TW201813131A - Light emitting diode structure and manufacturing method thereof - Google Patents
Light emitting diode structure and manufacturing method thereof Download PDFInfo
- Publication number
- TW201813131A TW201813131A TW107101928A TW107101928A TW201813131A TW 201813131 A TW201813131 A TW 201813131A TW 107101928 A TW107101928 A TW 107101928A TW 107101928 A TW107101928 A TW 107101928A TW 201813131 A TW201813131 A TW 201813131A
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- metal
- emitting diode
- film layer
- light emitting
- Prior art date
Links
Landscapes
- Led Device Packages (AREA)
Abstract
Description
本發明是有關於一種半導體結構及其製造方法,且特別是有關於一種發光二極體結構及其製造方法。The present invention relates to a semiconductor structure and a method of fabricating the same, and more particularly to a light emitting diode structure and a method of fabricating the same.
將發光二極體(Light Emitting Diode, LED)晶片黏著於導線架上之技術已發展多年,依固晶材質的不同,大致上可分為二種:第一種為高分子導電膠材,而第二種為金屬銲接材料。The technology of bonding a Light Emitting Diode (LED) wafer to a lead frame has been developed for many years. According to the different solid crystal materials, it can be roughly divided into two types: the first one is a polymer conductive adhesive, and The second type is a metal welding material.
以高分子導電膠材來說,由於是使用膠質材料作為發光二極體晶片的固晶接著材料,膠質材料的耐熱性及導熱效果皆不佳且接合強度也不夠,因此在高溫或高電流的環境下操作,易脆化而使得發光二極體晶片的壽命隨之下降。In the case of polymer conductive adhesives, since the colloidal material is used as the solid crystal bonding material of the light-emitting diode wafer, the heat resistance and thermal conductivity of the gel material are not good and the joint strength is insufficient, so that the high temperature or high current is high. Operating in an environment, it is brittle and the lifetime of the LED chip is reduced.
以金屬銲接材料來說,其主要是透過共晶接合的技術來進行固晶製程。由於金屬銲接材料的操作溫度皆屬於高溫,即介於280℃至320℃之間,因此在固晶時發光二極體晶片易有熱應力殘留或熱應力集中的問題產生,進而影響後續產品的結構可靠度。再者,金屬銲接材料的成本較高,且應用於塑膠基板上時,易使得塑膠基板出現黃化而造成吸光。In the case of metal solder materials, it is mainly through a eutectic bonding technique for the solid crystal process. Since the operating temperature of the metal soldering material belongs to a high temperature, that is, between 280 ° C and 320 ° C, the problem that the light emitting diode wafer is susceptible to thermal stress residual or thermal stress concentration during the solid crystal is formed, thereby affecting the subsequent products. Structural reliability. Furthermore, the cost of the metal solder material is high, and when applied to a plastic substrate, the plastic substrate is liable to cause yellowing and light absorption.
本發明提供一種發光二極體結構,其具有較佳的結構可靠度。The invention provides a light emitting diode structure which has better structural reliability.
本發明的發光二極體結構,其包括一基板、一金屬材料層、一第一金屬薄膜層、一第二金屬薄膜層以及一發光二極體晶片。金屬材料層配置於基板上,且具有一第一層區、一第二層區以及一第三層區。第二層區位於第一層區與第三層區之間,其中第二層區的熔點高於110℃且低於280℃,而第一層區的熔點與第三層區的熔點高於350℃。第一金屬薄膜層配置於金屬材料層的第一層區上。第二金屬薄膜層配置於基板上,且位於基板與金屬材料層的第三層區之間。發光二極體晶片配置於第一金屬薄膜層上,其中第一金屬薄膜層位於發光二極體晶片與金屬材料層的第一層區之間。The light emitting diode structure of the present invention comprises a substrate, a metal material layer, a first metal film layer, a second metal film layer and a light emitting diode chip. The metal material layer is disposed on the substrate and has a first layer region, a second layer region, and a third layer region. The second layer region is located between the first layer region and the third layer region, wherein the melting point of the second layer region is higher than 110 ° C and lower than 280 ° C, and the melting point of the first layer region and the melting point of the third layer region are higher than 350 ° C. The first metal thin film layer is disposed on the first layer region of the metal material layer. The second metal thin film layer is disposed on the substrate and located between the substrate and the third layer region of the metal material layer. The light emitting diode chip is disposed on the first metal thin film layer, wherein the first metal thin film layer is located between the light emitting diode wafer and the first layer region of the metal material layer.
