TW201807755A - Nitride semiconductor structure - Google Patents

Nitride semiconductor structure Download PDF

Info

Publication number
TW201807755A
TW201807755A TW105128161A TW105128161A TW201807755A TW 201807755 A TW201807755 A TW 201807755A TW 105128161 A TW105128161 A TW 105128161A TW 105128161 A TW105128161 A TW 105128161A TW 201807755 A TW201807755 A TW 201807755A
Authority
TW
Taiwan
Prior art keywords
aluminum nitride
layer
based layer
nitride
aluminum
Prior art date
Application number
TW105128161A
Other languages
Chinese (zh)
Other versions
TWI602248B (en
Inventor
林昆泉
劉進祥
蕭佑霖
Original Assignee
聯鈞光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 聯鈞光電股份有限公司 filed Critical 聯鈞光電股份有限公司
Priority to TW105128161A priority Critical patent/TWI602248B/en
Priority to CN201610913019.4A priority patent/CN107785237A/en
Application granted granted Critical
Publication of TWI602248B publication Critical patent/TWI602248B/en
Publication of TW201807755A publication Critical patent/TW201807755A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

A nitride semiconductor structure including substrate, multiple buffer layer and nitride semiconductor stacking layer is provided, wherein the nitride semiconductor layer is disposed on the multiple buffer layer, and the multiple buffer layer is disposed between the substrate and the nitride semiconductor stacking layer. The multiple buffer layer includes nitride semiconductor composite layers, and each of the nitride semiconductor composite layers includes a first aluminum nitride based layer, a second aluminum nitride based layer and a third aluminum nitride based layer. The second aluminum nitride based layer and the third aluminum nitride based layer are disposed on the first aluminum nitride based layer in series, and the aluminum ratio of the first aluminum nitride based layer, the second aluminum nitride based layer and the third aluminum nitride based layer are decreased in series.

Description

氮化物半導體結構Nitride semiconductor structure

本發明是有關於一種半導體結構,且特別是有關於一種氮化物半導體結構。The present invention relates to a semiconductor structure, and more particularly, to a nitride semiconductor structure.

以氮化鎵為基底的化合物形成的半導體元件由於具有高耐熱性、高崩潰電壓(breakdown voltage)、高電子飽和速度、高電流密度,其可以在高頻率下運作、並提供較高的功率,因此不論在汽車電子、電源管理系統、照明、工業設備、可攜式產品、通信設備、消費類電子產品內都具有極高的發展潛力。A semiconductor device formed of a compound based on gallium nitride has high heat resistance, high breakdown voltage, high electron saturation speed, and high current density. It can operate at high frequencies and provide higher power. Therefore, it has extremely high development potential in automotive electronics, power management systems, lighting, industrial equipment, portable products, communication equipment, and consumer electronics.

然而,現有用以成長含氮半導體的基板例如是藍寶石基板,其晶格大小並無法與氮化鎵的晶格匹配,因此在成長含氮半導體時容置形成缺陷或裂痕,進而無法製作良好的含氮半導體。另一方面,現有的特製基板的晶格大小雖然可以與氮化鎵的晶格大小匹配,但其價格極高,進而會導致含氮半導體裝置的整體製程不符成本。因此,如何在普遍使用的基板上成長良好的含氮半導體元件仍是人們欲解決的主要課題之一。However, the existing substrates for growing nitrogen-containing semiconductors are, for example, sapphire substrates, whose lattice size cannot match the lattice of gallium nitride. Therefore, defects or cracks are formed when nitrogen-containing semiconductors are grown, and it is not possible to make good Nitrogen-containing semiconductors. On the other hand, although the lattice size of the existing special substrate can be matched with the lattice size of gallium nitride, its price is extremely high, which will cause the overall process of the nitrogen-containing semiconductor device to be out of cost. Therefore, how to grow a good nitrogen-containing semiconductor element on a commonly used substrate is still one of the main issues that people want to solve.

本發明提供一種氮化物半導體結構,其具有良好的晶格品質。The invention provides a nitride semiconductor structure, which has good lattice quality.

本發明的實施例的氮化物半導體結構包括基板、多重緩衝疊層以及含氮半導體堆疊層,含氮半導體堆疊層配置於多重緩衝層上,多重緩衝層配置於基板以及含氮半導體堆疊層之間。多重緩衝疊層包括多個含氮半導體複合層,每個多個含氮半導體複合層包括第一氮化鋁基層、第二氮化鋁基層以及第三氮化鋁基層。第二氮化鋁基層以及第三氮化鋁基層依序堆疊於第一氮化鋁基層上,且第一氮化鋁基層、第二氮化鋁基層以及第三氮化鋁基層的鋁濃度依序遞減。A nitride semiconductor structure according to an embodiment of the present invention includes a substrate, a multiple buffer stack, and a nitrogen-containing semiconductor stack layer. The nitrogen-containing semiconductor stack layer is disposed on the multiple buffer layer, and the multiple buffer layer is disposed between the substrate and the nitrogen-containing semiconductor stack layer. . The multiple buffer stack includes a plurality of nitrogen-containing semiconductor composite layers, and each of the plurality of nitrogen-containing semiconductor composite layers includes a first aluminum nitride-based layer, a second aluminum nitride-based layer, and a third aluminum nitride-based layer. The second aluminum nitride-based layer and the third aluminum nitride-based layer are sequentially stacked on the first aluminum nitride-based layer, and the aluminum concentrations of the first aluminum nitride-based layer, the second aluminum nitride-based layer, and the third aluminum nitride-based layer are sequentially Descending order.

