cell formation (Liu et al., 2005). ORF2 is one of the major open reading frames in the PCV2 gene. It encodes a cap protein, which is an immunodominant viral protein that can be used as an ideal target for vaccine development in pigs. Classical swine fever (CSF) virus is a highly infectious and economically important viral disease that affects domestic and wild pigs. CSF virus (CSFV) is a sense single-stranded RNA virus and is a member of the pestivirus genus within the Flaviviridae family. Envelope glycoprotein E2 contains 4 antigenic domains and it can induce protective immunity against CSFV in pig populations. Therefore, E2 glycoproteins are potential candidates for CSFV vaccine design (Zhang et al., 2014). C-strain-based, fully inactivated vaccines are effective and provide complete protection against 3 CSFV populations, but cannot provide discrimination between infected and vaccinated animals (Zhang et al., 2014). Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) is classified into the Arteriviridae family of the order Nidovirales. It is a mantle-enveloped positive-stranded RNA virus that causes PRRS. Infection with PRRSV can cause late abortion in sows, mass reproduction disorders, and respiratory disorders in piglets. The PRRSV genome consists of 9 open reading frames that encode 7 structural proteins and 14 non-structural proteins. Among them, glycoprotein (GP) 5 is the major envelope protein encoded by ORF5. It is one of the key immunogenic proteins of PRRSV, which is essential for virus assembly, infectivity, and induction of neutralizing antibodies. ORF5 is one of the most variable regions of the PRRSV genome and has been widely used to study the molecular epidemiology of PRRSV. GP5 is also a leading target in vaccine development against PRRSV infection (Li et al., 2012). The currently available vaccines and vaccination programs are complex and it is difficult to immunize against all four diseases individually, resulting in multiple injections and multiple boosters. Therefore, the development of multivalent vaccines against the four diseases will be time consuming and cost effective, and more effective vaccines can also be produced.

本發明係關於疫苗領域。更特定而言,本發明係關於抗重大豬隻病毒疾病之多價疫苗。在一個實施例中,多價疫苗係重組假性狂犬病病毒載體。 本發明闡述利用確定之活減毒假性狂犬病(PRV)疫苗株(例如,Bartha-K61株)作為疫苗載體來表現來自PCV2、CSF及PRRSV之重大豬隻病毒疾病的多種免疫原。PRV基因體為約140 kb且由以下各項組成:獨特長(UL)區、獨特短(US)區、大反向重複序列、內部重複序列(IR)及末端重複序列(TR)。基因體之一半視為非必需區,例如蛋白激酶(PK)、胸苷激酶(TK)、gE、gG及gl,由此允許在不影響病毒複製之情形下修飾或插入外源基因。而且,其充分記載的PRV Bartha-K61疫苗株之安全性及保護性效能概況數十年來已成功地用於控制奧耶斯基氏病。根據本發明,已生成抗PRRSV、PCV2、CSF及PRV之四價PRV疫苗及抗PCV2、CSF及PRV之三價PRV疫苗。 因此,在一態樣中,本發明提供抗PRRSV、PCV2、CSF及PRV之四價PRV疫苗。根據此態樣製備核酸構築體,其包含PRRSV之基因、PCV2之基因及CSF之基因。在一些實施例中,PRRSV基因係PRRSV ORF5基因。在一些實施例中,PRRSV ORF5基因係源自高病原性PRRSV中國株(HP-HRRSV-JXA1)。在一些實施例中,PCV2基因係PCV2 ORF2基因。在一些實施例中,PCV2基因係源自PCV2印尼株(基因型2B) (PCV2 TLL-Indo,基因庫登錄號KX130941)。在一些實施例中,CFS基因係CFS E2基因。在一些實施例中,CFS E2基因係源自CSF印尼株之新出現的基因亞型2.1 (CSF TLL-Indo,基因庫登錄號KX130940)。 在一些實施例中,各基因可操作連接至在哺乳動物細胞中具活性之啟動子。根據本發明,可使用在哺乳動物細胞中具活性之任一適宜啟動子。在一些實施例中,啟動子係巨細胞病毒(CMV)啟動子。在一些實施例中,CMV啟動子係CMV立即早期(CMV ie)啟動子。在一些實施例中,啟動子係延長因子1 α (EF1α)啟動子。 在一些實施例中,各基因可操作連接至在哺乳動物細胞中可操作之終止子序列。根據本發明,可使用在哺乳動物細胞中具活性之任一適宜終止子。在一些實施例中,終止子序列係牛生長激素多腺苷酸化(BGH polyA)序列。在一些實施例中,終止子序列係SV40病毒多腺苷酸化(SV40 polyA)序列。 在一些實施例中提供核酸構築體,其包含本文中所闡述之PRRSV基因、PCV2基因及CSF基因。在一些實施例中,核酸構築體進一步包含本文中所闡述之啟動子及/或終止子。在一些實施例中,核酸構築體進一步包含PRV之gG序列。在一些實施例中,PRV係PRV Bartha-K61株。在一些實施例中,核酸構築體包含SEQ ID NO: 1中所列之核苷酸序列。 在一些實施例中提供PRV株,其中該PRV株經修飾以含有本文中所闡述之核酸構築體。在一些實施例中,經修飾之PRV係經修飾之PRV Bartha-K61株。在一些實施例中,經修飾PRV株中之核酸構築體在豬腎15 (PK-15)細胞中傳代5代後係穩定的且無突變或缺失。在一些實施例中,PK-15細胞係自美國菌種保存中心(American Type Culture Collection)獲得之ATCC® CCL-33™細胞。 在一些實施例中提供細胞系,其以適於產生可用於四價疫苗之病毒的方式經本文中所闡述之核酸構築體轉染。在一些實施例中,將本文中所闡述之核酸構築體在經轉染之細胞系中藉由同源重組插入本文中所闡述之PRV株中。在一些實施例中,細胞系係本文中所闡述之PK-15細胞。 在另一態樣中,本發明提供抗PCV2、CSF及PRV之三價PRV疫苗。根據此態樣製備核酸構築體,其包含PCV2之基因及CSF之基因。在一些實施例中,PCV2基因及CSF基因係如本文中所闡述。 在一些實施例中,各基因可操作連接至在哺乳動物細胞中具活性之啟動子。在一些實施例中,啟動子係如本文中所闡述。 在一些實施例中,各基因可操作連接至在哺乳動物細胞中可操作之終止子序列。在一些實施例中,終止子序列係如本文中所闡述。 在一些實施例中提供核酸構築體,其包含本文中所闡述之PCV2基因及CSF基因。在一些實施例中,核酸構築體進一步包含本文中所闡述之啟動子及/或終止子。在一些實施例中,核酸構築體進一步包含PRV之gG序列。在一些實施例中,PRV係PRV Bartha-K61株。在一些實施例中,核酸構築體包含SEQ ID NO:2中所列之核苷酸序列。 在一些實施例中提供PRV株,其中該PRV株經修飾以含有本文中所闡述之核酸構築體。在一些實施例中,經修飾之PRV株係如本文中所闡述。在一些實施例中,經修飾PRV株中之核酸構築體在豬腎15 (PK-15)細胞中傳代5代後係穩定的且無突變或缺失。在一些實施例中,PK-15細胞係如本文中所闡述。 在一些實施例中提供細胞系,其以適於產生可用於三價疫苗之病毒的方式經本文中所闡述之核酸構築體轉染。在一些實施例中,將本文中所闡述之核酸構築體在經轉染之細胞系中藉由同源重組插入本文中所闡述之PRV株中。在一些實施例中,細胞系係本文中所闡述之PK-15細胞。 本發明亦提供套組,其用於用本文中所闡述之重組PRV免疫個體。該套組包含本文中所闡述之重組PRV、醫藥上可接受之載劑、施加器及關於其使用之說明性材料。 本發明亦提供使用方法。在一個實施例中,本發明提供引發個體(例如,豬隻)之保護性免疫反應之方法,其包含向個體投與預防、治療或免疫有效量之本文中所闡述之重組PRV。在另一實施例中,本發明提供預防個體罹患PRV、PRRSV、PCV2及CSF或PRV、PCV2及CSF之方法,其包含向個體投與預防、治療或免疫有效量之本文中所闡述之重組PRV。The invention relates to the field of vaccines. More specifically, the present invention relates to multivalent vaccines against major swine virus diseases. In one embodiment, the multivalent vaccine is a recombinant pseudorabies virus vector. The present invention illustrates the use of established live attenuated pseudorabies (PRV) vaccine strains (eg, Bartha-K61 strain) as vaccine vectors to express multiple immunogens of major porcine virus diseases from PCV2, CSF, and PRRSV. The PRV genome is approximately 140 kb and consists of: a unique long (UL) region, a unique short (US) region, a large inverted repeat, an internal repeat (IR), and a terminal repeat (TR). One half of the genome is considered a non-essential region, such as protein kinase (PK), thymidine kinase (TK), gE, gG, and gl, thereby allowing foreign genes to be modified or inserted without affecting viral replication. Moreover, its well-documented safety and protective efficacy profile of the PRV Bartha-K61 vaccine strain has been successfully used to control Oysky disease for decades. According to the present invention, a tetravalent PRV vaccine against PRRSV, PCV2, CSF and PRV and a trivalent PRV vaccine against PCV2, CSF and PRV have been generated. Therefore, in one aspect, the present invention provides a quadrivalent PRV vaccine against PRRSV, PCV2, CSF, and PRV. According to this aspect, a nucleic acid construct is prepared, which includes a gene of PRRSV, a gene of PCV2, and a gene of CSF. In some embodiments, the PRRSV gene is the PRRSV ORF5 gene. In some embodiments, the PRRSV ORF5 gene line is derived from the highly pathogenic PRRSV Chinese strain (HP-HRRSV-JXA1). In some embodiments, the PCV2 gene is the PCV2 ORF2 gene. In some embodiments, the PCV2 gene line is derived from the PCV2 Indonesia strain (genotype 2B) (PCV2 TLL-Indo, gene bank accession number KX130941). In some embodiments, the CFS gene is the CFS E2 gene. In some embodiments, the CFS E2 gene is derived from the newly emerged genotype 2.1 of the CSF Indonesia strain (CSF TLL-Indo, GenBank Accession No. KX130940). In some embodiments, each gene is operably linked to a promoter that is active in mammalian cells. According to the present invention, any suitable promoter that is active in mammalian cells can be used. In some embodiments, the promoter is a cytomegalovirus (CMV) promoter. In some embodiments, the CMV promoter is the CMV immediate early (CMV ie) promoter. In some embodiments, the promoter is an elongation factor 1 alpha (EF1 alpha) promoter. In some embodiments, each gene is operably linked to a terminator sequence operable in a mammalian cell. According to the present invention, any suitable terminator that is active in mammalian cells can be used. In some embodiments, the terminator sequence is a bovine growth hormone polyadenylation (BGH polyA) sequence. In some embodiments, the terminator sequence is a SV40 virus polyadenylation (SV40 polyA) sequence. In some embodiments, a nucleic acid construct is provided that includes a PRRSV gene, a PCV2 gene, and a CSF gene as set forth herein. In some embodiments, the nucleic acid construct further comprises a promoter and / or a terminator as set forth herein. In some embodiments, the nucleic acid construct further comprises a gG sequence of PRV. In some embodiments, the PRV is the PRV Bartha-K61 strain. In some embodiments, the nucleic acid construct comprises a nucleotide sequence set forth in SEQ ID NO: 1. In some embodiments a PRV strain is provided, wherein the PRV strain is modified to contain a nucleic acid construct as set forth herein. In some embodiments, the modified PRV is a modified PRV Bartha-K61 strain. In some embodiments, the nucleic acid constructs in the modified PRV strain are stable and free of mutations or deletions after passage of 5 generations in porcine kidney 15 (PK-15) cells. In some embodiments, the PK-15 cell line is ATCC® CCL-33 ™ cells obtained from the American Type Culture Collection. In some embodiments, a cell line is provided that is transfected with a nucleic acid construct as described herein in a manner suitable for the production of a virus useful in a tetravalent vaccine. In some embodiments, the nucleic acid constructs described herein are inserted into the PRV strains described herein by homologous recombination in a transfected cell line. In some embodiments, the cell line is a PK-15 cell as described herein. In another aspect, the invention provides a trivalent PRV vaccine against PCV2, CSF and PRV. According to this aspect, a nucleic acid construct is prepared, which includes a gene of PCV2 and a gene of CSF. In some embodiments, the PCV2 gene and the CSF gene line are as set forth herein. In some embodiments, each gene is operably linked to a promoter that is active in mammalian cells. In some embodiments, the promoter is as set forth herein. In some embodiments, each gene is operably linked to a terminator sequence operable in a mammalian cell. In some embodiments, the terminator sequence is as set forth herein. In some embodiments, a nucleic acid construct is provided that includes a PCV2 gene and a CSF gene as set forth herein. In some embodiments, the nucleic acid construct further comprises a promoter and / or a terminator as set forth herein. In some embodiments, the nucleic acid construct further comprises a gG sequence of PRV. In some embodiments, the PRV is the PRV Bartha-K61 strain. In some embodiments, the nucleic acid construct comprises a nucleotide sequence set forth in SEQ ID NO: 2. In some embodiments a PRV strain is provided, wherein the PRV strain is modified to contain a nucleic acid construct as set forth herein. In some embodiments, the modified PRV strain is as set forth herein. In some embodiments, the nucleic acid constructs in the modified PRV strain are stable and free of mutations or deletions after passage of 5 generations in porcine kidney 15 (PK-15) cells. In some embodiments, the PK-15 cell line is as set forth herein. In some embodiments, a cell line is provided that is transfected with a nucleic acid construct as described herein in a manner suitable for the production of a virus useful in a trivalent vaccine. In some embodiments, the nucleic acid constructs described herein are inserted into the PRV strains described herein by homologous recombination in a transfected cell line. In some embodiments, the cell line is a PK-15 cell as described herein. The invention also provides a kit for immunizing an individual with a recombinant PRV as set forth herein. The kit contains the recombinant PRVs described herein, pharmaceutically acceptable carriers, applicators, and explanatory materials on their use. The invention also provides a method of use. In one embodiment, the invention provides a method of eliciting a protective immune response in an individual (e.g., a pig) comprising administering to the individual a prophylactic, therapeutic, or immune effective amount of a recombinant PRV as set forth herein. In another embodiment, the invention provides a method for preventing an individual from developing PRV, PRRSV, PCV2 and CSF or PRV, PCV2 and CSF, comprising administering to the individual a prophylactic, therapeutic or immune effective amount of a recombinant PRV as set forth herein .