在本發明的一實施例中,上述的第一金屬薄膜層的材質與第二金屬薄膜層的材質包括銀、金、鎳或銅。In an embodiment of the invention, the material of the first metal thin film layer and the material of the second metal thin film layer include silver, gold, nickel or copper.
在本發明的一實施例中,上述的金屬材料層的第一層區為一第一介金屬層區,而金屬材料層的第三層區為一第二介金屬層區。第一介金屬層區的材質與第二介金屬層區的材質包括金鉍、銀錫、鎳鉍、鎳錫或銅錫。In an embodiment of the invention, the first layer region of the metal material layer is a first intermetallic layer region, and the third layer region of the metal material layer is a second intermetallic layer region. The material of the first dielectric layer region and the material of the second dielectric layer region include gold iridium, silver tin, nickel iridium, nickel tin or copper tin.
在本發明的一實施例中,上述的金屬材料層的第二層區包含至少一合金層區,且第二層區的材質包括錫鉍、錫鉍銀、錫鉍銀銅或錫鉍銀鍺。In an embodiment of the invention, the second layer region of the metal material layer comprises at least one alloy layer region, and the material of the second layer region comprises tin antimony, tin antimony silver, tin antimony silver copper or tin antimony silver crucible. .
在本發明的一實施例中,上述的金屬材料層的第二層區為一金屬疊層區,其中至少存在一鉍層。In an embodiment of the invention, the second layer region of the metal material layer is a metal laminate region, wherein at least one germanium layer is present.
在本發明的一實施例中,上述的金屬材料層的第二層區為一金屬疊層區,其中至少存在一錫層。In an embodiment of the invention, the second layer region of the metal material layer is a metal laminate region in which at least one tin layer is present.
在本發明的一實施例中,上述的基板包括導線架、印刷電路板、陶瓷基板、塑膠基板、氧化鋁基板或氮化鋁基板。In an embodiment of the invention, the substrate comprises a lead frame, a printed circuit board, a ceramic substrate, a plastic substrate, an alumina substrate or an aluminum nitride substrate.
在本發明的一實施例中,上述的金屬材料層的厚度介於0.5微米至5微米之間。In an embodiment of the invention, the metal material layer has a thickness of between 0.5 micrometers and 5 micrometers.
在本發明的一實施例中,上述的第一金屬薄膜層的厚度與第二金屬薄膜層的厚度介於0.3微米至3微米之間。In an embodiment of the invention, the thickness of the first metal thin film layer and the thickness of the second metal thin film layer are between 0.3 micrometers and 3 micrometers.
在本發明的一實施例中,上述的發光二極體晶片為一水平式發光二極體晶片、一垂直式發光二極體晶片或一覆晶式發光二極體晶片。In an embodiment of the invention, the light emitting diode chip is a horizontal light emitting diode chip, a vertical light emitting diode chip or a flip chip light emitting diode chip.