在本發明的一實施例中,上述的每個含氮半導體複合層還包括磊晶層。第一氮化鋁基層、第二氮化鋁基層以及第三氮化鋁基層依序堆疊於所述磊晶層上。In an embodiment of the present invention, each of the nitrogen-containing semiconductor composite layers further includes an epitaxial layer. A first aluminum nitride-based layer, a second aluminum nitride-based layer, and a third aluminum nitride-based layer are sequentially stacked on the epitaxial layer.

在本發明的一實施例中,上述的磊晶層的材質包括氮化鋁。In an embodiment of the present invention, a material of the epitaxial layer includes aluminum nitride.

在本發明的一實施例中,上述的第一氮化鋁基層、第二氮化鋁基層以及第三氮化鋁基層的材質包括氮化鋁鎵、氮化鋁銦或氮化鋁銦鎵。In an embodiment of the present invention, the materials of the first aluminum nitride-based layer, the second aluminum nitride-based layer, and the third aluminum nitride-based layer include aluminum gallium nitride, aluminum indium nitride, or aluminum indium gallium nitride.

在本發明的一實施例中,上述的第一氮化鋁基層、第二氮化鋁基層以及第三氮化鋁基層各自具有一致的鋁濃度。In an embodiment of the present invention, each of the first aluminum nitride-based layer, the second aluminum nitride-based layer, and the third aluminum nitride-based layer has a uniform aluminum concentration.

在本發明的一實施例中,上述的第一氮化鋁基層、第二氮化鋁基層以及第三氮化鋁基層各自的鋁濃度往遠離基板的方向減少。In an embodiment of the present invention, the aluminum concentration of each of the first aluminum nitride-based layer, the second aluminum nitride-based layer, and the third aluminum nitride-based layer is reduced in a direction away from the substrate.

在本發明的一實施例中,上述的第一氮化鋁基層、第二氮化鋁基層以及第三氮化鋁基層的鋁濃度各自是以線性、指數型或曲線型變化。In an embodiment of the present invention, the aluminum concentrations of the first aluminum nitride-based layer, the second aluminum nitride-based layer, and the third aluminum nitride-based layer are changed linearly, exponentially, or curvedly.

在本發明的一實施例中,上述的含氮半導體複合層的數量落在2層至200層的範圍內。In an embodiment of the present invention, the number of the nitrogen-containing semiconductor composite layers is in a range from 2 to 200 layers.

在本發明的一實施例中,上述的含氮半導體複合層的數量與第一氮化鋁基層、第二氮化鋁基層以及第三氮化鋁基層的厚度呈正比。In an embodiment of the present invention, the number of the nitrogen-containing semiconductor composite layer is proportional to the thickness of the first aluminum nitride-based layer, the second aluminum nitride-based layer, and the third aluminum nitride-based layer.

在本發明的一實施例中,上述的含氮半導體複合層是由有機金屬化學氣相沈積法形成。In one embodiment of the present invention, the nitrogen-containing semiconductor composite layer is formed by an organic metal chemical vapor deposition method.

在本發明的一實施例中,上述的第一氮化鋁基層、第二氮化鋁基層以及第三氮化鋁基層的厚度不超過1000奈米。In an embodiment of the present invention, the thickness of the first aluminum nitride-based layer, the second aluminum nitride-based layer, and the third aluminum nitride-based layer does not exceed 1000 nm.

在本發明的一實施例中,上述的基板的材質包括矽。In an embodiment of the present invention, a material of the substrate includes silicon.

基於上述,本發明的實施例的氮化物半導體結構包括多重緩衝疊層配置於基板以及含氮半導體堆疊層之間,且多重緩衝疊層包括多個三層式的氮化鋁基複合層,因此可以大幅改善基板以及含氮半導體堆疊層之間晶格不匹配的問題。Based on the above, the nitride semiconductor structure according to the embodiment of the present invention includes a multiple buffer stack disposed between the substrate and the nitrogen-containing semiconductor stack layer, and the multiple buffer stack includes a plurality of three-layer aluminum nitride-based composite layers. The problem of lattice mismatch between the substrate and the nitrogen-containing semiconductor stacked layer can be greatly improved.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。In order to make the above features and advantages of the present invention more comprehensible, embodiments are hereinafter described in detail with reference to the accompanying drawings.

