TW201736621A - Metal matrix composites including inorganic particles and discontinuous fibers and methods of making same - Google Patents

Metal matrix composites including inorganic particles and discontinuous fibers and methods of making same Download PDF

Info

Publication number
TW201736621A
TW201736621A TW105140338A TW105140338A TW201736621A TW 201736621 A TW201736621 A TW 201736621A TW 105140338 A TW105140338 A TW 105140338A TW 105140338 A TW105140338 A TW 105140338A TW 201736621 A TW201736621 A TW 201736621A
Authority
TW
Taiwan
Prior art keywords
matrix composite
metal matrix
metal
particles
porous
Prior art date
Application number
TW105140338A
Other languages
Chinese (zh)
Inventor
加里斯 艾倫 虎司
安納多利 薩那維奇 羅森佛蘭茲
伊麗薩維塔 優里芙娜 普拉特尼柯夫
道格拉斯 保羅 高茲
大衛 馬歇爾 威爾森
喬登 亞力山卓 坎培爾
菲比恩 史托曾柏格
珍 安 唐吉曼
柯林 麥克庫隆
傑森 大衛 安德森
鋼 戚
珊迪普 庫馬 辛夫
永康 吳
Original Assignee
3M新設資產公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3M新設資產公司 filed Critical 3M新設資產公司
Publication of TW201736621A publication Critical patent/TW201736621A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C49/00Alloys containing metallic or non-metallic fibres or filaments
    • C22C49/02Alloys containing metallic or non-metallic fibres or filaments characterised by the matrix material
    • C22C49/04Light metals
    • C22C49/06Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1103Making porous workpieces or articles with particular physical characteristics
    • B22F3/1112Making porous workpieces or articles with particular physical characteristics comprising hollow spheres or hollow fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1103Making porous workpieces or articles with particular physical characteristics
    • B22F3/1118Making porous workpieces or articles with particular physical characteristics comprising internal reinforcements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/002Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of porous nature
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0089Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with other, not previously mentioned inorganic compounds as the main non-metallic constituent, e.g. sulfides, glass
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C47/00Making alloys containing metallic or non-metallic fibres or filaments
    • C22C47/14Making alloys containing metallic or non-metallic fibres or filaments by powder metallurgy, i.e. by processing mixtures of metal powder and fibres or filaments
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C49/00Alloys containing metallic or non-metallic fibres or filaments
    • C22C49/02Alloys containing metallic or non-metallic fibres or filaments characterised by the matrix material
    • C22C49/04Light metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C49/00Alloys containing metallic or non-metallic fibres or filaments
    • C22C49/14Alloys containing metallic or non-metallic fibres or filaments characterised by the fibres or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1103Making porous workpieces or articles with particular physical characteristics
    • B22F2003/1106Product comprising closed porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/05Light metals
    • B22F2301/052Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/05Light metals
    • B22F2301/058Magnesium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Powder Metallurgy (AREA)

Abstract

A metal matrix composite is provided, including a metal, inorganic particles, and discontinuous fibers. The inorganic particles and the discontinuous fibers are dispersed in the metal. The metal includes aluminum, magnesium, or alloys thereof. The inorganic particles have an envelope density that is at least 30% less than a density of the metal. The metal matrix composite has a lower envelope density than the matrix metal while retaining a substantial amount of the mechanical properties of the metal.

Description

包括無機粒子及不連續纖維之金屬基質複合物及其製作方法 Metal matrix composite including inorganic particles and discontinuous fibers and preparation method thereof

本揭露係有關金屬基質複合物,其包括金屬基底與其他材料(如填料材料)之混合物。 The present disclosure relates to metal matrix composites comprising a mixture of a metal substrate and other materials such as filler materials.

金屬基質複合物因為其高強度、高剛性結合輕量化的組合而長期以來被認為是有前景的材料。金屬基質複合物一般包括以纖維或其他填料材料強化的一金屬基質。 Metal matrix composites have long been considered promising materials due to their combination of high strength, high rigidity and lightweight. Metal matrix composites generally comprise a metal matrix reinforced with fibers or other filler materials.

本揭露提供輕量化的金屬基質複合物。對於具有包封密度比基質金屬低而同時保持一定程度物理性質的金屬基質複合物的需求持續存在。 The present disclosure provides a lightweight metal matrix composite. The need for metal matrix composites having a lower encapsulation density than the matrix metal while maintaining a certain degree of physical properties persists.

在一態樣中,本揭露提供一種金屬基質複合物。該金屬基質複合物包括一金屬、無機粒子、及不連續纖維。該等無機粒子及該等不連續纖維係分散在該金屬中。該金屬包括鋁、鎂、或其合金。該等無機粒子具有比該金屬之一密度小至少30%之一包封密度。 In one aspect, the present disclosure provides a metal matrix composite. The metal matrix composite includes a metal, inorganic particles, and discontinuous fibers. The inorganic particles and the discontinuous fibers are dispersed in the metal. The metal includes aluminum, magnesium, or alloys thereof. The inorganic particles have an encapsulation density that is at least 30% less than the density of one of the metals.

