TW201810271A - Five-transistor static random access memory for effectively preventing the difficulty of writing logic 1 in the write mode and improving the read speed in the read mode while avoiding unnecessary power consumption - Google Patents
Five-transistor static random access memory for effectively preventing the difficulty of writing logic 1 in the write mode and improving the read speed in the read mode while avoiding unnecessary power consumption Download PDFInfo
- Publication number
- TW201810271A TW201810271A TW105121894A TW105121894A TW201810271A TW 201810271 A TW201810271 A TW 201810271A TW 105121894 A TW105121894 A TW 105121894A TW 105121894 A TW105121894 A TW 105121894A TW 201810271 A TW201810271 A TW 201810271A
- Authority
- TW
- Taiwan
- Prior art keywords
- nmos transistor
- voltage
- control signal
- read
- node
- Prior art date
Links
Landscapes
- Static Random-Access Memory (AREA)
Abstract
Description
本發明係有關於一種5T單埠靜態隨機存取記憶體(Static Random Access Memory,簡稱SRAM),尤指一種有效提高單埠SRAM之待機效能,並能有效提高讀取速度與有效降低漏電流(leakage current)且能有效避免無謂的功率耗損之單埠SRAM。 The invention relates to a 5T port static random access memory (SRAM), in particular to a method that effectively improves the standby performance of the port SRAM, and can effectively improve the reading speed and reduce the leakage current ( Leakage current) and can effectively avoid unnecessary power loss in the port SRAM.
習知之5T靜態隨機存取記憶體(SRAM)如第1a圖所示,其主要包括一記憶體陣列(memory array),該記憶體陣列係由複數個記憶體區塊(memory block,MB1、MB2等)所組成,每一記憶體區塊更由複數列記憶體晶胞(a plurality of rows of memory cells)與複數行記憶體晶胞(a plurality of columns of memory cells)所組成,每一列記憶體晶胞與每一行記憶體晶胞各包括有複數個記憶體晶胞;複數條字元線(word line,WL1、WL2等),每一字元線對應至複數列記憶體晶胞中之一列;以及複數位元線對(bit line pairs,BL1、BLB1...BLm、BLBm等),每一位元線對係對應至複數行記憶體晶胞中之一行,且每一位元線對係由一位元線(BL1...BLm)及一互補位元線(BLB1...BLBm)所組成。 As shown in Figure 1a, the conventional 5T static random access memory (SRAM) mainly includes a memory array. The memory array is composed of a plurality of memory blocks (MB 1 , MB 2 and so on), each memory block is further composed of a plurality of rows of memory cells and a plurality of columns of memory cells. A column of memory cells and each row of memory cells each include a plurality of memory cells; a plurality of word lines (word lines, WL 1 , WL 2 etc.), each character line corresponds to a plurality of rows of memory One column in the unit cell; and multiple bit line pairs (BL 1 , BLB 1 ... BL m , BLB m, etc.), each bit line pair corresponds to one in the multiple row memory cell One row, and each bit line pair is composed of a bit line (BL 1 ... BL m ) and a complementary bit line (BLB 1 ... BLB m ).
第1b圖所示即是6T5T靜態隨機存取記憶體(SRAM)晶胞之電路示意圖,其中,PMOS電晶體(P1)和(P2)稱為負載電晶體(load transistor),NMOS電晶體(M1)和(M2)稱為驅動電晶體(driving transistor),NMOS電晶體(M3)和(M4)稱為存取電晶體(access transistor),WL為字元線(word line),而BL及BLB分別為位元線(bit line)及互補位元線(complementary bit line),由於該單埠SRAM晶胞需要6個電晶體,且於讀取邏輯0時,為了避免讀取操作初始瞬間(initial instant)另一驅動電晶體導通,節點A之讀取初始瞬間電壓(VAR)必須滿足方程式(1):VAR=VDD×(RM1)/(RM1+RM3)<VTM2 (1) Figure 1b shows a schematic circuit diagram of a 6T5T static random access memory (SRAM) cell. Among them, the PMOS transistors (P1) and (P2) are called load transistors, and the NMOS transistor (M1) ) And (M2) are called driving transistors, NMOS transistors (M3) and (M4) are called access transistors, WL is the word line, and BL and BLB It is a bit line and a complementary bit line, respectively. Since this SRAM cell requires 6 transistors, and to read the logic 0, in order to avoid the initial instant of the read operation (initial instant) The other driving transistor is turned on, and the initial instantaneous voltage (V AR ) read by node A must satisfy the equation (1): V AR = V DD × (R M1 ) / (R M1 + R M3 ) <V TM2 ( 1)
以有效地防止讀取時之半選定晶胞干擾(half-selected cell disturbance),其中,VAR表示節點A之讀取初始瞬間電壓,RM1與RM3分別表示該NMOS電晶體(M1)與該NMOS電晶體(M3)之導通電阻,而VDD與VTM2分別表示電源供應電壓與該NMOS電晶體(M2)之臨界電壓,此導致驅動電晶體與存取電晶體之間的電流驅動能力比(即單元比率,cell ratio)通常設定在2.2至3.5之間(請參考98年10月20日第US76060B2號專利說明書第2欄第8-10行)。 In order to effectively prevent half-selected cell disturbance during reading, V AR represents the initial instantaneous voltage of node A, and R M1 and R M3 represent the NMOS transistor (M1) and The on-resistance of the NMOS transistor (M3), and V DD and V TM2 respectively represent the power supply voltage and the threshold voltage of the NMOS transistor (M2), which results in the current driving capability between the driving transistor and the access transistor The ratio (that is, the cell ratio) is usually set between 2.2 and 3.5 (please refer to column 8-10 of column 2 of patent specification US76060B2 of October 20, 1998).
第1b圖所示6T5T靜態隨機存取記憶體晶胞於寫入操作時之HSPICE暫態分析模擬結果,如第2圖所示,其係使用TSMC 90奈米CMOS製程參數加以模擬。 Figure 1b shows the simulation results of HSPICE transient analysis of the 6T5T static random access memory cell during a write operation. As shown in Figure 2, it is simulated using TSMC 90nm CMOS process parameters.
用來減少6T靜態隨機存取記憶體(SRAM)晶胞之電晶體數之一種方式係揭露於第3圖中。第3圖顯示一種僅具單一位元線之5T5T靜態隨機存取記憶體晶胞之電路示意圖,與第1b圖之6T5T靜態隨機存取記憶體晶胞相比,此種5T靜態隨機存取記憶體晶胞比6T靜態隨機存取記憶體晶胞少一個電晶體及少一條位元線,惟該5T5T靜態隨機存取記憶體晶胞在不變 更PMOS電晶體P1和P2以及NMOS電晶體M1、M2和M3的通道寬長比(亦即保持與6T SRAM晶胞相同之電晶體通道寬長比)的情況下存在寫入邏輯1相當困難之問題。茲考慮記憶晶胞左側節點A原本儲存邏輯0的情況,由於節點A之電荷僅單獨自位元線(BL)傳送,因此在將節點A中先前寫入的邏輯0蓋寫成邏輯1之寫入初始瞬間電壓(VAW)等於方程式(2):VAW=VDD×(RM1)/(RM1+RM3) (2)其中,VAW表示節點A之寫入初始瞬間電壓,RM1與RM3分別表示NMOS電晶體(M1)與NMOS電晶體(M3)之導通電阻,比較方程式(1)與方程式(2)可知,寫入初始瞬間電壓(VAW)小於NMOS電晶體(M2)之臨界電壓(VTM2),因而無法完成寫入邏輯1之操作。第3圖所示之5T靜態隨機存取記憶體晶胞,於寫入操作時之HSPICE暫態分析模擬結果,如第4圖所示,其係使用TSMC 90奈米CMOS製程參數加以模擬,由該模擬結果可証實,具單一位元線之5T靜態隨機存取記憶體晶胞存在寫入邏輯1相當困難之問題。 One way to reduce the number of transistors in a 6T static random access memory (SRAM) cell is disclosed in Figure 3. Figure 3 shows a circuit diagram of a 5T5T SRAM cell with a single bit line. Compared with the 6T5T SRAM cell in Figure 1b, this 5T SRAM cell The body cell has one transistor and one bit line less than the 6T SRAM cell, but the 5T5T SRAM cell does not change the PMOS transistors P1 and P2 and the NMOS transistor M1. In the case of the channel width-to-length ratio of M2 and M3 (that is, maintaining the same transistor channel width-to-length ratio as the 6T SRAM cell), there is a problem that it is quite difficult to write logic 1. Consider the case where node A on the left side of the memory cell originally stores logic 0. Since the charge of node A is only transmitted from the bit line (BL), the logic 0 previously written in node A is overwritten by the logic 1 write. The initial instantaneous voltage (V AW ) is equal to equation (2): V AW = V DD × (R M1 ) / (R M1 + R M3 ) (2) where V AW represents the initial instantaneous voltage of node A, R M1 And R M3 respectively represent the on-resistance of the NMOS transistor (M1) and the NMOS transistor (M3). Comparing Equation (1) and Equation (2), it can be seen that the initial instantaneous voltage (V AW ) written is smaller than the NMOS transistor (M2) Threshold voltage (V TM2 ), so the operation of writing logic 1 cannot be completed. The simulation results of HSPICE transient analysis during the write operation of the 5T SRAM cell shown in Figure 3, as shown in Figure 4, are simulated using TSMC 90nm CMOS process parameters. The simulation results can confirm that the 5T SRAM cell with a single bit line has the problem of writing logic 1 quite difficult.
迄今,有許多具單一位元線之5T靜態隨機存取記憶體晶胞之技術被提出,例如專利文獻1(99年4月27日第US7706203 B2號)所提出之「Memory System」、專利文獻2(103年2月11日第TWI426514 B號)所提出之「寫入操作時降低電源電壓之5T靜態隨機存取記憶體」、專利文獻3(103年1月30日第US2014/0029333 A1號)所提出之「Five Transistor SRAM Cell」、非專利文獻4(Satyanand Nalam et al.,”5T SRAM with asymmetric sizing for improved read stability”,IEEE Journal of Solid-State Circuits.,Vol.46.No.10,pp 2431-2442,Oct.2011.)、專利文獻5(104年3月21日第 TWI478165號)所提出之「具高效能之5T靜態隨機存取記憶體」、非專利文獻6(Chua-Chin Wang et al.,”A single-ended disturb-free 5T loadless SRAM with leakage sensor and read delay compensation using 40nm process”,2014 International Symposium on Circuits and Systems,pp 1126-1129,June 2014.)及非專利文獻7(Shyam Akashe et al.,”High density and low leakage current based 5T SRAM cell using 45nm technology”,2011 International Conference on Nanoscience,Engineering and Technology(ICONSET),pp 346-350,Nov.2011.)等等均屬之,該等技術雖可有效解決寫入邏輯1困難之問題,惟該等技術均未考慮到藉由字元線電壓位準轉換電路,以於讀取操作期間將施加至選定晶胞之存取電晶體的字元線電壓下拉至低於電源供應電壓,並配合於讀取操作之第一階段藉由將NMOS電晶體(M11)之源極電壓由原本之接地電壓下拉至低於接地電壓以在有效降低讀取時之半選定晶胞干擾的同時,亦能有效提高讀取速度,因此仍有改進空間。 So far, many 5T static random access memory cell technologies with a single bit line have been proposed, such as the "Memory System" and patent documents proposed in Patent Document 1 (April 27, 1999, US7706203 B2). 2 (TWI426514 B of February 11, 103) "5T Static Random Access Memory Reducing Power Supply Voltage during Write Operation", Patent Document 3 (US2014 / 0029333 A1, January 30, 103 ), "Five Transistor SRAM Cell", Non-Patent Document 4 (Satyanand Nalam et al., "5T SRAM with asymmetric sizing for improved read stability", IEEE Journal of Solid-State Circuits. , Vol . 46.No. 10 , pp 2431-2442, Oct. 2011.), "High-performance 5T Static Random Access Memory" proposed by Patent Document 5 (TWI478165 of March 21, 104), Non-Patent Document 6 (Chua- Chin Wang et al., "A single-ended disturb-free 5T loadless SRAM with leakage sensor and read delay compensation using 40nm process", 2014 International Symposium on Circuits and Systems, pp 1126-1129, June 2014.) and non-patent literature 7 (Shyam Akashe et al., "High density an d low leakage current based 5T SRAM cell using 45nm technology ", 2011 International Conference on Nanoscience, Engineering and Technology (ICONSET), pp 346-350, Nov. 2011.) and so on. Although these technologies can effectively solve writing Difficulties in entering logic 1, but none of these technologies take into account the word line voltage level conversion circuit to pull down the word line voltage applied to the access transistor of the selected cell to the selected cell during a read operation It is lower than the power supply voltage and cooperates with the first stage of the reading operation. The source voltage of the NMOS transistor (M11) is pulled down from the original ground voltage to lower than the ground voltage to effectively reduce the half selection during reading. While the cell interference can also effectively improve the reading speed, there is still room for improvement.