本發明的實施例的氮化物半導體結構例如是一種半導體功率元件(power device)或發光元件(light emitting device),本發明並不限於上述這些應用領域。圖1是依照本發明的第一實施例的一種氮化物半導體結構的示意圖。請參照圖1,在本發明的第一實施例中,氮化物半導體結構100包括基板200、多重緩衝疊層300以及含氮半導體堆疊層400。含氮半導體堆疊層400配置於多重緩衝層300上,多重緩衝層300配置於基板200以及含氮半導體堆疊層400之間。本實施例的含氮半導體堆疊層例如是由多個半導體層形成,其中包括有第一型摻雜半導體層、第二型摻雜半導體層以及主動層等,且半導體堆疊層的材質例如是由氮化鎵與氮化鋁鎵所形成,而多重緩重層300連接基板200以及含氮半導體堆疊層400,但本發明並不限於含氮半導體堆疊層的結構以及組合。The nitride semiconductor structure according to the embodiment of the present invention is, for example, a semiconductor power device (light device) or a light emitting device (light emitting device), and the present invention is not limited to these application fields. FIG. 1 is a schematic diagram of a nitride semiconductor structure according to a first embodiment of the present invention. Referring to FIG. 1, in a first embodiment of the present invention, a nitride semiconductor structure 100 includes a substrate 200, a multiple buffer stack 300, and a nitrogen-containing semiconductor stack layer 400. The nitrogen-containing semiconductor stack layer 400 is disposed on the multiple buffer layer 300. The multiple buffer layer 300 is disposed between the substrate 200 and the nitrogen-containing semiconductor stack layer 400. The nitrogen-containing semiconductor stack layer of this embodiment is formed of multiple semiconductor layers, for example, including a first-type doped semiconductor layer, a second-type doped semiconductor layer, and an active layer. The material of the semiconductor stack layer is, for example, Formed by gallium nitride and aluminum gallium nitride, and the multiple retardation layer 300 is connected to the substrate 200 and the nitrogen-containing semiconductor stack layer 400, but the present invention is not limited to the structure and combination of the nitrogen-containing semiconductor stack layer.

圖2是依照圖1中區域A中的局部放大示意圖。請參照圖2,多重緩衝疊層300包括多個含氮半導體複合層301,每個含氮半導體複合層301包括第一氮化鋁基層310、第二氮化鋁基層320以及第三氮化鋁基層330。在每個含氮半導體複合層301中,第一氮化鋁基層310較其他二層靠近基板200,第三氮化鋁基層330則遠離基板200,而第二氮化鋁基層320位於第一氮化鋁基層310和第三氮化鋁基層330之間。FIG. 2 is a partially enlarged schematic diagram according to an area A in FIG. 1. Referring to FIG. 2, the multiple buffer stack 300 includes a plurality of nitrogen-containing semiconductor composite layers 301, and each nitrogen-containing semiconductor composite layer 301 includes a first aluminum nitride-based layer 310, a second aluminum nitride-based layer 320, and a third aluminum nitride. Base layer 330. In each nitrogen-containing semiconductor composite layer 301, the first aluminum nitride-based layer 310 is closer to the substrate 200 than the other two layers, the third aluminum nitride-based layer 330 is further away from the substrate 200, and the second aluminum nitride-based layer 320 is located at the first nitrogen. Between the aluminum nitride-based layer 310 and the third aluminum nitride-based layer 330.

另一方面,圖3是依照圖1中區域B中的局部放大示意圖。請參照圖3,在本實施例的每個含氮半導體複合層301中,第三氮化鋁基層330較其他二層靠近含氮半導體堆疊層400,第一氮化鋁基層310則遠離含氮半導體堆疊層400。因此,本實施例的基板200鄰近配置於這些含氮半導體複合層301的其中之一的第一氮化鋁基層310,而含氮半導體堆疊層400連接這些含氮半導體複合層301的其中之一的第三氮化鋁基層330。On the other hand, FIG. 3 is a partially enlarged schematic diagram according to a region B in FIG. 1. Referring to FIG. 3, in each nitrogen-containing semiconductor composite layer 301 in this embodiment, the third aluminum nitride-based layer 330 is closer to the nitrogen-containing semiconductor stack layer 400 than the other two layers, and the first aluminum nitride-based layer 310 is far away from the nitrogen-containing semiconductor layer. Semiconductor stack layer 400. Therefore, the substrate 200 of this embodiment is adjacent to the first aluminum nitride-based layer 310 disposed on one of the nitrogen-containing semiconductor composite layers 301, and the nitrogen-containing semiconductor stack layer 400 is connected to one of the nitrogen-containing semiconductor composite layers 301. The third aluminum nitride-based layer 330.

