TW201816645A - 用於生物樣本的自動化處理及分析、臨床資訊處理及臨床試驗配對之整合系統及方法 - Google Patents

用於生物樣本的自動化處理及分析、臨床資訊處理及臨床試驗配對之整合系統及方法 Download PDF

Info

Publication number
TW201816645A
TW201816645A TW106132570A TW106132570A TW201816645A TW 201816645 A TW201816645 A TW 201816645A TW 106132570 A TW106132570 A TW 106132570A TW 106132570 A TW106132570 A TW 106132570A TW 201816645 A TW201816645 A TW 201816645A
Authority
TW
Taiwan
Prior art keywords
individual
therapy
nucleic acid
biological
sample
Prior art date
Application number
TW106132570A
Other languages
English (en)
Inventor
松口哲也
艾利亞 福斯 柯林
約翰 約翰 艾登 聖
奈森 博利
薩米爾 索伊
伊莉莎白 儂利
提摩西 顧修
艾琳 凱特琳 阿邁德
伊凡蓋洛斯 帕莎倫特佐斯
威廉 波金霍爾
佩特羅斯 吉安尼克璞洛斯
Original Assignee
美商德萊福公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商德萊福公司 filed Critical 美商德萊福公司
Publication of TW201816645A publication Critical patent/TW201816645A/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1034Isolating an individual clone by screening libraries
    • C12N15/1072Differential gene expression library synthesis, e.g. subtracted libraries, differential screening
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6827Hybridisation assays for detection of mutation or polymorphism
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • C12Q1/6874Methods for sequencing involving nucleic acid arrays, e.g. sequencing by hybridisation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B40/00ICT specially adapted for biostatistics; ICT specially adapted for bioinformatics-related machine learning or data mining, e.g. knowledge discovery or pattern finding
    • G16B40/20Supervised data analysis
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H20/00ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/106Pharmacogenomics, i.e. genetic variability in individual responses to drugs and drug metabolism
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B20/00ICT specially adapted for functional genomics or proteomics, e.g. genotype-phenotype associations
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B40/00ICT specially adapted for biostatistics; ICT specially adapted for bioinformatics-related machine learning or data mining, e.g. knowledge discovery or pattern finding
    • G16B40/30Unsupervised data analysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Public Health (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Epidemiology (AREA)
  • Primary Health Care (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Oncology (AREA)
  • Hospice & Palliative Care (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Plant Pathology (AREA)
  • Evolutionary Computation (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Bioethics (AREA)
  • Artificial Intelligence (AREA)
  • Software Systems (AREA)
  • Evolutionary Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)

Abstract

本發明提供一種用於定性個體之療法子集之方法。可接收該個體之醫學病史資料及生物學資料,其中該生物學資料係生成自該個體之一或多個生物樣本。接著,可對該醫學病史資料及該生物學資料進行電腦分析以產生針對該個體之基於基因組之醫學病史分析。該基於基因組之醫學病史分析可為該個體所用來查詢用於該個體之療法之一或多個資料庫,以生成針對該個體所定性之療法子集。該療法子集可提供於使用者之電子裝置的使用者介面上。

