JP5543866B2 - Group III nitride epitaxial substrate - Google Patents

Group III nitride epitaxial substrate Download PDF

Info

Publication number
JP5543866B2
JP5543866B2 JP2010162151A JP2010162151A JP5543866B2 JP 5543866 B2 JP5543866 B2 JP 5543866B2 JP 2010162151 A JP2010162151 A JP 2010162151A JP 2010162151 A JP2010162151 A JP 2010162151A JP 5543866 B2 JP5543866 B2 JP 5543866B2
Authority
JP
Japan
Prior art keywords
layer
group iii
iii nitride
thickness
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010162151A
Other languages
Japanese (ja)
Other versions
JP2012023314A (en
Inventor
哲也 生田
大輔 日野
智彦 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Priority to JP2010162151A priority Critical patent/JP5543866B2/en
Publication of JP2012023314A publication Critical patent/JP2012023314A/en
Application granted granted Critical
Publication of JP5543866B2 publication Critical patent/JP5543866B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、III族窒化物エピタキシャル基板、特に、HEMT用のIII族窒化物エピタキシャル基板に関する。   The present invention relates to a group III nitride epitaxial substrate, and more particularly to a group III nitride epitaxial substrate for HEMT.

近年、IC用デバイス等の高速化に伴い、高速の電界効果トランジスタ(FET: Field effect transistor)として、高電子移動度トランジスタ(HEMT: High electron mobility transistor)が広く用いられるようになっている。このような電界効果型のトランジスタは、例えば図1に模式的に示されるように、絶縁性基板21上にチャネル層22および電子供給層23を積層し、この電子供給層23の表面にソース電極24、ドレイン電極25およびゲート電極26を配設することにより形成されるのが一般的である。デバイスの動作時には、ソース電極24、電子供給層23、チャネル層22、電子供給層23およびドレイン電極25の順に電子が移動して横方向を主電流導通方向とし、この横方向の電子の移動は、ゲート電極26に印加される電圧により制御される。HEMTにおいて、バンドギャップの異なる電子供給層23およびチャネル層22の接合界面に生じる電子は、通常の半導体内と比較して高速で移動することができる。   In recent years, with the increase in speed of IC devices and the like, high electron mobility transistors (HEMTs) have been widely used as high-speed field effect transistors (FETs). In such a field effect transistor, for example, as schematically shown in FIG. 1, a channel layer 22 and an electron supply layer 23 are stacked on an insulating substrate 21, and a source electrode is formed on the surface of the electron supply layer 23. 24, the drain electrode 25 and the gate electrode 26 are generally provided. During the operation of the device, electrons move in the order of the source electrode 24, the electron supply layer 23, the channel layer 22, the electron supply layer 23, and the drain electrode 25, and the lateral direction becomes the main current conduction direction. The voltage applied to the gate electrode 26 is controlled. In the HEMT, electrons generated at the junction interface between the electron supply layer 23 and the channel layer 22 having different band gaps can move at a higher speed than in a normal semiconductor.

このようなHEMT等の電子デバイスの活性材料としては、III族元素と窒素との化合物から成るIII族窒化物半導体が注目されている。また、絶縁性基板としては、低価格で放熱性に優れるという理由から、Si基板が好ましい。   As an active material of such an electronic device such as HEMT, a group III nitride semiconductor made of a compound of a group III element and nitrogen has attracted attention. As the insulating substrate, a Si substrate is preferable because it is inexpensive and has excellent heat dissipation.

ところが、III族窒化物半導体とSi基板とでは、格子定数や熱膨張係数が大きく異なるため、Si基板上に直接III族窒化物半導体を成長させた場合、成長したIII族窒化物半導体には、歪を緩和するためのクラックや反りが発生し、反りはデバイスプロセスの段階で吸着不良や露光不良が生じる原因となっていた。   However, since the group III nitride semiconductor and the Si substrate have greatly different lattice constants and thermal expansion coefficients, when the group III nitride semiconductor is grown directly on the Si substrate, the grown group III nitride semiconductor has Cracks and warping to alleviate strain occurred, and the warping was a cause of poor adsorption and poor exposure at the device process stage.

そこで、従来は、Si基板とIII族窒化物半導体との間にバッファ層を配置し、上述したクラックや反りを低減させるのが通常であった。このようなバッファ層の例としては、一般に、AlN層およびGaN層を交互に複数積層した超格子状の多層膜が提案されている。   Therefore, conventionally, a buffer layer is usually disposed between the Si substrate and the group III nitride semiconductor to reduce the above-described cracks and warpage. As an example of such a buffer layer, a superlattice multilayer film in which a plurality of AlN layers and GaN layers are alternately stacked has been proposed.