請參照圖2及圖3,本實施例的第二氮化鋁基層320以及第三氮化鋁基層330依序堆疊於第一氮化鋁基層310上,且第一氮化鋁基層310、第二氮化鋁基層320以及第三氮化鋁基層330的鋁濃度依序遞減。換句話說,在每個含氮半導體堆疊層400中,第一氮化鋁基層310的鋁濃度較第二氮化鋁基層320的鋁濃度高,而第二氮化鋁基層320的鋁濃度又較第三氮化鋁基層330的鋁濃度高,因此每個含氮半導體複合層301的鋁濃度是自基板200往含氮半導體堆疊層400遞減,亦即沿著方向d1遞減。2 and FIG. 3, the second aluminum nitride-based layer 320 and the third aluminum nitride-based layer 330 in this embodiment are sequentially stacked on the first aluminum nitride-based layer 310, and the first aluminum nitride-based layer 310, the first The aluminum concentrations of the aluminum dinitride-based layer 320 and the third aluminum nitride-based layer 330 decrease in order. In other words, in each nitrogen-containing semiconductor stack layer 400, the aluminum concentration of the first aluminum nitride-based layer 310 is higher than that of the second aluminum nitride-based layer 320, and the aluminum concentration of the second aluminum nitride-based layer 320 is The aluminum concentration is higher than that of the third aluminum nitride base layer 330. Therefore, the aluminum concentration of each nitrogen-containing semiconductor composite layer 301 decreases from the substrate 200 to the nitrogen-containing semiconductor stacked layer 400, that is, decreases along the direction d1.

如上所述,由於本實施例的氮化物半導體結構100具有多重緩衝層300配置於基板200以及含氮半導體堆疊層400之間,且多重緩衝層300包括多個含氮半導體複合層301,這些含氮半導體複合層各自包括三個氮化鋁基層310、320、330,且這三個氮化鋁基層310、320、330的鋁濃度又依序自基板200往含氮半導體堆疊層400遞減,因此可以適度的調整晶格大小供含氮半導體堆疊層400成長。As described above, since the nitride semiconductor structure 100 of this embodiment has a multiple buffer layer 300 disposed between the substrate 200 and the nitrogen-containing semiconductor stack layer 400, and the multiple buffer layer 300 includes a plurality of nitrogen-containing semiconductor composite layers 301, these Each of the nitrogen semiconductor composite layers includes three aluminum nitride-based layers 310, 320, and 330, and the aluminum concentration of the three aluminum nitride-based layers 310, 320, and 330 decreases in order from the substrate 200 to the nitrogen-containing semiconductor stack layer 400. The lattice size can be adjusted appropriately for the nitrogen-containing semiconductor stack layer 400 to grow.

詳細而言,請參照圖2及圖3,本發明的第一實施例的氮化物半導體結構100中的每個含氮半導體複合層301還包括磊晶層340。第一氮化鋁基層310、第二氮化鋁基層320以及第三氮化鋁基層330依序堆疊於所述磊晶層340上。具體而言,磊晶層340可以提供適當的表面供第一氮化鋁基層310、第二氮化鋁基層320以及第三氮化鋁基層330成長,且還可以避免含氮半導體複合層301所產生的缺陷延伸至其他含氮半導體複合層301。Specifically, referring to FIGS. 2 and 3, each of the nitrogen-containing semiconductor composite layers 301 in the nitride semiconductor structure 100 according to the first embodiment of the present invention further includes an epitaxial layer 340. The first aluminum nitride-based layer 310, the second aluminum nitride-based layer 320, and the third aluminum nitride-based layer 330 are sequentially stacked on the epitaxial layer 340. Specifically, the epitaxial layer 340 can provide a suitable surface for the growth of the first aluminum nitride-based layer 310, the second aluminum nitride-based layer 320, and the third aluminum nitride-based layer 330, and can also avoid the nitrogen-containing semiconductor composite layer 301. The generated defects extend to other nitrogen-containing semiconductor composite layers 301.

具體而言,本實施例的含氮半導體複合層301的磊晶層340的材質包括氮化鋁,因此可以提供良好的表面供第一氮化鋁基層310成長,也可以阻隔其他含氮半導體複合層301所產生的缺陷或裂痕,以避免上述的缺陷或裂痕往上延伸。Specifically, the material of the epitaxial layer 340 of the nitrogen-containing semiconductor composite layer 301 in this embodiment includes aluminum nitride, so it can provide a good surface for the growth of the first aluminum nitride base layer 310, and can also block other nitrogen-containing semiconductor composites. Defects or cracks generated by the layer 301 to avoid the aforementioned defects or cracks from extending upward.

另一方面,本實施例的第一氮化鋁基層310、第二氮化鋁基層320以及第三氮化鋁基層330的材質包括氮化鋁鎵,但本發明不限於此。在本發明的其他實施例中,上述的第一氮化鋁基層310、第二氮化鋁基層320以及第三氮化鋁基層330的材質更可以包括氮化鋁銦或氮化鋁銦鎵,或是包括其他Ⅲ-Ⅴ族的氮化物材料,本發明並不限於此。On the other hand, the materials of the first aluminum nitride-based layer 310, the second aluminum nitride-based layer 320, and the third aluminum nitride-based layer 330 in this embodiment include aluminum gallium nitride, but the present invention is not limited thereto. In other embodiments of the present invention, the material of the first aluminum nitride base layer 310, the second aluminum nitride base layer 320, and the third aluminum nitride base layer 330 may further include aluminum indium nitride or aluminum indium gallium nitride. Or it includes other III-V nitride materials, and the present invention is not limited thereto.