有鑑於此,本發明之主要目的係提出一種5T靜態隨機存取記憶體,其能藉由字元線電壓位準轉換電路,以於讀取操作期間將施加至選定晶胞之存取電晶體的字元線電壓下拉至低於電源供應電壓,以有效降低讀取時之半選定晶胞干擾。 In view of this, a main object of the present invention is to propose a 5T static random access memory, which can use a word line voltage level conversion circuit to apply an access transistor to a selected cell during a read operation. The voltage of the word line is pulled down below the power supply voltage to effectively reduce half-selected cell interference during reading.
本發明之次要目的係提出一種5T靜態隨機存取記憶體,其能藉由控制電路以有效提高讀取速度,且能藉由二階段的讀取控制以於提高讀取速度的同時,亦避免無謂的功率耗損。 The secondary object of the present invention is to propose a 5T static random access memory, which can effectively improve the reading speed by the control circuit, and can improve the reading speed by the two-stage read control. Avoid unnecessary power loss.
本發明之再一目的係提出一種5T靜態隨機存取記憶體,其能藉由控制電路以有效避免習知具單一位元線之單埠SRAM存在寫入邏輯1相當困難之問題。 Another object of the present invention is to provide a 5T static random access memory, which can effectively avoid the problem of writing logic 1 to a conventional port SRAM with a single bit line through a control circuit.
本發明提出一種5T靜態隨機存取記憶體,其主要包括一記憶體陣列、複數個控制電路(2)、複數個預充電電路(3)、一待機啟動電路(4)以及複數個字元線電壓位準轉換電路(5),該記憶體陣列係由複數列記憶體晶胞與複數行記憶體晶胞所組成,每一列記憶體晶胞設置一個控制電路,且每一記憶體晶胞(1)係包括一第一反相器(由一第一PMOS電晶體P11與一第一NMOS電晶體M11所組成)、一第二反相器(由一第二PMOS電晶體P12與一第二NMOS電晶體M12所組成)及一存取電晶體(由一第三NMOS電晶體M13所組成)。每一控制單元(2)係連接至對應列記憶體晶胞中之每一記憶體晶胞的該第一NMOS電晶體(M11)的源極以及該第二NMOS電晶體(M12)的源極,以便因應不同操作模式而控制該第一NMOS電晶體(M11)的源極電壓以及該第二NMOS電晶體(M12)的源極電壓,藉此於寫入模式時,可有效防止寫入邏輯1困難之問題,於讀取模式時,可於提高讀取速度的同時,亦避免無謂的功率耗損,於待機模式時,可有效降低漏電流,而於保持模式時則可維持原有的電氣特性。再者,藉由該待機啟動電路(4)的設計,以有效促使具單埠SRAM快速進入待機模式,並因而有效提高5T靜態隨機存取記憶體之待機效能;此外,藉由該複數個字元線電壓位準轉換電路(5)的設計,以增加該第三NMOS電晶體(M13)於讀取模式下之導通電阻,並因而有效降低讀取時之半選定晶胞干擾。 The invention provides a 5T static random access memory, which mainly includes a memory array, a plurality of control circuits (2), a plurality of precharge circuits (3), a standby start circuit (4), and a plurality of word lines. A voltage level conversion circuit (5). The memory array is composed of a plurality of rows of memory cells and a plurality of rows of memory cells. Each column of memory cells is provided with a control circuit, and each memory cell ( 1) It consists of a first inverter (composed of a first PMOS transistor P11 and a first NMOS transistor M11), a second inverter (composed of a second PMOS transistor P12 and a second NMOS transistor M12) and an access transistor (composed of a third NMOS transistor M13). Each control unit (2) is connected to the source of the first NMOS transistor (M11) and the source of the second NMOS transistor (M12) connected to each memory cell in a corresponding row of memory cells. In order to control the source voltage of the first NMOS transistor (M11) and the source voltage of the second NMOS transistor (M12) according to different operation modes, thereby effectively preventing the write logic in the write mode 1 Difficult problem, in the reading mode, it can improve the reading speed while avoiding unnecessary power consumption. In the standby mode, it can effectively reduce the leakage current, and in the hold mode, it can maintain the original electrical characteristic. In addition, the design of the standby start circuit (4) can effectively promote the SRAM with a port to enter the standby mode quickly, and thus effectively improve the standby performance of the 5T static random access memory; in addition, by the plurality of words The element line voltage level conversion circuit (5) is designed to increase the on-resistance of the third NMOS transistor (M13) in the reading mode, and thus effectively reduce half-selected cell interference during reading.
BLB1 …BLBm‧‧‧互補位元線 BLB 1 … BLB m ‧‧‧ complementary bit line
BLB‧‧‧互補位元線 BLB‧‧‧ Complementary Bit Line
MB1 …MBk‧‧‧記憶體區塊 MB 1 … MB k ‧‧‧Memory block
WL1 …WLn‧‧‧字元線 WL 1 … WL n ‧‧‧Character line
BL1 …BLm‧‧‧位元線 BL 1 … BL m ‧‧‧bit line
I1、I2、I3‧‧‧漏電流 I 1 , I 2 , I 3 ‧‧‧ leakage current
1‧‧‧SRAM晶胞 1‧‧‧SRAM cell
2‧‧‧控制電路 2‧‧‧Control circuit
3‧‧‧預充電電路 3‧‧‧ pre-charge circuit
4‧‧‧待機啟動電路 4‧‧‧ Standby start circuit
5‧‧‧字元線電壓位準轉換 電路 5‧‧‧Word line voltage level conversion Electric circuit
P11‧‧‧第一PMOS電晶體 P11‧‧‧The first PMOS transistor
P12‧‧‧第二PMOS電晶體 P12‧‧‧Second PMOS transistor
M11‧‧‧第一NMOS電晶體 M11‧‧‧The first NMOS transistor
M12‧‧‧第二NMOS電晶體 M12‧‧‧Second NMOS transistor
M13‧‧‧第三NMOS電晶體 M13‧‧‧Third NMOS transistor
A‧‧‧儲存節點 A‧‧‧Storage Node
B‧‧‧反相儲存節點 B‧‧‧ Inverted Storage Node
BL‧‧‧位元線 BL‧‧‧bit line
WLC‧‧‧字元線控制信號 WLC‧‧‧Word line control signal
S‧‧‧待機模式控制信號 S‧‧‧Standby mode control signal
/S‧‧‧反相待機模式控制信號 / S ‧‧‧ Inverted standby mode control signal
VL1‧‧‧第一低電壓節點 VL1‧‧‧The first low voltage node
VL2‧‧‧第二低電壓節點 VL2‧‧‧Second Low Voltage Node
M21‧‧‧第四NMOS電晶體 M21‧‧‧Fourth NMOS transistor
M22‧‧‧第五NMOS電晶體 M22‧‧‧Fifth NMOS transistor
M23‧‧‧第六NMOS電晶體 M23‧‧‧sixth NMOS transistor
M24‧‧‧第七NMOS電晶體 M24‧‧‧Seventh NMOS transistor
M25‧‧‧第八NMOS電晶體 M25‧‧‧eighth NMOS transistor
M26‧‧‧第九NMOS電晶體 M26‧‧‧Ninth NMOS transistor
M27‧‧‧第十NMOS電晶體 M27‧‧‧Tenth NMOS Transistor
WC‧‧‧寫入控制訊號 WC‧‧‧Write control signal
RC‧‧‧讀取控制信號 RC‧‧‧Read control signal
RGND‧‧‧加速讀取電壓 RGND‧‧‧Accelerated reading voltage
/RC‧‧‧反相讀取控制信號 / RC‧‧‧ Inverted read control signal
/WC‧‧‧反相寫入控制信號 / WC‧‧‧ Inverted write control signal
INV‧‧‧第三反相器 INV‧‧‧Third Inverter
D1‧‧‧第一延遲電路 D1‧‧‧first delay circuit
P31‧‧‧第三PMOS電晶體 P31‧‧‧Third PMOS transistor
P‧‧‧預充電信號 P‧‧‧Pre-charge signal
M41‧‧‧第十二NMOS電晶體 M41‧‧‧Twelfth NMOS transistor
P41‧‧‧第四PMOS電晶體 P41‧‧‧Fourth PMOS transistor
D2‧‧‧第二延遲電路 D2‧‧‧Second Delay Circuit
VDD‧‧‧電源供應電壓 V DD ‧‧‧ Power supply voltage
WL‧‧‧字元線 WL‧‧‧Character Line
C‧‧‧節點 C‧‧‧node
P51‧‧‧第五PMOS電晶體 P51‧‧‧Fifth PMOS transistor
M51‧‧‧第十三NMOS電晶體 M51‧thirteenth NMOS transistor
M52‧‧‧第十四NMOS電晶體 M52‧‧‧14th NMOS Transistor
M28‧‧‧第十一NMOS電晶體 M28‧‧‧11th NMOS transistor
第1a圖 係顯示習知之靜態隨機存取記憶體;第1b圖 係顯示習知6T靜態隨機存取記憶體晶胞之電路示意圖;第2圖 係顯示習知6T靜態隨機存取記憶體晶胞之寫入動作時序圖;第3圖 係顯示習知5T靜態隨機存取記憶體晶胞之電路示意圖;第4圖 係顯示習知5T靜態隨機存取記憶體晶胞之寫入動作時序圖;第5圖 係顯示本發明較佳實施例所提出之電路示意圖;第6圖 係顯示第5圖之本發明較佳實施例於寫入期間之簡化電路圖;第7圖 係顯示第5圖之本發明較佳實施例之寫入動作時序圖;第8圖 係顯示第5圖之本發明較佳實施例於讀取期間之簡化電路圖;第9圖 係顯示第5圖之本發明較佳實施例於待機期間之簡化電路圖。 Figure 1a shows a conventional static random access memory cell; Figure 1b shows a schematic circuit diagram of a conventional 6T static random access memory cell; Figure 2 shows a conventional 6T static random access memory cell Figure 3 is a timing diagram of a conventional 5T SRAM cell; Figure 4 is a timing diagram of a conventional 5T SRAM cell; FIG. 5 is a schematic circuit diagram of the preferred embodiment of the present invention; FIG. 6 is a simplified circuit diagram of the preferred embodiment of the present invention during writing in FIG. 5; and FIG. 7 is a diagram of the fifth embodiment. The timing diagram of the write operation of the preferred embodiment of the invention; Figure 8 is a simplified circuit diagram showing the preferred embodiment of the invention during reading in Figure 5; Figure 9 is the preferred embodiment of the invention shown in Figure 5 Simplified circuit diagram during standby.
根據上述之主要目的,本發明提出一種5T靜態隨機存取記憶體,其主要包括一記憶體陣列,該記憶體陣列係由複數列記憶體晶胞與複數行記憶體晶胞所組成,每一列記憶體晶胞與每一行記憶體晶胞均包括有複數個記憶體晶胞(1);複數個控制電路(2),每一列記憶晶胞設置一個控制電路(2);複數個預充電電路(3),每一行記憶晶胞設置一個預充電電路(3);一待機啟動電路(4),該待機啟動電路(4)係促使SRAM快速進入待機模式,以有效提高SRAM之待機效能;以及複數個字元線電壓位準轉換電路(5),每一列記憶體晶胞設置一個字元線電壓位準轉換電路(5)。 According to the above main object, the present invention proposes a 5T static random access memory, which mainly includes a memory array. The memory array is composed of a plurality of rows of memory cells and a plurality of rows of memory cells. The memory cell and each row of memory cells include a plurality of memory cells (1); a plurality of control circuits (2), each column of memory cells is provided with a control circuit (2); a plurality of precharge circuits (3), each row of memory cells is provided with a precharge circuit (3); a standby start circuit (4), the standby start circuit (4) promotes the SRAM to enter the standby mode quickly to effectively improve the standby performance of the SRAM; and A plurality of word line voltage level conversion circuits (5), and each column of the memory cell is provided with a word line voltage level conversion circuit (5).
