TW201812257A - 評估光學源之增益關係 - Google Patents
評估光學源之增益關係 Download PDFInfo
- Publication number
- TW201812257A TW201812257A TW106130715A TW106130715A TW201812257A TW 201812257 A TW201812257 A TW 201812257A TW 106130715 A TW106130715 A TW 106130715A TW 106130715 A TW106130715 A TW 106130715A TW 201812257 A TW201812257 A TW 201812257A
- Authority
- TW
- Taiwan
- Prior art keywords
- optical source
- output
- value
- optical
- gain
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70483—Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
- G03F7/70491—Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
- G03F7/70516—Calibration of components of the microlithographic apparatus, e.g. light sources, addressable masks or detectors
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70008—Production of exposure light, i.e. light sources
- G03F7/70041—Production of exposure light, i.e. light sources by pulsed sources, e.g. multiplexing, pulse duration, interval control or intensity control
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70483—Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
- G03F7/70491—Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
- G03F7/705—Modelling or simulating from physical phenomena up to complete wafer processes or whole workflow in wafer productions
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70483—Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
- G03F7/7055—Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
- G03F7/70558—Dose control, i.e. achievement of a desired dose
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
Abstract
存取一光微影系統之一光學源之一輸出的一指示;存取提供至該光學源之一輸入的一指示,該所提供之輸入與該光學源之該輸出之該所存取指示相關;根據一預期輸出量及該光學源之該輸出之該所存取指示判定一輸出誤差;評估與提供至該光學源之該輸入之該存取指示相關的一局部增益;根據該經評估之局部增益及一預期局部增益判定一增益誤差;基於該輸出誤差及該增益誤差中之一或多者來評估該光學源之一或多個操作度量值之一當前值;以及基於該一或多個操作度量值之該經評估當前值來更新該光學源之一增益關係。
Description
本發明係關於評估光學源之增益關係。該光學源可係光學微影系統之部分。
光微影係將半導體電路圖案化於諸如矽晶圓之基板上的過程。光微影光學源提供用以曝光晶圓上之光阻的深紫外線(DUV)光。用於光微影之DUV光係由準分子光學源產生。通常,該光學源為雷射源,且脈衝光束為脈衝雷射光束。光束通過光束遞送單元、光罩或遮罩傳遞,且隨後投影至已製備之矽晶圓上。以此方式,將晶片設計圖案化至光阻上,該光阻隨後進行蝕刻及清洗,且接著重複該過程。
在一個通用態樣中,存取光微影系統之光學源之輸出的指示,該光學源與輸入值之範圍及輸出值之對應範圍相關;存取提供至光微影系統之光學源之輸入的指示,該所提供之輸入與光學源之輸出之所存取指示相關;根據預期輸出量及光學源之輸出之所存取指示來判定輸出誤差;評估與提供至光學源之輸入的所存取指示相關的局部增益;根據經評估局部增益及預期局部增益來判定增益誤差;基於輸出誤差及增益誤差中之一或多者來評估光學源之一或多個操作度量值之當前值;以及基於一或多個操作度量值之經評估當前值來更新光學源之增益關係,該增益關係將輸入值之範圍關聯至預期輸出值之對應範圍。 實施可包括以下特徵中之一或多者。輸入值可包括電壓值,輸出值可包括能量值,且一或多個操作度量值可包括最小輸出能量及最大輸出能量,最小輸出能量為由光學源回應於最小電壓輸入之施加而產生的能量之量,最大輸出能量為由光學源回應於最大輸入電壓之施加而產生的能量之量。 該增益關係可為由四個係數定義之三次多項式,且可基於光學源之輸出之所存取指示、光學源之輸出之所存取指示、於光學源之最大輸入處之增益關係之假定斜率、假定最小輸入值、假定最大輸入值及一或多個操作度量值之經評估當前值來判定四個係數中之每一者之值。 在一些實施中,可根據初始增益關係判定預期輸出量,該初始增益關係可為由四個係數定義之三次多項式;且可基於光學源之輸出之所存取指示、光學源之輸出之所存取指示、於光學源之最大輸入處之增益關係之假定斜率、假定最小輸入值、假定最大輸入值及一或多個操作度量值之已知值來判定四個係數中之每一者之值。一或多個操作度量值之已知值可為假定值或先前判定值。 可根據初始增益關係及提供至光學源之輸入之所存取指示來判定預期局部增益。判定局部增益之預期量可包括使用增益評估器,該增益評估器包括經組態以儲存增益資料之緩衝器,該增益資料可為光學源之複數個操作點,每一操作點包括提供至光學源之輸入及光學源之對應輸出。 複數個操作點中之每一者可包括提供至光學源之電壓的量及在微影曝光裝置中之感測器處之能量之所量測的量。使用增益評估器判定局部增益之預期量可包括判定表示電壓量中之至少一些與儲存於緩衝器中之所量測能量之相應量之間的線性關係之直線的斜率。 在一些實施中,可使用已更新增益關係來判定待提供至光學源之輸入;可產生表示所判定輸入之信號;且可將所產生信號提供至光學源。 輸出之所存取指示可經濾波以產生濾波輸出,且輸入之所存取指示可經濾波以產生濾波輸入,且可基於濾波輸出及預期輸出量來判定輸出誤差。 光學源可經組態以發射脈衝光束,且可針對光束中之複數個時間上連續脈衝中之每一脈衝更新增益關係。 在另一通用態樣中,一種控制光微影系統中之光學源的方法包括:接收與光學源之輸出度量值相關之量測值的指示,該量測值與由光學源產生的光脈衝中之能量相關;存取與光學源相關的操作度量值之值;基於輸出度量值之量測值之指示及操作度量值之值來評估輸出度量值與輸入度量值之間的關係,該輸入度量值與施加至光學源之激勵的量相關;根據所評估關係判定輸出參數之預期值;比較量測值之指示與預期值以判定誤差度量值;基於所判定誤差度量值來調整操作度量值之值及所評估關係;基於經調整的所評估關係來調整與光學源相關的輸入度量值之值;將經調整的輸入度量值之值提供至光學源,其中針對自光學源發射之複數個光學脈衝中之每一者來調整輸出度量值與輸入度量值之間的所評估關係,該複數個脈衝包括時間上連續的至少一些脈衝。 實施可包括以下特徵中之一或多者。輸出度量值可包括自光學源發射的光學脈衝之能量,且該輸入度量值可包括經組態以施加至光學源之組件的電壓的量。