また、特許文献1には、上述した多層膜を介して形成される窒化物半導体の表面の平坦性およびクラック発生の防止を両立する最適な条件について検討した結果、基板と窒化物半導体層との間に、例えばAlNからなる第1のバッファ層と、AlGaNからなる第2のバッファ層とを交互に各々複数層を積層して形成されたAlN系超格子バッファ層を配置することにより、従来よりもクラックの発生を抑制した技術が開示されている。   Further, in Patent Document 1, as a result of examining optimum conditions for achieving both the flatness of the surface of the nitride semiconductor formed through the multilayer film and the prevention of cracks, the substrate and the nitride semiconductor layer are By interposing an AlN-based superlattice buffer layer formed by alternately laminating a plurality of layers, for example, a first buffer layer made of AlN and a second buffer layer made of AlGaN, Also disclosed is a technique that suppresses the occurrence of cracks.

しかしながら、上記の技術をもってしても、近年における反りやクラックの一層の低減という要求対して十分に応えることができず、さらなる技術の向上が求められていた。   However, even with the above technique, it has not been possible to sufficiently meet the recent demand for further reduction of warpage and cracks, and further improvement of the technique has been demanded.

特開2007−67077号公報JP 2007-67077 A

本発明は、上記の現状に鑑み開発されたもので、クラックの発生を無くすのは勿論のこと、従来よりも反りを軽減させたIII族窒化物エピタキシャル基板を提供することを目的とする。   The present invention has been developed in view of the above-described situation, and an object of the present invention is to provide a group III nitride epitaxial substrate in which warpage is reduced as well as elimination of occurrence of cracks.

本発明者らは、従来よりも反りを軽減させたIII族窒化物エピタキシャル基板を得るために鋭意検討を行ったところ、上述した従来のAlNからなる第1のバッファ層とAlGaNからなる第2のバッファ層に加え、さらに別のバッファ層を介在させることを試みた。この別のバッファ層の配設位置としては、第1のバッファ層と第2のバッファ層との間、もしくは、第2のバッファ層上が考えられるので、この点についてさらに検討を行った。その結果、第2のバッファ層上に所定の組成を有する第3のバッファ層を配設し、これら第1、第2および第3バッファ層を繰返し積層させたところ、反りを効果的に低減できることの知見を得た。   The inventors of the present invention have made extensive studies in order to obtain a group III nitride epitaxial substrate in which the warp is reduced compared to the conventional one. An attempt was made to interpose another buffer layer in addition to the buffer layer. The other buffer layer may be disposed between the first buffer layer and the second buffer layer or on the second buffer layer. This point was further examined. As a result, when a third buffer layer having a predetermined composition is disposed on the second buffer layer and these first, second and third buffer layers are repeatedly stacked, warping can be effectively reduced. I got the knowledge.

ここで、本発明で言う「反りの値」とは、図2に示される「SORI」によって定義される。SORIとは、非吸着状態の板の主表面上で、ベストフィット基準面上部の最も高い段差を持つ場所の値(最大値A)の絶対値と、ベストフィット基準面下部の最も低い段差を持つ場所の値(最小値B)の絶対値と和(|A|+|B|)をいう。また、本願では、ウェハ中心位置がベストフィット面よりも低い位置にある場合を下凹と定義する。   Here, the “warp value” referred to in the present invention is defined by “SORI” shown in FIG. SORI has the absolute value of the place (maximum value A) at the top of the best-fit reference plane on the main surface of the non-adsorbed plate and the lowest step at the bottom of the best-fit reference plane. The absolute value and sum (| A | + | B |) of the place value (minimum value B). Further, in the present application, a case where the wafer center position is at a position lower than the best fit surface is defined as a lower concave.

本発明は、上記の知見に立脚するもので、その要旨構成は以下の通りである。
(1)Si基板と、上記Si基板上に形成された超格子積層体と、上記超格子積層体上にエピタキシャル成長されたIII族窒化物積層体とをそなえ、上記超格子積層体が、上記Si基板側からAlN材料を含む第1層、AlxGa1-xN(0<x<1)材料を含む第2層、およびAlyGa1-yN(0≦y<1)材料を含む第3層(但し、第2層のAl組成xおよび第3層のAl組成yは、y<xの関係を有する)を順次有する積層体を複数組そなえ、前記第1層の厚みが0.25〜10nmの範囲であり、前記第2層の厚みが10〜50nmの範囲であり、前記第3層の厚みが0.25〜20nmの範囲であることを特徴とするIII族窒化物エピタキシャル基板。
The present invention is based on the above findings, and the gist of the present invention is as follows.
(1) comprising a Si substrate, a superlattice laminate formed on the Si substrate, and a group III nitride laminate epitaxially grown on the superlattice laminate, wherein the superlattice laminate comprises the Si substrate First layer including AlN material, second layer including Al x Ga 1-x N (0 <x <1) material, and Al y Ga 1-y N (0 ≦ y <1) material from the substrate side A plurality of stacked bodies sequentially having a third layer (where the Al composition x of the second layer and the Al composition y of the third layer have a relationship of y <x) are provided , and the thickness of the first layer is 0.25 to in the range of 10 nm, the thickness of the second layer is in the range of 10 to 50 nm, III-nitride epitaxial substrate thickness of the third layer and wherein the range der Rukoto of 0.25~20Nm.