為了便於說明起見,第5圖所示之靜態隨機存取記憶體僅以一個記憶體晶胞(1)、一條字元線(WL)、一條位元線(BL)、一控制電 路(2)、一預充電電路(3)、一待機啟動電路(4)以及一字元線電壓位準轉換電路(5)做為實施例來說明。該記憶體晶胞(1)係包括一第一反相器(由一第一PMOS電晶體P11與一第一NMOS電晶體M11所組成)、一第二反相器(由一第二PMOS電晶體P12與一第二NMOS電晶體M12所組成)、一第三NMOS電晶體(M13),其中,該第一反相器及該第二反相器係呈交互耦合連接,亦即該第一反相器之輸出(即節點A)係連接該第二反相器之輸入,而該第二反相器之輸出(即節點B)則連接該第一反相器之輸入,並且該第一反相器之輸出(節點A)係用於儲存SRAM晶胞之資料,而該第二反相器之輸出(節點B)則用於儲存SRAM晶胞之反相資料。在此值得注意的是,該第一NMOS電晶體(M11)與該第二NMOS電晶體(M12)具有相同之通道寬長比,該第一PMOS電晶體(P11)與該第二PMOS電晶體(P12)亦具有相同之通道寬長比 For the convenience of explanation, the static random access memory shown in Figure 5 consists of only one memory cell (1), one word line (WL), one bit line (BL), and one control circuit. The circuit (2), a precharge circuit (3), a standby start circuit (4), and a word line voltage level conversion circuit (5) are described as examples. The memory cell (1) includes a first inverter (composed of a first PMOS transistor P11 and a first NMOS transistor M11), a second inverter (composed of a second PMOS transistor) The crystal P12 is composed of a second NMOS transistor M12) and a third NMOS transistor (M13), wherein the first inverter and the second inverter are mutually coupled and connected, that is, the first inverter The output of the inverter (ie, node A) is connected to the input of the second inverter, and the output of the second inverter (ie, node B) is connected to the input of the first inverter, and the first inverter The output of the inverter (node A) is used to store the data of the SRAM cell, and the output of the second inverter (node B) is used to store the inverted data of the SRAM cell. It is worth noting here that the first NMOS transistor (M11) and the second NMOS transistor (M12) have the same channel aspect ratio, and the first PMOS transistor (P11) and the second PMOS transistor (P12) also has the same channel width-to-length ratio
請再參考第5圖,該控制電路(2)係由一第四NMOS電晶體(M21)、一第五NMOS電晶體(M22)、一第六NMOS電晶體(M23)、一第七NMOS電晶體(M24)、一第八NMOS電晶體(M25)、一第九NMOS電晶體(M26)、一第十NMOS電晶體(M27)、一第十一NMOS電晶體(M28)、一讀取控制信號(RC)、一第三反相器(INV)、一第一延遲電路(D1)、一加速讀取電壓(RGND)、一寫入控制信號(WC)、一反相寫入控制信號(/WC)、一待機模式控制信號(S)以及一反相待機模式控制信號(/S)所組成。該第四NMOS電晶體(M21)之源極、閘極與汲極係分別連接至接地電壓、該反相待機模式控制信號(/S)與一第二低電壓節點(VL2);該第五NMOS電晶體(M22)之源極、閘極與汲極係分別連接 至該第二低電壓節點(VL2)、該待機模式控制信號(S)與一第一低電壓節點(VL1);該第六NMOS電晶體(M23)之源極係連接至接地電壓,而閘極與汲極連接在一起並連接至該第一低電壓節點(VL1);該第七NMOS電晶體(M24)之源極、閘極與汲極係分別連接至該第八NMOS電晶體(M25)之汲極、該讀取控制信號(RC)與該第一低電壓節點(VL1);該第八NMOS電晶體(M25)之源極、閘極與汲極係分別連接至該加速讀取電壓(RGND)、該第一延遲電路(D1)之輸出與該第七NMOS電晶體(M24)之源極;該第一延遲電路(D1)係連接在該第三反相器(INV)之輸出與該第八NMOS電晶體(M25)之閘極之間;該第三反相器(INV)之輸入係供接收該讀取控制信號(RC),而輸出則連接至該第一延遲電路(D1)之輸入;該第九NMOS電晶體(M26)之源極、閘極與汲極係分別連接至接地電壓、該第十NMOS電晶體(M27)之汲極與該第一低電壓節點(VL1);該第十NMOS電晶體(M27)之源極、閘極與汲極係分別連接至該待機模式控制信號(S)、該寫入控制信號(WC)與該第九NMOS電晶體(M26)之閘極;而該第十一NMOS電晶體(M28)之源極、閘極與汲極則分別連接至該反相待機模式控制信號(/S)、該反相寫入控制信號(/WC)與該第九NMOS電晶體(M26)之閘極。在此值得注意的是,該反相待機模式控制信號(/S)係由該待機模式控制信號(S)經一反相器而獲得,且該反相寫入控制信號(/WC)係由該寫入控制信號(WC)經另一反相器而獲得。 Please refer to FIG. 5 again, the control circuit (2) is composed of a fourth NMOS transistor (M21), a fifth NMOS transistor (M22), a sixth NMOS transistor (M23), and a seventh NMOS transistor. Crystal (M24), an eighth NMOS transistor (M25), a ninth NMOS transistor (M26), a tenth NMOS transistor (M27), an eleventh NMOS transistor (M28), a read control Signal (RC), a third inverter (INV), a first delay circuit (D1), an accelerated read voltage (RGND), a write control signal (WC), an inverted write control signal ( / WC), a standby mode control signal (S), and an inverted standby mode control signal (/ S). The source, gate and drain of the fourth NMOS transistor (M21) are connected to the ground voltage, the inverted standby mode control signal (/ S) and a second low voltage node (VL2); the fifth NMOS transistor (M22) source, gate and drain are connected separately To the second low voltage node (VL2), the standby mode control signal (S) and a first low voltage node (VL1); the source of the sixth NMOS transistor (M23) is connected to the ground voltage, and the gate And the drain are connected to the first low voltage node (VL1); the source, gate, and drain of the seventh NMOS transistor (M24) are connected to the eighth NMOS transistor (M25) ) 'S drain, the read control signal (RC) and the first low voltage node (VL1); the source, gate and drain of the eighth NMOS transistor (M25) are connected to the accelerated read respectively The voltage (RGND), the output of the first delay circuit (D1) and the source of the seventh NMOS transistor (M24); the first delay circuit (D1) is connected to the third inverter (INV) Between the output and the gate of the eighth NMOS transistor (M25); the input of the third inverter (INV) is for receiving the read control signal (RC), and the output is connected to the first delay circuit (D1) input; the source, gate, and drain of the ninth NMOS transistor (M26) are connected to the ground voltage, the drain of the tenth NMOS transistor (M27), and the first low-voltage node (VL1); the first The source, gate and drain of the ten NMOS transistor (M27) are connected to the gate of the standby mode control signal (S), the write control signal (WC) and the ninth NMOS transistor (M26), respectively. ; And the source, gate, and drain of the eleventh NMOS transistor (M28) are connected to the inverted standby mode control signal (/ S), the inverted write control signal (/ WC), and the Gate of the ninth NMOS transistor (M26). It is worth noting here that the inverted standby mode control signal (/ S) is obtained by the standby mode control signal (S) via an inverter, and the inverted write control signal (/ WC) is obtained by The write control signal (WC) is obtained via another inverter.
在此值得注意的是,該第十NMOS電晶體(M27)之汲極、該第十一NMOS電晶體(M28)之汲極及該第九NMOS電晶體(M26)之閘極係連接在一起並形成一節點(C),該節點(C)之邏輯高位準係為一電源 供應電壓(VDD)扣減該第十一NMOS電晶體(M28)之臨界電壓(VTM28)的電壓位準,因此當該5T靜態隨機存取記憶體於非寫入模式(此時對應之該反相寫入控制信號(/WC)為邏輯高位準)時,該節點(C)係為該電源供應電壓(VDD)扣減該第十一NMOS電晶體(M28)之該臨界電壓(VTM28)的電壓位準,而非該電源供應電壓(VDD)之電壓位準,故可具有較低之功率消耗;且於後續進入寫入模式(此時對應之該寫入控制信號(WC)為邏輯高位準)時,由於可快速地將儲存於該節點(C)之電荷經由該第十NMOS電晶體(M27)放電至足以關閉以該節點(C)作為閘極之該第九NMOS電晶體(M26),故可較快速地進入該寫入模式。 It is worth noting here that the drain of the tenth NMOS transistor (M27), the drain of the eleventh NMOS transistor (M28) and the gate of the ninth NMOS transistor (M26) are connected together. A node (C) is formed. The logic high level of the node (C) is a voltage level at which a power supply voltage (V DD ) is deducted from a threshold voltage (V TM28 ) of the eleventh NMOS transistor (M28). Therefore, when the 5T static random access memory is in a non-write mode (the corresponding inverted write control signal (/ WC) is a logic high level at this time), the node (C) is the power supply voltage (V DD ) deducts the voltage level of the threshold voltage (V TM28 ) of the eleventh NMOS transistor (M28), instead of the voltage level of the power supply voltage (V DD ), so it can have a lower Power consumption; and when the write mode is subsequently entered (when the corresponding write control signal (WC) is at a logic high level), the charge stored in the node (C) can be quickly passed through the tenth NMOS power The crystal (M27) is discharged enough to turn off the ninth NMOS transistor (M26) with the node (C) as a gate, so it can enter the write mode relatively quickly.
該控制電路(2)係設計成可因應不同操作模式而控制該第一低電壓節點(VL1)與該第二低電壓節點(VL2)之電壓位準,於寫入模式時,將選定晶胞中較接近位元線(BL)之驅動電晶體(即該第一NMOS電晶體M11)的源極電壓(即該第一低電壓節點VL1)設定成較接地電壓為高之一預定電壓(即該第六NMOS電晶體(M23)之閘源極電壓VGS(M23))且將選定晶胞中另一驅動電晶體(即該第二NMOS電晶體M12)的源極電壓(即該第二低電壓節點VL2)設定成接地電壓,以便防止寫入邏輯1困難之問題。 The control circuit (2) is designed to control the voltage levels of the first low voltage node (VL1) and the second low voltage node (VL2) according to different operation modes. In the write mode, the unit cell is selected. The source voltage (i.e., the first low voltage node VL1) of the driving transistor (i.e., the first NMOS transistor M11) that is closer to the bit line (BL) is set to a predetermined voltage (i.e. The gate-source voltage V GS (M23) of the sixth NMOS transistor (M23) and the source voltage of the other driving transistor (i.e., the second NMOS transistor M12) in the selected unit cell (i.e., the second NMOS transistor M12) The low-voltage node VL2) is set to a ground voltage to prevent the problem of writing logic 1 from being difficult.