本發明係關於疫苗領域。更特定而言,本發明係關於抗重大豬隻病毒疾病之多價疫苗。在一個實施例中,多價疫苗係重組假性狂犬病病毒載體。 除非另外定義,否則本文中所用之所有技術及科學術語皆具有與熟習本發明所屬技術者通常所理解之含義相同的含義。 關於基因序列之術語「表現」係指基因之轉錄及(視需要)所得mRNA轉錄本至蛋白質之轉譯。因此,如將自上下文所明瞭,蛋白質編碼序列之表現自編碼序列之轉錄及轉譯得到。 如本文中所用,「基因」係指涵蓋基因產物之編碼區之核酸序列。 在將核酸片段(例如,重組DNA構築體)插入細胞中之背景下,「引入」意指「轉染」或「轉形」或「轉導」,且包括提及將核酸片段納入酵母或真菌細胞中,其中核酸片段可納入細胞之基因體(例如,染色體、質體或粒線體DNA)中,轉化成自主複製子或經瞬時表現(例如,經轉染mRNA)。 如本文中所用之「可操作連接(Operable linkage或operably linked或operatively linked)」應理解為意指(例如)以使得每個調節元件可在核酸之重組表現中實現其功能之方式依序排列啟動子及欲表現的核酸及(視需要)其他調節元件(例如,終止子),以製得合意產物。此不必需要化學意義上之直接連接。遺傳控制序列(例如增強子序列)亦可對來自略遠距離之位置或實際上來自其他DNA分子(順式或反式定位)之靶序列施加其作用。較佳排列係其中欲重組表現之核酸序列定位於用作啟動子之序列下游,以使得兩個序列彼此共價鍵結之彼等。調節或控制序列可定位於核苷酸序列之5’側或核苷酸序列之3’側,如業內所熟知。 術語「多核苷酸」、「核酸」及「核酸分子」在本文中可互換使用且係指核苷酸之聚合物,該聚合物可為核苷酸及/或核苷(包括去氧核糖核酸、核糖核酸及其衍生物)之天然或合成線性及依序陣列,。其包括染色體DNA、自我複製質體、DNA或RNA之傳染性聚合物及履行主要結構作用之DNA或RNA。除非另外指示,否則核酸或多核苷酸按5’至3’取向自左至右書寫。核苷酸係以其公認單字母代碼提及。數字範圍包括界定該範圍之數字。 術語「多肽」、「肽」及「蛋白質」在本文中可互換使用且係指胺基酸殘基之聚合物。該等術語適用於其中一或多個胺基酸殘基係相應天然胺基酸之人造化學類似物之胺基酸聚合物,以及天然胺基酸聚合物。胺基酸可以其眾所周知的三字母或單字母符號提及。胺基酸序列分別按胺基至羧基取向自左至右書寫。數字範圍包括界定該範圍之數字。 「啟動子」係指能夠控制另一核酸片段轉錄之核酸片段。 「在哺乳動物細胞中具活性之啟動子」係能夠在哺乳動物細胞中控制轉錄之啟動子,無論其是否源自哺乳動物細胞。 「重組體」係指兩個原本分開之序列區段(例如)藉由化學合成或藉由遺傳工程技術操縱分離之核酸區段獲得之人工組合。「重組體」亦包括提及藉由引入異源核酸而經修飾之細胞或載體或源自經如此修飾之細胞的細胞,但不涵蓋藉由天然事件(例如,自發突變、自然轉形/轉導/轉位)改變之細胞或載體,例如在無故意人類介入下出現之彼等。 「重組DNA構築體」係指通常在自然界中未一起發現之核酸片段的組合。因此,重組DNA構築體可包含來源不同之調節序列及編碼序列,或來源相同但以不同於通常在自然界中所發現之方式排列的調節序列及編碼序列。術語「重組DNA構築體」及「重組構築體」在本文中可互換使用。在本文中所闡述之若干實施例中,重組DNA構築體亦可視為「過表現DNA構築體」。術語「核酸構築體」亦可與「重組DNA構築體」互換使用。 「調節序列」係指位於編碼序列上游(5'非編碼序列)、編碼序列內或編碼序列下游(3'非編碼序列)且影響相關編碼序列之轉錄、RNA處理或穩定性或轉譯之核苷酸序列。調節序列可包括(但不限於)啟動子、轉譯前導序列、內含子及多腺苷酸化識別序列。術語「調節序列」及「調節元件」在本文中可互換使用。 序列比對及一致性百分比計算可使用眾多經設計以檢測同源序列之比較方法測定,該等比較方法包括(但不限於) LASERGENE®生物資訊學計算軟體組(LASERGENE® bioinformatics computing suite) (DNASTAR® Inc.,Madison,WI)之Megalign®程式。除非另外說明,否則本文中所提供序列之多重比對係使用Clustal V比對方法(Higgins及Sharp (1989) CABIOS. 5:151-153)利用默認參數(空位罰分=10,空位長度罰分=10)來實施。使用Clustal V方法逐對比對及計算蛋白質序列之一致性百分比之默認參數係KTUPLE=1、空位罰分=3,窗口=5及保留的對角線=5。對於核酸,該等參數係KTUPLE=2、空位罰分=5、窗口=4及保留的對角線=4。比對序列後,使用Clustal V程式,藉由查看相同程式上之「序列距離」表可獲得「一致性百分比」及「趨異度」值;除非另外說明,否則本文中所提供及主張之一致性百分比及趨異度係以此方式計算。 或者,可使用Clustal W 比對方法。Clustal W 比對方法(由Higgins及Sharp, CABIOS. 5:151-153 (1989);Higgins, D. G.等人,Comput. Appl. Biosci. 8:189-191 (1992)所闡述)可參見LASERGENE®生物資訊學計算軟體組(DNASTAR® Inc., Madison, Wis.)之MegAlign™ v6.1程式。多重比對之默認參數對應於空位罰分=10、空位長度罰分=0.2、延遲趨異序列=30%、DNA轉換加權值=0.5、蛋白質加權矩陣=Gonnet Series、DNA加權矩陣=IUB。對於逐對比對而言,默認參數係比對=緩慢-準確、空位罰分=10.0、空位長度=0.10、蛋白質加權矩陣=Gonnet 250及DNA加權矩陣=IUB。使用Clustal W 程式比對序列後,可藉由查看相同程式中之「序列距離」表獲得「一致性百分比」及「趨異度」值。 術語「在嚴格條件下」意指,兩個序列在中度或高度嚴格條件下雜交。更特定而言,中度嚴格條件可容易地由熟習此項技術者(例如)根據DNA之長度確定。基礎條件係由Sambrook等人,Molecular Cloning: A Laboratory Manual ,第3版,第6章及第7章,Cold Spring Harbor Laboratory Press, 2001所陳述,且包括使用用於硝化纖維素過濾器之預洗溶液(5×SSC、0.5% SDS、1.0 mM EDTA (pH 8,0)),約50%甲醯胺、2×SSC至6×SSC、在約40℃-50℃下之雜交條件(或其他相似雜交溶液,例如Stark溶液,在約50%甲醯胺中,在約42℃下)及(例如)約40℃-60℃、0.5×SSC -6×SSC、0.1% SDS之洗滌條件。較佳地,中度嚴格條件包括在約50℃及6×SSC下雜交(及洗滌)。高度嚴格條件亦可容易地由熟習此項技術者(例如)根據DNA之長度確定。 通常,與中度嚴格條件相比,此等條件包括在較高溫度及/或較低鹽濃度下雜交及/或洗滌(例如,在約65℃下雜交,6×SSC至0.2×SSC、較佳6×SSC、更佳2×SSC、最佳0.2×SSC)。舉例而言,高度嚴格條件可包括如上文所界定之雜交及在約65℃-68℃、0.2×SSC、0.1% SDS下洗滌。在雜交及洗滌緩衝液中,可用SSPE (1×SSPE係0.15 M NaCl、10 mM NaH2 PO4 及1.25 mM EDTA,pH 7.4)取代SSC (1×SSC係0.15 M NaCl及15 mM檸檬酸鈉);在完成雜交後實施15分鐘洗滌。 亦可使用市售雜交套組,其使用無放射性物質作為探針。具體實例包括利用ECL直接標記及檢測系統(Amersham)雜交。嚴格條件包括(例如)使用套組中所包括之補充有5% (w/v)封阻試劑及0.5 M NaCl之雜交緩衝液在42℃下雜交4小時,,並在55℃下於0.4% SDS、0.5×SSC中經20分鐘洗滌兩次並在室溫下於2×SSC中經5分鐘洗滌一次。 如本文中所用關於核酸序列之術語「實質上同源」或「實質同源性」包括在嚴格條件下與所提及之SEQ ID NO:或其部分或補體雜交的核苷酸序列,其係如以下之彼等:容許在兩個序列之間發生反向平行比對,且然後兩個序列能夠在嚴格條件下與相反鏈上之相應鹼基形成氫鍵,以形成在適當嚴格性(包括高嚴格性)條件下足夠穩定,以可使用業內所熟知之方法檢測之雙鏈分子。實質上同源之序列可具有與如序列表中所列之參考核苷酸序列或其補體約70%至約80%序列一致性,或更佳約80%至約85%序列一致性,或最佳約90%至約95%序列一致性,直至約99%序列一致性。或者,實質上同源之序列包括在嚴格條件下與植物基因內含子之靶區域雜交之彼等。對於嚴格條件,參見本文說明書且亦參見美國專利第8,455,716號及第8,536,403號。 「PRRSV ORF5基因」或「ORF5基因」係指源自高病原性PRRSV中國株(HP-HRRSV-JXA1)之ORF5基因。在一些實施例中,ORF5基因具有SEQ ID NO:1之核苷酸1041-1643中所列之序列。在其他實施例中,基於Clustal V或Clustal W比對方法,當與SEQ ID NO:1之核苷酸1041-1643相比時,ORF5基因具有至少85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或100%序列一致性。 「PCV ORF2基因」或「ORF2基因」係指源自PCV2印尼株(基因型2B) (PCV2 TLL-Indo,基因庫登錄號KX130941)之ORF2基因。在一些實施例中,ORF2基因具有SEQ ID NO:1之核苷酸3063-3767中所列之序列。在其他實施例中,基於Clustal V或Clustal W比對方法,當與SEQ ID NO:1之核苷酸3063-3767比較時,ORF2基因具有至少85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或100%序列一致性。 「CSF E2基因」或「E2基因」係指源自CSF印尼株之新出現的亞基因型2.1 (CSF TLL-Indo,基因庫登錄號KX130940)的E2基因。在一些實施例中,E2基因具有SEQ ID NO:1之核苷酸4729-5916中所列之序列。在其他實施例中,基於Clustal V或Clustal W比對方法,當與SEQ ID NO:1之核苷酸4729-5916比較時,E2基因具有至少85%、86%、87%,88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或100%序列一致性。 在一態樣中,本發明提供抗PRRSV、PCV2、CSF及PRV之四價PRV疫苗。根據此態樣製備核酸構築體,其包含PRRSV之基因、PCV2之基因及CSF之基因。在一些實施例中,PRRSV基因係PRRSV ORF5基因。在一些實施例中,PRRSV ORF5基因係源自高病原性PRRSV中國株(HP-HRRSV-JXA1)。在一些實施例中,ORF5基因具有本文中所闡述之核苷酸序列。在一些實施例中,PCV2基因係PCV2 ORF2基因。在一些實施例中,PCV2基因係源自PCV2印尼株(基因型2B)。在一些實施例中,ORF2基因具有本文中所闡述之核苷酸序列。在一些實施例中,CFS基因係CFS E2基因。在一些實施例中,CFS E2基因係源自CSF印尼株之新出現的亞基因型2.1。在一些實施例中,E2基因具有本文中所闡述之核苷酸序列。 在一些實施例中,各基因可操作連接至在哺乳動物細胞中具活性之啟動子。根據本發明,可使用在哺乳動物細胞中具活性之任一適宜啟動子。在一些實施例中,啟動子係巨細胞病毒(CMV)啟動子。在一些實施例中,CMV啟動子係CMV立即早期(CMV ie)啟動子。在一些實施例中,CMV ie啟動子具有SEQ ID NO:1之核苷酸445-1034中所列之序列。在一些實施例中,基於Clustal V或Clustal W比對方法,當與SEQ ID NO:1之核苷酸445-1034比較時,CMV啟動子具有至少85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或100%序列一致性。在一些實施例中,啟動子係延長因子1 α (EF1α)啟動子。在一些實施例中,EF1α啟動子具有SEQ ID NO: 1之核苷酸1869-3056中所列之序列。在一些實施例中,基於Clustal V或Clustal W比對方法,當與SEQ ID NO:1之核苷酸1869-3056比較時,EF1α啟動子具有至少85%、86%、87%、88%、89%、90%、91%、92%、93%,94%、95%、96%、97%、98%、99%或100%序列一致性。 在一些實施例中,各基因可操作連接至在哺乳動物細胞中可操作之終止子序列。根據本發明,可使用在哺乳動物細胞中具活性之任一適宜終止子。在一些實施例中,終止子序列係牛生長激素多腺苷酸化(BGH polyA)序列。在一些實施例中,BGH polyA序列具有SEQ ID NO:1之核苷酸1644-1868中所列之序列。在一些實施例中,基於Clustal V或Clustal W比對方法,當與SEQ ID NO:1之核苷酸1644-1868比較時,BGH polyA序列具有至少85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或100%序列一致性。在一些實施例中,終止子序列係SV40病毒多腺苷酸化(SV40 polyA)序列。在一些實施例中,SV40 polyA序列具有SEQ ID NO:1之核苷酸5925-6192中所列之序列。在一些實施例中,基於Clustal V或Clustal W比對方法,當與SEQ ID NO:1之核苷酸5925-6192比較時,SV40 polyA序列具有至少85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或100%序列一致性。 在一些實施例中提供核酸構築體,其包含本文中所闡述之PRRSV基因、PCV2基因及CSF基因。在一些實施例中,核酸構築體進一步包含本文中所闡述之啟動子及/或終止子。在一些實施例中,核酸構築體進一步包含PRV之gG序列。在一些實施例中,PRV係PRV Bartha-K61株。在一些實施例中,核酸構築體包含SEQ ID NO:1中所列之核苷酸序列。 在一些實施例中提供PRV株,其中該PRV株經修飾以含有本文中所闡述之核酸構築體。在一些實施例中,經修飾之PRV係經修飾之PRV Bartha-K61株。在一些實施例中,經修飾PRV株中之核酸構築體在豬腎15 (PK-15)細胞中傳代5代後係穩定的且無突變或缺失。在一些實施例中,PK-15細胞係自美國菌種保存中心獲得之ATCC® CCL-33™細胞。 在一些實施例中提供細胞系,其以適於產生可用於四價疫苗之病毒的方式經本文中所闡述之核酸構築體轉染。在一些實施例中,將本文中所闡述之核酸構築體在經轉染之細胞系中藉由同源重組插入本文中所闡述之PRV株中。在一些實施例中,細胞系係本文中所闡述之PK-15細胞。 在另一態樣中,本發明提供抗PCV2、CSF及PRV之三價PRV疫苗。根據此態樣製備核酸構築體,其包含PCV2之基因及CSF之基因。在一些實施例中,PCV2基因及CSF基因係如本文中所闡述。 在一些實施例中,各基因可操作連接至在哺乳動物細胞中具活性之啟動子。在一些實施例中,啟動子係如本文中所闡述。 在一些實施例中,各基因可操作連接至在哺乳動物細胞中可操作之終止子序列。在一些實施例中,終止子序列係如本文中所闡述。 在一些實施例中提供核酸構築體,其包含本文中所闡述之PCV2基因及CSF基因。在一些實施例中,核酸構築體進一步包含本文中所闡述之啟動子及/或終止子。在一些實施例中,核酸構築體進一步包含PRV之gG序列。在一些實施例中,PRV係PRV Bartha-K61株。在一些實施例中,核酸構築體包含SEQ ID NO:2中所列之核苷酸序列。 在一些實施例中提供PRV株,其中該PRV株經修飾以含有本文中所闡述之核酸構築體。在一些實施例中,經修飾之PRV株係如本文中所闡述。在一些實施例中,經修飾PRV株中之核酸構築體在豬腎15 (PK-15)細胞中傳代5代後係穩定的且無突變或缺失。在一些實施例中,PK-15細胞係如本文中所闡述。 在一些實施例中提供細胞系,其以適於產生可用於三價疫苗之病毒的方式經本文中所闡述之核酸構築體轉染。在一些實施例中,將本文中所闡述之核酸構築體在經轉染之細胞系中藉由同源重組插入本文中所闡述之PRV株中。在一些實施例中,細胞系係本文中所闡述之PK-15細胞。 在製備核酸構築體時,可操縱多個DNA片段,以便以適當取向且視需要在適當閱讀框中提供DNA序列。為此,可採用轉接子或連接體來連接DNA片段,或可涉及其他操縱以提供方便的限制位點,去除多餘DNA,去除限制位點或諸如此類。出於此目的,可涉及活體外誘變、引子修補、限制、退火、重新取代(例如,轉換及顛換)。 亦可藉由業內已知之方法完全或部分地合成本發明之核酸,尤其係在期望提供植物偏愛序列時。因此,可使用所選宿主偏愛之密碼子合成本發明核酸之全部或一部分。物種偏愛之密碼子可(例如)根據在特定宿主物種中表現之蛋白質中最常用之密碼子確定。核苷酸序列之其他修飾可產生具有略微改變之活性之突變體。 四價重組PRV或三價重組TRV係藉由轉染適宜細胞系(例如本文中所闡述之PK-15細胞系)製備。在一些實施例中,細胞系係用本文中所闡述之核酸構築體及PRV核衣殼DNA轉染。在一些實施例中,PRV核衣殼DNA經修飾以含有用於表現紅色螢光蛋白(RFP)之核酸構築體。使四價重組PRV或三價重組TRV在PK-15細胞中傳代數代,以確保穩定重組病毒之病毒核酸中無突變或缺失。在一些實施例中,5代足以產生穩定重組病毒。 製備後,重組TRV病毒可在適宜細胞系中經複製。在一些實施例中,細胞系係如本文中所闡述之PK-15細胞系(細胞)。在一些實施例中,細胞系(細胞)係幼小倉鼠腎21 (BHK21)細胞系。在一些實施例中,BHK21細胞系係BHK21 (純系13)。在一些實施例中,BHK21 (純系13)細胞系係ATCC® CCL-10TM 並可自美國菌種保存中心購得。 豬繁殖與呼吸症候群病毒(PRRSV)及假性狂犬病病毒(PRV)係豬傳染性繁殖障礙之主要原因,並在世界範圍內引起養豬業之重大損失。另外,PCV2及古典豬瘟引起毀滅性疾病並對許多亞洲國家之動物福祉及經濟具有嚴重影響。研發多價疫苗方式可潛在地將疫苗之投與減少至涵蓋所有四種病毒之一次劑量排程,此極大地有助於保護豬免於該四種疾病之現狀。選擇活減毒PRV Bartha-K61作為多價疫苗研發之載體。PRV Bartha-K61株之基因體結構及遺傳背景經相對充分地界定,且所報導外源基因之擴增及穩定表現不會影響病毒自身之穩定性(Boldogkoi, Nogradi,2003)。 如本文中所闡述,表現PCV2-ORF2、CSF-E2及PRRSV-ORF5之四價PRV及表現PCV2-ORF2及CSF-E2之三價PRV係藉由同源重組至PRV Bartha K-61疫苗株之gG基因座中而生成。複製分析及穩定性測試揭露,重組PRV (三價或四價PRV)在活體外與PRV Bartha K-61同樣有效地穩定且複製,此展示在PRV之PK及gG基因座中插入外源基因不會影響PRV之複製。此外,小鼠實驗中之免疫原性研究展示,四價PRV誘導大量抗PCV2-ORF2、CSF-E2及PRRSV-ORF5抗原之血清特異性體液抗體,類似地,三價PRV誘導抗PCV2-ORF2及CSF-E2之血清特異性體液抗體。該等結果表明,在PRV Bartha K-61中表現來自重大豬隻病毒之多價免疫基因係研發抗PCV2、CSF或PRRSV且包括假性狂犬病之多價疫苗的新穎方式。 包含PCV2之ORF2、CSF之E2及PRRSV之ORF5的本發明重組假性狂犬病病毒載體可有效地誘導抗所有四種疾病之抗體,此允許在單一製品中成本有效地大量生產。 根據本發明發現,三價與四價重組疫苗二者在PK15/BHK21細胞系中5次連續傳代後皆穩定。在單一插入位點中插入兩個或三個基因極為穩定且既不顯示遺傳不穩定性亦不顯示經插入基因之轉錄修飾。 根據本發明發現,在PRV-Bartha之gG基因座之單一插入位點中插入多個基因不會影響病毒效價。 本發明亦提供使用方法。在一個實施例中,本發明提供引發個體(例如,豬隻)之保護性免疫反應之方法,其包含向個體投與預防、治療或免疫有效量之本文中所闡述之重組PRV。在另一實施例中,本發明提供預防個體罹患PRV、PRRSV、PCV2及CSF或PRV、PCV2及CSF之方法,其包含向個體投與預防、治療或免疫有效量之本文中所闡述之重組PRV。 如本文中所用,「投與」意指使用熟習此項技術者所知之多種方法及遞送系統中之任一者遞送。投與可以例如以下方式實施:腹膜內、大腦內、靜脈內、經口、經黏膜、皮下、經皮、真皮內、肌內、局部、非經腸、經由植入、鞘內、淋巴內、病灶內、心包或硬膜外。藥劑或組合物亦可以氣溶膠形式投與,例如用於肺及/或鼻內遞送。投與可(例如)實施一次、複數次及/或經一或多個延長時段實施。 引發個體之保護性免疫反應可(例如)藉由向個體投與一次劑量之疫苗、隨後在適宜時間段後藉由一或多次後續投與疫苗來實現。投與疫苗之間的適宜時間段可容易地由熟習此項技術者確定,且通常為約幾週至數月。然而,本發明不限於任一特定投與方法、途徑或頻率。 「預防有效劑量」或「免疫有效劑量」係在向易於感染病毒或易於罹患病毒相關病症之個體投與時,在個體中誘導保護個體免於感染病毒或罹患病症之免疫反應的疫苗之任一量。「保護」個體意指降低個體感染病毒之可能性或使個體病症發作之可能性減小至少2倍、較佳至少10倍。舉例而言,若個體具有1%之機率感染病毒,則個體感染病毒之可能性降低2倍將使個體具有0.5%之機率感染病毒。最佳地,「預防有效劑量」在個體中誘導完全防止個體感染病毒或完全防止個體病症發作之免疫反應。 任一本發明免疫及治療方法之某些實施例可進一步包含向個體投與至少一種佐劑。「佐劑」應意指適於增強抗原之免疫原性並加強個體之免疫反應之任一藥劑。適於與基於蛋白質及基於核酸之疫苗二者一起使用之眾多佐劑(包括微粒佐劑)及組合佐劑與抗原之方法為熟習此項技術者所熟知。適於與蛋白質免疫一起使用之佐劑包括(但不限於)明礬、氟氏完全佐劑(Freund’s complete adjuvant,FCA)、氟氏不完全佐劑(FIA)、明礬佐劑、基於皂素之佐劑(例如,Quil A及QS-21)及諸如此類。 應理解,當本文中所闡述之病毒株用於引發個體之保護性免疫反應或預防個體罹患病毒相關疾病時,其係以額外包含一或多種生理上或醫藥上可接受之載劑的組合物形式投與個體。醫藥上可接受之載劑為熟習此項技術者所熟知且包括(但不限於) 0.01 M - 0.1 M且較佳0.05 M磷酸鹽緩衝液、磷酸鹽緩衝鹽水(PBS)或0.9%鹽水中之一或多者。此等載劑亦包括水性或非水性溶液、懸浮液及乳液。水性載劑包括水、醇/水溶液、乳液或懸浮液、鹽水及緩衝介質。非水性溶劑之實例係丙二醇、聚乙二醇、植物油(例如,橄欖油)及可注射有機酯(例如,油酸乙酯)。非經腸媒劑包括氯化鈉溶液、林格氏右旋糖(Ringer's dextrose)、右旋糖及氯化鈉、乳酸化林格氏液及不揮發油。 靜脈內媒劑包括液體及營養補充劑、電解質補充劑(例如,基於林格氏右旋糖之彼等)及諸如此類。固體組合物可包含無毒固體載劑,例如葡萄糖、蔗糖、甘露醇、山梨醇、乳糖、澱粉、硬脂酸鎂、纖維素或纖維素衍生物、碳酸鈉及碳酸鎂。對於(例如)用於肺及/或鼻內遞送之以氣溶膠形式投與,較佳將藥劑或組合物與無毒表面活性劑(例如,C6至C22脂肪酸之酯或部分酯或天然甘油酯及推進劑)一起調配。可包括諸如卵磷脂等額外載劑以促進鼻內遞送。醫藥上可接受之載劑可進一步包含少量輔助物質,例如潤濕劑或乳化劑、防腐劑及其他添加劑,例如抗微生物劑、抗氧化劑及螯合劑,其增加活性成分之儲放壽命及/或有效性。如業內所熟知,本發明組合物可經調配以便在投與個體後提供活性成分之快速、持續或延遲釋放。 本發明亦提供套組,其用於用本文中所闡述之重組PRV免疫個體。該套組包含本文中所闡述之重組PRV、醫藥上可接受之載劑、施加器及關於其使用之說明性材料。本發明包括熟習此項技術者所知之套組之其他實施例。說明書可提供可用於指導投與本文中所闡述之穩定冷適應溫度敏感性病毒株或其不活化形式的任何資訊。 本發明提供與本文中所闡述之病毒株相關之疫苗技術。在一個實施例中,本文中所闡述之病毒株係用於製造疫苗之方法中。在另一實施例中,本文中所闡述之核酸構築體係用於製造疫苗之方法中。在另一實施例中,本文中所闡述之病毒株係用於疫苗研發。在另一實施例中,本文中所闡述之核酸構築體係用於疫苗研發。 除非另外指示,否則本發明之實踐採用習用化學、分子生物學、微生物學、重組DNA、遺傳學、免疫學、細胞生物學、細胞培養及轉基因生物學技術,其為熟習此項技術者已知。參見例如Maniatis等人,1982,Molecular Cloning (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York);Sambrook等人,1989,Molecular Cloning ,第2版(Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York);Sambrook及Russell, 2001,Molecular Cloning , 第3版(Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York);Ausubel等人,1992,Current Protocols in Molecular Biology (John Wiley & Sons,包括定期更新);Glover, 1985,DNA Cloning (IRL Press, Oxford);Russell, 1984,Molecular biology of plants: a laboratory course manual (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.);Anand,Techniques for the Analysis of Complex Genomes , (Academic Press, New York, 1992);Guthrie及Fink,Guide to Yeast Genetics and Molecular Biology (Academic Press, New York, 1991);Harlow及Lane, 1988,Antibodies , (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York);Nucleic Acid Hybridization (B. D. Hames及S. J. Higgins編輯,1984);Transcription And Translation (B. D. Hames及S. J. Higgins編輯,1984);Culture Of Animal Cells (R. I. Freshney, Alan R. Liss,Inc.,1987);Immobilized Cells And Enzymes (IRL Press, 1986);B. Perbal,A Practical Guide To Molecular Cloning (1984);論文Methods In Enzymology (Academic Press, Inc., N.Y.);Methods In Enzymology , 第154及155卷(Wu等人編輯),Immunochemical Methods In Cell And Molecular Biology (Mayer及Walker編輯,Academic Press, London, 1987);Handbook Of Experimental Immunology ,第I-IV卷(D. M. Weir及C. C. Blackwell編輯,1986);Riott,Essential Immunology , 第6版,Blackwell Scientific Publications, Oxford, 1988;Fire等人,RNA Interference Technology: From Basic Science to Drug Development , Cambridge University Press, Cambridge, 2005;Schepers,RNA Interference in Practice , Wiley-VCH, 2005;Engelke,RNA Interference (RNAi): The Nuts & Bolts of siRNA Technology , DNA Press, 2003;Gott,RNA Interference, Editing, and Modification: Methods and Protocols (Methods in Molecular Biology) , Human Press, Totowa, NJ, 2004;Sohail,Gene Silencing by RNA Interference: Technology and Application , CRC, 2004。 實例 本發明係藉由參照下列實例來闡述,該等實例係以闡釋方式提供且並不意欲以任何方式限制本發明。利用業內所熟知之標準技術或下文所具體闡述之技術。 實例1 方法免疫原之選擇 :利用流行株基於系統演化分析,選擇來自PCV2印尼株(基因型2B) (PCV2 TLL-Indo,基因庫登錄號KX130941)之ORF2基因。另外,PCV2基因型2B係豬群體中高度具優勢之基因型(Opriessnig等人,2013)。E2基因選自CSF印尼株之新出現的亞基因型2.1 (CSF TLL-Indo,基因庫登錄號KX130940)。ORF5基因選自HP-PRRSV (高病原性PRRSV-JXA1)中國株,其與目前流行之PRRSV株高度相似(Yin等人,2012;Jantafong等人,2015)。重組轉移質體及合成基因之構築 :擴增來自PCV2株之ORF2基因及來自CSF株之E2並分別個別地選殖至中間pcDNA3.1+載體(Invitrogen)之XhoI/ApaI及HindIII/BamHI限制位點中。 合成包含PRRSV株之ORF5、牛生長激素(BGH)序列及延長因子1α啟動子(EF1α)序列之組合的合成基因(ORF5-BGH-EF1α) (Genscript, USA)。一個此合成基因具有SEQ ID NO:3中所顯示之序列。納入BglII及AgeI限制位點。 對於四價rPRV疫苗之構築而言,將ORP5-BGH-EF1片段選殖至轉移質體pUC-gG-MCS (圖1) (由Prof. Enquist, Princeton University, USA友情提供)之BglII/AgeI限制位點中。pUC-gG-MCS係插入有合成構築體之pUC57質體,該合成構築體由PRV Bartha之gG基因座組成。使用引子AgeI-ORF2 F:5’- CTGACCGGT ATGACGTATCCAAGGAGGCG-3' (SEQ ID NO:4;加下劃線處為AgeI位點)及ORF2-R-XhoI:5’-CGGCTCGAG CCATAGAGCCCACCGCATC-3’ (SEQ ID NO:5;加下劃線處為XhoI位點)擴增來自pcDNA3.1+之ORF2-BGH片段並將其選殖至轉移質體pUC-gG-MCS (圖1)之AgeI/XhoI限制位點中。類似地,使用引子SalI-CMV+E2-F:5’-CGCGTCGAC GTTGACATTGATTATTGAC-3’ (SEQ ID NO:6;加下劃線處為SalI位點)及NotI-E2-R:5’-TAAAGCGGCCG CACCAGCGGCGAGTG TTCTG-3’ (SEQ ID NO:7;加下劃線處為NotI位點)擴增來自pcDNA3.1+之CMV-E2片段並將其選殖至轉移質體pUC-gG-MCS (圖1)之SalI/NotI限制位點中。藉由PCR及測序來驗證重組轉移質體pUC-gG-ORF5-ORF2-E2。包含gG- CMV-ORF5-BGH-EF1-orf2-BGH-CMV-E2-SV40-gG之核酸的序列列於SEQ ID NO:1中。 對於三價rPRV疫苗之構築而言,使用引子AgeI-ORF2 F:5’-CTGACCGGT ATCACGTATCCA AGGAGGCG-3’ (SEQ ID NO:4;加下劃線處為AgeI位點)及ORF2-R-XhoI:5’-CGGCTCGAG CCATAGAGCCCACCGCATC-3’ (SEQ ID NO:5;加下劃線處為XhoI位點)擴增來自pcDNA3.1+之ORF2-BGH片段並將其選殖至轉移質體pUC-gG-MCS (圖1)之AgeI/XhoI限制位點中。使用引子SalI-EF1 F PCR:5’-GCGTCGAC CGTGAGGCTCCGGT 3’(SEQ ID NO:8;加下劃線處為SalI位點)及NotI-E2-R:5’-TAAAGCGGCCGC ACCAGCGGCGAGTTGTTCTG 3’(SEQ ID NO:7;加下劃線處為NotI位點)將合成EF1α啟動子及擴增的E2片段分別選殖至轉移質體pUC-gG-MCS (圖1)之SalI/NotI限制位點中。藉由PCR及測序來驗證重組轉移質體pUC-gG-ORF2-E2。包含gG-CMV-ORF2-BGH-EF1-E2-SV40-gG之核酸的序列列於SEQ ID NO:2中。四價及三價重組 PRV 之生成 :藉由EcoRI酶線性化PRV Bartha表現紅色螢光蛋白(RFP)之核衣殼DNA (由Prof. Enquist, Princeton University, USA友情提供)用於重組。用HindIII消化轉移質體pUC-gG-ORF5-ORF2-E2或pUC-gG-ORF2-E2,以釋放用於組合之構築體。簡言之,將PK-15細胞以1× 106 個細胞/孔接種於6孔板中。使用Lipofectamine 2000將3 ug經消化之構築體DNA gG-ORF5-ORF2-E2 (四價PRV疫苗)或gG-ORF2-E2 (三價PRV疫苗)與5 ug經線性化之PRV-RFP核衣殼DNA共轉染至PK-15細胞中。發生細胞病變效應後,將轉染後代平鋪於PK-15細胞中用於蝕斑純化。蝕斑分析 :將(冷凍-解凍後)含有重組病毒之轉染上清液自稀釋度10-1 滴定至10-6 ,並與PK-15細胞培養物在37℃並供應有5% CO2 下一起培育1小時。去除上清液並更換為1%瓊脂醣覆蓋物。48小時後選擇不顯示螢光信號之病毒蝕斑。3至4輪蝕斑純化後,使所選蝕斑在PK-15細胞上傳代並對重組病毒進行測序以證實引入基因(ORF2、E2及ORF5)之存在及突變之不存在。藉由間接免疫螢光分析之表現分析 :使用CSF-E2特異性多株或PCV2-ORF2特異性單株抗體藉由免疫螢光染色分析經三價或四價rPRV感染之細胞。簡言之,在37℃及5% CO2 下用三價或四價rPRV感染PK15細胞達36 h。固定後,用0.1% Triton X-100滲透細胞並在37℃下與抗E2或抗ORF2多株抗體一起培育1 h。然後將細胞與FITC偶聯之兔抗小鼠抗體(DAKO Cytomation, Copenhagen, Denmark)一起培育。用倒置螢光顯微鏡(Olympus, Essex, UK)檢測螢光信號並藉由數位成像系統(Nikon, Tokyo, Japan)捕獲影像。重組 PRV 疫苗於 PK15 BHK21 細胞系中之複制動力學 :為研究不同細胞系中之病毒複製,以5之MOI用PRV-Bartha或三價rPRV或四價rPRV感染PK15或BHK21細胞。在37℃下1 h後,用磷酸鹽緩衝鹽水(PBS)將細胞洗滌兩次並添加1 mL含有2% FBS之培養基。在37℃下將培養板培育24 h及48 h。在該等時間點時,藉由三次冷凍及解凍循環將細胞溶解,並將含有病毒之上清液儲存在-80℃下。對PK15細胞一式三份實施病毒滴定,其中每一細胞類型及時間點重複三次。使用Reed及Muench方法(Reed及Muench, 1938)計算病毒效價並將其表示為50%組織培養物感染劑量/體積(TCID50 /mL)。重組 PRV 疫苗構築體之遺傳穩定性 :將重組PRV疫苗構築體在PK15細胞中連續傳代多達5次。5次連續傳代後,藉由PCR及測序驗證三價rPRV或四價rPRV疫苗構築體,以證實突變或缺失不存在。小鼠模型中之免疫原性研究 :在第0天及第21天,使用106 TCID50 之減毒PRV Bartha (陰性對照)、二價rPRV (PRV及ORF2)、三價rPRV (PRV、ORF2及E2)、四價(PRV、ORF2、E2及ORF5)及PBS對照以肌內方式對六至七週齡之雌性BALB/c小鼠(n=8隻/組)進行疫苗接種。在第20天及第42天收集血清。在第20天及第42天藉由間接ELISA根據血清PRV特異性抗體效價、PCV2-ORF2、CSF-E2及PRRSV-ORF5特異性抗體效價評估重組疫苗構築體之免疫原性。藉由間接 ELISA 對特異性抗體效價之量測 :藉由間接ELISA測試抗PRV、PCV2-ORF2、CSF-E2及PRRSV-ORF5抗原之血清特異性抗體效價。簡言之,用包覆緩衝液(0.1 mol/公升碳酸鹽-碳酸氫鹽,pH 9.6)中之經純化PRV病毒抗原或PCV2-ORF2或CSF-E2或PRRSV-ORF5抗原包覆微量滴定孔ELISA板。將血清試樣(以1:10稀釋)在含有0.05% Tween 20之PBS中之3%脫脂奶粉中連續稀釋2倍,將其一式三份添加至板。用PBS-T洗滌三次後,將稀釋1000倍之辣根過氧化物酶(HRP)偶聯之山羊抗小鼠免疫球蛋白(DAKO)添加至每一孔中。藉由100 ml TMB受質(3, 3', 5, 5'-四甲基聯苯胺)使反應發生並藉由50 ml 2 M H2SO4使反應終止。使用微孔板吸光度讀取器(Tecan, Switzerland)測定450 nm下之光密度。 實例2 重組PRV疫苗之構築及表徵 藉由同源重組使線性轉移質體(pUC-gG-四價/pUC-gG-三價)盒整合至PRV Bartha DNA中生成表現PCV2-ORF2及CSF-E2之重組三價PRV載體(三價PRV-ORF2-E2)及表現PCV2-ORP2、CSF-E2及PRRSV-ORF5之四價PRV載體(四價PRV-ORF5-ORF2-E2)(圖1)。轉染後,藉由選擇非紅色螢光蝕斑在PK15細胞上對所得重組體進行蝕斑純化。對陽性重組體進行再篩選。3-4次蝕斑純化後,藉由測序分析陽性重組體並在PK15細胞中滴定。另外,針對個別ORF2或E2特異性抗體之免疫螢光分析展示ORF2或E2蛋白藉由單一PRV載體之有效表現(圖2A及2B)。與此相反,對於PRV陰性對照未觀察到螢光細胞。而且,穩定性測試揭露重組疫苗(四價rPRV或三價rPRV)在PK15細胞中5次連續傳代後係穩定的且不存在突變或缺失。 實例3 PK15及BHK21細胞中之複製 為研究在gG基因座插入或表現外源轉基因是否影響複製性質,在PK15與BHK21細胞中比較重組PRV疫苗構築體(三價rPRV、四價rPRV)及親代PRV Bartha株之一步生長動力學。三價及四價PRV疫苗構築體二者之病毒效價在PK15細胞及BHK21細胞中分別顯示108 TCID50 及108.3 TCID50 ,且複製效價與PRV-Bartha (TCID50 108.5-8.7 )親代株相當。 實例4 小鼠模型中之免疫原性研究 結果顯示,用四價PRV疫苗免疫之小鼠顯示抗PRV、E2、ORF2及PRRSV之血清特異性抗體含量。另外,用三價PRV疫苗進行疫苗接種之小鼠誘導抗PRV、ORF2及E2抗原之血清特異性抗體含量(圖3)。抗體效價結果顯示,用二價rPRV (ORF2)免疫之小鼠顯示抗PCV2-ORF2抗原之>260的抗體效價。另外,用三價PRV及四價PRV疫苗免疫之小鼠分別顯示抗ORF2抗原之240及180之抗體效價。此外,三價及四價PRV疫苗二者顯示抗古典豬瘟E2醣蛋白之>256之抗體效價(圖4)。 除非本文另外指示或上下文明顯矛盾,否則在闡述本發明的上下文中(尤其在下文申請專利範圍之上下文中)使用術語「一(「a」及「an」)」及「該」及相似指示物皆應理解為涵蓋單數與複數形式二者。除非另外註明,否則術語「包含」、「具有」、「包括」及「含有」應理解為開放性術語(即,意指「包括但不限於」)。除非本文另外指示,否則本文中數值範圍之列舉僅意欲作為個別提及落入此範圍內之每一單獨值之速記方法,且每一單獨值係如同在本文個別列舉一般併入本說明書中。除非本文另外指示或上下文另外明顯矛盾,否則本文中所闡述之所有方法皆可以任一適宜順序實施。除非另外主張,否則使用本文中所提供之任何及所有實例或實例性語言(例如,「諸如」)僅意欲更好地說明本發明且並不限制本發明之範疇。本說明書中之語言皆不應理解為指示任一未主張要素對於本發明實踐係至關重要的。 本文中闡述本發明之實施例,包括本發明者已知實施本發明之最佳模式。熟習此項技術者在閱讀前述說明之後可旋即明瞭彼等實施例之變化形式。本發明者預期熟習此項技術者視需要採用此等變化形式,且本發明者期望本發明可以不同於如本文中所具體闡述之方式實踐。因此,本發明包括如適用法律所允許的本文隨附申請專利範圍中所列舉標的物之所有修改及等效形式。此外,除非本文另外指示或上下文另外明顯矛盾,否則在其所有可能之變化形式中,上述要素之任一組合皆涵蓋於本發明中。 