光束之所量測能量之指示可為在藉由光微影系統之微影曝光裝置曝光之晶圓處所量測的能量,且所量測能量之指示可自微影曝光裝置接收。存取操作度量值之值可包括存取最小輸出能量及最大輸出能量之值,該最小輸出能量為由光學源回應於最小電壓輸入之施加而產生的能量之量,該最大輸出能量為由光學源回應於最大輸入電壓之施加而產生的能量之量。 在另一通用態樣中,一種光微影系統包括:經組態以發射脈衝光束之光學源;包括光學系統的微影曝光裝置,該光學系統經安置以在光學系統之第一側面處自光學源接收脈衝光束且在該光學系統之第二側面處發射脈衝光束;以及耦接至光學源及微影曝光裝置的控制系統,該控制系統經組態以:存取與光學源相關的操作度量值之值;基於所量測能量之指示及操作度量值之值來評估定義輸出度量值與光學源之輸入度量值之間的關係的一或多個參數;根據該關係判定輸出度量值之預期值;比較量測值之指示與預期值以判定誤差度量值;基於所判定誤差度量值來調整操作度量值之值及增益關係;基於經調整增益關係來調整與光學源相關的輸入度量值之值;且將經調整的輸入度量值之值提供至光學源。 實施可包括以下特徵中之一或多者。輸入度量值可包括電壓的量,且經組態以將輸入參數之經調整值施加至光學源之控制系統可包括經組態以提供信號之控制系統,該信號包括指示待施加至光學源之組件的電壓之量的資訊。該光學源可包括電極及增益介質,且該控制系統可經組態以提供包括指示待施加至光學源之電極的電壓之量的資訊的信號。該微影曝光裝置可經組態以接收於光學系統之第二側面處之晶圓且進一步包括在微影曝光裝置之光學系統的第二側面處之感測器,該感測器經組態以量測光學系統之第二側面處之光學能量的量且於光學系統之第二側面處將能量之所量測的量之指示提供至控制系統。 以上及本文中描述之技術中之任一者的實施可包括過程、裝置、控制系統、儲存於非暫時機器可讀電腦媒體上之指令及/或方法。以下附圖及描述中闡述了一或多個實施之細節。其他特徵將自描述內容及圖式且自申請專利範圍而顯而易見。
相關申請案 本申請案主張2016年9月12日申請且以全文引用之方式併入本文中之美國申請案第15/262,452號之權益。 揭示了用於控制光學微影系統及/或光學微影中之光學源之技術。 參看圖1A,光微影系統100包括將光束160提供至處理晶圓120的微影曝光裝置115之光學(或光)源105。光束160為包括在時間上彼此分離的光脈衝之脈衝光束。微影曝光裝置115包括投影光學系統125及偵測器122,光束160在到達晶圓120之前傳遞通過該投影光學系統。偵測器122可為(例如)攝影機或能夠捕獲晶圓120之圖像或晶圓120處之光束160的其他器件,或能夠擷取描述光束160之特徵的資料的光學偵測器,該等特徵諸如於晶圓120處之光束160在x-y平面中之強度。微影曝光裝置115可為液體浸沒系統或乾式系統。 光微影系統100包括控制系統150。控制系統150自控制系統123接收信號151且產生信號152,該控制系統123為圖1A之實例中之微影曝光裝置115的部分。將信號152提供至光學源105以控制光學源105之操作。控制系統123自偵測器122接收資料且基於該資料產生信號151。在圖1A之實例中,控制系統123與控制系統150相分離。然而,在其他實施中,控制系統123及控制系統150可以耦接至微影曝光裝置115及光學源105之單個控制系統實施。 光學源105回應於自控制系統150接收信號152而產生光束160。信號152可包括判定光學源105之輸入的組件或態樣。舉例而言,光學源105可回應於施加至光學源105中之電極的電壓而產生光束160,且信號152可包括指定施加至電極的電壓之量的資料或資訊。光學源105之輸出(例如光束160之脈衝中之能量)與產生該輸出的光學源105之輸入(例如施加至電極的電壓之量)之間的關係表達為增益關係。光學源105之增益關係是非線性的。換言之,光學源105之輸入及輸出彼此在可能的輸入之全部範圍內不成比例。除為非線性的,光學源105之增益關係隨時間改變。因此,光學源105之額定或預設增益關係可能不足以對光學源105之非線性提供即時(例如當光學源105產生光時)且精確之補償。 如下文更詳細地論述,控制系統150使用自適應模型即時地評估光學源之增益關係,且使用經評估增益關係以補償光學源105之非線性。當光學源105產生光束160時,量測或另外得到與光學源105相關的資料及/或資訊(諸如由輸入信號152提供之輸入的值)及輸出的值(諸如光束160之能量)。在允許補償光學源105之非線性的情況下,量測值供自適應模型使用以判定對增益關係之評估及/或更新該增益關係之現有評估。另外,自適應模型利用關於光學源之典型行為之資訊以使得可僅使用額定可獲得之量測值來評估增益關係,亦即不激勵超出輸入之額定操作範圍的源。 微電子特徵藉由(例如)使用光束160使輻射敏感性光致抗蝕劑材料之塗層曝光於晶圓120上而形成於晶圓120上。亦參看圖1B,投影光學系統125包括狹縫126、遮罩124及投影透鏡127。在到達投影光學系統125之後,光束160傳遞通過狹縫126。在圖1A及圖1B之實例中,狹縫126為矩形且使光束160成形為細長矩形光束。此成形光束隨後傳遞通過遮罩124。在遮罩124上形成圖案,且該圖案判定成形光束之哪些部分由遮罩124傳輸及哪些受遮罩124阻隔。圖案之設計藉由待形成於晶圓120上之特定微電子電路設計來判定。由遮罩124傳輸之成形光束之部分傳遞通過投影透鏡127 (且可由投影透鏡聚焦)且曝光晶圓120。 藉由光束160在曝光時間內傳遞至晶圓120之每單位面積之能量的量(或光束160之脈衝之特定數目)稱為劑量或曝光能量(例如單位為焦耳)。晶圓120上之微電子特徵的形成取決於到達晶圓120之恰當劑量(「靶向劑量」)。若在曝光時間內到達晶圓120之能量過少(劑量過低且小於靶向劑量),則不激活晶圓120之輻射敏感材料且微電子特徵不形成或不完全形成於晶圓120上。若在曝光時間內到達晶圓120之能量過多(劑量過高且大於靶向劑量),則晶圓120之輻射敏感材料可能曝光於狹縫圖案之影像的邊界之外且微電子特徵不恰當地形成於晶圓120上。因此,劑量誤差之最小化或降低(其為劑量與靶向劑量之間的差)及可接受範圍內之劑量誤差之控制對於光微影系統100之精確及高效效能至關重要。 光學源105之增益關係的非線性可導致光學源105及/或光微影系統100之各種效能挑戰。控制系統150補償非線性且以若干方式改良光學系統100及/或光學源105之效能。舉例而言,控制系統150可改良曝光過程之穩定性且改良劑量之控制。在光學系統100之操作期間,微影曝光裝置115可自源105請求光學能量之特定的量。控制系統150評估增益關係及光學源105能夠即時地產生之能量的最大量。若微影曝光裝置115預測光束160所提供之光學能量將比實際接收到的更多,則曝光過程可能變得不穩定及/或劑量誤差可能增加。控制系統150可降低或防止所請求能量與所接收能量的量之間的失配之負面影響。舉例而言,若微影曝光裝置115請求大於光學源105能夠產生的光學能量的量,則控制系統150可將包括指示於微影曝光裝置115處實際將接收的量之資料的信號提供至控制系統123。另外,控制系統123可最優化其控制參數以保持於能量之可達成範圍內,由此防止不穩定之可能性。 此外,相比於缺乏具有控制系統150之特徵的控制系統的系統,控制系統150可提供增益關係之更精確評估且亦可更快速地提供評估。舉例而言,在缺乏控制系統150之微影系統中,微影曝光裝置115可藉由發送抖動信號至光學源105來評估光學源105之增益。該抖動信號不包含輸入之全部範圍。由於光學源105之增益係非線性的,因此藉由抖動信號判定之增益對於光學源105可接收之輸入的全部範圍而言並不精確。藉由即時地補償光學源105之增益的非線性及經(或不經)抖動信號之使用,控制系統150避免藉由微影曝光裝置115之不精確校正的潛在問題。另外,小振幅抖動信號對在亦出現於系統100中之雜訊之存在下的分析可具挑戰性。因此,單獨使用抖動信號評估增益關係可為緩慢的。使用較大振幅抖動信號可影響劑量效能。控制系統150提供較快增益評估而較少或不影響劑量效能。 另外,藉由補償光學源105之非線性,控制系統150致使光學源105相對微影曝光裝置115充當線性系統。因此,微影曝光裝置115之實際劑量效能可符合預期或理論劑量效能。 在參看圖4至圖8更詳細地論述控制系統150之前,論述例示性光微影系統200。 