於讀取模式之第一階段時,將選定晶胞中較接近位元線(BL)之驅動電晶體(即該第一NMOS電晶體M11)的源極電壓(即該第一低電壓節點VL1)設定成呈較接地電壓為低之該加速讀取電壓(RGND),該較接地電壓為低之該加速讀取電壓(RGND)可有效提高讀取速度,而於讀取模式之第二階段時,將選定晶胞中較接近位元線(BL)之驅動電晶體(即該第一NMOS電晶體M11)的源極電壓設定回接地電壓,以便減少無謂的功率消 耗,其中該讀取模式之該第二階段與該第一階段相隔之時間,係等於該讀取控制信號(RC)由邏輯低位準轉變為邏輯高位準起算,並至該第八NMOS電晶體(M25)之閘極電壓足以關閉該第八NMOS電晶體(M25)為止之時間,其值可藉由該第三反相器(INV)之下降延遲時間與該第一延遲電路(D1)所提供之延遲時間來調整。 In the first stage of the read mode, the source voltage (that is, the first low-voltage node VL1) of the driving transistor (that is, the first NMOS transistor M11) that is closer to the bit line (BL) in the selected cell is selected. ) Is set to the accelerated reading voltage (RGND) which is lower than the ground voltage, and the accelerated reading voltage (RGND) which is lower than the ground voltage can effectively improve the reading speed, and in the second stage of the reading mode The source voltage of the driving transistor (ie, the first NMOS transistor M11) closer to the bit line (BL) in the selected unit cell is set back to the ground voltage, so as to reduce unnecessary power consumption. Power consumption, wherein the time interval between the second stage and the first stage of the read mode is equal to that when the read control signal (RC) changes from a logic low level to a logic high level, and reaches the eighth NMOS transistor. The gate voltage of (M25) is enough time to turn off the eighth NMOS transistor (M25), and its value can be determined by the falling delay time of the third inverter (INV) and the first delay circuit (D1). Provide the delay time to adjust.
於待機模式時,將所有記憶晶胞中之驅動電晶體的源極電壓設定成較接地電壓為高之該預定電壓,以便降低漏電流;而於保持模式時則將記憶晶胞中之驅動電晶體的源極電壓設定成接地電壓,以便維持原來之保持特性,其詳細工作電壓位準如表1所示。 In the standby mode, the source voltages of the driving transistors in all the memory cells are set to a predetermined voltage higher than the ground voltage in order to reduce the leakage current. In the hold mode, the driving voltages in the memory cells are set. The source voltage of the crystal is set to ground voltage in order to maintain the original retention characteristics. The detailed operating voltage levels are shown in Table 1.
表1中之該寫入控制信號(WC)係為一寫入信號(W)與該字元線(WL)信號的及閘(AND gate)運算結果,此時僅於該寫入信號(W)信號與該字元線(WL)信號均為邏輯高位準時,該寫入控制信號(WC)方為邏輯高位準;該讀取控制信號(RC)為一讀取信號(R)與該字元線(WL)信號的及閘運算結果。在此值得注意的是,對於非讀取模式期間之該讀取 控制信號(RC)係設定為該加速讀取電壓(RGND)之位準,以防止該第七NMOS電晶體(M24)之漏電流。 The write control signal (WC) in Table 1 is an AND gate operation result of a write signal (W) and the word line (WL) signal. At this time, only the write signal (W ) Signal and the word line (WL) signal are at a logic high level, the write control signal (WC) is a logic high level; the read control signal (RC) is a read signal (R) and the word The result of the AND operation of the element line (WL) signal. It is worth noting here that for this read during non-read mode The control signal (RC) is set to the level of the accelerated read voltage (RGND) to prevent the leakage current of the seventh NMOS transistor (M24).
請參考第5圖,該預充電電路(3)係由一第三PMOS電晶體(P31)以及一預充電信號(P)所組成,該第三PMOS電晶體(P31)之源極、閘極與汲極係分別連接至該電源供應電壓(VDD)、該預充電信號(P)與該位元線(BL),以便於預充電期間,藉由邏輯低位準之該預充電信號(P),以將該位元線(BL)預充電至該電源供應電壓(VDD)之位準。 Please refer to Fig. 5. The precharge circuit (3) is composed of a third PMOS transistor (P31) and a precharge signal (P). The source and gate of the third PMOS transistor (P31) And the drain are respectively connected to the power supply voltage (V DD ), the precharge signal (P) and the bit line (BL), so that during the precharge period, the precharge signal (P ) To pre-charge the bit line (BL) to the level of the power supply voltage (V DD ).
請再參考第5圖,該待機啟動電路(4)係由一第四PMOS電晶體(P41)、一第十二NMOS電晶體(M41)、一第二延遲電路(D2)以及該反相待機模式控制信號(/S)所組成。該第四PMOS電晶體(P41)之源極、閘極與汲極係分別連接至該電源供應電壓(VDD)、該反相待機模式控制信號(/S)與該第十二NMOS電晶體(M41)之汲極;該第十二NMOS電晶體(M41)之源極、閘極與汲極係分別連接至該第一低電壓節點(VL1)、該第二延遲電路(D2)之輸出與該第四PMOS電晶體(P41)之汲極;該第二延遲電路(D2)之輸入連接至該反相待機模式控制信號(/S),而該第二延遲電路(D2)之輸出則連接至該第十二NMOS電晶體(M41)之閘極。 Please refer to FIG. 5 again, the standby start circuit (4) is composed of a fourth PMOS transistor (P41), a twelfth NMOS transistor (M41), a second delay circuit (D2), and the inverting standby Mode control signal (/ S). The source, gate, and drain of the fourth PMOS transistor (P41) are connected to the power supply voltage (V DD ), the inverting standby mode control signal (/ S), and the twelfth NMOS transistor. The drain of (M41); the source, gate and drain of the twelfth NMOS transistor (M41) are connected to the output of the first low voltage node (VL1) and the second delay circuit (D2) respectively And the drain of the fourth PMOS transistor (P41); the input of the second delay circuit (D2) is connected to the inverted standby mode control signal (/ S), and the output of the second delay circuit (D2) is Connected to the gate of the twelfth NMOS transistor (M41).
請再參考第5圖,該字元線電壓位準轉換電路(5)係由一第五PMOS電晶體(P51)、一第十三NMOS電晶體(M51)、一第十四NMOS電晶體(M52)、該讀取控制信號(RC)、該反相寫入控制信號(/WC)、一反相讀取控制信號(/RC)以及一字元線控制信號(WLC)所組成。該第五PMOS電晶體(P51)之源極、閘極與汲極係分別連接至該字元線(WL)、該反相寫入控制信號(/WC)與該字元線控制信號(WLC);該第十三NMOS 電晶體(M51)之源極、閘極與汲極係分別連接至該字元線控制信號(WLC)、該讀取控制信號(RC)與該字元線(WL);而該第十四NMOS電晶體(M52)之源極、閘極與汲極係分別連接至該字元線控制信號(WLC)、該反相讀取控制信號(/RC)與該字元線(WL)。 Please refer to FIG. 5 again, the word line voltage level conversion circuit (5) is composed of a fifth PMOS transistor (P51), a thirteenth NMOS transistor (M51), and a fourteenth NMOS transistor ( M52), the read control signal (RC), the inverted write control signal (/ WC), an inverted read control signal (/ RC), and a word line control signal (WLC). The source, gate, and drain of the fifth PMOS transistor (P51) are connected to the word line (WL), the inverted write control signal (/ WC), and the word line control signal (WLC), respectively. ); The thirteenth NMOS The source, gate, and drain of the transistor (M51) are connected to the word line control signal (WLC), the read control signal (RC), and the word line (WL) respectively; and the fourteenth The source, gate and drain of the NMOS transistor (M52) are connected to the word line control signal (WLC), the inverted read control signal (/ RC) and the word line (WL), respectively.
該字元線電壓位準轉換電路(5)之詳細工作電壓位準如表2所示。 The detailed working voltage level of the word line voltage level conversion circuit (5) is shown in Table 2.
茲依單埠SRAM之工作模式說明第5圖之本發明較佳實施例的工作原理如下: The working mode of the Ziyibu SRAM is described in Figure 5. The working principle of the preferred embodiment of the present invention is as follows:
(I)寫入模式(write mode) (I) write mode
於寫入操作開始前,該反相寫入控制信號(/WC)為邏輯高位準,使得該 第十一NMOS電晶體(M28)導通(ON),並使得該第十NMOS電晶體(M27)截止(OFF),由於此時該反相待機模式控制信號(/S)為邏輯高位準,於是該第十一NMOS電晶體(M28)之汲極呈邏輯高位準,該邏輯高位準之該該第十一NMOS電晶體(M28)之汲極會導通該第九NMOS電晶體(M26),並使得該低電壓節點(VL1)呈接地電壓。 Before the write operation starts, the inverted write control signal (/ WC) is at a logic high level, so that the The eleventh NMOS transistor (M28) is turned on and the tenth NMOS transistor (M27) is turned off (OFF). At this time, the inverting standby mode control signal (/ S) is at a logic high level, so The drain of the eleventh NMOS transistor (M28) is at a logic high level, and the drain of the eleventh NMOS transistor (M28) at the logic high level will turn on the ninth NMOS transistor (M26), and The low-voltage node (VL1) is brought to a ground voltage.
而於寫入操作期間內,該寫入控制信號(WC)為邏輯高位準,惟此時該待機模式控制信號(S)為邏輯低位準,使得該第十NMOS電晶體(M27)之汲極呈邏輯低位準,該邏輯低位準之該第十NMOS電晶體(M27)之汲極會使得該第九NMOS電晶體(M26)截止,並使得該低電壓節點(VL1)等於該第六NMOS電晶體(M23)之閘源極電壓VGS(M26),藉此得以有效防止寫入邏輯1困難之問題。第6圖所示為第5圖之本發明較佳實施例於寫入期間之簡化電路圖。 During the write operation period, the write control signal (WC) is at a logic high level, but at this time, the standby mode control signal (S) is at a logic low level, which makes the drain of the tenth NMOS transistor (M27) At a logic low level, the drain of the tenth NMOS transistor (M27) at the logic low level will cause the ninth NMOS transistor (M26) to turn off and make the low voltage node (VL1) equal to the sixth NMOS transistor The gate-source voltage V GS (M26) of the crystal (M23) can effectively prevent the problem of writing logic 1 effectively. FIG. 6 is a simplified circuit diagram of the preferred embodiment of the present invention in FIG. 5 during a writing period.
接下來依單埠SRAM之4種寫入狀態來說明第6圖之本發明較佳實施例如何完成寫入動作。 The following describes how the write operation of the preferred embodiment of the present invention shown in FIG. 6 is completed according to the four write states of the port SRAM.
(一)節點A原本儲存邏輯0,而現在欲寫入邏輯0: (1) Node A originally stored logic 0, but now wants to write logic 0:
在寫入動作發生前(該字元線控制信號WLC為接地電壓),該第一NMOS電晶體(M11)為導通(ON)。因為該第一NMOS電晶體(M11)為ON,所以當寫入動作開始時,該字元線控制信號(WLC)由Low(接地電壓)轉High(該電源供應電壓VDD)。當該字元線控制信號(WLC)的電壓大於該第三NMOS電晶體(M13)(即存取電晶體)的臨界電壓時,該第三NMOS電晶體(M13)由截止(OFF)轉變為導通(ON),此時因為位元線(BL)是接地電壓,所以該節點A會保持原本之接地電壓,直到寫入 週期結束。 Before the write operation occurs (the word line control signal WLC is the ground voltage), the first NMOS transistor (M11) is turned on. Because the first NMOS transistor (M11) is ON, when the writing operation starts, the word line control signal (WLC) changes from Low (ground voltage) to High (the power supply voltage V DD ). When the voltage of the word line control signal (WLC) is greater than the threshold voltage of the third NMOS transistor (M13) (that is, the access transistor), the third NMOS transistor (M13) changes from OFF to OFF Turn on (ON). At this time, because the bit line (BL) is the ground voltage, the node A will maintain the original ground voltage until the end of the write cycle.
(二)節點A原本儲存邏輯0,而現在欲寫入邏輯1: (2) Node A originally stored logic 0, but now wants to write logic 1:
在寫入動作發生前(該字元線控制信號WLC為接地電壓),該第一NMOS電晶體(M11)為導通(ON)。因為該第一NMOS電晶體(M11)為ON,所以當寫入動作開始時,該字元線控制信號(WLC)由Low(接地電壓)轉High(該電源供應電壓VDD),該節點A的電壓會跟隨該字元線控制信號(WLC)的電壓而上升。 Before the write operation occurs (the word line control signal WLC is the ground voltage), the first NMOS transistor (M11) is turned on. Because the first NMOS transistor (M11) is ON, when the writing operation starts, the word line control signal (WLC) changes from Low (ground voltage) to High (the power supply voltage V DD ), and the node A The voltage of R is increased following the voltage of the word line control signal (WLC).