基於上述,由於本發明的金屬材料層中的第二層區的熔點高於110℃且低於280℃,相較於習知採用金屬銲接材料的固晶熔點(280℃至320℃)低,因此本發明的發光二極體結構在固晶過程中不易有熱應力殘留或熱應力集中的問題產生,可具有較佳的結構可靠度。再者,由於在發光二極體晶片與基板之間的金屬材料層、第一金屬薄膜層以及第二金屬薄膜層皆為金屬材質,因此本發明的發光二極體結構可具有較佳的散熱及導熱效果。此外,本發明的金屬材料層中的第一層區與第三層區可增加金屬材料層與第一金屬薄膜層及第二金屬薄膜層的黏著力,使發光二極體結構具有較佳的結構可靠度,又由於本發明的金屬材料層中的第一層區與第三層區的熔點高於350℃,因此後續即使本發明的發光二極體結構使用在高溫(大於90度C)的環境下,金屬材料層也不會出現軟化現象而影響基板與發光二極體晶片的對位精確度。Based on the above, since the melting point of the second layer region in the metal material layer of the present invention is higher than 110 ° C and lower than 280 ° C, it is lower than the conventional solid crystal melting point (280 ° C to 320 ° C) of the metal solder material. Therefore, the light-emitting diode structure of the present invention is less prone to thermal stress residual or thermal stress concentration during the die bonding process, and can have better structural reliability. Furthermore, since the metal material layer, the first metal thin film layer and the second metal thin film layer between the light-emitting diode wafer and the substrate are all made of a metal material, the light-emitting diode structure of the present invention can have better heat dissipation. And thermal conductivity. In addition, the first layer region and the third layer region in the metal material layer of the present invention can increase the adhesion between the metal material layer and the first metal film layer and the second metal film layer, so that the light emitting diode structure has better structure. Structural reliability, and since the melting points of the first layer region and the third layer region in the metal material layer of the present invention are higher than 350 ° C, even if the light emitting diode structure of the present invention is used at a high temperature (greater than 90 degrees C) In the environment, the metal material layer does not appear to soften and affect the alignment accuracy of the substrate and the LED wafer.
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the invention will be apparent from the following description.
圖1繪示為本發明的一實施例的一種發光二極體結構的剖面示意圖。請參考圖1,在本實施例中,發光二極體結構100包括一基板110、一金屬材料層120、一第一金屬薄膜層130、一第二金屬薄膜層140以及一發光二極體晶片150。1 is a cross-sectional view showing a structure of a light emitting diode according to an embodiment of the present invention. Referring to FIG. 1 , in the embodiment, the LED structure 100 includes a substrate 110 , a metal material layer 120 , a first metal film layer 130 , a second metal film layer 140 , and a light emitting diode chip . 150.
詳細來說,金屬材料層120配置於基板110上,且具有一第一層區122、一第二層區124以及一第三層區126。第二層區124位於第一層區122與第三層區126之間,特別是,第二層區124的熔點高於110℃且低於280℃,而第一層區122的熔點與第三層區126的熔點高於350℃。第一金屬薄膜層130配置於金屬材料層120的第一層區122上。第二金屬薄膜層140配置於基板110上,且位於基板110與金屬材料層120的第三層區126之間。發光二極體晶片150配置於第一金屬薄膜層130上,其中第一金屬薄膜層130位於發光二極體晶片150與金屬材料層120的第一層區122之間。In detail, the metal material layer 120 is disposed on the substrate 110 and has a first layer region 122, a second layer region 124, and a third layer region 126. The second layer region 124 is located between the first layer region 122 and the third layer region 126. In particular, the melting point of the second layer region 124 is higher than 110 ° C and lower than 280 ° C, and the melting point and the melting point of the first layer region 122 The melting point of the three-layer region 126 is higher than 350 °C. The first metal thin film layer 130 is disposed on the first layer region 122 of the metal material layer 120. The second metal thin film layer 140 is disposed on the substrate 110 and located between the substrate 110 and the third layer region 126 of the metal material layer 120. The light emitting diode chip 150 is disposed on the first metal thin film layer 130, wherein the first metal thin film layer 130 is located between the light emitting diode wafer 150 and the first layer region 122 of the metal material layer 120.