Description

用於生物樣本的自動化處理及分析、臨床資訊處理及臨床試驗配對之整合系統及方法
疾病之早期偵測及監測可用於許多診斷方法。偵測到突變可能與確定患者疾病之更高風險相關聯。病症可為表觀遺傳標誌變化或罕見基因改變之結果。可由DNA及RNA序列資訊表徵此等病症。在某些情況下,該疾病可藉由生物標誌,諸如核苷酸插入及缺失、核苷酸取代、胺基酸插入、胺基酸缺失、胺基酸取代、基因融合、複本數變異、易位或基因表現特徵來識別及表徵。 在過去,患有特定疾病之患者可經識別並自研究者之診所或廣告或推介實務登記進入臨床試驗。臨床試驗可係基於論文,不可避免地繁重,監測、處理及存儲緩慢。另外,隨著製藥公司生產更多新穎藥物化合物,在最短時間內測試並銷售新藥對製藥公司而言係至關重要的。本發明實施例提供用於分析個體之生物樣本、識別個體之疾病、及使用電腦實施之方法以從生物樣本中提取臨床病史及資料用於臨床試驗登記及藥物開發。
在某些態樣中,本發明提供用於定性個體之療法子集之方法,該療法子集包括一或多種類型之癌症的臨床試驗或標準醫護治療,該方法包括:(a)使來自該個體之至少一個生物樣本接受至少一種化驗以生成來自該個體之生物學資料;(b)針對經過濾療法集處理來自該個體之該生物學資料,以生成針對該個體所定性之療法子集,其中該療法子集包括一或多種類型之癌症之臨床試驗或標準醫護治療,該經過濾療法集係藉由電腦評估療法資料庫針對一或多個標準之適格性來生成;及(c)在使用者之電子裝置的使用者介面上呈現該療法子集。在某些實施例中,用於定性個體之方法進一步包括將該個體之醫學病史資料傳送給該療法子集之一或多個療法協調員。 在某些實施例中,用於定性個體之方法進一步包括自該個體接收關於來自該療法子集之給定臨床試驗的選擇。在某些實施例中,用於定性個體之方法進一步包括通過該使用者介面接收該個體登記於選自該療法子集之療法中的請求。在某些實施例中,用於定性個體之方法進一步包括電腦評估該療法資料庫針對一或多個標準之適格性以生成經過濾療法集。在某些實施例中,電腦評估適格性包括(i)識別至少一部分該療法資料庫;及(ii)使用一或多種臨床標記或分子標記策展至少一部分該療法資料庫以生成經過濾療法集。在某些實施例中,使用者介面包括具有一或多個網路鏈路之一或多個圖形元件,其指向針對該個體所定性之該療法子集及該療法子集的聯繫資訊。在某些實施例中,療法子集包括一或多種類型之癌症的臨床試驗或標準醫護治療。在某些實施例中,生物學資料係藉由自動化化驗系統自該個體之至少一個生物樣本生成,該自動化化驗系統在至少一個生物樣本之處理期間對選自由細胞提取、核酸提取、富集、定序及免疫組織化學組成之群的至少一個成員使用自動化處理。在某些實施例中,步驟(b)包括由人類療法策展人驗證該經過濾療法集。在某些實施例中,步驟(b)進一步包括使用該個體之醫學病史資料以生成針對該個體所定性之療法子集,其中該醫學病史資料係與生物學資料分開。在某些實施例中,該醫學病史資料係根據來自該個體之醫學病史資料的醫療文本段可識別。在某些實施例中,用於定性個體之方法進一步包括使用至少一種機器學習算法來偵測並標記醫療文本段。在某些實施例中,步驟(b)包括由人類療法策展人驗證針對該個體所定性之療法子集。在某些實施例中,至少一個生物樣本包括腫瘤組織樣本或血液樣本。在某些實施例中,用於定性個體之方法在步驟(a)之前進一步包括(i)接收來自該個體之腫瘤樣本的第一核酸樣本;及(ii)接收來自該個體之正常樣本的第二核酸樣本。在某些實施例中,用於定性個體之方法進一步包括使用探針組針對複數個核酸序列富集第一核酸樣本以提供經富集之核酸樣本,該探針組包括具有至少約80%之整體中靶率的探針,如下所測定:(i)對在至少一個預定區域中之探針組量測(1)探針組中各探針之探針覆蓋範圍及(2)探針組中各探針之脫靶探針覆蓋範圍,及(ii)基於脫靶覆蓋範圍與探針覆蓋範圍之比率確定探針組之中靶率。在某些實施例中,用於定性個體之方法進一步包括化驗經富集之核酸樣本及第二核酸樣本以識別生物樣本中之一或多種基因組畸變以生成該個體之生物學資料。在某些實施例中,用於定性個體之方法進一步包括標記該生物樣本中之一或多種基因組畸變。 在某些態樣中,本發明提供一種用於定性個體之療法子集之方法,其包括:(a)接收該個體之醫學病史資料及生物學資料,其中該生物學資料係自該個體之一或多個生物樣本生成;(b)電腦分析該醫學病史資料及生物學資料以產生該個體之基於基因組之醫學病史分析;(c)使用該個體之該基於基因組之醫學病史分析查詢針對該個體之一或多個療法資料庫,以生成針對該個體所定性之療法子集;及(d)在使用者之電子裝置的使用者介面上提供該療法子集。 在某些實施例中,生物學資料係藉由自動化化驗系統自該個體之一或多個生物樣本生成,該自動化化驗系統對選自由細胞提取、核酸提取、富集、定序及免疫組織化學組成之群的至少一個成員使用自動化處理。在某些實施例中,用於定性個體之方法進一步包括電腦評估一或多個療法資料庫針對一或多個標準之適格性以生成經過濾療法集。在某些實施例中,使用醫學病史資料來電腦評估該一或多個資料庫。在某些實施例中,該個體之基於基因組之醫學病史分析包括來自醫學病史資料之標籤及來自生物學資料之標籤,且其中(c)包括電腦針對來自一或多個資料庫之療法處理該等標籤以產生針對該個體所定性之療法子集。在某些實施例中,用於定性個體之方法進一步包括自該個體接收關於來自該療法子集之給定療法的選擇。在某些實施例中,用於定性個體之方法進一步包括通過使用者介面接收該個體登記於選自所提供之療法子集之療法中的請求。在某些實施例中,使用者介面包括具有一或多個網路鏈路之一或多個圖形元件,其指向針對該個體所定性之療法子集及該療法子集的聯繫資訊。在某些實施例中,該療法子集包括一或多種類型之癌症的臨床試驗或標準醫護治療。在某些實施例中,步驟(c)包括由人類療法策展人驗證針對該個體所定性之療法子集。在某些實施例中,該方法在步驟(a)之前包括(i)接收來自該個體之腫瘤樣本的第一核酸樣本;及(ii)接收來自該個體之正常樣本的第二核酸樣本。在某些實施例中,用於定性個體之方法進一步包括使用探針組針對複數個核酸序列富集第一核酸樣本以提供經富集之核酸樣本,該探針組包括具有至少約80%之整體中靶率的探針,如下所測定:(i)對在至少一個預定區域中之探針組量測(1)探針組中各探針之探針覆蓋範圍及(2)探針組中各探針之脫靶探針覆蓋範圍,及(ii)基於脫靶覆蓋範圍與探針覆蓋範圍之比率確定探針組之中靶率。在某些實施例中,用於定性個體之方法進一步包括化驗經富集之核酸樣本及第二核酸樣本以識別生物樣本中之一或多種基因組畸變以生成該個體之生物學資料。在某些實施例中,在步驟(b)之前,處理並轉化該醫學病史資料以提供經處理之醫學病史資料。在某些實施例中,處理係選自由清理、組織及標記組成之群。在某些實施例中,該療法子集包括一或多種類型之癌症的臨床試驗或標準醫護治療。 在某些實施例中,用於定性個體之方法進一步包括向臨床醫師呈現該療法子集以選擇推薦療法。在某些實施例中,用於定性個體之方法進一步包括接收來自該臨床醫師之對療法子集之選擇。在某些實施例中,生物學資料包括核酸突變或差異表現之蛋白質。在某些實施例中,核酸突變係選自表1之基因及變異體。在某些實施例中,(c)包括根據預定之基因或基因組區域查詢一或多個靶向療法之一或多個資料庫。在某些實施例中,(c)中之療法子集排除靶向生物學資料中不存在之基因組畸變的療法。在某些實施例中,(c)包括移除靶向生物學資料中不存在之基因組畸變的療法。在某些實施例中,(c)中之療法子集係根據療法之臨床階段進行過濾。在某些實施例中,醫學病史資料係根據來自該個體之醫學病史資料的醫療文本段可識別。在某些實施例中,用於定性個體之方法進一步包括使用至少一種機器學習算法來偵測並標記醫療文本段。在某些實施例中,(c)包括根據分類得分確定不合格療法並將不合格療法從剩餘療法中剔除以生成療法子集。在某些實施例中,分類得分係選自由是、可能及否組成之群。在某些實施例中,療法子集係經比較及檢視。在某些實施例中,使用指向來自該個體之醫學病史資料及生物學資料之資訊的鏈路將療法子集傳遞給使用者以人工驗證適格性。 在某些實施例中,用於定性個體之方法進一步包括基於使用者之過濾偏好來過濾該療法子集。在某些實施例中,過濾進一步包括健康照護專家之評估及推薦療法之選擇。在某些實施例中,該療法子集係自一或多個療法資料庫生成而無需使用該個體之生物學資料。在某些實施例中,步驟(a)包括接收個體之表現型資訊。在某些實施例中,用於定性個體之方法進一步包括(e)通過化驗來自該個體之一或多個生物樣本來監測登記於療法子集中之個體,其中化驗係針對選自表1之100種或更多種基因或其變異體。在某些實施例中,步驟(c)中之查詢具有至少約90%之與臨床試驗配對的預測可能性。在某些實施例中,當一或多個生物樣本針對存在或不存在生物標誌進行重新化驗時以大於或等於約90%的一致性相關係數針對存在或不存在生物標誌對一或多個生物樣本進行化驗,該等生物標誌包括複數種不同類型之生物標誌。在某些實施例中,化驗涵蓋至少2,500種基因、基因融合、點突變、插入缺失、複本數變異、啟動子或增強子。在某些實施例中,個體經診斷患有實體腫瘤或癌症。在某些實施例中,生物學資料生成初始療法列表,而醫學病史資料過濾該初始療法列表以生成該療法子集。 在某些態樣中,本發明提供用於定性個體之療法子集之方法,其包括:(a)接收(i)來自該個體之第一核酸樣本,該第一核酸樣本具有或疑似具有腫瘤衍生細胞或生物標誌,及(ii)來自該個體之正常樣本的第二核酸樣本;(b)使用探針組針對複數個核酸序列富集第一核酸樣本以提供經富集之核酸樣本,該探針組包括具有至少約80%之整體中靶率的探針,如下所測定:(i)對在至少一個預定區域中之探針組量測(1)探針組中各探針之探針覆蓋範圍及(2)探針組中各探針之脫靶探針覆蓋範圍,及(ii)基於脫靶覆蓋範圍與探針覆蓋範圍之比率確定探針組之中靶率;(c)化驗經富集之核酸樣本及第二核酸樣本以識別第一核酸樣本中相對於第二核酸樣本之一或多種基因組改變以生成該個體之基因組資料組;(d)針對對應於該個體之醫學病史及基因組資料的一或多種療法查詢一或多個療法資料庫,以生成針對該個體所定性之療法子集;及(e)在使用者之電子裝置的使用者介面上提供該療法子集。 在某些實施例中,用於定性個體之方法進一步包括自該個體接收關於來自該療法子集之給定療法的選擇。在某些實施例中,用於定性個體之方法進一步包括通過使用者介面接收該個體登記於選自療法子集之療法中的請求。在某些實施例中,用於定性個體之方法進一步包括電腦評估一或多個療法資料庫針對一或多個標準之適格性以生成經過濾療法集。在某些實施例中,使用者介面包括具有一或多個網路鏈路之一或多個圖形元件,其指向針對該個體所定性之療法子集及該療法子集的聯繫資訊。 在某些實施例中,該療法子集包括一或多種類型之癌症的臨床試驗或標準醫護治療。在某些實施例中,步驟(d)包括由人類療法策展人驗證針對該個體所定性之療法子集。在某些實施例中,用於定性個體之方法進一步包括接收該個體之醫學病史資料。在某些實施例中,用於定性個體之方法進一步包括基於醫學病史及基因組資料識別治療標靶並將該個體登記於基於所識別之治療標靶的療法。在某些實施例中,用於定性個體之方法進一步包括監測該個體,該監測包括化驗一或多個核酸樣本以生成基因組資料,其中該化驗係針對選自表1之100種或更多種基因或其變異體。在某些實施例中,該化驗涵蓋至少2,500種基因、基因融合、點突變、插入缺失、複本數變異、啟動子或增強子。在某些實施例中,第一核酸樣本包括無細胞DNA。在某些實施例中,化驗無細胞DNA中的100種或更多種基因。在某些實施例中,當第一核酸樣本及第二核酸樣本針對存在或不存在基因組改變進行重新化驗時以大於或等於約90%之一致性相關係數針對一或多種基因組改變對第一核酸樣本及第二核酸樣本進行化驗,該等基因組改變包括複數種不同類型之基因組改變。 在某些態樣中,本發明提供分析個體之生物樣本的方法,其包括與當針對存在或不存在生物標誌對生物樣本進行重新化驗時的對照相比以大於或等於約90%之一致性相關係數及至少約90%之精度針對存在或不存在生物標誌對生物樣本進行化驗,該等生物標誌包括複數種不同類型之生物標誌,其中該化驗包括複數種不同化驗(包括定序),其中大於90%之化驗的操作係自動進行。 在某些實施例中,生物樣本係均質的。在某些實施例中,生物樣本包括來自個體之腫瘤組織或全血樣本。在某些實施例中,生物樣本包括核酸分子。在某些實施例中,生物樣本包括無細胞脫氧核糖核酸(cfDNA)分子、細胞脫氧核糖核酸(cDNA)分子、核糖核酸(RNA)分子及蛋白質,且其中針對存在或不存在生物標誌對cfDNA分子、cDNA分子及RNA分子進行化驗。在某些實施例中,生物樣本包括正常生物分子及異常生物分子。在某些實施例中,正常生物分子係單離自生物樣本之膚色血球層。在某些實施例中,異常生物分子係單離自生物樣本之血漿或腫瘤組織。在某些實施例中,生物樣本為單個細胞。在某些實施例中,生物樣本係加索引。在某些實施例中,用於分析個體之生物樣本的方法進一步包括在稍後時間點對生物樣本進行重新化驗並識別一或多個生物標誌中之變化。在某些實施例中,化驗包括處理生物樣本或定序生物樣本而在樣本製備期間無需來自使用者之任何參與。在某些實施例中,化驗包括生物樣本之免疫組織化學圖譜分析(profiling)及基因組圖譜分析。在某些實施例中,化驗2500個或更多個生物標誌。在某些實施例中,化驗係基於多次化驗生物樣本以大於或等於約90%之一致性相關係數及至少約90%之精度進行。在某些實施例中,化驗係基於在至少兩個不同地理位置化驗生物樣本以大於或等於約90%之一致性相關係數及至少約90%之精度進行。 在某些態樣中,本發明提供用於識別個體之一或多個生物樣本中的基因組畸變之方法,其包括:(a)獲得該個體之該一或多個生物樣本,該一或多個生物樣本包括具有或疑似具有一或多種基因組畸變的核酸樣本,該一或多種基因組畸變以小於約5%之頻率出現在核酸樣本中;(b)使用探針組針對複數個核酸序列富集第一核酸樣本以提供經富集之核酸樣本,該探針組包括具有至少約80%之整體中靶率的探針,如下所測定:(i)對在至少一個預定區域中之探針組量測(1)探針組中各探針之探針覆蓋範圍及(2)探針組中各探針之脫靶探針覆蓋範圍,及(ii)基於脫靶覆蓋範圍與探針覆蓋範圍之比率確定探針組之中靶率;(c)對經富集之核酸樣本進行定序以生成定序讀數;及(d)處理定序讀數以識別該個體之一或多個生物樣本中的以小於約5%之頻率出現在核酸樣本中的基因組畸變。 在某些實施例中,該一或多個生物樣本包括血液樣本或組織樣本。在某些實施例中,處理涵蓋至少2,500種基因、基因融合、點突變、插入缺失、複本數變異、啟動子或增強子。在某些實施例中,核酸樣本包括無細胞DNA。在某些實施例中,一或多個生物樣本係加索引。在某些實施例中,用於識別基因組畸變之方法進一步包括在稍後時間點對生物樣本進行重新處理並識別一或多個生物標誌中之變化。在某些實施例中,處理包括生物樣本之免疫組織化學圖譜分析及基因組圖譜分析。在某些實施例中,化驗2500個或更多個生物標誌。 在某些態樣中,本發明提供用於向表現出癌症之個體提供療法之系統,其包括:一或多個電腦記憶體,其包括(i)該個體之生物學資料,該生物學資料係自該個體之一或多個生物樣本生成,或(ii) 該個體之醫學病史資料;及以操作方式耦合至一或多個療法資料庫之一或多個電腦處理器,其中該一或多個電腦處理器經個別或共同程式化以:(i)接收該個體之醫學病史資料及生物學資料,該生物學資料係藉由以下自該個體之一或多個生物樣本生成:在處理一或多個生物樣本期間,自動化處理使用以下步驟中至少一種至自動化系統之插入:細胞提取、核酸提取、富集、定序及免疫組織化學;(ii)分析該醫學病史資料及該生物學資料以產生該個體之基於基因組之醫學病史分析;(iii)使用該個體之基於基因組之醫學病史分析查詢針對該個體一或多個療法資料庫,以生成針對該個體所定性之療法子集;及(iv)在呈現給使用者的使用者介面上電子輸出該療法子集。 在某些實施例中,一或多個電腦處理器經網絡接收該生物學資料或該醫學病史資料。在某些實施例中,用於向表現出癌症之個體提供療法的系統進一步包括使該一或多個生物樣本接受定序來生成生物學資料之定序儀。 在某些態樣中,本發明提供包括機器可執行代碼之非暫時性電腦可讀媒體,當藉由一或多個電腦處理器執行時,該機器可執行代碼實施一種用於向表現出癌症之個體提供療法的方法,其包括:(a)接收該個體之醫學病史資料及該生物學資料,該生物學資料係係藉由以下自該個體之一或多個生物樣本生成:在處理一或多個生物樣本期間,自動化處理使用以下步驟中至少一種至自動化系統之插入:細胞提取、核酸提取、富集、定序及免疫組織化學;(b)分析該醫學病史資料及該生物學資料以產生該個體之基於基因組之醫學病史分析;(c)使用該個體之基於基因組之醫學病史分析查詢針對該個體一或多個療法資料庫,以生成針對該個體所定性之療法子集;及(d)在呈現給使用者的使用者介面上電子輸出該療法子集。 在某些態樣中,本發明提供用於定性個體之療法子集之方法,其包括:(a)使來自該個體之至少一個生物樣本接受至少一種化驗以生成來自該個體之生物學資料;(b)針對經過濾療法集處理來自該個體之生物學資料,以生成針對該個體所定性之療法子集,該經過濾療法集係藉由電腦評估療法資料庫針對一或多個標準之適格性來生成;(c)在使用者之電子裝置的使用者介面上呈現該療法子集;及(d)進一步包括將該個體之該醫學病史資料傳送給該療法子集之一或多個療法協調員。在某些實施例中,生物學資料係藉由自動化化驗系統自該個體之至少一個生物樣本生成,該自動化化驗系統在至少一個生物樣本之處理期間對選自由細胞提取、核酸提取、富集、定序及免疫組織化學組成之群的至少一個成員使用自動化處理。 在某些態樣中,本發明提供一種用於向表現出癌症之個體提供療法的電腦實施之方法,其包括:(a)接收該個體之生物學資料,該生物學資料係自該個體之一或多個生物樣本生成;(b)根據該個體之分子圖譜使用該生物學資料以生成第一療法列表,該分子圖譜指示一或多個生物樣本中之一或多種基因組畸變;(c)使用該個體之醫學病史資料自第一療法列表生成第二療法列表;及(d)電子輸出該第二療法列表。在某些實施例中,在(c)之前,接收該個體之醫學病史資料。在某些實施例中,在(c)之前,處理並轉化該醫學病史資料以提供經處理之醫學病史資料。在某些實施例中,該處理係選自由清理、組織及標記組成之群。在某些實施例中,將經處理之醫學病史資料呈現給個體。在某些實施例中,該療法列表包括臨床試驗及/或標準醫護。 在某些實施例中,用於向表現出癌症之個體提供療法的電腦實施之方法進一步包括將第二療法列表呈現於呈現給該個體的使用者介面上。在某些實施例中,向表現出癌症之個體提供療法的電腦實施之方法進一步包括將第二療法列表呈現給臨床醫師以選擇推薦療法。在某些實施例中,向表現出癌症之個體提供療法的電腦實施之方法進一步包括接收該個體登記於選自第二療法列表之給定療法中的請求。 在某些實施例中,生物學資料係自該個體之一或多個生物樣本生成而無需使用者在一或多個生物樣本之製備期間進行任何移液。在某些實施例中,生物學資料包括生成自選自由以下組成之群之一或多個生物樣本的資料:蛋白質、肽、無細胞核酸、核糖核酸、脫氧核糖核酸及其任何組合。在某些實施例中,一或多種基因組畸變包括核酸突變及/或差異表現之蛋白質。在某些實施例中,核酸突變係選自由以下組成之群:插入、核苷酸缺失、核苷酸取代、胺基酸插入、胺基酸缺失、胺基酸取代、基因融合及複本數變異。在某些實施例中,核酸突變係選自表1之基因及變異體。 在某些實施例中,向表現出癌症之個體提供療法的電腦實施之方法中之(b)包括根據預定之基因或基因組區域查詢一或多個靶向臨床試驗及療法之一或多個資料庫。在某些實施例中,(b)中之第一療法列表排除靶向一或多個生物樣本中不存在之基因組畸變的療法。在某些實施例中,(b)包括移除靶向一或多個生物樣本中不存在之基因組畸變的療法。在某些實施例中,(b)中之第一療法列表係根據療法之臨床階段進行過濾。 在某些實施例中,醫學病史資料係根據相關醫療文本段可識別。在某些實施例中,機器學習算法係進一步用於偵測及標記相關醫療文本段。 在某些實施例中,向表現出癌症之個體提供療法的電腦實施之方法中之(c)包括根據分類得分確定不合格療法並將不合格療法從剩餘療法中剔除以生成經過濾剩餘療法列表。在某些實施例中,分類得分係選自由是、可能及否組成之群。在某些實施例中,經過濾剩餘療法列表係經比較及檢視。檢視可生成第二療法列表。可使用指向來自該個體之醫學病史資料及生物學資料之資訊的鏈路將第二療法列表傳遞給使用者以人工驗證適格性。在某些實施例中,使用者為健康照護專家。在某些實施例中,使用者為個體之主要看護者。 在某些實施例中,向表現出癌症之個體提供療法的電腦實施之方法進一步包括基於使用者之過濾偏好來過濾第二療法列表。使用者可為個體。在某些實施例中,過濾偏好係選自由以下組成之群:特定機構之可用性、機構組之可用性、治療類型、臨床試驗之階段、藥物遞送之方法、給定療法之位置及與指定位置之距離、治療持續時間及個體重新定位療法之持續時間。在某些實施例中,過濾進一步包括健康照護專家之評估及推薦療法之選擇。在某些實施例中,第二療法列表係自第一療法列表生成而無需使用該個體之分子圖譜。在某些實施例中,向表現出癌症之個體提供療法的電腦實施之方法進一步包括在(a)之前使該個體之一或多個生物樣本接受定序以生成生物學資料。 在某些態樣中,本發明提供用於識別個體之一或多個生物樣本中的基因組畸變之方法,其包括:(a)獲得該個體之一或多個生物樣本,該一或多個生物樣本包括具有或疑似具有以小於約5%之頻率出現在核酸樣本中之一或多種基因組畸變的核酸樣本;(b)使用探針組針對複數個核酸序列富集第一核酸樣本以提供經富集之核酸樣本,該探針組包括具有至少約95%之整體中靶率的探針,如下所測定:(i)比較探針組與至少一個預定區域以量測(1)探針組中各探針之探針覆蓋範圍及(2)探針組中各探針之脫靶探針覆蓋範圍,及(ii)基於脫靶覆蓋範圍與探針覆蓋範圍之比率確定探針組之中靶率;(c)對經富集之核酸樣本進行定序以生成定序讀數;及(d)處理定序讀數以識別個體之一或多個生物樣本中的以小於約5%之頻率出現在核酸樣本中的一或多種基因組畸變。在某些實施例中,一或多個生物樣本包括血液樣本及/或組織樣本。 在某些實施例中,腫瘤組織樣本為福馬林固定之石蠟包埋之(FFPE)組織。 在某些實施例中,一或多個生物樣本係選自由以下組成之群:蛋白質、肽、無細胞核酸、核糖核酸、脫氧核糖核酸及其任何組合。在某些實施例中,一或多種基因組畸變包括核酸突變。在某些實施例中,一或多種基因組畸變係選自由以下組成之群:插入、核苷酸缺失、核苷酸取代、胺基酸插入、胺基酸缺失、胺基酸取代、基因融合、複本數變異、基因表現特徵、及其任何組合。 在某些實施例中,用於識別個體之一或多個生物樣本中的基因組畸變之方法進一步包括使用探針組以生成用於識別基因組畸變之分類器,該分類器係至少部分藉由以下生成:對來自該個體之腫瘤組織樣本的基因組的一或多個預定區域進行定序以提供定序讀數;在該等定序讀數中,識別覆蓋基因組之一或多個預定區域之探針組的序列;比較探針組與一或多個預定區域以量測(i)探針組中各探針之探針覆蓋範圍及(ii)探針組中各探針之脫靶探針覆蓋範圍;基於脫靶覆蓋範圍與探針覆蓋範圍之比率確定探針組之中靶率;選擇覆蓋基因組之一個或多個預定區域之探針組的一部分及具有合計至少95%之中靶率之探針組的一部分,藉此測定定製探針組;及提供一或多個特徵以允許對探針組之一或多個探針進行分類。 在某些實施例中,分類器係用於至少部分藉由以下來識別新探針組:生成來自該新探針組之一或多個特徵;將來自該新探針組之一或多個特徵輸入至該分類器中;及使用該分類器來預測新探針組之分類結果。在某些實施例中,一或多個特徵係選自以下組成之群:序列、序列長度、對準位置、探針覆蓋範圍、脫靶探針覆蓋範圍、中靶率、基因組畸變、基因及基因之變異體。在某些實施例中,一或多個特徵係選自表1。在某些實施例中,分類結果係選自第一結果及第二結果,其中該第一結果引導使用者預定新探針組及該第二結果不引導使用者預定新探針組。 在某些實施例中,一或多個預定區域包括一或多種選自由以下組成之群的組分:單種基因之一或多個片段、複數種基因之一或多個片段、編碼序列、非編碼序列、至少2600種基因、基因融合、點突變、插入缺失、複本數變異、啟動子及增強子。在某些實施例中,定序係選自由以下組成之群:外顯子組定序、轉錄組定序、基因組定序及無細胞DNA定序。在某些實施例中,基因組定序為靶向定序。在某些實施例中,基因組定序為非靶向定序。 在某些態樣中,本發明提供用於向表現出癌症之個體提供療法之系統,其包括:一或多個電腦記憶體,包括(i)個體之生物學資料,該生物學資料係自個體之一或多個生物樣本生成,或(ii)個體之醫學病史資料;及以操作方式耦合至資料庫之一或多個電腦處理器,其中一或多個電腦處理器經個別或共同程式化以:(i)自資料庫接收個體之生物學資料;(ii)根據個體之分子圖譜使用該生物學資料以生成第一療法列表,該分子圖譜指示一或多個生物樣本中之一或多種基因組畸變;(iii)使用個體之醫學病史資料自第一療法列表生成第二療法列表;及(iv)電子輸出第二療法列表。 在某些實施例中,一或多個電腦記憶體包括個體之生物學資料及個體之醫學病史資料。在某些實施例中,一或多個電腦處理器經網絡接收生物學資料或醫學病史資料。在某些實施例中,向表現出癌症之個體提供療法的系統進一步包括使一或多個生物樣本接受定序來生成生物學資料之定序儀。 在某些態樣中,本發明提供一種包括機器可執行代碼之非暫時性電腦可讀媒體,當經由一或多個電腦處理器執行時,該機器可執行代碼實施向表現出癌症之個體提供療法的方法,其包括:(a)接收個體之生物學資料,該生物學資料係自該個體之一或多個生物樣本生成;(b)根據個體之分子圖譜使用該生物學資料以生成第一療法列表,該分子圖譜指示一或多個生物樣本中之一或多種基因組畸變;(c)使用個體之醫學病史資料自第一療法列表生成第二療法列表;及(d)電子輸出第二療法列表。 在某些態樣中,本發明提供一種用於定性個體之臨床試驗之電腦實施之方法,其包括:(a)接收個體之醫學病史資料及生物學資料,該生物學資料係自個體之一或多個生物樣本生成而無需使用者在一或多個生物樣本之製備期間進行任何移液;(b)查詢對應於個體之醫學病史資料及生物學資料之一或多個臨床試驗的一或多個資料庫,以生成針對該個體所定性之臨床試驗組,該臨床試驗組包括至少一個臨床試驗;(c)在呈現給使用者的使用者介面上提供臨床試驗組;及(d)通過使用者介面接收個體登記於選自所提供之臨床試驗組之臨床試驗中的請求。 在某些實施例中,(a)包括接收個體之表現型資訊。在某些實施例中,表現型資訊包括以下之一或多者:年齡、體重、身高、性別、種族、身體質量指數(BMI)、先前治療及反應、東部腫瘤協作組(ECOG)評分、及診斷。在某些實施例中,用於定性個體之電腦實施之方法進一步包括自個體之一或多個生物樣本自動生成生物學資料而無需使用者之任何參與。在某些實施例中,用於定性個體之電腦實施之方法進一步包括確定一或多個臨床試驗在所生成之臨床試驗組中的優先級。在某些實施例中,確定優先級係基於一或多個選自由以下組成之群的因素:臨床試驗之地理位置、監管機構批准狀態、經註釋之個體醫學病史資料、或其組合。在某些實施例中,用於定性個體之電腦實施之方法進一步包括將個體登記於臨床試驗中。在某些實施例中,用於定性個體之電腦實施之方法進一步包括(e)通過化驗來自個體之一或多個生物樣本來監測登記於臨床試驗中的個體,其中化驗係針對選自表1之100種或更多種基因或其變異體。在某些實施例中,用於定性個體之電腦實施之方法進一步包括預測個體成功之可能性。在某些實施例中,一或多個臨床試驗係經註釋。在某些實施例中,(b)中之查詢具有至少約90%之與臨床試驗配對的預測可能性。在某些實施例中,請求係經網絡接收。在某些實施例中,一或多個生物樣本包括血液樣本。在某些實施例中,一或多個生物樣本包括腫瘤組織樣本及正常組織樣本。在某些實施例中,腫瘤組織樣本為福馬林固定之石蠟包埋之(FFPE)組織樣本。在某些實施例中,(a)中之接收包括接收(i)來自個體之腫瘤組織樣本的第一生物樣本,及(ii)來自個體之正常組織樣本的第二生物樣本;及化驗該第一生物樣本及該第二生物樣本以識別腫瘤組織樣本中相對於正常組織樣本之一或多個生物標誌,以生成個體之生物資料組。在某些實施例中,當生物樣本針對存在或不存在生物標誌進行重新化驗時以大於或等於約90%的一致性相關係數針對存在或不存在生物標誌對一或多個生物樣本進行化驗,該等生物標誌包括複數種不同類型之生物標誌。在某些實施例中,複數種不同類型之生物標誌係選自由以下組成之群:一或多種核苷酸插入、核苷酸缺失、核苷酸取代、胺基酸插入、胺基酸缺失、胺基酸取代、基因融合、複本數變異、及其任何組合。在某些實施例中,化驗係針對兩個或更多個選自表1之基因或其變異體。在某些實施例中,化驗係針對100個或更多個選自表1之基因或其變異體。在某些實施例中,化驗涵蓋至少2,500種基因、基因融合、點突變、插入缺失、複本數變異、啟動子及/或增強子。在某些實施例中,生物學資料包括一或多個選自由以下組成之群的基因組改變:一或多種核苷酸插入、核苷酸缺失、核苷酸取代、胺基酸插入、胺基酸缺失、胺基酸取代、基因融合、複本數變異、及其任何組合。在某些實施例中,生物學資料包括來自一或多個選自由以下組成之群之生物樣本組分的資料:蛋白質、肽、無細胞核酸、核糖核酸、脫氧核糖核酸及其任何組合。 在某些實施例中,個體經診斷患有實體腫瘤或癌症。在某些實施例中,自動對醫學病史資料進行註釋。在某些實施例中,以標準術語對醫學病史資料進行註釋。在某些實施例中,標準術語為一體化醫學語言系統(Unified Medical Language System)。在某些實施例中,使用者介面為基於網頁之使用者介面或移動使用者介面。在某些實施例中,生物學資料係自個體之一或多個生物樣本自動生成而無需使用者在製備期間之任何參與。 在某些態樣中,本發明提供用於定性個體之臨床試驗之方法,其包括:(a)接收(i)來自個體之腫瘤組織樣本的第一核酸樣本,及(ii)來自該個體之正常組織樣本的第二核酸樣本;(b)化驗第一核酸樣本及第二核酸樣本以識別腫瘤組織樣本中相對於正常組織樣本之一或多種基因組改變以生成個體之基因組資料組,其中進行該化驗而無需使用者在第一核酸樣本及第二核酸樣本之製備期間在識別一或多種基因組改變之前進行任何移液;(c)查詢對應於個體之醫學病史資料及基因組資料之一或多個臨床試驗的一或多個資料庫,以生成針對該個體所定性之臨床試驗組;及在呈現給使用者之使用者介面上提供臨床試驗組。 在某些實施例中,用於定性個體之方法進一步包括接收個體之醫學病史資料。在某些實施例中,用於定性個體之方法進一步包括(e)通過使用者介面接收個體登記於選自所提供之臨床試驗組之臨床試驗中的請求。在某些實施例中,用於定性個體之方法進一步包括基於醫學病史及基因組資料識別治療標靶並基於所識別之標靶將個體登記於臨床試驗中。在某些實施例中,用於定性個體之方法進一步包括監測個體,監測包括化驗一或多個核酸樣本以生成基因組資料,其中化驗係針對選自表1之100種或更多種基因或其變異體。在某些實施例中,正常組織樣本包括血液。在某些實施例中,腫瘤組織樣本為福馬林固定之石蠟包埋之(FFPE)組織。 在某些實施例中,化驗係針對選自表1之兩種或更多種基因或其變異體。在某些實施例中,化驗係針對選自表1之100種或更多種基因或其變異體。在某些實施例中,化驗涵蓋至少2,500種基因、基因融合、點突變、插入缺失、複本數變異、啟動子及/或增強子。在某些實施例中,第一核酸樣本包括無細胞DNA。在某些實施例中,化驗無細胞DNA中的100種或更多種基因。在某些實施例中,化驗包括對第一核酸樣本及第二核酸樣本進行定序。在某些實施例中,定序係在無需使用者之任何參與下進行。在某些實施例中,化驗進一步包括接收來自使用者之對生物樣本進行定序的請求。在某些實施例中,定序係選自由以下組成之群:外顯子組定序、轉錄組定序、基因組定序及無細胞DNA定序。在某些實施例中,當第一核酸樣本及第二核酸樣本針對存在或不存在基因組改變進行重新化驗時以大於或等於約90%的一致性相關係數針對一或多種基因組改變對第一核酸樣本及第二核酸樣本進行化驗,該等基因組改變包括複數種不同類型之基因組改變。在某些實施例中,基因組改變之類型係選自由以下組成之群:核苷酸插入、核苷酸缺失、核苷酸取代、基因融合及複本數變異。在某些實施例中,用於定性個體之方法進一步包括接收來自使用者之對第一核酸樣本及第二核酸樣本進行定序的請求。在某些實施例中,化驗包括對第一核酸樣本及第二核酸樣本進行定序以偵測至少5個選自表1之基因或其變異體。在某些實施例中,化驗包括使第一核酸樣本及第二核酸樣本接受定序以偵測至少10個選自表1之基因或其變異體。在某些實施例中,化驗包括使第一核酸樣本及第二核酸樣本接受定序以偵測至少15個選自表1之基因或其變異體。在某些實施例中,化驗包括使第一核酸樣本及第二核酸樣本接受定序以偵測至少20個選自表1之基因或其變異體。在某些實施例中,化驗包括使第一核酸樣本及第二核酸樣本接受定序以偵測至少30個選自表1之基因或其變異體。在某些實施例中,化驗包括使第一核酸樣本及第二核酸樣本接受定序以偵測至少40個選自表1之基因或其變異體。在某些實施例中,第一核酸樣本及第二核酸樣本係獲得自腫瘤組織樣本及正常組織樣本而無需使用者進行任何移液。在某些實施例中,第一核酸樣本及第二核酸樣本係自動獲得自腫瘤組織樣本及正常組織樣本而無需使用者之任何參與。 在某些態樣中,本發明提供用於分析個體之生物樣本的方法,其包括當針對存在或不存在生物標誌對生物樣本進行重新化驗時,與對照相比以大於或等於約90%之一致性相關係數及至少約90%之精度針對存在或不存在生物標誌對生物樣本進行化驗,該等生物標誌包括複數種不同類型之生物標誌,其中化驗包括複數種不同化驗(包括定序)。 在某些實施例中,生物樣本為腫瘤組織樣本。在某些實施例中,生物樣本係均質的。在某些實施例中,生物樣本為包括血漿及膚色血球層之血液樣本。在某些實施例中,生物樣本包括來自個體之腫瘤組織及全血。在某些實施例中,生物樣本包括核酸分子。在某些實施例中,生物樣本包括無細胞脫氧核糖核酸(cfDNA)分子、細胞脫氧核糖核酸(cDNA)分子、核糖核酸(RNA)分子及蛋白質,且其中針對存在或不存在生物標誌對cfDNA分子、cDNA分子及RNA分子進行化驗。在某些實施例中,生物樣本包括正常生物分子及異常生物分子。在某些實施例中,正常生物分子係單離自生物樣本之膚色血球層。在某些實施例中,異常生物分子係單離自生物樣本之血漿或腫瘤組織。在某些實施例中,化驗生物樣本包括比較正常生物分子與異常生物分子。 在某些實施例中,生物樣本為單個細胞。在某些實施例中,生物樣本係加索引。在某些實施例中,用於分析個體之生物樣本的方法進一步包括在稍後時間點對生物樣本進行重新化驗及識別一或多個生物標誌中之變化。在某些實施例中,化驗包括處理生物樣本或定序生物樣本而在樣本製備期間無需任何來自使用者之參與。在某些實施例中,定序係選自由以下組成之群:外顯子組定序、轉錄組定序、基因組定序及無細胞DNA定序。在某些實施例中,化驗在使用者輸入生物樣本後開始。在某些實施例中,化驗包括生物樣本之免疫組織化學圖譜分析及基因組圖譜分析。在某些實施例中,用於分析個體之生物樣本的方法進一步包括接收來自使用者之對生物樣本進行處理或對生物樣本進行定序的請求。在某些實施例中,複數種不同類型之生物標誌係選自由以下組成之群:一或多種核苷酸插入、核苷酸缺失、核苷酸取代、胺基酸插入、胺基酸缺失、胺基酸取代、基因融合、複本數變異、及其任何組合。在某些實施例中,化驗2500種或更多種生物標誌。在某些實施例中,化驗包括化驗生物樣本之無細胞DNA中的100種或更多種生物標誌。在某些實施例中,複數個不同類型之生物標誌包括抗原及基因改變。在某些實施例中,複數個不同類型之生物標誌包括抗原及基因改變。在某些實施例中,用於分析個體之生物樣本的方法進一步包括基於存在或不存在生物標誌來選擇臨床試驗。在某些實施例中,對照為健康對照。在某些實施例中,對照係來自個體。在某些實施例中,化驗包括進行非定序之化驗。在某些實施例中,化驗係基於多次化驗生物樣本之以大於或等於約90%之一致性相關係數及至少約90%之精度進行。在某些實施例中,化驗係基於在至少兩個不同地理位置化驗生物樣本之以大於或等於約90%之一致性相關係數及至少約90%之精度進行。在某些實施例中,一致性相關係數係大於或等於約95%。在某些實施例中,一致性相關係數係大於或等於約99%。在某些實施例中,化驗包括檢索生物樣本及處理生物樣本,該處理係不存在移液。 在某些態樣中,本發明提供一種用於識別個體中之一或多種體細胞突變的方法,其包括:(a)獲得來自個體之腫瘤生物樣本及正常生物樣本;(b)化驗腫瘤生物樣本及正常生物樣本以(i)獲得分別自腫瘤生物樣本及正常生物樣本所獲得之第一核酸樣本及第二核酸樣本的序列資訊而無需使用者在第一核酸樣本及第二核酸樣本之製備期間在定序之前進行任何移液,及(ii)識別一或多個不同於第一核酸樣本及第二核酸樣本類型之其他生物標誌;(c)比較針對第一核酸樣本與第二核酸樣本所獲得之序列資訊以識別腫瘤生物樣本中相對於正常生物樣本之一或多種基因組改變;及(d)使用(i)在(b)中所識別之一或多個其他生物標誌及(ii)在(c)中所識別之一或多種基因組改變來與對照相比以至少約90%之精度識別個體中之一或多種體細胞突變。 在某些實施例中,第一核酸樣本及第二核酸樣本係分別自腫瘤生物樣本及正常生物樣本自動獲得。在某些實施例中,第一核酸樣本及第二核酸樣本係分別自腫瘤生物樣本及正常生物樣本自動獲得而無需使用者在製備期間之任何參與。在某些實施例中,用於識別一或多種體細胞突變之方法進一步包括在(b)之前自動獲得(i)來自個體之腫瘤生物樣本的第一核酸樣本及(ii)來自個體之正常生物樣本的第二核酸樣本,而無需使用者之任何參與。在某些實施例中,腫瘤生物樣本及正常生物樣本係獲得自包括來自個體之血漿及膚色血球層的血液樣本。在某些實施例中,第一核酸樣本係獲得自血漿中之無細胞DNA。在某些實施例中,腫瘤生物樣本為福馬林固定之石蠟包埋之(FFPE)組織樣本。在某些實施例中,正常生物樣本為膚色血球層樣本。在某些實施例中,定序係選自由以下組成之群:外顯子組定序、轉錄組定序、基因組定序及無細胞DNA定序。在某些實施例中,無細胞DNA定序包括錯配靶向定序(Mita-Seq)或末端之繫留消除(tethered elimination of termini) (Tet-Seq)。在某些實施例中,用於識別一或多種體細胞突變之方法進一步包括接收來自使用者之對第一核酸樣本及第二核酸樣本進行定序的請求。在某些實施例中,定序涵蓋至少2,500種基因、基因融合、點突變、插入缺失、複本數變異、啟動子及/或增強子。在某些實施例中,定序係針對兩個或更多個選自表1之基因或其變異體。在某些實施例中,定序係針對100個或更多個選自表1之基因或其變異體。在某些實施例中,一或多個基因組改變係選自由以下組成之群:一或多種核苷酸插入、核苷酸缺失、核苷酸取代、胺基酸插入、胺基酸缺失、胺基酸取代、基因融合、複本數變異、及其任何組合。 在某些實施例中,個體經診斷患有實體腫瘤或癌症。在某些實施例中,用於識別一或多種體細胞突變之方法進一步包括對第一核酸樣本及第二核酸樣本加索引。在某些實施例中,當第一核酸樣本及第二核酸樣本針對存在或不存在基因組改變進行重新化驗時以大於或等於約90%之一致性相關係數針對一或多種基因組改變對第一核酸樣本及第二核酸樣本進行化驗,該等基因組改變包括複數種不同類型之基因組改變。在某些實施例中,基因組改變之類型係選自由以下組成之群:核苷酸插入、核苷酸缺失、核苷酸取代、基因融合及複本數變異。在某些實施例中,一或多種基因組改變係以至少約90%之精度識別。 本發明之另一態樣提供包括機器可執行代碼之非暫時性電腦可讀媒體,當經由一或多個電腦處理器執行時,該機器可執行代碼實施上文或本文其他處之方法的任一者。 本發明之另一態樣提供一種包括一或多個電腦處理器及與其耦合之非暫時性電腦可讀媒體的電腦系統。該非暫時性電腦可讀媒體包括當經由一或多個電腦處理器執行時實施上文或本文其他處之方法中任一者的機器可執行代碼。 熟習此項技術者將從以下詳細描述中輕易明瞭本發明之其他態樣及優點,其中以下詳細描述僅顯示及描述本發明之說明性實施例。應瞭解,在不脫離本發明之情況下,本發明能夠具有其他且不同之實施例,且其若干細節能夠在各種明顯態樣進行修改。因此,圖式及描述應視為說明性,而非限制性。以引用之方式併入 本說明書中所述之所有公開案、專利及專利申請案均係以引用之方式併入本文中,其程度如同表明各單一公開案、專利及專利申請案明確地且個別地以引用之方式併入般。在一定程度上以引用之方式併入之公開案及專利或專利申請案與本說明書中所包含之揭示內容相矛盾時,本說明書旨在淘汰及/或優先於任何此等相互矛盾之材料。
