TW201803260A - 開關調節器 - Google Patents

開關調節器 Download PDF

Info

Publication number
TW201803260A
TW201803260A TW106104683A TW106104683A TW201803260A TW 201803260 A TW201803260 A TW 201803260A TW 106104683 A TW106104683 A TW 106104683A TW 106104683 A TW106104683 A TW 106104683A TW 201803260 A TW201803260 A TW 201803260A
Authority
TW
Taiwan
Prior art keywords
signal
output
circuit
control circuit
time
Prior art date
Application number
TW106104683A
Other languages
English (en)
Other versions
TWI710205B (zh
Inventor
河野明大
後藤克也
Original Assignee
精工半導體有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 精工半導體有限公司 filed Critical 精工半導體有限公司
Publication of TW201803260A publication Critical patent/TW201803260A/zh
Application granted granted Critical
Publication of TWI710205B publication Critical patent/TWI710205B/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/157Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators with digital control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1588Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load comprising at least one synchronous rectifier element
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0032Control circuits allowing low power mode operation, e.g. in standby mode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本發明提供一種即使在輸出端子連接有輕負載,亦可防止輸出電壓過剩地超過所需電壓的COT控制的開關調節器。本發明的開關調節器採用下述結構,所述結構具備100%佔空檢測電路,該100%佔空檢測電路檢測高側開關元件持續導通狀態達規定時間以上的100%佔空,並將檢測信號輸出至輸出控制電路,輸出控制電路在收到檢測信號時,將高側開關元件斷開。

Description

開關調節器
本發明是有關於一種從輸出端子輸出所需電壓的開關調節器(switching regulator)。
圖6是表示習知的開關調節器的電路圖。 當輸出端子6的電壓低於規定電壓而反饋電壓VFB較基準電壓VREF下降時,錯誤比較器(error comparator)610輸出H信號。R-S正反器(flip-flop)電路609在輸入端子S輸入有H信號時,從輸出端子Q輸出H信號。輸出控制電路615利用驅動器(driver)607及驅動器608來使PMOS(P-channel Metal Oxide Semiconductor,P通道金屬氧化物半導體)電晶體(transistor)602導通(ON),使NMOS(N-channel Metal Oxide Semiconductor,N通道金屬氧化物半導體)電晶體604斷開(OFF)。在此狀態下,從節點(node)N1輸出H信號,經由電感器(inductor)603與輸出電容605來使輸出端子6的電壓上升。
另一方面,導通時間控制電路620輸入節點N1的H信號,在經過規定時間後,向R-S正反器電路609的輸入端子R輸出H信號。然後,R-S正反器電路609利用驅動器607來使PMOS電晶體602斷開。
最小斷開時間生成電路611監控驅動器607的輸入信號,並將基於其狀態的信號輸出至輸出控制電路615。即,最小斷開時間生成電路611將PMOS電晶體602的斷開作為觸發(trigger)來進行控制,以使PMOS電晶體602的斷開時間達到固定時間以上。
在反饋電壓VFB低於基準電壓VREF的情況下,由於會輸出使PMOS電晶體602導通固定時間的信號,因此該控制被稱作COT(Constant On Time,固定導通時間)控制(例如參照專利文獻1)。 [現有技術文獻] [專利文獻]
專利文獻1:美國專利第8476887號說明書 [發明所欲解決之問題]
圖7是表示習知的開關調節器在輕負載時的電源電壓Vin與輸出電壓Vout的關係的時序圖(timing chart)。 即使電源電壓Vin下降而輸出電壓Vout成為規定電壓以下,兩個電壓仍維持Vin>Vout的關係而下降(T1以前)。
然而,在連接於輸出端子6的負載為輕負載的狀態下,電源電壓Vin的下降速度超過輸出電壓Vout的下降速度,變為Vin<Vout(T1以後)。當成為該狀態時,由於導通時間控制電路620必須導入比電源電壓Vin高的電壓值,因此成為無法輸出重置(reset)信號的狀態,PMOS電晶體602將持續導通狀態。若PMOS電晶體602持續導通狀態,則最小斷開時間生成電路611無法發揮其功能。
若在此種PMOS電晶體602導通持續的狀態下電源電壓Vin上升,則反饋功能不起作用,輸出電壓Vout隨著電源電壓Vin的上升而上升,結果,存在連接於輸出端子6的負載被過大電壓破壞的危險性。
本發明是有鑒於所述問題而完成,提供一種即使連接於輸出端子的負載成為輕負載,亦不會產生過大的輸出電壓Vout的開關調節器。 [解決問題之手段]
為了解決習知的問題,本發明的開關調節器採用了如下所述的結構。 本發明採用了下述結構,所述結構包括:導通時間控制電路,監控高側開關元件的輸出信號,並輸出對高側開關元件的導通時間進行控制的信號;正反器電路,生成一信號,該信號基於錯誤比較器的信號與導通時間控制電路的信號;輸出控制電路,基於正反器電路輸出的信號,生成控制信號;以及100%佔空(DUTY)檢測電路,檢測高側開關元件持續導通狀態達規定時間以上的100%佔空,並將檢測信號輸出至輸出控制電路,所述輸出控制電路在收到檢測信號時,輸出使高側開關元件斷開的控制信號。 [發明的效果]
根據本發明的COT控制的開關調節器,以下述方式進行控制:即使連接於輸出端子的負載為輕負載,高側開關元件亦不會持續導通。因而,可防止輸出電壓超過所需電壓。
以下,參照圖式來說明本發明的實施形態。 圖1是本實施形態的開關調節器的電路圖。 本實施形態的開關調節器100具備反饋電阻17、基準電壓電路12、錯誤比較器10、R-S正反器電路9、輸出控制電路15、驅動器7及驅動器8、作為高側開關元件的PMOS電晶體2、作為低側開關元件的NMOS電晶體4、導通時間控制電路20、最小斷開時間生成電路11、100%佔空檢測電路30、電感器3以及輸出電容5。
反饋電阻17對從輸出端子6輸出的輸出電壓Vout進行分壓而生成反饋電壓VFB。基準電壓電路12生成基準電壓VREF。錯誤比較器10對輸入至反相輸入端子的反饋電壓VFB與輸入至非反相輸入端子的基準電壓VREF進行比較,並輸出基於比較結果的信號。R-S正反器電路9基於輸入至輸入端子S的錯誤比較器10的信號、與輸入至輸入端子R的導通時間控制電路20的信號,將輸出信號輸出至輸出端子Q。輸出控制電路15基於R-S正反器電路9的輸出信號,將輸出信號輸出至驅動器7及驅動器8。驅動器7將基於輸出控制電路15的輸出信號的信號輸出至PMOS電晶體2的閘極(gate),以控制PMOS電晶體2的導通/斷開。驅動器8將基於輸出控制電路15的輸出信號的信號輸出至NMOS電晶體4的閘極,以控制NMOS電晶體4的導通/斷開。導通時間控制電路20監控節點N1的H/L信號,並將基於其狀態的信號輸出至R-S正反器電路9的輸入端子R。最小斷開時間生成電路11監控驅動器7的輸入信號,並將基於其狀態的信號輸出至輸出控制電路15。100%佔空檢測電路30監控驅動器7的輸入信號,並將基於其狀態的信號輸出至輸出控制電路15。
PMOS電晶體2的源極(source)連接於供給電源電壓Vin的輸入端子1,汲極(drain)連接於NMOS電晶體4的汲極,閘極連接於驅動器7的輸出。PMOS電晶體2在根據驅動器7的輸出信號而成為導通狀態時,將成為電源電壓Vin的H信號傳至節點N1。NMOS電晶體4的源極連接於接地端子,汲極連接於PMOS電晶體2的汲極,閘極連接於驅動器8的輸出。NMOS電晶體4在根據驅動器8的輸出信號而成為導通狀態時,將成為接地電位的L信號傳至節點N1。電感器3的其中一個端子連接於節點N1,另一個端子連接於輸出端子6與輸出電容5的其中一個端子。輸出電容5的另一個端子連接於接地端子。
如上所述的開關調節器100以下述方式動作,從而由電源電壓Vin而從輸出端子6輸出規定的輸出電壓Vout。 若從輸出端子6輸出的輸出電壓Vout低於規定電壓,則反饋電壓VFB將下降。錯誤比較器10對反饋電壓VFB與基準電壓VREF進行比較。若反饋電壓VFB低於基準電壓VREF,則錯誤比較器10將H信號輸出至R-S正反器電路9的輸入端子S。
R-S正反器電路9在輸入端子S輸入有H信號時,將H信號從輸出端子Q輸出至輸出控制電路15。輸入有R-S正反器9的輸出信號的輸出控制電路15在輸入有H信號時,向驅動器7、驅動器8輸出L信號。另一方面,在輸出控制電路15輸入有L信號時,輸出H信號。輸入有來自輸出控制電路15的L信號的驅動器7與驅動器8將L信號分別輸出至PMOS電晶體2與NMOS電晶體4的閘極。
PMOS電晶體2在閘極輸入有L信號時成為導通狀態,NMOS電晶體4在閘極輸入有L信號時成為斷開狀態。其結果,向節點N1輸出H信號。該H信號經包含電感器3與輸出電容5的平滑電路平滑化,使低於規定電壓的輸出端子6的輸出電壓Vout上升。當輸出電壓Vout高於規定電壓時,與以上相反的反饋機制使輸出電壓Vout下降。
另一方面,輸出電壓Vout低於規定電壓時的節點N1的H信號亦被送往導通時間控制電路20。導通時間控制電路20在輸入有H信號的規定時間後輸出H信號。R-S正反器電路9在輸入端子R輸入有來自導通時間控制電路20的H信號時,從輸出端子Q輸出L信號。輸出控制電路15在從R-S正反器電路9輸入L信號時,向驅動器7、驅動器8輸出H信號。當收到從輸出控制電路15輸出的H信號時,驅動器7輸出H信號而使PMOS電晶體2斷開,驅動器8輸出H信號而使NMOS電晶體4導通。此時,向節點N1輸出L信號。節點N1的信號由H變成L為止的時間成為使PMOS電晶體2導通的導通時間。當向節點N1輸出L信號時,從輸出端子6輸出的電壓開始下降。
如此,H/L的振盪信號以與輸出電壓Vout相應的佔空比輸出至節點N1,開關調節器100輸出所需的輸出電壓Vout。此處,若設輸出電壓為Vout、從輸入端子輸入的電壓為Vin、PMOS電晶體2的導通時間為Ton、振盪信號的週期為Tcycle,則式1成立。
Vout/Vin = Ton/Tcycle…(1) 圖2是表示導通時間控制電路20的一例的電路圖。從節點N1向導通時間控制電路20輸入的振盪信號經包含電阻24及電阻26與電容25及電容27的濾波器(filter)電路而平滑,即,被轉換為與輸出電壓Vout相等的固定電壓,而輸入至比較器21的反相輸入端子。另一方面,向比較器21的非反相輸入端子輸入由定電流源23所充電的電容22的電壓。
定電流源23藉由從節點N1輸入的H信號而啟動。而且,定電流源23輸出與電源電壓Vin的大小成比例的電流。因此,電容22的充電時間與電源電壓Vin成反比。
比較器21在電容22的電壓超過反相輸入端子的電壓時,從輸出端子輸出H信號。由於反相輸入端子的電壓等於輸出電壓Vout,因此若設電容22的靜電容量值為C、定電流源23的電流為I,則式2的關係成立。
C×Vout = I×Ton…(2) 根據式1與式2,成為式3,在利用COT控制的開關調節器中,節點N1的振盪信號的週期Tcycle成為不依存於電源電壓Vin或輸出電壓Vout的值。由振盪信號的週期所決定的振盪頻率亦同樣,成為不依存於電源電壓Vin與輸出電壓Vout的固定值。
Tcycle ∝ C…(3) 此處,若電源電壓Vin下降而接近輸出電壓Vout,則導通時間Ton成為與振盪信號週期Tcycle相同的值。即,振盪信號的佔空比成為100%,其結果,PMOS電晶體2持續導通,電源電壓Vin將被直接供給至輸出端子6。
圖3是表示100%佔空檢測電路30的一例的電路圖。 100%佔空檢測電路30將驅動器7的輸入端子的電壓作為輸入信號。 當輸入有通常動作時的輸入信號時,電容32反覆進行充放電,其電壓不會超過NMOS電晶體34的閾值電壓。
當PMOS電晶體2導通時,驅動器7向輸入端子輸入L信號。當該L信號被輸入至100%佔空檢測電路30時,NMOS電晶體31斷開。當NMOS電晶體31斷開時,電容32藉由電流源33的電流而受到充電。並且,當PMOS電晶體2成為持續導通的100%佔空狀態時,電容32不再放電,因此其電壓將超過NMOS電晶體34的閾值電壓。
因而,反相器36在電容32的電壓為NMOS電晶體34的閾值電壓以下的情況下,輸出L信號,當電容32的電壓超過NMOS電晶體34的閾值電壓時,輸出H信號。
如上所述,100%佔空檢測電路30在從驅動器7的輸入端子檢測出100%佔空時,向輸出控制電路15輸出H信號。並且,輸出控制電路15向驅動器7輸出H信號,將PMOS電晶體2由導通狀態切換為斷開狀態。
圖4是表示100%佔空檢測電路30的動作的時序圖。 若在時刻t0以後,PMOS電晶體2持續導通,則100%佔空檢測電路30在規定時間後的時刻t1檢測出100%佔空狀態,並輸出檢測信號。輸出控制電路15接收100%佔空檢測電路30所輸出的檢測信號後,向驅動器7輸出H信號,將PMOS電晶體2設為斷開狀態。並且,100%佔空檢測電路30接收驅動器7的輸入端子的H信號,NMOS電晶體31導通而將電容32放電,因此輸出L信號。
如以上所說明般,本實施形態的具備100%佔空檢測電路30的開關調節器即使為100%佔空,亦可將PMOS電晶體2控制為斷開狀態。並且,若PMOS電晶體2成為斷開狀態,則藉由最小斷開時間生成電路11來確保PMOS電晶體2的斷開時間,因此輸出電壓Vout可追隨於電源電壓Vin的下降。
圖5是表示本實施形態的開關調節器在輕負載時的電源電壓與輸出電壓的關係的時序圖。
如以上所說明般,藉由構成本發明的開關調節器,即使輸出端子連接有輕負載而陷入電源電壓Vin<輸出電壓Vout的狀態,由於對PMOS電晶體2設有斷開時間,因此仍可恢復至電源電壓Vin>輸出電壓Vout的通常狀態。因此,可防止輸出電壓Vout伴隨電源電壓Vin的上升而上升,從而連接機器發生破壞的事態,能提供安全性高的開關調節器。
再者,本發明的開關調節器中,作為高側開關元件,以PMOS電晶體為例進行了說明,但即使高側開關元件為NMOS電晶體或者NPN或PNP的雙極(bipolar)電晶體,亦可獲得同樣的效果。 而且,即使低側開關元件亦為雙極電晶體或二極體等其他元件,亦同樣。
1、R、S‧‧‧輸入端子
2、602‧‧‧PMOS電晶體
3、603‧‧‧電感器
4、31、34、604‧‧‧NMOS電晶體
5、605‧‧‧輸出電容
6、Q‧‧‧輸出端子
7、8、607、608‧‧‧驅動器
9、609‧‧‧R-S正反器電路
10、610‧‧‧錯誤比較器
11、611‧‧‧最小斷開時間生成電路
12‧‧‧基準電壓電路
15、615‧‧‧輸出控制電路
17‧‧‧反饋電阻
20、620‧‧‧導通時間控制電路
21‧‧‧比較器
22、25、27、32‧‧‧電容
23‧‧‧定電流源
24、26‧‧‧電阻
30‧‧‧100%佔空檢測電路
33‧‧‧電流源
36‧‧‧反相器
100‧‧‧開關調節器
H、L‧‧‧信號
N1‧‧‧節點
t0、t1‧‧‧時刻
VFB‧‧‧反饋電壓
Vin‧‧‧電源電壓
Vout‧‧‧輸出電壓
VREF‧‧‧基準電壓
圖1是表示本實施形態的開關調節器的結構的電路圖。 圖2是表示本實施形態的導通時間控制電路的一例的電路圖。 圖3是表示本實施形態的100%佔空檢測電路的一例的電路圖。 圖4是表示本實施形態的100%佔空檢測電路的動作的時序圖。 圖5是表示本實施形態的開關調節器在輕負載時的電源電壓與輸出電壓的關係的時序圖。 圖6是表示習知的開關調節器的結構的電路圖。 圖7是表示習知的開關調節器在輕負載時的電源電壓與輸出電壓的關係的時序圖。
1、R、S‧‧‧輸入端子
2‧‧‧PMOS電晶體
3‧‧‧電感器
4‧‧‧NMOS電晶體
5‧‧‧輸出電容
6、Q‧‧‧輸出端子
7、8‧‧‧驅動器
9‧‧‧R-S正反器電路
10‧‧‧錯誤比較器
11‧‧‧最小斷開時間生成電路
12‧‧‧基準電壓電路
15‧‧‧輸出控制電路
17‧‧‧反饋電阻
20‧‧‧導通時間控制電路
30‧‧‧100%佔空檢測電路
100‧‧‧開關調節器
N1‧‧‧節點

Claims (3)

  1. 一種開關調節器,其特徵在於包括: 高側開關元件,連接於電源端子,基於輸入至所述高側開關元件的閘極的控制信號來輸出間歇性的輸出信號; 平滑電路,將對所述輸出信號進行平滑後的輸出電壓輸出至輸出端子; 錯誤比較器,監控所述輸出電壓; 導通時間控制電路,監控所述輸出信號,並輸出對所述高側開關元件的導通時間進行控制的信號; 正反器電路,生成一信號,所述信號基於所述錯誤比較器的信號與所述導通時間控制電路的信號; 輸出控制電路,基於所述正反器電路輸出的信號,生成所述控制信號;以及 100%佔空檢測電路,檢測所述高側開關元件持續導通狀態達規定時間以上的100%佔空,並將檢測信號輸出至所述輸出控制電路, 所述輸出控制電路在收到所述檢測信號時,輸出使所述高側開關元件斷開的所述控制信號。
  2. 如申請專利範圍第1項所述的開關調節器,其中 所述100%佔空檢測電路監控所述控制信號,以檢測所述100%佔空。
  3. 如申請專利範圍第1項或第2項所述的開關調節器,包括: 最小斷開時間生成電路,當檢測出所述高側開關元件的斷開狀態時,將用於使斷開狀態維持規定時間的期間的信號輸出至所述輸出控制電路。
TW106104683A 2016-02-23 2017-02-14 開關調節器 TWI710205B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016032102A JP6592374B2 (ja) 2016-02-23 2016-02-23 スイッチングレギュレータ
JP2016-032102 2016-02-23

Publications (2)

Publication Number Publication Date
TW201803260A true TW201803260A (zh) 2018-01-16
TWI710205B TWI710205B (zh) 2020-11-11

Family

ID=59630223

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106104683A TWI710205B (zh) 2016-02-23 2017-02-14 開關調節器

Country Status (5)

Country Link
US (1) US9912237B2 (zh)
JP (1) JP6592374B2 (zh)
KR (1) KR102576886B1 (zh)
CN (1) CN107104594A (zh)
TW (1) TWI710205B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105896942B (zh) 2016-05-18 2018-12-25 矽力杰半导体技术(杭州)有限公司 开关型调节器的控制电路、控制方法及开关型调节器
US10790746B2 (en) * 2017-08-04 2020-09-29 Dialog Semiconductor (Uk) Limited Power dissipation regulated buck architecture
CN112751483A (zh) * 2020-12-29 2021-05-04 成都锐成芯微科技股份有限公司 一种恒压控制电路

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6812782B2 (en) * 2002-10-25 2004-11-02 Texas Instruments Incorporated Switch mode converter that allows 100% duty cycle on gate driver
JP4868750B2 (ja) * 2004-03-16 2012-02-01 ローム株式会社 スイッチングレギュレータ
US8476887B2 (en) * 2004-12-03 2013-07-02 Texas Instruments Incorporated DC to DC converter with pseudo constant switching frequency
JP4890940B2 (ja) * 2006-05-23 2012-03-07 株式会社リコー 昇降圧スイッチングレギュレータ及びその制御方法
US7443148B2 (en) * 2006-09-11 2008-10-28 Micrel, Inc. Constant on-time regulator with increased maximum duty cycle
EP2280468B1 (en) * 2009-07-28 2015-09-09 STMicroelectronics Srl Driving circuit for an electric load and system comprising the circuit
JP2011055692A (ja) * 2009-09-04 2011-03-17 Rohm Co Ltd スイッチングレギュレータ
CN102801288B (zh) * 2012-08-29 2015-05-13 成都芯源系统有限公司 控制电路、开关模式变换器及控制方法
US9625932B2 (en) * 2012-09-05 2017-04-18 Silicon Works Co., Ltd. Switching mode converter having 100% duty cycle mode and method for controlling thereof
US9201441B2 (en) * 2012-12-18 2015-12-01 Fairchild Semiconductor Corporation DC/DC converter with shunt circuitry
CN103199703B (zh) * 2013-04-03 2015-08-05 矽力杰半导体技术(杭州)有限公司 一种电压型调节器的控制电路及其控制方法
JP6211916B2 (ja) * 2013-12-24 2017-10-11 エスアイアイ・セミコンダクタ株式会社 スイッチングレギュレータ
JP6581757B2 (ja) * 2014-05-12 2019-09-25 新日本無線株式会社 スイッチング電源装置
JP6393169B2 (ja) * 2014-11-27 2018-09-19 エイブリック株式会社 Dc−dcコンバータ

Also Published As

Publication number Publication date
TWI710205B (zh) 2020-11-11
US9912237B2 (en) 2018-03-06
KR102576886B1 (ko) 2023-09-08
CN107104594A (zh) 2017-08-29
KR20170099367A (ko) 2017-08-31
US20170244320A1 (en) 2017-08-24
JP6592374B2 (ja) 2019-10-16
JP2017153209A (ja) 2017-08-31

Similar Documents

Publication Publication Date Title
US9529373B2 (en) Switching regulator and control circuit and control method therefor
JP5772191B2 (ja) スイッチング電源装置
US8803500B2 (en) PFM SMPS with quick sudden load change response
US7714556B2 (en) Quick response switching regulator and control method thereof
US9467045B2 (en) SMPS with adaptive COT control and method thereof
CN107210676B (zh) 电源控制用半导体装置
US20150042299A1 (en) Soft start switching power supply system
US9564795B2 (en) Ripple filter circuit and ripple filter method
US9898021B2 (en) Dual-mode regulator circuit
JP5811237B1 (ja) Dc−dcコンバータ
JP5890814B2 (ja) Dc−dcコンバータ、および、半導体集積回路
US8810212B2 (en) Microcomputer and switching power supply device with auxiliary switch
JP6660238B2 (ja) バンドギャップリファレンス回路及びこれを備えたdcdcコンバータ
JP2018129910A (ja) Dc/dcコンバータおよびその制御回路、制御方法、車載電装機器
JP5728415B2 (ja) 動作制御回路、dc−dcコンバータ制御回路及びdc−dcコンバータ
TWI710205B (zh) 開關調節器
JP2010213559A (ja) 直流電源装置およびdc−dcコンバータ
JP2008295237A (ja) スイッチングパルス生成回路およびスイッチングパルス生成回路を用いたレギュレータ
JP6356545B2 (ja) スイッチング電源装置
JP6381963B2 (ja) スイッチング電源回路
JP6875873B2 (ja) Dc/dcコンバータおよびその制御回路、車載電装機器
US20140375285A1 (en) Dc-dc boost converter
US10811972B2 (en) Buck-boost converter power supply with drive circuit
JP2010259188A (ja) ソフトスタート回路およびスイッチング電源装置
JP6695176B2 (ja) スイッチングレギュレータ