參考書目 Dong B, Zarlenga DS, Ren X (2014). An overview of live attenuated recombinant pseudorabies viruses for use as novel vaccines. J Immunol Res 214:824630. Jantafong T, Sangtong P, Saenglub W等人(2015). Genetic diversity of porcine reproductive and respiratory syndrome virus in Thailand and Southeast Asia from 2008 to 2013. Vet Microbiol. 176(3-4):229-38. Jiang Y, Fang L, Xiao S.等人(2007).Immunogenicity and protective efficacy of recombinant pseudorabies virus expressing the two major membrane-associated proteins of porcine reproductive and respiratory syndrome virus. Vaccine, 25,第3期,547-560. Klingbeil K, Lange E, Teifke JP, Mettenleiter TC, Fuchs W. (2014). Immunization of pigs. with an attenuated pseudorabies virus recombinant expressing the hemagglutinin of pandemic swine origin H1N1 influenza A virus. J Gen Virol,第95卷,948-959. Klupp BG, Lominiczi B, Visser N等人(2012). Mutations affecting the UL21 gene contribute to avirulence of pseudorabies virus vaccine strain Bartha. Virol 212:466-473. Li G, Shi N, Suo S, Cui J, Zarlenga D, Ren X.(2012). Vaccination of mice with ORF5 plasmid DNA of PRRSV; enhanced effects by co-immunizing with porcine IL-15. Immunol Invest. 41(3):231-48. Li X,Liu R, Tang H, Jin M, Chen H, Qian P. (2008). Induction of protective immunity in swine by immunization with live attenuated recombinant pseudorabies virus expressing the capsid precursor encoding regions of foot-and-mouth disease virus. Vaccine, 第26卷,第22期,2714-2722. Liu, J., Chen, I.及Kwang, J. (2005). Characterization of a previously unidentified viral protein in porcine circovirus type 2-infected cells and its role in virus-induced apoptosis. J. Virol.79: 8262-8274. Nie H, Fang R, Xiong BQ.等人(2011). Immunogenicity and protective efficacy of two recombinant pseudorabies viruses expressing Toxoplasma gondii SAG1 and MIC3 proteins. Vet Parasitol, 第181卷,第2-4期,215-221. Opriessnig T, O'Neill K, Gerber PF, de Castro AM等人(2013). A PCV2 vaccine based on genotype 2b is more effective than a 2a-based vaccine to protect against PCV2b or combined PCV2a/2b viremia in pigs with concurrent PCV2, PRRSV and PPV infection. Vaccine. 31(3):487-94. PomeranZ, L. E., Reynolds, A. E.及Hengartner, C. J. (2005). Molecular biology of pseudorabies virus: impact on neurovirology and veterinary medicine. Microbiol Mol Biol Rev 69, 462-500. Qiu HJ, Tian ZJ, Tong GZ等人,(2005). Protective immunity induced by a recombinant pseudorabies virus expressing the GP5 of porcine reproductive and respiratory syndrome virus in piglets. Vet Immunol Immunopathol,第106卷,第3-4期,309-319. Reed, LJ. Muench, H. A (1938). Simple method of estimating fifty percent endpoints. Am. J. Epidemiol. 27,493-497. Song Y,Jin M, Zhang S等人(2007). Generation and immunogenicity of a recombinant pseudorabies virus expressing cap protein of porcine circovirus type 2. Vet Microbiol, 第119卷,第2-4期,97-104. Xu G, Xu X, Li Z等人(2004). Construction of recombinant pseudorabies virus expressing NS1 protein of Japanese encephalitis (SA14-14-2) virus and its safety and immunogenicity. Vaccine,第22卷,第15-16期,1846-1853. Yin G, Gao L, Shu X, Yang G, Guo S, Li W. (2012). Genetic diversity of the ORF5 gene of porcine reproductive and respiratory syndrome virus isolates in southwest China from 2007 to 2009. PLoS One. 7(3):e33756 Zhang H, Li X, Peng G, Tang C, Zhu S, Qian S, Xu J, Qian P. (2014). GlycoproteinE2 of classical swine fever virus expressed by baculovirus induces the protective immune responses in rabbits. Vaccine, 32(49):6607-13.The invention relates to the field of vaccines. More specifically, the present invention relates to multivalent vaccines against major swine virus diseases. In one embodiment, the multivalent vaccine is a recombinant pseudorabies virus vector. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. The term "expression" in relation to a gene sequence refers to the transcription of the gene and (if necessary) the translation of the resulting mRNA transcript to protein. Therefore, as will be clear from the context, the expression of a protein coding sequence is derived from the transcription and translation of the coding sequence. As used herein, "gene" refers to a nucleic acid sequence that encompasses the coding region of a gene product. In the context of inserting a nucleic acid fragment (e.g., a recombinant DNA construct) into a cell, "introduced" means "transfected" or "transformed" or "transduced" and includes a reference to the inclusion of a nucleic acid fragment into a yeast or fungus In a cell, where a nucleic acid fragment can be incorporated into the cell's genome (e.g., chromosomal, plastid, or mitochondrial DNA), transformed into an autonomous replicon or transiently expressed (e.g., transfected mRNA). "Operable linkage" or "operably linked" or "operatively linked", as used herein, is understood to mean, for example, that the regulatory elements are arranged in sequence in such a way that each regulatory element can achieve its function in the recombinant expression of the nucleic acid And desired nucleic acids and (if necessary) other regulatory elements (e.g., terminators) to produce the desired product. This does not require a direct connection in the chemical sense. Genetic control sequences (e.g., enhancer sequences) can also exert their effect on target sequences from slightly distant locations or actually from other DNA molecules (cis or trans localization). A preferred arrangement is one in which the nucleic acid sequence to be expressed recombinantly is positioned downstream of the sequence used as a promoter such that the two sequences are covalently bonded to each other. Regulatory or control sequences can be located on either the 5 'side of the nucleotide sequence or the 3' side of the nucleotide sequence, as is well known in the art. The terms "polynucleotide", "nucleic acid" and "nucleic acid molecule" are used interchangeably herein and refer to a polymer of nucleotides, which polymers may be nucleotides and / or nucleosides (including DNA , RNA and its derivatives) natural or synthetic linear and sequential arrays. It includes chromosomal DNA, self-replicating plastids, infectious polymers of DNA or RNA, and DNA or RNA that performs major structural functions. Unless otherwise indicated, nucleic acids or polynucleotides are written from left to right in a 5 'to 3' orientation. Nucleotides are mentioned with their recognized single letter code. Number ranges include numbers that define the range. The terms "polypeptide", "peptide" and "protein" are used interchangeably herein and refer to polymers of amino acid residues. These terms apply to amino acid polymers in which one or more amino acid residues are artificial chemical analogues of the corresponding natural amino acid, as well as natural amino acid polymers. Amino acids may be mentioned in their well-known three-letter or single-letter symbols. The amino acid sequences are written from left to right in the amine to carboxy orientation, respectively. Number ranges include numbers that define the range. "Promoter" refers to a nucleic acid fragment capable of controlling the transcription of another nucleic acid fragment. A "promoter active in mammalian cells" is a promoter capable of controlling transcription in mammalian cells, whether or not they are derived from mammalian cells. "Recombinant" refers to an artificial combination of two originally separated sequence segments (for example) obtained by chemical synthesis or by manipulation of isolated nucleic acid segments by genetic engineering techniques. "Recombinant" also includes references to cells or vectors modified by the introduction of heterologous nucleic acids or cells derived from such modified cells, but does not cover the use of natural events (e.g., spontaneous mutation, natural transformation / transformation). (Transduction / translocation) altered cells or vectors, such as those that appear without intentional human intervention. "Recombinant DNA construct" refers to a combination of nucleic acid fragments that are not normally found together in nature. Thus, a recombinant DNA construct may contain regulatory sequences and coding sequences of different origins, or regulatory sequences and coding sequences of the same origin but arranged in a manner different from that commonly found in nature. The terms "recombinant DNA construct" and "recombinant construct" are used interchangeably herein. In several embodiments described herein, recombinant DNA constructs can also be considered as "over-expressing DNA constructs." The term "nucleic acid construct" is also used interchangeably with "recombinant DNA construct". `` Regulatory sequence '' means a nucleoside located upstream of a coding sequence (5 'non-coding sequence), within or downstream of a coding sequence (3' non-coding sequence) and affecting the transcription, RNA processing or stability or translation of the relevant coding sequence Acid sequence. Regulatory sequences may include, but are not limited to, promoters, translation leader sequences, introns, and polyadenylation recognition sequences. The terms "regulatory sequence" and "regulatory element" are used interchangeably herein. Sequence alignment and percent identity calculations can be determined using a number of comparison methods designed to detect homologous sequences, including, but not limited to, the LASERGENE® bioinformatics computing suite (DNASTAR ® Inc., Madison, WI). Unless otherwise stated, multiple alignments of the sequences provided herein are performed using the Clustal V alignment method (Higgins and Sharp (1989) CABIOS. 5: 151-153) using default parameters (gap penalty = 10, gap length penalty) = 10) to implement. The default parameters for using the Clustal V method to align and calculate the percent identity of protein sequences are KTUPLE = 1, gap penalty = 3, window = 5, and reserved diagonal = 5. For nucleic acids, these parameters are KTUPLE = 2, gap penalty = 5, window = 4, and reserved diagonal = 4. After aligning the sequences, use the Clustal V program to obtain the "percent consistency" and "differentiation" values by looking at the "sequence distance" table on the same program; unless otherwise stated, the consistency provided and claimed in this article Sex percentage and divergence are calculated in this way. Alternatively, useClustal W Comparison method.Clustal W Comparison methods (explained by Higgins and Sharp, CABIOS. 5: 151-153 (1989); Higgins, DG et al., Comput. Appl. Biosci. 8: 189-191 (1992)) can be found in LASERGENE® Bioinformatics MegAlign ™ v6.1 program of the calculation software group (DNASTAR® Inc., Madison, Wis.). The default parameters for multiple alignments correspond to gap penalty = 10, gap length penalty = 0.2, delayed divergence sequence = 30%, DNA conversion weight = 0.5, protein weight matrix = Gonnet Series, DNA weight matrix = IUB. For comparison by comparison, the default parameters are comparison = slow-accurate, gap penalty = 10.0, gap length = 0.10, protein weighting matrix = Gonnet 250 and DNA weighting matrix = IUB. useClustal W After the programs compare the sequences, you can get the "Percent Consistency" and "Diversity" values by looking at the "Sequence Distance" table in the same program. The term "under stringent conditions" means that two sequences hybridize under moderate or highly stringent conditions. More specifically, moderately stringent conditions can easily be determined by those skilled in the art, for example, based on the length of the DNA. The basic conditions are by Sambrook et al.Molecular Cloning: A Laboratory Manual , 3rd Edition, Chapters 6 and 7, as stated in Cold Spring Harbor Laboratory Press, 2001, and includes the use of a prewash solution (5 × SSC, 0.5% SDS, 1.0 mM EDTA ( pH 8,0)), about 50% formamidine, 2 × SSC to 6 × SSC, hybridization conditions at about 40 ° -50 ° C (or other similar hybridization solutions, such as Stark solution, at about 50% formam Washing conditions in amines at about 42 ° C) and, for example, about 40 ° C to 60 ° C, 0.5 × SSC -6 × SSC, 0.1% SDS. Preferably, moderately stringent conditions include hybridization (and washing) at about 50 ° C and 6 × SSC. Highly stringent conditions can also be easily determined by those skilled in the art, for example, based on the length of the DNA. Generally, these conditions include hybridization and / or washing at higher temperatures and / or lower salt concentrations compared to moderately stringent conditions (e.g., hybridization at about 65 ° C, 6 × SSC to 0.2 × SSC, (Best 6 × SSC, better 2 × SSC, best 0.2 × SSC). For example, highly stringent conditions may include hybridization as defined above and washing at about 65 ° C-68 ° C, 0.2 × SSC, 0.1% SDS. In hybridization and washing buffer, SSPE (1 × SSPE system 0.15 M NaCl, 10 mM NaH2 PO4 And 1.25 mM EDTA, pH 7.4) instead of SSC (1 × SSC line 0.15 M NaCl and 15 mM sodium citrate); washing was performed for 15 minutes after completion of hybridization. Commercial hybrid kits can also be used, which use non-radioactive substances as probes. Specific examples include hybridization using ECL direct labeling and detection systems (Amersham). Stringent conditions include, for example, the use of a hybridization buffer supplemented with 5% (w / v) blocking reagent and 0.5 M NaCl included in the kit for hybridization at 42 ° C for 4 hours, and 0.4% at 55 ° C Wash twice in 20 minutes in SDS, 0.5 × SSC and once in 5 minutes in 2 × SSC at room temperature. The term "substantially homologous" or "substantially homologous" as used herein with respect to a nucleic acid sequence includes a nucleotide sequence that hybridizes under stringent conditions to the mentioned SEQ ID NO: or a portion or complement thereof, which is These are the following: anti-parallel alignment is allowed between two sequences, and then the two sequences can form hydrogen bonds with corresponding bases on opposite strands under stringent conditions to form a stringent stringent (including High stringency) conditions are sufficient for double-stranded molecules to be detected using methods well known in the art. A substantially homologous sequence may have about 70% to about 80% sequence identity, or more preferably about 80% to about 85% sequence identity, with a reference nucleotide sequence or complement thereof as listed in the Sequence Listing, or Optimally about 90% to about 95% sequence identity, up to about 99% sequence identity. Alternatively, substantially homologous sequences include those that hybridize to target regions of plant gene introns under stringent conditions. For stringent conditions, see the description herein and also see U.S. Patent Nos. 8,455,716 and 8,536,403. "PRRSV ORF5 gene" or "ORF5 gene" refers to the ORF5 gene derived from the highly pathogenic PRRSV Chinese strain (HP-HRRSV-JXA1). In some embodiments, the ORF5 gene has the sequence listed in nucleotides 1041-1643 of SEQ ID NO: 1. In other embodiments, based on the Clustal V or Clustal W alignment method, when compared to nucleotides 1041-1643 of SEQ ID NO: 1, the ORF5 gene has at least 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity. "PCV ORF2 gene" or "ORF2 gene" refers to the ORF2 gene derived from PCV2 Indonesia strain (genotype 2B) (PCV2 TLL-Indo, gene bank accession number KX130941). In some embodiments, the ORF2 gene has the sequence listed in nucleotides 3063-3767 of SEQ ID NO: 1. In other embodiments, based on the Clustal V or Clustal W alignment method, the ORF2 gene has at least 85%, 86%, 87%, 88%, 89% when compared to nucleotides 3063-3767 of SEQ ID NO: 1. %, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity. "CSF E2 gene" or "E2 gene" refers to the E2 gene of the newly emerged subgenotype 2.1 (CSF TLL-Indo, GenBank Accession No. KX130940) derived from the CSF Indonesia strain. In some embodiments, the E2 gene has the sequence listed in nucleotides 4729-5916 of SEQ ID NO: 1. In other embodiments, based on the Clustal V or Clustal W alignment method, the E2 gene has at least 85%, 86%, 87%, 88%, 89% when compared to nucleotides 4729-5916 of SEQ ID NO: 1. %, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity. In one aspect, the invention provides a quadrivalent PRV vaccine against PRRSV, PCV2, CSF, and PRV. According to this aspect, a nucleic acid construct is prepared, which includes a gene of PRRSV, a gene of PCV2, and a gene of CSF. In some embodiments, the PRRSV gene is the PRRSV ORF5 gene. In some embodiments, the PRRSV ORF5 gene line is derived from the highly pathogenic PRRSV Chinese strain (HP-HRRSV-JXA1). In some embodiments, the ORF5 gene has a nucleotide sequence set forth herein. In some embodiments, the PCV2 gene is the PCV2 ORF2 gene. In some embodiments, the PCV2 gene line is derived from the PCV2 Indonesia strain (genotype 2B). In some embodiments, the ORF2 gene has a nucleotide sequence set forth herein. In some embodiments, the CFS gene is the CFS E2 gene. In some embodiments, the CFS E2 gene line is derived from the newly emerged subgenotype 2.1 of the CSF Indonesia strain. In some embodiments, the E2 gene has a nucleotide sequence set forth herein. In some embodiments, each gene is operably linked to a promoter that is active in mammalian cells. According to the present invention, any suitable promoter that is active in mammalian cells can be used. In some embodiments, the promoter is a cytomegalovirus (CMV) promoter. In some embodiments, the CMV promoter is the CMV immediate early (CMV ie) promoter. In some embodiments, the CMV ie promoter has the sequence listed in nucleotides 445-1034 of SEQ ID NO: 1. In some embodiments, based on the Clustal V or Clustal W alignment method, the CMV promoter has at least 85%, 86%, 87%, 88%, when compared to nucleotides 445-1034 of SEQ ID NO: 1, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity. In some embodiments, the promoter is an elongation factor 1 alpha (EF1 alpha) promoter. In some embodiments, the EF1α promoter has the sequence listed in nucleotides 1869-3056 of SEQ ID NO: 1. In some