請參照圖2、3,在本發明的第一實施例中,第一氮化鋁基層310、第二氮化鋁基層320以及第三氮化鋁基層330各自具有一致的鋁濃度,但本發明不限於此。Please refer to FIGS. 2 and 3. In the first embodiment of the present invention, the first aluminum nitride-based layer 310, the second aluminum nitride-based layer 320, and the third aluminum nitride-based layer 330 each have a uniform aluminum concentration, but the present invention Not limited to this.

在本發明的其他實施例中,上述的第一氮化鋁基層310、第二氮化鋁基層320以及第三氮化鋁基層330各自的鋁濃度往遠離基板200的方向(亦即方向d1)減少。同時,在本發明的實施例中,鋁濃度在第一氮化鋁基層310、第二氮化鋁基層320以及第三氮化鋁基層330中各可以是以線性、指數型或曲線型的方式沿著方向d1減少。In other embodiments of the present invention, the aluminum concentration of each of the first aluminum nitride-based layer 310, the second aluminum nitride-based layer 320, and the third aluminum nitride-based layer 330 is in a direction away from the substrate 200 (that is, direction d1). cut back. Meanwhile, in the embodiment of the present invention, the aluminum concentration in each of the first aluminum nitride-based layer 310, the second aluminum nitride-based layer 320, and the third aluminum nitride-based layer 330 may be linear, exponential, or curved. Decrease in direction d1.

本實施例的多重緩衝疊層300例如是以有機金屬化學氣相沈積法(Metal-organic Chemical Vapor Deposition, MOCVD)形成。舉例而言,本實施例的基板200例如是材料包含矽的矽基板,且基板200提供(111)結晶面供多重緩衝疊層300成長。本實施例例如在MOCVD的反應腔體中將基板200加熱至攝氏1100度以上以去除表面上的氧化物,接著通入氨(Ammonia, NH3 )、三甲基鋁(Trimethylaluminum, TMAl)來成長磊晶層340,再通入NH3 、H2 、N2 、三甲基鎵(Trimethylgallium, TMGa)、TMAl與三甲基銦(Trimethylindium, TMIn)來形成第一氮化鋁基層310、第二氮化鋁基層320以及第三氮化鋁基層330,其中腔體的溫度亦維持在攝氏950度以上。上述的磊晶層340、第一氮化鋁基層310、第二氮化鋁基層320以及第三氮化鋁基層330的厚度可以藉由調整成長的時間來控制。進一步而言,本實施例的第一氮化鋁基層310、第二氮化鋁基層320以及第三氮化鋁基層330的厚度不超過1000奈米。另一方面,上述鋁濃度的變化更可以藉由通入氣體的比例來控制,藉以形成具有良好緩衝功能的多重緩衝疊層300。The multi-buffer stack 300 in this embodiment is formed by, for example, a metal-organic chemical vapor deposition (MOCVD) method. For example, the substrate 200 in this embodiment is, for example, a silicon substrate whose material includes silicon, and the substrate 200 provides a (111) crystal plane for the multi-buffer stack 300 to grow. In this embodiment, for example, the substrate 200 is heated in a MOCVD reaction chamber to more than 1100 ° C to remove oxides on the surface, and then ammonia (Ammonia, NH 3 ) and trimethylaluminum (TMAl) are grown to grow The epitaxial layer 340 is passed through NH 3 , H 2 , N 2 , Trimethylgallium (TMGa), TMAl, and Trimethylindium (TMIn) to form a first aluminum nitride base layer 310 and a second The temperature of the cavity of the aluminum nitride base layer 320 and the third aluminum nitride base layer 330 is also maintained above 950 degrees Celsius. The thickness of the epitaxial layer 340, the first aluminum nitride-based layer 310, the second aluminum nitride-based layer 320, and the third aluminum nitride-based layer 330 can be controlled by adjusting the growth time. Further, the thickness of the first aluminum nitride-based layer 310, the second aluminum nitride-based layer 320, and the third aluminum nitride-based layer 330 in this embodiment does not exceed 1000 nm. On the other hand, the above-mentioned change in the aluminum concentration can be further controlled by the ratio of the gas introduced, thereby forming a multi-buffer stack 300 having a good buffer function.

本實施例的氮化物半導體結構100是藉由重複進行上述的方法以完成多個含氮半導體複合層301。具體而言,本實施例的含氮半導體複合層301的數量落在2層至100層的範圍內,但本發明不限於此。In the nitride semiconductor structure 100 of this embodiment, multiple nitrogen-containing semiconductor composite layers 301 are completed by repeating the above-mentioned method. Specifically, the number of the nitrogen-containing semiconductor composite layer 301 in this embodiment falls within a range of 2 to 100 layers, but the present invention is not limited thereto.