在本實施例中,基板110例如是導線架、印刷電路板、陶瓷基板、塑膠基板、氧化鋁基板或氮化鋁基板。第一金屬薄膜130可透過電鍍、濺鍍或蒸鍍等方式鍍於發光二極體晶片150的表面上。此處,第一金屬薄膜層130的材質包括銀、金、鎳、銅或其組合,且第一金屬薄膜層130的厚度D2例如是介於0.3微米至3微米之間。第二金屬薄膜140可透過電鍍、濺鍍或蒸鍍等方式鍍於基板110的表面上。此處,第二金屬薄膜層140的材質包括銀、金、鎳、銅或其組合,且第二金屬薄膜層140的厚度D3例如是介於0.3微米至3微米之間。In the present embodiment, the substrate 110 is, for example, a lead frame, a printed circuit board, a ceramic substrate, a plastic substrate, an alumina substrate, or an aluminum nitride substrate. The first metal thin film 130 may be plated on the surface of the light emitting diode wafer 150 by plating, sputtering, or evaporation. Here, the material of the first metal thin film layer 130 includes silver, gold, nickel, copper or a combination thereof, and the thickness D2 of the first metal thin film layer 130 is, for example, between 0.3 μm and 3 μm. The second metal film 140 may be plated on the surface of the substrate 110 by plating, sputtering, or evaporation. Here, the material of the second metal thin film layer 140 includes silver, gold, nickel, copper or a combination thereof, and the thickness D3 of the second metal thin film layer 140 is, for example, between 0.3 μm and 3 μm.
特別是,本實施例的金屬材料層120的第二層區124為一金屬疊層區或一合金層區,其中第二層區124的材質例如是錫鉍、錫鉍銀、錫鉍銀銅或錫鉍銀鍺。舉例來說,第二層區124可為一層錫鉍合金層,或是一鉍層與一錫鉍合金層疊合而成的疊層結構,或者是包含一錫層與一鉍層的兩層金屬層疊層結構。其中,若第二層區124為錫層與鉍層疊合而成的金屬層疊層結構時,其金屬疊層中的各金屬層的厚度皆大致相同。本實施例的金屬材料層120的第一層區122為一第一介金屬層區,而金屬材料層120的第三層區126為一第二介金屬層區,其中第一介金屬層區的材質與第二介金屬層區的材質包括金鉍、銀錫、鎳鉍、鎳錫或銅錫或其組合。此處,金屬材料層120的厚度D1介於0.5微米至5微米之間。此外,本實施例的發光二極體晶片150為一水平式發光二極體晶片、一垂直式發光二極體晶片或一覆晶式發光二極體晶片,於此並不加以限制。In particular, the second layer region 124 of the metal material layer 120 of the present embodiment is a metal lamination region or an alloy layer region, wherein the material of the second layer region 124 is, for example, tin antimony, tin antimony silver, tin antimony silver copper. Or tin enamel silver enamel. For example, the second layer region 124 may be a layer of tin-bismuth alloy, or a laminated structure of a tantalum layer and a tin-bismuth alloy, or a two-layer metal comprising a tin layer and a tantalum layer. Stack layer structure. When the second layer region 124 is a metal layered layer structure in which a tin layer and a tantalum layer are laminated, the thickness of each metal layer in the metal layer stack is substantially the same. The first layer region 122 of the metal material layer 120 of the present embodiment is a first intermetallic layer region, and the third layer region 126 of the metal material layer 120 is a second intermetallic layer region, wherein the first intermetallic layer region The material of the material and the second metal layer region includes gold bismuth, silver tin, nickel bismuth, nickel tin or copper tin or a combination thereof. Here, the thickness D1 of the metal material layer 120 is between 0.5 μm and 5 μm. In addition, the LED chip 150 of the present embodiment is a horizontal LED chip, a vertical LED chip, or a flip-chip LED chip, which is not limited herein.