當該字元線控制信號(WLC)的電壓大於該第三NMOS電晶體(M13)的臨界電壓時,該第三NMOS電晶體(M13)由截止(OFF)轉變為導通(ON),此時因為該位元線(BL)是High(該電源供應電壓VDD),並且因為該第一NMOS電晶體(M11)仍為ON且該節點B仍處於電壓位準為接近於該電源供應電壓(VDD)之電壓位準的初始狀態,所以該第一PMOS電晶體(P11)仍為截止(OFF),而該節點A之寫入初始瞬間電壓(VAW)滿足方程式(3):VAW=VDD×(RM11+RM23)/(RM13+RM11+RM23)>VTM12 (3) When the voltage of the word line control signal (WLC) is greater than the threshold voltage of the third NMOS transistor (M13), the third NMOS transistor (M13) changes from OFF to ON. At this time, Because the bit line (BL) is High (the power supply voltage V DD ), and because the first NMOS transistor (M11) is still ON and the node B is still at a voltage level close to the power supply voltage ( V DD ) is the initial state of the voltage level, so the first PMOS transistor (P11) is still OFF, and the initial initial write voltage (V AW ) of the node A satisfies equation (3): V AW = V DD × (R M11 + R M23 ) / (R M13 + R M11 + R M23 )> V TM12 (3)
其中,VAW表示節點A之寫入初始瞬間電壓,RM11、RM13與RM23分別表示該第一NMOS電晶體(M11)、該第三NMOS電晶體(M13)與該第六NMOS電晶體(M23)之導通電阻,而VDD與VTM12分別表示該電源供應電壓與該第二NMOS電晶體(M12)之臨界電壓,因此可有效避免寫入邏輯1困難之問題,此時因為第三NMOS電晶體(M13)仍工作於飽和區(saturation region)且該第一NMOS電晶體(M11)仍工作於線性區(triode region),雖然該第三NMOS電晶體(M13)之導通電阻(RM13)會大於該第一NMOS電晶體 (M11)之導通電阻(RM11),但由於該第六NMOS電晶體(M23)係呈二極體連接,因此可於該第一低電壓節點(VL1)處提供一等於該第六NMOS電晶體(M23)之閘-源極電壓VGS(M23)之電壓位準,結果節點A所呈現的該分壓電壓位準,其電壓值會比第4圖之習知5T靜態隨機存取記憶體晶胞之該節點A之電壓位準還要高許多。該還要高許多之分壓電壓位準足以使該第二NMOS電晶體(M12)導通,於是使得節點B放電至一較低電壓位準,該節點B之較低電壓位準會使得該第一NMOS電晶體(M11)之導通電阻(RM11)呈現較高的電阻值,該第一NMOS電晶體(M11)之該較高的電阻值會於該節點A獲得較高電壓位準,該節點A之較高電壓位準又會經由該第二反相器(由第二PMOS電晶體P12與第二NMOS電晶體M12所組成),而使得該節點B呈現更低電壓位準,該節點B之更低電壓位準又會經由該第一反相器(由第一PMOS電晶體P11與第一NMOS電晶體M11所組成),而使得該節點A獲得更高電壓位準,依此循環,即可將該節點A充電至該電源供應電壓(VDD),而完成邏輯1的寫入動作。 Among them, V AW represents the initial instantaneous voltage of node A, and R M11 , R M13 and R M23 represent the first NMOS transistor (M11), the third NMOS transistor (M13) and the sixth NMOS transistor, respectively. (M23), and V DD and V TM12 respectively represent the power supply voltage and the threshold voltage of the second NMOS transistor (M12), so it can effectively avoid the problem of writing logic 1 because the third The NMOS transistor (M13) still works in the saturation region and the first NMOS transistor (M11) still works in the triode region, although the on-resistance (R) of the third NMOS transistor (M13) M13 ) will be greater than the on-resistance (R M11 ) of the first NMOS transistor (M11), but since the sixth NMOS transistor (M23) is diode-connected, it can be connected to the first low-voltage node (VL1 ) Provides a voltage level equal to the gate-source voltage V GS (M23) of the sixth NMOS transistor (M23). As a result, the voltage value of the divided voltage level presented by node A will be higher than that of the fourth voltage level. The voltage level of the node A of the conventional 5T SRAM cell is much higher. The much higher divided voltage level is sufficient to turn on the second NMOS transistor (M12), so that the node B is discharged to a lower voltage level, and the lower voltage level of the node B will make the first The on-resistance (R M11 ) of an NMOS transistor (M11) exhibits a higher resistance value. The higher resistance value of the first NMOS transistor (M11) will obtain a higher voltage level at the node A. The The higher voltage level of node A passes through the second inverter (composed of the second PMOS transistor P12 and the second NMOS transistor M12), so that the node B exhibits a lower voltage level. The lower voltage level of B will pass through the first inverter (consisting of the first PMOS transistor P11 and the first NMOS transistor M11), so that the node A will obtain a higher voltage level, and so on. Then, the node A can be charged to the power supply voltage (V DD ), and the writing operation of the logic 1 is completed.
在此值得注意的是,該第一低電壓節點(VL1)於節點A原本儲存邏輯0,而正寫入邏輯1之期間,係具有等於該第六NMOS電晶體(M23)之閘源極電壓VGS(M23)的電壓位準,而於寫入邏輯1後,又會因經由該第九NMOS電晶體(M26)放電而具有接地電壓之位準。 It is worth noting here that the first low-voltage node (VL1) originally stores logic 0 in node A, and while it is being written to logic 1, it has a gate-source voltage equal to that of the sixth NMOS transistor (M23). The voltage level of V GS (M23) , and after the logic 1 is written, it will have a ground voltage level due to discharge through the ninth NMOS transistor (M26).
(三)節點A原本儲存邏輯1,而現在欲寫入邏輯1: (3) Node A originally stored logic 1, but now wants to write logic 1:
在寫入動作發生前(字元線控制信號WLC為接地電壓),該第一PMOS電晶體(P11)為導通(ON)。當該字元線控制信號(WLC)由Low(接地電壓)轉High(該電源供應電壓VDD),且該字元線控制信號(WLC)的 電壓大於該第三NMOS電晶體(M13)的臨界電壓時,該第三NMOS電晶體(M13)由截止(OFF)轉變為導通(ON);此時因為該位元線(BL)是High(該電源供應電壓VDD),並且因為該第一PMOS電晶體(P11)仍為ON,所以該節點A的電壓會維持於該電源供應電壓(VDD)之電壓位準,直到寫入週期結束。 Before the write operation occurs (the word line control signal WLC is the ground voltage), the first PMOS transistor (P11) is turned on. When the word line control signal (WLC) changes from Low (ground voltage) to High (the power supply voltage V DD ), and the voltage of the word line control signal (WLC) is greater than that of the third NMOS transistor (M13) At the threshold voltage, the third NMOS transistor (M13) changes from OFF to ON; at this time, because the bit line (BL) is High (the power supply voltage V DD ), and because the first A PMOS transistor (P11) is still ON, so the voltage of the node A is maintained at the voltage level of the power supply voltage (V DD ) until the end of the write cycle.
(四)節點A原本儲存邏輯1,而現在欲寫入邏輯0: (4) Node A originally stored logic 1, but now wants to write logic 0:
在寫入動作發生前(該字元線控制信號WLC為接地電壓),該第一PMOS電晶體(P11)為導通(ON)。當該字元線控制信號(WLC)由Low(接地電壓)轉High(該電源供應電壓VDD),且該字元線控制信號(WLC)的電壓大於該第三NMOS電晶體(M13)的臨界電壓時,該第三NMOS電晶體(M13)由截止(OFF)轉變為導通(ON),此時因為該位元線(BL)是Low(接地電壓),所以會將該節點A以及該第一低電壓節點(VL1)放電而完成邏輯0的寫入動作,直到寫入週期結束。 Before the write operation occurs (the word line control signal WLC is the ground voltage), the first PMOS transistor (P11) is turned on. When the word line control signal (WLC) changes from Low (ground voltage) to High (the power supply voltage V DD ), and the voltage of the word line control signal (WLC) is greater than that of the third NMOS transistor (M13) At the threshold voltage, the third NMOS transistor (M13) changes from OFF to ON. At this time, because the bit line (BL) is Low (ground voltage), the node A and the The first low voltage node (VL1) is discharged to complete the logic 0 writing operation until the writing cycle ends.
第6圖所示之本發明較佳實施例,於寫入操作時之HSPICE暫態分析模擬結果,如第7圖所示,其係使用TSMC 90奈米CMOS製程參數加以模擬,由該模擬結果可証實,本發明所提出之5T靜態隨機存取記憶體,能藉由寫入期間提高該第一低電壓節點(VL1)之電壓位準,以有效避免習知具單一位元線之5T靜態隨機存取記憶體晶胞存在寫入邏輯1相當困難之問題。 The preferred embodiment of the present invention shown in FIG. 6 is the simulation result of HSPICE transient analysis during a write operation. As shown in FIG. 7, it is simulated using TSMC 90 nm CMOS process parameters. From the simulation result, It can be confirmed that the 5T static random access memory proposed by the present invention can effectively increase the voltage level of the first low voltage node (VL1) during writing to effectively avoid the 5T static with a single bit line. The random access memory cell suffers from the difficulty of writing logic 1.
(II)讀取模式(read mode) (II) read mode
於讀取操作開始前,該寫入控制信號(WC)及該待機模式控制信號(S)均為邏輯低位準,而該反相寫入控制信號(/WC)及該反相待機模式控制信 號(/S)均為邏輯低位準,使得該第十一NMOS電晶體(M28)導通,並使得該第十NMOS電晶體(M27)截止,於是該節點C呈邏輯高位準,邏輯高位準之該節點C會導通第九NMOS電晶體(M26),並使得該第一低電壓節點(VL1)呈接地電壓。另一方面,由於該讀取控制信號(RC)為邏輯低位準,使得該第七NMOS電晶體(M24)截止(OFF),並使得該第八NMOS電晶體(M25)導通(ON)。 Before the read operation starts, the write control signal (WC) and the standby mode control signal (S) are logic low levels, and the inverted write control signal (/ WC) and the inverted standby mode control signal (/ S) are logic low levels, making the eleventh NMOS transistor (M28) on and turning the tenth NMOS transistor (M27) off, so the node C is at a logic high level, The node C will turn on the ninth NMOS transistor (M26), and make the first low voltage node (VL1) a ground voltage. On the other hand, because the read control signal (RC) is at a logic low level, the seventh NMOS transistor (M24) is turned off, and the eighth NMOS transistor (M25) is turned on.
第6圖所示之本發明較佳實施例係藉由二階段的讀取控制以於提高讀取速度的同時,亦避免無謂的功率耗損,於讀取操作之一第一階段,該讀取控制信號(RC)為邏輯高位準,使得該第七NMOS電晶體(M24)導通,由於此時該第八NMOS電晶體(M25)仍導通,於是該第一低電壓節點(VL1)大約呈較接地電壓為低之該加速讀取電壓(RGND),該較接地電壓為低之該加速讀取電壓(RGND)可有效提高讀取速度。 The preferred embodiment of the present invention shown in FIG. 6 uses a two-stage read control to improve the reading speed while avoiding unnecessary power consumption. In the first stage of a reading operation, the reading The control signal (RC) is at a logic high level, so that the seventh NMOS transistor (M24) is turned on. Since the eighth NMOS transistor (M25) is still turned on at this time, the first low voltage node (VL1) is approximately The accelerated reading voltage (RGND) whose ground voltage is low, and the accelerated reading voltage (RGND) which is lower than the ground voltage can effectively improve the reading speed.