(2)前記第3層の厚みが、前記第2層の厚みよりも薄い上記(1)に記載のIII族窒化物エピタキシャル基板。   (2) The group III nitride epitaxial substrate according to (1), wherein the thickness of the third layer is thinner than the thickness of the second layer.

)前記超格子積層体の不純物濃度が、1×1018/cm3以上である上記(1)または()に記載のIII族窒化物エピタキシャル基板。 ( 3 ) The group III nitride epitaxial substrate according to (1) or ( 2 ), wherein an impurity concentration of the superlattice laminate is 1 × 10 18 / cm 3 or more.

)前記積層体の組数が50〜300の範囲である上記(1)〜()のいずれか一に記載のIII族窒化物エピタキシャル基板。 ( 4 ) The group III nitride epitaxial substrate according to any one of the above (1) to ( 3 ), wherein the number of sets of the laminates is in the range of 50 to 300.

本発明に従い、Si基板とIII族窒化物積層体との間に、Si基板側からAlN材料を含む第1層、AlxGa1-xN(0<x<1)材料を含む第2層、およびAlyGa1-yN(0≦y<1)材料を含む第3層(但し、第2層のAl組成xおよび第3層のAl組成yは、y<xの関係を有する)を順に有する積層体を複数組そなえる超格子積層体を配置することにより、従来よりも反りを軽減させたIII族窒化物エピタキシャル基板を提供することができる。 According to the present invention, a first layer containing an AlN material and a second layer containing an Al x Ga 1-x N (0 <x <1) material from the Si substrate side between the Si substrate and the group III nitride laminate. And a third layer containing Al y Ga 1-y N (0 ≦ y <1) material (where the Al composition x of the second layer and the Al composition y of the third layer have a relationship of y <x) By disposing a superlattice laminate including a plurality of laminates having the above in order, it is possible to provide a group III nitride epitaxial substrate in which warpage is reduced as compared with the prior art.

一般的な電界効果トランジスタを示す模式的断面図である。It is a typical sectional view showing a general field effect transistor. 「SORI」を説明するための模式図である。It is a schematic diagram for demonstrating "SORI". 本発明に従うIII族窒化物エピタキシャル基板の模式的断面図である。3 is a schematic cross-sectional view of a group III nitride epitaxial substrate according to the present invention. FIG.

以下に、本発明のIII族窒化物エピタキシャル基板の実施形態について図面を参照しながら説明する。図3は、本発明に従うIII族窒化物エピタキシャル基板の断面構造を模式的に示したものである。   Hereinafter, an embodiment of a group III nitride epitaxial substrate of the present invention will be described with reference to the drawings. FIG. 3 schematically shows a cross-sectional structure of a group III nitride epitaxial substrate according to the present invention.

図3に示すように、本発明に従うIII族窒化物エピタキシャル基板1は、Si基板2と、Si基板2上に形成された超格子積層体3と、超格子積層体3上にエピタキシャル成長されたIII族窒化物積層体4とをそなえ、超格子積層体3が、Si基板2側からAlN材料を含む第1層3a、AlxGa1-xN(0<x<1)材料を含む第2層3b、およびAlyGa1-yN(0≦y<1)材料を含む第3層3c(但し、第2層のAl組成xおよび第3層のAl組成yは、y<xの関係を有する)を順に有する積層体3Sを複数組そなえる。本発明は、かかる構成とすることにより、従来よりも反りの値を大幅に低減させることができるという顕著な効果を奏するものである。なお、不等号で示される第2層のAl組成xと、第1層および第3層とのAl組成差は、0.01以上とする。
また、AlN、AlGaN、GaNは、本発明の効果を妨げることのない程度にBやInを所定の比率で含むものとしてもよい。
As shown in FIG. 3, a group III nitride epitaxial substrate 1 according to the present invention includes a Si substrate 2, a superlattice laminate 3 formed on the Si substrate 2, and an III epitaxially grown on the superlattice laminate 3. The superlattice laminate 3 includes a first layer 3a containing an AlN material from the Si substrate 2 side, and a second layer containing an Al x Ga 1-x N (0 <x <1) material. A layer 3b and a third layer 3c containing an Al y Ga 1-y N (0 ≦ y <1) material (where the Al composition x of the second layer and the Al composition y of the third layer have a relationship of y <x A plurality of laminates 3S having the above. By adopting such a configuration, the present invention has a remarkable effect that the value of warpage can be greatly reduced as compared with the conventional art. Note that the Al composition difference between the second layer Al composition x indicated by the inequality sign and the first and third layers is 0.01 or more.
Further, AlN, AlGaN, and GaN may contain B and In at a predetermined ratio to such an extent that the effects of the present invention are not hindered.