更具體來說,金屬材料層120是由一固晶材料層所形成,其中固晶材料層的材質與特性與第二層區124相同。金屬材料層120形成的步驟如下。首先,藉由電鍍、蒸鍍或濺鍍的方式於第一金屬薄膜層130或第二金屬薄膜層140上形成固晶材料層。接著,以一第一反應溫度加熱固晶材料層一反應時間,而分別於第一金屬薄膜層130、固晶材料層及第二金屬薄膜層140之間形成第一介金屬層區以及第二介金屬層區。其中,第一反應溫度例如是高於110℃且小於280℃,而反應時間例如是60秒至120秒,且加熱的方式可以採用迴焊(reflow)爐加熱、雷射加熱或紅外線加熱。上述之步驟為一預固程序,其目的在於形成第一介電層區以及第二介金屬層區,可初步地將發光二極體晶片150與基板110之間的位置關係進行預先固定,以利於後續製程的進行。再者,由於預固的反應時間很短,因此發光二極體晶片150不會產生熱應力集中或熱應力殘留的問題。之後,以一第二反應溫度加熱固晶材料層、第一介電層區以及第二介電層區一固化時間,以形成具有第一層區122、第二層區124及第三層區126的金屬材料層120。其中,第二反應溫度例如是介於80℃至120℃,而固化時間為30分鐘至3小時,且加熱的方式可以採用烤箱加熱、熱板加熱或紅外線加熱。上述步驟的目的在於讓固晶材料層的金屬元素或合金元素與第一金屬薄膜層130及第二金屬薄膜層140的元素相互擴散。也就是說,金屬材料層120的第一層區122與第三層區126會隨著第一金屬薄膜層130與第二金屬薄膜層140的材質成分而改變。故,第一金屬薄膜層130與第二金屬薄膜層140的材質可相同或不同,而第一層區122與第三層區126的材質可相同或不同。More specifically, the metal material layer 120 is formed of a layer of a solid crystal material having the same material and characteristics as the second layer region 124. The step of forming the metal material layer 120 is as follows. First, a layer of a solid crystal material is formed on the first metal thin film layer 130 or the second metal thin film layer 140 by plating, evaporation, or sputtering. Then, the solid crystal material layer is heated at a first reaction temperature for a reaction time, and a first intermetallic layer region and a second portion are formed between the first metal thin film layer 130, the solid crystal material layer and the second metal thin film layer 140, respectively. Intermetallic layer area. Wherein, the first reaction temperature is, for example, higher than 110 ° C and lower than 280 ° C, and the reaction time is, for example, 60 seconds to 120 seconds, and the heating may be performed by reflow furnace heating, laser heating or infrared heating. The above steps are a pre-fixing process, and the purpose is to form a first dielectric layer region and a second dielectric layer region, and the positional relationship between the LED wafer 150 and the substrate 110 can be preliminarily fixed in advance. Conducive to the subsequent process. Furthermore, since the pre-solid reaction time is short, the light-emitting diode wafer 150 does not cause thermal stress concentration or thermal stress residual. Thereafter, the solid crystal material layer, the first dielectric layer region, and the second dielectric layer region are heated at a second reaction temperature for a curing time to form the first layer region 122, the second layer region 124, and the third layer region. A layer of metallic material 120 of 126. Wherein, the second reaction temperature is, for example, 80 ° C to 120 ° C, and the curing time is 30 minutes to 3 hours, and the heating may be performed by oven heating, hot plate heating or infrared heating. The purpose of the above steps is to allow the metal element or alloying element of the layer of the solid crystal material to diffuse with the elements of the first metal thin film layer 130 and the second metal thin film layer 140. That is, the first layer region 122 and the third layer region 126 of the metal material layer 120 change with the material composition of the first metal film layer 130 and the second metal film layer 140. Therefore, the materials of the first metal film layer 130 and the second metal film layer 140 may be the same or different, and the materials of the first layer region 122 and the third layer region 126 may be the same or different.