亦參看圖2,展示例示性光微影系統200之方塊圖。在光微影系統200中,例示性光學源205用作光學源105 (圖1)。光源205產生提供至微影曝光裝置115之脈衝光束260。光源205可為(例如)輸出脈衝光束260 (其可為雷射光束)之準分子光學源。隨著脈衝光束260進入微影曝光裝置115,其係經由投影光學系統125導向且投影至晶圓120上。以此方式,將一或多個微電子特徵圖案化至晶圓120上隨後進行蝕刻及清潔之光阻上,且重複該過程。光微影系統200亦包括控制系統150,該控制系統在圖2之實例中連接至光學源205之組件以及至微影曝光裝置115以控制系統200之各種操作。 在圖2中所展示之實例中,光學源205為二級雷射系統,該二級雷射系統包括將種子光束224提供至功率放大器(PA) 230之主控振盪器(MO) 212。功率放大器230自主控振盪器212接收種子光束224且放大種子光束224以產生光束260,以供用於微影曝光裝置115中。舉例而言,主控振盪器212可發射脈衝種子光束,其具有近似於每脈衝1毫焦(mJ)之種子脈衝能量,且此等種子脈衝可藉由功率放大器230放大至約10至15 mJ。 主控振盪器212包括具有兩個細長電極217之放電腔室240、增益介質219 (其為混合氣體),及用於使氣體於電極217之間循環的風扇。諧振器形成於放電腔室240之一個側面上之線窄化模組216與放電腔室240之第二側面上之輸出耦合器218之間。線窄化模組216可包括繞射光學件,諸如精細地調諧放電腔室240之光譜輸出的光柵。主控振盪器212亦包括自輸出耦合器218接收輸出光束之線中心分析模組220及按需要調整輸出光束之大小或形狀以形成種子光束224的光束耦合光學系統222。線中心分析模組220為可用以量測或監測種子光束224之波長的量測系統。線中心分析模組220可置放於光學源205中之其他位置處,或其可置放於光學源205之輸出端。 用於放電腔室240中之混合氣體可為適用於在應用所需之波長及頻寬下產生光束的任何氣體。對於準分子源,除作為緩衝氣體之氦氣及/或氖氣之外,混合氣體可含有諸如(例如)氬氣或氙氣之惰性氣體(稀有氣體)、諸如(例如)氟或氯之鹵素及痕量的氙。混合氣體之特定實例包括在約193 nm之波長下發光的氬氟化物(ArF)、在約248 nm之波長下發光的氟化氪(KrF),或在約351 nm之波長下發光的氯化氙(XeCl)。藉由將電壓施加至細長電極217,在高電壓放電中運用短(例如,奈秒)電流脈衝泵浦準分子增益介質(混合氣體)。 功率放大器230包括光束耦合光學系統232,該光束耦合光學系統自主控振盪器212接收種子光束224並將光束導向通過放電腔室240,且導向至光束轉向光學元件252,該光束轉向光學元件調整或改變種子光束224之方向以使得將該種子光束發送回放電腔室240。放電腔室240包括一對細長電極241、增益介質219 (其為混合氣體),及用於使混合氣體在電極241之間循環的風扇。 將輸出光束260導向通過頻寬分析模組262,其中可量測光束260之各種參數(諸如頻寬或波長)。輸出光束260亦可經導向通過脈衝拉伸機,在該脈衝拉伸機中,輸出光束260之脈衝中之每一者於(例如)光學延遲單元中及時拉伸以調整照射微影裝置115的光束之效能特性。 控制系統150可連接至光學源205之各種組件。舉例而言,控制系統150可藉由將一或多個信號發送至光學源205來控制光學源205何時發射光脈衝或包括一或多個光脈衝之光脈衝之脈衝串。光束260可包括彼此及時分隔開的一或多個脈衝串。每一脈衝串可包括一或多個光脈衝。在一些實施中,一脈衝串包括數百脈衝,例如,100至400脈衝。圖3A至圖3C提供光學源205中之脈衝之產生的概觀。圖3A展示晶圓曝光信號300隨時間變化之振幅,圖3B展示閘信號315隨時間變化之振幅,且圖3C展示觸發信號隨時間變化之振幅。 控制系統150可經組態以將晶圓曝光信號300發送至光學源205以控制光學源205產生光束260。在圖3A中所展示之實例中,晶圓曝光信號300在時段307具有高位值305 (例如1),在該時段期間光學源205產生光脈衝之脈衝串。晶圓曝光信號300另外在晶圓120不經曝光時具有低位值310 (例如0)。 參看圖3B,光束260為脈衝光束,且光束260包括脈衝之脈衝串。控制系統150亦藉由將閘信號315發送至光學源205來控制脈衝之脈衝串的持續時間及頻率。閘信號315在脈衝之脈衝串期間具有高位值320 (例如1),且在連續脈衝串之間的時間期間具有低位值325 (例如0)。在所展示之實例中,在閘信號315具有高位值時的持續時間亦為脈衝串316之持續時間。 參看圖3C,控制系統150亦使用觸發信號330來控制脈衝於每一脈衝串內之重複率。觸發信號330包括觸發340,將該等觸發中之一者提供至光學源205以使得光學源205產生光脈衝。每次產生脈衝時,控制系統150可將觸發340發送至源205。因此,由光學源205產生之脈衝的重複率(兩個緊鄰脈衝之間的時間)可由觸發信號330設定。在圖3C之實例中,兩個緊鄰脈衝之間的時間為兩個緊鄰觸發之間的時間,且經展示為Δt。 如上文所論述,當藉由將電壓施加至電極217來泵浦增益介質219時,增益介質219發射出光。當將電壓以脈衝形式施加至電極217時,自介質219發射出的光亦經脈衝。因此,藉由電壓被施加至電極217時的速率判定脈衝光束260之重複率,其中每次施加電壓造成一光脈衝。光脈衝傳播通過增益介質219且通過輸出耦合器218退出腔室214。因此,藉由將電壓週期性重複地施加至電極217而產生脈衝列。觸發信號330 (例如)可用於控制將電壓施加至電極217及脈衝之重複率,對於大部分應用而言脈衝之重複率的範圍可介於約500與6,000 Hz之間。在一些實施中,該重複率可大於6,000 Hz,且可為(例如) 12,000 Hz或更大。 亦可使用來自控制系統150之信號以控制分別在主控振盪器212及功率放大器230內之電極217、241,以便控制主控振盪器212及功率放大器230之對應脈衝能量,且因此控制光束260之能量。重複脈衝光束260可具有數十瓦範圍內(例如約50 W至約130 W)之平均輸出功率。光束260在輸出端之輻照度(亦即每單位面積之平均功率)的範圍可介於60 W/cm2
至80 W/cm2
。由光學源205產生之能量的量可藉由改變施加至電極217及/或電極241之電壓的量來調整。由光學源產生之脈衝中之能量的量與施加至電極217及/或電極241之電壓之間的關係為非線性的。 亦參看圖4,曲線400展示與光學系統之輸入及輸出相關的例示性增益關係472。該光學系統可為(例如)主控振盪器212及/或功率放大器230或光學源205。光學系統之輸出可為(例如)由主控振盪器212及/或功率放大器230產生之光學能量,或由光學源205 (包括主控振盪器212及功率放大器230)產生之光學能量。該輸入可為(例如)施加至電極217及/或電極241之電壓的量。 該光學系統具有自I(min)至I(max)之輸入的範圍,如圖4中之x軸上所展示。輸入之範圍具有自O(min)至O(max)之輸出的對應範圍,如圖4中之y軸上所展示。最小輸出O(min)為在最小輸入I(min)時產生之光學系統的輸出,且最大輸出O(max)為由光學系統回應於最大輸入I(max)的施加而產生之輸出。增益關係472係非線性的。換言之,光學系統之輸出不隨光學系統之輸入而線性地改變。如下文所論述,控制系統150補償增益關係472之非線性。 為產生光脈衝i,將輸入I(i) (例如電壓)施加至光學系統。該光學系統產生輸出O(i)以作為回應。輸出O(i)可為由光學系統產生的光脈衝i中之光學能量的量。為產生光脈衝i,光學系統在操作點474處操作,該操作點由輸入I(i)的值及輸出O(i)的值定義。在操作點474附近,增益關係472具有局部斜率475。局部斜率475為在輸入471i與輸出471o之範圍內之增益關係472的斜率。局部斜率475具有增益關係472之充分小的部分以使得局部斜率475為線性的。舉例而言,可使用補償整個輸入範圍之10%或更少之量測值來判定斜率475。如下文關於圖6所論述,自輸入關於操作點474之範圍之輸出的量測值來判定斜率475。由於增益關係472為非線性的,因此增益關係472在其他操作點附近之斜率可為不同的。另外,歸因於光學系統之特性,可假設增益關係472之斜率在某些操作點為已知的。