ここに、第1層3aの厚みは、クラックの発生を抑制するために、0.25〜10nmとすることが好ましく、第2層3bの厚みは、同様の理由により、10〜50nmとすることが好ましい。また、第1層3aは、Al組成が1のAlN層であるのが最も好ましいが、本発明において、Al組成が0.9以上のものは実質的にAlN層であるものとみなす。また、第2層3bのAl組成は、横方向及び縦方向の耐圧を向上するため、Alを0.05より多く含むことがのぞましく、超格子のひずみ緩衝効果を引き出しクラックを抑制するには0.5以下が好ましい。さらに、転位の低減効果を引き出すためには、AlN層との組成差が大きいほうが望ましく、0.2以下がより好ましい。   Here, the thickness of the first layer 3a is preferably 0.25 to 10 nm in order to suppress the occurrence of cracks, and the thickness of the second layer 3b is preferably 10 to 50 nm for the same reason. . The first layer 3a is most preferably an AlN layer having an Al composition of 1. In the present invention, a layer having an Al composition of 0.9 or more is regarded as substantially an AlN layer. In addition, the Al composition of the second layer 3b preferably includes more than 0.05 in order to improve the breakdown voltage in the horizontal and vertical directions. 0.5 or less is preferable. Furthermore, in order to bring out the effect of reducing dislocations, it is desirable that the composition difference with the AlN layer is large, and 0.2 or less is more preferable.

さて、第3層3cは、本発明において特に重要な層である。第3層3cを配置することによって、反りの軽減が達成されるのである。ここに、第3層3cのAl組成は0.05以下が好ましく、例えばGaNが好ましい。第1層、第2層とのAl組成の関係により反りの低減効果をもたらすと共に、横方向成長を促進し、ピットの発生を抑制するからである。第3層3cの厚みは、0.25〜20nmであるのが好ましい。原子層が一層以上あれば効果が確認できるため、一層分の厚みにほぼ対応する0.25nm未満だと、反りの軽減効果に乏しい。一方、上限は格子緩和をせずに成長できる臨界膜厚以下であれば特に限定されるものではないが、20nmを超えると二次元電子ガスが発生し、電流リークの源となるおそれがあるためである。   Now, the third layer 3c is a particularly important layer in the present invention. By arranging the third layer 3c, reduction of warpage is achieved. Here, the Al composition of the third layer 3c is preferably 0.05 or less, for example, GaN. This is because the Al composition relationship with the first layer and the second layer brings about an effect of reducing warpage, promotes lateral growth, and suppresses the generation of pits. The thickness of the third layer 3c is preferably 0.25 to 20 nm. Since the effect can be confirmed if there are one or more atomic layers, if the thickness is less than 0.25 nm, which substantially corresponds to the thickness of one layer, the effect of reducing warpage is poor. On the other hand, the upper limit is not particularly limited as long as it is less than the critical film thickness that can be grown without lattice relaxation, but if it exceeds 20 nm, two-dimensional electron gas is generated, which may cause a current leak. It is.

このように、第3層3cを配設することにより、超格子層内に、圧縮応力を印加することができるので、従来よりも引張応力を抑制でき、反りの値を低減させることができるのである。
加えて、本発明では、図には示されないが、第3層上に、第4層として、第2層とAl組成の近いAlzGa1-zN(y<z<1)材料を含む層をさらに有する積層体を複数組そなえる超格子積層体とすることもできる。
In this way, by providing the third layer 3c, compressive stress can be applied in the superlattice layer, so that tensile stress can be suppressed and the value of warpage can be reduced as compared with the conventional case. is there.
In addition, in the present invention, although not shown in the drawing, an Al z Ga 1-z N (y <z <1) material having an Al composition close to that of the second layer is included as the fourth layer on the third layer. A superlattice laminate including a plurality of laminates further having layers can also be used.