embodiments, based on Clustal V or Clustal W alignment methods, when compared to nucleotides 1869-3056 of SEQ ID NO: 1, the EF1α promoter has at least 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity. In some embodiments, each gene is operably linked to a terminator sequence operable in a mammalian cell. According to the present invention, any suitable terminator that is active in mammalian cells can be used. In some embodiments, the terminator sequence is a bovine growth hormone polyadenylation (BGH polyA) sequence. In some embodiments, the BGH polyA sequence has the sequence listed in nucleotides 1644-1868 of SEQ ID NO: 1. In some embodiments, based on Clustal V or Clustal W alignment methods, when compared to nucleotides 1644-1868 of SEQ ID NO: 1, the BGH polyA sequence has at least 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity. In some embodiments, the terminator sequence is a SV40 virus polyadenylation (SV40 polyA) sequence. In some embodiments, the SV40 polyA sequence has the sequence listed in nucleotides 5925-6192 of SEQ ID NO: 1. In some embodiments, based on the Clustal V or Clustal W alignment method, the SV40 polyA sequence has at least 85%, 86%, 87%, 88%, when compared to nucleotides 5925-6192 of SEQ ID NO: 1, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity. In some embodiments, a nucleic acid construct is provided that includes a PRRSV gene, a PCV2 gene, and a CSF gene as set forth herein. In some embodiments, the nucleic acid construct further comprises a promoter and / or a terminator as set forth herein. In some embodiments, the nucleic acid construct further comprises a gG sequence of PRV. In some embodiments, the PRV is the PRV Bartha-K61 strain. In some embodiments, the nucleic acid construct comprises a nucleotide sequence set forth in SEQ ID NO: 1. In some embodiments a PRV strain is provided, wherein the PRV strain is modified to contain a nucleic acid construct as set forth herein. In some embodiments, the modified PRV is a modified PRV Bartha-K61 strain. In some embodiments, the nucleic acid constructs in the modified PRV strain are stable and free of mutations or deletions after passage of 5 generations in porcine kidney 15 (PK-15) cells. In some embodiments, the PK-15 cell line is ATCC® CCL-33 ™ cells obtained from the American Type Culture Collection. In some embodiments, a cell line is provided that is transfected with a nucleic acid construct as described herein in a manner suitable for the production of a virus useful in a tetravalent vaccine. In some embodiments, the nucleic acid constructs described herein are inserted into the PRV strains described herein by homologous recombination in a transfected cell line. In some embodiments, the cell line is a PK-15 cell as described herein. In another aspect, the invention provides a trivalent PRV vaccine against PCV2, CSF and PRV. According to this aspect, a nucleic acid construct is prepared, which includes a gene of PCV2 and a gene of CSF. In some embodiments, the PCV2 gene and the CSF gene line are as set forth herein. In some embodiments, each gene is operably linked to a promoter that is active in mammalian cells. In some embodiments, the promoter is as set forth herein. In some embodiments, each gene is operably linked to a terminator sequence operable in a mammalian cell. In some embodiments, the terminator sequence is as set forth herein. In some embodiments, a nucleic acid construct is provided that includes a PCV2 gene and a CSF gene as set forth herein. In some embodiments, the nucleic acid construct further comprises a promoter and / or a terminator as set forth herein. In some embodiments, the nucleic acid construct further comprises a gG sequence of PRV. In some embodiments, the PRV is the PRV Bartha-K61 strain. In some embodiments, the nucleic acid construct comprises a nucleotide sequence set forth in SEQ ID NO: 2. In some embodiments a PRV strain is provided, wherein the PRV strain is modified to contain a nucleic acid construct as set forth herein. In some embodiments, the modified PRV strain is as set forth herein. In some embodiments, the nucleic acid constructs in the modified PRV strain are stable and free of mutations or deletions after passage of 5 generations in porcine kidney 15 (PK-15) cells. In some embodiments, the PK-15 cell line is as set forth herein. In some embodiments, a cell line is provided that is transfected with a nucleic acid construct as described herein in a manner suitable for the production of a virus useful in a trivalent vaccine. In some embodiments, the nucleic acid constructs described herein are inserted into the PRV strains described herein by homologous recombination in a transfected cell line. In some embodiments, the cell line is a PK-15 cell as described herein. When preparing a nucleic acid construct, multiple DNA fragments can be manipulated to provide the DNA sequence in an appropriate orientation and, if necessary, in an appropriate reading frame. To this end, adaptors or linkers may be used to join the DNA fragments, or other manipulations may be involved to provide convenient restriction sites, remove excess DNA, remove restriction sites or the like. For this purpose, it may involve in vitro mutagenesis, primer repair, restriction, annealing, re-substitution (e.g., conversion and transversion). The nucleic acids of the invention can also be synthesized completely or partially by methods known in the art, especially when it is desired to provide plant-preferred sequences. Thus, all or a portion of the nucleic acids of the invention can be synthesized using codons preferred by the host of choice. Species-preferred codons can be determined, for example, from the most commonly used codons in proteins expressed in a particular host species. Other modifications of the nucleotide sequence can produce mutants with slightly altered activity. Tetravalent recombinant PRV or trivalent recombinant TRV lines are prepared by transfection of a suitable cell line, such as the PK-15 cell line described herein. In some embodiments, the cell line is transfected with a nucleic acid construct and PRV nucleocapsid DNA as set forth herein. In some embodiments, the PRV nucleocapsid DNA is modified to contain a nucleic acid construct for expressing red fluorescent protein (RFP). The tetravalent recombinant PRV or trivalent recombinant TRV is passaged in PK-15 cells for several generations to ensure that there are no mutations or deletions in the viral nucleic acid of the stable recombinant virus. In some embodiments, passage 5 is sufficient to produce a stable recombinant virus. After preparation, the recombinant TRV virus can be replicated in a suitable cell line. In some embodiments, the cell line is a PK-15 cell line (cell) as set forth herein. In some embodiments, the cell line (cell) is a young hamster kidney 21 (BHK21) cell line. In some embodiments, the BHK21 cell line is BHK21 (pure line 13). In some embodiments, the BHK21 (pure line 13) cell line ATCC® CCL-10TM It can also be purchased from the American Strain Preservation Center. Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) and Pseudorabies Virus (PRV) are the main causes of infectious reproductive disorders in pigs and cause significant losses to the pig industry worldwide. In addition, PCV2 and classical swine fever cause devastating diseases and have a serious impact on animal welfare and economy in many Asian countries. The development of a multivalent vaccine approach could potentially reduce vaccine administration to a single dose schedule covering all four viruses, which greatly helps protect pigs from the status of the four diseases. Select live attenuated PRV Bartha-K61 as the carrier for multivalent vaccine development. The genome structure and genetic background of PRV Bartha-K61 strain are relatively well defined, and the reported amplification and stable performance of foreign genes will not affect the stability of the virus itself (Boldogkoi, Nogradi, 2003). As explained herein, the four-valent PRVs expressing PCV2-ORF2, CSF-E2 and PRRSV-ORF5 and the three-valent PRVs expressing PCV2-ORF2 and CSF-E2 were cloned into the PRV Bartha K-61 vaccine strain gG locus. Replication analysis and stability tests revealed that recombinant PRV (trivalent or tetravalent PRV) is as effective and stable and replicates in vitro as PRV Bartha K-61. This demonstration does not insert foreign genes into the PK and gG loci of PRV. Will affect PRV replication. In addition, immunogenicity studies in mouse experiments have shown that tetravalent PRV induces a large number of serum-specific humoral antibodies against PCV2-ORF2, CSF-E2, and PRRSV-ORF5 antigens. Similarly, trivalent PRV induces anti-PCV2-ORF2 and CSF-E2 serum-specific humoral antibody. These results indicate a novel way to develop a polyvalent immune gene from a major porcine virus in PRV Bartha K-61 to develop a multivalent vaccine against PCV2, CSF or PRRSV and including pseudorabies. The recombinant pseudorabies virus vector of the present invention comprising ORF2 of PCV2, E2 of CSF and ORF5 of PRRSV can effectively induce antibodies against all four diseases, which allows cost-effective mass production in a single preparation. According to the present invention, both trivalent and tetravalent recombinant vaccines were stable after 5 consecutive passages in the PK15 / BHK21 cell line. Insertion of two or three genes in a single insertion site is extremely stable and shows neither genetic instability nor transcriptional modification by the inserted gene. According to the present invention, it has been found that inserting multiple genes into a single insertion site of the gG locus of PRV-Bartha does not affect the virus titer. The invention also provides a method of use. In one embodiment, the invention provides a method of eliciting a protective immune response in an individual (e.g., a pig) comprising administering to the individual a prophylactic, therapeutic, or immune effective amount of a recombinant PRV as set forth herein. In another embodiment, the invention provides a method for preventing an individual from developing PRV, PRRSV, PCV2 and CSF or PRV, PCV2 and CSF, comprising administering to the individual a prophylactic, therapeutic or immune effective amount of a recombinant PRV as set forth herein . As used herein, "administration" means delivery using any of a variety of methods and delivery systems known to those skilled in the art. Administration can be performed, for example, intraperitoneally, intracerebrally, intravenously, orally, transmucosally, subcutaneously, percutaneously, intradermally, intramuscularly, topically, parenterally, via implantation, intrathecally, intralymphally, Intralesional, pericardial or epidural. The agent or composition can also be administered in the form of an aerosol, for example for pulmonary and / or intranasal delivery. The administering may be performed, for example, once, multiple times, and / or over one or more extended periods. Priming a protective immune response in an individual can be achieved, for example, by administering a single dose of the vaccine to the individual, followed by one or more subsequent administrations of the vaccine after a suitable period of time. A suitable period of time between administration of the vaccine can be easily determined by those skilled in the art, and is usually about several weeks to several months. However, the invention is not limited to any particular method, route or frequency of administration. A "prophylactically effective dose" or "immunologically effective dose" is any vaccine that induces an immune response in an individual that protects the individual from infection with the virus or the condition when administered to an individual that is susceptible to the virus or is susceptible to the disease the amount. "Protecting" an individual means reducing the likelihood that the individual will be infected with the virus or reducing the likelihood of the individual's disease to occur at least 2 times, preferably at least 10 times. For example, if an individual has a 1% chance of contracting the virus, a two-fold reduction in the individual's chance of contracting the virus will give the individual a 0.5% chance of contracting the virus. Optimally, the "prophylactically effective dose" induces an immune response in the individual that completely prevents the individual from becoming infected with the virus or completely prevents the onset of the individual's condition. Certain embodiments of any of the immunological and therapeutic methods of the invention may further comprise administering at least one adjuvant to the individual. "Adjuvant" shall mean any agent suitable for enhancing the immunogenicity of an antigen and enhancing the immune response of an individual. Numerous adjuvants (including particulate adjuvants) and methods of combining adjuvants and antigens suitable for use with both protein-based and nucleic acid-based vaccines are well known to those skilled in the art. Adjuvants suitable for use with protein immunization include, but are not limited to, alum, Freund's complete adjuvant (FCA), fluorine incomplete adjuvant (FIA), alum adjuvants, saponin-based adjuvants Agents (for example, Quil A and QS-21) and the like. It should be understood that when the virus strains described herein are used to elicit a protective immune response in an individual or to prevent an individual from suffering from a virus-related disease, it is a composition that additionally comprises one or more physiologically or pharmaceutically acceptable carriers Form is administered to the individual. Pharmaceutically acceptable carriers are well known to those skilled in the art and include (but are not limited to) 0.01 M-0.1 M and preferably 0.05 M phosphate buffered saline, phosphate buffered saline (PBS) or 0.9% saline One or more. These carriers also include aqueous or non-aqueous solutions, suspensions and emulsions. Aqueous carriers include water, alcoholic / aqueous solutions, emulsions or suspensions, saline and buffered media. Examples of non-aqueous solvents are propylene glycol, polyethylene glycol, vegetable oils (eg, olive oil), and injectable organic esters (eg, ethyl oleate). Parenteral vehicles include sodium chloride solution, Ringer's dextrose, dextrose and sodium chloride, lactated Ringer's solution, and non-volatile oil. Intravenous vehicles include fluid and nutritional supplements, electrolyte supplements (e.g., based on Ringer's dextrose), and the like. The solid composition may include a non-toxic solid carrier such as glucose, sucrose, mannitol, sorbitol, lactose, starch, magnesium stearate, cellulose or a cellulose derivative, sodium carbonate, and magnesium carbonate. For administration, for example, in the form of an aerosol for pulmonary and / or intranasal delivery, it is preferred to administer the agent or composition with a non-toxic surfactant (e.g., an ester or partial ester of a C6 to C22 fatty acid or a natural glyceride and Propellant). Additional carriers such as lecithin can be included to facilitate intranasal delivery. Pharmaceutically acceptable carriers may further contain minor amounts of auxiliary substances, such as wetting or emulsifying agents, preservatives, and other additives, such as antimicrobials, antioxidants, and chelating agents, which increase the shelf life of the active ingredients and / or Effectiveness. As is well known in the art, the compositions of the present invention can be formulated to provide rapid, sustained or delayed release of the active ingredient after administration to an individual. The invention also provides a kit for immunizing an individual with a recombinant PRV as set forth herein. The kit contains the recombinant PRVs described herein, pharmaceutically acceptable carriers, applicators, and explanatory materials on their use. The invention includes other embodiments of sets known to those skilled in the art. The instructions can provide any information that can be used to guide the administration of a stable cold-adapted temperature-sensitive virus strain or its inactive form as described herein. The invention provides vaccine technology related to the virus strains described herein. In one embodiment, the virus strains described herein are used in a method of manufacturing a vaccine. In another embodiment, the nucleic acid building systems described herein are used in a method of manufacturing a vaccine. In another embodiment, the virus strains described herein are used in vaccine development. In another embodiment, the nucleic acid building systems described herein are used in vaccine development. Unless otherwise indicated, the practice of this invention employs conventional chemistry, molecular biology, microbiology, recombinant DNA, genetics, immunology, cell biology, cell culture, and transgenic biology techniques, which are known to those skilled in the art . See, e.g., Maniatis et al., 1982,Molecular Cloning (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York); Sambrook et al., 1989,Molecular Cloning , 2nd edition (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York); Sambrook and Russell, 2001,Molecular Cloning , 3rd Edition (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York); Ausubel et al., 1992,Current Protocols in Molecular Biology (John Wiley & Sons, including regular updates); Glover, 1985,DNA Cloning (IRL Press, Oxford); Russell, 1984,Molecular biology of plants: a laboratory course manual (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.); Anand,Techniques for the Analysis of Complex Genomes (Academic Press, New York, 1992); Guthrie and Fink,Guide to Yeast Genetics and Molecular Biology (Academic Press, New York, 1991); Harlow and Lane, 1988,Antibodies , (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York);Nucleic