舉例而言,光學系統在提供最大輸入時達到飽和狀態。因此,增益關係472之斜率在最大輸入處為零(經展示為圖4中之操作點476)。 如下文所論述,控制系統150基於所量測資訊之相對有限的量來評估增益關係472。增益關係472可隨時間改變且可隨光學系統產生光而更新。舉例而言,可針對由光學系統產生之每一脈衝來更新增益關係472。以此方式,控制系統150適應於增益關係472中之變化,且改良光學源及/或包括該光學系統之微影系統的效能。另外,不同光學系統可具有不同增益關係。由於控制系統150在光學系統之操作期間評估並判定增益關係472,因此控制系統150不限於與特定光學系統或特定類型之光學系統一起使用。控制系統150基於光學系統之已知行為使用所量測資料及假定之相對較少的量在光學系統之操作期間評估增益關係472。 參看圖5,展示例示性光學微影系統500之方塊圖。系統500包括光學源505,該光學源將脈衝光束560 (由虛線表示)提供至微影曝光裝置115。光學源505可類似於光學源105及205,或光學源505可為光學源205之組件。舉例而言,光學源505可為主控振盪器212或功率放大器230中之任一者。光學源505具有非線性增益關係(諸如圖4之非線性增益關係472)。控制系統550將輸入信號552提供至光學源505,且光學源505回應於輸入信號552而產生光束560。光學源505根據輸入信號552中之資訊及/或資料產生脈衝光束560。 在第(i-1)個脈衝傳遞通過微影曝光裝置115之後,控制系統550自微影曝光裝置115之控制系統123接收控制信號551(i-1)。控制信號551(i-1)包括指示光學源505之能量目標之資訊,且控制信號551(i-1)亦可包括指示在微影曝光裝置115或光學源505與裝置115之間所量測能量之量的資訊。能量目標為晶圓曝光過程之能量的期望量。控制系統550處理控制信號551(i-1)且判定在施加至光學源505時將產生具有能量之期望量之光脈衝的電壓的量。控制系統550基於所判定電壓而產生控制信號552(i),且將信號552提供至光學源505。信號552含有足以使電壓源或光學源505處的其他機構將指定量的電壓施加至電極之資訊。回應於電極之激勵,光學源505產生光束560之脈衝i。脈衝i傳播至微影曝光裝置115。 在光束160傳播至微影曝光裝置115之後,(例如藉由偵測器122)量測在微影曝光裝置115處之能量的實際量。控制系統123產生包括指示脈衝i中之能量之所量測的量之資訊的控制信號551(i)。控制信號551(i)亦可包括額外資訊,諸如靶向能量。藉由控制信號551(i)指示之靶向能量可與藉由控制信號551(i-1)指示之靶向能量相同或不同。當系統100運行時繼續提供控制信號551及552之情況且可針對由光學源505產生之每一脈衝來提供。 控制系統550包括補償模組554及增益評估器555,增益評估器555包括緩衝器556。補償模組554包括調適模組553。補償模組554使用展示於等式(1)中之三次多項式對光學源505之增益關係建模: E(V) = aV3
+ bV2
+ cV + d 等式(1), 其中E為光學源505之輸出(例如光脈衝中之光學能量)的評估,V為光學源505之輸入(例如施加至光學源505中之光學系統之電極的電壓),且a、b、c及d為具有未知初始值的三次多項式之係數。如下文關於圖6所論述,V可為已低通濾波之電壓。根據基於光學源505之已知特性及行為的假設及量測值而判定係數a、b、c及d之值。舉例而言,基於假設及量測值之四個等式可經求解以提供係數a、b、c及d之值的評估。該等四個等式可為下文論述之等式(2)至(5),開始於等式2: E(Vm
) = Em
等式(2)。 在等式中,Em
及Vm
為量測值,其中Em
為由光學系統回應於施加至光學系統之電壓Vm
而產生之能量。Em
可為經許多脈衝所產生能量之平均值,且Vm
可為用以產生彼等脈衝所施加電壓之平均值。使用平均值可最小化或降低雜訊對係數a、b、c及d之值的評估雜訊的影響。同時,Vm
及Em
表示光學系統之所量測操作點。舉例而言,Em
(i)為脈衝i中之能量,且Vm
(i)為用以產生脈衝i而施加至光學系統之電壓。等式(3)至(5)係如下: E(Vmin
) = Emin
等式(3), 其中Emin
為當將最小量的電壓施加至電極時由光學源505產生之能量, E(Vmax
) = Emax
等式(4), 其中E(Vmax
)為當將最可能的電壓施加至電極時由光學源505產生之能量,等式(5), 其中s為在最可能電壓處的增益關係之斜率。假設增益關係之斜率在Vmax
處為已知的。舉例而言,可假設在Vmax
處增益關係之斜率為零。所假設斜率可為經校正一次之參數(例如當光學源505製造或安裝於消費者位點處時)或針對光學源505週期性地判定之參數(例如每當光學源505服務時或在預定及週期時間間隔時)。因此,假設等式(5)中之s為零。在等式(3)及(4)中,Vmin
及Vmax
為表示可施加至光學系統之電壓之極限的固定值。可基於光學源505之特性來假設Vmin
及Vmax
的值。Emin
及Emax
表示當分別將Vmin
及Vmax
之電壓施加至電極時由光學源505產生之能量的量。等式(2)至(5)經求解以判定未知係數a、b、c及d的值。在給出輸入電壓處所量測之輸出能量與由補償模組554預測之能量之間的任何誤差用以評估光學系統之增益關係,如關於圖6更詳細地論述。 增益評估器555包括緩衝器556。控制系統550亦包括電子儲存器557、電子處理器558,及輸入/輸出介面559。在一些實施中,緩衝器556為電子儲存器557之部分。緩衝器556可儲存所量測資料,諸如回應於輸入電壓而產生之所量測能量。 電子處理器558包括適用於執行電腦程式之一或多個處理器,諸如一般或特殊用途微處理器,及具有任何種類數位電腦之任何一或多個處理器。大體而言,處理器自唯讀記憶體或隨機存取記憶體或兩者接收指令及資料。電子處理器558可為任何類型之電子處理器。 電子儲存器557可為諸如RAM之揮發性記憶體或非揮發性記憶體。在一些實施中,且電子儲存器557可包括非揮發性部分或組件及揮發性部分或組件兩者。電子儲存器557儲存可能作為電腦程式的指令,該等指令在被執行時使處理器558與控制系統550、微影曝光裝置115及/或光學源505中之其他組件通信。舉例而言,該等指令可為使得電子儲存器557儲存所量測電壓及緩衝器556中之能量值的指令。該等指令可為使得電子處理器558分析所儲存資料並基於該所儲存資料產生電壓信號的指令。 I/O介面559為允許控制系統550與操作員、光學源505及/或在另一電子器件上運行的自動化過程接收及/或提供資料及信號之任何種類的電子介面。舉例而言,I/O介面559可包括視覺顯示器、鍵盤或通信介面中之一或多者。 圖6為用以控制諸如光學源105或光學源205之光學源之例示性方法600的流程圖。光學源可為光學源之子系統,諸如主控振盪器212或功率放大器230。實例方法600可(例如)由控制系統150或控制系統550執行。關於圖5之光學系統500來論述方法600。在方法600之論述中,光束560之脈衝由(i)索引。因此,對於脈衝i,脈衝i-1為在脈衝i之前在時間上立即產生之脈衝,且脈衝i+1為緊接在脈衝i之後在時間上產生之脈衝。表示為552(i)之控制信號552的實例為施加至光學源505以產生第i個脈衝之控制信號552。表示為551(i)之控制信號551的實例為在第i個脈衝已達到微影曝光裝置115之後所接收到的控制信號551。 控制系統550存取由光學系統產生之能量的量之指示(605)。在一些實施中,能量的量之所存取指示可為已進入微影曝光裝置115且曝光晶圓120的脈衝之能量。在此等實施中,所存取指示為於偵測器122處所量測之能量的量之指示。控制系統可藉由接收控制信號151 (諸如控制信號551(i))之實例且處理信號以提取指示所接收能量的量之資料來存取在偵測器122處所量測能量的量之指示。 能量的量之所存取指示可為在微影系統中之其他處之能量的量之指示。舉例而言,在一些實施中,由光學系統產生之能量的量之指示可為發射自尚未進入微影曝光裝置115之光學源505之脈衝中之能量的量之指示。在此等實施中,能量的量之指示可來自接收隨脈衝傳播朝向微影曝光裝置115之脈衝之部分的感測器或偵測器。在一些實施方案中,由光學源505產生之能量的量之指示可為在光學源505內所量測之能量的量之指示。 控制系統550存取施加至光學源505之電壓的量(610)。舉例而言,控制系統550可存取與所量測的能量的量相關聯的施加至光學源505及/或光學源505之組件的電壓的量。與所量測的能量的量相關聯的電壓為施加至光學源以產生所量測能量之電壓。在此實例中,所量測能量來自脈衝i,且與所量測能量相關聯的施加至光學源505的電壓為由控制信號552(i)指示之電壓。所量測能量的量及所施加電壓的量表示光學源505之所量測操作點(V(i),E(i)),其中V(i)為經施加以產生脈衝i之電壓,且E(i)為脈衝i之所量測能量。所量測操作點值V(i)及E(i)可儲存於緩衝器556或電子儲存器557中。緩衝器556累積複數個脈衝中之每一者的所量測操作點值,且可儲存由光學源505產生之每一脈衝之所量測操作點值。在一些實施中,緩衝器556可儲存50個脈衝之所量測操作點。 另外,儲存於緩衝器556中之所量測操作點值可經低通濾波以除去與其他所量測操作點相差極大之任何所量測操作點。舉例而言,應用低通濾波器可除去或消除具有接近Emax