另一方面,本實施例的含氮半導體複合層301的數量與第一氮化鋁基層310、第二氮化鋁基層320以及第三氮化鋁基層330的厚度呈正比。換句話說,當含氮半導體複合層301的數量提昇時,形成每個第一氮化鋁基層310、第二氮化鋁基層320以及第三氮化鋁基層330的時間也可以增加,藉以提供更加的緩衝效果。On the other hand, the number of the nitrogen-containing semiconductor composite layer 301 in this embodiment is proportional to the thickness of the first aluminum nitride-based layer 310, the second aluminum nitride-based layer 320, and the third aluminum nitride-based layer 330. In other words, when the number of the nitrogen-containing semiconductor composite layers 301 increases, the time for forming each of the first aluminum nitride-based layer 310, the second aluminum nitride-based layer 320, and the third aluminum nitride-based layer 330 can also be increased, thereby providing More cushioning effect.

綜上所述,本發明的實施例的氮化物半導體結構包括多重緩衝疊層配置於基板以及含氮半導體堆疊層之間,且多重緩衝疊層包括多個含氮半導體複合層,每個含氮半導體複合層包括第一氮化鋁基層、第二氮化鋁基層以及第三氮化鋁基層,且第一氮化鋁基層、第二氮化鋁基層以及第三氮化鋁基層依序堆疊於基板,並讓每個含氮半導體複合層中的鋁濃度朝遠離基板的方向遞減,因此可以大幅改善基板以及含氮半導體堆疊層之間晶格不匹配的問題。In summary, the nitride semiconductor structure according to the embodiment of the present invention includes a multiple buffer stack disposed between a substrate and a nitrogen-containing semiconductor stack layer, and the multiple buffer stack includes a plurality of nitrogen-containing semiconductor composite layers, each containing nitrogen. The semiconductor composite layer includes a first aluminum nitride-based layer, a second aluminum nitride-based layer, and a third aluminum nitride-based layer. The first aluminum nitride-based layer, the second aluminum nitride-based layer, and the third aluminum nitride-based layer are sequentially stacked on The substrate, and the aluminum concentration in each nitrogen-containing semiconductor composite layer decreases gradually away from the substrate, so the problem of lattice mismatch between the substrate and the nitrogen-containing semiconductor stacked layer can be greatly improved.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed as above with the examples, it is not intended to limit the present invention. Any person with ordinary knowledge in the technical field can make some modifications and retouching without departing from the spirit and scope of the present invention. The protection scope of the present invention shall be determined by the scope of the attached patent application.

d1‧‧‧方向
100‧‧‧氮化物半導體結構
200‧‧‧基板
300‧‧‧多重緩衝疊層
301‧‧‧含氮半導體複合層
310‧‧‧第一氮化鋁基層
320‧‧‧第二氮化鋁基層
330‧‧‧第三氮化鋁基層
340‧‧‧磊晶層
400‧‧‧含氮半導體堆疊層
d1‧‧‧ direction
100‧‧‧Nitride semiconductor structure
200‧‧‧ substrate
300‧‧‧Multi-buffer stack
301‧‧‧Nitrogen-containing semiconductor composite layer
310‧‧‧The first aluminum nitride base layer
320‧‧‧Second aluminum nitride base layer
330‧‧‧The third aluminum nitride base layer
340‧‧‧Epitaxial layer
400‧‧‧ Nitrogen-containing semiconductor stack

圖1是依照本發明的第一實施例的一種氮化物半導體結構的示意圖。 圖2是依照圖1中區域A中的局部放大示意圖。 圖3是依照圖1中區域B中的局部放大示意圖。FIG. 1 is a schematic diagram of a nitride semiconductor structure according to a first embodiment of the present invention. FIG. 2 is a partially enlarged schematic diagram according to an area A in FIG. 1. FIG. 3 is a partially enlarged schematic diagram according to a region B in FIG. 1.

300‧‧‧多重緩衝疊層 300‧‧‧Multi-buffer stack

301‧‧‧含氮半導體複合層 301‧‧‧Nitrogen-containing semiconductor composite layer

310‧‧‧第一氮化鋁基層 310‧‧‧The first aluminum nitride base layer

320‧‧‧第二氮化鋁基層 320‧‧‧Second aluminum nitride base layer

330‧‧‧第三氮化鋁基層 330‧‧‧The third aluminum nitride base layer

340‧‧‧磊晶層 340‧‧‧Epitaxial layer

400‧‧‧含氮半導體堆疊層 400‧‧‧ Nitrogen-containing semiconductor stack

d1‧‧‧方向 d1‧‧‧ direction

Claims (12)