而於讀取操作之一第二階段,雖然該讀取控制信號(RC)仍為邏輯高位準,使得該第七NMOS電晶體(M24)仍為導通,惟由於此時該第八NMOS電晶體(M25)截止,於是該第一低電壓節點(VL1)會經由導通的該第九NMOS電晶體(M26)而呈接地電壓,藉此可有效減少無謂的功率消耗。在此值得注意的是,該讀取操作之該第二階段與該第一階段相隔之時間,係等於該讀取控制信號(RC)由邏輯低位準轉變為邏輯高位準起算,並至該第八NMOS電晶體(M25)之閘極電壓足以關閉該第八NMOS電晶體(M25)為止之時間,其值可藉由該第三反相器(INV)之下降延遲時間與該第一延遲電路(D1)所提供之延遲時間來調整。再者,無論於讀取操作之該第一階段抑是該第二階段,該第九NMOS電晶體(M26)均呈導通狀態(由 於該第九NMOS電晶體(M26)之閘極為電源供應電壓VDD之位準)。第8圖所示為第5圖之本發明較佳實施例於讀取期間之簡化電路圖。 In the second phase of one of the read operations, although the read control signal (RC) is still at a logic high level, the seventh NMOS transistor (M24) is still on, but at this time the eighth NMOS transistor (M25) is turned off, so the first low voltage node (VL1) will be at a ground voltage through the ninth NMOS transistor (M26) that is turned on, thereby effectively reducing unnecessary power consumption. It is worth noting here that the time interval between the second stage and the first stage of the read operation is equal to the time when the read control signal (RC) changes from a logic low level to a logic high level. The gate voltage of the eight NMOS transistor (M25) is enough time to turn off the eighth NMOS transistor (M25), and its value can be determined by the falling delay time of the third inverter (INV) and the first delay circuit. (D1) Adjust the delay time provided. Moreover, the ninth NMOS transistor (M26) is in a conducting state regardless of whether the first stage or the second stage of the read operation (because the gate of the ninth NMOS transistor (M26) is at the power supply voltage). V DD level). FIG. 8 is a simplified circuit diagram of the preferred embodiment of the present invention in FIG. 5 during reading.
接下來依單埠SRAM之2種讀取狀態來說明第8圖之本發明較佳實施例如何設定該加速讀取電壓(RGND)與如何降低讀取時之半選定晶胞干擾。 Next, the two read states of the port SRAM are used to explain how to set the accelerated read voltage (RGND) of the preferred embodiment of the present invention in FIG. 8 and how to reduce the half-selected cell interference during read.
(一)讀取邏輯1(節點A儲存邏輯1): (1) Read logic 1 (node A stores logic 1):
在讀取動作發生前,該第一NMOS電晶體(M11)為截止(OFF)且該第二NMOS電晶體(M12)為導通(ON),該節點(A)與該節點(B)分別為該電源供應電壓(VDD)與接地電壓,而該位元線(BL)則因該預充電電路(3)而等於該電源供應電壓(VDD)。於讀取期間,由於該字元線控制信號(WLC)為該電源供應電壓扣抵該第十三NMOS電晶體(M51)之臨界電壓(即VDD-VTM51),因此該第三NMOS電晶體(M13)導通(ON),藉此可有效保持該位元線(BL)為該電源供應電壓直到讀取週期結束而順利完成讀取邏輯1之操作。在此值得注意的是,由於此時該第一低電壓節點(VL1)大約為該加速讀取電壓(RGND),為了有效降低讀取時之半選定晶胞干擾與有效降低漏電流,必須將該加速讀取電壓(RGND)之絕對值設定為讀取時使該第一低電壓節點(VL1)之電壓位準小於該第一NMOS電晶體(M11)之臨界電壓(VTM11),當然亦可更保守地將該加速讀取電壓(RGND)之絕對值設定為小於該第一NMOS電晶體(M11)之臨界電壓(VTM11),亦即|RGND|<VTM11 (4)其中,|RGND|與VTM11分別表示該加速讀取電壓之絕對值與該第一 NMOS電晶體(M11)之臨界電壓。 Before the read operation occurs, the first NMOS transistor (M11) is OFF and the second NMOS transistor (M12) is ON. The node (A) and the node (B) are respectively The power supply voltage (V DD ) and the ground voltage, and the bit line (BL) is equal to the power supply voltage (V DD ) due to the precharge circuit (3). During the reading period, since the word line control signal (WLC) deducts the threshold voltage (ie, V DD -V TM51 ) of the thirteenth NMOS transistor (M51) for the power supply voltage, the third NMOS voltage The crystal (M13) is turned on, thereby effectively maintaining the bit line (BL) to supply the power supply voltage until the end of the read cycle to successfully complete the read logic 1 operation. It is worth noting that, since the first low voltage node (VL1) is approximately the accelerated read voltage (RGND) at this time, in order to effectively reduce the half-selected cell interference during reading and effectively reduce the leakage current, the The absolute value of the accelerated read voltage (RGND) is set to make the voltage level of the first low voltage node (VL1) smaller than the threshold voltage (V TM11 ) of the first NMOS transistor (M11) when reading, of course, also The absolute value of the accelerated read voltage (RGND) can be set more conservatively than the threshold voltage (V TM11 ) of the first NMOS transistor (M11), that is, | RGND | <V TM11 (4) where, | RGND | and V TM11 respectively represent the absolute value of the accelerated read voltage and the threshold voltage of the first NMOS transistor (M11).
(二)讀取邏輯0(節點A儲存邏輯0): (2) Read logic 0 (node A stores logic 0):
在讀取動作發生前,該第一NMOS電晶體(M11)為導通(ON)且該第二NMOS電晶體(M12)為截止(OFF),該節點(A)與該節點(B)分別為接地電壓與該電源供應電壓(VDD),而該位元線(BL)則因該預充電電路(3)而等於該電源供應電壓(VDD)。因為該第一NMOS電晶體(M11)為ON,所以當讀取動作開始時,該字元線控制信號(WLC)由Low(接地電壓)轉High(該電源供應電壓扣抵該第十三NMOS電晶體M51之臨界電壓VDD-VTM51)。當該字元線控制信號(WLC)的電壓大於該第三NMOS電晶體(M13)的臨界電壓時,該第三NMOS電晶體(M13)由截止(OFF)轉變為導通(ON),此時該節點A之讀取初始瞬間電壓(VAR)必須滿足方程式(5):VAR=VDD×(RM11+(RM24+RM25)∥RM26)/(RM13+RM11+(RM24+RM25)∥RM26)+RGND×(RM11+RM13)∥RM26/(RM24+RM25+(RM11+RM13)∥RM26)×RM13/(RM11+RM13)<VTM12 (5)其中,VAR表示節點A讀取邏輯0時之初始瞬間電壓,RM11、RM13、RM24、RM25與RM26分別表示該第一NMOS電晶體(M11)、該第三NMOS電晶體(M13)、該第七NMOS電晶體(M24)、該第八NMOS電晶體(M25)與該第九NMOS電晶體(M26)之導通電阻,而VDD、RGND與VTM12分別表示該電源供應電壓(VDD)、該加速讀取電壓(RGND)與該第二NMOS電晶體(M12)之臨界電壓。在此值得注意的是,該加速讀取電壓(RGND)係設計成低於接地電壓且該加速讀取電壓之絕對值設計成小於該第一NMOS電 晶體(M11)之臨界電壓。再者,本發明於讀取期間之該字元線控制信號(WLC)係設定為該電源供應電壓扣抵該第十三NMOS電晶體(M51)之臨界電壓(VDD-VTM51),其一方面能有效降低讀取時之半選定晶胞干擾,另一方面可藉由增加該第三NMOS電晶體(M13)之導通電阻(RM13)以容易滿足方程式(5)。 Before the read operation occurs, the first NMOS transistor (M11) is ON and the second NMOS transistor (M12) is OFF. The node (A) and the node (B) are respectively The ground voltage and the power supply voltage (V DD ), and the bit line (BL) is equal to the power supply voltage (V DD ) due to the precharge circuit (3). Because the first NMOS transistor (M11) is ON, when the read operation starts, the word line control signal (WLC) changes from Low (ground voltage) to High (the power supply voltage deducts the thirteenth NMOS Threshold voltage V DD -V TM51 of transistor M51). When the voltage of the word line control signal (WLC) is greater than the threshold voltage of the third NMOS transistor (M13), the third NMOS transistor (M13) changes from OFF to ON. At this time, The initial instantaneous voltage (V AR ) of this node A must satisfy equation (5): V AR = V DD × (R M11 + (R M24 + R M25 ) ∥R M26 ) / (R M13 + R M11 + ( R M24 + R M25 ) ∥R M26 ) + RGND × (R M11 + R M13 ) ∥R M26 / (R M24 + R M25 + (R M11 + R M13 ) ∥R M26 ) × R M13 / (R M11 + R M13 ) <V TM12 (5), where V AR represents the initial instantaneous voltage when node A reads logic 0, and R M11 , R M13, R M24, R M25 and R M26 respectively represent the first NMOS transistor (M11 ), The on resistance of the third NMOS transistor (M13), the seventh NMOS transistor (M24), the eighth NMOS transistor (M25) and the ninth NMOS transistor (M26), and V DD , RGND And V TM12 represent the threshold voltages of the power supply voltage (V DD ), the accelerated read voltage (RGND), and the second NMOS transistor (M12), respectively. It is worth noting here that the accelerated read voltage (RGND) is designed to be lower than the ground voltage and the absolute value of the accelerated read voltage is designed to be smaller than the threshold voltage of the first NMOS transistor (M11). Furthermore, the word line control signal (WLC) of the present invention during reading is set to the power supply voltage to deduct the threshold voltage (V DD -V TM51 ) of the thirteenth NMOS transistor (M51), which On the one hand, the half-selected cell interference during reading can be effectively reduced; on the other hand, the on-resistance (R M13 ) of the third NMOS transistor (M13) can be increased to easily satisfy Equation (5).
(III)待機模式(standby mode) (III) Standby mode
首先,說明第5圖之待機啟動電路(4)如何促使單埠SRAM快速進入待機模式,以有效提高SRAM之待機效能:(1)於進入待機模式之前,該反相待機模式控制信號(/S)為邏輯High,該邏輯High之反相待機模式控制信號(/S)使得該第四PMOS電晶體(P41)截止(OFF),並使得該第十二NMOS電晶體(M41)導通(ON);(2)而於進入待機模式後,該反相待機模式控制信號(/S)為邏輯Low,該邏輯Low之反相待機模式控制信號(/S)使得該第四PMOS電晶體(P41)導通(ON),惟於待機模式之初始期間內(該初始期間係等於該反相待機模式控制信號(/S)由邏輯High轉變為邏輯Low起算,至該第十二NMOS電晶體(M41)之閘極電壓足以關閉該第十二NMOS電晶體(M41)為止之時間,其可藉由該第二延遲電路(D2)所提供之一延遲時間來調整),該第十二NMOS電晶體(M41)仍導通(ON),於是可對該第一低電壓節點(VL1)快速充電到達該第六NMOS電晶體(M23)之臨界電壓(VTM23)的電壓位準,亦即單埠SRAM可快速進入待機模式。在此值得注意的是,於待機模式之初始期間後,該第十二NMOS電晶體(M41)關閉並停止供應電流。 First, explain how the standby start circuit (4) in Fig. 5 prompts the port SRAM to enter the standby mode quickly, so as to effectively improve the standby performance of the SRAM: (1) before entering the standby mode, the inverted standby mode control signal (/ S ) Is logic High. The inverted standby mode control signal (/ S) of the logic High turns off the fourth PMOS transistor (P41) and turns on the twelfth NMOS transistor (M41). (2) After entering the standby mode, the inverting standby mode control signal (/ S) is logic Low, and the inverting standby mode control signal (/ S) of the logic Low makes the fourth PMOS transistor (P41) ON, but within the initial period of the standby mode (the initial period is equal to the inversion standby mode control signal (/ S) transition from logic High to logic Low, to the twelfth NMOS transistor (M41) The gate voltage is enough time to turn off the twelfth NMOS transistor (M41), which can be adjusted by a delay time provided by the second delay circuit (D2)), the twelfth NMOS transistor ( M41) is still on, so the first low voltage node (VL1) can be quickly charged to the sixth NMOS transistor (M2) 3) The voltage level of the threshold voltage (V TM23 ), that is, the port SRAM can quickly enter the standby mode. It is worth noting here that after the initial period of the standby mode, the twelfth NMOS transistor (M41) is turned off and stops supplying current.