之能量的所量測操作點。具有接近或位於Emax
之能量的操作點可指示誤差條件。此外,所量測值可經高通濾波。應用高通濾波器可除去能量或電壓中之緩慢偏移的影響。因此,過濾緩衝器556中之資料可除去或降低在誤差條件中獲得之所量測操作點的影響。 可對補償模組554 (其基於等式(1)來評估光學源505之增益關係)及增益評估器555 (其使用儲存於緩衝器556中之資料來評估在光學源505之操作點處的增益關係之斜率)使用不同濾波器。低通濾波器可應用於用於補償模組554中之資料,且高通濾波器可應用於用於增益評估器555中之資料。等式(6)為可應用於儲存於緩衝器556中之資料的低通濾波器之實例。等式(6)為基於所量測電壓(V)來判定低通濾波器電壓Vlpf
之低通濾波器結構之實例: Vlpf
(i) = Vlpf
(i-1)+ FG*(V(i)-Vlpf
(i-1)) 等式(6), 其中Vlpf
(i)為脈衝i之低通濾波電壓,Vlpf
(i-1)為脈衝i-1之低通濾波器電壓(因此,此值為先前已計算且已知),V(i)為脈衝i之所量測電壓,且FG為濾波增益。FG為可調整的且已知的數值,其為低通濾波器之參數。等式(6)之低通濾波器可幫助降低雜訊之影響及非典型量測值。舉例而言,等式(6)之低通濾波器可降低所量測電壓之影響,該所量測電壓比與其他脈衝相關之所量測電壓大得多。當使用等式(2)至(5)評估係數a、b、c及d時,可使用低通濾波電壓Vlpf
而非所量測電壓V。針對V=Vlpf
,低通濾波能量Elpf
為藉由等式(1)之模型預測之能量。 另外,所量測電壓及能量值可經高通濾波。等式(7)及等式(8)為可用於對所量測電壓及能量值進行高通濾波之高通濾波器結構之實例: Vhpf
(i) = FG*Vhpf
(i-1) + (V(i)-V(i-1)) 等式(7), 其中Vhpf
(i)為脈衝i之高通電壓值,Vhpf
(i-1)為脈衝i-1之高通電壓值(因此,此值為先前已計算且已知),V(i)為脈衝i之所量測電壓,FG為濾波增益,且V(i-1)為脈衝i-1之所量測電壓。該高通濾波器之濾波增益可不同於低通濾波器之濾波增益。等式(8)係如下: Ehpf
(i) = FG*Ehpf
(i-1) + (E(i)-E(i-1)) 等式(8), 其中Ehpf
(i)為脈衝i之高通濾波能量值,Ehpf
(i-1)為脈衝i-1之高通濾波能量值(因此,此值為先前已計算且已知),FG為濾波增益,E(i)為脈衝i之所量測能量,且E(i-1)為脈衝i-1之所量測能量。 高通濾波器(諸如等式(7)及等式(8)之高通濾波器)可幫助防止所量測能量及/或電壓之緩慢偏移的存在而破壞增益關係之評估。如等式(7)及等式(8)中所展示,相同高通濾波器結構可用於對能量及電壓進行高通濾波。高通濾波電壓及/或能量值可儲存(例如)於緩衝器556及/或電子儲存器557中。 根據預期的能量之量及所量測的能量之量來判定能量誤差(615)。預期的能量之量Eo(i)為使用等式(1)藉由補償模組554評估之能量的量及所存取之電壓V(i)的量。換言之,預期的能量之量Eo(i)為藉由增益關係預測之能量的量,如由等式(1)表達,其中等式(1)的V為V(i),其表示實際上施加至光學源505之電極以產生脈衝i之電壓的量。表達於等式(1)中之模型中的係數a、b、c及d如參看圖5所論述而判定。脈衝i之能量誤差Eerr
(i)藉由比較預期的能量之量Eo(i)與所量測的能量之量E(i)來判定。舉例而言,該能量誤差Eerr
可為預期的能量之量與所量測的能量之量之間的差值,如等式(9)中所展示:等式(9), 其中E為所量測的能量之量,且Eo為基於等式(1)之預測的或預期的能量之量。 基於判定值來評估增益關係於(E(i),V(i)) (其為產生脈衝i之光學源505之所量測操作點)處之經評估局部斜率(620)。該增益關係之經評估局部斜率可藉由增益評估器555來評估。經評估局部斜率可使用涵括整個輸入範圍之部分之輸入值來評估,且該部分可為光學源之整個輸入範圍的10%或更少。該增益關係於(E(i),V(i))處之斜率由m(i)表示。該局部斜率m藉由增益評估器555來判定且係基於儲存於緩衝器556中之操作點資料。儲存於緩衝器556中之操作點資料可為已分別根據等式(7)及(8)經高通濾波之電壓及能量值。亦參看圖4,假設該局部斜率m為線性的。基於等式(10)使用N個脈衝(索引為i)之資料來評估局部斜率m:等式(10), 其中及分別為等式(8)及等式(7)中判定之高通濾波電壓及能量值,且儲存於緩衝器556中,且N為來自緩衝器556之樣本的數目。舉例而言,N可為50。局部斜率m可使用緩衝器556中之資料的全部或部分來評估。舉例而言,局部斜率m可僅使用具有充分地接近於當前所量測電壓值V(i)及能量值E(i)之電壓及/或能量值的操作點值來評估。舉例而言,局部斜率m可使用操作點值來評估,其中操作點之電壓與V(i)之間的差值之絕對值不超過預定臨限值以幫助確保所評估局部斜率係精確的。 根據所評估局部斜率m及預期斜率mo
來判定斜率誤差(625)。根據等式(1)之模型的第一導數判定該預期斜率mo
,設定V=Vlpf
。增益關係之第一導數表達於等式(11)中:等式(11), 其中V為預期斜率待判定的電壓,mo
為電壓V處之預期或預測斜率,且係數a、b及c如關於圖5所論述而判定。在此實例中,V=Vlpf
(i),其為施加至電極以根據等式(6)產生脈衝(i)之電壓的低通濾波值,且預期斜率為mo
(i),其為於與脈衝i相關之操作點(Vlpf
(i),Elpf
(i))處之預期斜率。 斜率誤差merr
可藉由比較經評估局部斜率m(i)與預期斜率mo
(i)來判定。舉例而言,merr
可為經評估局部斜率m(i)與預期斜率mo
(i)之間的差值,如由等式(12)表達:等式(12), 其中m為於光學源505之操作點處之經評估斜率,且mo
為於彼操作點處之預期斜率。繼續以上實例,對於操作點(Vlpf
(i),Elpf
(i)),m為m(i)且mo
為Mo
(i)。 基於斜率誤差及能量誤差中之一或多者來判定一或多個操作度量值的值(630)。更新光學系統505之增益關係(635)。已更新增益關係將輸入值之全部範圍關聯至對應輸出值。 操作度量值為與光學源505之增益關係相關之任何參數,該增益關係可在源505運行且產生光束160時隨時間改變。操作度量值可為(例如) Emin
及Emax
,其為在分別將最小電壓及最大電壓施加至光學源505時所產生之能量。操作度量值的值基於自光學源505所量測之資料而隨時間調適或改變。操作度量值的值可藉由調適模組553判定且提供至補償模組554。補償模組554使用操作度量值之所判定值來更新光學源505之增益關係。舉例而言,所判定操作度量值可用於使用等式(2)至(5)中使用的操作度量值之已更新值或當前值來判定等式(1)之係數的已更新值或當前值。以此方式,調適模組554將資料提供至允許增益關係之評估隨時間調適之補償模組553。 試探或條件之集合可用於判定如何調適操作度量值。試探可基於(例如)光學源505之已知效能及/或過去效能方法600。試探可評估施加電壓V(i)、低通濾波電壓Vlpf 、
局部斜率m、預期或預測斜率mo
及/或斜率誤差merr
以判定操作度量值或度量值的值之調整或調適。舉例而言,可基於增益評估器555是否正產生已收斂或有可能接近於實際斜率的斜率之評估而判定試探。為判定增益評估器555是否已收斂,比較所量測電壓V(i)與低通濾波電壓Vlpf