また、積層体3Sの組数は、50〜300の範囲とするのが好ましい。組数を増やせば増やすほど縦方向のリーク電流の抑制及び耐圧向上を図ることができる。しかしながら、組数があまりに多くなると、クラックが発生するという問題が生じるため、組数は300組以下であるのが好ましい。なお、本発明の効果を妨げない程度であれば、第1層3a、第2層3bおよび第3層3c以外の層を挿入したり、界面の組成を傾斜させたりしてもよい。   Moreover, it is preferable that the number of sets of the laminated bodies 3S be in the range of 50 to 300. As the number of groups is increased, the leakage current in the vertical direction can be suppressed and the breakdown voltage can be improved. However, if the number of sets becomes too large, there is a problem that cracks occur, and therefore the number of sets is preferably 300 or less. As long as the effect of the present invention is not hindered, layers other than the first layer 3a, the second layer 3b, and the third layer 3c may be inserted, or the composition of the interface may be inclined.

さらに、超格子積層体3の不純物濃度は、1×1018/cm3以上とするのが好ましい。というのは、濃度が1×1018/cm3に満たないと、バンド不連続に起因したキャリアが発生し、バッファの耐圧が劣化するおそれがあるためである。
不純物元素としてはCやFe等を用いるのが好ましい。濃度の上限は特に指定されるものではないが、III族窒化物積層体4でのピットの発生を抑制する観点から、1×1020/cm3以下とすることが好ましい。
Furthermore, the impurity concentration of the superlattice laminate 3 is preferably 1 × 10 18 / cm 3 or more. This is because, if the concentration is less than 1 × 10 18 / cm 3 , carriers due to band discontinuity are generated, and the withstand voltage of the buffer may be deteriorated.
As the impurity element, C, Fe, or the like is preferably used. The upper limit of the concentration is not particularly specified, but is preferably 1 × 10 20 / cm 3 or less from the viewpoint of suppressing the generation of pits in the group III nitride laminate 4.

なお、Si基板2の厚みやサイズは、用途に応じて適宜選択することができる。また、Si基板2の面は特に特定されるものでなく、(111),(100),(110)面など、各面の適用が可能であるが、(111)面を用いるのが好ましい。(111)面を用いた場合、III族窒化物の(0001)面が容易に成長でき、表面平坦性が向上できるからである。
また、Si基板2の裏面に他の材料の基板を貼り合わせたり、酸化膜、窒化膜等の保護膜を付けたりすることも可能である。
Note that the thickness and size of the Si substrate 2 can be appropriately selected depending on the application. Further, the surface of the Si substrate 2 is not particularly specified, and each surface such as the (111), (100), and (110) surfaces can be applied, but it is preferable to use the (111) surface. This is because when the (111) plane is used, the (0001) plane of the group III nitride can be easily grown and the surface flatness can be improved.
It is also possible to attach a substrate of another material to the back surface of the Si substrate 2 or attach a protective film such as an oxide film or a nitride film.

さらに、Si基板2と超格子積層体3との間には、原料起因のGaとSi基板の反応を防ぐため、AlN材料からなる初期成長層5を設けるのが好ましい。   Furthermore, it is preferable to provide an initial growth layer 5 made of an AlN material between the Si substrate 2 and the superlattice laminate 3 in order to prevent a reaction between Ga and the Si substrate caused by the raw material.

さらに、III族窒化物積層体4は、例えばGaN材料を含むチャネル層4aおよびAlGaN系材料を含む電子供給層4bを有することができるが、用途に応じて適宜変更可能である。   Further, the group III nitride stacked body 4 can include, for example, a channel layer 4a containing a GaN material and an electron supply layer 4b containing an AlGaN-based material, but can be appropriately changed depending on the application.

なお、図3は、代表的な実施形態の例を示したものであって、本発明はこれらの実施形態に限定されるものではない。   FIG. 3 shows examples of typical embodiments, and the present invention is not limited to these embodiments.