請參考第5圖,於待機模式時,該待機模式控制信號(S) 為邏輯高位準,而該反相待機模式控制信號(/S)為邏輯低位準,該邏輯低位準之該反相待機模式控制信號(/S)可使得該控制電路(2)中之該第四NMOS電晶體(M21)截止(OFF),而該邏輯高位準之該待機模式控制信號(S)則使得該第五NMOS電晶體(M22)導通(ON),此時該第五NMOS電晶體(M22)係作為等化器(equalizer)使用,因此可藉由呈導通狀態之該第五NMOS電晶體(M22),以使得該第一低電壓節點(VL1)之電壓位準相等於該第二低電壓節點(VL2)之電壓位準,且該等電壓位準均會等於該第六NMOS電晶體(M23)之臨界電壓(VTM23)的電壓位準。第9圖所示為第5圖之本發明較佳實施例於待機期間之簡化電路圖。 Please refer to FIG. 5. In the standby mode, the standby mode control signal (S) is a logic high level, and the inverted standby mode control signal (/ S) is a logic low level, and the logic low level is the inverted standby The mode control signal (/ S) can turn off the fourth NMOS transistor (M21) in the control circuit (2), and the standby mode control signal (S) at the logic high level makes the fifth The NMOS transistor (M22) is turned on. At this time, the fifth NMOS transistor (M22) is used as an equalizer. Therefore, the fifth NMOS transistor (M22) can be turned on. So that the voltage level of the first low voltage node (VL1) is equal to the voltage level of the second low voltage node (VL2), and the voltage levels are all equal to the voltage levels of the sixth NMOS transistor (M23) The voltage level of the threshold voltage (V TM23 ). FIG. 9 is a simplified circuit diagram of the preferred embodiment of the present invention in FIG. 5 during the standby period.
接下來說明本發明於待機模式(standby mode)時如何減少漏電流,請參考第9圖,第9圖描述有本發明實施例處於待機模式時所產生之各漏電流(subthreshold leakage current)I1、I2、I3,其中假設SRAM晶胞中之該第一反相器之輸出(即節點A)為邏輯Low(在此值得注意的是,由於待機模式時該第二低電壓節點(VL2)之電壓位準係維持在該第六NMOS電晶體(M23)之臨界電壓(VTM23)的電壓位準,因此節點A為邏輯Low之電壓位準亦維持在該VTM23的電壓位準),而該第二反相器之輸出(即節點B)為邏輯High(電源供應電壓VDD)。請參考第1b圖之先前技藝與第9圖之本發明實施例,來說明本發明所提出之靜態隨機存取記憶體與第1b圖之6T SRAM於漏電流方面之比較,首先關於流經該第三NMOS電晶體(M13)之漏電流I1,由於本發明於待機模式時節點A之電壓位準係維持在該VTM23的電壓位準,且假設字元線(WL)於待機模式時係設定成接地電壓,而位元線(BL)於待機模式時則設定為該電源供應電壓(VDD),因 此本發明之第三NMOS電晶體(M13)的閘源極電壓(VGS)為負值,反觀於待機模式時第1b圖先前技藝之NMOS電晶體(M3)的閘源極電壓(VGS)等於0,根據閘極引發汲極洩漏(Gate Induced Drain Leakage,簡稱GIDL)效應或2005年3月8日第US6865119號專利案第3(A)及3(B)圖之結果可知,對於NMOS電晶體而言,閘源極電壓為-0.1伏特時之次臨界電流約為閘源極電壓為0伏特時之次臨界電流的1%,因此導因於GIDL效應所引發之流經本發明之該第三NMOS電晶體(M13)之漏電流I1遠小於第1b圖先前技藝之NMOS電晶體(M3)者;再者,本發明該第三NMOS電晶體(M13)之汲源極電壓(VDS)為該電源供應電壓(VDD)扣減該VTM23的電壓位準,反觀於待機模式時傳統第1b圖6T靜態隨機存取記憶體之NMOS電晶體(M3)之汲源極電壓(VDS)係等於該電源供應電壓(VDD),根據汲極引發能障下跌(Drain-Induced Barrier Lowering,簡稱DIBL)效應,由於DIBL效應所引發之流經本發明之該第三NMOS電晶體(M13)之漏電流I1亦小於第1b圖先前技藝之NMOS電晶體(M3)者;結果,流經本發明之該第三NMOS電晶體(M13)之漏電流I1遠小於第1b圖先前技藝之NMOS電晶體(M3)者。 Next, how to reduce the leakage current in the standby mode of the present invention will be described. Please refer to FIG. 9. FIG. 9 describes the respective leakage currents I 1 generated when the embodiment of the present invention is in the standby mode. , I 2 , I 3 , where it is assumed that the output of the first inverter (ie, node A) in the SRAM cell is logic Low (It is worth noting here that because the second low voltage node (VL2 The voltage level of) is maintained at the voltage level of the threshold voltage (V TM23 ) of the sixth NMOS transistor (M23), so the voltage level of node A being logic Low is also maintained at the voltage level of V TM23 ) , And the output of the second inverter (ie, node B) is logic High (power supply voltage V DD ). Please refer to the prior art of FIG. 1b and the embodiment of the present invention of FIG. 9 to explain the comparison of the static random access memory proposed by the present invention with the 6T SRAM of FIG. 1b in terms of leakage current. The leakage current I 1 of the third NMOS transistor (M13), because the voltage level of the node A is maintained at the voltage level of the V TM23 in the standby mode of the present invention, and it is assumed that the word line (WL) is in the standby mode Is set to ground voltage, and the bit line (BL) is set to the power supply voltage (V DD ) in the standby mode, so the gate-source voltage (V GS ) of the third NMOS transistor (M13) of the present invention It is a negative value. In contrast, in the standby mode, the gate-source voltage (V GS ) of the NMOS transistor (M3) of the prior art in FIG. 1b is equal to 0. According to the gate-induced drain leakage (GIDL) effect Or according to the results of Figures 3 (A) and 3 (B) of Patent No. US6865119 on March 8, 2005, it can be known that for NMOS transistors, the sub-critical current when the gate-source voltage is -0.1 volt is about the gate The source voltage is 1% of the subcritical current at 0 volts, so the current flowing through the invention caused by the GIDL effect is caused by The leakage current I 1 of the third NMOS transistor (M13) is much smaller than that of the NMOS transistor (M3) of the prior art in FIG. 1b; further, the drain-source voltage of the third NMOS transistor (M13) of the present invention ( V DS ) deducts the voltage level of V TM23 for the power supply voltage (V DD ). In contrast, in the standby mode, the drain source voltage of the NMOS transistor (M3) of the traditional random access memory of FIG. (V DS ) is equal to the power supply voltage (V DD ). According to the Drain-Induced Barrier Lowering (DIBL) effect, the third NMOS transistor caused by the DIBL effect flows through the present invention. The leakage current I 1 of (M13) is also smaller than the NMOS transistor (M3) of the prior art in FIG. 1b; as a result, the leakage current I 1 of the third NMOS transistor (M13) flowing through the present invention is much smaller than that of FIG. 1b. Those who are skilled in NMOS transistor (M3).
接著關於流經該第一PMOS電晶體(P11)之漏電流I2,由於待機模式時該第一PMOS電晶體(P11)之源極係為該電源供應電壓(VDD),而該第一PMOS電晶體(P11)之汲極係維持在該該VTM23的電壓位準,因此本發明之該第一PMOS電晶體(P11)之源汲極電壓(VSD)為該電源供應電壓(VDD)扣減該VTM23的電壓位準,反觀於待機模式時第1b圖先前技藝之PMOS電晶體(P1)之源汲極電壓(VSD)係等於該電源供應電壓(VDD),根據DIBL效應,因此流經本發明之該第一PMOS電晶體(P11)之漏電流I2 會小於第1b圖先前技藝之PMOS電晶體(P1)者。 Then regarding the leakage current I 2 flowing through the first PMOS transistor (P11), since the source of the first PMOS transistor (P11) is the power supply voltage (V DD ) in the standby mode, and the first The drain of the PMOS transistor (P11) is maintained at the voltage level of the V TM23 . Therefore, the source drain voltage (V SD ) of the first PMOS transistor (P11) of the present invention is the power supply voltage (V DD ) deducts the voltage level of the V TM23 . In contrast, in the standby mode, the source-drain voltage (V SD ) of the PMOS transistor (P1) of the prior art in FIG. 1b is equal to the power supply voltage (V DD ). DIBL effect, so the leakage current I 2 flowing through the first PMOS transistor (P11) of the present invention will be smaller than that of the PMOS transistor (P1) of the prior art in FIG. 1b.
最後,關於流經該第二NMOS電晶體(M12)之漏電流I3,由於待機模式時該第二低電壓節點(VL2)之電壓位準係維持在該VTM23的電壓位準,節點A之電壓位準亦維持在該VTM23的電壓位準,而節點B之電壓位準係等於該電源供應電壓(VDD)且該第二NMOS電晶體(M12)之基底為接地電壓,因此本發明之該第二NMOS電晶體(M12)的基源極電壓(VBS)為負值,且該第二NMOS電晶體(M12)之汲源極電壓(VDS)為該電源供應電壓(VDD)扣減該VTM23的電壓位準,反觀於待機模式時第1b圖先前技藝之NMOS電晶體(M2)的基源極電壓(VBS)等於0,且NMOS電晶體(M2)之汲源極電壓(VDS)等於該電源供應電壓(VDD),根據本體效應(body effect)及DIBL效應可知,流經本發明之該第二NMOS電晶體(M12)之漏電流I3遠小於第1b圖先前技藝之NMOS電晶體(M2)者。由上述分析可知,本發明所提出之5T靜態隨機存取記憶體與第1b圖先前技藝相較具有較低之漏電流。 Finally, regarding the leakage current I 3 flowing through the second NMOS transistor (M12), since the voltage level of the second low voltage node (VL2) is maintained at the voltage level of the V TM23 in the standby mode, node A The voltage level of V TM23 is also maintained, and the voltage level of node B is equal to the power supply voltage (V DD ) and the substrate of the second NMOS transistor (M12) is ground voltage. The base-source voltage (V BS ) of the second NMOS transistor (M12) is negative, and the drain-source voltage (V DS ) of the second NMOS transistor (M12) is the power supply voltage (V DD ) The voltage level of the V TM23 is deducted. In contrast, in the standby mode, the base-source voltage (V BS ) of the NMOS transistor (M2) of the prior art in FIG. 1b is equal to 0, and the drain of the NMOS transistor (M2) The source voltage (V DS ) is equal to the power supply voltage (V DD ). According to the body effect and DIBL effect, it can be known that the leakage current I 3 flowing through the second NMOS transistor (M12) of the present invention is much smaller than the first Figure 1b shows the NMOS transistor (M2) of the prior art. It can be known from the above analysis that the 5T static random access memory proposed by the present invention has a lower leakage current than the prior art of FIG. 1b.
(IV)保持模式(hold mode) (IV) Hold mode
保持模式時,由於該第一低電壓節點(VL1)與該第二低電壓節點(VL2)均設定成接地電壓,其工作原理相同於第3圖傳統具單一位元線之5T SRAM晶胞,於此不再累述。 In the hold mode, since the first low voltage node (VL1) and the second low voltage node (VL2) are both set to the ground voltage, the working principle is the same as that of the traditional 5T SRAM cell with a single bit line in Figure 3. I won't go into details here.