,且比較斜率誤差merr
與臨限值。如上文所論述,低通濾波器用以除去遠離額定工作電壓的電壓。若低通濾波電壓與所量測電壓之間的差值高於臨限值,則所量測電壓V(i)有可能為離群值,且增益評估器555之評估有可能尚未收斂。類似地,若merr
之絕對值高於臨限值,則增益評估器555之評估有可能尚未收斂。在此等情形中,等式(9)之能量誤差(Err)用以更新增益關係。舉例而言,且參看圖7A,根據操作點778判定之能量誤差Eerr
用以調適操作度量值Emax
、Emin
及Elpf
且改變增益關係772以使得已更新增益關係772a預測在所量測電壓V(i)處等於E(i)的能量。在此實例中,操作度量值Emax
適用於Emax_
a,Emin
適用於Emin_
a,且Elpf
適用於Elpf_
a。 若差值低於臨限值,則增益評估器555有可能已收斂,且相較於直接電壓量測有可能提供更多可靠資訊。當增益評估器555有可能已收斂時,等式(12)之斜率誤差merr
及經評估局部斜率m用以調適操作度量值Emax
及Emin
。舉例而言,且參看圖7B,增益關係於經展示為778B之操作點(Vlpf
, Elpf
)處之斜率可基於斜率誤差merr
及經評估局部斜率m而設定。用以比較所量測電壓V(i)與低通濾波量測電壓Vlpf
之間的差值的絕對值的臨限值可根據觀測光學源505或根據光學源505之特性(諸如可施加至光學源505之電壓之整個可能的範圍)而判定。 可使用其他試探替代或除基於所量測電壓V(i)與低通濾波電壓Vlpf
之間的差值的試探之外。舉例而言,試探可基於經評估斜率mo
隨輸入電壓增加而降低之規定。 參看圖8,曲線800展示光學源505之例示性經評估斜率(或增益)之曲線圖,該例示性經評估斜率作為經由控制系統150之模擬所得到的脈衝數目之函數。該曲線包括使用僅抖動技術評估的增益(用點線展示)、使用方法600評估之增益mo
(用虛線展示)及所量測增益(用實線展示)。如圖8中所展示,與僅使用抖動來評估增益之技術相比,使用方法600評估之增益更接近於歷經脈衝之整個脈衝串的所量測增益且亦歷經脈衝之整個脈衝串而更持續。此外,使用方法600評估之增益亦更快速地適應導致於脈衝20,000處之實際增益中之改變的系統中之變化。如曲線800中所展示,使用方法600評估之增益接近於在約200個脈衝之後的實際所量測增益。使用僅抖動評估之增益不容易適應於改變。 其他實施係在申請專利範圍之範疇內。舉例而言,方法600可使用在包括用以評估增益關係之抖動信號的舊式系統中,即使使用抖動信號且不改變現有抖動信號之先驗係未知的。在此等實施中,可為施加至光學源之電壓信號的抖動信號作為光學源之所量測輸出之部分反射,且因而在如上文所論述之方法600中被考慮在內。
100‧‧‧光微影系統
105‧‧‧光學源
115‧‧‧微影曝光裝置
120‧‧‧晶圓
122‧‧‧偵測器
123‧‧‧控制系統
124‧‧‧遮罩
125‧‧‧投影光學系統
126‧‧‧狹縫
127‧‧‧投影透鏡
150‧‧‧控制系統
151‧‧‧信號
152‧‧‧信號
160‧‧‧光束
200‧‧‧光微影系統
205‧‧‧光學源
212‧‧‧主控振盪器
214‧‧‧腔室
216‧‧‧線窄化模組
217‧‧‧電極
218‧‧‧輸出耦合器
219‧‧‧增益介質
220‧‧‧線中心分析模組
222‧‧‧光束耦合光學系統
224‧‧‧種子光束
230‧‧‧功率放大器
232‧‧‧光束耦合光學系統
240‧‧‧放電腔室
241‧‧‧電極
252‧‧‧光束轉向元件
260‧‧‧輸出光束
262‧‧‧頻寬分析模組
300‧‧‧晶圓曝光信號
305‧‧‧高位值
307‧‧‧時段
310‧‧‧低位值
315‧‧‧閘信號
316‧‧‧脈衝串
320‧‧‧高位值
325‧‧‧低位值
330‧‧‧觸發信號
340‧‧‧觸發
400‧‧‧曲線
471i‧‧‧輸入
471o‧‧‧輸出
472‧‧‧增益關係
474‧‧‧斜率
475‧‧‧局部斜率
476‧‧‧操作點
500‧‧‧光學微影系統
505‧‧‧光學源
550‧‧‧控制系統
551‧‧‧控制信號
552‧‧‧輸入信號
553‧‧‧調適模組
554‧‧‧補償模組
555‧‧‧增益評估器
556‧‧‧緩衝器
557‧‧‧電子儲存器
558‧‧‧電子處理器
559‧‧‧輸入/輸出介面
560‧‧‧脈衝光束
600‧‧‧方法
605‧‧‧步驟
610‧‧‧步驟
615‧‧‧步驟
620‧‧‧步驟
625‧‧‧步驟
630‧‧‧步驟
635‧‧‧步驟
772‧‧‧增益關係
772a‧‧‧已更新增益關係
778‧‧‧操作點
778B‧‧‧操作點
圖1A為光微影系統之實例的方塊圖。 圖1B為使用於圖1A之光微影系統中之遮罩之實例的方塊圖。 圖2為另一例示性光微影系統之方塊圖。 圖3A、圖3B及圖3C為用以控制光學源(其為光微影系統之部分)之信號之實例的曲線。 圖4、圖7A及圖7B為例示性增益關係之曲線圖。 圖5為另一例示性光微影系統之方塊圖。 圖6為用於控制光微影系統中之光學源的例示性方法之流程圖。 圖8為作為產生脈衝光束的光學源的脈衝數目之函數的例示性仿真增益之曲線圖。
Claims (20)
- 一種方法,其包含: 存取一光微影系統之一光學源之一輸出的一指示,該光學源與輸入值之一範圍及輸出值之一對應範圍相關; 存取提供至該光微影系統之該光學源之一輸入的一指示,該所提供輸入與該光學源之該輸出之該所存取指示相關; 根據一預期輸出量及該光學源之該輸出的該所存取指示來判定一輸出誤差; 評估與提供至該光學源之該輸入的該所存取指示相關的一局部增益; 根據該經評估局部增益及一預期局部增益來判定一增益誤差; 基於該輸出誤差及該增益誤差中之一或多者來評估該光學源之一或多個操作度量值之一當前值;以及 基於該一或多個操作度量值之該經評估當前值來更新該光學源之一增益關係,該增益關係將輸入值之該範圍關聯至預期輸出值之一對應範圍。
- 如請求項1之方法,其中 該等輸入值包含電壓值, 該等輸出值包含能量值,且 該一或多個操作度量值包含一最小輸出能量及一最大輸出能量,該最小輸出能量為由該光學源回應於一最小電壓輸入之施加而產生的能量之一量,該最大輸出能量為由該光學源回應於一最大輸入電壓之施加而產生的能量之一量。
- 如請求項2之方法,其中該增益關係包含由四個係數定義之一三次多項式,且該方法進一步包含: 基於該光學源之該輸出之該所存取指示、該光學源之該輸出之該所存取指示、該增益關係於該光學源之一最大輸入處之一假定斜率、一假定最小輸入值、一假定最大輸入值及該一或多個操作度量值之該經評估當前值來判定該等四個係數中之每一者之一值。
- 如請求項3之方法,其進一步包含: 根據一初始增益關係來判定該預期輸出量,該初始增益關係包含由四個係數定義之一三次多項式;以及 基於該光學源之該輸出之該所存取指示、該光學源之該輸出之該所存取指示、該增益關係於該光學源之一最大輸入處之一假定斜率、該假定最小輸入值、該假定最大輸入值及該一或多個操作度量值之一已知值來判定該等四個係數中之每一者之一值。
- 如請求項4之方法,其中一或多個操作度量值之該已知值為一假定值或一先前判定值。
- 如請求項4之方法,其進一步包含根據該初始增益關係及提供至該光學源之該輸入之該所存取指示來判定該預期局部增益。
- 如請求項6之方法,其中判定該預期局部增益量包含使用一增益評估器,該增益評估器包含經組態以儲存增益資料之一緩衝器,該增益資料包含該光學源之複數個操作點,每一操作點包含提供至該光學源之一輸入及該光學源之一對應輸出。
- 如請求項7之方法,其中該複數個操作點中之每一者包含提供至該光學源之電壓之一量及於一微影曝光裝置中之一感測器處的能量之一所量測的量。
- 如請求項7之方法,其中使用該增益評估器判定該預期局部增益量包含判定一直線之一斜率,該斜率表示該等電壓量中之至少一些與儲存於該緩衝器中之所量測能量之該等對應量之間的一線性關係。
- 如請求項1之方法,其進一步包括: 使用該已更新增益關係來判定提供至該光學源之一輸入; 產生表示提供至該光學源之該所判定輸入之一信號;以及 將該所產生信號提供至該光學源。
- 如請求項1之方法,其進一步包含: 對該輸出之該所存取指示濾波以產生一濾波輸出;以及 對一輸入之該所存取指示濾波以產生一濾波輸入,其中 判定一輸出誤差包含基於該濾波輸出及該預期輸出量來判定一輸出誤差。
- 如請求項1之方法,其中該光學源經組態以發射一脈衝光束,且針對該光束中之複數個時間上連續的脈衝中之每一脈衝更新該增益關係。
- 一種控制一光微影系統中之一光學源之方法,該方法包含: 接收與該光學源之一輸出度量值相關的一量測值之一指示,該量測值與由該光學源產生的一光脈衝中之一能量相關; 存取與該光學源相關的一操作度量值之一值; 基於該輸出度量值之該量測值之該指示及該操作度量值之該值來評估該輸出度量值與一輸入度量值之間的一關係,該輸入度量值與施加至該光學源之激勵的一量相關; 根據該經評估關係來判定該輸出參數之一預期值; 比較該量測值之該指示與該預期值以判定一誤差度量值; 基於該所判定誤差度量值來調整該操作度量值的該值及該經評估關係; 基於該經調整評估關係來調整與該光學源相關的該輸入度量值之一值;以及 將該輸入度量值之該調整值提供至該光學源,其中針對自該光學源發射之複數個光學脈衝中之每一者調整該輸出度量值與該輸入度量值之間的該經評估關係,該複數個脈衝包含時間上連續的至少一些脈衝。
- 如請求項13之方法,其中該輸出度量值包含自該光學源發射之一光學脈衝之一能量,且該輸入度量值包含經組態以施加至該光學源之一組件的電壓之一量。
- 如請求項14之方法,其中該光束之一所量測能量之該指示為於藉由該光微影系統之一微影曝光裝置曝光的一晶圓處所量測之一能量,且該所量測能量之該指示自該微影曝光裝置接收。
- 如請求項13之方法,其中存取一操作度量值之一值包含存取一最小輸出能量及一最大輸出能量之一值,該最小輸出能量為由該光學源回應於一最小電壓輸入之施加而產生的能量之一量,該最大輸出能量為由該光學源回應於一最大輸入電壓之施加而產生的能量之一量。
- 一種光微影系統,其包含: 一光學源,其經組態以發射一脈衝光束; 一微影曝光裝置,其包含一光學系統,該光學系統經安置以於該光學系統之一第一側面處自該光學源接收該脈衝光束,且於該光學系統之一第二側面處發射該脈衝光束;以及 一控制系統,其耦接至該光學源及該微影曝光裝置,該控制系統經組態以: 存取與該光學源相關的一操作度量值之一值; 基於該所量測能量之該指示及該操作度量值之該值來評估定義該光學源之一輸出度量值與一輸入度量值之間的一關係的一或多個參數; 根據該關係來判定該輸出度量值之一預期值; 比較該量測值之該指示與該預期值以判定一誤差度量值; 基於該所判定誤差度量值來調整該操作度量值之該值及該增益關係; 基於該經調整增益關係來調整與該光學源相關的該輸入度量值之一值;以及 將該輸入度量值之該調整值提供至該光學源。
- 如請求項17之光微影系統,其中該輸入度量值包含一電壓量,且經組態以將該輸入參數之該調整值施加至該光學源之該控制系統包含經組態以提供一信號的該控制系統,該信號包含指示待施加至該光學源之一組件的電壓之量的資訊。
- 如請求項17之光微影系統,其中該光學源包含:電極及一增益介質,且其中該控制系統經組態以提供包含指示待施加至該光學源之該等電極的電壓之量的資訊的一信號。
- 如請求項17之光微影系統,其中該微影曝光裝置經組態以於該光學系統之該第二側面處接收一晶圓且進一步包含於該微影曝光裝置之該光學系統的該第二側面處之一感測器,該感測器經組態以量測於該光學系統之該第二側面處之光學能量的一量且將於該光學系統之該第二側面處之該所量測的能量之量之該指示提供至該控制系統。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/262,452 US10036963B2 (en) | 2016-09-12 | 2016-09-12 | Estimating a gain relationship of an optical source |
US15/262,452 | 2016-09-12 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201812257A true TW201812257A (zh) | 2018-04-01 |
TWI642914B TWI642914B (zh) | 2018-12-01 |
Family
ID=61559817
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW106130715A TWI642914B (zh) | 2016-09-12 | 2017-09-08 | 控制光微影系統中之光學源之方法及光微影系統 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10036963B2 (zh) |
CN (1) | CN109690400B (zh) |
NL (1) | NL2019441A (zh) |
TW (1) | TWI642914B (zh) |
WO (1) | WO2018048602A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI773023B (zh) * | 2019-12-18 | 2022-08-01 | 美商希瑪有限責任公司 | 用於深紫外線(duv)光學微影之系統及方法、控制光學源裝置之方法、及用於光學源裝置之控制模組 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102669702B1 (ko) * | 2019-10-11 | 2024-05-24 | 사이머 엘엘씨 | 방전 레이저용 도전성 부재 |
Family Cites Families (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5097291A (en) * | 1991-04-22 | 1992-03-17 | Nikon Corporation | Energy amount control device |
KR100210569B1 (ko) * | 1995-09-29 | 1999-07-15 | 미따라이 하지메 | 노광방법 및 노광장치, 그리고 이를 이용한 디바이스제조방법 |
US6458605B1 (en) | 2001-06-28 | 2002-10-01 | Advanced Micro Devices, Inc. | Method and apparatus for controlling photolithography overlay registration |
US6646790B2 (en) | 2002-01-28 | 2003-11-11 | Nortel Networks Limited | Optical amplifier gain control monitoring |
US8654438B2 (en) * | 2010-06-24 | 2014-02-18 | Cymer, Llc | Master oscillator-power amplifier drive laser with pre-pulse for EUV light source |
JP4278922B2 (ja) * | 2002-05-30 | 2009-06-17 | パイオニア株式会社 | パワーコントロール装置 |
US7486705B2 (en) * | 2004-03-31 | 2009-02-03 | Imra America, Inc. | Femtosecond laser processing system with process parameters, controls and feedback |
JP4942301B2 (ja) * | 2004-11-30 | 2012-05-30 | 新光電気工業株式会社 | 直接露光装置および直接露光方法 |
JP5147167B2 (ja) | 2005-07-29 | 2013-02-20 | キヤノン株式会社 | 決定方法及びプログラム |
US7822084B2 (en) * | 2006-02-17 | 2010-10-26 | Cymer, Inc. | Method and apparatus for stabilizing and tuning the bandwidth of laser light |
US8518030B2 (en) * | 2006-03-10 | 2013-08-27 | Amo Manufacturing Usa, Llc | Output energy control for lasers |
US7868999B2 (en) * | 2006-08-10 | 2011-01-11 | Asml Netherlands B.V. | Lithographic apparatus, source, source controller and control method |
US7505148B2 (en) | 2006-11-16 | 2009-03-17 | Tokyo Electron Limited | Matching optical metrology tools using spectra enhancement |
JP4972427B2 (ja) * | 2007-02-15 | 2012-07-11 | 株式会社小松製作所 | 高繰返し動作が可能で狭帯域化効率の高いエキシマレーザ装置 |
KR20090021875A (ko) * | 2007-08-28 | 2009-03-04 | 삼성전자주식회사 | 레티클 얼라인용 조명 시스템을 포함하는 포토리소그래피장치 |
JP5008630B2 (ja) * | 2007-10-02 | 2012-08-22 | エーエスエムエル ネザーランズ ビー.ブイ. | リソグラフィ装置およびデバイス製造方法 |
CN101452212B (zh) * | 2007-12-06 | 2010-09-08 | 上海华虹Nec电子有限公司 | 投影式光刻机 |
KR100912366B1 (ko) | 2008-01-08 | 2009-08-19 | 고려대학교 산학협력단 | 광학현미경을 이용한 포토리소그래피 시스템 |
EP2086269B1 (en) | 2008-01-31 | 2017-03-15 | Mediatek Inc. | A transmit power controller |
JP5330801B2 (ja) * | 2008-11-04 | 2013-10-30 | 三菱重工業株式会社 | レーザ利得媒質、レーザ発振器及びレーザ増幅器 |
JP5368261B2 (ja) * | 2008-11-06 | 2013-12-18 | ギガフォトン株式会社 | 極端紫外光源装置、極端紫外光源装置の制御方法 |
US8254420B2 (en) | 2009-11-18 | 2012-08-28 | Cymer, Inc. | Advanced laser wavelength control |
JP6054028B2 (ja) * | 2011-02-09 | 2016-12-27 | ギガフォトン株式会社 | レーザ装置および極端紫外光生成システム |
US8811440B2 (en) * | 2012-09-07 | 2014-08-19 | Asml Netherlands B.V. | System and method for seed laser mode stabilization |
US9715180B2 (en) * | 2013-06-11 | 2017-07-25 | Cymer, Llc | Wafer-based light source parameter control |
US9599510B2 (en) | 2014-06-04 | 2017-03-21 | Cymer, Llc | Estimation of spectral feature of pulsed light beam |
US9357625B2 (en) * | 2014-07-07 | 2016-05-31 | Asml Netherlands B.V. | Extreme ultraviolet light source |
US9261794B1 (en) * | 2014-12-09 | 2016-02-16 | Cymer, Llc | Compensation for a disturbance in an optical source |
US9939732B2 (en) * | 2015-10-27 | 2018-04-10 | Cymer, Llc | Controller for an optical system |
US9762023B2 (en) * | 2015-12-21 | 2017-09-12 | Cymer, Llc | Online calibration for repetition rate dependent performance variables |
-
2016
- 2016-09-12 US US15/262,452 patent/US10036963B2/en active Active
-
2017
- 2017-08-17 WO PCT/US2017/047437 patent/WO2018048602A1/en active Application Filing
- 2017-08-17 CN CN201780055440.9A patent/CN109690400B/zh active Active
- 2017-08-24 NL NL2019441A patent/NL2019441A/en unknown
- 2017-09-08 TW TW106130715A patent/TWI642914B/zh active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI773023B (zh) * | 2019-12-18 | 2022-08-01 | 美商希瑪有限責任公司 | 用於深紫外線(duv)光學微影之系統及方法、控制光學源裝置之方法、及用於光學源裝置之控制模組 |
Also Published As
Publication number | Publication date |
---|---|
WO2018048602A1 (en) | 2018-03-15 |
TWI642914B (zh) | 2018-12-01 |
US10036963B2 (en) | 2018-07-31 |
CN109690400B (zh) | 2021-01-12 |
CN109690400A (zh) | 2019-04-26 |
US20180074412A1 (en) | 2018-03-15 |
NL2019441A (en) | 2018-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102028679B1 (ko) | 광원을 위한 파장 안정화 기술 | |
CN112799288B (zh) | 用于光学系统的控制器 | |
JP6538843B2 (ja) | 光源内の外乱の補償 | |
TWI625906B (zh) | 用於在氣體放電光源中之氣體最佳化的方法 | |
TWI642914B (zh) | 控制光微影系統中之光學源之方法及光微影系統 | |
JP2902172B2 (ja) | 露光装置 | |
JP7430799B2 (ja) | 光源のための制御システム | |
JP2008153645A (ja) | パルス放射線源の放出される放射線の出力の平均を安定化するための方法及び装置 | |
KR102243883B1 (ko) | 포토리소그래피를 위한 디더 프리 적응형 로버스트 선량 제어 방법 | |
JP2785157B2 (ja) | 光量制御装置および露光装置 | |
WO2016171964A1 (en) | Beam position sensor | |
TWI773023B (zh) | 用於深紫外線(duv)光學微影之系統及方法、控制光學源裝置之方法、及用於光學源裝置之控制模組 | |
TW202416061A (zh) | 光學屬性判定之設備、系統及方法 | |
TW202418005A (zh) | 光學系統及主動控制光學總成之腔室長度的系統 | |
KR20230042590A (ko) | 예측성 교정 스케줄링 장치 및 방법 |