(実施例1)
Si基板(直径:150mm(6インチ)、厚さ:625μm、結晶面(111))を、水素および窒素混合雰囲気中で1050℃に加熱した後、MOCVD法を用いて、トリメチルガリウム(TMG)、トリメチルアルミニウム(TMA)、NH3の供給量を調整することにより、初期成長層(AlN材料、厚さ:100nm)を形成した。その後、トリメチルガリウム(TMG)、トリメチルアルミニウム(TMA)、NH3の供給量を調整することにより、上記初期成長層上に、超格子積層体として、第1層(AlN材料、厚さ:4nm)と第2層(Al0.1Ga0.9N材料、厚さ:22nm)と第3層(GaN材料、厚さ:10nm)とを順に成長させ、この積層体を55組形成した。SIMSにて測定した結果、この超格子積層体の平均不純物(C)濃度は1×1019/cm3であった。さらにその上に、横方向電流導電層として機能する、チャネル層(GaN材料、厚さ:1.2μm)と電子供給層(Al0.25Ga0.75N材料、厚さ:30nm)を積層し、III族窒化物エピタキシャル基板を得た。
Example 1
After heating a Si substrate (diameter: 150 mm (6 inches), thickness: 625 μm, crystal plane (111)) to 1050 ° C. in a hydrogen and nitrogen mixed atmosphere, trimethylgallium (TMG), An initial growth layer (AlN material, thickness: 100 nm) was formed by adjusting the supply amounts of trimethylaluminum (TMA) and NH 3 . Thereafter, by adjusting the supply amount of trimethylgallium (TMG), trimethylaluminum (TMA), and NH 3 , the first layer (AlN material, thickness: 4 nm) is formed on the initial growth layer as a superlattice laminate. Then, the second layer (Al 0.1 Ga 0.9 N material, thickness: 22 nm) and the third layer (GaN material, thickness: 10 nm) were grown in order, and 55 sets of this laminate were formed. As a result of measurement by SIMS, the average impurity (C) concentration of this superlattice laminate was 1 × 10 19 / cm 3 . Furthermore, a channel layer (GaN material, thickness: 1.2 μm) and an electron supply layer (Al 0.25 Ga 0.75 N material, thickness: 30 nm) functioning as a lateral current conductive layer are laminated, and a group III nitride is formed. A product epitaxial substrate was obtained.

(比較例1)
超格子積層体として、第1層(AlN材料、厚さ:4nm)と第2層(Al0.1Ga0.9N材料、厚さ:22nm)とを順に成長させ、この積層体を55組形成したこと以外は、実施例1と同様にしてIII族窒化物エピタキシャル基板を得た。
(Comparative Example 1)
As a superlattice laminate, first layer (AlN material, thickness: 4 nm) and second layer (Al 0.1 Ga 0.9 N material, thickness: 22 nm) were grown in order, and 55 sets of this laminate were formed. A group III nitride epitaxial substrate was obtained in the same manner as in Example 1 except for the above.

(比較例2)
超格子積層体として、第1層(AlN材料、厚さ:4nm)と第2層(GaN材料、厚さ:22nm)とを順に成長させ、この積層体を55組形成したこと以外は、実施例1と同様にしてIII族窒化物エピタキシャル基板を得た。
(Comparative Example 2)
Except that the superlattice stack was grown in order of the first layer (AlN material, thickness: 4 nm) and the second layer (GaN material, thickness: 22 nm), and 55 sets of this stack were formed. In the same manner as in Example 1, a group III nitride epitaxial substrate was obtained.

(比較例3)
超格子積層体として、第1層(AlN材料、厚さ:4nm)と第2層(GaN材料、厚さ:10nm)と第3層(Al0.1Ga0.9N材料、厚さ:22nm)とを順に成長させ、この積層体を55組形成したこと以外は、実施例1と同様にしてIII族窒化物エピタキシャル基板を得た。
(Comparative Example 3)
As a superlattice laminate, a first layer (AlN material, thickness: 4 nm), a second layer (GaN material, thickness: 10 nm), and a third layer (Al 0.1 Ga 0.9 N material, thickness: 22 nm) A group III nitride epitaxial substrate was obtained in the same manner as in Example 1 except that the layers were grown in this order and 55 sets of this laminate were formed.

(評価)
実施例1および比較例1〜3の各III族窒化物エピタキシャル基板に対し、形状測定装置(FT-900:NIDEC製)を用いて、反りの値を測定した。結果を表1に示す。なお、測定は、III族窒化物層を積層した側を上にして行った。また、超格子積層体の各層厚さはTEMを用いて確認した。
(Evaluation)
For each group III nitride epitaxial substrate of Example 1 and Comparative Examples 1 to 3, the value of warpage was measured using a shape measuring device (FT-900: manufactured by NIDEC). The results are shown in Table 1. The measurement was performed with the side on which the group III nitride layer was laminated facing upward. The thickness of each superlattice laminate was confirmed using TEM.

Figure 0005543866
Figure 0005543866

表1に示されるように、本発明に従う実施例1のIII族窒化物エピタキシャル基板は、比較例1〜3のIII族窒化物エピタキシャル基板と比較して、反りを大幅に低減することができた。
特に、第3層を設けなかった比較例1および2の反りの値がそれぞれ40μm、80μmであり、第3層を第1層と第2層との間に設けた比較例3の反りの値が40μmであるのに対し、第3層を適正に配置した実施例1のそりの値は15μmであり、反りを比較例1や3の半分以下(20μm以下)に大幅に低減できていることがわかる。
また、金属顕微鏡(倍率100倍)で観察すると、比較例2にはクラックの発生が見られたが、実施例1、比較例1および3にはクラックの発生は見られなかった。本実施例1はクラックの抑制と反りの低減の効果を共に得ることができる。
As shown in Table 1, the group III nitride epitaxial substrate of Example 1 according to the present invention was able to significantly reduce the warpage compared to the group III nitride epitaxial substrates of Comparative Examples 1 to 3. .
In particular, the warp values of Comparative Examples 1 and 2 in which the third layer is not provided are 40 μm and 80 μm, respectively, and the warp value of Comparative Example 3 in which the third layer is provided between the first layer and the second layer. The warp value of Example 1 in which the third layer is appropriately arranged is 15 μm, while warpage is 40 μm, and the warpage can be greatly reduced to less than half of Comparative Example 1 and 3 (20 μm or less). I understand.
Further, when observed with a metal microscope (magnification 100 times), cracks were observed in Comparative Example 2, but no cracks were observed in Example 1, Comparative Examples 1 and 3. The first embodiment can obtain both the effects of suppressing cracks and reducing warpage.

本発明によれば、Si基板とIII族窒化物積層体との間に、Si基板側からAlN材料を含む第1層、AlxGa1-xN(0<x<1)材料を含む第2層、およびAlyGa1-yN(0≦y<1)材料を含む第3層(但し、第2層のAl組成xおよび第3層のAl組成yは、y<xの関係を有する)を順に有する積層体を複数組そなえる超格子積層体を配置することにより、従来よりも反りの値を低減させたIII族窒化物エピタキシャル基板を提供することができる。 According to the present invention, the first layer including the AlN material from the Si substrate side and the first layer including the Al x Ga 1-x N (0 <x <1) material between the Si substrate and the group III nitride stacked body. A second layer and a third layer containing an Al y Ga 1-y N (0 ≦ y <1) material (where the Al composition x of the second layer and the Al composition y of the third layer have a relationship of y <x By disposing a superlattice laminate including a plurality of laminates having (in this order), a group III nitride epitaxial substrate with a lower warpage value than in the prior art can be provided.

1 III族窒化物エピタキシャル基板
2 Si基板
3 超格子積層体
3a 第1層
3b 第2層
3c 第3層
3S 積層体
4 III族窒化物積層体
4a チャネル層
4b 電子供給層
5 初期成長層
DESCRIPTION OF SYMBOLS 1 Group III nitride epitaxial substrate 2 Si substrate 3 Superlattice laminated body 3a 1st layer 3b 2nd layer 3c 3rd layer 3S laminated body 4 Group III nitride laminated body 4a Channel layer 4b Electron supply layer 5 Initial growth layer

Claims (4)

Si基板と、上記Si基板上に形成された超格子積層体と、上記超格子積層体上にエピタキシャル成長されたIII族窒化物積層体とをそなえ、上記超格子積層体が、上記Si基板側から
AlN材料を含む第1層、
AlxGa1-xN(0<x<1)材料を含む第2層、および
AlyGa1-yN(0≦y<1)材料を含む第3層(但し、第2層のAl組成xおよび第3層のAl組成yは、y<xの関係を有する)
を順次有する積層体を複数組そなえ
前記第1層の厚みが0.25〜10nmの範囲であり、前記第2層の厚みが10〜50nmの範囲であり、前記第3層の厚みが0.25〜20nmの範囲であることを特徴とするIII族窒化物エピタキシャル基板。
A Si substrate, a superlattice laminate formed on the Si substrate, and a group III nitride laminate epitaxially grown on the superlattice laminate, wherein the superlattice laminate is formed from the Si substrate side.
A first layer comprising AlN material;
A second layer comprising Al x Ga 1-x N (0 <x <1) material, and
Third layer containing Al y Ga 1-y N (0 ≦ y <1) material (where the Al composition x of the second layer and the Al composition y of the third layer have a relationship of y <x)
Successively a plurality of sets comprising a laminate having,
The thickness of the first layer is in a range of 0.25~10Nm, the thickness of the second layer is in the range of 10 to 50 nm, the thickness of the third layer and wherein the range der Rukoto of 0.25~20nm Group III nitride epitaxial substrate.
前記第3層の厚みが、前記第2層の厚みよりも薄い請求項1に記載のIII族窒化物エピタキシャル基板。   2. The group III nitride epitaxial substrate according to claim 1, wherein a thickness of the third layer is thinner than a thickness of the second layer. 前記超格子積層体の不純物濃度が、1×1018/cm3以上である請求項1またはに記載のIII族窒化物エピタキシャル基板。 The impurity concentration of the superlattice laminate is, 1 × 10 18 / cm 3 or more in Group III nitride epitaxial substrate according to claim 1 or 2. 前記積層体の組数が50〜300の範囲である請求項1〜のいずれか1項に記載のIII族窒化物エピタキシャル基板。 The group III nitride epitaxial substrate according to any one of claims 1 to 3 , wherein the number of the laminated bodies is in a range of 50 to 300.
JP2010162151A 2010-07-16 2010-07-16 Group III nitride epitaxial substrate Active JP5543866B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010162151A JP5543866B2 (en) 2010-07-16 2010-07-16 Group III nitride epitaxial substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010162151A JP5543866B2 (en) 2010-07-16 2010-07-16 Group III nitride epitaxial substrate