經第二反應溫度加熱後形成的第一層區122與第三層區126,可增加金屬材料層與第一金屬薄膜層及第二金屬薄膜層的黏著力,使發光二極體結構具有較佳的結構可靠度,又由於金屬材料層120的第一層區122與第三層區126的熔點高於350℃,因此後續發光二極體結構100使用於高溫(如大於90℃)的環境下時,金屬材料層120亦無軟化的問題,可維持基板110與發光二極體晶片150之間的對位關係,進而使得發光二極體結構100具有較佳的出光效率。再者,金屬材料層120中的第二層區124的熔點高於110℃且低於280℃,相較於習知採用金屬銲接材料的固晶熔點(280℃至320℃)低,因此本實施例的發光二極體結構100不易有熱應力殘留或熱應力集中的問題產生,可具有較佳的結構可靠度。此外,由於在發光二極體晶片150與基板110之間的金屬材料層120、第一金屬薄膜層130以及第二金屬薄膜層140皆為金屬材質,因此本實施例的發光二極體結構100可具有較佳的散熱及導熱效果。The first layer region 122 and the third layer region 126 formed after being heated by the second reaction temperature can increase the adhesion between the metal material layer and the first metal film layer and the second metal film layer, so that the structure of the light emitting diode is relatively The structural reliability is good, and since the melting points of the first layer region 122 and the third layer region 126 of the metal material layer 120 are higher than 350 ° C, the subsequent light emitting diode structure 100 is used in a high temperature (for example, greater than 90 ° C) environment. When the metal material layer 120 is not softened, the alignment relationship between the substrate 110 and the LED wafer 150 can be maintained, so that the LED structure 100 has better light extraction efficiency. Furthermore, the melting point of the second layer region 124 in the metal material layer 120 is higher than 110 ° C and lower than 280 ° C, which is lower than the conventional solid crystal melting point (280 ° C to 320 ° C) of the metal solder material. The light-emitting diode structure 100 of the embodiment is less prone to thermal stress residual or thermal stress concentration, and may have better structural reliability. In addition, since the metal material layer 120, the first metal thin film layer 130, and the second metal thin film layer 140 between the light emitting diode wafer 150 and the substrate 110 are all made of a metal material, the light emitting diode structure 100 of the present embodiment is used. It can have better heat dissipation and heat conduction effects.
綜上所述,由於本發明的金屬材料層中的第二層區的熔點高於110℃且低於280℃,相較於習知採用金屬銲接材的固晶熔點(280℃至320℃)低,因此本發明的發光二極體結構不易有熱應力殘留或熱應力集中的問題產生,可具有較佳的結構可靠度。再者,由於在發光二極體晶片與基板之間的金屬材料層、第一金屬薄膜層以及第二金屬薄膜層皆為金屬材質,因此本發明的發光二極體結構可具有較佳的散熱及導熱效果。此外,由於本發明的金屬材料層中的第一層區與第三層區的熔點高於350℃,因此後續即使本發明的發光二極體結構使用在高溫(大於90℃)的環境下,金屬材料層也不會出現軟化現象而影響基板與發光二極體晶片的對位精確度。In summary, since the melting point of the second layer region in the metal material layer of the present invention is higher than 110 ° C and lower than 280 ° C, the solid crystal melting point (280 ° C to 320 ° C) of the metal welding material is conventionally used. Therefore, the light-emitting diode structure of the present invention is less prone to thermal stress residual or thermal stress concentration, and can have better structural reliability. Furthermore, since the metal material layer, the first metal thin film layer and the second metal thin film layer between the light-emitting diode wafer and the substrate are all made of a metal material, the light-emitting diode structure of the present invention can have better heat dissipation. And thermal conductivity. In addition, since the melting points of the first layer region and the third layer region in the metal material layer of the present invention are higher than 350 ° C, even if the light emitting diode structure of the present invention is used in an environment of high temperature (greater than 90 ° C), The metal material layer also does not appear to soften and affect the alignment accuracy of the substrate and the LED wafer.
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.