Acid Hybridization (Edited by B. D. Hames and S. J. Higgins, 1984);Transcription And Translation (Edited by B. D. Hames and S. J. Higgins, 1984);Culture Of Animal Cells (R. I. Freshney, Alan R. Liss, Inc., 1987);Immobilized Cells And Enzymes (IRL Press, 1986); B. Perbal,A Practical Guide To Molecular Cloning (1984); ThesisMethods In Enzymology (Academic Press, Inc., N.Y.);Methods In Enzymology , Vols. 154 and 155 (edited by Wu et al.),Immunochemical Methods In Cell And Molecular Biology (Edited by Mayer and Walker, Academic Press, London, 1987);Handbook Of Experimental Immunology , Volumes I-IV (edited by D. M. Weir and C. C. Blackwell, 1986); Riott,Essential Immunology , 6th edition, Blackwell Scientific Publications, Oxford, 1988; Fire et al.,RNA Interference Technology: From Basic Science to Drug Development , Cambridge University Press, Cambridge, 2005; Schippers,RNA Interference in Practice , Wiley-VCH, 2005; Engelke,RNA Interference (RNAi): The Nuts & Bolts of siRNA Technology , DNA Press, 2003; Gott,RNA Interference, Editing, and Modification: Methods and Protocols (Methods in Molecular Biology) , Human Press, Totowa, NJ, 2004; Sohail,Gene Silencing by RNA Interference: Technology and Application , CRC, 2004. Examples The invention is illustrated by reference to the following examples, which are provided by way of illustration and are not intended to limit the invention in any way. Utilize standard techniques that are well known in the industry or those specifically described below. Example 1 methodChoice of immunogen : Based on phylogenetic analysis of epidemic strains, the ORF2 gene from PCV2 Indonesia strain (genotype 2B) (PCV2 TLL-Indo, gene bank accession number KX130941) was selected. In addition, PCV2 genotype 2B is a highly dominant genotype in pig populations (Opriessnig et al., 2013). The E2 gene was selected from the newly emerged subgenotype 2.1 of the CSF Indonesia strain (CSF TLL-Indo, gene bank accession number KX130940). The ORF5 gene was selected from the HP-PRRSV (highly pathogenic PRRSV-JXA1) Chinese strain, which is highly similar to the currently prevalent PRRSV strain (Yin et al., 2012; Jantafong et al., 2015).Construction of Recombinant Transfer Plastids and Synthetic Genes : The ORF2 gene from the PCV2 strain and the E2 from the CSF strain were amplified and individually cloned into XhoI / ApaI and HindIII / BamHI restriction sites of the intermediate pcDNA3.1 + vector (Invitrogen), respectively. A synthetic gene (ORF5-BGH-EF1α) containing a combination of ORF5 of PRRSV strain, bovine growth hormone (BGH) sequence and elongation factor 1α promoter (EF1α) sequence (Genscript, USA) was synthesized. One such synthetic gene has the sequence shown in SEQ ID NO: 3. BglII and AgeI restriction sites were included. For the construction of the quadrivalent rPRV vaccine, the BglII / AgeI restriction of the ORP5-BGH-EF1 fragment was cloned into the transfer plastid pUC-gG-MCS (Figure 1) (courtesy of Prof. Enquist, Princeton University, USA) Site. pUC-gG-MCS is a pUC57 plastid inserted with a synthetic construct consisting of the gG locus of PRV Bartha. Using primer AgeI-ORF2 F: 5’- CTGACCGGT ATGACGTATCCAAGGAGGCG-3 '(SEQ ID NO: 4; underlined is the AgeI site) and ORF2-R-XhoI: 5’-CGGCTCGAG CCATAGAGCCCACCGCATC-3 '(SEQ ID NO: 5; XhoI site underlined) Amplifies the ORF2-BGH fragment from pcDNA3.1 + and selects it for transfer to pUC-gG-MCS (Figure 1). AgeI / XhoI restriction sites. Similarly, using the primer SalI-CMV + E2-F: 5'-CGCGTCGAC GTTGACATTGATTATTGAC-3 ’(SEQ ID NO: 6; SalI site underlined) and NotI-E2-R: 5’-TAAAGCGGCCG CACCAGCGGCGAGTG TTCTG-3 '(SEQ ID NO: 7; NotI site underlined) Amplifies the CMV-E2 fragment from pcDNA3.1 + and selects it for transfer to pUC-gG-MCS (Figure 1) In the SalI / NotI restriction site. The recombinant transfer plastid pUC-gG-ORF5-ORF2-E2 was verified by PCR and sequencing. The sequence of the nucleic acid comprising gG-CMV-ORF5-BGH-EF1-orf2-BGH-CMV-E2-SV40-gG is listed in SEQ ID NO: 1. For the construction of trivalent rPRV vaccine, use primer AgeI-ORF2 F: 5’-CTGACCGGT ATCACGTATCCA AGGAGGCG-3 ’(SEQ ID NO: 4; underlined is the AgeI site) and ORF2-R-XhoI: 5’-CGGCTCGAG CCATAGAGCCCACCGCATC-3 '(SEQ ID NO: 5; XhoI site underlined) Amplifies the ORF2-BGH fragment from pcDNA3.1 + and selects it for transfer to pUC-gG-MCS (Figure 1). AgeI / XhoI restriction sites. Using primer SalI-EF1 F PCR: 5’-GCGTCGAC CGTGAGGCTCCGGT 3 ’(SEQ ID NO: 8; SalI site underlined) and NotI-E2-R: 5’-TAAAGCGGCCGC ACCAGCGGCGAGTTGTTCTG 3 '(SEQ ID NO: 7; NotI site underlined) The synthetic EF1α promoter and the amplified E2 fragment were separately cloned to the SalI / NotI restriction of the transfer plastid pUC-gG-MCS (Figure 1) Site. The recombinant transfer plastid pUC-gG-ORF2-E2 was verified by PCR and sequencing. The sequence of the nucleic acid comprising gG-CMV-ORF2-BGH-EF1-E2-SV40-gG is listed in SEQ ID NO: 2.Quadrivalent and trivalent restructuring PRV Generation : PRV Bartha's nucleocapsid DNA expressing red fluorescent protein (RFP) was linearized by EcoRI enzyme (courtesy of Prof. Enquist, Princeton University, USA) for recombination. The plastids pUC-gG-ORF5-ORF2-E2 or pUC-gG-ORF2-E2 were digested with HindIII to release the constructs for assembly. In short, PK-15 cells were6 Cells / well were seeded in 6-well plates. Using Lipofectamine 2000, 3 ug of digested construct DNA gG-ORF5-ORF2-E2 (quaternary PRV vaccine) or gG-ORF2-E2 (trivalent PRV vaccine) and 5 ug of linearized PRV-RFP nucleocapsid The DNA was co-transfected into PK-15 cells. After the cytopathic effect occurred, the transfected offspring were plated in PK-15 cells for plaque purification.Plaque analysis : Self-diluting the transfection supernatant containing the recombinant virus (after freezing-thawing) 10-1 Titration to 10-6 With PK-15 cell culture at 37 ° C and supplied with 5% CO2 Incubate together for 1 hour. The supernatant was removed and replaced with a 1% agarose overlay. After 48 hours, virus plaques that do not show a fluorescent signal were selected. After 3 to 4 rounds of plaque purification, the selected plaques were passaged in PK-15 cells and the recombinant virus was sequenced to confirm the presence of the introduced genes (ORF2, E2 and ORF5) and the absence of mutations.Performance analysis by indirect immunofluorescence analysis : Analysis of trivalent or tetravalent rPRV-infected cells by immunofluorescence staining using CSF-E2-specific multiple strains or PCV2-ORF2-specific monoclonal antibodies. In short, at 37 ° C and 5% CO2 The PK15 cells were infected with trivalent or tetravalent rPRV for 36 h. After fixation, cells were infiltrated with 0.1% Triton X-100 and incubated with anti-E2 or anti-ORF2 antibodies for 1 h at 37 ° C. Cells were then incubated with FITC-conjugated rabbit anti-mouse antibody (DAKO Cytomation, Copenhagen, Denmark). The fluorescence signal was detected with an inverted fluorescence microscope (Olympus, Essex, UK) and the image was captured by a digital imaging system (Nikon, Tokyo, Japan).Reorganization PRV Vaccine PK15 and BHK21 Kinetics of replication in cell lines : To study virus replication in different cell lines, PK15 or BHK21 cells were infected with PRV-Bartha or trivalent rPRV or tetravalent rPRV at a MOI of 5. After 1 h at 37 ° C, the cells were washed twice with phosphate buffered saline (PBS) and 1 mL of medium containing 2% FBS was added. The plates were incubated at 37 ° C for 24 h and 48 h. At these time points, cells were lysed by three freezing and thawing cycles, and virus-containing supernatants were stored at -80 ° C. Viral titrations were performed on PK15 cells in triplicate, with each cell type and time point repeated three times. Reed and Muench methods (Reed and Muench, 1938) were used to calculate virus titer and expressed it as 50% tissue culture infection dose / volume (TCID50 / mL).Reorganization PRV Genetic stability of vaccine constructs : Passage the recombinant PRV vaccine construct in PK15 cells up to 5 times in a row. After 5 consecutive passages, trivalent rPRV or tetravalent rPRV vaccine constructs were verified by PCR and sequencing to confirm the absence of mutations or deletions.Study of Immunogenicity in a Mouse Model : Use 10 on day 0 and 216 TCID50 Attenuated PRV Bartha (negative control), bivalent rPRV (PRV and ORF2), trivalent rPRV (PRV, ORF2 and E2), tetravalent (PRV, ORF2, E2 and ORF5) and PBS control Female BALB / c mice (n = 8 / group) to seven weeks of age were vaccinated. Sera were collected on days 20 and 42. The immunogenicity of recombinant vaccine constructs was evaluated on the 20th and 42th days by indirect ELISA based on serum PRV-specific antibody titers, PCV2-ORF2, CSF-E2 and PRRSV-ORF5 specific antibody titers.By indirect ELISA Measurement of specific antibody titers : Serum-specific antibody titers against PRV, PCV2-ORF2, CSF-E2 and PRRSV-ORF5 antigens were tested by indirect ELISA. Briefly, a microtiter well ELISA is coated with purified PRV virus antigen or PCV2-ORF2 or CSF-E2 or PRRSV-ORF5 antigen in a coating buffer (0.1 mol / liter carbonate-bicarbonate, pH 9.6). board. Serum samples (diluted 1:10) were serially diluted twice in 3% skim milk powder in PBS containing 0.05% Tween 20, and added to the plate in triplicate. After washing three times with PBS-T, horseradish peroxidase (HRP) -conjugated goat anti-mouse immunoglobulin (DAKO) diluted 1000-fold was added to each well. The reaction was caused by a 100 ml TMB substrate (3, 3 ', 5, 5'-tetramethylbenzidine) and the reaction was terminated by 50 ml of 2 M H2SO4. The optical density at 450 nm was measured using a microplate absorbance reader (Tecan, Switzerland). Example 2 Construction and Characterization of a Recombinant PRV Vaccine The linear transfer plastid (pUC-gG-quaternary / pUC-gG-trivalent) cassette was integrated into PRV Bartha DNA by homologous recombination to generate PCV2-ORF2 and CSF-E2 A recombinant trivalent PRV vector (trivalent PRV-ORF2-E2) and a quadrivalent PRV vector (tetravalent PRV-ORF5-ORF2-E2) expressing PCV2-ORP2, CSF-E2, and PRRSV-ORF5 (Figure 1). After transfection, the resulting recombinants were plaque-purified by selecting non-red fluorescent plaques on PK15 cells. Re-screening of positive recombinants. After 3-4 plaque purifications, the positive recombinants were analyzed by sequencing and titrated in PK15 cells. In addition, immunofluorescence analysis of individual ORF2 or E2-specific antibodies demonstrated the effective performance of ORF2 or E2 proteins by a single PRV vector (Figures 2A and 2B). In contrast, no fluorescent cells were observed for the PRV negative control. Moreover, the stability test revealed that the recombinant vaccine (tetravalent rPRV or trivalent rPRV) was stable after 5 consecutive passages in PK15 cells without mutations or deletions. Example 3 Replication in PK15 and BHK21 Cells To investigate whether the insertion or expression of an exogenous transgene in the gG locus affects the replication properties, the recombinant PRV vaccine constructs (trivalent rPRV, tetravalent rPRV) and parents were compared in PK15 and BHK21 cells. One-step growth kinetics of PRV Bartha strain. Viral titers of both trivalent and tetravalent PRV vaccine constructs showed 10 in PK15 cells and BHK21 cells, respectively8 TCID50 And 108.3 TCID50 And copy the potency with PRV-Bartha (TCID50 108.5-8.7 The parent strains are comparable. Example 4: Immunogenicity study in a mouse model The results showed that mice immunized with a tetravalent PRV vaccine showed serum-specific antibody contents against PRV, E2, ORF2, and PRRSV. In addition, mice vaccinated with the trivalent PRV vaccine induced serum-specific antibody contents against PRV, ORF2, and E2 antigens (Figure 3). Antibody titer results showed that mice immunized with bivalent rPRV (ORF2) showed an antibody titer of> 260 against PCV2-ORF2 antigen. In addition, mice immunized with trivalent PRV and tetravalent PRV vaccines showed antibody titers of 240 and 180 against ORF2 antigen, respectively. In addition, both trivalent and tetravalent PRV vaccines showed antibody titers of> 256 against classical swine fever E2 glycoprotein (Figure 4). Unless otherwise indicated herein or the context is clearly contradictory, the terms "a (" a "and" an ")" and "the" and similar indicators are used in the context of the present invention (especially in the context of the scope of patent application below). Both should be understood to cover both the singular and the plural. Unless otherwise noted, the terms "including," "having," "including," and "containing" are to be construed as open-ended terms (ie, meaning "including but not limited to"). Unless otherwise indicated herein, the enumeration of numerical ranges herein is intended as a shorthand method for individually referring to each individual value falling within this range, and each individual value is incorporated into this specification as if individually enumerated herein. Unless otherwise indicated herein or otherwise clearly contradicted by context, all methods set forth herein may be implemented in any suitable order. The use of any and all examples or example language (eg, "such as") provided herein is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention unless otherwise claimed. No language in this specification should be construed as indicating that any unclaimed element is essential to the practice of the invention. Embodiments of the invention are described herein, including the best mode known to the inventors for carrying out the invention. Those skilled in the art will immediately understand the variations of their embodiments after reading the foregoing description. The inventor expects those skilled in the art to adopt these variations as necessary, and the inventor expects that the present invention may be practiced in a manner different from that specifically set forth herein. Accordingly, this invention includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. In addition, unless otherwise indicated herein or otherwise clearly contradicted by context, any combination of the above elements is encompassed by the present invention in all possible variations thereof. Bibliography Dong B, Zarlenga DS, Ren X (2014). An overview of live attenuated recombinant pseudorabies viruses for use as novel vaccines. J Immunol Res 214: 824630. Jantafong T, Sangtong P, Saenglub W et al. (2015). Genetics diversity of porcine reproductive and respiratory syndrome virus in Thailand and Southeast Asia from 2008 to 2013. Vet Microbiol. 176 (3-4): 229-38. Jiang Y, Fang L, Xiao S. et al. (2007). Immunogenicity and protective The efficacy of recombinant pseudorabies virus expressing the two major membrane-associated proteins of porcine reproductive and respiratory syndrome virus. Vaccine, 25, No. 3, 547-560. Klingbeil K, Lange E, Teifke JP, Mettenleiter TC, Fuchs W. (2014 ). Immunization of pigs. With an attenuated pseudorabies virus recombinant expressing the hemagglutinin of pandemic swine origin H1N1 influenza A virus. J Gen Virol, vol. 95, 948-959. Klupp BG, Lominiczi B, Visser N et al. (2012). Mutations affecting the UL21 gene contribute to avirulence of pseudorabies virus v accine strain Bartha. Virol 212: 466-473. Li G, Shi N, Suo S, Cui J, Zarlenga D, Ren X. (2012). Vaccination of mice with ORF5 plasmid DNA of PRRSV; enhanced effects by co-immunizing with porcine IL-15. Immunol Invest. 41 (3): 231-48. Li X, Liu R, Tang H, Jin M, Chen H, Qian P. (2008). Induction of protective immunity in swine by immunization with live attenuated Recombinant pseudorabies virus expressing the capsid precursor encoding regions of foot-and-mouth disease virus. Vaccine, Volume 26, Issue 22, 2714-2722. Liu, J., Chen, I. and Kwang, J. (2005). Characterization of a previously unidentified viral protein in porcine circovirus type 2-infected cells and its role in virus-induced apoptosis. J. Virol. 79: 8262-8274. Nie H, Fang R, Xiong BQ. Et al. (2011). Immunogenicity and protective efficacy of two recombinant pseudorabies viruses expressing Toxoplasma gondii SAG1 and MIC3 proteins. Vet Parasitol, Vol. 181, Issues 2-4, 215-221. Opriessnig T, O'Neill K, Gerber PF, de Castro AM et al. ( 201 3). A PCV2 vaccine based on genotype 2b is more effective than a 2a-based vaccine to protect against PCV2b or combined PCV2a / 2b viremia in pigs with concurrent PCV2, PRRSV and PPV infection. Vaccine. 31 (3): 487-94 PomeranZ, LE, Reynolds, AE and Hengartner, CJ (2005). Molecular biology of pseudorabies virus: impact on neurovirology and veterinary medicine. Microbiol Mol Biol Rev 69, 462-500. Qiu HJ, Tian ZJ, Tong GZ, etc., (2005). Protective immunity induced by a recombinant pseudorabies virus expressing the GP5 of porcine reproductive and respiratory syndrome virus in piglets. Vet Immunol Immunopathol, Volume 106, Issue 3-4, 309-319. Reed, LJ. Muench, H A (1938). Simple method of estimating fifty percent endpoints. Am. J. Epidemiol. 27,493-497. Song Y, Jin M, Zhang S et al. (2007). Generation and immunogenicity of a recombinant pseudorabies virus expressing cap protein of porcine circovirus type 2. Vet Microbiol, Vol. 119, No. 2-4, 97-104. Xu G, Xu X, Li Z Et al. (2004). Construction of recombinant pseudorabies virus expressing NS1 protein of Japanese encephalitis (SA14-14-2) virus and its safety and immunogenicity. Vaccine, Vol. 22, No. 15-16, 1846-1853. Yin G, Gao L, Shu X, Yang G, Guo S, Li W. (2012). Genetic diversity of the ORF5 gene of porcine reproductive and respiratory syndrome virus isolates in southwest China from 2007 to 2009. PLoS One. 7 (3): e33756 Zhang H, Li X, Peng G, Tang C, Zhu S, Qian S, Xu J, Qian P. (2014). GlycoproteinE2 of classical swine fever virus expressed by baculovirus induces the protective immune responses in rabbits. Vaccine, 32 (49 ): 6607-13.

圖1顯示構築根據本發明之一個實施例之rPRV的策略。假性狂犬病病毒(PRV)基因體:獨特長區(UL )、內部重複序列(IR)、獨特短區(Us)及末端重複序列(TR)。四價PRV表現PRRSV-ORF5、PCV2-ORF2、CSF-E2;三價PRV表現PCV2-ORF2、CSF-E2。縮寫:N-gG =醣蛋白G之N (胺基)末端;C-gG =醣蛋白之羧基末端;PK =蛋白激酶;CMV ie =人類巨細胞病毒之立即早期啟動子;EF1α啟動子=延長因子1 α啟動子;終止子SV40 polyA,牛生長激素多腺苷酸化(BGH polyA)。 圖2A及2B顯示感染多價疫苗之PK15細胞之免疫螢光分析。圖2A:在37℃及5% CO2 下用二價PRV (ORF2-PRV)或三價PRV (ORF2-E2-PRV)或四價PRV (ORF5-ORF2-E2-PRV)感染36 h之PK15細胞的免疫螢光分析。在所有構築體中皆觀察到抗ORF2 (小鼠超免疫血清)信號。圖2B:在37℃及5% CO2 下用三價PRV (ORF2-E2-PRV)或四價PRV (ORP5-ORF2-E2-PRV)感染36 h之PK15細胞的免疫螢光分析。在所有構築體中皆觀察到抗E2 (小鼠超免疫血清)信號。 圖3顯示在0天及第21天經三價或四價PRV疫苗免疫之小鼠之組(n=8隻/組)。在第20天及第42天收集血清。結果顯示在第20天及第42天藉由間接ELISA測定之血清PRV/CSF/PCV2/PRRSV特異性IgG抗體含量。 圖4顯示在第0天及第21天經三價或四價PRV疫苗免疫之小鼠之組(n=8隻/組)。在第20天及第42天收集血清。結果顯示第42天(第二次免疫後21天)之血清PCV2-ORF2或CSF-E2特異性抗體效價。FIG. 1 shows a strategy for constructing an rPRV according to an embodiment of the present invention. Pseudorabies virus (the PRV) genome: the unique long region (U L), the internal repeat (IR), the unique short region (of Us) and terminal repeats (TR). The four-valent PRV showed PRRSV-ORF5, PCV2-ORF2, and CSF-E2; the three-valent PRV showed PCV2-ORF2, CSF-E2. Abbreviations: N-gG = N (amino) terminus of glycoprotein G; C-gG = carboxy terminus of glycoprotein; PK = protein kinase; CMV ie = immediate early promoter of human cytomegalovirus; EF1α promoter = extension Factor 1 alpha promoter; terminator SV40 polyA, bovine growth hormone polyadenylation (BGH polyA). Figures 2A and 2B show immunofluorescence analysis of PK15 cells infected with a multivalent vaccine. Figure 2A: 36 hours of PK15 infected with bivalent PRV (ORF2-PRV) or trivalent PRV (ORF2-E2-PRV) or tetravalent PRV (ORF5-ORF2-E2-PRV) at 37 ° C and 5% CO 2 Immunofluorescence analysis of cells. Anti-ORF2 (mouse hyperimmune serum) signal was observed in all constructs. Figure 2B: Immunofluorescence analysis of PK15 cells infected with trivalent PRV (ORF2-E2-PRV) or tetravalent PRV (ORP5-ORF2-E2-PRV) for 36 h at 37 ° C and 5% CO 2 . Anti-E2 (mouse hyperimmune serum) signal was observed in all constructs. Figure 3 shows groups of mice immunized with trivalent or tetravalent PRV vaccines on days 0 and 21 (n = 8 / group). Sera were collected on days 20 and 42. The results showed serum PRV / CSF / PCV2 / PRRSV-specific IgG antibody levels determined by indirect ELISA on days 20 and 42. Figure 4 shows groups of mice immunized with trivalent or tetravalent PRV vaccines on days 0 and 21 (n = 8 / group). Sera were collected on days 20 and 42. The results showed serum PCV2-ORF2 or CSF-E2-specific antibody titers on day 42 (21 days after the second immunization).

Claims (32)

一種核酸構築體,其包含: 含有插入其中之假性狂犬病病毒(PRV) gG基因: (a) 可操作連接至豬環狀病毒(PCV2) ORF2基因之在哺乳動物細胞中具活性之啟動子,該豬環狀病毒(PCV2) ORF2基因可操作連接至在哺乳動物細胞中具活性之終止子,及 (b) 可操作連接至古典豬瘟(CSF)病毒E2基因之在哺乳動物細胞中具活性之啟動子,該古典豬瘟(CSF)病毒E2基因可操作連接至在哺乳動物細胞中具活性之終止子。A nucleic acid construct comprising: a pseudorabies virus (PRV) gG gene inserted therein: (a) a promoter active in mammalian cells operably linked to a porcine circular virus (PCV2) ORF2 gene, The porcine circovirus (PCV2) ORF2 gene is operably linked to a terminator that is active in mammalian cells, and (b) is operably linked to the classical swine fever (CSF) virus E2 gene that is active in mammalian cells As a promoter, the classical swine fever (CSF) virus E2 gene is operably linked to a terminator that is active in mammalian cells. 如請求項1之核酸構築體,其中在哺乳動物細胞中具活性之各啟動子係巨細胞病毒(CMV)立即早期(ie)啟動子或延長因子1 α (EF1α)啟動子。The nucleic acid construct of claim 1, wherein each promoter line that is active in mammalian cells is a cytomegalovirus (CMV) immediate early (ie) promoter or an elongation factor 1 alpha (EF1 alpha) promoter. 如請求項1或2之核酸構築體,其中在哺乳動物細胞中具活性之各終止子係牛生長激素(BGH)多腺苷酸化序列(polyA)或猿猴病毒40 (SV40) polyA。The nucleic acid construct of claim 1 or 2, wherein each terminator that is active in mammalian cells is a bovine growth hormone (BGH) polyadenylation sequence (polyA) or simian virus 40 (SV40) polyA. 如請求項1或2之核酸構築體,其中該PCV2 ORF2基因具有SEQ ID NO:1之核苷酸3063-3767中所列之序列,且該CSF E2基因具有SEQ ID NO:1之核苷酸4729-5916中所列之序列。The nucleic acid construct of claim 1 or 2, wherein the PCV2 ORF2 gene has the sequence listed in nucleotides 3063-3767 of SEQ ID NO: 1, and the CSF E2 gene has the nucleotide of SEQ ID NO: 1 4729-5916. 如請求項1或2之核酸構築體,其中該核酸構築體具有SEQ ID NO:2中所列之核苷酸序列。The nucleic acid construct of claim 1 or 2, wherein the nucleic acid construct has a nucleotide sequence as set forth in SEQ ID NO: 2. 一種載體,其包含如請求項1至5中任一項之核酸構築體。A vector comprising a nucleic acid construct according to any one of claims 1 to 5. 一種哺乳動物細胞系,其經如請求項1至5中任一項之核酸構築體及線性化之PRV核衣殼核酸轉染。A mammalian cell line transfected with a nucleic acid construct according to any one of claims 1 to 5 and a linearized PRV nucleocapsid nucleic acid. 如請求項7之哺乳動物細胞系,其係PK-15細胞系。The mammalian cell line of claim 7, which is a PK-15 cell line. 如請求項7或8之哺乳動物細胞系,其中該PRV係PRV Bartha-K61。The mammalian cell line of claim 7 or 8, wherein the PRV is PRV Bartha-K61. 一種三價重組PRV,其包含如請求項1至5中任一項之核酸構築體。A trivalent recombinant PRV comprising a nucleic acid construct according to any one of claims 1 to 5. 如請求項10之重組PRV,其中該PRV係PRV Bartha-K61。The reorganized PRV of claim 10, wherein the PRV is PRV Bartha-K61. 一種疫苗,其包含如請求項10或11之重組PRV及生理上可接受之載劑。A vaccine comprising a recombinant PRV as claimed in claim 10 or 11 and a physiologically acceptable carrier. 一種如請求項10或11之重組PRV之用途,其用於製造在個體中引發保護性免疫反應之藥劑。A use of a recombinant PRV as claimed in claim 10 or 11 for the manufacture of a medicament that elicits a protective immune response in an individual. 一種如請求項10或11之重組PRV之用途,其用於製造預防個體罹患PRV、PCV2及CSF之藥劑。A use of a recombinant PRV as claimed in claim 10 or 11 for the manufacture of a medicament for the prevention of PRV, PCV2 and CSF in an individual. 一種如請求項10或11之重組PRV之用途,其用於疫苗研發。A use of a recombinant PRV as claimed in claim 10 or 11 for vaccine development. 如請求項10或11之重組PRV,其用於疫苗研發。The recombinant PRV of claim 10 or 11 is used for vaccine development. 一種核酸構築體,其包含: 含有插入其中之假性狂犬病病毒(PRV) gG基因: (a) 可操作連接至豬繁殖與呼吸症候群病毒(PRRSV) ORF5基因之在哺乳動物細胞中具活性之啟動子,該豬繁殖與呼吸症候群病毒(PRRSV) ORF5基因可操作連接至在哺乳動物細胞中具活性之終止子, (b) 可操作連接至豬環狀病毒(PCV2) ORF2基因之在哺乳動物細胞中具活性之啟動子,該豬環狀病毒(PCV2) ORF2基因可操作連接至在哺乳動物細胞中具活性之終止子;及 (c) 可操作連接至古典豬瘟(CSF)病毒E2基因之在哺乳動物細胞中具活性之啟動子,該古典豬瘟(CSF)病毒E2基因可操作連接至在哺乳動物細胞中具活性之終止子。A nucleic acid construct comprising: a pseudorabies virus (PRV) gG gene inserted therein: (a) an active promoter in mammalian cells operably linked to the porcine reproductive and respiratory syndrome virus (PRRSV) ORF5 gene , The porcine reproductive and respiratory syndrome virus (PRRSV) ORF5 gene is operably linked to a terminator that is active in mammalian cells, (b) the mammalian cell is operably linked to the porcine circular virus (PCV2) ORF2 gene An active promoter, the porcine circular virus (PCV2) ORF2 gene is operably linked to a terminator that is active in mammalian cells; and (c) is operably linked to the classical swine fever (CSF) virus E2 gene A promoter that is active in mammalian cells, the classical swine fever (CSF) virus E2 gene is operably linked to a terminator that is active in mammalian cells. 如請求項17之核酸構築體,其中在哺乳動物細胞中具活性之各啟動子係巨細胞病毒(CMV)立即早期(ie)啟動子或延長因子1 α (EF1α)啟動子。The nucleic acid construct of claim 17, wherein each promoter line that is active in mammalian cells is a cytomegalovirus (CMV) immediate early (ie) promoter or an elongation factor 1 alpha (EF1 alpha) promoter. 如請求項17或18之核酸構築體,其中在哺乳動物細胞中具活性之各終止子係牛生長激素(BGH)多腺苷酸化序列(polyA)或猿猴病毒40 (SV40) polyA。The nucleic acid construct of claim 17 or 18, wherein each terminator that is active in mammalian cells is a bovine growth hormone (BGH) polyadenylation sequence (polyA) or simian virus 40 (SV40) polyA. 如請求項17或18之核酸構築體,其中該PCV2 ORF2基因具有SEQ ID NO:1之核苷酸3063-3767中所列之序列,該CSF E2基因具有SEQ ID NO:1之核苷酸4729-5916中所列之序列且該PRRSV ORF5具有SEQ ID NO:1之核苷酸1041-1643中所列之序列。The nucleic acid construct of claim 17 or 18, wherein the PCV2 ORF2 gene has the sequence listed in nucleotides 3063-3767 of SEQ ID NO: 1, and the CSF E2 gene has nucleotide 4729 of SEQ ID NO: 1 -5916 and the PRRSV ORF5 has the sequence listed in nucleotides 1041-1643 of SEQ ID NO: 1. 如請求項17或18之核酸構築體,其中該核酸構築體具有SEQ ID NO: 1中所列之核苷酸序列。The nucleic acid construct of claim 17 or 18, wherein the nucleic acid construct has the nucleotide sequence set forth in SEQ ID NO: 1. 一種載體,其包含如請求項17至21中任一項之核酸構築體。A vector comprising a nucleic acid construct according to any one of claims 17 to 21. 一種哺乳動物細胞系,其經如請求項17至21中任一項之核酸構築體及線性化PRV核衣殼核酸轉染。A mammalian cell line transfected with a nucleic acid construct according to any one of claims 17 to 21 and a linearized PRV nucleocapsid nucleic acid. 如請求項23之哺乳動物細胞系,其係PK-15細胞系。The mammalian cell line of claim 23, which is a PK-15 cell line. 如請求項23或24之哺乳動物細胞系,其中該PRV係PRV Bartha-K61。The mammalian cell line of claim 23 or 24, wherein the PRV is PRV Bartha-K61. 一種四價重組PRV,其包含如請求項17至21中任一項之核酸構築體。A tetravalent recombinant PRV comprising a nucleic acid construct according to any one of claims 17 to 21. 如請求項26之重組PRV,其中該PRV係PRV Bartha-K61。The restructured PRV of claim 26, wherein the PRV is PRV Bartha-K61. 一種疫苗,其包含如請求項26或27之重組PRV及生理上可接受之載劑。A vaccine comprising a recombinant PRV as claimed in claim 26 or 27 and a physiologically acceptable carrier. 一種如請求項26或27之重組PRV之用途,其用於製造在個體中引發保護性免疫反應之藥劑。A use of a recombinant PRV as claimed in claim 26 or 27 for the manufacture of a medicament that elicits a protective immune response in an individual. 一種如請求項26或27中任一項之重組PRV之用途,其用於製造預防個體罹患PRV、PRRSV、PCV2及CSF之藥劑。A use of a recombinant PRV as claimed in any one of claims 26 or 27 for the manufacture of a medicament for the prevention of PRV, PRRSV, PCV2 and CSF in an individual. 一種如請求項26或27之重組PRV之用途,其用於疫苗研發。A use of a recombinant PRV as claimed in claim 26 or 27 for vaccine development. 如請求項26或27之重組PRV,其用於疫苗研發。A recombinant PRV as claimed in item 26 or 27, which is used for vaccine development.
TW106116602A 2016-05-19 2017-05-19 Multivalent vaccines against major swine viral diseases TWI808940B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662338939P 2016-05-19 2016-05-19
US62/338,939 2016-05-19

Publications (2)

Publication Number Publication Date
TW201817444A true TW201817444A (en) 2018-05-16
TWI808940B TWI808940B (en) 2023-07-21

Family

ID=60325441

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106116602A TWI808940B (en) 2016-05-19 2017-05-19 Multivalent vaccines against major swine viral diseases

Country Status (6)

Country Link
KR (1) KR102524544B1 (en)
CN (1) CN109477076A (en)
PH (1) PH12018502436A1 (en)
SG (1) SG11201810299SA (en)
TW (1) TWI808940B (en)
WO (1) WO2017200484A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107233566B (en) * 2017-01-13 2022-05-27 浙江海隆生物科技有限公司 Swine fever-porcine circovirus bivalent subunit vaccine and preparation method and application thereof
CN110025781B (en) * 2019-04-25 2022-09-20 杭州牧达智能科技有限公司 Vaccine composition and preparation method thereof
CN111575246A (en) * 2020-06-27 2020-08-25 华东理工大学 Method for producing porcine pseudorabies virus by serum-free full-suspension cell culture
KR102612096B1 (en) * 2021-02-04 2023-12-12 대한민국 Pork origin identification kit and pork origin identification method using the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101457215B (en) * 2008-12-01 2010-11-17 华中农业大学 Recombinant porcine pseudorabies virus-porcine propagate and breath complex virus-porcine circovirus genetic engineering strain and application
WO2017106736A1 (en) * 2015-12-18 2017-06-22 Louisiana State University Research & Technology Foundation Pseudorabies virus (prv) vector expressing heterologous polypeptides

Also Published As

Publication number Publication date
KR102524544B1 (en) 2023-04-21
WO2017200484A1 (en) 2017-11-23
KR20190007056A (en) 2019-01-21
CN109477076A (en) 2019-03-15
PH12018502436A1 (en) 2019-09-16
TWI808940B (en) 2023-07-21
SG11201810299SA (en) 2018-12-28

Similar Documents

Publication Publication Date Title
US20230021583A1 (en) Measles-vectored covid-19 immunogenic compositions and vaccines
ES2529736T3 (en) Immunogenic composition comprising a SARS coronavirus spicular protein
Kinney et al. Attenuation of Venezuelan equine encephalitis virus strain TC-83 is encoded by the 5'-noncoding region and the E2 envelope glycoprotein
TWI808940B (en) Multivalent vaccines against major swine viral diseases
JP6386999B2 (en) Effective vaccination before weaning for porcine reproductive and respiratory syndrome (PRRS) virus
JP6251273B2 (en) Recombinant measles virus expressing chikungunya virus polypeptide and its application
KR100916883B1 (en) Chimeric arterivirus-like particles
ES2767781T3 (en) Vaccines and diagnosis of torque teno porcine virus
JP2020534256A (en) A method for producing a pharmaceutical composition containing the immunogenic chikungunya virus CHIKV-DELTA 5NSP3.
Tian et al. Enhancing heterologous protection in pigs vaccinated with chimeric porcine reproductive and respiratory syndrome virus containing the full-length sequences of shuffled structural genes of multiple heterologous strains
US20190224304A1 (en) Chimeric enterovirus virus-like particles
WO2022027749A1 (en) Recombinant foot-and-mouth disease virus nontoxic strain with heat-resistant phenotypic stable inheritance and negative marker, and o/a type foot-and-mouth disease bivalent inactivated vaccine
Li et al. Displaying epitope B and epitope 7 of porcine reproductive and respiratory syndrome virus on virus like particles of porcine circovirus type 2 provides partial protection to pigs
US20230365942A1 (en) Engineered aav vectors
CN114316071A (en) Recombinant mumps virus particle, composition and application thereof
WO2021198769A9 (en) Vaccine compositions for the treatment of coronavirus
JP2023526309A (en) Recombinant Vaccine Against COVID-19 Based on Paramyxovirus Virus Vector
ZHU et al. Insertion site of FLAG on foot-and-mouth disease virus VP1 GH loop affects immunogenicity of FLAG
US7138274B2 (en) Advanced oral poliovirus vaccine (Adv-OPV) deprived of the possibility of vaccine associated paralytic poliomyelities (VAPP)
EP4316514A1 (en) Mva-based vectors and their use as vaccine against sars-cov-2
EP2712927B1 (en) Recombinant vaccine against prrs in a viral vector
Khodabandehloo et al. Cloning and expression of simian rotavirus spike protein (VP4) in insect cells by baculovirus expression system
KR20220152960A (en) Cold-adapted attenuated Porcine reproductive and respiratory syndrome virus
JP2023549787A (en) Recombinant vectors encoding chimeric coronavirus spike proteins and their uses
Vu et al. A synthetic porcine reproductive and respiratory syndrome unprecedented levels of heterologous protection