Publications (2)

Publication Number Publication Date
JP2012023314A JP2012023314A (en) 2012-02-02
JP5543866B2 true JP5543866B2 (en) 2014-07-09

Family

ID=45777298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010162151A Active JP5543866B2 (en) 2010-07-16 2010-07-16 Group III nitride epitaxial substrate

Country Status (1)

Country Link
JP (1) JP5543866B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107785237A (en) * 2016-08-31 2018-03-09 联钧光电股份有限公司 Nitride semiconductor structure

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5228122B1 (en) 2012-03-08 2013-07-03 株式会社東芝 Nitride semiconductor device and nitride semiconductor wafer
JP2014072429A (en) 2012-09-28 2014-04-21 Fujitsu Ltd Semiconductor device
JP2014072431A (en) 2012-09-28 2014-04-21 Fujitsu Ltd Semiconductor device
JP6392498B2 (en) 2013-03-29 2018-09-19 富士通株式会社 Compound semiconductor device and manufacturing method thereof
KR102077674B1 (en) * 2013-07-24 2020-02-14 엘지전자 주식회사 Nitride semiconductor and method thereof
EP3486939B1 (en) * 2017-11-20 2020-04-01 IMEC vzw Method for forming a semiconductor structure for a gallium nitride channel device
WO2023223375A1 (en) * 2022-05-16 2023-11-23 日本電信電話株式会社 Semiconductor multilayer structure, method for producing same, and method for producing semiconductor device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003077835A (en) * 2001-09-06 2003-03-14 Ngk Insulators Ltd Iii nitride element and iii nitride epitaxial substrate
JP4525894B2 (en) * 2003-11-21 2010-08-18 サンケン電気株式会社 Semiconductor device forming plate-like substrate, manufacturing method thereof, and semiconductor device using the same
JP5116977B2 (en) * 2006-02-17 2013-01-09 古河電気工業株式会社 Semiconductor element
JP5309451B2 (en) * 2007-02-19 2013-10-09 サンケン電気株式会社 Semiconductor wafer, semiconductor device, and manufacturing method
JP4519196B2 (en) * 2008-11-27 2010-08-04 Dowaエレクトロニクス株式会社 Epitaxial substrate for electronic device and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107785237A (en) * 2016-08-31 2018-03-09 联钧光电股份有限公司 Nitride semiconductor structure

Also Published As

Publication number Publication date
JP2012023314A (en) 2012-02-02

Similar Documents

Publication Publication Date Title
JP5543866B2 (en) Group III nitride epitaxial substrate
KR101205020B1 (en) Epitaxial substrate for electronic device and manufacturing method thereof
TWI528581B (en) Group III nitride epitaxial substrate and its manufacturing method
JP5781292B2 (en) Nitride semiconductor device and nitride semiconductor package
US8426893B2 (en) Epitaxial substrate for electronic device and method of producing the same
US20120153440A1 (en) Epitaxial substrate for electronic device and method of producing the same
US11335780B2 (en) Epitaxial structure
US8405067B2 (en) Nitride semiconductor element
WO2015045412A1 (en) Epitaxial substrate for electronic device, and method for manufacturing epitaxial substrate for electronic device
JP2019134153A (en) Nitride semiconductor device
JP5546301B2 (en) Epitaxial substrate for electronic device and manufacturing method thereof
KR20210045835A (en) Semiconductor thin film structure and electronic device including the same
US11664426B2 (en) Semiconductor device with strain relaxed layer
JP2013038157A (en) Compound semiconductor substrate
JP2015103665A (en) Nitride semiconductor epitaxial wafer and nitride semiconductor
US11616135B2 (en) High electron mobility transistor and method of forming the same
TWI441331B (en) A epitaxial substrate for electronic components and a method for manufacturing the same
JP6404738B2 (en) EPITAXIAL SUBSTRATE FOR ELECTRONIC DEVICE, HIGH ELECTRON MOBILITY TRANSISTOR, AND METHOD FOR PRODUCING THEM
KR20160100182A (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140509

R150 Certificate of patent or registration of utility model

Ref document number: 5543866

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250