交互參照 本申請案主張2016年9月23日申請之美國臨時專利申請案序號62/399,221及2017年3月31日申請之美國臨時專利申請案序號62/480,307之優先權,其等各係以全文引用之方式併入本文中。 雖然本文業經顯示及描述本發明之各種實施例,但熟習此項技術者將明瞭,此等實施例係僅以舉例之方式提供。熟習此項技術者可在不脫離本發明之情況下進行許多變化、改變及替代。應瞭解,可採用本文所述之本發明實施例的各種替代方案。 如本文所用,術語「基因變異體」通常係指個體之核酸樣本或基因組中的改變、變異體或多態性。此等改變、變異體或多態性可係相對於參考基因組而言,其可為個體或其他個體之參考基因組。單核苷酸多態性(SNP)係多態性的一種形式。在一些實例中,一或多種多態性包括一或多種單核酸變異(SNV)、插入、缺失、重複、小插入、小缺失、小重複、結構變異體連接、可變長度串聯重複及/或毗鄰序列。複本數變異體(CNV)及其他重排亦係基因變異之形式。基因組改變可為或包括鹼基改變、插入、缺失、重複、複本數變異或結構重排。 如本文所用,術語「多核苷酸」通常係指包含一或多個核酸次單元之分子。多核苷酸可包括一或多個選自腺苷(A)、胞嘧啶(C)、鳥嘌呤(G)、胸腺嘧碇(T)及尿嘧啶(U)或其變異體之次單元。核苷酸可包括A、C、G、T或U或其變異體。核苷酸可包括可併入至生長核酸股中的任何次單元。此等次單元可為A、C、G、T或U,或對一或多種互補A、C、G、T或U具有特異性,或與嘌呤(即,A或G或其變異體)或嘧啶(即,C、T或U或其變異體)互補之任何其他次單元。次單元可使單一核酸鹼基或鹼基組(例如,AA、TA、AT、GC、CG、CT、TC、GT、TG、AC、CA或其尿嘧啶對應物)能夠解析。在一些實例中,多核苷酸為脫氧核糖核酸(DNA)或核糖核酸(RNA)或其衍生物。多核苷酸可為單股或雙股。 如本文所用,術語「個體」通常係指動物,諸如哺乳動物物種(例如,人類)或禽類(例如,鳥類)物種或其他生物體(諸如植物)。更具體言之,個體可為脊椎動物、哺乳動物、小鼠、靈長類動物、類人猿或人類。動物包括(但不限於)農場動物、競技動物及寵物。個體可為健康個體、患有或疑似患有疾病或疾病傾向之個體、或需要治療或疑似需要治療之個體。個體可為患者。 如本文所用,術語「樣本」通常係指單離自個體之任何生物樣本。例如,樣本可包括(但不限於)體液、全血、血小板、血清、血漿、糞便、紅血球、白細胞或白血球、內皮細胞、組織活檢、滑液、淋巴液、腹水、組織間隙或細胞外液、在細胞之間之空間中的流體(包括牙齦溝液)、骨髓、腦脊髓液、胸膜液、唾液、黏液、痰液、精液、汗液、尿液或任何其他體液。體液可包括唾液、血液或血清。例如,多核酸可為單離自體液(例如,血液或血清)之無細胞DNA及/或無細胞RNA (例如,轉錄體)。樣本亦可為腫瘤樣本,其可藉由各種方法,包括(但不限於)靜脈穿刺、排泄、射精、按摩、活組織檢查、針抽吸、灌洗、刮擦、手術切開、或干預或其他方法,自個體獲得。 術語「基因組」通常係指生物體的遺傳資訊之整體。基因組可呈DNA或RNA進行編碼。基因組可包括編碼蛋白質之編碼區以及非編碼區。基因組可包括生物體中所有染色體一起之序列。例如,人類基因組具有總共46條染色體。所有此等染色體之序列一起構成人類基因組。 如本文所用,術語「定序」係在廣義上進行使用且可係指允許識別至少部分核酸中之至少一些連續核苷酸(包括但不限於至少部分延伸產物或載體插入)之順序的任何技術。 在整個本說明書中,「轉接子(adaptor/ adapter)」、「標記(tag)」係作為同義詞使用。可通過任何方法(包括連接、雜交或其他方法)將轉接子或標記偶聯至待「標記」之多核苷酸序列。轉接子可為單向或雙向。轉接子可為鈍端或具有突出端。 如本文所用,術語「定序轉接子」通常係指適於(諸如藉由與標靶多核苷酸相互作用使能定序)允許定序儀器對標靶多核苷酸進行定序之分子(例如,多核苷酸)。定序轉接子允許標靶多核苷酸藉由定序儀器進行定序。在一實例中,定序轉接子包括雜交或結合至與定序系統之固體撐體(諸如流槽(flow cell))連接之捕獲多核苷酸的核苷酸序列。在另一實例中,定序轉接子包括與多核苷酸雜交或結合生成髮夾環之核苷酸序列,其允許標靶多核苷酸藉由定序系統進行定序。定序轉接子可包括定序儀基序(sequencer motif),其可為與其他分子(例如,多核苷酸)之流槽序列互補並可藉由定序系統用於對標靶多核苷酸進行定序的核苷酸序列。定序儀基序亦可包括用於定序(諸如藉由合成之定序)中之引物(primer)序列。定序儀基序可包括庫轉接子偶聯至定序系統並對標靶多核苷酸進行定序所需之序列。 如本文所用,除非另有說明,否則當處於系列之前時,術語「至少」、「至多」或「約」係指該系列之每個成員。 術語「約」及其與參考數值相關之語法等效詞可包括該值至多加或減10%之值範圍。例如,「約10」之數量包括9至11之量。在其他實施例中,術語「約」相對於參考數值可以包括該值加或減10%、9%、8%、7%、6%、5%、4%、3%、2%或1%之該值範圍。 術語「至少」及其與參考數值相關之語法等效詞可包括參考數值及大於該值。例如,「至少10」之量可包括值10及10以上之任何數值,諸如11、100及1,000。 術語「至多」及其與參考數值相關之語法等效詞可包括參考數值及小於該值。例如,「至多10」之數量可包括值10及10以下之任何數值,諸如9、8、5、1、0.5及0.1。 如本文所用,術語「標籤(label)」通常係指字一或多個字元串。標籤可為文本串、數值串、字母數字串、或字元串。標籤可識別特定生物學資料、醫學病史資料或臨床試驗資料的相關部分。 本發明提供用於分析個體之生物樣本及用於臨床診斷及測試,諸如篩選(例如用於在超過50歲之女性中所常見之乳癌)、掃描(諸如核磁共振成像(MRI)掃描、電腦斷層攝影術(CT)掃描)或體液測試(例如血液測試)之方法。 具有基因易感性之個體可經診斷患有特定病狀。此等病狀可包括癌症、實體腫瘤、肥胖、自體免疫疾病、心臟疾病、AIDS (已知其發病在其他相似個體中以不同時間發生)、血壓控制、哮喘、糖尿病及其他慢性疾病。自體免疫疾病可包括花粉熱及關節炎。抑鬱症可包括諸如重鬱症、神經官能性憂鬱障礙、非特異性抑鬱症、適應性障礙(伴有抑鬱症)及雙相抑鬱症之病狀。 個體亦可經診斷患有癌症,諸如急性淋巴母細胞性白血病(ALL)、急性骨髓性白血病(AML)、腎上腺皮質癌、卡波西氏肉瘤(Kaposi Sarcoma)、肛門癌、基底細胞癌、膽管癌、膀胱癌、骨癌、骨肉瘤、惡性纖維組織細胞瘤、腦幹膠質瘤、腦癌、腸癌、血液癌、顱咽管瘤、室管膜母細胞瘤、室管膜瘤、神經管胚細胞瘤、髓上皮瘤、松果體實質瘤、乳癌、支氣管腫瘤,伯基特氏(Burkitt)淋巴瘤、非霍奇金氏(Non-Hodgkin)淋巴瘤、類癌瘤、子宮頸癌、脊索瘤、慢性淋巴細胞性白血病(CLL)、慢性骨髓性白血病(CML)、結腸癌、結腸直腸癌、皮膚T細胞淋巴瘤、原位導管癌、子宮內膜癌、食管癌、尤文氏(Ewing)肉瘤、眼癌、眼內黑素瘤、視網膜母細胞瘤、纖維組織細胞瘤、膽囊癌、胃癌、膠質瘤、多毛細胞白血病、頭頸癌、心臟癌、肝細胞(肝)癌、霍奇金氏淋巴瘤、下嚥癌、腎癌、喉癌、唇癌、口腔癌、肺癌、非小細胞癌、小細胞癌、黑素瘤、口腔癌、骨髓增生異常症候群、多發性骨髓瘤、神經管胚細胞瘤、鼻腔癌、鼻旁竇癌、神經母細胞瘤、鼻咽癌、口腔癌、口咽癌、骨肉瘤、卵巢癌、胰癌、乳頭狀瘤病、副神經節瘤、副甲狀腺癌、陰莖癌、咽癌、垂體瘤、血漿細胞腫瘤、前列腺癌、直腸癌、腎細胞癌、橫紋肌肉瘤、唾腺癌、塞紮裏氏症候群(Sezary syndrome)、皮膚癌、非黑素瘤、小腸癌、軟組織肉瘤、鱗狀細胞癌、睾丸癌、喉癌、胸腺瘤、甲狀腺癌、尿道癌、子宮癌、子宮肉瘤、陰道癌、外陰癌、瓦登斯通氏(Waldenstrom)巨球蛋白血症、威爾姆氏(Wilms)腫瘤及/或其他腫瘤。 圖1顯示工作流程100。在第一操作中,可獲得個體之一或多個生物樣本101 (例如,腫瘤及正常樣本)。可使一或多個生物樣本接受化驗以識別個體中之疾病102。接著,可使用電腦實施之方法分析103生物樣本以從一或多個生物樣本中提取資料用於臨床試驗登記及藥物開發。隨後可自該資料生成104臨床試驗。隨後可獲取並處理醫療記錄以提取相關臨床資訊105。隨後可將個體登記於臨床試驗中106。此等登記可為自動或由個體或其他使用者(例如,個體之健康照護提供者)請求。個體可為患者。 工作流程100能夠生成臨床試驗配對及/或標準醫護治療選項。在操作105下,可獲取並處理個體之醫療記錄以提取相關臨床資訊。生物樣本分析 在一態樣中,本發明提供用於分析個體之生物樣本的方法,其包括與對照相比以大於或等於約90%之一致性相關係數及至少約90%之精度針對存在或不存在生物標誌對生物樣本進行化驗。一致性相關係數可為大於或等於約60%、70%、80%、90%、95%、96%、97%、98%或99%。精度可為至少約60%、約70%、約80%或約90%。精度可為至少約60%、70%、80%、90%、95%、96%、97%、98%或99%。可針對存在或不存在生物標誌對生物樣本進行重新化驗。生物樣本可係均質的。生物標誌可包括複數種不同類型之生物標誌。可化驗至少500種生物標誌、1000種生物標誌、1500種生物標誌、2000種生物標誌、2500種生物標誌、3000種生物標誌、3500種生物標誌或4000種生物標誌。 圖2顯示生物樣本處理工作流程系統200。生物樣本201可為腫瘤樣本、血液樣本或唾液樣本。在生物樣本處理202期間,可從腫瘤樣本中提取蛋白質、DNA及RNA並可進行本文所述之蛋白質免疫組織化學(IHC)、RNA化驗及DNA化驗。可從血液樣本中提取正常DNA及血漿DNA並可各自進行如本文所述之DNA化驗及循環性腫瘤DNA (ctDNA)化驗。可從唾液樣本中提取正常DNA並作為在沒有血液樣本之情況下的備用樣本供應儲存。生物樣本處理後,報告203基因表現、蛋白質表現、腫瘤中之體細胞變異體及ctDNA中之變異體的結果,並根據標籤進行標記以生成經標記之生物學資料204。 生物樣本可包括來自個體之流體及/或組織。生物樣本可為腫瘤生物樣本或正常生物樣本。對照可係自個體獲得。對照可為健康對照或正常生物樣本。待測試之生物樣本可為全血或唾液。生物樣本可包括血漿、膚色血球層或唾液。膚色血球層可包括淋巴球、血小板或白血球。腫瘤樣本可包括腫瘤組織活檢及/或無細胞DNA樣本中之循環性腫瘤DNA。正常樣本可包括膚色血球層細胞、全血或正常上皮細胞。膚色血球層細胞可為白血球。正常樣本可包括衍生自白血球或唾液中之上皮細胞的核酸分子。正常DNA可係自白血球或唾液中之上皮細胞提取。樣本可包括來自不同源之核酸。例如,樣本可包括生殖系DNA或體細胞DNA。樣本可包括攜帶突變之核酸。例如,樣本可包括攜帶生殖系突變及/或體細胞突變之DNA。樣本亦可包括攜帶癌症相關聯突變(例如,癌症相關聯體細胞突變)之DNA。可比較腫瘤及正常細胞。腫瘤樣本可與多種正常樣本進行比較。樣本可包括RNA (例如,mRNA),其可進行定序(例如,經由RNA之逆轉錄並隨後對cDNA進行定序)。 生物流體可包括任何未經處理或經處理之與活生物體相關聯的流體。實例可包括(但不限於)血液,包括全血、溫血或冷血、及儲存或新鮮血液;經處理之血液,諸如經至少一種生理溶液(包括但不限於鹽水、營養物及/或抗凝血劑溶液)稀釋之血液;血液組分,諸如血小板濃縮物(PC)、富血小板血漿(PRP)、貧血小板血漿(PPP)、無血小板血漿、血漿、新鮮冷凍血漿(FFP)、獲得自血漿之組分、濃集紅血球(PRC)、過渡區物質或膚色血球層(BC);衍生自血液或血液組分或衍生自骨髓之類似血液產品;自血漿分離並再懸浮於生理流體或冷凍保護流體中之紅血球;及自血漿分離並再懸浮於生理流體或冷凍保護流體中之血小板。生物樣本之其他非限制性實例包括皮膚、心臟、肺、腎、骨髓、乳房、胰臟、肝臟、肌肉、平滑肌、膀胱、膽囊、結腸、腸、腦、前列腺、食道、甲狀腺、血清、唾液、尿、胃液及消化液、淚液、糞便、精液、陰道液、衍生自腫瘤組織之間質液、眼液、汗液、黏液、耳垢、油、腺體分泌物、脊髓液、毛髮、指甲、皮膚細胞、血漿、鼻拭子或鼻咽洗液、脊髓液、腦脊髓液、組織、咽拭子、活組織檢查、胎盤液、羊水、臍帶血、增强液、腔液、痰液、膿、微生物相、胎糞、母乳及/或其他排泄物或身體組織。血液樣本之結果可在至少約1分鐘、5分鐘、10分鐘、20分鐘、30分鐘、1小時、2小時、3小時、4小時、5小時、6小時、12小時、1天、2天、3天、4天、5天、6天、7天、8天、9天、10天或更長時間之後獲得。 樣本亦可為腫瘤樣本,其可藉由各種方法,包括(但不限於)靜脈穿刺、排泄、射精、按摩、活組織檢查、針抽吸、灌洗、刮擦、手術切開、或干預或其他方法,自個體獲得。腫瘤樣本可為腫瘤組織樣本。 生物樣本可包括來自不同源之核酸分子。例如,樣本可包括生殖系DNA或體細胞DNA。樣本可包括攜帶突變之核酸。例如,樣本可包括攜帶生殖系突變及/或體細胞突變之DNA。樣本亦可包括攜帶癌症相關聯突變(例如,癌症相關聯體細胞突變)之DNA。 樣本可包括多種含量之含有基因組等效物的核酸。例如,約30 ng DNA之樣本可含有約10,000 (104 )個單倍體人類基因組等效物,而在cfDNA的情況下,為約2000億(2x1011 )個個別多核苷酸分子。同樣,約100 ng DNA之樣本可含有約30,000個單倍體人類基因組等效物,而在無細胞DNA (cfDNA)的情況下,為約6000億個個別分子。 生物樣本可為組織樣本。組織可為執行特殊功能之一組經連接的特化細胞。組織亦可為細胞外間質物質。所分析之組織可為待移植或待手術接枝之組織的一部分,諸如器官(例如,心臟、腎臟、肝臟、肺等)、皮膚、骨骼、神經組織、肌腱、血管、脂肪、角膜、血液或血液組分。 組織之實例可係選自由以下組成之群:胎盤組織、乳腺組織、胃腸組織、肝組織、腎組織、肌肉骨骼組織、泌尿生殖組織、骨髓組織、前列腺組織、皮膚組織、鼻通道組織、神經組織、眼組織及中樞神經系統組織。組織可源自人類及/或哺乳動物。組織可包括發現與細胞及/或組織相關聯之連接物質及液體物質。組織亦可包括活檢組織及含有細胞或生物物質之介質。生物樣本可為腫瘤組織樣本。 來自個體之組織可保存用於涉及維持分子及形態完整性之研究。用於後期下游使用之組織保存方法可包括冷凍介質包埋之組織、快速冷凍組織及福馬林固定之石蠟包埋之(FFPE組織)。保存方法亦可包括在直接抽取全血採集管中採集、運輸及儲存血液樣本。採集管可為無細胞DNA BCT® 。無細胞DNA BCT可穩定無細胞血漿DNA且可保存發現於全血之有核血細胞及循環上皮細胞中的細胞基因組DNA。血液可保存於血液採集管中。 腫瘤生物樣本可為福馬林固定之石蠟包埋之(FFPE)組織樣本。多聚甲醛可用於組織固定。組織可進行切片或作為整體使用。在切片之前,組織可包埋於冷凍介質或石蠟中。可使用冷凍切片機(microtome/cryostat)來對組織進行切片。切片可安裝至載玻片上,用乙醇洗液脫水並用清潔劑清潔。清潔劑可為二甲苯或citrisolv。對於FFPE組織而言,可通過熱預處理或蛋白酶預處理切片來進行抗原挽回(retrieval)。 可使用抗體分析生物樣本中之細胞及其他生物組分(例如,免疫組織化學、西方墨點法、酶聯免疫吸附分析(ELISA)、質譜法、抗體染色、放射免疫分析、螢光免疫分析、化學發光免疫分析及微脂體免疫分析)。原代細胞可自組織之小片段單離並從血液中純化。原代細胞可包括淋巴球(白血球)、纖維母細胞(皮膚活組織檢查細胞)或上皮細胞。生物樣本可為單一細胞。在抗體染色之前,可淬滅內源性生物素或酶。生物樣本可與緩衝液一起培育以阻斷其中一級或二級抗體可結合之反應性位點。此步驟可有助於減少導致背景染色之抗體與非特異性蛋白質之間的非特異性結合。阻斷緩衝液可選自由脫脂乳粉、正常血清、明膠或牛血清白蛋白組成之群。背景染色可藉由選自由以下組成之群的方法來減少:稀釋一級或二級抗體、使用不同的偵測系統或不同的一級抗體、及改變培育之時間或溫度。已知之表現抗原的組織及未知之表現抗原的組織可用作對照。 自標本或流體可獲得之生物樣本可包括分離腫瘤細胞或由死亡或損傷腫瘤細胞所釋放之游離核酸。核酸可包括脫氧核糖核酸(DNA)、無細胞脫氧核糖核酸(cfDNA)分子、細胞脫氧核糖核酸(cDNA)分子、核糖核酸(RNA)分子、基因組DNA分子、粒線體DNA分子、單股或雙股DNA分子及蛋白質相關聯核酸。自此類標本細胞之以純化或非純化形式獲得的任何核酸標本可用作起始核酸。可針對存在或不存在生物標誌對cfDNA分子、cDNA分子及RNA分子進行化驗。 可自生物樣本獲得生物學資料。生物學資料可包括來自一或多個選自由以下組成之群之生物樣本組分的資料:蛋白質、肽、無細胞核酸、核糖核酸、脫氧核糖核酸及其任何組合。 生物分子可係正常或異常。正常生物分子可係單離自生物樣本之膚色血球層。異常生物分子可係單離自生物樣本之血漿或腫瘤組織。樣本可包括來自不同源之核酸。例如,樣本可包括生殖系DNA或體細胞DNA。樣本可包括攜帶突變之核酸。例如,樣本可包括攜帶生殖系突變及/或體細胞突變之DNA。樣本亦可包括攜帶癌症相關聯突變(例如,癌症相關聯體細胞突變)之DNA。 可關於多種生物標誌分析組分之生物樣本。生物標誌可為多種生物現象之指示物或代理。生物標誌之存在或不存在、其數量或品質可指示現象之生物過程。生物標誌(Biomarker/biological marker)可為經客觀量測及測定作為正常生物過程、致病過程、對治療干預或環境暴露之藥理學反應之指示物的特徵。生物標誌可分類為DNA生物標誌、DNA腫瘤生物標誌及一般生物標誌。生物標誌可係選自由以下組成之群:癌症生物標誌、臨床終點、伴生終點、複本數變異體(CNV)生物標誌、診斷生物標誌、疾病生物標誌、DNA生物標誌、療效生物標誌、後生生物標誌、監測生物標誌、預後生物標誌、預測性生物標誌、安全性生物標誌、篩選生物標誌、分期生物標誌、分層生物標誌、代用品生物標誌、標靶生物標誌、標靶生物標誌及毒性生物標誌。診斷生物標誌可用於診斷疾病或判定疾病之嚴重程度。DNA生物標誌可包括介白素28B (IL28B)或溶質攜帶有機陰離子轉運蛋白家族成員1B1 (SLCO1B1)。DNA腫瘤生物標誌可包括BluePrint® 、表皮生長因子受體(EGFR)、克爾斯坦(Kirsten)大鼠肉瘤病毒致癌基因同源物(K-Ras)、MammaPrint® 及OncoTypDX® 。一般生物標誌可為床邊檢測,諸如RheumaChec或CCPoint化驗。獲得生物樣本及生物分子之方法 生物樣本可包括提取自個體之正常生物分子及異常生物分子。DNA提取物可係自頰拭子、毛髮樣本、尿液樣本、血液樣本及組織樣本獲得。在活組織檢查期間,細胞及組織之樣本可自個體之身體移除用於在實驗室中分析。活組織檢查可選自由以下組成之群:晚期乳房活組織檢查儀器、刷拭活組織檢查、電腦斷層攝影術、錐體活組織檢查、核心活組織檢查、克羅斯比(Crosby)膠囊、刮除術、導管灌洗、內窺鏡活組織檢查、內窺鏡逆行胰膽管造影術、抽空、切除活組織檢查、細針抽吸、熒光鏡檢查、冷凍切片、印記法、切開活組織檢查、基於液體之細胞學、循環電外科切除手術程序、核磁共振成像、乳房X線照相術、針刺活組織檢查、使用氟脫氧葡萄糖之正電子發射斷層掃描術、穿孔活組織檢查、前哨淋巴結活組織檢查、剃刮活組織檢查、塗片、立體定向活組織檢查、經尿道切除術、環磷醯胺(骨髓)活組織檢查、超音波、真空輔助式活組織檢查、及線定位活組織檢查。 個體可經歷血液樣本抽取。離心後,白血球可自血液樣本單離。接著,可將白血球分成患病細胞及對照細胞。 個體可採集其等自身之生物樣本。生物樣本可在家中採集並運送至醫療中心或設施。生物樣本亦可在醫療中心,例如,在醫生辦公室、診所、實驗室患者服務中心或醫院進行採集。採集方法可包括男性患者射精、個體咳痰、個體在如廁期間收集糞便、排尿、唾液拭子、自口腔收集之唾液與口腔黏膜滲出液的組合、及藉由排汗模擬程序所收集之汗液。 化驗可在使用者輸入生物樣本後開始。化驗可包括自生物樣本提取核酸。可使用多種技術自生物樣本提取核酸。在核酸提取期間,藉由研磨或超音波處理可破壞細胞以使核酸暴露。在細胞溶解期間可添加清潔劑及表面活性劑以移除膜脂質。可使用蛋白酶移除蛋白質。同樣,可添加RNA酶以移除RNA。核酸亦可藉由使用苯酚、苯酚/氯仿/異戊醇或類似調配物(包括TRIzol及TriReagent)進行有機提取來純化。提取技術之其他非限制性實例包括:(1)有機提取其後接著乙醇沉澱,例如使用苯酚/氯仿有機試劑(Ausubel等人,1993),使用或不使用自動核酸提取器(例如購自Applied Biosystems (Foster City, Calif.)之341型號DNA提取器;(2)固定相吸附法(美國專利號5,234,809;Walsh等人,1991,其係以全文引用之方式併入本文中);及(3)鹽誘導核酸沉澱法(Miller等人,(1988)),通常將此沉澱方法稱為「鹽析」方法。核酸單離及/或純化之另一實例包括使用核酸可與之特異性或非特異性結合的磁性顆粒(例如,珠粒),其後接著使用磁鐵單離顆粒,並洗滌及自顆粒洗脫核酸。參見例如,美國專利號5,705,628,其係以全文引用之方式併入本文中。可藉由酶消化步驟進行上述單離方法,以幫助從樣本中除去非所欲之蛋白質,例如,使用蛋白酶K或其他類似蛋白酶消化。參見例如,美國專利號7,001,724,其係以全文引用之方式併入本文中。可將RNA酶抑制劑添加至溶解緩衝液。對於特定細胞或樣本類型而言,可能需要在方案中加入蛋白質變性/消化步驟。純化方法可針對單離DNA、RNA (包括但不限於mRNA、rRNA、tRNA)或兩者。當在提取程序期間或之後將DNA及RNA兩者單離在一起時,可採用其他步驟進行純化使一者或兩者彼此分離。例如,藉由大小、序列或其他物理或化學特性進行純化亦可生成經提取之核酸的子部分。除初始核酸單離步驟外,核酸之純化可在後續操作(諸如移除過量或非所欲試劑、反應物或產物)之後進行。識別生物樣本中之體細胞突變 在另一態樣中,本發明提供用於識別來自個體之生物樣本中之一或多種體細胞突變的方法。腫瘤生物樣本及正常生物樣本可自個體獲得。腫瘤生物樣本及正常生物樣本可進行化驗以(i)獲得分別自腫瘤生物樣本及正常生物樣本自動獲得的第一核酸樣本及第二核酸樣本之序列資訊,而無需使用者之任何參與;及(ii)識別與第一核酸樣本及第二核酸樣本不同類型之一或多種其他生物標誌。針對第一核酸樣本及第二核酸樣本所獲得之序列資訊可進行比較以識別腫瘤生物樣本中相對於正常生物樣本之一或多種基因組改變。先前所識別之一或多種其他生物標誌及先前所識別之一或多種基因組改變可用於與對照相比以至少約90%之精度識別個體中之一或多種體細胞突變。 可獲得來自個體之腫瘤生物樣本的第一核酸樣本及來自個體之正常生物樣本的第二核酸樣本。獲得生物樣本可包括接收來自個體之腫瘤組織樣本的生物樣本,及(ii)來自個體之正常組織樣本的生物樣本。第一生物樣本及第二生物樣本可進行化驗以識別腫瘤組織樣本中相對於正常組織樣本之一或多種生物標誌以生成個體之生物學資料組。第一核酸樣本及第二核酸樣本可係加索引。第一核酸樣本可係獲得自血漿中之無細胞DNA。 化驗生物樣本可包括比較正常生物分子與異常生物分子。使用者輸入生物樣本後,可開始化驗。化驗可包括處理生物樣本或定序生物樣本而無需使用者之任何參與。可比較疾病或病狀之至少一或多種標誌的圖譜。此比較可為定量或定性。可使用本文所述化驗之任一者進行定量量測。化驗可包括處理生物樣本及/或定序生物樣本而無需使用者之任何參與。例如,定序、直接定序、隨機霰彈槍定序、桑格(Sanger)雙脫氧終止定序、全基因組定序、外顯子組定序、轉錄組定序、藉由雜交進行無細胞DNA定序、焦磷酸定序、毛細管電泳、凝膠電泳、雙股體定序、循環定序、單鹼基延伸定序、固相定序、高通量定序、大規模平行特徵定序、乳液PCR、藉由可逆染料終止子進行定序、配對端定序、近期定序、外切核酸酶定序、藉由連接進行定序、短讀定序、單分子定序、合成定序、實時定序、逆向終止子定序、奈米孔定序、454定序、Solexa基因組圖譜分析儀定序、SOLiD定序、MS-PET定序、質譜法、基質輔助式雷射脫附/離子化-飛行時間(MALDI-TOF)質譜法、電噴霧離子化(ESI)質譜法、表面增強雷射脫附/離子化-飛行時間(SELDI-TOF)質譜法、四極-飛行時間(Q-TOF)質譜法、大氣壓光電離質譜法(APPI-MS)、傅立葉(Fourier)變換質譜法(FTMS)、基質輔助式雷射脫附/離子化-傅立葉變換-離子迴旋共振(MALDI-FT-ICR)質譜法、次級離子質譜(SIMS)、聚合酶鏈反應(PCR)分析、定量PCR、實時PCR、熒光測定法、比色測定法、化學發光測定法或其組合。定序可為全基因組定序、低通全基因組定序或靶向定序。定序可為RNA (諸如腫瘤RNA)上之全轉錄組定序。 定序亦可包括使用儀器偵測定序產物,例如但不限於ABI PRISM 377 DNA定序儀,ABI PRISM 310、3100、3100-Avant、3730或373OxI基因分析儀,ABI PRISM 3700 DNA分析儀,或Applied Biosystems SOLiD.TM.系統(均購自Applied Biosystems)、基因組定序儀20系統(Roche Applied Science)或質譜儀。 定序可涵蓋至少2,500種基因、基因融合、點突變、插入缺失、複本數變異、啟動子及/或增強子。定序可針對選自表1之至少1個基因、2個基因、3個基因、4個基因、5個基因、10個基因、20個基因、25個基因、50個基因、100個基因、200個基因、300個基因、400個基因或500個基因、其變異體或啟動子。可同時對多個個體進行定序。定序可具有至少約0.5x、1x、2x、3x、4x、5x、6x、7x、8x、9x、10x、20x、30x、40x、50x、100x、200x、300x、400x、500x、600x、700x、800x、900x、1000x、2000x、3000x、4000x、5000x、6000x、7000x、8000x、9000x或10,000x之覆蓋範圍深度。定序可包括全外顯子組定序、全基因組定序或其組合。 在包含一或多種核酸之生物樣本中,可對多個基因進行化驗。可對一個或若干(例如,一組)基因進行化驗。例如,化驗無細胞DNA中的至少約50個基因、100個基因、150個基因、200個基因、250個基因、300個基因或500個基因。腫瘤生物樣本可為血液及福馬林固定之石蠟包埋之(FFPE)組織樣本。組織樣本可為冷凍或新鮮。當第一核酸樣本及第二核酸樣本針對存在或不存在基因組改變或生物標誌進行重新化驗時可以至少約70%、75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%之的一致性相關係數針對一或多種基因組改變及生物標誌對第一核酸樣本及第二核酸樣本進行化驗。所化驗之基因組改變及生物標誌可包含複數種基因組改變及生物標誌。基因組改變可包括複數種不同類型之基因組改變。基因組改變可包括:核苷酸插入、核苷酸缺失、核苷酸取代、基因融合、及複本數變異、點突變、基因擴增、基因缺失、非復發突變、及基於mRNA之改變。可以至少約90%之精度識別至少1種基因組改變、2種基因組改變、3種基因組改變、4種基因組改變、5種基因組改變、10種基因組改變、15種基因組改變、20種基因組改變、25種基因組改變、50種基因組改變或100基因組改變。例如,至少約70%、75%、80%、85%、90%、95%或99%精度。 定量比較可包括統計分析,諸如t-檢驗、ANOVA、克拉斯卡-瓦立斯(Kruskal-Wallis)、維克森(Wilcoxon)、曼-惠特尼(Mann-Whitney)及優勢率。定量差異可包括圖譜之間之標誌水平的差異及圖譜之間之標誌數量的差異,及其組合。標誌水平之實例可為(但不限於)基因表現水平、核酸水平、蛋白質水平、脂質水平及其類似物。定性差異可包括(但不限於)活化及失活、蛋白質降解、核酸降解及共價修飾。 圖譜可為核酸圖譜、蛋白質圖譜、脂質圖譜、碳水化合物圖譜、代謝產物圖譜、免疫組織化學圖譜或其組合。圖譜可係經定性或定量測定。 核酸譜可為(但不限於)基因型圖譜、單核苷酸多態性圖譜、基因突變圖譜、基因複本數圖譜、DNA甲基化圖譜、DNA乙醯化圖譜、染色體劑量圖譜、基因表現圖譜或其組合。 可藉由測定或偵測基因型、單核苷酸多態性、基因突變、基因複本數、DNA甲基化狀態、DNA乙醯化狀態、染色體劑量的多種方法來測定核酸圖譜。生物標誌可包括抗原或基因組改變。生物標誌可包括一或多種核苷酸插入、核苷酸缺失、核苷酸取代、胺基酸插入、胺基酸缺失、胺基酸取代、基因融合、複本數變異、及其任何組合。 可使用若干種方法或技術來分析各種生物分子。例示性方法可包括(但不限於)聚合酶鏈反應(PCR)分析、定序分析、電泳分析、限制片段長度多態性(RFLP)分析、北方墨點法分析、定量PCR、逆向-轉錄酶-PCR分析(RT-PCR)、等位基因特異性寡核苷酸雜交分析、比較基因組雜交、異源雙股移動性測定(HMA)、單股構型多態性(SSCP)、變性梯度凝膠電泳(DGGE)、RNA酶錯配分析、質譜法、串聯質譜法、基質輔助式雷射脫附/離子化-飛行時間(MALDI-TOF)質譜法、電噴霧離子化(ESI)質譜法、表面增強雷射脫附/離子化-飛行時間(SELDI-TOF)質譜法、四極-飛行時間(Q-TOF)質譜法、大氣壓光電離質譜法(APPI-MS)、傅立葉變換質譜法(FTMS)、基質輔助式雷射脫附/離子化-傅立葉變換-離子迴旋共振(MALDI-FT-ICR)質譜法、次級離子質譜(SIMS)、表面電漿子共振、南方墨點法分析、原位雜交、熒光原位雜交(FISH)、顯色原位雜交(CISH)、免疫組織化學(IHC)、微陣列、比較基因組雜交、核型分析、多重連接依賴性探針擴增(MLPA)、短熒光片段之定量多重PCR (QMPSF)、顯微鏡、甲基化特異性PCR (MSP)測定、藉由連接介導PCR富集HpaII微小片段(HELP)測定法、放射性乙酸鹽標記測定法、比色DNA乙醯化測定法、染色質免疫沉澱與微陣列結合(晶片上ChIP)測定、限制性內標基因組掃描、甲基化DNA免疫沉澱(MeDIP)、DNA腺嘌呤甲基轉移酶活性之分子斷裂光測定、層析分離、甲基化敏感性限制酶分析、非甲基化胞嘧啶經亞硫酸氫鹽驅動轉化成尿嘧啶、甲基結合PCR分析或其組合。此等分析方法可係全部或部分自動化且具有不同程度之使用者參與。 生物樣本可在稍後時間點進行重新化驗並識別一或多種生物標誌中之變化。生物樣本可在至少約30分鐘、1小時、2小時、3小時、4小時、5小時、6小時、12小時、1天、2天、3天、5天、1週、2週、1個月、6個月、12個月、1.5年、2年、5年、10年、20年、30年或50年內進行重新化驗。化驗可包括化驗無細胞DNA或生物樣本中的至少50種生物標誌、100種生物標誌、150種生物標誌、200種生物標誌、250種生物標誌、300種生物標誌或350種生物標誌。處理生物樣本之方法 可自生物樣本單離多種組分。生物樣本可包括一或多種細胞及/或生物分子,例如,核酸、蛋白質、激素及其類似物。生物樣本之細胞群體可轉化為適用於分子分析之核酸。標靶細胞可從異種細胞群體中富集。單離過程可係選自雷射捕獲顯微切割、大體切割或流式細胞儀等技術。伴隨此等過程為基因操作以在分子層面上對標靶細胞類型進行標記。其次,可通過直接、間接或修飾方案提取RNA及DNA之特定子集。可生成包括經平臺專用轉接子標記之DNA片段的序列庫。平臺專用轉接子可為用於樣本索引或分子標記之序列標記。 用於序列特異性富集之直接靶向DNA方法可包括分子倒置探針、下拉探針、誘餌組、標準PCR、多重PCR、雜交捕獲、內切核酸酶消化、DNA酶I超敏反應及選擇性環化。此等探針可具有經選擇靶向所關注之基因或序列(諸如表1中所列之基因或其變異體)的序列。例如,此等探針可具有與表1中所列之基因或其變異體互補的序列。RNA富集方法可針對特定亞群,諸如小RNA或信使核糖核酸(mRNA)。RNA富集方法可係選自「並不隨機(not-so-random)」擴增、聚(A)介導之逆轉錄、BrdU併入或寡(dT)雜交。股保存RNA富集方法亦可包括cDNA合成後之股特異性降解、取向特異性轉接子連接、或特異性生物靶之逆轉錄PCR、或用於捕獲二級RNA結構之RNA酶的消化。可通過消除非所欲之物質進行核酸負選擇來實現富集。此類富集包括「足跡」技術或「減法」混合捕獲。在前者期間,標靶樣本通過保護蛋白質或藉由單股及雙股排列來保護核酸酶活性。在後者期間,消除結合「誘餌」探針之核酸。 DNA靶向富集可包括在溶液捕獲中。在溶液捕獲期間,可設計探針之定製池,合成並在溶液中與片段化基因組DNA樣本雜交。探針可為寡核苷酸且可用珠粒進行標記。基因組DNA樣本可為存在於腫瘤樣本中之病毒DNA。在探針與所關注之基因組區域雜交後,可拆除珠粒並洗滌。可移除珠粒且可對基因組片段進行定序以準備用於所關注之基因組序列的選擇性DNA定序。從定序讀數可確定哪些讀數係脫靶的及與脫靶讀數相關聯之探針。在溶液捕獲之下一週期中,可拆除對應脫靶讀數之探針。脫靶讀數之映射可比擬探針覆蓋範圍。隨後,可確定對應脫靶讀數之探針與對應中靶讀數之探針的比率。可評估任何探針組之中靶率。 探針可拆除至少約1000個基因、1500個基因、2000個基因、2500個基因或3000個基因。一旦選擇了所需或預定之基因或基因組區域,即可合成探針。探針可為至少約50個核苷酸、100個核苷酸、150個核苷酸、200個核苷酸或300個核苷酸長度。探針分成至少約20個池、30個池、40個池、50個池、60個池、70個池、80個池、90個池或100個池。可基於生物功能分離探針。可藉由探針在定序期間之性能對探針進行選擇。化驗可在單一探針水平上進行以識別選擇哪些探針。探針可以覆蓋一或多個編碼區域、一或多個非編碼區域、或兩者。 亦可間接純化核酸,取決於其等相對其他分子實體之位置。 分子實體可為其他核酸或蛋白質。第一步可為形成所需交聯類型,諸如DNA-DNA、DNA-蛋白質、RNA-蛋白質或蛋白質-蛋白質。交聯劑可係選自由以下組成之群:甲醛、紫外(UV)光、辛二醯亞胺酸二甲酯(dimethyl suberimidate) (DMS)、己二醯亞胺酸二甲酯(DMA)、戊二醛(glutaradehyde)、辛二酸雙(硫代琥珀醯亞胺酯)(bis(sulfosuccinimidyl) suberate) (BS3)、精胺或亞精胺、及1-乙基-3-[3-二甲基胺基丙基]碳二醯亞胺鹽酸鹽(EDAC)。免疫沉澱法可輔助核酸提取,取決於其等與所關注之蛋白質或組蛋白改質的接近程度。最後,連接可為單離共定位核酸以研究細胞中染色體相互作用之另一可行選擇。 用於核酸提取之修改方案可指向編碼特定修飾之序列的轉變。方案可包括用於偵測胞嘧啶甲基化及T4噬菌體b-葡糖基轉移酶之亞硫酸氫鹽處理及用於偵測5-羥甲基胞嘧啶之Huisgen環加成。RNA之轉錄後修飾係藉由確定其等在資料定序期間所生成之特徵性錯誤特徵可偵測。最後,繼發於交聯事件之特定聚合酶錯誤特徵可用於確定RNA-蛋白質相互作用中之標靶RNA核苷酸。 在定序之前,可將核酸轉化為經平臺專用轉接子標記之DNA片段群。此標記過程亦可在上述之核酸靶向過程之後進行。首先可藉由隨機片段化創建「片段庫」。片段化可為機械、化學或酶。在片段化之後,可連接通用轉接子序列並進行PCR擴增。例如,Tn5轉位酶之過度活性衍生物可以高密度催化通用轉接子序列在活體內整合進入標靶DNA。通常,此後接著擴增。另一實例無PCR庫製備可最小化序列偏差。例如,可在無擴增步驟的情況下選擇進行定序技術。 生物樣本可係加索引。生物樣本可係經標記。各種方法可允許許多實驗在單個定序通道上有效地多工進行。例如,合成索引或條形碼可以連續地側接至定序庫中之所有分子。並行之索引定序可用於在電腦中(in silico)確定讀數至其等從中衍生之標靶庫。或者,可使用可在非常高的覆蓋範圍內用於去重複之唯一分子索引(UMI)對樣本進行標記。另外,可附加允許在更深覆蓋範圍下之突變識別的序列,例如,藉由雙股體定序偵測超低頻突變。合成標記可提供其他功能。例如,可在組裝期間分配單個分子。可藉由對來自相同核酸之讀數進行分類來實現準確量化、強大誤差校正及增加有效讀取長度。合成變異體可在合成飽和突變誘發期間進行標記,並作為讀出起作用。亦可將標記指派給特定細胞,並確定用於單細胞解析之遺傳變異性。索引可為或包括整個外顯子組分類器。 生物樣本可包括無細胞脫氧核糖核酸(cfDNA)分子、細胞脫氧核糖核酸(cDNA)分子、核糖核酸(RNA)分子及蛋白質,且其中針對存在或不存在生物標誌對cfDNA分子、cDNA分子及RNA分子進行化驗。生物樣本可包括cfDNA。死亡腫瘤細胞可將其等核酸之小碎片釋放至個體之血液中。此等核酸之小碎片為無細胞循環腫瘤DNA (ctDNA)。 循環腫瘤DNA亦可無創使用以監測腫瘤進程及確定個體之腫瘤是否可對靶向藥物治療有反應。例如,個體之ctDNA可在療法前及療法及藥物治療後針對突變進行篩選。療法期間,發展體細胞突變可阻止藥物發揮作用。例如,個體可觀察到對藥物之初始腫瘤反應。此反應可表明藥物最初能夠有效殺死腫瘤細胞。然而,新突變之發展可阻止藥物繼續發揮作用。獲得此等關鍵資訊可幫助醫生及腫瘤專家識別個體之腫瘤不再響應且需要不同治療。循環腫瘤DNA測試可應用於癌症個體照護及臨床研究之各個階段。因為ctDNA可大多數類型之癌症的早期及晚期階段中檢測到,所以其可用作大多數患者之有效篩選方法。血液中ctDNA水平之量測亦可有效地指示個體之癌症階段及存活機會。 除彼等上文所討論者外,多種方法可用於定序cfDNA。用於定序cfDNA之技術可包括外顯子組定序、轉錄組定序、基因組定序及無細胞DNA定序。無細胞DNA定序可包括錯配靶向定序(Mita-Seq)及末端之繫留消除(Tet-Seq)。 除了定序之外,本文所揭示之系統及方法中可出現其他反應及/或操作,包括但不限於:核酸量化、定序最佳化、偵測基因表現、定量基因表現、基因組圖譜分析、癌症分析或分析所表現之標誌。化驗可包括生物樣本之免疫組織化學圖譜分析及基因組圖譜分析。在免疫組織化學期間,可在檢查生物樣本之腫瘤及正常組織細胞期間識別抗原。免疫組織化學亦可提供關於生物標誌及差異表現之蛋白質在生物樣本組織之不同位置中之分佈及位置的結果。差異表現之蛋白質可為過度表現或不足表現之蛋白質。 基因組圖譜分析可為定序後同時測定及量測數千個基因之活性的過程。圖譜分析可用於區分正在積極分裂的細胞。基因組圖譜分析亦可用於量測細胞對特定治療的反應如何。可藉由比較腫瘤DNA與一組已知DNA來確定腫瘤DNA中之模式。其組合表現模式對給定條件具有唯一特徵之基因組建立特定條件之基因特徵。可隨後使用基因特徵以使個體與治療配對之精度來選擇處於疾病之特定狀態下的一組個體。識別基因組畸變及定製探針 在另一態樣中,本發明提供用於識別個體之一或多個生物樣本中的基因組畸變之方法。可獲得個體之生物樣本且可包括具有或疑似具有一或多種基因組畸變之核酸樣本,該等基因組畸變係以小於約1%、小於約2%、小於約3%、小於約4%、小於約5%、小於約6%、小於約7%、小於約8%、小於約9%、小於約10%、小於約15%或小於約20%之頻率出現於核酸樣本中。可使用探針組針對複數種核酸序列對核酸樣本進行富集以提供經富集之核酸樣本,該探針組包括具有至少約70%、至少約75%、至少約80%、至少約85%、至少約90%及至少約95%之整體中靶率的探針。整體中靶率可係藉由以下來測定:(i)比較探針組與至少一個預定區域以量測(1)探針組中各探針之探針覆蓋範圍及(2)探針組中各探針之脫靶探針覆蓋範圍,及(ii)基於脫靶覆蓋範圍與探針覆蓋範圍之比率確定探針組之中靶率。或者,整體脫靶率可係藉由以下來測定:(i)比較探針組與至少一個預定區域以量測(1)探針組中各探針之探針覆蓋範圍及(2)探針組中各探針之中靶探針覆蓋範圍,及(ii)基於中靶覆蓋範圍與探針覆蓋範圍之比率確定探針組之脫靶率。脫靶探針覆蓋範圍可量測不覆蓋所關注之預定區域的探針部分。中靶探針覆蓋範圍可量測覆蓋所關注之預定區域的探針部分。探針組中各探針之探針覆蓋範圍可為探針對所關注之預定區域的總映射覆蓋範圍。經富集核酸樣本可隨後進行定序儀生成定序讀數。可處理定序讀數以識別個體之一或多個生物樣本中的一或多種基因組畸變,該等基因組畸變係以小於約1%、小於約2%、小於約3%、小於約4%、小於約5%、小於約6%、小於約7%、小於約8%、小於約9%、小於約10%、小於約15%或小於約20%之頻率出現於核酸樣本中。一或多個生物樣本包括血液樣本及/或組織樣本。腫瘤組織樣本可為FFPE組織。一或多個生物樣本可係選自由以下組成之群:蛋白質、肽、無細胞核酸、核糖核酸、脫氧核糖核酸及其任何組合。一或多種基因組畸變可包括核酸突變。一或多種基因組畸變可係選自由以下組成之群:插入、核苷酸缺失、核苷酸取代、胺基酸插入、胺基酸缺失、胺基酸取代、基因融合、複本數變異、基因表現特徵、及其任何組合。 探針組可進一步用於產生分類器。首先,可對來自個體之腫瘤組織樣本定序基因組之一或多個預定區域以提供定序讀數。從定序讀數可識別覆蓋基因組之一或多個預定區域的探針組序列。接著,探針組可與一或多個預定區域比較以量測(i)探針組中各探針之探針覆蓋範圍及(ii)探針組中各探針之脫靶探針覆蓋範圍。可基於脫靶覆蓋範圍與探針覆蓋範圍之比率確定探針組之中靶率。可選擇覆蓋基因組之一或多個預定區域的探針組部分及具有至少約50%、至少約55%、至少約60%、至少約65%、至少約70%、至少約75%、至少約80%、至少約85%、至少約90%及至少約95%之整體中靶率的探針組部分,藉此確定定製探針組。可提供一或多個特徵來允許對一或多個探針進行探針組分類。或者,整體脫靶率可係藉由以下來測定:(i)比較探針組與至少一個預定區域以量測(1)探針組中各探針之探針覆蓋範圍及(2)探針組中各探針之中靶探針覆蓋範圍,及(ii)基於中靶覆蓋範圍與探針覆蓋範圍之比率確定探針組之脫靶率。 一或多個預定區域可包括選自由以下組成之群的組分:單種基因之一或多個片段、複數種基因之一或多個片段、編碼序列、非編碼序列、至少2600種基因、基因融合、點突變、插入缺失、複本數變異、啟動子及/或增強子。此等組分可包括至少約500種基因、至少約1000種基因、至少約1200種基因、至少約1400種基因、至少約1600種基因、至少約1800種基因、至少約2000種基因、至少約2200種基因、至少約2600種基因、至少約2800種基因、至少約3000種基因或至少約3500種基因。一或多個特徵可係選自以下組成之群:序列、序列長度、對準位置、探針覆蓋範圍、脫靶探針覆蓋範圍、中靶率、基因組畸變、及選自表1之基因或變異體。預定區域可為編碼或非編碼序列。非編碼序列可包括假基因、用於編碼RNA之基因、mRNA之內含子及非轉譯區、調控DNA序列、重複DNA序列及轉位子。定序可係選自由以下組成之群:外顯子組定序、轉錄組定序、基因組定序及無細胞DNA定序。 分類器亦可提供用於分類新探針組之方法。首先,可提供分類器及新探針組。接著,可自新探針組生成一或多個特徵。將來自新探針組之一或多個特徵輸入分類器。分類器可用於預測新探針組之分類結果。特徵可係選自以下組成之群:序列、序列長度、對準位置、探針覆蓋範圍、脫靶探針覆蓋範圍、中靶率、基因組畸變、及選自表1之基因或變異體。分類結果可係選自選擇0或選擇1。選擇0可指示選擇不預定新探針組,而選擇1可指示選擇預定新探針組。分類器可為機器學習算法。分類器可為監督學習算法。分類器可為能夠通過特徵選擇接受訓練之機器學習算法。機器學習方法可係選自由以下組成之群:決策樹學習、關聯規則學習、人工神經網路、深度學習、歸納邏輯編程、支持矢量機、聚類、貝氏(Bayesian)網路、強化學習、表示學習、相似度及度量學習、稀疏詞典學習、遺傳算法、基於規則之機器學習、學習分類器系統、監督學習及無監督學習。在監督機器學習中,對算法之追求可以根據外部提供之實例做出一般假設來確定關於未來行為之預測。監督機器學習可根據預測器特徵構建分類標籤之分佈的簡潔模型。 當生成分離器時,可基於預測精度對分類器進行評估。可藉由分裂訓練集、藉由使用一部分來估計性能、藉由交叉驗證及留一法(leave-one-out)驗證來測定精度。分類算法之實例可包括線性分類器、支持矢量機、二次分類器、核估計、傳爆(boosting)、決策樹、神經網路、FMM神經網路及學習矢量量子化。線性分類器可包括費舍爾線性判別(Fischer's linear discriminant)、邏輯回歸、多項式邏輯回歸、概率回歸、支持矢量機、樸素貝葉斯分類器(Naïve Bayes classifier)及視感控制器。自動化樣本分析平臺 本發明提供可提供用於分析一或多個生物樣本之系統,其可為自動及/或不需要使用者參與。自動系統可排除用戶進行任何移液之需要,諸如將樣本從一工作站轉移至另一工作站之移液。例如,使用者可將生物樣本輸入至機器中用於分析生物組分(例如,蛋白質及/或核酸)。此類分析儀可分析蛋白質及/或核酸生物組分。下文所詳細描述之系統可提供可不需要使用者之任何參與之自動生物分析儀的非限制性實例。該系統亦可包括使用者之人工參與,諸如人工移液。 該系統可允許使用者製備用於化驗之生物樣本及化驗該生物樣本而無需使用者之參與,或甚至無需使用者之任何參與。在一些實例中,該系統允許使用者提供生物樣本(例如,血液樣本或組織樣本)給該系統,此時該系統製備用於定序之生物樣本並對生物樣本進行定序以生成定序資料。 本發明系統可允許生物樣本以可重現之方式進行處理(例如,樣本製備及定序)。例如,本文所提供之在不同地理位置的兩個系統可處理同一生物樣本或來自同一生物樣本之兩個子集並提供偏差為至多約10%、9%、8%、7%、6%、5%、4%、3%、2%、1%、0.1%或0.01%之結果。此方差可(例如)藉由比較序列讀數或一致序列來確定。 該系統可包括兩個具有至少約20、25、30、35或40個周邊儀器之機器人移動器。例如,該等儀器可係選自由以下組成之群:具有1270 mm擴展高度升級之Spinnaker機器人(具有夾持指狀物及整合相機之機器人板移動器)、定製桌(支持儀器及機器人)、鍵盤架及監視器支架(支持鍵盤及監視器)、定製保護罩(落地式保護罩)、具有正壓力之HEPA頂板(HEPA以正空氣壓力為前置PCR系統過濾空氣)、具有負壓力之HEPA頂板(頂板外殼用於給後置放大系統負空氣壓力)、滑出儀器夾層(儀器之拉出夾層)、儀器夾層(固定之儀器夾層)、Spinnaker混合及配對旋轉盤(盤存儲旋轉盤)、動量多移動器(使用多移動器許可證安排軟體)、動量並行許可證、滑出銜接臺(哈密頓星際(Hamilton Star)之定製銜接臺)、10KVM UPS (備用電池)、單向氣閥(系統之間的定製氣閥)、AATI片段分析儀(對DNA片段進行QC)、ALPS 3000 (板密封器(2個在系統上,2個離線))、Inheco標準板振盪器(自動板振盪器)、Inheco DWP板振盪器(自動板振盪器)、Inheco控制器(控制板振盪器)、Inheco ODTC 96 (96孔PCR塊)、哈密頓Elite開蓋器、Biotek MultifloFX (分配板)、Brooks Automation Xpeel (板剝離機)、Thermo Kingfisher (DNA提取及製備)、哈密頓星際 (液體處理機)、Bionex BeeSure (音量核查)、Roche LC480 (QPCR)、Bionex HiG4 (板離心機)、PCR板、DNA定量化驗板、96孔管架及96孔提示盒。哈密頓星際可為自動液體處理機。前置放大STAR可經組態以具有8個移液通道、2個Autolys通道(細胞溶解及DNA提取)、1個EasyBlood相機通道及1個自動裝料條碼讀取器。後置放大STAR可經組態以具有8個移液通道及1個自動裝料條碼讀取器。EasyBlood組件可用於血液樣本之製備及分離成其等之基礎組分包括血清、血漿、白血球及紅血球。相機可用於測定所分離之血漿及細胞之體積。圖3a顯示位於實驗室環境中之平臺。圖3b顯示從實驗室牆壁上方兩個亞單元之間的系統佈局。該系統可包括後置放大系統301 (左)、前置放大系統302 (右)及分隔牆303。儀器可在夾層上進行壓縮或在拉出架上進行維修。各亞單元可經組態以分別用於前置放大步驟或後置放大步驟。系統可包括兩個亞單元與分隔該兩個亞單元之牆。各亞單元可具有至少約6英尺、7英尺、8英尺、9英尺或10英尺之長度及至少約6英尺、7英尺、8英尺、9英尺、10英尺或11英尺之寬度。該系統可具有在滾輪上滾出之可移除液體處理機(頂部)。該液體處理機可為哈密頓星際。哈密頓星際可用嵌入式磁體鎖定到位以實現快速儀器交換。該等兩個系統可藉由單向氣閥連接防止前置放大系統之污染。該氣閥可與前置及後置空氣系統配合進行操作。該系統之兩側可具有Nexus XPeel及ALPS3000板密封器。Beesure及片段分析儀可位於後置系統(左)中而Biotek MulfifloFX及哈密頓封蓋器可位於前置系統(右)。經由連接到亦可在打開時觸發氣閥之緊急停機系統的門可訪問所有儀器。圖3中之視圖顯示在前置及後置放大系統上無頂板之系統。 圖4a至c顯示前置放大系統之若干視圖。該系統可包括X-Peel密封剝離機(Nexus X-Peel) 401、Abgene ALPS 3000密封器402、微板分配器(Biotek Multiflow) 403、哈密頓Labelite開蓋器404、Thermo Kingfisher (DNA提取及製備) 405、哈密頓星際406、Bionex HiG4離心機407、旋轉盤408、Inheco保溫箱振盪器409、Inheco ODTC 410、天平411、Spinnaker臂412、Orbitor Randlom Access Hotel-8架413、2位置酒店安裝底座414、ORS2、酒店安裝冰球組件415、Moxa NPort 16-端口設備伺服器416、Blackbox網路集線器417、泛用型輸入輸出(GPIO)盒418、小型集線器419、Inheco ODTC控制器420、APC RACKMOUNT UPS 421、Dell臺式PC 422、GPIO盒之安裝架托架423、滑動裝置26in 424/425/429、夾層總成,2槓桿,440x460 426/427/437、用於放置移動器僅裝配臂之框架428、哈密頓星際銜接臺430、密封器剝離機定製桌431、Thermo Kingfisher定製桌432、SPNKR平臺433、哈密頓星際平臺之擴展平臺434、用於氣動磁板裝配之銜接車435、20加侖垃圾桶436及S-MAS4735-320-00 (438)。圖4a為哈密頓星際桌之俯視圖,其能夠滑出系統以可視化擴展臺上之儀器。圖4b及圖4c為該系統之左及右視圖。 圖5a至c顯示後置放大系統之若干視圖。該系統可包括X-Peel密封剝離機501、Abgene ALPS 3000密封器502、Bionex Beesure感應系統503、無限片段分析儀504、Thermo Kingfisher505、哈密頓星際506、Bionex HiG4離心機507、PCR擴增及偵察儀器(Roche Lightcycler 480) 508、Inheco保溫箱振盪器509、Inheco ODTC 510、Ultravap Mistral 511、天平512、Spinnaker移動器僅裝配臂513、Orbitor Randlom Access Hotel-8架514、微盤移動器安裝底座515、酒店安裝冰球組件516、Moxa NPort 16-端口設備伺服器517、Blackbox網路集線器518、GPIO盒519、小型集線器520、Inheco ODTC控制器521、APC機架式不間斷電源522、Dell臺式PC 523、GPIO盒之安裝架托架524、滑動裝置26in 525/526/527/531、夾層,440x460 528及529、移動器裝配臂支持框架530、哈密頓星際銜接臺532、PCR擴增及偵察儀器定製桌533、Thermo Kingfisher定製桌534、SPNKR平臺535、哈密頓星際桌之擴展平臺536、廢料槽537、用於氣動磁板組件之銜接車538、20加侖桶539及S-MAS4735-320-00 (540)。圖5a為哈密頓星際桌之俯視圖,其能夠滑出系統以便可視化擴展臺上之儀器。圖5b及圖5c為該系統之左及右視圖。 化驗可在使用者輸入生物樣本後開始。可接收使用者之請求以對生物樣本進行處理或對生物樣本進行定序。處理可為自動。圖6顯示用於分析醫學病史或生物樣本之平臺600的示意圖,其可包括輸入個體之醫學病史601及輸入生物樣本至於自動化樣本分析平臺602。平臺600可係開源。自動化樣本分析平臺可接收生物樣本。生物樣本可為核酸604或蛋白質603。自動化樣本分析平臺可用於自該生物樣本分離生物分子及遞送用於定序。此過程從開始至結束可為自動。可將管中之血液樣本及來自FFPE腫瘤活組織檢查之一或多個切片插入至系統中。在初始品質控制核查期間,可驗證輸入管中之血液量。來自血液樣本之DNA、RNA或兩者可自白血球及血漿中之無細胞DNA進行提取605。DNA及/或RNA可自腫瘤活組織檢查進行提取605。圖6之平臺可包括全外顯子組定序、全基因組定序或其組合。 在品質核查片段分析606期間,可對生物樣本之DNA片段的分佈尺寸進行分析。分佈尺寸(或尺寸分佈)可為至少約100鹼基對(bp)、200 bp、300 bp、400 bp、500 bp、600 bp、700 bp、800 bp、900 bp、1000 bp、1500 bp、2000 bp。此類尺寸分佈可為平均尺寸分佈。FFPE腫瘤片段之分佈尺寸可為至少約50 bp、100 bp、150 bp、200 bp或250 bp。無細胞片段之分佈尺寸可為至少約50 bp、100 bp、150 bp、200 bp、250 bp。膚色血球層片段之分佈尺寸可為至少約10 kb、15 kb、20 kb、25 kb、30 kb、35 kb或40 kb。單離DNA可隨後進行量化607並可對DNA濃度進行調節以用於儲存608。所量化之FFPE腫瘤DNA可為至少約1奈克/微升(ng/μL)、5 ng/μL、10 ng/μL、15 ng/μL、20 ng/μL、25 ng/μL、30 ng/μL、35 ng/μL、40 ng/μL、45 ng/μL或50 ng/μL。所量化之無細胞DNA可為至少約10皮克/微升(pg/μL)、20 pg/μL、30 pg/μL、40 pg/μL、50 pg/μL、60 pg/μL、70 pg/μL、80 pg/μL、90 pg/μL、100 pg/μL、200 pg/μL、300 pg/μL、400 pg/μL、500 pg/μL、600 pg/μL、700 pg/μL、800 pg/μL、900 pg/μL、1000 pg/μL或1.5 ng/μL。所量化之膚色血球層DNA可為至少約1 ng/μL、2 ng/μL、3 ng/μL、4 ng/μL、5 ng/μL、6 ng/μL、7 ng/μL、8 ng/μL、9 ng/μL、10 ng/μL、15 ng/μL、20 ng/μL、25 ng/μL、50 ng/μL、100 ng/μL、150 ng/μL、200 ng/μL或300 ng/μL。在用於下游程序之DNA庫製備期間,可對DNA片段進行修飾609。隨後可藉由測定經修飾DNA片段之分佈尺寸使片段經歷品質控制片段分析610並量化611改質DNA。FFPE腫瘤片段之分佈尺寸(或尺寸分佈)可為至少約50 bp、100 bp、150 bp、200 bp、250 bp或300 bp。膚色血球層片段之分佈尺寸可為至少約50 bp、100 bp、150 bp、200 bp、300 bp、400 bp、500 bp、600 bp、700 bp、800 bp、900 bp或1000 bp。所量化之FFPE腫瘤片段可為至少約500 ng/μL、600 ng/μL、700 ng/μL、800 ng/μL、900 ng/μL、1000 ng/μL、1500 ng/μL或2000 ng/μL。所量化之膚色血球層片段可為至少約500 ng/μL、600 ng/μL、700 ng/μL、800 ng/μL、900 ng/μL、1000 ng/μL、1500 ng/μL或2000 ng/μL。所量化之無細胞片段可為至少約5 ng/μL、10 ng/μL、15 ng/μL、20 ng/μL、25 ng/μL、30 ng/μL、35 ng/μL、40 ng/μL、45 ng/μL或50 ng/μL。對於DNA庫而言,在標靶捕獲612期間,可基於DNA與表1中之至多約1000個基因、1500個基因、2000個基因、2500個基因或3000個基因配對來對其進行選擇。標靶捕獲後,DNA片段之尺寸分佈及單離DNA之量可進行量測613、614。接著,可調節DNA至正確濃度615並用特定條碼標記各患者庫615用於下游分析。正確濃度可為至多約100 ng/μL、150 ng/μL、200 ng/μL、250 ng/μL、300 ng/μL、350 ng/μL、400 ng/μL、450 ng/μL、500 ng/μL、550 ng/μL或600 ng/μL。 系統可容納至多約100、50、45、40、35、30、20、10或更少個個體(例如,患者)樣本。或者,系統可容納至少約1、2、3、4、5、6、7、8、9、10、20、30、40、50、60、70、80、90、100或更多個個體樣本。諸如DNA或RNA (例如,轉錄體)之寡核苷酸可針對所關注之標靶進行選擇(諸如藉由富集),並準備載入至核酸定序儀(例如,Illumina,Pacific Biosciences,California;Ion Torrent或Oxford Nanopore之定序儀)上。各樣本可加索引且各索引組可一起載入至定序儀而無需混合結果。 多核苷酸可用來自轉接子庫之大量多核苷酸分子進行標記以生成經標記之多核苷酸池。經標記之多核苷酸池可在多種定序轉接子進行擴增。定序轉接子可包括具有與複數個多核苷酸分子之序列特異性互補之序列的引物。各定序儀轉接子可進一步包括索引標記,其可為可識別樣本基序。 標記可為化學地連接以幫助偵測或標記之任何類型分子。標記可係連接至多核苷酸,包括核酸、化合物、螢光探針或放射性探針。標記亦可為寡核苷酸(例如,DNA或RNA)。標記可包括已知序列、未知序列或兩者。標記可包括隨機序列、預定序列或兩者。標記可為雙股或單股。雙股標記可為雙股體標記。雙股標記可包括兩條互補鏈。或者,雙股標記可包括雜交部分及非雜交部分。雙股標記可為Y形,例如,雜交部分係在標記的一端而非雜交部分係在標記的另一端。一種此類實例為用於Illumina定序之「Y形轉接子」。其他實例包括髮夾形轉接子或氣泡形轉接子。氣泡形轉接子具有側接至互補序列之兩側上的非互補序列。 樣本可經處理以包括條碼(例如,樣本條碼、分子條碼)及可用於(例如)允許使用給定核酸序列之樣本的功能性序列。在一實例中,此類功能性序列可包括允許核酸樣本與核酸定序儀之流槽偶聯的流槽序列(例如,Illumina P5/P7轉接子)。 多種方法可用於進行標記。例如,多核苷酸可藉由雜交經轉接子標記。轉接子可具有與該多核苷酸之至少一部分序列互補的核苷酸序列。多核苷酸亦可藉由連接經轉接子標記。 一或多種酶亦可用於標記。酶可為連接酶,諸如DNA連接酶或耐熱連接酶。例如,DNA連接酶可係選自由大腸桿菌(E. coli ) DNA連接酶、T4 DNA連接酶及/或哺乳動物連接酶組成之群。哺乳動物連接酶可為DNA連接酶I、DNA連接酶III或DNA連接酶IV。標記可藉由鈍端連接連接至多核苷酸之鈍端。標記亦可藉由黏端連接連接至多核苷酸之黏端。連接之效率可藉由最佳化多種條件來提高。連接之效率可藉由最佳化連接之反應時間來提高。例如,連接之反應時間可為小於約12小時,諸如小於約1、小於2、小於3、小於4、小於5、小於6、小於7、小於8、小於9、小於10、小於11、小於12、小於13、小於14、小於15、小於16、小於17、小於18、小於19或小於20小時。 反應之連接酶濃度可提高連接之效率。例如,連接酶濃度可為至少約10單位/微升、至少50單位/微升、至少100單位/微升、至少150單位/微升、至少200單位/微升、至少250單位/微升、至少300單位/微升、至少400單位/微升、至少500單位/微升或至少600單位/微升。效率亦可藉由添加適用於連接之酶、酶輔因子或其他添加劑或改變其濃度,及/或最佳化含有酶之溶液的溫度來進行最佳化。效率亦可藉由改變反應之各種組分的添加順序來進行最佳化。標記序列之末端可包括二核苷酸以增加連接效率。當標記包括非互補部分(例如,Y形轉接子)時,標記轉接子之互補部分上的序列包括促進連接效率之一或多種經選擇之序列。此等序列較佳位於標記之末端。此等序列可包括1個末端鹼基、2個末端鹼基、3個末端鹼基、4個末端鹼基、5個末端鹼基、6個末端鹼基、7個末端鹼基、8個末端鹼基、9個末端鹼基、10個末端鹼基、11個末端鹼基或12個末端鹼基。具有高黏度(例如,低雷諾數(Reynolds number))之反應溶液亦可用於提高連接效率。例如,溶液可具有小於3000、小於2000、小於1000、小於900、小於800、小於700、小於600、小於500、小於400、小於300、小於200、小於100、小於50、小於25或小於10之雷諾數。此外,片段之大致上統一分佈可用於提高連接效率。片段之大致上統一分佈可為密標準偏差。例如,片段尺寸之變化之偏差可小於20%、小於15%、小於10%、小於5%或小於1%。標記亦可包括(例如)藉由聚合酶鏈反應進行引物延伸。標記亦可包括基於連接之PCR、多重PCR、單股連接或單股環化中之任一者。 標記亦可包括分子條碼。分子條碼可用於區分樣本中之多核苷酸且可係彼此不同。例如,分子條碼可具有可藉由預定編輯距離或漢明距離(Hamming distance)進行表徵之其等之間的差異。在一些實例中,本文之分子條碼具有為1、2、3、4、5、6、7、8、9或10之最小編輯距離。爲了進一步改良未標記分子轉化(例如,標記)為經標記分子之效率,較佳使用短標記。例如,庫轉接子可為至多約75、70、65、60、55、50、45、40或35個核苷酸鹼基長度。此類短庫條碼之集合可包括許多種不同分子條碼,諸如具有最小編輯距離為1、2、3或更大之至少2、4、6、8、10、12、14、16、18或20種不同條碼。 因此,分子之集合可包括一或多種標記。在一些實例中,集合中的一些分子可含有不與集合中之任何其他分子共享的識別標記(「識別碼(identifier)」),諸如分子條碼。例如,在分子集合之一些實例中,集合中至少50%、至少51%、至少52%、至少53%、至少54%、至少55%、至少56%、至少57%、至少58%、至少59%、至少60%、至少61%、至少62%、至少63%、至少64%、至少65%、至少66%、至少67%、至少68%、至少69%、至少70%、至少71%、至少72%、至少73%、至少74%、至少75%、至少76%、至少77%、至少78%、至少79%、至少80%、至少81%、至少82%、至少83%、至少84%、至少85%、至少86%、至少87%、至少88%、至少89%、至少90%、至少91%、至少92%、至少93%、至少94%、至少95%、至少96%、至少97%、至少98%、至少99%或100%之分子可含有不與集合中之任何其他分子共享的識別碼或分子條碼。若集合中各分子之至少95%帶有不與集合中之任何其他分子共享的識別碼,則可認為分子集合係「經唯一標記」(「唯一標記」或「唯一識別碼」)。若集合中各分子之至少1%、至少5%、至少10%、至少15%、至少20%、至少25%、至少30%、至少35%、至少40%、至少45%或至少或約50%帶有與集合中之至少一種其他分子共享的識別碼,則認為分子集合係「經非唯一標記」(「非唯一標記」或「非唯一識別碼」)。因此在經非唯一標記之群體中,不超過1%之分子係經唯一標記。例如,在經非唯一標記之群體中,不超過1%、5%、10%、15%、20%、25%、30%、35%、40%、45%或50%之分子係經唯一標記。可與本發明之方法及系統一起使用之標記及轉接子的實例係提供於美國專利公開案號2016/0040229及2016/0046986中,其等各係以全文引用之方式併入本文中。 所評估之樣本中的分子數量可導致選擇許多不同標記。在一些標記方法中,不同標記之數量可為至少與所評估之樣本中的分子數量相同。在其他標記方法中,不同標記之數量可為所評估之樣本中之分子數量的至少二、三、四、五、六、七、八、九、十、一百或一千倍。在唯一標記中,可使用兩倍(或更多倍)於所評估之樣本中之分子數量的不同標記。 樣本中之分子可係經非唯一標記。在此等實例中,所使用之標記或分子條碼的數量係比樣本中待標記之分子數量少。例如,使用不超過100、50、40、30、20或10種唯一標記或分子條碼來標記複雜樣本,諸如具有更多不同片段之無細胞DNA樣本。 多核苷酸可在標記前自然地或使用其他方法(諸如,例如,剪切)進行片段化。多核苷酸可藉由選自由以下組成之群的特定方法進行片段化:機械剪切、使樣本通過注射器、超音波處理、熱處理(例如,在90℃下進行30分鐘)及/或核酸酶處理(例如,使用DNA酶、RNA酶、內切核酸酶、外切核酸酶及/或限制酶)。 多核苷酸片段可在標記前包括任意長度之序列。例如,長度可係選自由以下組成之群:至少50、55、60、65、70、75、80、85、90、95、100、105、110、115、120、125、130、135、140、145、150、155、160、165、170、175、180、185、190、195、200、205、210、215、220、225、230、235、240、245、250、255、260、265、270、275、280、285、290、295、300、400、500、600、700、800、900、1000、1100、1200、1300、1400、1500、1600、1700、1800、1900、2000或更多個核苷酸長度。多核苷酸片段可為約無細胞DNA之平均長度。例如,多核苷酸片段可包括約160個鹼基之長度。多核苷酸片段亦可從較大之片段經片段化成約160個鹼基長度之較小片段。 經標記之多核苷酸可包括癌症相關序列。癌症相關序列可包括單核酸變異(SNV)、複本數變異(CNV)、插入、缺失及/或重排。 具有可識別序列(包括分子條碼)之核酸條碼可用於進行標記。例如,複數種DNA條碼可包括多種數目之核苷酸序列。可使用具有2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30或更多種可識別核苷酸序列之複數種DNA條碼。當僅連接至多核苷酸之一端時,複數種DNA條碼可產生2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30或更多種不同識別碼。或者,當連接至多核苷酸之兩端時,複數種DNA條碼可產生4、9、16、25、36、49、64、81、100、121、144、169、196、225、256、289、324、361、400或更多種不同識別碼(其為當DNA條碼係僅連接至多核苷酸之1端時之^2)。在一實例中,可使用具有6、7、8、9或10種可識別多核苷酸序列之複數種DNA條碼。當連接至多核苷酸之兩端時,其等各自產生36、49、64、81或100種可能之不同識別碼。以此方式標記之樣本可為彼等具有約10 ng至約100 ng、約1 μg、約10 μg中任一者之片段化多核苷酸(例如,基因組DNA,例如,cfDNA)者。 存在可唯一識別多核苷酸之許多方法。例如,可藉由唯一DNA條碼唯一識別多核苷酸。樣本中之任何兩種係連接兩種不同DNA條碼。或者,多核苷酸可藉由DNA條碼與一或多種多核苷酸之內源性序列的組合進行唯一識別。例如,樣本中之任何兩種多核苷酸可連接相同DNA條碼,但該等兩種多核苷酸仍可由不同內源性序列識別。內源性序列可係在多核苷酸之一端。例如,內源性序列可係與所連接之DNA條碼相鄰(例如,鹼基在其之間)。在一些實例中,內源性序列可為至少約2、4、6、8、10、20、30、40、50、60、70、80、90或100個鹼基長度。內源性序列可為待分析之片段/多核苷酸的末端序列。內源性序列可為序列之長度。例如含有8種不同DNA條碼之複數種DNA條碼可與樣本中各多核苷酸之兩端連接。樣本中之各多核苷酸可藉由DNA條碼與在多核苷酸之一末端上的約10鹼基對之內源性序列的組合進行識別。不受理論之束縛,多核苷酸之內源性序列亦可為整個多核苷酸序列。 條碼可包括鄰接或非鄰接序列。含有至少1、2、3、4、5或更多種多核苷酸之條碼可為鄰接序列後非鄰接序列。例如,若條碼包括序列TTGC,則當條碼為TTGC使該條碼為鄰接。另一方面,若條碼為TTXGC,則該條碼為非鄰接,其中X為核酸鹼基。 識別碼或分子條碼可具有可為2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49、50或更多個核苷酸長度之n-mer序列。本文之標記可包括任何長度之核苷酸。例如,序列可係在2至100、10至90、20至80、30至70、40至60個之間或約50個核苷酸長度。 標記可包括識別碼或分子條碼之下游,雙股固定參考序列。標記亦可包括識別碼或分子條碼之雙股固定參考序列上游或下游。雙股固定參考序列之兩條鏈可為(例如)3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49、50個核苷酸長度。 此等儀器可用於執行下文所述功能:哈密頓星際、Thermo KingFisher、Bionex HiG4離心機、Inheco ODTC熱循環儀、Inheco保溫箱振盪器、Biotek MultifloFX、Thermo Fisher Spinnaker機械臂、Thermo Fisher ALPS3000板密封器、Brooks XPeel、用於基於qPCR之核酸量化的Roche LightCycler 480、用於核酸大小及數量測定之AATI無窮片段分析儀及哈密頓LabElite封蓋器/開蓋器。自動化樣本分析平臺可執行生物樣本分析之多種功能。此等功能可包括用於系統之主要樣本製備(主要方法)且可分成兩種方法。第一方法可包括與定序製備相關聯之前置放大樣本處理。前置放大樣本處理可包括以下任務:自膚色血球層或全血提取DNA、自血漿提取無細胞DNA、自FFPE組織樣本提取DNA及RNA、DNA及RNA量化、QC、標準化、DNA片段化、末端修復、轉接子連接及珠粒清理、PCR擴增及突變組合。方法可根據使用者之偏好進行改變。系統可在工作日內進行至少約1次迭代、2次迭代、3次迭代、4次迭代或5次迭代。一個工作日可為至少約6小時、7小時、8小時、9小時或10小時。在各工作日期間,至少約1個PCR板、2個PCR板、3個PCR板、4個PCR板或5個PCR板可轉移至後置放大系統。在前置放大樣本處理期間,溶解方法可在具有深孔板之液體處理機(哈密頓星際)上運行。提示盒可送至廢料。板可進行密封並在振動下培養至少15分鐘、30分鐘、1小時、2小時或3小時。隨後板可經歷離心持續至少約30秒、1分鐘、1.5分鐘、2分鐘、3分鐘或5分鐘。板可進行剝離。可將珠粒添加至液體處理機上並載入至DNA及提取製備架(Kingfisher)上。珠粒可為磁性珠粒。運行提取方案且可包括對Kingfisher上之板進行額外清洗及提取。經提取之DNA可具有磁頭。可讀取片段分析儀上之QC板。可使用音波測定片段之體積。若樣本良好,則結果可包括來自多種樣本之純DNA或RNA。量化可藉由基於毛細管之DNA分離尺寸來測定。實時或定量PCR (qPCR)可用於量測該量。定量PCR可藉由KAPA套組來執行。qPCR可用於選擇將要進行定序之DNA。若樣本不良,則提取方案可重新運行。終點管架可經開蓋並放置於Star臺上。來自片段分析儀及LightCycler 480之資料可用於製備Star上之標準化板。樣本可經等分至管架,重新蓋上,並送至輸出架。在剪切期間,酶可分配至標準化板。在剪切期間,流槽轉接子可與DNA連接。對於無細胞DNA而言,可連接識別碼。識別碼可為患者識別碼或唯一識別碼。標準化板可進行密封並在振動下培育至少約10分鐘、15分鐘、20分鐘、25分鐘或30分鐘。板可進行旋轉並對封口進行剝離。末端修復方法可在Star上運行。片段分析儀上之板可針對QC進行讀取。標準化板可進行密封並在振動下培養至少約1分鐘、5分鐘、10分鐘、20分鐘、30分鐘、1小時、2小時、3小時、4小時或5小時。標準化板可經歷離心並隨後進行剝離。在轉接子連接期間,可在Star上運行該方法並可添加珠粒。板可移動至Kingfisher並可經歷額外清洗及清理及洗脫步驟。磁性珠粒清理處理可在Kingfisher上運行。剩餘板可移動至Kingfisher之廢料或旋轉盤且PCR板可進行密封。 對於至少約1個板、2個板、3個板、4個板、5個板、6個板或約7個板而言,完成時間可為至少約3小時、4小時、5小時、6小時、7小時、8小時、9小時或10小時。時間可受為至少約30分鐘、1小時、2小時、3小時、4小時、5小時或10小時之培育所影響。 第二方法可為後置放大板製備。第二方法可包括PCR、清理、QC、標靶捕獲、標準化及積存。且此等方法可根據客戶進行改變。在後置放大板製備期間,前置放大PCR板可放置於Inheco上並可運行方案。PCR板可進行離心並剝離,移動至Star並轉移至新Kingfisher板。試劑可分配於Biotek MultifloFX分配器上並轉移至Kingfisher。可載入清洗板,可運行Kingfisher例行程序,並轉移至Star。可製備QC板及PCR板。可使用Star添加珠粒,可運行Kingfisher例行程序,轉移至Star,並可生成8個PCR板。可隨後運行PCR方案,可在Star及Kingfisher上重複Ampure清理方案。可製備QC板,可在片段分析儀上運行,並可在Star上標準化輸出及池樣本。系統亦可包括核查每個板並掃描條碼以確保處理正確樣本之機器人相機。 提供用於分析一或多個生物樣本之系統可連接至雲計算系統以形成「雲端盒中實驗室(lab in a box with a cloud)」。雲計算系統可包括雲存儲系統及一或多個超級電腦。在雲計算中,可在網際網路上裝載遠端伺服器之網路(而非本地伺服器或個人電腦)以存儲、管理及處理來自提供用於分析一或多個生物樣本之系統的資料。在雲存儲中,來自提供用於分析一或多個生物樣本之系統的資料及數學模型可存儲於自網際網路或「雲」可訪問之遠端伺服器上。雲存儲可由雲存儲伺服器提供商在以虛擬方法構建之存儲伺服器上進行維護、操作及管理。本文所揭示之來自提供用於分析一或多個生物樣本之系統的輸出資料及方法可直接轉移至雲端計算系統。雲端計算系統可包括提供用於分析一或多個生物樣本之系統。雲計算系統可隨分析一或多個生物樣本之每個步驟存儲方法及資料作為中繼資料。使用者可訪問「雲端盒中實驗室」。生物標誌 生物標誌可包括複數種不同類型之生物標誌。在一些情況下,可化驗至少1種生物標誌、10種生物標誌、50種生物標誌、100種生物標誌、500種生物標誌、1000種生物標誌、1500種生物標誌、2000種生物標誌、2500種生物標誌、3000種生物標誌、3500種生物標誌或4000種生物標誌。通過所策展之臨床試驗及藥物,可生成經註釋之生物標誌組。 可針對包括以下基因中之一或多種生物標誌化驗無細胞DNA:ABL1、AKT1、AKT2、AKT3、ALK、APC、AR、ARAF、ARID1A、ASXL1、ATM、ATR、AURKA、AURKB、AURKC、BAP1、BCL2、BRAF、BRCA1、BRCA2、BRD2、BRD3、BRD4、CCND1、CCND2、CCND3、CCNE1、CDH1、CDK12、CDK4、CDK6、CDKN1A、CDKN1B、CDKN2A、CDKN2B、CEBPA、CREBBP、CRKL、CSF1R、CTNNB1、DDR2、DNMT3A、EGFR、EPHA3、EPHA5、ERBB2、ERBB3、ERBB4、ERCC2、ERG、ERRFI1、ESR1、ETV1、ETV4、ETV5、ETV6、EWSR1、EZH2、FBXW7、FGFR1、FGFR2、FGFR3、FLCN、FLT3、GATA3、GNA11、GNAQ、GNAS、GSTM1、HNF1A、HRAS、IDH1、IDH2、IGF1R、JAK2、JAK3、KDR、KEAP1、KIT、KMT2A、KRAS、MAP2K1、MAP2K2、MAP2K4、MAPK1、MAPK3、MCL1、MDM2、MDM4、MED12、MEN1、MET、MITF、MKI67、MLH1、MPL、MSH2、MSH6、MTOR、MYC、MYD88、NF1、NF2、NFE2L2、NFKBIA、NKX2-1、NOTCH1、NOTCH2、NPM1、NRAS、NTRK1、NTRK3、NUTM1、PDGFRA、PDGFRB、PGR、PIK3CA、PIK3CB、PIK3R1、PTCH1、PTEN、PTPN11、RAB35、RAF1、RARA、RB1、RET、RHEB、RHOA、RIT1、RNF43、ROS1、RSPO2、RUNX1、SMAD2、SMAD4、SMARCA4、SMARCB1、SMO、SRC、STK11、SYK、TERT、TET2、TMPRSS2、TP53、TSC1、TSC2、VHL、WT1、XPO1、ZNRF3、BTK、CD274、FOXL2、MYCN、PDCD1LG2及VEGFA。 生物標誌可包括存在於以下外顯子之一或多者中之至少一者:61E3.4、AAK1、AARS、AARS2、AATK、ABCB1、ABCC9、ABI1、ABL1、ABL2、AC099552.4、ACKR3、ACP1、ACSL3、ACSL6、ACSM2B、ACTA2、ACTB、ACTC1、ACTG1、ACTL6B、ACTR2、ACVR1、ACVR1B、ACVR1C、ACVR2A、ACVR2B、ACVRL1、ADAM10、ADAM29、ADAMTS10、ADAMTS16、ADAMTS2、ADAMTS20、ADCK1、ADCK2、ADCK3、ADCK4、ADCK5、ADCY1、ADORA2A、ADRB1、ADRB2、ADRBK1、ADRBK2、AES、AFAP1、AFF1、AFF3、AFF4、AGBL4、AGXT2、AHCTF1、AHCYL2、AHDC1、AHNAK、AHNAK2、AJUBA、AK9、AKAP1、AKAP13、AKAP9、AKR1B10、AKT1、AKT2、AKT3、AL603965.1、ALDH2、ALDH3A2、ALDH7A1、ALG10B、ALK、ALKBH2、ALKBH3、ALOX12B、ALOX5、ALPK1、ALPK2、ALPK3、AMER1、AMHR2、AMPH、ANAPC1、ANKK1、ANKRD11、ANKRD12、ANKRD20A4、ANKRD30A、ANKRD36、ANKRD53、ANKRD6、ANXA6、ANXA8L2、AP003733.1、AP2A1、APAF1、APC、APC2、APEX1、APEX2、API5、APLF、APOB、APOBEC3G、APTX、AQP12A、AQP7、AR、ARAF、AREG、ARFRP1、ARG1、ARG2、ARHGAP26、ARHGAP32、ARHGAP35、ARHGAP36、ARHGEF12、ARHGEF18、ARHGEF35、ARHGEF6、ARID1A、ARID1B、ARID2、ARID3A、ARID3B、ARID4A、ARID4B、ARID5A、ARID5B、ARNT、ASB5、ASCL4、ASH2L、ASPM、ASPSCR1、ASTN2、ASXL1、ASXL2、ASXL3、ATF1、ATF7IP、ATG13、ATG5、ATIC、ATM、ATP1A1、ATP2B3、ATR、ATRIP、ATRX、ATXN1、AURKA、AURKB、AURKC、AXIN1、AXIN2、AXL、B2M、B3GNTL1、B4GALT3、BAGE2、BAIAP2L1、BAP1、BARD1、BAZ1B、BAZ2A、BBC3、BCAP31、BCKDK、BCL10、BCL11A、BCL11B、BCL2、BCL2A1、BCL2L1、BCL2L11、BCL2L12、BCL2L2、BCL3、BCL6、BCL7A、BCL9、BCL9L、BCLAF1、BCOR、BCORL1、BCR、BIRC2、BIRC3、BLK、BLM、BMP2K、BMPR1A、BMPR1B、BMPR2、BMX、BPNT1、BRAF、BRCA1、BRCA2、BRD2、BRD3、BRD4、BRDT、BRINP3、BRIP1、BRSK1、BRSK2、BRWD3、BTG1、BTG2、BTK、BUB1、BUB1B、C11ORF30、C15ORF65、C16ORF59、C19ORF40、C1ORF159、C1ORF86、C1QTNF5、C20ORF26、C2CD3、C2ORF44、C3ORF70、C4ORF27、C7、C7ORF50、C7ORF55、C8A、C8ORF37、C8ORF44、CABLES2、CACNA1C、CACNA1D、CACNA1S、CAD、CALCR、CALM1、CALN1、CALR、CAMK1D、CAMK1G、CAMK2A、CAMK2B、CAMK2D、CAMK2G、CAMK4、CAMKK1、CAMKK2、CAMKV、CAMTA1、CANT1、CARD11、CARM1、CARS、CASC5、CASK、CASP8、CAST、CBFA2T3、CBFB、CBL、CBLB、CBLC、CBLN4、CBWD1、CCAR1、CCDC107、CCDC144A、CCDC160、CCDC178、CCDC6、CCDC74A、CCNB1IP1、CCND1、CCND2、CCND3、CCNE1、CCNH、CD163L1、CD274、CD276、CD40、CD5L、CD74、CD79A、CD79B、CD82、CDC14A、CDC14B、CDC20、CDC25A、CDC25B、CDC25C、CDC27、CDC42、CDC42BPA、CDC42BPB、CDC42BPG、CDC42EP1、CDC7、CDC73、CDH1、CDH10、CDH11、CDH18、CDH2、CDH20、CDH4、CDH5、CDH6、CDH9、CDK1、CDK10、CDK11A、CDK12、CDK13、CDK14、CDK15、CDK16、CDK17、CDK18、CDK19、CDK2、CDK20、CDK3、CDK4、CDK5、CDK5RAP2、CDK6、CDK7、CDK8、CDK9、CDKL1、CDKL2、CDKL3、CDKL4、CDKL5、CDKN1A、CDKN1B、CDKN2A、CDKN2B、CDKN2C、CDKN3、CDX2、CEBPA、CEP170、CEP89、CETN2、CFH、CFHR4、CFLAR、CHAF1A、CHCHD7、CHD2、CHD3、CHD4、CHD5、CHD7、CHD8、CHDC2、CHEK1、CHEK2、CHIC2、CHMP3、CHN1、CHUK、CIC、CIITA、CIT、CKMT1A、CKS1B、CLCN6、CLDN18、CLIP1、CLK1、CLK2、CLK3、CLK4、CLP1、CLSTN2、CLTC、CLTCL1、CLVS2、CMKLR1、CNBD1、CNBP、CNOT1、CNOT3、CNPY3、CNTN1、CNTNAP5、CNTRL、COBLL1、COL11A1、COL18A1、COL1A1、COL1A2、COL2A1、COL3A1、COMT、COX6C、CPS1、CPXCR1、CR1、CRB1、CREB1、CREB3L1、CREB3L2、CREBBP、CRIPAK、CRKL、CRLF2、CRTC1、CRTC3、CSDE1、CSF1、CSF1R、CSF3R、CSK、CSNK1A1、CSNK1A1L、CSNK1D、CSNK1E、CSNK1G1、CSNK1G2、CSNK1G3、CSNK2A1、CSNK2A2、CTAGE6、CTCF、CTDNEP1、CTDSP1、CTDSP2、CTDSPL、CTDSPL2、CTLA4、CTNNA1、CTNNA2、CTNNB1、CTNND1、CTTN、CUL1、CUL3、CUX1、CXCR4、CYC1、CYLD、CYP11B1、CYP2A6、CYP2B6、CYP2C19、CYP2C8、CYP2C9、CYP2D6、CYP3A4、CYP3A5、CYP4F2、DAB2IP、DACH1、DACH2、DAPK1、DAPK2、DAPK3、DAXX、DCAF12L2、DCC、DCLK1、DCLK2、DCLK3、DCLRE1A、DCLRE1B、DCLRE1C、DCP1B、DCTN1、DCUN1D1、DDB1、DDB2、DDIT3、DDR1、DDR2、DDX10、DDX3X、DDX5、DDX6、DEFB114、DEFB118、DEFB119、DEK、DERL1、DHX16、DHX9、DIAPH1、DICER1、DIDO1、DIO2、DIS3、DIS3L2、DISP1、DKK2、DKK4、DLG2、DLX4、DMC1、DMD、DMPK、DNAH12、DNAJA2、DNAJC6、DNER、DNM2、DNM3、DNMT1、DNMT3A、DNMT3B、DOCK2、DOCK4、DOK6、DOLPP1、DOT1L、DPH3、DPPA4、DPYD、DRD2、DRD5、DSC2、DSG2、DSP、DST、DSTYK、DUPD1、DUSP1、DUSP10、DUSP11、DUSP12、DUSP13、DUSP14、DUSP15、DUSP16、DUSP18、DUSP19、DUSP2、DUSP21、DUSP22、DUSP23、DUSP26、DUSP27、DUSP28、DUSP3、DUSP4、DUSP5、DUSP6、DUSP7、DUSP8、DUSP9、DUT、DYNC1I1、DYRK1A、DYRK1B、DYRK2、DYRK3、DYRK4、E2F3、EBF1、EBPL、ECT2L、EDNRB、EED、EEF1A1、EEF2K、EGFL7、EGFR、EGR3、EIF1AX、EIF2AK1、EIF2AK2、EIF2AK3、EIF2AK4、EIF2S1、EIF3E、EIF4A2、ELAVL3、ELF3、ELF4、ELF5、ELK4、ELL、ELN、ELTD1、EME1、EME2、EMG1、EML4、ENDOV、EP300、EPAS1、EPB41L3、EPCAM、EPDR1、EPHA1、EPHA10、EPHA2、EPHA3、EPHA4、EPHA5、EPHA6、EPHA7、EPHA8、EPHB1、EPHB2、EPHB3、EPHB4、EPHB6、EPM2A、EPOR、EPPK1、EPS15、ERBB2、ERBB2IP、ERBB3、ERBB4、ERC1、ERCC1、ERCC2、ERCC3、ERCC4、ERCC5、ERCC6、ERCC6L、ERCC8、ERG、ERN1、ERN2、ERRFI1、ESPL1、ESR1、ESR2、ESRRG、ETNK1、ETS1、ETV1、ETV4、ETV5、ETV6、EWSR1、EXO1、EXOSC10、EXT1、EXT2、EYA1、EYA2、EYA3、EYA4、EZH1、EZH2、EZR、F2、F5、FADD、FAM101A、FAM129B、FAM129C、FAM131B、FAM155A、FAM157B、FAM174B、FAM175A、FAM194B、FAM21A、FAM46C、FAM46D、FAM58A、FAM71B、FAM83H、FAM86B1、FAM86B2、FAM9A、FAN1、FANCA、FANCB、FANCC、FANCD2、FANCE、FANCF、FANCG、FANCI、FANCL、FANCM、FANK1、FAS、FASTK、FAT1、FBN1、FBN2、FBXO11、FBXO43、FBXW7、FCGR1A、FCGR2B、FCGR3B、FCHO2、FCRL4、FEN1、FER、FES、FEV、FGF10、FGF14、FGF19、FGF23、FGF3、FGF4、FGF6、FGF7、FGFR1、FGFR1OP、FGFR2、FGFR3、FGFR4、FGR、FH、FHIT、FIP1L1、FIS1、FKBP9、FLCN、FLI1、FLNA、FLT1、FLT3、FLT4、FN1、FNBP1、FOLR1、FOSL2、FOXA1、FOXA2、FOXL2、FOXO1、FOXO3、FOXO4、FOXP1、FOXP4、FOXQ1、FRG1、FRG2B、FRK、FRS2、FSCN3、FSIP1、FSTL3、FTH1、FUBP1、FUS、FUT9、FYN、G3BP1、G6PD、GAB2、GAB3、GABRA6、GABRB2、GABRB3、GABRP、GAK、GALNT13、GAS6、GAS7、GATA1、GATA2、GATA3、GATA4、GATA6、GATS、GCK、GCSAML、GDI1、GEN1、GID4、GIGYF2、GIPC3、GLA、GLI1、GLI2、GLIPR1L2、GML、GMPS、GNA11、GNA13、GNAI1、GNAQ、GNAS、GNL3L、GNPTAB、GOLGA2、GOLGA5、GOLGA6L6、GOPC、GOT2、GP6、GPC3、GPC6、GPHN、GPR124、GPR89A、GPRASP1、GPS2、GPSM1、GREM1、GRIN2A、GRIN3A、GRK4、GRK5、GRK6、GRK7、GRM3、GRXCR1、GSG2、GSK3A、GSK3B、GSTM1、GSTP1、GSTT1、GTF2H1、GTF2H2、GTF2H3、GTF2H4、GTF2H5、GTF2I、GTF3C5、GUCY1A2、GUCY2C、GUCY2D、GUCY2F、H1F0、H1FNT、H1FOO、H1FX、H2AFB1、H2AFB2、H2AFB3、H2AFJ、H2AFV、H2AFX、H2AFY、H2AFY2、H2AFZ、H2BFM、H2BFWT、H3F3A、H3F3B、H3F3C、HCK、HCN1、HDAC1、HDAC10、HDAC11、HDAC2、HDAC3、HDAC4、HDAC5、HDAC6、HDAC7、HDAC8、HDAC9、HDDC2、HDHD1、HDHD2、HDHD3、HECW1、HELQ、HERC1、HERC2、HERPUD1、HEY1、HGF、HHLA2、HIF1A、HIP1、HIPK1、HIPK3、HIPK4、HIST1H1A、HIST1H1B、HIST1H1C、HIST1H1D、HIST1H1E、HIST1H1T、HIST1H2AA、HIST1H2AB、HIST1H2AC、HIST1H2AD、HIST1H2AE、HIST1H2AG、HIST1H2AH、HIST1H2AI、HIST1H2AJ、HIST1H2AK、HIST1H2AL、HIST1H2AM、HIST1H2BA、HIST1H2BB、HIST1H2BC、HIST1H2BD、HIST1H2BE、HIST1H2BF、HIST1H2BG、HIST1H2BH、HIST1H2BI、HIST1H2BK、HIST1H2BL、HIST1H2BM、HIST1H2BO、HIST1H3A、HIST1H3B、HIST1H3C、HIST1H3D、HIST1H3F、HIST1H3G、HIST1H3H、HIST1H3I、HIST1H3J、HIST1H4A、HIST1H4B、HIST1H4C、HIST1H4D、HIST1H4E、HIST1H4F、HIST1H4G、HIST1H4I、HIST1H4J、HIST1H4K、HIST1H4L、HIST2H2AA3、HIST2H2AA4、HIST2H2AB、HIST2H2AC、HIST2H2BE、HIST2H3A、HIST2H3C、HIST2H3D、HIST2H4A、HIST3H2A、HIST3H2BB、HIST3H3、HKR1、HLA-A、HLA-B、HLF、HLTF、HMGA1、HMGA2、HMGXB4、HNF1A、HNRNPA2B1、HNRNPM、HOOK3、HOXA11、HOXA13、HOXA3、HOXA9、HOXB13、HOXC11、HOXC13、HOXD11、HOXD13、HPCAL4、HRAS、HS6ST1、HSD3B1、HSP90AA1、HSP90AA2P、HSP90AB1、HSPA2、HSPA5、HSPA8、HSPB8、HUNK、HUS1、HUWE1、 IAPP、IARS2、ICK、ICOSLG、ID3、IDH1、IDH2、IDO1、IFNGR1、IFNL3、IFT172、IGF1、IGF1R、IGF2、IGF2BP3、IGF2R、IGFBP7、IK、IKBKAP、IKBKB、IKBKE、IKBKG、IKZF1、IKZF2、IKZF3、IL10、IL18RAP、IL1RAPL1、IL2、IL21R、IL2RG、IL3、IL32、IL36A、IL6ST、IL7R、ILF2、ILK、ILKAP、IMPA1、IMPA2、IMPAD1、ING1、INHBA、INPP1、INPP4A、INPP4B、INPP5A、INPP5B、INPP5D、INPP5E、INPP5F、INPP5J、INPP5K、INPPL1、INSR、INSRR、INTS1、INTS4、IRAK1、IRAK2、IRAK3、IRAK4、IRF2、IRF4、IRS1、IRS2、ISOC2、ITGA6、ITK、ITPA、ITPR1、ITPR3、JAK1、JAK2、JAK3、JARID2、JAZF1、JMJD1C、JUN、KALRN、KANK3、KAT6A、KAT6B、KCNE1、KCNH2、KCNJ11、KCNJ5、KCNQ1、KCNT2、KDM5A、KDM5B、KDM5C、KDM6A、KDM6B、KDR、KDSR、KEAP1、KEL、KIAA1109、KIAA1549、KIAA1598、KIDINS220、KIF20B、KIF3A、KIF5B、KIFC3、KIT、KLF4、KLF5、KLF6、KLHL4、KLHL6、KLK2、KLRG1、KMT2A、KMT2B、KMT2C、KMT2D、KNSTRN、KRAS、KRT1、KRTAP1-1、KRTAP15-1、KRTAP19-6、KRTAP5-5、KSR1、KSR2、KTN1、LARS、LASP1、LATS1、LATS2、LCE1B、LCK、LCP1、LDLR、LEF1、LENG9、LEPR、LEPROTL1、LGI4、LHFP、LHPP、LHX9、LIFR、LIG1、LIG3、LIG4、LILRB5、LIMK1、LIMK2、LIN28A、LIN28B、LIN7A、LMNA、LMO1、LMO2、LMOD2、LMTK2、LMTK3、LPP、LPPR1、LPPR2、LPPR3、LPPR4、LPPR5、LRFN5、LRIG3、LRP1B、LRP6、LRRC4C、LRRC55、LRRIQ1、LRRIQ3、LRRK1、LRRK2、LRRTM4、LSM14A、LTBP1、LTBR、LTK、LTV1、LUC7L2、LUM、LUZP2、LYL1、LYN、LZTR1、MACF1、MAD2L2、MADCAM1、MAF、MAFB、MAGEA3、MAGEB18、MAGEB2、MAGEC1、MAGI2、MAK、MALT1、MAML2、MAP1A、MAP1B、MAP2K1、MAP2K2、MAP2K3、MAP2K4、MAP2K5、MAP2K6、MAP2K7、MAP3K1、MAP3K10、MAP3K11、MAP3K12、MAP3K13、MAP3K14、MAP3K2、MAP3K3、MAP3K4、MAP3K5、MAP3K6、MAP3K7、MAP3K8、MAP3K9、MAP4、MAP4K1、MAP4K3、MAP4K4、MAP4K5、MAPK1、MAPK10、MAPK11、MAPK12、MAPK13、MAPK14、MAPK15、MAPK3、MAPK4、MAPK6、MAPK7、MAPK8、MAPK8IP1、MAPK9、MAPKAPK2、MAPKAPK3、MAPKAPK5、2-Mar、MARCKSL1、MARK1、MARK2、MARK3、MARK4、MAST1、MAST2、MAST3、MAST4、MASTL、MAT2A、MATK、MAX、MBD4、MCL1、MCM7、MCTP1、MDC1、MDM2、MDM4、MDN1、MECOM、MED12、MED13、MED16、MED17、MED20、MEF2A、MEF2B、MEF2C、MEGF6、MELK、MEN1、MERTK、MET、METRNL、METTL14、MGA、MGMT、MGRN1、MICAL1、MINPP1、MITF、MKI67、MKL1、MKNK1、MKNK2、MKRN1、MLF1、MLH1、MLH3、MLKL、MLLT1、MLLT10、MLLT11、MLLT3、MLLT4、MLLT6、MME、MMP2、MMP24、MMP9、MMS19、MN1、MNAT1、MNX1、MOK、MOS、MPG、MPL、MPLKIP、MPND、MPP7、MPRIP、MRAS、MRE11A、MROH2B、MRPS31、MRPS9、MSH2、MSH3、MSH4、MSH5、MSH6、MSI2、MSMB、MSN、MST1、MST1R、MST4、MTCP1、MTF2、MTHFR、MTM1、MTMR1、MTMR10、MTMR11、MTMR12、MTMR2、MTMR3、MTMR4、MTMR6、MTMR7、MTMR8、MTMR9、MTOR、MTRNR2L1、MTRNR2L8、MTUS2、MUC1、MUC2、MUC4、MUC6、MUC7、MUM1L1、MUS81、MUSK、MUTYH、MYB、MYBL1、MYBPC3、MYC、MYCBP2、MYCN、MYD88、MYH11、MYH7、MYH9、MYL10、MYL2、MYL3、MYLK、MYLK2、MYLK3、MYLK4、MYNN、MYO1D、MYO3A、MYO3B、MYO5A、MYOD1、MYOZ3、MYT1、NAA15、NAB2、NABP2、NACA、NACC2、NALCN、NAP1L2、NAT2、NAV1、NAV3、NBEA、NBN、NBPF10、NCF1、NCKIPSD、NCOA1、NCOA2、NCOA3、NCOA4、NCOA7、NCOR1、NCOR2、NDRG1、NEB、NEDD4L、NEFH、NEIL1、NEIL2、NEIL3、NEK1、NEK10、NEK11、NEK2、NEK3、NEK4、NEK5、NEK6、NEK7、NEK8、NEK9、NELFA、NELFB、NF1、NF2、NFATC2、NFE2L2、NFE2L3、NFIB、NFKB1、NFKB2、NFKBIA、NFKBIB、NFKBIE、NFKBIZ、NHEJ1、NIM1、NIN、NIPBL、NKX2-1、NKX3-1、NLK、NLRP2、NLRP3、NLRP5、NLRP6、NM、NMS、NMT2、NOD1、NOMO1、NONO、NOTCH1、NOTCH2、NOTCH2NL、NOTCH3、NOTCH4、NPAS3、NPEPL1、NPEPPS、NPM1、NPR1、NPR2、NQO1、NR、NR1H2、NR4A2、NR4A3、NRAS、NRBP1、NRBP2、NRG1、NRG3、NRK、NSD1、NT5C2、NTHL1、NTM、NTNG1、NTRK1、NTRK2、NTRK3、NUAK1、NUAK2、NUDT1、NUDT10、NUDT11、NUDT14、NUDT3、NUDT4、NUMA1、NUMBL、NUP214、NUP93、NUP98、NUTM1、NUTM2A、NUTM2B、NXPE1、OBSCN、OCRL、OGG1、OLIG2、OMD、OR2L2、OR2W3、OR5L1、OR9G1、OSBPL6、OSR1、OTOL1、OTUB1、OTUD4、OXA1L、OXNAD1、OXR1、P2RY11、P2RY8、P4HB、PABPC1、PABPC3、PABPC4、PABPC5、PACS1、PADI2、PADI4、PAFAH1B2、PAK1、PAK2、PAK3、PAK4、PAK6、PAK7、PALB2、PAN3、PAPD5、PARK2、PARM1、PARP1、PARP2、PARP3、PASK、PATZ1、PAX3、PAX5、PAX7、PAX8、PBK、PBRM1、PBX1、PCBP1、PCDH11X、PCK1、PCM1、PCMTD1、PCNA、PCSK7、PCSK9、PDCD1、PDCD1LG2、PDE1A、PDE4DIP、PDGFB、PDGFRA、PDGFRB、PDIK1L、PDK1、PDK2、PDK3、PDK4、PDP2、PDPK1、PDS5A、PDS5B、PDXP、PDYN、PEAK1、PEG3、PER1、PES1、PFN2、PGM5、PGP、PGR、PHF1、PHF19、PHF6、PHKG1、PHKG2、PHLDA1、PHLDA3、PHLPP2、PHOX2B、PICALM、PIK3C2B、PIK3C2G、PIK3C3、PIK3CA、PIK3CB、PIK3CD、PIK3CG、PIK3R1、PIK3R2、PIK3R3、PIK3R4、PIM1、PIM2、PIM3、PINK1、PIP5K1A、PJA1、PKD1、PKD2、PKDCC、PKHD1、PKN1、PKN2、PKN3、PKP2、PLAG1、PLAGL1、PLCG1、PLCG2、PLCH2、PLCL1、PLEC、PLEKHS1、PLK1、PLK2、PLK3、PLK4、PMAIP1、PML、PMS1、PMS2、PNCK、PNKP、PNLIPRP3、PNRC1、POLB、POLD1、POLE、POLG、POLH、POLI、POLK、POLL、POLM、POLN、POLQ、POLR2D、POM121L12、POMK、POT1、POTEC、POTEF、POTEG、POU2AF1、POU3F2、POU5F1、PPA1、PPA2、PPAP2A、PPAP2B、PPAP2C、PPAPDC1A、PPAPDC1B、PPAPDC2、PPAPDC3、PPARG、PPEF1、PPEF2、PPFIA4、PPFIBP1、PPIF、PPM1A、PPM1B、PPM1D、PPM1E、PPM1F、PPM1G、PPM1H、PPM1J、PPM1K、PPM1L、PPM1M、PPM1N、PPP1CA、PPP1CB、PPP1CC、PPP2CA、PPP2CB、PPP2R1A、PPP3CA、PPP3CB、PPP3CC、PPP4C、PPP5C、PPP6C、PPTC7、PRB1、PRB2、PRB4、PRCC、PRDM1、PRDM16、PRDM2、PRELID2、PREX2、PRF1、PRG4、PRKAA1、PRKAA2、PRKACA、PRKACB、PRKACG、PRKAG2、PRKAR1A、PRKAR1B、PRKCA、PRKCB、PRKCD、PRKCE、PRKCG、PRKCH、PRKCI、PRKCQ、PRKCZ、PRKD3、PRKDC、PRKG1、PRKG2、PRKX、PRPF19、PRPF4、PRPF8、PRRC2A、PRRX1、PRSS1、PRSS3、PRSS8、PRX、PSEN1、PSG5、PSG6、PSG8、PSIP1、PSKH1、PSKH2、PSMD11、PSME3、PSPH、PTCH1、PTCH2、PTEN、PTH、PTK2、PTK2B、PTK6、PTK7、PTP4A1、PTP4A2、PTP4A3、PTPDC1、PTPLA、PTPMT1、PTPN1、PTPN11、PTPN12、PTPN13、PTPN14、PTPN18、PTPN2、PTPN20A、PTPN21、PTPN22、PTPN23、PTPN3、PTPN4、PTPN5、PTPN6、PTPN7、PTPN9、PTPRA、PTPRB、PTPRC、PTPRD、PTPRE、PTPRF、PTPRG、PTPRH、PTPRJ、PTPRK、PTPRM、PTPRN、PTPRN2、PTPRO、PTPRQ、PTPRR、PTPRS、PTPRT、PTPRU、PTPRZ1、PWP1、PWWP2A、PXK、PXN、PYDC2、QKI、RAB11FIP5、RAB35、RABEP1、RAC1、RAC2、RAD1、RAD17、RAD18、RAD21、RAD23A、RAD23B、RAD50、RAD51、RAD51B、RAD51C、RAD51D、RAD52、RAD54B、RAD54L、RAD9A、RAF1、RAG1、RAI14、RALGAPA1、RALGDS、RANBP17、RANBP2、RANBP3、RANGAP1、RAP1GDS1、RARA、RASA1、RB1、RBBP8、RBFOX2、RBM10、RBM11、RBM15、RBMX、RCN1、RDM1、RECQL、RECQL4、RECQL5、REG1A、REG1B、REG3A、REG3G、REL、RELA、RELB、RERE、RERG、RET、REV1、REV3L、RFWD2、RGPD8、RGS18、RHEB、RHOA、RHOB、RHOH、RHOT1、RICTOR、RIF1、RIMS2、RIOK1、RIOK2、RIOK3、RIPK1、RIPK2、RIPK3、RIPK4、RIT1、RMI2、RNASEL、RNF10、RNF111、RNF144A、RNF168、RNF185、RNF213、RNF34、RNF4、RNF43、RNF8、RNGTT、ROBO3、ROCK1、ROCK2、ROR1、ROR2、ROS1、RP11-160N1.10、RP11-181C3.1、RP11-683L23.1、RP11-758M4.1、RPA1、RPA2、RPA3、RPA4、RPGR、RPL10、RPL10L、RPL13A、RPL22、RPL5、RPN1、RPP38、RPS27、RPS6KA1、RPS6KA2、RPS6KA3、RPS6KA4、RPS6KA5、RPS6KA6、RPS6KB1、RPS6KB2、RPS6KC1、RPS6KL1、RPTOR、RQCD1、RRAD、RRAS、RRAS2、RRM1、RRM2B、RSPO2、RSPO3、RSRC1、RUNDC3B、RUNX1、RUNX1T1、RUNX2、RXRA、RYBP、RYK、RYR1、RYR2、SACM1L、SAMHD1、SATB2、SAV1、SBDS、SBF1、SBF2、SBK1、SBK2、SBK3、SCN5A、SCYL1、SCYL2、SCYL3、SDC4、SDHA、SDHAF2、SDHB、SDHC、SDHD、SEC23B、SEC31A、SECISBP2、SEMA3C、SEMA3E、SEMG1、SEPT5、SEPT6、SEPT9、SERPINB3、SERPINB4、SET、SETBP1、SETD2、SETDB1、SETDB2、SETMAR、SETX、SF3B1、SFPQ、SFRP1、SGK1、SGK2、SGK223、SGK3、SGK494、SGPP1、SGPP2、SH2B3、SH2D1A、SH3GL1、SH3PXD2A、SHFM1、SHH、SHOC2、SHPRH、SHQ1、SI、SIK1、SIK2、SIK3、SIN3A、SIRT1、SIRT2、SIRT3、SIRT4、SIRT5、SIRT6、SIRT7、SKI、SKP2、SLC12A2、SLC13A1、SLC17A8、SLC1A2、SLC22A13、SLC25A10、SLC25A4、SLC25A5、SLC26A3、SLC34A2、SLC38A4、SLC3A2、SLC45A3、SLC5A7、SLC9B1、SLCO1B1、SLIT2、SLITRK6、SLK、SLX1A、SLX1B、SLX4、SMAD2、SMAD3、SMAD4、SMARCA2、SMARCA4、SMARCAD1、SMARCB1、SMARCD1、SMARCE1、SMC1A、SMC3、SMC4、SMCHD1、SMG1、SMG7、SMO、SMUG1、SMYD4、SNAP91、SNCAIP、SND1、SNRK、SNTG2、SNX29、SNX31、SOCS1、SOS1、SOS2、SOX10、SOX17、SOX2、SOX9、SP2、SPAG16、SPANXN1、SPANXN2、SPATA6、SPECC1、SPEG、SPEN、SPHKAP、SPNS1、SPO11、SPOCK3、SPOP、SPRED1、SPRR2G、SPRTN、SPRY1、SPRY2、SPRY4、SPTA1、SPTAN1、SPTBN1、SQSTM1、SRC、SRCAP、SRCIN1、SRGAP3、SRM、SRPK1、SRPK2、SRPK3、SRRM2、SRSF2、SRSF3、SS18、SS18L1、SSH1、SSH2、SSH3、SSX1、SSX2、SSX2IP、SSX4、STAG1、STAG2、STAG3、STARD6、STAT3、STAT4、STAT5B、STAT6、STEAP4、STIL、STIP1、STK10、STK11、STK16、STK17A、STK17B、STK19、STK24、STK25、STK3、STK31、STK32A、STK32B、STK32C、STK33、STK35、STK36、STK38L、STK39、STK40、STRADA、STRADB、STRN、STYK1、STYX、STYXL1、SUFU、SULT1A1、SULT1B1、SUPT4H1、SUPT5H、SUZ12、SV2C、SVIL、SWI5、SYK、SYNE1、SYNJ1、SYNJ2、SYT4、TAB1、TACC1、TADA1、TADA2B、TAF1、TAF15、TAF1A、TAF1L、TAL1、TANC2、TAOK1、TAOK2、TAOK3、TAS2R10、TAS2R13、TAS2R14、TAS2R43、TAS2R60、TBC1D2B、TBC1D31、TBCK、TBK1、TBL1XR1、TBP、TBX15、TBX22、TBX3、TCEA1、TCF12、TCF3、TCF4、TCF7、TCF7L2、TCL1A、TDG、TDP1、TDP2、TEC、TECRL、TEK、TENC1、TENM3、TERT、TESK1、TESK2、TET1、TET2、TEX13A、TEX14、TFDP1、TFE3、TFEB、TFG、TFPT、TFRC、TGFBR1、TGFBR2、TGIF1、TGIF2LX、TGOLN2、THADA、THEM5、THEMIS、THRAP3、TICAM1、TIE1、TIMM50、TJP2、TLK1、TLK2、TLR4、TLX1、TLX3、TMCO5A、TMED4、TMEM101、TMEM127、TMEM43、TMPRSS2、TMTC1、TNC、TNFAIP3、TNFRSF10C、TNFRSF11A、TNFRSF13B、TNFRSF14、TNFRSF17、TNIK、TNK1、TNK2、TNKS、TNKS1BP1、TNKS2、TNNI3、TNNI3K、TNNT2、TNPO1、TNS1、TNS3、TOB2、TOM1、TOP1、TOP2A、TOP3A、TOPBP1、TP53、TP53BP1、TP53RK、TP53TG3D、TP63、TPM1、TPM3、TPM4、TPMT、TPR、TPSAB1、TPSB2、TPST1、TPTE、TPTE2、TRADD、TRAF2、TRAF3、TRAF7、TRAT1、TRDN、TREX1、TREX2、TRIM24、TRIM27、TRIM28、TRIM33、TRIM58、TRIM7、TRIML2、TRIO、TRIP11、TRMT10C、TRPM1、TRPM3、TRPM4、TRPM6、TRPM7、TRPV4、TRRAP、TSC1、TSC2、TSHR、TSHZ2、TSHZ3、TSPAN19、TSSK1B、TSSK2、TSSK3、TSSK4、TSSK6、TTBK1、TTBK2、TTK、TTL、TTN、TUBA1A、TUSC3、TWF1、TWF2、TXK、TXNIP、TYK2、TYMS、TYRO3、U2AF1、UBALD1、UBE2A、UBE2B、UBE2N、UBE2NL、UBE2V2、UBE2Z、UBE4A、UBLCP1、UBR5、UBXN11、UGT1A1、UGT1A7、UGT2A3、UGT2B28、UHMK1、UHRF1BP1L、ULK1、ULK2、ULK3、ULK4、UNG、UQCRFS1、USP2、USP28、USP29、USP6、USP7、USP9X、UTP14A、UTY、UVSSA、VAT1L、VCPIP1、VCX2、VEGFA、VEGFC、VEZF1、VEZT、VHL、VKORC1、VRK1、VRK2、VRK3、VTCN1、VTI1A、WAPAL、WAS、WBSCR17、WDR49、WDR52、WDR74、WEE1、WEE2、WHSC1、WHSC1L1、WIF1、WISP3、WNK1、WNK2、WNK3、WNK4、WNT2、WRN、WT1、WWTR1、XAB2、XBP1、XIAP、XPA、XPC、XPO1、XPOT、XRCC1、XRCC2、XRCC3、XRCC4、XRCC5、XRCC6、YAP1、YARS、YES1、YME1L1、YPEL5、YWHAE、ZAP70、ZBBX、ZBTB16、ZBTB2、ZBTB7B、ZCCHC3、ZCCHC8、ZDHHC14、ZDHHC16、ZEB2、ZFHX3、ZFP36L1、ZFP36L2、ZFP41、ZIC4、ZMAT4、ZMYM2、ZMYM3、ZMYM4、ZMYND8、ZNF100、ZNF132、ZNF208、ZNF217、ZNF268、ZNF28、ZNF300、ZNF324、ZNF331、ZNF384、ZNF429、ZNF444、ZNF451、ZNF488、ZNF492、ZNF493、ZNF521、ZNF567、ZNF598、ZNF668、ZNF676、ZNF703、ZNF705G、ZNF708、ZNF716、ZNF717、ZNF727、ZNF750、ZNF799、ZNF80、ZNF804A、ZNF804B、ZNF812、ZNF814、ZNF844、ZNF91、ZNF98、ZNF99、ZNRF3、ZPBP、ZRSR2、ZSWIM2、MYCL、MYCL、MLK4、MLK4、ZAK、FRG1B、FRG1B、TRBV5-4。 生物標誌可係選自一或多種內含子源,其包括:ALK、BRAF、BRD3、BRD4、EGFR、ERG、ETV1、ETV4、ETV5、EWSR1、FGFR1、FGFR2、FGFR3、MET、NOTCH1、NRG1、NTRK1、NTRK2、NTRK3、NUTM1、PDGFRA、PDGFRB、PRKCA、PRKCB、RAF1、RET、ROS1、TMPRSS2。 生物標誌可係選自一或多種啟動子,其包括:AC099552.4、ADAMTS10、AGBL4、ANKRD30BL、ANKRD53、AP003733.1、AP2A1、ARHGEF18、ARHGEF35、BCL2、BCL2L11、C16orf59、C4orf27、CABLES2、CACNA1C、CBWD1、CCDC107、CDC20、CDH18、CHMP3、COL11A1、CYLD、CYP4F2、DIO2、DLG2、DNAJA2、EZH2、FAM129C、FAM21A、FCGR3B、GALNT13、GOLGA2、GPR89A、GTF2I、GTF3C5、HCN1、HERC2、HKR1、IGFBP7、INSR、ISOC2、ITPR1、KALRN、KLRG1、LENG9、LEPROTL1、LTV1、LUC7L2、MAGEA3、MASTL、MED16、MEF2C、MGRN1、MPND、MRPS9、MTRNR2L1、MTRNR2L8、MYNN、MYOZ3、NALCN、NCOA7、NEK11、NFKBIE、NPAS3、NPEPPS、NXPE1、OR2L2、OR2W3、OR9G1、OXNAD1、PACS1、PADI4、PAPD5、PFN2、PLEKHS1、POLR2D、POU5F1B、PPAPDC1A、PRSS1、RAI14、RGPD8、RNF185、RNF34、RPL13A、RPS27、SECISBP2、SLC12A2、SMG1、SMUG1、SNTG2、SP2、STAG3、STAG3L5P-PVRIG2P-PILRB、TBC1D2B、TBC1D31、TCF3、TCL1A、TERT、TNK2、TPM3、TPSAB1、TPSB2、TPTE、TRBV5-4、TRMT10C、TRPM4、TRPV4、VCPIP1、WDR74、ZDHHC16、ZNF324、ZNF488、ZNF708、ZNF716、ZNF717、ZNF727、ZNF799。 生物標誌可係選自微衛星不穩定性(MSI)源,其包括:ADGRG6、ALG10B、BAT25、BAT26、BCL11B、BCL2、BCL6、BCL7A、C1orf159、CALM1、CTNNA2、D17S250、D2S123、D5S346、DHX16、DLX4、DRD5、EEF1A1、FGF7、FLI1、FSCN3、GNAS、GP6、HPCAL4、INPP4B、LRRC4C、MAP2K2、MAT2A、METRNL、NR21、NR22、NR27、PES1、PLCL1、PRELID2、RCN1、TBC1D31、TENM3、TOB2、TP53TG3D、XBP1、ZFP41、ZNF208。 生物標誌可係選自已知涉及包括以下之癌症的病毒基因組:人類乳突狀瘤病毒(HPV)、單純皰疹(HSV)、E-B (Epstein-Barr)病毒(EBV)、B型肝炎病毒(HBV)、C型肝炎病毒(HCV)、1型人類T淋巴細胞病毒(HTLV-1)、人類皰疹病毒-8 (HHV8)。基因變異體或改變可為單核苷酸變異體、插入缺失、顛換、易位、倒位、缺失、染色體結構改變、基因融合、染色體融合、基因截短、基因擴增、基因複製及染色體損傷。療法配對 在另一態樣中,本發明提供用於向表現出癌症之個體提供療法的電腦實施之方法。可接收個體之生物學資料。生物學資料可自個體之一或多個生物樣本生成。生物學資料可用於根據個體之分子圖譜生成第一療法列表。分子圖譜可指示一或多個生物樣本中之一或多種基因組畸變。可使用個體之醫學病史資料自第一療法列表生成第二療法列表。療法列表可包括臨床試驗及/或標準醫護。第二療法列表可在使用者介面上呈現給個體。第二療法列表可呈現給臨床醫師以選擇推薦療法。個體亦可接收登記於來自第二療法列表之給定療法中的請求。 在獲取生物學資料期間,生物學資料可自個體之一或多個生物樣本生成。生物學資料可係自個體之一或多個生物樣本生成而無需使用者在一或多個生物樣本之製備期間進行任何移液。或者,生物學資料可係在需要使用者在一或多個生物樣本之製備期間進行移液的情況下自個體之一或多個生物樣本生成。生物學資料可包括生成自一或多個選自由以下組成之群之生物樣本的資料:蛋白質、肽、無細胞核酸、核糖核酸、脫氧核糖核酸及其任何組合。生物學資料可包括指示一或多個生物樣本中之一或多種基因組畸變的分子圖譜。一或多種基因組畸變可包括核酸突變及/或差異表現之蛋白質。核酸突變可係選自由以下組成之群:插入、核苷酸缺失、核苷酸取代、胺基酸插入、胺基酸缺失、胺基酸取代、基因融合、複本數變異及選自表1之基因或變異體。 一組分子化驗可用於DNA、RNA及蛋白質分析。腫瘤組織DNA化驗可為基於高度敏感性次世代定序(NGS)之體細胞突變偵測,跨至少約100、至少約500、至少約1000、至少約1500、至少約2000、至少約2500、至少約3000或至少約4000個基因或至少約20、至少約30、至少約40、至少約50、至少約60、至少約70、至少約80、至少約90、至少約100、至少約150、至少約200、至少約250或至少約300個內含子。腫瘤組織DNA化驗可滿足醫療覆蓋範圍之分析標準。循環腫瘤DNA (ctDNA)化驗可為循環腫瘤DNA之非侵入性液體活組織檢查。另外,基於NGS之突變偵測可針對至少約100、至少約200、至少約300、至少約400、至少約500、至少約600、至少約700、至少約800、至少約900、至少約1000、至少約1500或至少約2000個基因來獲得。腫瘤RNA定序化驗可為基於NGS之全轉錄組定序。腫瘤IHC化驗可為關鍵腫瘤學蛋白質及免疫-腫瘤學標誌之免疫組織化學測試。 生物學資料可用於根據個體之分子圖譜生成第一療法列表。或者,可同時使用個體之醫學病史資料及生物學資料以生成第一療法列表。生成第一療法列表可包括根據預定之基因或基因組區域查詢一或多個靶向療法之一或多個資料庫。根據分子要求與療法配對可基於與個體之分子圖譜配對的特異性來進行分組。例如,配對特異性點突變之療法可分組於單獨類別中而非與基因突變配對之療法。療法資料庫可包括公共儲存庫或獲得自特定從屬之試驗。公共儲存庫可包括選自由ClinicalTrials.gov、國家衛生研究所(National Institute of Health)、研究配對(Research Match)及國家登錄表(諸如乳癌家族登錄表及結腸癌家族登錄表)組成之群的資料庫。獲得自特定從屬之試驗可包括在公共儲存庫中不可訪問但可從附屬機構獲得之試驗知識。 第一療法列表可排除靶向一或多個生物樣本中不存在之基因組畸變的療法。生成第一療法列表亦可包括移除靶向一或多個生物樣本中不存在之基因組畸變的療法。生成第一療法(例如,臨床試驗)列表亦可包括將療法分為兩種類別。兩種類別可包括靶向個體之突變的療法及不指定分子標靶的療法。根據分子要求之療法配對可基於與個體配對的特異性來測定。例如,配對特定點突變之療法可與配對基因突變之療法區分開來。療法可根據識別個體之圖譜的標籤與個體配對。標籤可為靶向理解個體之分子及醫學病史及狀態的問題。標籤可根據選自由以下的話題來生成:個體之基因組及生物標誌圖譜、診斷狀態、對個體所進行之先前療法、對個體所進行之先前療法的結果、及其他合併症。 第一療法列表可額外根據療法之階段進行過濾。例如,療法之階段可為臨床試驗之階段。臨床試驗可包括五個階段:階段0、階段1、階段2、階段3及階段4。階段0可包括人類微給藥研究。來自階段0之資料可藉由早期確定藥物或藥劑是否可如臨床前研究所預期般在人類個體中表現,來加速可靠藥物或成像劑之發展。階段1可為首次對人類研究且可為在人類個體中測試藥物之第一階段。在階段1中,可確定在副作用變得危險或不可忍受之前投與至個體之藥物的最大劑量。此臨床試驗組可由合同研究組織(CRO)進行操作。在階段2期間,藥物可針對生物活性或作用進行測試。在階段2研究期間可登記至少約50、至少約100、至少約150、至少約200、至少約250、至少約300、至少約350或至少約400個個體之群組。在階段3期間,可測定新藥之有效性且可評估新干預之價值。在階段3研究期間可登記至少約100、至少約150、至少約200、至少約250、至少約300、至少約350、至少約400、至少約500、至少約1000、至少約2000及至少約3000個個體之群組。階段4試驗可包括測定安全性監視及在藥物經批准用於出售後對其進行技術支持。 可使用個體之醫學病史資料自第一療法列表生成第二療法列表。或者,可同時使用個體之醫學病史資料及生物學資料以生成第一療法列表。第二療法列表可為第一療法列表。可接收個體之醫學病史資料並根據圖7進行處理以確定個體當前之健康狀態及針對與個體之生物學資料配對之靶向臨床試驗定性。醫學病史資料701可包括選自由以下組成之群的資訊:身份識別、人口統計學、現病史、過去醫學病史、系統檢視、家族疾病、兒童疾病、社會史、常規及急性用藥、過敏、性史、產科及婦科史、手術史、用藥、習慣、免疫史、生長圖及發育史。系統檢視可包括心血管系統、呼吸系統、胃腸系統、泌尿生殖系統、神經系統、腦神經症狀、內分泌系統、肌肉骨骼系統及皮膚。醫學病史資料可進行處理且可預防社會期望性偏見。處理方法可係選自由以下組成之群:清理702、組織703及標記704個體之醫學病史,以生成具有相關經標記醫療文本段之經處理臨床記錄組705。在醫療記錄資料處理之前,可請求醫療記錄並隨後提交檢索。可獲得收集記錄之合理授權。授權請求可係呈自動生成之傳真、郵件、電子郵件之形式,或利用網際網路將所請求之記錄遞送至系統。一旦收集,可接收醫療記錄或轉化為電子或數位檔案格式,用於有效處理。可藉由檢查品質特徵(諸如易讀性、完整性及精確性)來核查醫療記錄之品質。可對系統之組件進行訓練以識別文件類型及核查文件中各頁之品質。在品質核查後,醫療記錄可準備用於提取摘要。提取摘要可為由接收記錄之摘要人員(abstractor)所進行之分析,用於查找客戶請求之特定資訊,包括患者之特定服務(諸如實驗室測試、處方、篩選測試等)或所提供之所有服務。可人工或自動地進行提取摘要。人工摘要人員可具有廣泛之資格及背景,且可包括註冊護士(RN)、執照專業護士(LVN)、執照實習護士(LPN)、認證編碼員、註冊健康資訊管理員(RHIA)、註冊健康資訊技術員(RHIT)。提取摘要之後,通讀過程可核查由摘要人員進行之分析或摘要的品質,以確保正確性及完成度。一旦處理完成,指派、指定或授權之醫療記錄或文件可由個體通過門戶網站進行安全訪問。 醫學病史資料亦可根據相關醫療文本段進行標記。可將醫學病史資料處理成標籤名稱、標籤類別及標籤值。標籤名稱指示識別醫學病史資料之一或多個相關部分的問題。標籤類別可為一或多個標籤名稱之分組及/或分類。標籤值可為對標籤名稱之回答。標籤值可係選自由是、可能及否組成之群。標籤值可對應於由是、可能及否組成之群。醫療文本段可為醫療記錄中之字組或片語,其可用於確認臨床試驗之適格性要求。在醫療記錄中可存在大量文字,但其中僅一小部分與確定個體用於試驗之適格性相關。醫療文本段可包括專屬話題組。標記可包括自第一療法列表提取第二療法列表。標籤可包括靶向了解個體之設定檔、先前療法歷史及先前療法之結果的問題。可人工或自動地實現標記。人工標記可涉及患者記錄及試驗標準描述之冗長檢視。機器學習模型可偵測並標記相關醫療文本段。可將不同權重分配給不同個體參數,取決於正在治療之特定醫學病狀及正在治療之特定患者。機器學習預測可用於生成矢量以計算相似度並生成一組用於個體之臨床試驗適格性與醫療記錄之間配對的分數。 由個體之分子圖譜所預過濾之個體之臨床試驗適格性可與個體之醫療記錄結合至於自然語言處理器(NLP)中。可定製及實施當前最先進技術水平之NLP及資訊提取(IE)技術來構建自動適格性篩選(ES)架構。適格性標準可包括人口統計過濾,諸如過濾年齡、種族、地理資料、身體資料、財務資料及性別。試驗登記窗口亦可用於加快預過濾過程。例如,若個體在登記窗口之開始日期與結束日期之內沒有臨床資料,則可將個體從參與特定臨床試驗中移除。文字及醫學術語處理可使用高級NLP方法以從患者醫學病史記錄中提取醫學上相關之資訊。在NLP提取期間,可生成算法以首先使用來自提取系統之縮寫詞及關鍵字提取醫學資訊。提取系統可為定製設計之提取系統。提取系統可為Apache臨床文字分析及知識提取系統(cTAKES)。提取系統(諸如cTAKES)可將來自以下受控術語之醫學術語分配給經識別之文字串:諸如來自一體化醫學語言系統(UMLS)之概念唯一識別碼(CUI)、臨床藥物之標準化命名(RxNorm)及醫學臨床術語代碼(SNOMED-CT)之系統化命名。此過程亦可用於識別來自診斷字串之醫學術語及文字。另外,來自國際疾病分類之代碼(諸如ICD-9代碼)可使用UMLS ICD-9至SNOMED-CT字典映射至SNOMED-CT術語。亦可使用否定偵檢器來確定否定。否定偵檢器可係基於NegEx算法。經識別之醫學術語及文字可存儲作為個體矢量中之字組桶。此類包含排除技術可衍生自醫學術語及文字處理以拉動術語級模式。從排除標準中所拉之所有術語均可轉化為否定格式。提取自個體之電子健康記錄(EHR)之醫學術語及文字可存儲在為表示個體之設定檔之矢量中。貝氏網路可用於在給定在個體之醫療記錄以及聚合人口資料中所觀察到之其他標籤值的情況下推斷標籤值之邊緣概率。貝氏網路可用於推斷在個體之醫療記錄中未明確發現之醫學病史。貝氏網路可用於推斷在醫療文本中未發現但使用文本中所發現及/或由人口級資料所告知之標籤之間的關係可發現之標籤或標籤值。或者,統計學習算法可用於基於人口資料來推斷文本中沒有之醫學病史態樣。 第一療法列表或第二療法列表之生成亦可包括根據分類得分確定不合格療法並將不合格療法從剩餘療法中剔除以生成經過濾剩餘療法列表。分類得分可係選自由是、可能及否組成之群。分類得分可對應於由是、可能及否組成之群。布林(Boolean)邏輯可用於計算系統對評估個體之任何給定標籤值是否與對療法登記至關重要之標準中所預期之標籤值不匹配。若給定標籤之個體值與如療法之標準中所表現之給定標籤的期望值不匹配,則個體可對該療法而言不合格。可使用基於標籤之個體與所有療法之間的相似性得分來對療法進行分組。一個所用之相似性度量可藉由特定標準發現經驗有效性閾值並確定陽性療法,且隨後以標準方式評估陽性療法之間的重疊。相反,非相似性量測可為兩個對像係不同之程度的數值量測。低於對療法登記至關重要之標準的最低相似性得分的療法可係不合格。剩餘療法列表可隨後進行比較及檢視。檢視可生成第一療法列表或第二療法列表。 可使用指向來自個體之醫學病史資料及生物學資料之資訊的鏈路將第一療法列表或第二療法列表傳遞給使用者以人工驗證適格性。使用者可為健康照護專家或個體之初級看護者。療法過濾偏好可係選自由以下組成之群:特定機構之可用性、機構組之可用性、治療類型、臨床試驗之階段、藥物遞送之方法、給定療法之位置及與指定位置之距離、治療持續時間及患者重新定位療法之持續時間。治療類型可係選自由免疫療法、靶向療法、化學療法、放射療法、激素療法、幹細胞移植、精密醫學及手術組成之群。藥物遞送之方法可包括非侵入性口服、局部、經黏膜及吸入途徑。經黏膜途徑可包括經鼻、經頰/舌下、經陰道、經眼及經直腸。過濾可進一步包括健康照護專家之評估及推薦療法之選擇。至多10、15、20、25、30、35、40、45或50種療法之群組可呈現給臨床醫師以選擇推薦療法。隨後可由醫療合格工作人員基於專屬標籤檢視療法,並使用其等之熟練者知識排除對該個體而言不太成功之標籤組來通過療法用於最終授權。個體可在其等之使用者介面上的設定檔網頁上訪問所配對之療法的鏈路。個體可接收具有指向所配對之療法之鏈路的郵件。所配對之療法可顯示於使用者介面上。使用者介面可顯示醫學病史資料及生物學資料之獲取狀態。使用者介面可顯示根據諸如化學療法、靶向療法、免疫療法及放射療法之類別所組織之配對療法。圖8顯示個體完成治療配對811後之實例設定檔800。設定檔指示臨床資訊801、腫瘤樣本分析802及血液樣本分析803之獲取狀態。臨床資訊可為醫學病史資料。醫學病史資料可為醫療記錄。設定檔亦可顯示指向分類療法之鏈路,例如,化學療法類別804具有三個臨床試驗針對問題「新化學療法是否能導致你的癌症收縮?」,及靶向療法類別807具有一個臨床試驗針對問題「阻斷激素之治療是否能使你的癌症收縮?」。類似地,問題以及所配對之臨床試驗可顯示其他靶向療法類別805及免疫療法類別806。可通過個體之設定檔訪問下一步驟808、更新809及幫助810之選項卡。 個體可隨後通過使用者使用者介面接收登記於療法中之請求。可接收個體對一或多種療法之選擇。可通過使用者介面接收個體對登記於選自療法之療法中的請求。可將任何治療添加至個體之個體設定檔。護理者可查看個體之所有所分析之療法。若需要,可對新臨床試驗進行分析。可將新臨床試驗之名稱輸入至個體之療法系統中。作為個體資料的一部分,個體可選擇眾籌選項來援助他或她的癌症療法費用。眾籌選項可使個體連接至諸如YouCaring.com、FundRazr、GoFundMe、GiveForward及Indiegogo之鏈路。臨床試驗及醫學病史輸出 在另一態樣中,本發明提供用於定性個體之臨床試驗之電腦實施之方法圖9。個體可簽約參加臨床試驗901。可接收個體之醫學病史資料及生物學資料902、903及904。生物學資料可自動生成自個體之一或多個生物樣本而無需使用者之任何參與。可查詢對應於醫學病史資料及生物學資料之一或多個臨床試驗的一或多個資料庫,以生成針對該個體所定性之臨床試驗組905。臨床試驗組可包括至少一個臨床試驗。可將臨床試驗組提供於呈現給使用者的使用者介面上。可通過使用者介面接收個體對登記於選自所提供之臨床試驗組之臨床試驗中的請求906。可通過網路接收請求。所策展之臨床試驗可為臨床試驗之組合。個體之登記可藉由個體之適格性及個體對對臨床試驗之反應的有效性來確定。可藉由端對端患者參與其後接著利用治療研究之深刻理解來指導推薦試驗的組合實現登記。 在另一態樣中,本發明提供一種針對療法子集定性個體之方法。可接收個體之醫學病史資料及生物學資料。生物學資料可自個體之一或多個生物樣本生成。醫學病史資料及生物學資料可進行分析以產生該個體之基於基因組之醫學病史分析。基於基因組之醫學病史分析可用於查詢個體療法之一或多個資料庫並以生成針對該個體所定性之療法子集。接著,療法子集可呈現於使用者之電子裝置的使用者介面上。 圖10說明使用療法(例如,臨床試驗) 1001、個體之生物樣本1005及個體之醫療記錄1006之資料庫的治療配對系統1000。可在試驗策展1002期間針對一或多個標準評估療法資料庫1001之適格性。適格性標準可係選自由以下組成之群:年齡、種族、性別、地理資料、身體資料、財務資料、醫學病史、特定類型之癌症、癌症之特定階段及當前健康狀態。電腦評估可包括根據適格性標準識別至少一部分療法資料庫。可分析試驗資料庫以生成經過濾之療法列表1003。可同時或分開地自個體1004獲得生物樣本1005及醫學病史記錄1006。可根據本文所揭示之方法1007及1009對生物樣本1005及醫學病史記錄1006進行處理及標記。經標記之個體記錄1008及經標記之生物學資料可隨後查詢經過濾之療法列表1003以生成針對該個體所定性之配對療法子集1012。可在使用者介面上呈現給個體來查看配對療法1013。個體可對一或多個試驗進行選擇並提交登記之請求1014。另外,可在試驗策展過程1002及記錄處理1007上執行人類驗證1010。 在療法策展1002期間,可使用標籤組作為療法資料之相關部分的識別碼來壓縮大量療法標準。例如,試驗1可要求個體之腦中不存在病灶,試驗2可要求個體無中樞神經系統涉及,及試驗3可要求個體不存在軟腦膜疾病。此等三個要求之標籤可經識別為「患者是否患有腦轉移?」且若個體針對三個療法為定性則所需答案應為「否」。所需答案可藉由檢視個體之生物學資料及醫學病史資料來獲得。 圖11顯示根據具有一或多個標籤之適格性標準的臨床試驗策展過程1100。可獲得並處理來自療法之整個資料組1109,以識別來自全部資料組之相關部分資料1101至1108。隨後提取相關部分並概述於療法1110之壓縮資料表。療法1110可使用臨床及分子標記進行進行策展。 在圖12之治療配對1200中,醫學病史記錄標籤1201及生物學資料標籤1202可根據經過濾之療法列表1203進行配對以識別包含在個體之醫學病史記錄及生物學資料中所識別之標籤的一或多種療法1204。 可使用基於軟體之實驗室及管理系統。系統可為實驗室資訊管理系統(LIMS)。LIMS可包括支持現代實驗室之操作的特徵。 來自個體之一或多個生物樣本的生物學資料可係自動生成而無需使用者之任何參與。生物學資料可用於基於雲端之臨床試驗品配對、臨床試驗登記、治療配對、記錄獲取及藥物開發。在所生成之臨床試驗組內之一或多個臨床試驗可為優先。確定優先級可係基於一或多個選自由以下組成之群的因素:臨床試驗之地理位置、監管機構批准狀態、經註釋之個體醫學病史資料、或其組合。 在另一態樣中,個體可針對一或多種療法進行定性。該方法可包括接收來自個體之腫瘤組織樣本的第一核酸樣本及來自個體之正常組織樣本的第二核酸樣本。第一核酸樣本及第二核酸樣本可係自動獲得自腫瘤組織樣本及正常組織樣本而無需使用者之任何參與。接著,第一核酸樣本及第二核酸樣本可進行化驗以識別腫瘤組織樣本中相對於正常組織樣本之一或多種基因組改變以生成個體之基因組資料組。可針對對應於個體之醫學病史及基因組資料之一或多種療法(例如,臨床試驗)對資料庫進行查詢以生成療法組。療法可包括至少一種具有至少約90%之預測成功可能性的療法。可在使用者介面上呈現療法組及標準治療選項(諸如基於國家綜合癌症網路(National Comprehensive Cancer Network;NCCN)指南之治療選項)來顯示給使用者。 在療法準備中,可招募個體。在針對療法定性個體或將個體登記於療法中可考慮若干因素。所考慮之因素可包括地理可行性或位置、人口研究、最佳招募地點選擇、現場評估、招募材料、媒體支持、媒體管理、現場培訓材料、研究網站、患者轉診隨訪、翻譯、社區外展、醫師外展、現場支持、及監測並報告對患者招募活動之評估。對於參與全球臨床研究之個體而言,患者保留服務可為一個因素。個體保留服務可包括訪問提醒、患者支持項目及照顧者支持。 在個體登記於療法中期間,可針對對應於個體之醫學病史及基因組資料之一或多種療法對資料庫進行查詢以生成療法組。適格性標準可為臨床試驗登記類型之另一決定性因素。適格性標準可包括年齡、性別、醫學病史及當前健康狀態。例如,個體可需要患有特定類型癌症及癌症之階段才能參與特定試驗。個體可係包括個體、一組個體、醫療專業提供者中之一或多者,包括臨床醫師、醫師、牙醫、從業護士、放射科醫師、麻醉師、心理學家、藥劑師、精神科醫生、牙科衛生師、護士、牙醫、脊椎按摩師、物理治療師、職業治療師、言語病理學家、營養學家、正牙醫生、實驗室人員、醫療編碼員、診斷中心人員、緊急\非臥床醫務人員、醫院、健康照護提供組織、HMO、保險提供者、政府機關、或金融機構、商業實體(例如,保險公司、雇主、製藥公司)、學術機構、非政府組織、醫療保險/醫療補助、或社區健康照護提供者。 可藉由化驗來自個體之一或多個生物樣本來監測登記於療法中之個體。化驗可針對選自表1之至少約50個基因、100個基因、200個基因、300個基因、400個基因、500個基因、1000個基因、1500個基因、2000個基因或2500個基因。可預測個體之成功可能性。一或多種療法可係經註釋。一或多個資料庫之查詢具有至少約70%、75%、80%、85%、90%或95%之與療法配對的預測可能性。 可針對個體檢索醫學病史。醫學病史資料可經標準術語自動註釋。標準術語可為一體化醫學語言系統。可將醫學病史資料輸入至記錄獲取及處理系統中並可獲得所得經註釋之醫學病史。醫學病史可為可編輯檔案或非可編輯檔案。可編輯檔案可包括以下之一或多者:醫學病史營養、習慣、運動方案、用藥、種族、身高、體重、人口統計學、事件日誌、過敏、測試結果、診斷電子生前遺囑、DNA圖譜、DNA樣本或標記、血壓範圍、血糖水平、心理健康資訊、癌症治療史、治療反應、手術干預、現病史、器官系統檢視、家族及兒童疾病、常規及急性用藥、性史、產科/婦科史、健康照護遇到包括診斷及/或程序或個人資訊聯繫資訊、地址、工作及職業資訊、健康儲蓄帳戶資訊、銀行帳戶資訊、授權關聯帳戶資訊。非可編輯文檔可包括但不限於DNA圖譜、用藥史、實驗室報告/結果、數位影像、二進製附件檔案、研究資料或其組合。檔案可為免疫組織化學報告。報告可為補充研究報告。補充研究報告可為基於基因資料所發現之公告。醫學病史亦可涉及評估心血管系統、呼吸系統、胃腸系統、泌尿生殖系統、神經系統、腦神經症狀、內分泌系統、肌肉骨骼系統及皮膚。 醫學病史可為個人健康記錄。個人健康記錄可為內容檔案。內容檔案之實例包括過去患者醫學病史,包括治療、疾病、家族史、過去及當前用藥、以其他內容資訊,諸如醫學病史。其他實例包括X射線、CT掃描、MRI掃描、血液篩選/測試結果、醫學治療資訊、醫學病狀(例如,當前、過去、預先存在)、藥物過敏、當前用藥或任何其他結果、實驗室結果/報告、數位影像、二進製附件(例如,PDF檔案)、研究資料、DNA圖譜或基因組資訊、測試、篩選及掃描。醫學病史內容可定期進行更新。在請求登記期間,可通過包括以下之一或多者的網路接收登記:網際網路連接、網頁瀏覽器、攜帶型通訊設備、電腦、電視、電話機、ATM、網路設備或路由器。使用者介面可為基於網路之使用者介面。 所生成之臨床試驗組內之特定療法可係優先。影響優先級選擇之因素可包括地理位置、監管機構批准狀態及經註釋之醫學病史資料。 個體可請求個體之醫學病史。醫學病史可係不同。可將文件輸入至平臺記錄獲取及處理系統中並進行組織。資料可用於確定療法之結果。資料亦可用於藉由研究不同人群之效果的各種結果來檢查所測試藥物對個體(例如,患者)的影響。在檢查期間,療法可為已知。療法亦可為未知且樣本分析平臺(例如,自動平臺)可用於為個體生成療法。資料亦用於識別對療法積極反應之人群及該人群之共同特徵。可自資料識別序列及突變標靶並與影響該等標靶之藥物配對。因此,可組裝可搜索之藥物資料庫。患者可係與治療直接連接。資料可識別配對之現存治療可導致非預期作用。非預期作用可係適用於藥物探索之過程。 在藥物配對期間,可識別樣本中之特定突變並與對應藥物配對。系統可推荐可適用於其他類似路徑之藥物。藥物可為由政府單位(例如,食品與藥品管理局,FDA)所批准之藥物。藥物推薦可係基於先前臨床病史。 醫學病史可係獲得自醫生或患者資料庫。醫生資料庫可包括醫生或醫院之實務領域、其等實務中之患者人數或其等實務之位置。患者資料庫可包括關於與特定醫學實務相關聯之所有患者的資訊且可包括其等之具體身高、體重、年齡、性別、病史醫學病史、當前健康狀態或任何特定基因標記。 此外,資料庫可包括與個體之醫學病史(包括由醫學專業人員準備之口述)相關聯的關鍵詞;實驗室、放射學及病理報告;血液工作板及其他適當資訊。資料庫組分亦可包括與由醫療專業人員所執行之相對標準程序相關聯的醫療費用,諸如血液測試、辦公訪問、生命徵兆採集、監督及製備特定類型之醫學病史或執行醫療體檢。醫學病史資料可呈標準術語進行描述。標準術語可為一體化醫學語言系統。使用者介面可為基於網路之使用者介面或移動使用者介面。 在另一態樣中,本發明提供一種用於定性個體之於療法中登記之方法。可接收來自個體之腫瘤組織樣本的第一核酸樣本及來自個體之正常組織樣本的第二核酸樣本。第一核酸樣本及第二核酸樣本可係自動獲得自腫瘤組織樣本及正常組織樣本而無需使用者之任何參與。接著,第一核酸樣本及第二核酸樣本可進行化驗以識別腫瘤組織樣本中相對於正常組織樣本之一或多種基因組改變以生成個體之基因組資料組。可查詢對應於個體之醫學病史之一或多種療法的一或多個資料庫。可生成所策展之療法資料庫及照護標準。可以查詢基因組資料以生成針對該個體所定性之療法組。可提供在使用者介面上顯示給使用者之療法組。該方法亦可包括通過使用者介面接收來自個體之醫學病史及個體登記於選自所提供之療法組之療法中的請求。可識別基於醫學病史及基因組資料之治療標靶。個體可基於所識別之靶標登記於療法中。可對個體進行監測。監測可包括化驗一或多個核酸樣本亦生成基因組資料。化驗可針對選自表1之至少約50個基因、100個基因、200個基因、300個基因、400個基因、500個基因、1000個基因、1500個基因、2000個基因、2500個基因或2800個基因。化驗可包括定序第一核酸樣本及第二核酸樣本而無需使用者之任何參與。化驗可進一步包括接收來自使用者之對生物樣本進行定序的請求。可接收來自使用者之請求以對第一核酸樣本及第二核酸樣本進行定序。電腦控制系統 本發明提供經程式化以實現本發明方法之電腦控制系統。圖13 顯示經程式化或以其他方式進行組態來實現本發明方法之電腦系統。電腦系統1301可調節多種態樣之樣本製備、定序及/或分析、基於雲端之臨床試驗配對、臨床試驗登記、治療配對、記錄獲取及處理、及藥物開發。在一些實例中,電腦系統1301係經組態以執行樣本製備及樣本分析,包括核酸定序。電腦系統1301可為使用者之電子裝置或相對於電子裝置遠程定位之電腦系統。電子裝置可為移動電子裝置。 電腦系統1301包括中央處理單元(CPU,本文亦稱為「處理器」及「電腦處理器」)1305,其可為單核或多核處理器,或用於並行處理之多個處理器。電腦系統1301亦包括記憶體或記憶體位置1310 (例如,隨機存取記憶體、只讀記憶體、快閃記憶體)、電子存儲單元1315 (例如,硬碟)、用於與一或多個其他系統通信之通信介面1320 (例如,網路適配器)、及周邊裝置1325 (諸如快取記憶體、其他記憶體、資料存儲及/或電子顯示適配器)。記憶體1310、存儲單元1315、介面1320及周邊裝置1325係通過諸如主機板之通信總線(實線)與CPU 1305通信。存儲單元1315可為用於存儲資料之資料存儲單元(或資料儲存庫)。電腦系統1301可借助通信介面1320以操作方式耦合至電腦網路(「網路」)1330。網路1330可為網際網路、網際網路及/或商際網路、或與網際網路通信之內部網路及/或商際網路。網路1330在一些情況中為遠端通信及/或資料通信網路。網路1330可包括一或多個電腦伺服器,其可實現分散式計算,諸如雲端計算。在一些情況中,網路1330在電腦系統1301之幫助下可實現同級間網路,其可使耦合至電腦系統1301之設備能夠作為客戶端或伺服器。 CPU 1305可執行可在程式或軟體中體現之一系列機器可讀指令。指令可存儲於記憶體位置中,諸如記憶體1310。指令可指向CPU 1305,其可隨後程式化或以其他方式組態CPU 1305以實現本發明方法。由CPU 1305所執行之操作的實例可包括提取、解碼、執行及寫回。 CPU 1305可為諸如積體電路之電路的一部分。系統1301之一或多個其他組件可包含於電路中。在一些情況下,電路為專用積體電路(ASIC)。 存儲單元1315可存儲檔案,諸如驅動器、庫及存儲項目。存儲單元1315可存儲使用者資料,例如使用者偏好及使用者項目。電腦系統1301在某些情況下可包括在電腦系統1301外部之一或多個附加資料存儲單元,諸如位於通過內部網路或網際網路與電腦系統1301通信之遠端伺服器上。 電腦系統1301可通過網路1330與一或多個遠端電腦系統通信。例如,電腦系統1301可與使用者(例如,操作者)之遠端電腦系統通信。遠端電腦系統之實例包括個人電腦(例如,便攜式PC)、平板PC (例如,Apple® iPad、Samsung® Galaxy Tab)、電話機、智慧型手機(例如,Apple® iPhone、支持Android之設備、Blackberry®)或個人數位助理。使用者可經由網路1330訪問電腦系統1301。 如本文所述之方法可藉由存儲於電腦系統1301之電子存儲位置(諸如,例如,記憶體1310或電子存儲單元1315)上的機器(例如,電腦處理器)可執行代碼之方式來實現。機器可執行或機器可讀代碼可呈軟體形式提供。在使用期間,代碼可由處理器1305執行。在一些情況中,可從存儲單元1315檢索代碼並存儲於記憶體1310中用於處理器1305準備訪問。在一些狀況中,可以排除電子存儲單元1315,且將機器可執行指令存儲於記憶體1310中。 代碼可進行預編譯及組態用於與具有適於執行該代碼之處理器的機器一起使用,或可在運行時間期間進行編譯。代碼可呈可經選擇使代碼能夠以預編譯或現編譯(as-compiled)方式執行之程式設計語言供應。 本文所提供之系統及方法的態樣(諸如電腦系統1301)可在程式化中體現。可認為技術之多種態樣為通常呈機器(或處理器)可執行代碼及/或相關資料之形式的「產品」或「製品」,其係在機器可讀媒體之類型中攜帶或體現。機器可執行代碼可存儲於電子存儲單元上,諸如記憶體(例如,只讀記憶體、隨機存取記憶體、快閃記憶體)或硬碟。「存儲」型媒體可包括電腦、處理器或類似物之任何或全部有形記憶體,或其相關聯模組,諸如各種半導體記憶體、磁帶機、磁碟機及類似物,其可在進行軟體程式化的任何時候提供非暫時性存儲。有時可通過網際網路或多種其他電信網路來傳送軟體之全部或部分。例如,此類通信可使軟體能夠從一電腦或處理器加載至另一電腦,例如,從管理伺服器或主機電腦至應用伺服器之電腦平臺中。因此,可承載軟體元件之另一類型媒體包括光、電及電磁波,諸如用於通過有線及光學陸線網路及各種空中鏈路穿過本端設備之間的物理介面。攜帶此類波之物理元件(諸如有線或無線鏈路、光鏈路或類似物)亦可認為係承載軟體之媒體。如本文所用,除非限於非暫時有形「存儲」媒體,否則諸如電腦或機器「可讀媒體」之術語係指參與向處理器提供指令用於執行之任何媒體。 因此,諸如電腦可執行代碼之機器可讀媒體可為許多形式,包括但不限於有形存儲媒體、載波媒體或物理傳輸媒體。非易失性存儲媒體包括(例如)光碟或磁碟,諸如任何電腦或類似物中之任何存儲設備,諸如可用於實現圖式中所顯示之資料庫等。易失性存儲媒體包括動態記憶體,諸如此類電腦平臺之主記憶體。有形傳輸媒體包括同軸電纜;銅線及光纖,包括在電腦系統內組成總線之電線。載波傳輸媒體可為電或電磁信號、或音波或光波形式,諸如彼等在射頻(RF)及及紅外(IR)資料通信期間所生成者。電腦可讀媒體之常見形式因此包括:軟碟(floppy disk/flexible disk)、硬碟、磁帶、任何其他磁媒體、CD-ROM、DVD或DVD-ROM、任何其他光學媒體、穿孔卡紙帶、具有孔圖案之任何其他物理存儲媒體、RAM、ROM、PROM及EPROM、FLASH-EPROM、任何其他記憶體芯片或碟片盒、傳輸資料或指令之載波、傳輸此類載波之電纜或鏈路、或電腦可自其讀取程式碼及/或資料之任何其他媒體。許多此等形式之電腦可讀媒體可涉及攜帶一或多個系列之一或多個指令至處理器用於執行。 電腦系統1301可包括包含使用者介面(UI) 1340之電子顯示器1335或與之通信。UI可允許使用者設置本文所述方法之各種條件,例如,PCR或定序條件。UI之實例包括(但不限於)圖形使用者介面(GUI)及基於網路之使用者介面。 本發明方法及系統可藉由一或多種算法來實現。算法可藉由由中央處理單元1305執行軟體來實現。例如,算法可處理讀數以生成結果序列。實例 下文實例係說明性而非限制性。實例 1 前置放大樣本處理係與定序製劑相關聯。系統在10小時工作日期間進行5次迭代。在每個工作日期間,將5個PCR板轉移至後置放大系統。在前置放大樣本處理期間,溶解方法係在具有深孔板液體處理機(哈密頓星際)上運行。將提示盒送至廢料。將板密封並在振動下培養30分鐘。隨後使板經歷離心2分鐘。隨後可對板進行剝離。將珠粒添加至液體處理機上並載入至DNA及提取製備架(Kingfisher)上。運行提取方案且包括對Kingfisher上之板進行額外清洗及提取。讀取片段分析儀上之QC板。若樣本不適於進行進一步處理,則提取方案可重新運行。可將終點管架放置於銜接臺(Star)上。來自片段分析儀之資料可用於製備Star上之標準化板。樣本可經等分至管架,重新蓋上,並送至輸出架。在剪切期間,將酶分配至標準化板。將標準化板密封並振動下培養1小時。旋轉板並對封口進行剝離。在Star上運行QC端修復方法。針對QC讀取片段分析儀上之板。可將標準化板密封並振動下培養1小時。使標準化板經歷離心並隨後進行剝離。在轉接子連接期間,在Star上運行該方法並添加珠粒。將板移動至Kingfisher並經歷額外清洗及清理及洗脫步驟。在Kingfisher上運行磁性珠粒清理處理。將剩餘板移動至Kingfisher之廢料或旋轉盤並密封PCR板。 對於至少約5個板而言,完成時間為4小時。實例 2 在後置放大板製備期間,將前置放大PCR板放置於Inheco上並運行方案。離心PCR板並剝離,移動至Star並轉移至新Kingfisher板。將試劑分配於Biotek MultifloFX分配器上並轉移至Kingfisher。載入清洗板,運行Kingfisher例行程序,並轉移至Star。製備QC板及PCR板。隨後使用Star添加珠粒,運行Kingfisher例行程序,轉移至Star,並生成8個PCR板。隨後運行PCR方案,在Star及Kingfisher上重複Ampure清理方案。製備QC板,在片段分析儀上運行,並標準化Star上之輸出及池樣本。實例 3 使用自動化平臺使生物分子自生物樣本分離並遞送其等用於定序。將管中之血液樣本或來自FFPE腫瘤活組織檢查之一或多個切片插入至系統中。在初始品質控制核查期間,驗證輸入管中之血液量。自白血球及血漿中之無細胞DNA提取來自血液樣本或腫瘤活組織檢查之DNA。 在生物樣本DNA之品質核查片段分析期間,FFPE腫瘤片段之分佈尺寸為150 bp,無細胞片段之分佈尺寸為160 bp,膚色血球層片段之分佈尺寸為20 kb。單離DNA對於膚色血球層具有50 ng/uL之濃度,及對於FFPE腫瘤具有10 ng/ uL之濃度,及對於無細胞DNA具有100 pg/uL之濃度。然後調整DNA濃度以進行儲存。 在下游過程之DNA庫製備期間,改質DNA片段。藉由測定改質DNA片段之分佈尺寸(膚色血球層片段為200 bp及FFPE片段為150 bp)使片段經歷品質控制片段分析並量化片段。FFPE及膚色血球層之片段濃度為50 ng/ uL,無細胞DNA之片段濃度為20 ng/uL。 在標靶捕獲期間,基於DNA與表1之配對對DNA進行選擇。標靶捕獲後,量測DNA片段之尺寸分佈及所單離DNA之量。隨後,將DNA調整到30 ng/uL之正確濃度,並用特定條碼標記各患者庫用於下游分析。實例 4 表1.生物標誌之基因 實例 5- 生物資訊管線 生物資訊管線使用由NextSeq所產生之原始定序資料來識別個體生物樣本中之多個核苷酸變異體、核苷酸之插入或缺失、及複本數變異。圖14顯示生物資訊管線1400之概述。管線語言包括選自由以下組成之群之術語及片語:使用者介面(UI)、多個核苷酸變異體(MNV)、複本數變異體(CNV)、核苷酸之插入或缺失(Indel)、變異調用格式(VCF)、通用唯一識別碼(UUID)、雲存儲服務1411、用於存儲定序讀數之文字檔案格式(fastq檔案)、存儲管線資料之位置及狀態的資料庫(管線資料庫1410)及草稿報告(初步報告)。在實驗室主任檢視及批准前接收初步報告。雲存儲服務可為Google存儲。雲存儲服務可為Amazon之S3存儲服務(S3)。管線具有兩個不同步驟。在第一步驟中,定序運行輸出轉化為FASTQ檔案。FASTQ檔案係呈文字檔案格式表示用於存儲定序讀數。接著,使用Clarity 實驗室資訊系統1401 (Clarity LIMS)登錄(accessioned)定序運行。將來自Clarity LIMS之資訊轉移至LIMS資料庫1402。管線橋服務藉由運行bcl2fastq_runner啟動Amazon雲端中之FASTQ轉化作業。在第二步驟中,使用FASTQ檔案識別配對之正常與腫瘤樣本對的體細胞變異體及複本數變化。成對樣本係由Clarity LIMS登錄,其創建參考一對正常樣本fastq檔案及一對腫瘤樣本fastq檔案之case_id。管線橋服務(稱為tumor_normal_pipeline_runner)使用專屬算法識別體細胞變異體及複本數改變。 定序運行登錄橋1403觀察由Clarity LIMS系統登錄之新實驗室實驗元資料,並將元資料存儲於管線資料庫中。元資料允許BCL2Fastq_runner識別定序庫與定序運行及Illumina索引轉接子連接之方法。對存儲橋之基本調用(BCL)1404 (bcl2fastq)存儲橋觀察定序運行輸出目錄且,當識別新定序運行結束時,其可將BCL資料上傳至S3中,並隨後將關於定序運行之元資料插入管線資料庫中。對存儲橋之BCL 1404接收NextSeq輸出BCL檔案1409。對FASTQ橋之BCL 1406負責運行具有適當引數的bcl_to_fastq_runner轉化工具,將新生成之FASTQ檔案上傳至管線資料庫中,並將元資料插入管線資料庫中。對FASTQ流道之BCL 1405將定序運行之原始輸出轉化為fastq檔案,其中讀數係藉由其等發源之定序庫進行分組。病例登記橋將一衍生自正常基因組樣本之庫鏈接至一衍生自腫瘤樣本之庫。 腫瘤正常變異體橋1407可識別腫瘤/正常變異體調用管線尚未對其運行之病例,且為此等病例中之每一個啟動腫瘤正常管線流道1408實例。運行完成(或失敗)後,腫瘤正常變異體橋更新管線資料庫中之適當狀態欄位,將所調用之變異體資料同步至S3中,並使用所調用之變異體檔案的位置更新資料庫。腫瘤正常管線流道負責識別體細胞變異體1412,諸如多個核苷酸變異體、核苷酸插入或缺失及識別具有顯著複本數變化之基因。實例 6-DNA cfDNA 化驗 DNA和cfDNA化驗識別存在及不存在涉及腫瘤DNA之蛋白質編碼區的分子改變(體細胞突變、複本數改變及融合基因)。此臨床報告包括批准藥物及候選藥物(若存在),其等係與藉由化驗所識別之給定癌症相關分子改變相關的潛在臨床益處或潛在缺乏臨床益處相關聯。不存在分子改變不一定指示任何藥物或候選藥物不提供任何臨床益處。不與潛在臨床益處或潛在缺乏臨床益處相關聯之由化驗所識別的分子改變不在報告中列出。使用衍生自血漿之DNA及衍生自正常組織之DNA執行化驗。雖然生殖系DNA定序資料係用於識別體細胞突變,但報告中不提供生殖系事件。使用IDT xGen Lockdown系統執行化驗之體細胞突變、複本數改變及融合偵測部分。特定樣本或變異體特徵可導致靈敏度降低。此等特徵包括但不限於腫瘤細胞性、腫瘤異質性、低突變等位基因頻率、不良樣本品質及降低融合基因表現。 在一實例中,患有癌症之個體提交其生物樣本用於DNA及cfDNA患有來評估其分子圖譜。在DNA化驗中,衍生自FFPE腫瘤組織(QIAgen AllPrep DNA/RNA FFPE套組)及獲得自周圍血液白血球之配對正常組織(KingFisher純DNA血液套組)的單離基因組DNA經歷使用KAPA HyperPrep庫製備套組之定序庫製備。隨後使用定製版本之IDT xGen Lockdown系統對所得庫進行標靶富集。富集後,使用Illumina NextSeq 500平臺對各樣本之庫進行定序,以生成至少6000萬個具有對腫瘤450X之平均標靶覆蓋範圍的75 bp成對末端讀數及1000萬個具有對正常樣本70X之平均標靶覆蓋範圍的讀數。腫瘤外顯子組經定序至450X之平均中靶深度,且配對正常組織外顯子組經定序至70X之平均中靶深度。 針對具有強臨床意義之變異體、具有潛在臨床意義之變異體及具有未知意義之變異體篩選突變、複本數變異體及融合。不在個體中識別具有強臨床意義之變異體。然而,識別具有潛在臨床意義之變異體,包括AKT1 c.49G>A (p.E17K)突變、ESR1 c.1609T>A (p.Y537N)突變、ESR1 c.1273T>A (p.Y425N)突變、ESR1 c.1609T>A (p.Y537N)突變及ESR1 c.826T>A (p.Y276N)突變。另外,偵測到個體之PGR基因的複本數減少。最後,識別未知意義之變異體,包括RERE c.472G>C (p.A158P)、ASPM c.9621A>T (p. G3207G)、ASPM c.4866A>T (p. G1622G)、ASPM c.2616A>T (p. G872G)、NAV1 c.3525G>A (p.R1175R)、NAV1 c.3393G>A (p.R1131R)、NAV1 c.3525G>A (p.R1175R)、NAV1 c.3501G>A (p.R1167R)、NAV1 c.3354G>A (p.R1118R)、NAV1 c.2352G>A (p.R784R)、NAV1 c.2172G>A (p.R724R)、NAV1 c.471G>A (p.R157R)、RANBP2 c.5910A>C (p.G1970G)、NEB c.19633_19634insGGAAATATA (p.Y6545delinsWKYTKEQN)、NEB c. 14530_14531insGGAAATATA (p.Y4844delinsWKYTKEQN)、NEB c.3823_3824insGGAAATATACT (p.Y1275delinsWKYTKEQN)、PTPRN c.966G>T (p.E322D)、PTPRN c.696G>T (p.E232D)、TNPO1 c.2621A>C (p.D874A)、TNPO1 c.2471A>C (p.D874A)、TNPO1 c.2597A>C (p.D866A)、TNPO1 c.506A>C (p.D169A)、ITPR3 c.5577G>A (p.Q1859Q)、REV3L c.9359C>G (p.A3120G)、REV3L c.9125C>G (p.A3042G)、SYNE1 c.6787G>T (p.E2263*)、SYNE1 c.6808G>T (p.E2270*)、SYNE1 c.6898G>T (p.E2300*)、DMD c.10262C>T (p.A3421V)、DMD c.1058C>T (p.A353V)、DMD c.2882C>T (p.A961V)、DMD c.10250C>T (p.A3417V)、DMD c.632C>T (p.A211V)、HDAC6 c.1417G>A (p.E473K)及HDAC6 c.1375G>A (p.E459K)。識別複本數增加之未知意義的複本數變異體。 在cfDNA化驗中,衍生自血漿之單離無細胞DNA係獲得自周圍血液(MagMAX無細胞DNA單離套組)且配對正常組織係獲得自周圍血液白血球(KingFisher純DNA血液套組)。接著,兩個樣本對於無細胞DNA使用Rubicon Genomics ThruPLEX Tag-seq套組及對於正常DNA使用KAPA HyperPrep庫製備套組經歷定序庫製備。使用定製版本之IDT xGen Lockdown系統對所得庫進行標靶富集。富集後,使用Illumina NextSeq 500平臺對各樣本之庫進行定序,以生成至少對於無細胞DNA庫而言800X之平均標靶覆蓋範圍及對於正常樣本而言70X之平均標靶覆蓋範圍。無細胞外顯子組經定序至800X之平均中靶深度,且配對正常組織外顯子組經定序至70X之平均中靶深度。 針對具有強臨床意義之變異體、具有潛在臨床意義之變異體及具有未知意義之變異體篩選突變及融合。不在個體中識別具有強臨床意義之變異體。然而,AKT1 c.49G>A (p.E17K)變異體經識別具有潛在臨床意義且APC c.3856G>T (p.E1286*)經識別具有未知意義。實例 7- 免疫組織化學化驗 在另一實例中,患有癌症之個體提交其生物樣本,其經歷使用免疫組織化學化驗之分子評估。化驗報告正或負得分、強度得分、正值百分比、及通過或未通過對照。當從個體獲得生物樣品時,將組織首先在10%中性緩衝福馬林中固定至少6小時且最多72小時。當偵測雌激素受體(ER)或黃體激素受體(PR)時,ER (純系SP1)及PR (純系1E2)係以1:1比率使用Leica Bond稀釋劑進行稀釋。接著,在後續使用基於檸檬酸鹽之緩衝液在Leica Bond III上進行抗原恢復之前培養載玻片30分鐘。與測試組織一起評估具有已知強度級(1+、2+及3+)及正及負衝擊之外部對照。與個體之樣品一起運行之對照載玻片顯示適當染色。藉由免疫組織化學使用實驗室開展測試(LDT)對個體執行ER及PR分析。ER及PR之免疫組織化學染色特徵的解釋係由醫學文獻中之公開結果、由試劑製造商所提供之資訊及染色性能之內部檢視來指導。在ER及PR之解釋期間,當大於1%之腫瘤細胞顯示任何核染色時,報告陽性結果。相反地,當小於1%之腫瘤細胞顯示任何核染色時,報告陰性結果。 當偵測人類表皮生長因子受體2 (HER2受體)時,如所提供般使用HER2受體(純系4B5)。在後續使用基於檸檬酸鹽之緩衝液在Leica Bond III上進行抗原恢復之前培養載玻片30分鐘。與測試組織一起評估由製造商所提供之外部套組載玻片(具有0、1+、2+及3+表現之細胞系)。與個體之樣品一起運行之對照載玻片顯示適當染色。藉由免疫組織化學使用LDT對個體執行HER2分析。HER2之免疫組織化學染色特徵的解釋係由醫學文獻中之公開結果、由試劑製造商所提供之資訊及染色性能之內部檢視來指導。在HER2之解釋期間,陽性3+指示在大於10%之腫瘤細胞中的完整及圓周膜染色。不明確2+指示在大於10%之腫瘤細胞中的不均質及/或弱或中等周圍膜染色,或在10%之腫瘤細胞中的完全及圓周膜染色。陰性1+指示在大於10%之腫瘤細胞中的微弱且幾乎不可察覺之不完全膜染色。陰性0指示在10%之腫瘤細胞中不存在可觀察之不完全且微弱或幾乎不可察覺的染色。解釋為不明確之HER2 2+染色結果可不顯示基因擴增。個體之結果指示對PR而言在80%陽性下具有3+強度得分之陽性結果,對HER2而言具有0強度得分之陰性結果,對ER而言在80%陽性下具有3+強度得分之陽性結果。所有三種結果均通過對照測試。 當偵測程序性死亡-配體1 (PD-L1)時,如所提供般使用PD-L1 (純系SP142、SP263、22C3及28-8)。在後續使用基於EDTA之緩衝液在Leica Bond III上進行抗原恢復之前培養載玻片30分鐘。與測試組織一起評估對照載玻片(具有0、1+、2+及3+之細胞系)。分批陰性試劑對照亦用於測試非特異性結合。與個體之樣品一起運行之此等對照載玻片顯示適當染色。識別至少100個腫瘤細胞用於PD-L1評估。藉由免疫組織化學對個體執行PD-L1分析。PD-L1之免疫組織化學染色特徵的解釋係由醫學文獻中之公開結果、由試劑製造商所提供之資訊及染色性能之內部檢視來指導。個體之PD-L1免疫組織化學結果指示對於22C3 (Dako)及28-8 (Dako)純系而言8800之腫瘤部分得分及1800之免疫細胞得分,對SP263 (Ventana)純系而言0之腫瘤部分得分及0之免疫細胞得分,及對SP142 (Ventana)純系而言800之腫瘤部分得分及1100之免疫細胞得分。所有純系均通過對照測試。實例 8- 生物學資料及醫學病史記錄 在另一實例中,請求個體之醫療記錄並隨後提交檢索。一旦獲得,通過檢查可讀性、完整性及準確性來核查記錄之品質。接著,將記錄輸入至處理系統中,並獲得所得經註釋之醫療記錄。在處理期間,對記錄進行清理、組織及標記。在標記期間,根據相關醫療文本段標記記錄。從個體之所記錄的醫療記錄中,以下描述包括經識別與個體之記錄的處理相關且將用於臨床試驗配對之話題列表。將自個體之EHR提取的醫學術語及文字存儲於為代表個體之設定檔之矢量中。 所處理之個體之生物學資料及醫學病史係報告於下表2中。生物學資料及醫學病史記錄係經處理為標籤名稱、標籤類別及標籤值。 表2.個體之經處理生物學資料及醫療記錄 實例 9- 臨床試驗配對 在另一實例中,根據臨床試驗之階段及根據基於標準列表通過電腦評估適格性來過濾臨床試驗之資料庫。在適格性評估期間,使用一或多個臨床標記及分子標記策劃臨床試驗資料庫之一部分,以生成經過濾之試驗組。 接著,收集實例8及9中所報告之個體之醫學病史資料及生物學資料。電腦分析醫學病史資料及生物學資料以產生該個體之基於基因組之醫學病史分析。基於基因組之醫學病史分析係用於查詢針對該個體經過濾之合格臨床試驗列表,以生成針對該個體所定性之臨床試驗子集。首先,根據分類得分確定不合格療法,並將其從經過濾之療法列表剔除。各療法之分類得分為是、可能及否。分類得分可對應於由是、可能及否組成之群。隨後使用基於標籤之個體與基於標籤之療法之間的相似性得分來對療法進行分組。一個所用之相似性度量藉由特定標準發現經驗有效性閾值並確定陽性臨床試驗,並隨後以標準方式評估陽性臨床試驗之間的重疊。低於對試驗登記至關重要之標準的最低相似性得分的臨床試驗可係不合格。生成最終療法列表時,將列表呈現在個體之電子裝置上的使用者介面上。個體將作出對給定療法之選擇,並提交登記之請求。亦將療法列表送至醫療合格工作人員用於最終授權,並將臨床試驗添加至個體之設定檔中。 雖然本文業經顯示及描述本發明之較佳實施例,但熟習此項技術者將明瞭,此等實施例係僅以實例之方式提供。本發明不欲受限於本說明書中所提供之特定實例。雖然已參考前述說明書描述本發明,但是本文實施例之描述及說明不意在解釋為限制含義。現在熟習此項技術者將在不脫離本發明之情況下進行許多變化、改變及替代。此外,應理解,本發明之所有態樣均不限於取決於各種條件及變量之本文所述的特定描述、組態或相對比例。應瞭解,可採用本文所述之本發明實施例的各種替代方案來實踐本發明。因此,預期本發明亦將覆蓋任何此類替代、修飾、變化或等效物。以下申請專利範圍意欲限定本發明之範圍,並藉此涵蓋在此等技術方案及其等效物之範圍內的方法及結構。
100‧‧‧工作流程
101‧‧‧獲得生物樣本
102‧‧‧化驗生物樣本
103‧‧‧分析生物樣本
104‧‧‧生成臨床試驗
105‧‧‧獲得並處理醫療記錄
106‧‧‧登記於臨床試驗中
200‧‧‧生物樣本處理工作流程系統
201‧‧‧生物樣本
202‧‧‧生物樣本處理
203‧‧‧化驗結果
204‧‧‧分子標記
301‧‧‧後置放大系統
302‧‧‧前置放大系統
303‧‧‧分隔牆
401‧‧‧X-Peel密封剝離機(Nexus X-Peel)
402‧‧‧Abgene ALPS 3000密封器
403‧‧‧微板分配器(Biotek Multiflow)
404‧‧‧哈密頓Labelite開蓋器
405‧‧‧Thermo Kingfisher (DNA提取及製備)
406‧‧‧哈密頓星際
407‧‧‧Bionex HiG4離心機
408‧‧‧旋轉盤
409‧‧‧Inheco保溫箱振盪器
410‧‧‧Inheco ODTC
411‧‧‧天平
412‧‧‧Spinnaker臂
413‧‧‧Orbitor Randlom Access Hotel-8架
414‧‧‧2位置酒店安裝底座
415‧‧‧酒店安裝冰球組件
416‧‧‧Moxa NPort 16-端口設備伺服器
417‧‧‧Blackbox網路集線器
418‧‧‧泛用型輸入輸出(GPIO)盒
419‧‧‧小型集線器
420‧‧‧Inheco ODTC控制器
421‧‧‧APC RACKMOUNT UPS
422‧‧‧Dell臺式PC
423‧‧‧GPIO盒之安裝架托架
424/425/429‧‧‧滑動裝置26in
426/427/437‧‧‧夾層總成,2槓桿,440x460
428‧‧‧用於放置移動器僅裝配臂之框架
430‧‧‧哈密頓星際銜接臺
431‧‧‧密封器剝離機定製桌
432‧‧‧Thermo Kingfisher定製桌
433‧‧‧SPNKR平臺
434‧‧‧哈密頓星際平臺之擴展平臺
435‧‧‧用於氣動磁板裝配之銜接車
436‧‧‧20加侖垃圾桶
438‧‧‧S-MAS4735-320-00
501‧‧‧X-Peel密封剝離機
502‧‧‧Abgene ALPS 3000密封器
503‧‧‧Bionex Beesure感應系統
504‧‧‧無限片段分析儀
505‧‧‧Thermo Kingfisher
506‧‧‧哈密頓星際
507‧‧‧Bionex HiG4離心機
508‧‧‧PCR擴增及偵察儀器(Roche Lightcycler 480)
509‧‧‧Inheco保溫箱振盪器
510‧‧‧Inheco ODTC
511‧‧‧Ultravap Mistral
512‧‧‧天平
513‧‧‧Spinnaker移動器僅裝配臂
514‧‧‧Orbitor Randlom Access Hotel-8架
515‧‧‧微盤移動器安裝底座
516‧‧‧酒店安裝冰球組件
517‧‧‧Moxa NPort 16-端口設備伺服器
518‧‧‧Blackbox網路集線器
519‧‧‧GPIO盒
520‧‧‧小型集線器
521‧‧‧Inheco ODTC控制器
522‧‧‧APC機架式不間斷電源
523‧‧‧Dell臺式PC
524‧‧‧GPIO盒之安裝架托架
525/526/527/531‧‧‧滑動裝置26in
528及529‧‧‧夾層,440x460
530‧‧‧移動器裝配臂支持框架
532‧‧‧哈密頓星際銜接臺
533‧‧‧PCR擴增及偵察儀器定製桌
534‧‧‧Thermo Kingfisher定製桌
535‧‧‧SPNKR平臺
536‧‧‧哈密頓星際桌之擴展平臺
537‧‧‧廢料槽
538‧‧‧用於氣動磁板組件之銜接車
539‧‧‧20加侖桶
540‧‧‧S-MAS4735-320-00
600‧‧‧用於分析醫學病史或生物樣本之平臺
601‧‧‧醫學病史
602‧‧‧自動化樣本分析平臺
603‧‧‧蛋白質
604‧‧‧核酸
605‧‧‧DNA提取
606‧‧‧QC片段分析儀I
607‧‧‧QC量化DNA I
608‧‧‧DNA標準化及儲存
609‧‧‧庫製備DNA
610‧‧‧QC片段分析儀
611‧‧‧DNA量化
612‧‧‧標靶捕獲
613‧‧‧片段分析儀
614‧‧‧DNA量化II
614‧‧‧庫標準化及積存
701‧‧‧醫學病史資料
702‧‧‧記錄清理
703‧‧‧記錄組織
704‧‧‧記錄標記
705‧‧‧臨床標記
800‧‧‧設定檔
801‧‧‧臨床資訊
802‧‧‧腫瘤樣本分析
803‧‧‧血液樣本分析
804‧‧‧化學療法類別
805‧‧‧其他靶向療法類別
806‧‧‧免疫療法類別
807‧‧‧靶向療法類別
808‧‧‧下一步驟選項卡
809‧‧‧更新選項卡
810‧‧‧幫助選項卡
811‧‧‧治療配對
901‧‧‧簽約參加臨床試驗
902‧‧‧醫學病史資料
903‧‧‧血液結果
904‧‧‧組織樣本結果
905‧‧‧配對試驗途徑
906‧‧‧登記於臨床試驗中
1000‧‧‧治療配對系統
1001‧‧‧療法資料庫
1002‧‧‧試驗策展
1003‧‧‧經過濾之療法列表
1004‧‧‧個體
1005‧‧‧生物樣本
1006‧‧‧醫學病史記錄
1007‧‧‧記錄處理
1008‧‧‧經標記之個體記錄
1009‧‧‧本文所揭示之方法(生物樣本處理)
1010‧‧‧人類驗證
1011‧‧‧治療配對
1012‧‧‧生成針對個體所定性之配對療法子集
1013‧‧‧查看配對療法
1014‧‧‧提交登記請求
1100‧‧‧具有一或多個標籤之適格性標準的臨床試驗策展過程
1101至1108‧‧‧來自全部資料組之相關部分資料
1110‧‧‧療法
1200‧‧‧治療配對
1201‧‧‧醫學病史記錄標籤
1202‧‧‧生物學資料標籤
1203‧‧‧療法列表
1204‧‧‧所識別之療法
1300/1301‧‧‧電腦系統
1305‧‧‧中央處理單元
1310‧‧‧記憶體或記憶體位置
1315‧‧‧電子存儲單元
1320‧‧‧通信介面
1325‧‧‧周邊裝置
1330‧‧‧網路
1335‧‧‧電子顯示器
1340‧‧‧使用者介面
1400‧‧‧生物資訊管線
1401‧‧‧Clarity LIMS
1402‧‧‧LIMS資料庫
1403‧‧‧定序運行登錄橋
1404‧‧‧基本調用存儲橋
1405‧‧‧基本調用Fastq流道
1406‧‧‧基本調用Fastq橋
1407‧‧‧腫瘤正常變異體橋
1408‧‧‧腫瘤正常管線流道
1409‧‧‧基本調用(BCL)檔案
1410‧‧‧管線資料庫
1411‧‧‧雲儲存
1412‧‧‧體細胞變異體
本發明之新穎特徵係在隨附申請專利範圍中特別闡述。藉由參考下文闡述使用本發明原理之說明性實施例及附圖(drawing/figure/FIG.)的詳細描述可獲得對本發明之特徵及優點的更佳理解,附圖中: 1 顯示本發明之工作流程; 2 顯示生物樣本處理工作流程系統; 3a 顯示位於實驗室情景中之平臺; 3b 顯示從實驗室牆壁上方兩個亞單元之間的系統佈局; 4a c 顯示前置放大系統之若干視圖及各種組件; 5a c 顯示後置放大系統之若干視圖及各種組件; 6 顯示用於分析醫學病史及生物樣本之平臺的示意圖; 7 顯示處理個體之醫療記錄的示意圖; 8 顯示個體完成治療配對後之實例設定檔; 9 顯示針對登記於臨床試驗中定性個體的途徑; 10 顯示針對登記於臨床試驗中定性個體的另一途徑; 11 顯示根據由標籤所定義之適格性的臨床試驗策展過程; 12 顯示使用醫學病史及生物學資料標籤針對登記於臨床試驗中定性個體的另一途徑; 13 顯示經程式化或以其他方式經組態來實施本文所提供之方法的電腦控制系統;及 14 顯示生物資訊管線之概述。

Claims (84)

  1. 一種用於定性個體之療法子集之方法,該療法子集包括一或多種類型之癌症的臨床試驗或標準醫護治療,該方法包括: (a)使來自該個體之至少一個生物樣本接受至少一種化驗以生成來自該個體之生物學資料; (b)針對經過濾療法集處理來自該個體之該生物學資料,以生成針對該個體所定性之該療法子集,其中該療法子集包括該一或多種類型癌症之該臨床試驗或標準醫護治療,該經過濾療法集係藉由電腦針對一或多個標準評估療法資料庫之適格性來生成;及 (c)在使用者之電子裝置的使用者介面上呈現該療法子集。
  2. 如請求項1之方法,其進一步包括將該個體之醫學病史資料傳送給該療法子集之一或多個療法協調員。
  3. 如請求項1之方法,其進一步包括自該個體接收關於來自該療法子集之給定臨床試驗的選擇。
  4. 如請求項1之方法,其進一步包括通過該使用者介面接收該個體登記於選自該療法子集之療法中的請求。
  5. 如請求項1之方法,其進一步包括電腦針對該一或多個標準評估該療法資料庫之該適格性以生成該經過濾療法集。
  6. 如請求項5之方法,其中該電腦評估該適格性包括(i)識別至少一部分該療法資料庫;及(ii)使用一或多種臨床標記或分子標記策展該至少一部分該療法資料庫以生成該經過濾療法集。
  7. 如請求項1之方法,其中該使用者介面包括具有一或多個網路鏈路之一或多個圖形元件,其指向針對該個體所定性之該療法子集及該療法子集的聯繫資訊。
  8. 如請求項1之方法,其中該療法子集包括針對該等一或多種類型之癌症的該等臨床試驗。
  9. 如請求項1之方法,其中該生物學資料係藉由自動化化驗系統自該個體之該至少一個生物樣本生成,該自動化化驗系統在該至少一個生物樣本之處理期間對選自由細胞提取、核酸提取、富集、定序及免疫組織化學組成之群的至少一個成員使用自動化處理。
  10. 如請求項1之方法,其中步驟(b)包括由人類療法策展人驗證該經過濾療法集。
  11. 如請求項1之方法,其中步驟(b)進一步包括使用該個體之醫學病史資料生成針對該個體所定性之該療法子集,其中該醫學病史資料係與該生物學資料不同。
  12. 如請求項11之方法,其中該醫學病史資料係根據該個體之該醫學病史資料的醫療文本段可識別。
  13. 如請求項12之方法,其進一步包括使用至少一種機器學習算法來偵測並標記該等醫療文本段。
  14. 如請求項1之方法,其中步驟(b)包括由人類療法策展人驗證針對該個體所定性之該療法子集。
  15. 如請求項1之方法,其在步驟(a)之前進一步包括(i)接收來自該個體之腫瘤樣本的第一核酸樣本;及(ii)接收來自該個體之正常樣本的第二核酸樣本。
  16. 如請求項15之方法,其進一步包括使用探針組針對複數個核酸序列富集該第一核酸樣本以提供經富集之核酸樣本,該探針組包括具有至少約80%之整體中靶率的探針,如下所測定:(i)對在至少一個預定區域中之該探針組量測(1)該探針組中各探針之探針覆蓋範圍及(2)該探針組中各探針之脫靶探針覆蓋範圍,及(ii)基於該脫靶覆蓋範圍與該探針覆蓋範圍之比率確定該探針組之該中靶率。
  17. 如請求項16之方法,其進一步包括化驗該經富集之核酸樣本及該第二核酸樣本以識別生物樣本中之一或多種基因組畸變以生成該個體之該生物學資料。
  18. 如請求項17之方法,其進一步包括標記該生物樣本中之該等一或多種基因組畸變。
  19. 一種用於定性個體之療法子集之方法,其包括: (a)接收該個體之醫學病史資料及生物學資料,其中該生物學資料係生成自該個體之一或多個生物樣本; (b)電腦分析該醫學病史資料及該生物學資料以產生針對該個體之基於基因組之醫學病史分析; (c)使用針對該個體之該基於基因組之醫學病史分析查詢針對該個體一或多個療法資料庫,以生成針對該個體所定性之該療法子集;及 (d)在使用者之電子裝置的使用者介面上提供該療法子集。
  20. 如請求項19之方法,其中該生物學資料係藉由自動化化驗系統自該個體之一或多個生物樣本生成,該自動化化驗系統對選自由細胞提取、核酸提取、富集、定序及免疫組織化學組成之群的至少一個成員使用自動化處理。
  21. 如請求項19之方法,其進一步包括電腦評估該等一或多個療法資料庫針對一或多個標準之適格性以生成經過濾療法集。
  22. 如請求項21之方法,其中該等一或多個資料庫係使用該醫學病史資料進行電腦評估。
  23. 如請求項19之方法,其中針對該個體之該基於基因組之醫學病史分析包括來自該醫學病史資料之標籤及來自該生物學資料之標籤,且其中(c)包括電腦針對來自該一或多個資料庫之療法處理該等標籤以產生針對該個體所定性之該療法子集。
  24. 如請求項19之方法,其進一步包括自該個體接收關於來自該療法子集之給定療法的選擇。
  25. 如請求項19之方法,其進一步包括通過該使用者介面接收該個體登記於選自該所提供之療法子集之療法中的請求。
  26. 如請求項19之方法,其中該使用者介面包括具有一或多個網路鏈路之一或多個圖形元件,其指向該療法子集及針對該個體所定性之該療法子集的聯繫資訊。
  27. 如請求項19之方法,其中該療法子集包括一或多種類型之癌症的臨床試驗或標準醫護治療。
  28. 如請求項19之方法,其中步驟(c)包括由人類療法策展人驗證針對該個體所定性之該療法子集。
  29. 如請求項19之方法,其中在步驟(a)之前該方法進一步包括(i)接收來自該個體之腫瘤樣本的第一核酸樣本;及(ii)接收來自該個體之正常樣本的第二核酸樣本。
  30. 如請求項29之方法,其進一步包括使用探針組針對複數個核酸序列富集該第一核酸樣本以提供經富集之核酸樣本,該探針組包括具有至少約80%之整體中靶率的探針,如下所測定:(i)對在至少一個預定區域中之該探針組量測(1)該探針組中各探針之探針覆蓋範圍及(2)該探針組中各探針之脫靶探針覆蓋範圍,及(ii)基於該脫靶覆蓋範圍與該探針覆蓋範圍之比率確定該探針組之該中靶率。
  31. 如請求項30之方法,其進一步包括化驗該經富集之核酸樣本及該第二核酸樣本以識別生物樣本中之一或多種基因組畸變以生成該個體之生物學資料。
  32. 如請求項19之方法,其中在步驟(b)之前,處理並轉化該醫學病史資料以提供經處理之醫學病史資料。
  33. 如請求項32之方法,其中該處理係選自由清理、組織及標記組成之群。
  34. 如請求項19之方法,其中該療法子集包括一或多種類型之癌症的臨床試驗或標準醫護治療。
  35. 如請求項19之方法,其進一步包括向臨床醫師呈現該療法子集以選擇推薦療法。
  36. 如請求項35之方法,其進一步包括自該臨床醫師接收來自該療法子集之選擇。
  37. 如請求項19之方法,其中該生物學資料包括核酸突變或差異表現之蛋白質。
  38. 如請求項37之方法,其中該等核酸突變為選自表1之基因及變異體。
  39. 如請求項19之方法,其中(c)包括根據預定之基因或基因組區域查詢一或多個靶向療法之一或多個資料庫。
  40. 如請求項19之方法,其中(c)中之該療法子集排除靶向該生物學資料中不存在之基因組畸變的療法。
  41. 如請求項19之方法,其中(c)包括移除靶向該生物學資料中不存在之基因組畸變的療法。
  42. 如請求項19之方法,其中(c)中之該療法子集係根據該療法之臨床階段進行過濾。
  43. 如請求項19之方法,其中該醫學病史資料係根據來自該個體之該醫學病史資料的醫療文本段可識別。
  44. 如請求項43之方法,其進一步包括使用至少一種機器學習算法來偵測並標記該等醫療文本段。
  45. 如請求項19之方法,其中(c)包括根據分類得分確定不合格療法並將該等不合格療法從剩餘療法中剔除以生成該療法子集。
  46. 如請求項45之方法,其中該療法子集係經比較及檢視。
  47. 如請求項19之方法,其中使用指向來自該個體之該醫學病史資料及該生物學資料之資訊的鏈路將該療法子集傳遞給使用者以人工驗證適格性。
  48. 如請求項19之方法,其進一步包括基於該使用者之過濾偏好來過濾該療法子集。
  49. 如請求項48之方法,其中該過濾進一步包括健康照護專家之評估及推薦療法之選擇。
  50. 如請求項19之方法,其中該療法子集係自該等一或多個療法資料庫生成而無需使用該個體之該生物學資料。
  51. 如請求項19之方法,其中步驟(a)包括接收該個體之表現型資訊。
  52. 如請求項19之方法,其進一步包括(e)藉由化驗來自該個體之一或多個生物樣本來監測登記於該療法子集中之該個體,其中化驗係針對選自表1之100種或更多種基因或其變異體。
  53. 如請求項19之方法,其中步驟(c)中之該查詢具有至少約90%之與臨床試驗配對的預測可能性。
  54. 如請求項19之方法,其中當該等一或多個生物樣本針對該存在或不存在該等生物標誌進行重新化驗時以大於或等於約90%之一致性相關係數針對存在或不存在生物標誌對該等一或多個生物樣本進行化驗,該等生物標誌包括複數種不同類型之生物標誌。
  55. 如請求項54之方法,其中該化驗涵蓋至少2,500種基因、基因融合、點突變、插入缺失、複本數變異、啟動子或增強子。
  56. 如請求項19之方法,其中該生物學資料生成初始療法列表,而該醫學病史資料過濾該初始療法列表以生成該療法子集。
  57. 一種針對療法子集定性個體之方法,其包括: (a)接收(i)來自該個體之第一核酸樣本,該第一核酸樣本具有或疑似具有腫瘤衍生細胞或生物標誌,及(ii)來自該個體之正常樣本的第二核酸樣本; (b)使用探針組針對複數個核酸序列富集該第一核酸樣本以提供經富集之核酸樣本,該探針組包括具有至少約80%之整體中靶率的探針,如下所測定:(i)對在至少一個預定區域中之該探針組量測(1)該探針組中各探針之探針覆蓋範圍及(2)該探針組中各探針之脫靶探針覆蓋範圍,及(ii)基於該脫靶覆蓋範圍與該探針覆蓋範圍之比率確定該探針組之該中靶率; (c)化驗該經富集之核酸樣本及該第二核酸樣本以識別該第一核酸樣本中相對於該第二核酸樣本之一或多種基因組改變以生成該個體之基因組資料組; (d)查詢一或多個療法資料庫中對應於該個體之醫學病史及該基因組資料的一或多種療法,以生成針對該個體所定性之該療法子集;及 (e)在使用者之電子裝置的使用者介面上提供該療法子集。
  58. 如請求項57之方法,其進一步包括自該個體接收關於來自該療法子集之給定療法的選擇。
  59. 如請求項57之方法,其進一步包括通過該使用者介面接收該個體登記於選自該療法子集之療法中的請求。
  60. 如請求項57之方法,其進一步包括電腦評估該等一或多個療法資料庫針對一或多個標準之適格性以生成經過濾療法集。
  61. 如請求項57之方法,其中該使用者介面包括具有一或多個網路鏈路之一或多個圖形元件,其指向針對該個體所定性之該療法子集及該療法子集的聯繫資訊。
  62. 如請求項57之方法,其中該療法子集包括一或多種類型之癌症的臨床試驗或標準醫護治療。
  63. 如請求項57之方法,其中步驟(d)包括由人類療法策展人驗證針對該個體所定性之該療法子集。
  64. 如請求項57之方法,其進一步包括接收該個體之醫學病史資料。
  65. 如請求項57之方法,其進一步包括基於該醫學病史及該基因組資料識別治療標靶並該將個體登記於基於該所識別之治療標靶的療法中。
  66. 如請求項57之方法,其進一步包括監測該個體,該監測包括化驗一或多種核酸樣本以生成基因組資料,其中該化驗係針對選自表1之100種或更多種基因或其變異體。
  67. 如請求項57之方法,其中該第一核酸樣本包括無細胞DNA。
  68. 如請求項67之方法,其中化驗在該無細胞DNA中之100種或更多種基因。
  69. 如請求項57之方法,其中當該第一核酸樣本及該第二核酸樣本針對存在或不存在該等基因組改變進行重新化驗時以大於或等於約90%之一致性相關係數針對一或多種基因組改變對該第一核酸樣本及該第二核酸樣本進行化驗,該等基因組改變包括複數種不同類型之基因組改變。
  70. 一種分析個體之生物樣本的方法,其包括當針對存在或不存在該等生物標誌對該生物樣本進行重新化驗時,與對照相比以大於或等於約90%之一致性相關係數及至少約90%之精度針對該存在或不存在生物標誌對該生物樣本進行化驗,該等生物標誌包括複數種不同類型之生物標誌,其中該化驗包括複數種不同化驗(包括定序),其中大於90%之該化驗的操作係自動進行。
  71. 如請求項70之方法,其中該生物樣本係加索引。
  72. 如請求項70之方法,其進一步包括在稍後時間點對該生物樣本進行重新化驗及識別一或多個生物標誌中之變化。
  73. 如請求項70之方法,其中該化驗包括處理該生物樣本或定序該生物樣本而在樣本製備期間無需來自使用者之任何參與。
  74. 如請求項70之方法,其中化驗包括該生物樣本之免疫組織化學圖譜分析(profiling)及基因組圖譜分析。
  75. 如請求項70之方法,其中該化驗係基於多次化驗該生物樣本以大於或等於約90%之一致性相關係數及至少約90%之精度進行。
  76. 如請求項70之方法,其中該化驗係基於在至少兩個不同地理位置化驗該生物樣本以大於或等於約90%之一致性相關係數及至少約90%之精度進行。
  77. 一種識別個體之一或多個生物樣本中的基因組畸變的方法,其包括: (a)獲得該個體之該一或多個生物樣本,該一或多個生物樣本包括具有或疑似具有一或多種基因組畸變的核酸樣本,該一或多種基因組畸變以小於約5%之頻率出現在該核酸樣本中; (b)使用探針組針對複數個核酸序列富集該核酸樣本以提供經富集之核酸樣本,該探針組包括具有至少約80%之整體中靶率的探針,如下所測定:(i)對在至少一個預定區域中之該探針組量測(1)該探針組中各探針之探針覆蓋範圍及(2)該探針組中各探針之脫靶探針覆蓋範圍,及(ii)基於該脫靶覆蓋範圍與該探針覆蓋範圍之比率確定該探針組之該中靶率; (c)對該經富集之核酸樣本定序以生成定序讀數;及 (d)處理該等定序讀數以識別該個體之該一或多個生物樣本中的以小於約5%之頻率出現在該核酸樣本中的該(等)基因組畸變。
  78. 如請求項77之方法,其進一步包括在稍後時間點重新處理該生物樣本及識別一或多個生物標誌中之變化。
  79. 如請求項77之方法,其中處理包括該生物樣本之免疫組織化學圖譜分析及基因組圖譜分析。
  80. 一種用於向表現出癌症之個體提供療法的系統,其包括: 一或多個電腦記憶體,其包括(i)該個體之生物學資料,該生物學資料係生成自該個體之一或多個生物樣本,或(ii)該個體之醫學病史資料;及 以操作方式耦合至一或多個療法資料庫之一或多個電腦處理器,其中該一或多個電腦處理器經個別或共同地程式化以: (i)接收該個體之醫學病史資料及生物學資料,該生物學資料係藉由以下自該個體之一或多個生物樣本生成:在處理該一或多個生物樣本期間,自動化處理使用以下步驟中至少一種至自動化系統的插入:細胞提取、核酸提取、富集、定序及免疫組織化學; (ii)分析該醫學病史資料及該生物學資料以產生針對該個體之基於基因組之醫學病史分析; (iii)使用針對該個體之該基於基因組之醫學病史分析查詢針對該個體之一或多個療法資料庫,以生成針對該個體所定性之療法子集;及 (iv)在呈現給使用者的使用者介面上電子輸出該療法子集。
  81. 如請求項80之系統,其進一步包括使該一或多個生物樣本經歷定序來生成該生物學資料之定序儀。
  82. 一種包括機器可執行代碼之非暫時性電腦可讀媒體,當藉由一或多個電腦處理器執行時,該機器可執行代碼實施向表現出癌症之個體提供療法的方法,該方法包括: (a)接收該個體之醫學病史資料及生物學資料,該生物學資料係藉由以下自該個體之一或多個生物樣本生成:在處理該一或多個生物樣本期間,自動化處理使用以下步驟中至少一種至自動化系統的插入:細胞提取、核酸提取、富集、定序及免疫組織化學; (b)分析該醫學病史資料及該生物學資料以產生針對該個體之基於基因組之醫學病史分析; (c)使用該個體之該基於基因組之醫學病史分析查詢針對該個體之一或多個療法資料庫,以生成針對該個體所定性之療法子集;及 (d)在呈現給使用者的使用者介面上電子輸出該療法子集。
  83. 一種用於定性個體之療法子集之方法,其包括: (a)使來自該個體之至少一個生物樣本接受至少一種化驗以生成來自該個體之生物學資料; (b)針對經過濾療法集處理來自該個體之該生物學資料,以生成針對該個體所定性之該療法子集,該經過濾療法集係藉由電腦評估療法資料庫針對一或多個標準之適格性來生成; (c)在使用者之電子裝置的使用者介面上呈現該療法子集;及 (d)進一步包括將該個體之醫學病史資料傳送給該療法子集之一或多個療法協調員。
  84. 如請求項83之方法,其中該生物學資料係藉由自動化化驗系統自該個體之該至少一個生物樣本生成,該自動化化驗系統在該至少一個生物樣本之處理期間對選自由細胞提取、核酸提取、富集、定序及免疫組織化學組成之群的至少一個成員使用自動化處理。
TW106132570A 2016-09-23 2017-09-22 用於生物樣本的自動化處理及分析、臨床資訊處理及臨床試驗配對之整合系統及方法 TW201816645A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201662399221P 2016-09-23 2016-09-23
US62/399,221 2016-09-23
US201762480307P 2017-03-31 2017-03-31
US62/480,307 2017-03-31

Publications (1)

Publication Number Publication Date
TW201816645A true TW201816645A (zh) 2018-05-01

Family

ID=61689760

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106132570A TW201816645A (zh) 2016-09-23 2017-09-22 用於生物樣本的自動化處理及分析、臨床資訊處理及臨床試驗配對之整合系統及方法

Country Status (3)

Country Link
US (1) US20180119137A1 (zh)
TW (1) TW201816645A (zh)
WO (1) WO2018057888A1 (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109540393A (zh) * 2018-12-11 2019-03-29 东风马勒热系统有限公司 一种用于中冷器密封性检测的封堵装置
CN110373469A (zh) * 2019-08-02 2019-10-25 重庆大学附属肿瘤医院 一种子宫内膜癌个体化用药的捕获测序探针及其制备方法
CN110687283A (zh) * 2019-08-26 2020-01-14 中国医学科学院肿瘤医院 自身抗体在诊断和/或治疗肿瘤中的应用
CN111363816A (zh) * 2018-12-26 2020-07-03 广州市康立明生物科技有限责任公司 基于pax3和zic4基因的肺癌诊断试剂及试剂盒
CN111549132A (zh) * 2020-05-07 2020-08-18 南京实践医学检验有限公司 一种慢性淋巴细胞白血病基因突变检测试剂盒及方法
CN113355417A (zh) * 2021-06-09 2021-09-07 宁波市第一医院 一种map3k10基因片段及引物在制备颅内动脉瘤检测试剂盒中的用途
TWI756644B (zh) * 2019-04-11 2022-03-01 美商惠普發展公司有限責任合夥企業 用於辨別目標的生理識別有意義部分與機器識別有意義部分間差異之系統及方法以及相關電腦可讀媒體
CN114686590A (zh) * 2022-04-25 2022-07-01 重庆大学附属肿瘤医院 一种检测ahctf1表达水平的试剂在制备判断卵巢癌干性程度的试剂中的应用
TWI780781B (zh) * 2020-06-18 2022-10-11 香港商行動基因(智財)有限公司 微衛星不穩定性檢測方法及系統
TWI786623B (zh) * 2020-11-27 2022-12-11 大陸商上海商湯智能科技有限公司 資訊處理方法、電子設備和電腦可讀儲存介質
TWI795139B (zh) * 2021-12-23 2023-03-01 國立陽明交通大學 自動化致病突變點位的分類系統及其分類方法
CN116144776A (zh) * 2022-12-14 2023-05-23 中南大学湘雅三医院 Cdc25a作为srsf10靶向剪切位点在制备肝癌治疗药物中的应用
TWI820582B (zh) * 2022-01-21 2023-11-01 國立中山大學 由個體之生物學試樣預測個體膀胱癌術後存活時間的方法、套組及系統
US12094574B2 (en) 2018-06-07 2024-09-17 Nantomics, Llc Difference-based genomic identity scores

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10754925B2 (en) 2014-06-04 2020-08-25 Nuance Communications, Inc. NLU training with user corrections to engine annotations
US10373711B2 (en) 2014-06-04 2019-08-06 Nuance Communications, Inc. Medical coding system with CDI clarification request notification
US10366687B2 (en) 2015-12-10 2019-07-30 Nuance Communications, Inc. System and methods for adapting neural network acoustic models
US10949602B2 (en) 2016-09-20 2021-03-16 Nuance Communications, Inc. Sequencing medical codes methods and apparatus
US11133091B2 (en) 2017-07-21 2021-09-28 Nuance Communications, Inc. Automated analysis system and method
US11024424B2 (en) * 2017-10-27 2021-06-01 Nuance Communications, Inc. Computer assisted coding systems and methods
EP3700423A4 (en) 2017-10-27 2021-08-18 Juno Diagnostics, Inc. DEVICES, SYSTEMS AND METHODS FOR LIQUID BIOPSY WITH ULTRANO LOW VOLUME
US20190206513A1 (en) * 2017-12-29 2019-07-04 Grail, Inc. Microsatellite instability detection
US10665444B2 (en) * 2018-02-13 2020-05-26 BIOMéRIEUX, INC. Sample handling systems, mass spectrometers and related methods
WO2019160818A1 (en) 2018-02-13 2019-08-22 Biomerieux, Inc. Load lock chamber assemblies for sample analysis systems and related mass spectrometer systems and methods
US11189364B1 (en) 2018-03-07 2021-11-30 Iqvia Inc. Computing platform for establishing referrals
US20190287646A1 (en) * 2018-03-13 2019-09-19 Grail, Inc. Identifying copy number aberrations
EP3773534A4 (en) * 2018-03-30 2021-12-29 Juno Diagnostics, Inc. Deep learning-based methods, devices, and systems for prenatal testing
CN108676889B (zh) * 2018-07-12 2022-02-01 吉林大学 一种胃腺癌易感性预测试剂盒及系统
US10978180B1 (en) 2018-07-30 2021-04-13 Iqvia Inc. Enabling data flow in an electronic referral network
WO2020154324A1 (en) * 2019-01-22 2020-07-30 Ix Layer Inc. Systems and methods for access management and clustering of genomic or phenotype data
US10553316B1 (en) * 2019-04-04 2020-02-04 Kpn Innovations, Llc Systems and methods for generating alimentary instruction sets based on vibrant constitutional guidance
US11315684B2 (en) * 2019-04-04 2022-04-26 Kpn Innovations, Llc. Systems and methods for generating alimentary instruction sets based on vibrant constitutional guidance
US11222727B2 (en) * 2019-04-04 2022-01-11 Kpn Innovations, Llc Systems and methods for generating alimentary instruction sets based on vibrant constitutional guidance
US11461664B2 (en) * 2019-05-07 2022-10-04 Kpn Innovations, Llc. Methods and systems for an artificial intelligence alimentary professional support network for vibrant constitutional guidance
US11396679B2 (en) 2019-05-31 2022-07-26 Universal Diagnostics, S.L. Detection of colorectal cancer
US11001898B2 (en) * 2019-05-31 2021-05-11 Universal Diagnostics, S.L. Detection of colorectal cancer
CA3147100A1 (en) * 2019-07-12 2021-01-21 Tempus Labs Adaptive order fulfillment and tracking methods and systems
CN110511863B (zh) * 2019-09-29 2024-03-12 深圳赛动生物自动化有限公司 细胞离心分装装置及其工作方法
CN112708664B (zh) * 2019-10-25 2024-07-19 益善生物技术股份有限公司 肺癌驱动基因的多基因突变测序文库构建方法与试剂盒
US11898199B2 (en) 2019-11-11 2024-02-13 Universal Diagnostics, S.A. Detection of colorectal cancer and/or advanced adenomas
KR102179850B1 (ko) * 2019-12-06 2020-11-17 주식회사 클리노믹스 구강 내 미생물 분석장치를 이용한 건강 예측 시스템 및 방법
US11928561B2 (en) 2019-12-26 2024-03-12 Kpn Innovations, Llc Methods and systems for grouping informed advisor pairings
US10854336B1 (en) 2019-12-26 2020-12-01 Kpn Innovations, Llc Methods and systems for customizing informed advisor pairings
WO2021211326A1 (en) * 2020-04-16 2021-10-21 Ix Layer Inc. Systems and methods for access management and clustering of genomic, phenotype, and diagnostic data
US11925456B2 (en) * 2020-04-29 2024-03-12 Hyperspectral Corp. Systems and methods for screening asymptomatic virus emitters
US11461865B2 (en) * 2020-05-22 2022-10-04 Tristan Carson Hager Systems and methods for safe social gatherings during a contagious pandemic
WO2022002424A1 (en) 2020-06-30 2022-01-06 Universal Diagnostics, S.L. Systems and methods for detection of multiple cancer types
USD992750S1 (en) 2020-11-13 2023-07-18 BIOMéRIEUX, INC. Sample handling system
CA3202255A1 (en) 2020-12-21 2022-06-30 Hayley WARSINSKE Markers for the early detection of colon cell proliferative disorders
CN114686588B (zh) * 2020-12-31 2024-05-24 江苏为真生物医药技术股份有限公司 肠癌筛查试剂盒
CN112725453B (zh) * 2021-02-03 2022-07-12 复旦大学附属肿瘤医院 m5c修饰调节基因组在制备肿瘤预后评估试剂或试剂盒中的应用
US11791048B2 (en) * 2021-03-15 2023-10-17 Anima Group Inc. Machine-learning-based healthcare system
KR20230162662A (ko) * 2021-03-26 2023-11-28 프리놈 홀딩스, 인크. 핵산 메틸화 분석을 통해 암을 검출하는 방법 및 시스템
US20240371488A1 (en) * 2021-04-28 2024-11-07 Nec Corporation Medicine recommendation apparatus, control method, and computer readable medium
CN113409885B (zh) * 2021-06-21 2022-09-20 天津金域医学检验实验室有限公司 一种自动化数据处理以及作图方法及系统
CN114525344A (zh) * 2022-04-22 2022-05-24 普瑞基准科技(北京)有限公司 一种用于检测或辅助检测肿瘤相关基因变异的试剂盒及其应用
CN117711488B (zh) * 2023-11-29 2024-07-02 东莞博奥木华基因科技有限公司 一种基于长读长测序的基因单倍型检测方法及其应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7711580B1 (en) * 2000-10-31 2010-05-04 Emergingmed.Com System and method for matching patients with clinical trials
WO2008011046A2 (en) * 2006-07-17 2008-01-24 The H.Lee Moffitt Cancer And Research Institute, Inc. Computer systems and methods for selecting subjects for clinical trials
US9767526B2 (en) * 2012-05-11 2017-09-19 Health Meta Llc Clinical trials subject identification system
US20150161331A1 (en) * 2013-12-04 2015-06-11 Mark Oleynik Computational medical treatment plan method and system with mass medical analysis

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12094574B2 (en) 2018-06-07 2024-09-17 Nantomics, Llc Difference-based genomic identity scores
CN109540393A (zh) * 2018-12-11 2019-03-29 东风马勒热系统有限公司 一种用于中冷器密封性检测的封堵装置
CN111363816A (zh) * 2018-12-26 2020-07-03 广州市康立明生物科技有限责任公司 基于pax3和zic4基因的肺癌诊断试剂及试剂盒
CN111363816B (zh) * 2018-12-26 2024-02-02 广州康立明生物科技股份有限公司 基于pax3和zic4基因的肺癌诊断试剂及试剂盒
TWI756644B (zh) * 2019-04-11 2022-03-01 美商惠普發展公司有限責任合夥企業 用於辨別目標的生理識別有意義部分與機器識別有意義部分間差異之系統及方法以及相關電腦可讀媒體
CN110373469A (zh) * 2019-08-02 2019-10-25 重庆大学附属肿瘤医院 一种子宫内膜癌个体化用药的捕获测序探针及其制备方法
CN110687283A (zh) * 2019-08-26 2020-01-14 中国医学科学院肿瘤医院 自身抗体在诊断和/或治疗肿瘤中的应用
CN111549132A (zh) * 2020-05-07 2020-08-18 南京实践医学检验有限公司 一种慢性淋巴细胞白血病基因突变检测试剂盒及方法
TWI780781B (zh) * 2020-06-18 2022-10-11 香港商行動基因(智財)有限公司 微衛星不穩定性檢測方法及系統
TWI786623B (zh) * 2020-11-27 2022-12-11 大陸商上海商湯智能科技有限公司 資訊處理方法、電子設備和電腦可讀儲存介質
CN113355417A (zh) * 2021-06-09 2021-09-07 宁波市第一医院 一种map3k10基因片段及引物在制备颅内动脉瘤检测试剂盒中的用途
TWI795139B (zh) * 2021-12-23 2023-03-01 國立陽明交通大學 自動化致病突變點位的分類系統及其分類方法
TWI820582B (zh) * 2022-01-21 2023-11-01 國立中山大學 由個體之生物學試樣預測個體膀胱癌術後存活時間的方法、套組及系統
CN114686590B (zh) * 2022-04-25 2023-07-28 重庆大学附属肿瘤医院 一种检测ahctf1表达水平的试剂在制备判断卵巢癌干性程度的试剂中的应用
CN114686590A (zh) * 2022-04-25 2022-07-01 重庆大学附属肿瘤医院 一种检测ahctf1表达水平的试剂在制备判断卵巢癌干性程度的试剂中的应用
CN116144776A (zh) * 2022-12-14 2023-05-23 中南大学湘雅三医院 Cdc25a作为srsf10靶向剪切位点在制备肝癌治疗药物中的应用

Also Published As

Publication number Publication date
US20180119137A1 (en) 2018-05-03
WO2018057888A1 (en) 2018-03-29

Similar Documents

Publication Publication Date Title
US20180089373A1 (en) Integrated systems and methods for automated processing and analysis of biological samples, clinical information processing and clinical trial matching
US20180119137A1 (en) Integrated systems and methods for automated processing and analysis of biological samples, clinical information processing and clinical trial matching
US20220325348A1 (en) Biomarker signature method, and apparatus and kits therefor
US20220165353A1 (en) Tumor antigenicity processing and presentation
US20220119881A1 (en) Systems and methods for sample preparation, sample sequencing, and sequencing data bias correction and quality control
US20220154284A1 (en) Determination of cytotoxic gene signature and associated systems and methods for response prediction and treatment
US20230357837A1 (en) Diagnostic use of cell free dna chromatin immunoprecipitation
US20200395097A1 (en) Pan-cancer model to predict the pd-l1 status of a cancer cell sample using rna expression data and other patient data
CA3072195A1 (en) Methods and materials for assessing and treating cancer
Malinge et al. Development of acute megakaryoblastic leukemia in Down syndrome is associated with sequential epigenetic changes
US20220399080A1 (en) Methods and products for minimal residual disease detection
US20230416833A1 (en) Systems and methods for monitoring of cancer using minimal residual disease analysis
EP4320618A2 (en) Cell-free dna sequence data analysis method to examine nucleosome protection and chromatin accessibility
US20230057154A1 (en) Somatic variant cooccurrence with abnormally methylated fragments
US20250218532A1 (en) Systems and methods for cancer therapy monitoring
Xu et al. Translational opportunities for microfluidic technologies to enable precision epigenomics
CA3202888A1 (en) Taxonomy-independent cancer diagnostics and classification using microbial nucleic acids and somatic mutations
US20240182981A1 (en) Identification and design of cancer therapies based on rna sequencing
US20240145038A1 (en) cfDNA FRAGMENTOMIC DETECTION OF CANCER
Yıldız Multi-Omics Data integration in the Prediction of Potential Biomarkers and Therapeutics in Human Cancers