一種氮化物半導體結構,包括: 一基板; 一多重緩衝疊層,包括: 多個含氮半導體複合層,每個所述多個含氮半導體複合層包括: 一第一氮化鋁基層; 一第二氮化鋁基層;以及 一第三氮化鋁基層,所述第二氮化鋁基層以及所述第三氮化鋁基層依序堆疊於所述第一氮化鋁基層上,且所述第一氮化鋁基層、所述第二氮化鋁基層以及所述第三氮化鋁基層的鋁濃度依序遞減;以及 一含氮半導體堆疊層,配置於所述多重緩衝層上。A nitride semiconductor structure includes: a substrate; a multiple buffer stack, comprising: a plurality of nitrogen-containing semiconductor composite layers, each of the plurality of nitrogen-containing semiconductor composite layers including: a first aluminum nitride-based layer; A second aluminum nitride-based layer; and a third aluminum nitride-based layer, the second aluminum nitride-based layer and the third aluminum nitride-based layer are sequentially stacked on the first aluminum nitride-based layer, and the The aluminum concentration of the first aluminum nitride-based layer, the second aluminum nitride-based layer, and the third aluminum nitride-based layer sequentially decreases; and a nitrogen-containing semiconductor stacked layer is disposed on the multiple buffer layer. 如申請專利範圍第1項所述的氮化物半導體結構,其中每個所述多個含氮半導體複合層還包括一磊晶層,所述第一氮化鋁基層、所述第二氮化鋁基層以及所述第三氮化鋁基層依序堆疊於所述磊晶層上。The nitride semiconductor structure according to item 1 of the patent application scope, wherein each of the plurality of nitrogen-containing semiconductor composite layers further includes an epitaxial layer, the first aluminum nitride-based layer, the second aluminum nitride A base layer and the third aluminum nitride base layer are sequentially stacked on the epitaxial layer. 如申請專利範圍第2項所述的氮化物半導體結構,其中所述磊晶層的材質包括氮化鋁。The nitride semiconductor structure according to item 2 of the scope of patent application, wherein the material of the epitaxial layer includes aluminum nitride. 如申請專利範圍第2項所述的氮化物半導體結構,其中所述磊晶層、所述第一氮化鋁基層、所述第二氮化鋁基層以及所述第三氮化鋁基層的厚度不超過1000奈米。The nitride semiconductor structure according to item 2 of the scope of patent application, wherein the thickness of the epitaxial layer, the first aluminum nitride-based layer, the second aluminum nitride-based layer, and the third aluminum nitride-based layer are Not more than 1000 nm. 如申請專利範圍第1項所述的氮化物半導體結構,其中所述第一氮化鋁基層、所述第二氮化鋁基層以及所述第三氮化鋁基層的材質包括氮化鋁鎵、氮化鋁銦或氮化鋁銦鎵。The nitride semiconductor structure according to item 1 of the scope of patent application, wherein materials of the first aluminum nitride-based layer, the second aluminum nitride-based layer, and the third aluminum nitride-based layer include aluminum gallium nitride, Aluminum indium nitride or aluminum indium gallium nitride. 如申請專利範圍第1項所述的氮化物半導體結構,其中所述第一氮化鋁基層、所述第二氮化鋁基層以及所述第三氮化鋁基層各自具有一致的鋁濃度。The nitride semiconductor structure according to item 1 of the scope of patent application, wherein the first aluminum nitride-based layer, the second aluminum nitride-based layer, and the third aluminum nitride-based layer each have a uniform aluminum concentration. 如申請專利範圍第1項所述的氮化物半導體結構,其中所述第一氮化鋁基層、所述第二氮化鋁基層以及所述第三氮化鋁基層各自的鋁濃度往遠離所述基板的方向減少。The nitride semiconductor structure according to item 1 of the scope of patent application, wherein the aluminum concentration of each of the first aluminum nitride-based layer, the second aluminum nitride-based layer, and the third aluminum nitride-based layer is further away from the The orientation of the substrate is reduced. 如申請專利範圍第5項所述的氮化物半導體結構,其中所述第一氮化鋁基層、所述第二氮化鋁基層以及所述第三氮化鋁基層的鋁濃度各自是以線性、指數型或曲線型變化。The nitride semiconductor structure according to item 5 of the scope of patent application, wherein the aluminum concentrations of the first aluminum nitride-based layer, the second aluminum nitride-based layer, and the third aluminum nitride-based layer are each linear, Exponential or curved changes. 如申請專利範圍第1項所述的氮化物半導體結構,其中所述含氮半導體複合層的數量落在2層至200層的範圍內。The nitride semiconductor structure according to item 1 of the scope of patent application, wherein the number of the nitrogen-containing semiconductor composite layers falls within a range of 2 to 200 layers. 如申請專利範圍第1項所述的氮化物半導體結構,其中所述含氮半導體複合層的數量與所述第一氮化鋁基層、所述第二氮化鋁基層以及所述第三氮化鋁基層的厚度呈正比。The nitride semiconductor structure according to item 1 of the scope of patent application, wherein the number of the nitrogen-containing semiconductor composite layer is equal to that of the first aluminum nitride-based layer, the second aluminum nitride-based layer, and the third nitride. The thickness of the aluminum base layer is proportional. 如申請專利範圍第1項所述的氮化物半導體結構,其中所述含氮半導體複合層是由有機金屬化學氣相沈積法形成。The nitride semiconductor structure according to item 1 of the patent application scope, wherein the nitrogen-containing semiconductor composite layer is formed by an organic metal chemical vapor deposition method. 如申請專利範圍第1項所述的氮化物半導體結構,其中所述基板的材質包括矽。The nitride semiconductor structure according to item 1 of the scope of patent application, wherein the material of the substrate includes silicon.
TW105128161A 2016-08-31 2016-08-31 Nitride semiconductor structure TWI602248B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW105128161A TWI602248B (en) 2016-08-31 2016-08-31 Nitride semiconductor structure
CN201610913019.4A CN107785237A (en) 2016-08-31 2016-10-20 Nitride semiconductor structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105128161A TWI602248B (en) 2016-08-31 2016-08-31 Nitride semiconductor structure