【發明功效】 [Effect of Invention]
本發明所提出之5T靜態隨機存取記憶體,具有如下功效: The 5T static random access memory proposed by the present invention has the following effects:
(1)高設計自由度:由於本發明於讀取邏輯0時,將儲存節點(A)下拉至 低於第二NMOS電晶體(M12)之臨界電壓(VTM12)共有二個機制,一個為藉由字元線電壓位準轉換電路(5),以將施加至選定晶胞之存取電晶體(即第三NMOS電晶體M13)的字元線電壓下拉至低於電源供應電壓(即VDD-VTM51),另一個為藉由低於接地電壓之加速讀取電壓(RGND)以下拉儲存節點(A),因此具備高設計自由度之功效; (1) High design freedom: Since the present invention reads logic 0, the storage node (A) is pulled down to a threshold voltage (V TM12 ) below the second NMOS transistor (M12). There are two mechanisms, one is The word line voltage level conversion circuit (5) is used to pull down the word line voltage applied to the selected transistor (ie, the third NMOS transistor M13) to a voltage lower than the power supply voltage (ie, V DD -V TM51 ), the other is to pull down the storage node (A) by the accelerated read voltage (RGND) lower than the ground voltage, so it has the effect of high design freedom;
(2)有效降低讀取時之半選定晶胞干擾:本發明可藉由字元線電壓位準轉換電路(5),以於讀取操作期間將施加至選定晶胞之存取電晶體(即第三NMOS電晶體N13)的字元線電壓下拉至低於該電源供應電壓(即VDD-VTM51),其一方面可降低半選定晶胞中之第三NMOS電晶體(M13)的讀取干擾,另一方面可藉由減輕滿足方程式(5)所需之加速讀取電壓(RGND),以降低半選定晶胞中之第一NMOS電晶體(N11)的讀取干擾,因此具備有效降低讀取時之半選定晶胞干擾之功效; (2) Effectively reduce half-selected cell interference during reading: The present invention can use a word line voltage level conversion circuit (5) to apply an access transistor (5) to a selected cell during a read operation ( That is, the word line voltage of the third NMOS transistor N13) is pulled down to be lower than the power supply voltage (ie, V DD -V TM51 ). On the one hand, it can reduce the voltage of the third NMOS transistor (M13) in the half-selected cell. Read interference, on the other hand, can reduce the read interference of the first NMOS transistor (N11) in the semi-selected cell by reducing the accelerated read voltage (RGND) required to satisfy equation (5). Effectively reduce the effect of half-selected cell interference during reading;
(3)高讀取速度並避免無謂的功率消耗:本發明係採用二階段讀取操作,於讀取操作之第一階段藉由將第一低電壓節點(VL1)設定成較接地電壓為低之加速讀取電壓(RGND)以有效提高讀取速度,而於讀取操作之第二階段則藉由將第一低電壓節點(VL1)設定回接地電壓,以便減少無謂的功率消耗; (3) High read speed and avoid unnecessary power consumption: The present invention adopts a two-stage read operation. In the first stage of the read operation, the first low voltage node (VL1) is set to be lower than the ground voltage. Accelerate the read voltage (RGND) to effectively improve the read speed, and in the second stage of the read operation, set the first low voltage node (VL1) back to the ground voltage in order to reduce unnecessary power consumption;
(4)快速進入待機模式:由於本發明設置有待機啟動電路(4)以促使SRAM快速進入待機模式,並藉此以謀求提高單埠SRAM之待機效能; (4) Quickly enter standby mode: Because the present invention is provided with a standby startup circuit (4) to prompt the SRAM to enter the standby mode quickly, and thereby seek to improve the standby efficiency of the port SRAM;
(5)避免寫入邏輯1困難之問題:本發明於寫入操作時,可藉由提高該第一低電壓節點(VL1)之電壓位準以有效避免習知具單一位元線之單埠SRAM存在寫入邏輯1相當困難之問題; (5) Avoiding the difficulty of writing logic 1: In the writing operation of the present invention, the voltage level of the first low-voltage node (VL1) can be increased to effectively avoid the familiar port with a single bit line. SRAM has the problem of writing logic 1;
(6)低待機電流:由於本發明於待機模式時,可藉由呈導通狀態之第五NMOS電晶體(M22),以使得該第一低電壓節點(VL1)之電壓位準相等於該第二低電壓節點(VL2)之電壓位準,並使得該等電壓位準均等於該第六NMOS電晶體(M23)之臨界電壓的位準,因此本發明亦具備低待機電流之功效; (6) Low standby current: Since the present invention is in the standby mode, the fifth NMOS transistor (M22) can be turned on to make the voltage level of the first low voltage node (VL1) equal to the first low voltage node (VL1). The voltage level of the second low voltage node (VL2) and the voltage levels are equal to the threshold voltage level of the sixth NMOS transistor (M23), so the invention also has the effect of low standby current;
(7)低電晶體數:對於具有1024列1024行之SRAM陣列而言,傳統第1b圖6T靜態隨機存取記憶體陣列共需1024×1024×6=6,291,456顆電晶體,而本發明所提出之靜態隨機存取記憶體僅至少需1024×1024×5+1024×24+ 6=5,267,462顆電晶體,其減少16.3%之電晶體數。 (7) Low number of transistors: For a SRAM array with 1024 columns and 1024 rows, the conventional static random access memory array of Figure 1b, Figure 6T requires a total of 1024 × 1024 × 6 = 6,291,456 transistors. The static random access memory only needs at least 1024 × 1024 × 5 + 1024 × 24 + 6 = 5,267,462 transistors, which reduces the number of transistors by 16.3%.
(8)有效地防止寫入邏輯1時因非預期因素而使該待機模式控制信號(S)短暫成為邏輯高位準而導致無法寫入之問題:由於該待機模式控制信號(S)為邏輯高位準時,該節點(C)之電壓位準係為該接地電壓,因此可有效地防止寫入邏輯1時因非預期因素而使該待機模式控制信號(S)短暫成為邏輯高位準而導致無法寫入之問題。 (8) Effectively prevent the problem that the standby mode control signal (S) cannot be written to a logic high level due to unexpected factors when writing to logic 1: because the standby mode control signal (S) is a logic high On time, the voltage level of the node (C) is the ground voltage, so it can effectively prevent the standby mode control signal (S) from temporarily becoming a logic high level due to unexpected factors when writing to logic 1 and cannot be written Into the problem.
雖然本發明特別揭露並描述了所選之較佳實施例,但舉凡熟悉本技術之人士可明瞭任何形式或是細節上可能的變化均未脫離本發明的精神與範圍。因此,所有相關技術範疇內之改變都包括在本發明之申請專利範圍內。 Although the present invention specifically discloses and describes the selected preferred embodiment, those skilled in the art can understand that any form or detail may be changed without departing from the spirit and scope of the present invention. Therefore, all changes in the related technical scope are included in the scope of patent application of the present invention.
1‧‧‧SRAM晶胞 1‧‧‧SRAM cell
2‧‧‧控制電路 2‧‧‧Control circuit
3‧‧‧預充電電路 3‧‧‧ pre-charge circuit
4‧‧‧待機啟動電路 4‧‧‧ Standby start circuit
5‧‧‧字元線電壓位準轉換電路 5‧‧‧Word line voltage level conversion circuit
P11‧‧‧第一PMOS電晶體 P11‧‧‧The first PMOS transistor
P12‧‧‧第二PMOS電晶體 P12‧‧‧Second PMOS transistor
M11‧‧‧第一NMOS電晶體 M11‧‧‧The first NMOS transistor
M12‧‧‧第二NMOS電晶體 M12‧‧‧Second NMOS transistor
M13‧‧‧第三NMOS電晶體 M13‧‧‧Third NMOS transistor
A‧‧‧儲存節點 A‧‧‧Storage Node
B‧‧‧反相儲存節點 B‧‧‧ Inverted Storage Node
BL‧‧‧位元線 BL‧‧‧bit line
WLC‧‧‧字元線控制信號 WLC‧‧‧Word line control signal
S‧‧‧待機模式控制信號 S‧‧‧Standby mode control signal
/S‧‧‧反相待機模式控制信號 / S ‧‧‧ Inverted standby mode control signal
VL1‧‧‧第一低電壓節點 VL1‧‧‧The first low voltage node
VL2‧‧‧第二低電壓節點 VL2‧‧‧Second Low Voltage Node
M21‧‧‧第四NMOS電晶體 M21‧‧‧Fourth NMOS transistor
M22‧‧‧第五NMOS電晶體 M22‧‧‧Fifth NMOS transistor
M23‧‧‧第六NMOS電晶體 M23‧‧‧sixth NMOS transistor
M24‧‧‧第七NMOS電晶體 M24‧‧‧Seventh NMOS transistor
M25‧‧‧第八NMOS電晶體 M25‧‧‧eighth NMOS transistor
M26‧‧‧第九NMOS電晶體 M26‧‧‧Ninth NMOS transistor
M27‧‧‧第十NMOS電晶體 M27‧‧‧Tenth NMOS Transistor
M28‧‧‧第十一NMOS電晶體 M28‧‧‧11th NMOS transistor
RC‧‧‧讀取控制信號 RC‧‧‧Read control signal
RGND‧‧‧加速讀取電壓 RGND‧‧‧Accelerated reading voltage
/RC‧‧‧反相讀取控制信號 / RC‧‧‧ Inverted read control signal
/WC‧‧‧反相寫入控制信號 / WC‧‧‧ Inverted write control signal
INV‧‧‧第三反相器 INV‧‧‧Third Inverter
D1‧‧‧第一延遲電路 D1‧‧‧first delay circuit
P31‧‧‧第三PMOS電晶體 P31‧‧‧Third PMOS transistor
P‧‧‧預充電信號 P‧‧‧Pre-charge signal
M41‧‧‧第十二NMOS電晶體 M41‧‧‧Twelfth NMOS transistor
P41‧‧‧第四PMOS電晶體 P41‧‧‧Fourth PMOS transistor
D2‧‧‧第二延遲電路 D2‧‧‧Second Delay Circuit
VDD‧‧‧電源供應電壓 V DD ‧‧‧ Power supply voltage
WL‧‧‧字元線 WL‧‧‧Character Line
R‧‧‧讀取信號 R‧‧‧ Read signal
P51‧‧‧第五PMOS電晶體 P51‧‧‧Fifth PMOS transistor
M51‧‧‧第十三NMOS電晶體 M51‧thirteenth NMOS transistor
M52‧‧‧第十四NMOS電晶體 M52‧‧‧14th NMOS Transistor
C‧‧‧節點 C‧‧‧node
WC‧‧‧寫入控制信號 WC‧‧‧ write control signal
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW105121894A TWI591634B (en) | 2016-07-12 | 2016-07-12 | Five transistor static random access memory |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW105121894A TWI591634B (en) | 2016-07-12 | 2016-07-12 | Five transistor static random access memory |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI591634B TWI591634B (en) | 2017-07-11 |
TW201810271A true TW201810271A (en) | 2018-03-16 |
Family
ID=60048584
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW105121894A TWI591634B (en) | 2016-07-12 | 2016-07-12 | Five transistor static random access memory |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI591634B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI633560B (en) * | 2017-11-10 | 2018-08-21 | 修平學校財團法人修平科技大學 | Single port static random access memory |
-
2016
- 2016-07-12 TW TW105121894A patent/TWI591634B/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
TWI591634B (en) | 2017-07-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI638365B (en) | Five-transistor static random access memory with fast write speed | |
TWI609380B (en) | Five-transistor single port static random access memory with fast read speed | |
TWI634564B (en) | Five transistor single port static random access memory | |
TWI618082B (en) | Five transistor static random access memory | |
TWI611424B (en) | Five transistor static random access memory with fast read speed | |
TWI582770B (en) | Five transistor static random access memory | |
TW201812777A (en) | Five-transistor static random access memory increasing on-resistance of the third NMOS transistor (M13) in the reading mode and effectively reducing selected cell interference during reading | |
TWI660349B (en) | Five-transistor single port static random access memory with fast read/write speed | |
TWI665671B (en) | Single port static random access memory with fast read/write speed | |
TWI638355B (en) | Five-transistor static random access memory with fast write speed | |
TWI618085B (en) | Static random access memory | |
TWI609372B (en) | Single port static random access memory | |
TW201810271A (en) | Five-transistor static random access memory for effectively preventing the difficulty of writing logic 1 in the write mode and improving the read speed in the read mode while avoiding unnecessary power consumption | |
TWI611400B (en) | Five transistor static random access memory | |
TWI678698B (en) | Five-transistor static random access memory with improved access speed | |
TWI622058B (en) | Single port static random access memory | |
TWI676173B (en) | Five-transistor single port static random access memory | |
TW201828299A (en) | Five transistor single port static random access memory with standby initiating circuit to effectively make the static random access memory quickly enter a standby mode | |
TWI660366B (en) | Five-transistor static random access memory with fast read/write speed | |
TWI618062B (en) | Static random access memory with five transistors | |
TWI622062B (en) | Static random access memory with fast read speed | |
TWI611423B (en) | Single port static random access memory with fast read speed | |
TWI634552B (en) | Single port static random access memory with fast write speed | |
TWI618088B (en) | Static random access memory | |
TWI618061B (en) | Single port static random access memory |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |