CN107104594A - 开关调节器 - Google Patents

开关调节器 Download PDF

Info

Publication number
CN107104594A
CN107104594A CN201710099374.7A CN201710099374A CN107104594A CN 107104594 A CN107104594 A CN 107104594A CN 201710099374 A CN201710099374 A CN 201710099374A CN 107104594 A CN107104594 A CN 107104594A
Authority
CN
China
Prior art keywords
signal
output
circuit
voltage
control circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710099374.7A
Other languages
English (en)
Inventor
河野明大
后藤克也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Ablic Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Publication of CN107104594A publication Critical patent/CN107104594A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/157Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators with digital control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1588Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load comprising at least one synchronous rectifier element
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0032Control circuits allowing low power mode operation, e.g. in standby mode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

提供一种即便在输出端子连接轻负载也能防止输出电压过度超过期望的电压的COT控制的开关调节器。本发明的开关调节器采用这样的结构:具备100%占空比检测电路,所述100%占空比检测电路检测高侧开关元件持续导通状态既定时间以上的100%占空比,并向输出控制电路输出检测信号,输出控制电路接收到检测信号则使高侧开关元件截止。

Description

开关调节器
技术领域
本发明涉及从输出端子输出期望的电压的开关调节器。
背景技术
图6是示出现有的开关调节器的电路图。
在输出端子6的电压低于既定电压且反馈电压VFB相比基准电压VREF下降的情况下,误差比较器610输出H信号。R-S触发器电路609在输入端子S被输入H信号时,从输出端子Q输出H信号。输出控制电路615通过驱动器607及608使PMOS晶体管602导通,并使NMOS晶体管604截止。在该状态下从节点N1输出H信号,经由电感器603和输出电容605而使输出端子6的电压上升。
另一方面,导通时间控制电路620被输入节点N1的H信号,在经过既定时间后向R-S触发器电路609的输入端子R输出H信号。而且,R-S触发器电路609通过驱动器607使PMOS晶体管602截止。
最小截止时间生成电路611监视驱动器607的输入信号,并向输出控制电路615输出基于该状态的信号。即,最小截止时间生成电路611以PMOS晶体管602截止的情况为触发,以使PMOS晶体管602的截止时间成为一定时间以上的方式进行控制。
该控制在反馈电压VFB小于基准电压VREF的情况下,输出使PMOS晶体管602导通固定时间的信号,因此称为COT(Constant On Time:恒定导通时间)控制(例如,参照专利文献1)。
现有技术文献
专利文献
专利文献1:美国专利第8476887号说明书。
发明内容
发明要解决的课题
图7是示出现有的开关调节器的轻负载时的电源电压Vin与输出电压Vout的关系的时间图。
即便电源电压Vin下降、输出电压Vout成为既定电压以下,也维持Vin>Vout的关系并且两者的电压下降下去(T1以前)。
然而,在与输出端子6连接的负载为轻负载的状态下,电源电压Vin的下降速度超过输出电压Vout的下降速度,会成为Vin<Vout(T1以后)。若成为该状态,则导通时间控制电路620需要采用比电源电压Vin高的电压值,因此成为不能输出复位信号的状态,PMOS晶体管602会继续导通状态。若PMOS晶体管602继续导通状态,则最小截止时间生成电路611不能发挥其功能。
若在这样的PMOS晶体管602持续导通的状态下电源电压Vin上升,则反馈功能不起作用,而输出电压Vout随电源电压Vin的上升一起上升,结果,存在由过大电压破坏与输出端子6连接的负载的危险性。
本发明鉴于上述课题而构思,提供一种即便与输出端子连接的负载变为轻负载也不会产生过大的输出电压Vout的开关调节器。
用于解决课题的方案
为了解决现有的课题,本发明的开关调节器采用如下的结构。
该结构为具备:导通时间控制电路,监视高侧(High-Side)开关元件的输出信号并输出控制高侧开关元件的导通时间的信号;触发器电路,生成基于误差比较器的信号和导通时间控制电路的信号的信号;输出控制电路,基于触发器电路输出的信号生成控制信号;以及100%占空比(100%DUTY)检测电路,检测高侧开关元件持续导通状态既定时间以上的100%占空比并向输出控制电路输出检测信号,所述输出控制电路接收到检测信号则输出使高侧开关元件截止的控制信号。
发明效果
依据本发明的COT控制的开关调节器,即便与输出端子连接的负载变为轻负载,也控制成为高侧开关元件不会持续导通。因而,能够防止输出电压超过期望的电压的情况。
附图说明
图1是示出本实施方式的开关调节器的结构的电路图。
图2是示出本实施方式的导通时间控制电路的一个例子的电路图。
图3是示出本实施方式的100%占空比检测电路的一个例子的电路图。
图4是示出本实施方式的100%占空比检测电路的动作的时间图。
图5是示出本实施方式的开关调节器在轻负载时的电源电压和输出电压的关系的时间图。
图6是示出现有的开关调节器的结构的电路图。
图7是示出现有的开关调节器在轻负载时的电源电压和输出电压的关系的时间图。
具体实施方式
以下,参照附图,对本发明的实施方式进行说明。
图1是本实施方式的开关调节器的电路图。
本实施方式的开关调节器100具备:反馈电阻17;基准电压电路12;误差比较器10;R-S触发器电路9;输出控制电路15;驱动器7及8;作为高侧开关元件的PMOS晶体管2;作为低侧(Low-Side)开关元件的NMOS晶体管4;导通时间控制电路20;最小截止时间生成电路11;100%占空比检测电路30;电感器3;以及输出电容5。
反馈电阻17对从输出端子6输出的输出电压Vout进行分压,并生成反馈电压VFB。基准电压电路12生成基准电压VREF。误差比较器10对向反相输入端子输入的反馈电压VFB和向同相输入端子输入的基准电压VREF进行比较,并输出基于比较结果的信号。R-S触发器电路9基于向输入端子S输入的误差比较器10的信号和向输入端子R输入的导通时间控制电路20的信号,向输出端子Q输出输出信号。输出控制电路15基于R-S触发器电路9的输出信号,向驱动器7及驱动器8输出输出信号。驱动器7向PMOS晶体管2的栅极输出基于输出控制电路15的输出信号的信号,控制PMOS晶体管2的导通/截止。驱动器8向NMOS晶体管4的栅极输出基于输出控制电路15的输出信号的信号,控制NMOS晶体管4的导通/截止。导通时间控制电路20监视节点N1的H/L(高/低)信号,并向R-S触发器电路9的输入端子R输出基于该状态的信号。最小截止时间生成电路11监视驱动器7的输入信号,并向输出控制电路15输出基于该状态的信号。100%占空比检测电路30监视驱动器7的输入信号,并向输出控制电路15输出基于该状态的信号。
PMOS晶体管2的源极与供给电源电压Vin的输入端子1连接,漏极与NMOS晶体管4的漏极连接,栅极与驱动器7的输出连接。PMOS晶体管2在因驱动器7的输出信号而成为导通状态时,向节点N1传输作为电源电压Vin的H信号。NMOS晶体管4的源极与接地端子连接,漏极与PMOS晶体管2的漏极连接,栅极与驱动器8的输出连接。NMOS晶体管4在因驱动器8的输出信号而成为导通状态时,向节点N1传输作为接地电位的L信号。电感器3的一个端子与节点N1连接,另一个端子与输出端子6和输出电容5的一个端子连接。输出电容5的另一个端子与接地端子连接。
如上述的开关调节器100,如以下那样进行动作而由电源电压Vin从输出端子6输出既定输出电压Vout。
若从输出端子6输出的输出电压Vout比既定电压低,则反馈电压VFB下降。误差比较器10比较反馈电压VFB和基准电压VREF。若反馈电压VFB比基准电压VREF低,则误差比较器10向R-S触发器电路9的输入端子S输出H信号。
R-S触发器电路9在输入端子S被输入H信号时,从输出端子Q向输出控制电路15输出H信号。被输入R-S触发器9的输出信号的输出控制电路15,在被输入H信号的情况下,向驱动器7、8输出L信号。另一方面,在向输出控制电路15输入L信号的情况下,输出H信号。被输入来自输出控制电路15的L信号的驱动器7和驱动器8分别向PMOS晶体管2和NMOS晶体管4的栅极输出L信号。
PMOS晶体管2在栅极被输入L信号时成为导通状态,NMOS晶体管4在栅极被输入L信号时成为截止状态。其结果,在节点N1输出H信号。该H信号被由电感器3和输出电容5构成的平滑电路进行平滑化,使变得比既定电压低的输出端子6的输出电压Vout上升。在输出电压Vout变得比既定电压高的情况下,与以上相反的反馈机构使输出电压Vout下降。
另一方面,当输出电压Vout变得比既定电压低时的节点N1的H信号还输送到导通时间控制电路20。导通时间控制电路20在被输入了H信号的既定时间后输出H信号。R-S触发器电路9在输入端子R被输入来自导通时间控制电路20的H信号时,从输出端子Q输出L信号。输出控制电路15在从R-S触发器电路9输入L信号时,向驱动器7、8输出H信号。若接收到从输出控制电路15输出的H信号,则驱动器7输出H信号并使PMOS晶体管2截止,驱动器8输出H信号并使NMOS晶体管4导通。此时在节点N1输出L信号。节点N1的信号从H变为L为止的时间成为使PMOS晶体管2导通的导通时间。若在节点N1输出L信号,则从输出端子6输出的电压开始下降。
这样,以与输出电压Vout对应的占空比向节点N1输出H/L的振荡信号,开关调节器100输出期望的输出电压Vout。在此,若设输出电压为Vout、从输入端子输入的电压为Vin、PMOS晶体管2的导通时间为Ton、振荡信号的周期为Tcycle,则式1成立。
Vout/Vin=Ton/Tcycle (1)
图2是示出导通时间控制电路20的一个例子的电路图。从节点N1向导通时间控制电路20输入的振荡信号,被由电阻24、26和电容25、27构成的滤波器电路进行平滑,即,被转换为与输出电压Vout相等的恒定电压,并向比较器21的反相输入端子输入。另一方面,在比较器21的同相输入端子,被输入通过恒流源23来充电的电容22的电压。
恒流源23通过从节点N1输入的H信号来启动。另外,恒流源23输出与电源电压Vin的大小成比例的电流。因此,电容22的充电时间与电源电压Vin成反比例。
比较器21在电容22的电压超过反相输入端子的电压时,从输出端子输出H信号。由于反相输入端子的电压与输出电压Vout相等,若设电容22的静电容值为C、恒流源23的电流为I,则式2的关系成立。
C×Vout=I×Ton (2)
由式1和式2,成为如式3那样,在利用COT控制的开关调节器中,节点N1的振荡信号的周期Tcycle成为不依赖于电源电压Vin或输出电压Vout的值。取决于振荡信号的周期的振荡频率也同样,成为不依赖于电源电压Vin和输出电压Vout的恒定值。
Tcycle ∝ C (3)
在此,若电源电压Vin下降而接近输出电压Vout,则导通时间Ton成为与振荡信号周期Tcycle相同的值。即,振荡信号的占空比成为100%,其结果,PMOS晶体管2持续导通,电源电压Vin会被原样供给输出端子6。
图3是示出100%占空比检测电路30的一个例子的电路图。
100%占空比检测电路30以驱动器7的输入端子的电压为输入信号。
若输入通常动作时的输入信号,则电容32重复充放电,其电压不会超过NMOS晶体管34的阈值电压。
当PMOS晶体管2导通时,驱动器7向输入端子输入L信号。若该L信号输入100%占空比检测电路30,则NMOS晶体管31截止。若NMOS晶体管31截止,则电容32通过电流源33的电流被充电。而且,若PMOS晶体管2成为持续导通的100%占空比状态,则电容32不会放电,因此其电压超过NMOS晶体管34的阈值电压。
因而,反相器36在电容32的电压为NMOS晶体管34的阈值电压以下的情况下输出L信号,若电容32的电压超过NMOS晶体管34的阈值电压则输出H信号。
如以上那样,100%占空比检测电路30在从驱动器7的输入端子检测到100%占空比时,向输出控制电路15输出H信号。而且,输出控制电路15向驱动器7输出H信号,将PMOS晶体管2从导通状态切换到截止状态。
图4是示出100%占空比检测电路30的动作的时间图。
在时刻t0以后,若PMOS晶体管2持续导通,则100%占空比检测电路30在既定时间后的时刻t1检测出100%占空比状态,输出检测信号。输出控制电路15接收到100%占空比检测电路30输出的检测信号,向驱动器7输出H信号,使PMOS晶体管2处于截止状态。而且,接收到驱动器7的输入端子的H信号,NMOS晶体管31导通而使电容32放电,因此100%占空比检测电路30输出L信号。
如以上说明的那样,本实施方式的具备100%占空比检测电路30的开关调节器,即便为100%占空比也能将PMOS晶体管2控制成为截止状态。而且,如果PMOS晶体管2处于截止状态,就能由最小截止时间生成电路11确保PMOS晶体管2的截止时间,因此输出电压Vout能够跟随电源电压Vin的下降。
图5是示出本实施方式的开关调节器在轻负载时的电源电压和输出电压的关系的时间图。
如以上说明的那样,通过构成本发明的开关调节器,即便在输出端子连接轻负载,并落入电源电压Vin<输出电压Vout这一状态,也因为在PMOS晶体管2设有截止时间,所以能够恢复到电源电压Vin>输出电压Vout这一通常状态。因此,随着电源电压Vin的上升而输出电压Vout上升,能够防止连接设备破坏的情况,从而能够提供安全性高的开关调节器。
此外,在本发明的开关调节器中,作为高侧开关元件以PMOS晶体管为例子进行了说明,但是高侧开关元件为NMOS晶体管、NPN或PNP的双极晶体管也能得到同样的效果。
另外,低侧开关元件为双极晶体管、二极管等其他的元件也同样。
标号说明
9  R-S触发器电路
10 误差比较器
11 最小截止时间生成电路
12 基准电压电路
15 输出控制电路
20 导通时间控制电路
30 100%占空比检测电路。

Claims (3)

1.一种开关调节器,其特征在于,具备:
高侧开关元件,与电源端子连接,基于向栅极输入的控制信号而输出间断性的输出信号;
平滑电路,向输出端子输出将所述输出信号进行平滑后的输出电压;
误差比较器,监视所述输出电压;
导通时间控制电路,监视所述输出信号,输出控制所述高侧开关元件的导通时间的信号;
触发器电路,生成基于所述误差比较器的信号和所述导通时间控制电路的信号的信号;
输出控制电路,基于所述触发器电路输出的信号,生成所述控制信号;以及
100%占空比检测电路,检测所述高侧开关元件持续导通状态既定时间以上的100%占空比,并向所述输出控制电路输出检测信号,
所述输出控制电路接收到所述检测信号则输出使所述高侧开关元件截止的所述控制信号。
2.如权利要求1所述的开关调节器,其特征在于,
所述100%占空比检测电路监视所述控制信号,检测所述100%占空比。
3.如权利要求1或2所述的开关调节器,其特征在于,具备:
最小截止时间生成电路,若检测到所述高侧开关元件的截止状态,则向所述输出控制电路输出用于维持截止状态既定时间的期间的信号。
CN201710099374.7A 2016-02-23 2017-02-23 开关调节器 Pending CN107104594A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-032102 2016-02-23
JP2016032102A JP6592374B2 (ja) 2016-02-23 2016-02-23 スイッチングレギュレータ

Publications (1)

Publication Number Publication Date
CN107104594A true CN107104594A (zh) 2017-08-29

Family

ID=59630223

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710099374.7A Pending CN107104594A (zh) 2016-02-23 2017-02-23 开关调节器

Country Status (5)

Country Link
US (1) US9912237B2 (zh)
JP (1) JP6592374B2 (zh)
KR (1) KR102576886B1 (zh)
CN (1) CN107104594A (zh)
TW (1) TWI710205B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112751483A (zh) * 2020-12-29 2021-05-04 成都锐成芯微科技股份有限公司 一种恒压控制电路

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105896942B (zh) * 2016-05-18 2018-12-25 矽力杰半导体技术(杭州)有限公司 开关型调节器的控制电路、控制方法及开关型调节器
US10790746B2 (en) * 2017-08-04 2020-09-29 Dialog Semiconductor (Uk) Limited Power dissipation regulated buck architecture

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090140708A1 (en) * 2004-12-03 2009-06-04 Texas Instruments Incorporated DC to DC converter with Pseudo Constant Switching Frequency
CN103199703A (zh) * 2013-04-03 2013-07-10 矽力杰半导体技术(杭州)有限公司 一种电压型调节器的控制电路及其控制方法
US20140062449A1 (en) * 2012-09-05 2014-03-06 Silicon Works Co., Ltd. Switching mode converter and method for controlling thereof
CN203761268U (zh) * 2012-12-18 2014-08-06 快捷半导体(苏州)有限公司 电源系统
CN104731146A (zh) * 2013-12-24 2015-06-24 精工电子有限公司 开关调节器及电子设备

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6812782B2 (en) * 2002-10-25 2004-11-02 Texas Instruments Incorporated Switch mode converter that allows 100% duty cycle on gate driver
JP4868750B2 (ja) * 2004-03-16 2012-02-01 ローム株式会社 スイッチングレギュレータ
JP4890940B2 (ja) * 2006-05-23 2012-03-07 株式会社リコー 昇降圧スイッチングレギュレータ及びその制御方法
US7443148B2 (en) * 2006-09-11 2008-10-28 Micrel, Inc. Constant on-time regulator with increased maximum duty cycle
EP2280468B1 (en) 2009-07-28 2015-09-09 STMicroelectronics Srl Driving circuit for an electric load and system comprising the circuit
JP2011055692A (ja) * 2009-09-04 2011-03-17 Rohm Co Ltd スイッチングレギュレータ
CN102801288B (zh) * 2012-08-29 2015-05-13 成都芯源系统有限公司 控制电路、开关模式变换器及控制方法
JP6581757B2 (ja) * 2014-05-12 2019-09-25 新日本無線株式会社 スイッチング電源装置
JP6393169B2 (ja) * 2014-11-27 2018-09-19 エイブリック株式会社 Dc−dcコンバータ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090140708A1 (en) * 2004-12-03 2009-06-04 Texas Instruments Incorporated DC to DC converter with Pseudo Constant Switching Frequency
US20140062449A1 (en) * 2012-09-05 2014-03-06 Silicon Works Co., Ltd. Switching mode converter and method for controlling thereof
CN203761268U (zh) * 2012-12-18 2014-08-06 快捷半导体(苏州)有限公司 电源系统
CN103199703A (zh) * 2013-04-03 2013-07-10 矽力杰半导体技术(杭州)有限公司 一种电压型调节器的控制电路及其控制方法
CN104731146A (zh) * 2013-12-24 2015-06-24 精工电子有限公司 开关调节器及电子设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112751483A (zh) * 2020-12-29 2021-05-04 成都锐成芯微科技股份有限公司 一种恒压控制电路

Also Published As

Publication number Publication date
KR20170099367A (ko) 2017-08-31
JP6592374B2 (ja) 2019-10-16
TW201803260A (zh) 2018-01-16
US20170244320A1 (en) 2017-08-24
JP2017153209A (ja) 2017-08-31
TWI710205B (zh) 2020-11-11
KR102576886B1 (ko) 2023-09-08
US9912237B2 (en) 2018-03-06

Similar Documents

Publication Publication Date Title
CN102946129B (zh) 一种电池充电电路及其控制电路和控制方法
US9664714B2 (en) Methods and devices for detecting the input voltage and discharging the residuevoltage
CN104396130B (zh) 用于电流模式开关电源的控制器和调节器
CN102017378B (zh) 功率转换设备、放电灯镇流器以及前灯镇流器
CN105281568B (zh) 降压电路
US20080037296A1 (en) Green-mode flyback pulse width modulation apparatus
CN108448886B (zh) 一种Buck变换器自举驱动电路
CN105939107B (zh) 一种混合型准开关升压dc-dc变换器
CN104917377A (zh) Dc/dc转换器
CN210183223U (zh) 能量回收电路、能量回收模块、能量收回系统、开关电源及智能控制开关电源
CN103066823A (zh) 一种开关电源控制器和控制方法
CN107104594A (zh) 开关调节器
CN101471603B (zh) 直流到直流降压转换器及纹波改善电路
CN104617558A (zh) 电源短路保护电路
CN208971380U (zh) 软启动电路、控制芯片、降压转换器及升压转换器
CN104917375B (zh) Dc/dc转换器
CN105449995B (zh) 驱动控制电路和驱动控制方法以及开关电源
CN203397234U (zh) 一种供电电路
EP3382838A1 (en) Protection circuit and control device for brushless dc motor
CN205232038U (zh) 变频电源电路和电视机
CN108471236B (zh) 一种环路稳定的电源系统
CN205726571U (zh) 宽输入电压高精度恒流驱动装置
CN209748236U (zh) 一种分立式电源充电电路
CN212845737U (zh) 一种低成本igbt短路检测电路
CN211183793U (zh) 一种pfc控制电路

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
CB02 Change of applicant information
CB02 Change of applicant information

Address after: Chiba County, Japan

Applicant after: EPPs Lingke Co. Ltd.

Address before: Chiba County, Japan

Applicant before: SEIKO INSTR INC

SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170829