Publications (2)

Publication Number Publication Date
TWI602248B TWI602248B (en) 2017-10-11
TW201807755A true TW201807755A (en) 2018-03-01

Family

ID=61010929

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105128161A TWI602248B (en) 2016-08-31 2016-08-31 Nitride semiconductor structure

Country Status (2)

Country Link
CN (1) CN107785237A (en)
TW (1) TWI602248B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI631668B (en) 2017-11-22 2018-08-01 聯鈞光電股份有限公司 Nitride semiconductor structure

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4525894B2 (en) * 2003-11-21 2010-08-18 サンケン電気株式会社 Semiconductor device forming plate-like substrate, manufacturing method thereof, and semiconductor device using the same
JP5543866B2 (en) * 2010-07-16 2014-07-09 Dowaエレクトロニクス株式会社 Group III nitride epitaxial substrate
TWI414004B (en) * 2010-10-25 2013-11-01 Univ Nat Chiao Tung Multilayer substrate having a gallium nitride layer and fabrication method thereof
US9691855B2 (en) * 2012-02-17 2017-06-27 Epistar Corporation Method of growing a high quality III-V compound layer on a silicon substrate
JP2013206976A (en) * 2012-03-27 2013-10-07 Fujitsu Ltd Compound semiconductor device and manufacturing method of the same
TWI562402B (en) * 2012-12-06 2016-12-11 Genesis Photonics Inc Semiconductor structure
TWI550921B (en) * 2014-07-17 2016-09-21 嘉晶電子股份有限公司 Nitride semiconductor structure

Also Published As

Publication number Publication date
CN107785237A (en) 2018-03-09
TWI602248B (en) 2017-10-11

Similar Documents

Publication Publication Date Title
WO2010095550A1 (en) Method for forming epitaxial wafer and method for manufacturing semiconductor element
JP4991828B2 (en) Method for manufacturing gallium nitride compound semiconductor
Amano Development of GaN-based blue LEDs and metalorganic vapor phase epitaxy of GaN and related materials
JP2008034658A (en) Nitride semiconductor element
KR101353978B1 (en) Methods of forming ⅲ/ⅴ semiconductor materials, and semiconductor structures formed using such methods
CN103548116A (en) Methods for pretreatment of group III-nitride depositions
TWI631668B (en) Nitride semiconductor structure
US11705489B2 (en) Buffer layer structure to improve GaN semiconductors
KR20140071927A (en) Method for producing group iii nitride semiconductor lightemitting device
JP2006232639A (en) Gas phase growth method of nitride-based semiconductor, nitride-based semiconductor epitaxial substrate, self-standing substrate, and semiconductor device
JP2009238772A (en) Epitaxial substrate, and manufacturing method of epitaxial substrate
US10229977B2 (en) Nitrogen-containing semiconductor device
CN104617192B (en) A kind of manufacture method of LED epitaxial slice
US20120032209A1 (en) Semiconductor light emitting device
TWI602248B (en) Nitride semiconductor structure
US8623747B1 (en) Silicon, aluminum oxide, aluminum nitride template for optoelectronic and power devices
CN107658374A (en) Epitaxial wafer of light emitting diode and preparation method thereof
Kuo et al. MOCVD growth of vertically aligned InGaN nanowires
CN106129201B (en) Epitaxial wafer of light emitting diode and preparation method thereof
Chen et al. Study of High Quality Indium Nitride Films Grown on Si (100) Substrate by RF‐MOMBE with GZO and AlN Buffer Layers
CN113764556A (en) Compound N type barrier layer of gallium nitride-based light emitting diode epitaxial wafer and gallium nitride-based light emitting diode epitaxial wafer
JP2004087565A (en) Method for manufacturing gallium nitride-based semiconductor light emitting device
JP2007227803A (en) Gas phase growth method of nitride group semiconductor, nitride group semiconductor expitaxial substrate using the same, self-standing substrate, and semiconductor device
CN104838475B (en) The method of growing gallium nitride based semiconductor and manufacture the method for luminescent device with it
JP2016134612A (en) Group iii nitride semiconductor element and manufacturing method of the same