100‧‧‧發光二極體結構100‧‧‧Lighting diode structure
110‧‧‧基板110‧‧‧Substrate
120‧‧‧金屬材料層120‧‧‧Metal material layer
122‧‧‧第一層區122‧‧‧First floor
124‧‧‧第二層區124‧‧‧Second floor
126‧‧‧第三層區126‧‧‧ third floor
130‧‧‧第一金屬薄膜層130‧‧‧First metal film layer
140‧‧‧第二金屬薄膜層140‧‧‧Second metal film layer
150‧‧‧發光二極體晶片150‧‧‧Light Diode Wafer
D1、D2、D3‧‧‧厚度D1, D2, D3‧‧‧ thickness
圖1繪示為本發明的一實施例的一種發光二極體結構的剖面示意圖。1 is a cross-sectional view showing a structure of a light emitting diode according to an embodiment of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107101928A TWI654779B (en) | 2013-04-26 | 2013-04-26 | Light emitting diode structure and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107101928A TWI654779B (en) | 2013-04-26 | 2013-04-26 | Light emitting diode structure and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201813131A true TW201813131A (en) | 2018-04-01 |
TWI654779B TWI654779B (en) | 2019-03-21 |
Family
ID=62639520
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW107101928A TWI654779B (en) | 2013-04-26 | 2013-04-26 | Light emitting diode structure and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI654779B (en) |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6656756B2 (en) | 2001-08-24 | 2003-12-02 | Telecommunication Laboratories, Chunghwa Telecom Co., Ltd. | Technique for a surface-emitting laser diode with a metal reflector |
US7335924B2 (en) | 2005-07-12 | 2008-02-26 | Visual Photonics Epitaxy Co., Ltd. | High-brightness light emitting diode having reflective layer |
TWI401825B (en) | 2009-11-27 | 2013-07-11 | Ind Tech Res Inst | Solid crystal method of light-emitting diode wafer and light-emitting diode completed by solid crystal |
TWI446577B (en) | 2010-12-23 | 2014-07-21 | Ind Tech Res Inst | Method for bonding led wafer, method for manufacturing led chip and structure bonding led wafer and substrate |
TW201250849A (en) | 2011-06-14 | 2012-12-16 | 3S Silicon Tech Inc | Low-temperature chip bonding method for light-condensing type solar chip, power transistor and field effect transistor |
-
2013
- 2013-04-26 TW TW107101928A patent/TWI654779B/en active
Also Published As
Publication number | Publication date |
---|---|
TWI654779B (en) | 2019-03-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101138306B1 (en) | Die-bonding method of LED chip and LED manufactured by the same | |
US9537074B2 (en) | High heat-radiant optical device substrate | |
JP2014183119A (en) | Method for manufacturing substrate for power modules | |
CN207947309U (en) | Inorganic bonding package structure of ultraviolet light emitting diode | |
CN101673790A (en) | Light emitting diode and method for manufacturing the same | |
TW201320253A (en) | Package structure and manufacturing method thereof | |
CA2512845A1 (en) | Semiconductor package having non-ceramic based window frame | |
JP2013520807A (en) | Manufacturing method and product of surface mount power LED support | |
US9082760B2 (en) | Dual layered lead frame | |
JP2012074497A (en) | Circuit board | |
CN102891240A (en) | Light emitting diode (LED) with inverted structure and manufacturing method thereof | |
TWI463710B (en) | Mrthod for bonding heat-conducting substraye and metal layer | |
CN102117801B (en) | Manufacturing method of high-power light-emitting diode module structure | |
TWI654779B (en) | Light emitting diode structure and manufacturing method thereof | |
CN101950782B (en) | Method for Forming Reflective Light Emitting Diode Die Bonding Structure at Low Temperature | |
TWI617053B (en) | Light emitting diode structure | |
TWI578566B (en) | Light emitting diode structure | |
TWI531087B (en) | Light emitting diode structure | |
TWI446577B (en) | Method for bonding led wafer, method for manufacturing led chip and structure bonding led wafer and substrate | |
JP5733466B2 (en) | Manufacturing method of semiconductor device | |
JP2013093507A (en) | Solder bonding process for forming semiconductor chips in multistage into three-dimensional stack assembly | |
JP5569306B2 (en) | Power module substrate manufacturing equipment | |
TWI632701B (en) | Manufacturing method of die bonding structure | |
JP3192859U (en) | Double-layer lead frame structure | |
TW201722718A (en) | Metal patch, method for manufacturing the same and bonding method by using the same |