在另一態樣中,本揭露提供複數個玻璃泡。該等玻璃泡包含的玻璃耐受加熱到攝氏700度的溫度達至少兩小時而不軟化,並且在攝氏1371度展現6或更小的澆鑄指數(pouring index)。 In another aspect, the disclosure provides a plurality of glass bubbles. The glass bubbles comprise glass that withstands heating to a temperature of 700 degrees Celsius for at least two hours without softening, and exhibits a casting index of 6 or less at 1371 degrees Celsius.

本揭露之例示性實施例中獲得各種非預期的結果及優點。本揭露之至少一例示性實施例的優點為含有無機粒子及不連續纖維分散在金屬中的金屬基質複合物展現比該金屬低的包封密度及可接受的降伏強度(例如,在一拉應力-應變曲線中的塑性降伏)。 Various unexpected results and advantages are obtained in the illustrative embodiments of the disclosure. An advantage of at least one exemplary embodiment of the present disclosure is that the metal matrix composite containing inorganic particles and discontinuous fibers dispersed in the metal exhibits a lower encapsulation density and acceptable lodging strength than the metal (eg, at a tensile stress) - plasticity fluctuation in the strain curve).

本揭露之上述概述並非意欲說明本揭露之各個所揭示實施例或是各實施方案。以下的描述更具體地例示說明性實施例。在本申請案全文的數個地方透過實例清單來提供指引,該等實例可以各種組合之方式使用。在各種情況下,所引述的清單僅作為代表性群組,且不應將其詮釋為排他性的清單。 The above summary of the disclosure is not intended to illustrate the disclosed embodiments or the embodiments. The following description more particularly exemplifies illustrative embodiments. Guidance is provided through a list of examples in several places throughout the text of the application, which can be used in various combinations. In each case, the list quoted is intended only as a representative group and should not be interpreted as an exclusive list.

10‧‧‧金屬 10‧‧‧Metal

12‧‧‧無機粒子 12‧‧‧Inorganic particles

14‧‧‧不連續纖維 14‧‧‧Discontinuous fiber

100‧‧‧金屬基質複合物 100‧‧‧Metal matrix composite

配合附圖,思考如下所述本揭露各個實施例之實施方式,可更完整地理解本揭露,其中:圖1為根據本揭露之一例示性實施例之一金屬基質複合物的示意剖面圖。 The present disclosure can be more completely understood by considering the embodiments of the present invention as described below with reference to the accompanying drawings in which: FIG. 1 is a schematic cross-sectional view of a metal matrix composite according to an exemplary embodiment of the present disclosure.

圖2為例示性基質及比較基質之應力-應變曲線的圖。 2 is a graph of stress-strain curves for an exemplary substrate and a comparative substrate.

圖3為另外的例示性基質及比較基質之應力-應變曲線的圖。 Figure 3 is a graph of stress-strain curves for additional exemplary matrices and comparative matrices.

圖4為進一步例示性基質及比較基質之應力-應變曲線的圖。 4 is a graph of stress-strain curves for further exemplary matrices and comparative matrices.

圖5為另一個例示性基質之應力-應變曲線的圖。 Figure 5 is a graph of stress-strain curves for another exemplary matrix.

圖6為更進一步的例示性基質之應力-應變曲線的圖。 Figure 6 is a graph of the stress-strain curve of a further exemplary substrate.

圖7為又另一個例示性基質之應力-應變曲線的圖。 Figure 7 is a graph of stress-strain curves for yet another exemplary matrix.

雖然以上所識別之圖式(可能未按比例繪製)闡述本揭露之實施例,但其他實施例(如在〔實施方式〕中所提到者)亦被考慮。 While the above-identified figures (which may not be drawn to scale) illustrate embodiments of the present disclosure, other embodiments (as referred to in the [embodiments]) are also contemplated.

對於下文所定義用語的詞彙,這些定義應適用於整份申請書,除非在申請專利範圍或說明書中的別處提供不同定義。 For the terms used in the terms defined below, these definitions shall apply to the entire application, unless a different definition is provided elsewhere in the scope of the patent application or in the specification.

詞彙 vocabulary

說明書及申請專利範圍中使用某些用語,雖然這些用語大多數已為人所熟知,但可能需要一些解釋。應了解的是,如本文中所使用者:如本說明書及隨附實施例中所用者,單數形式「一(a/an)」及「該(the)」包括複數的指涉,除非內容另有清楚指定。如本說明書及所附實施例中所使用者,用語「或(or)」通常是用來包括「及/或(and/or)」的意思,除非內文明確地另有指示。 Certain terms are used in the specification and patent application, although most of these terms are well known, some explanation may be required. It should be understood that, as used herein, the singular forms "a", "the" and "the" There is a clear designation. As used in this specification and the appended claims, the <RTI ID=0.0>"or"</RTI> is used to mean "and/or" unless the context clearly indicates otherwise.

如本說明書中所使用,以端點敘述之數字範圍包括所有歸於該範圍內的數字(例如,1至5包含1、1.5、2、2.75、3、3.8、4及5)。 As used in this specification, the numerical range recited by the endpoint includes all numbers that fall within the range (for example, 1 to 5 include 1, 1.5, 2, 2.75, 3, 3.8, 4, and 5).

除非另有所指,否則本說明書及實施例中所有表達量或成分的所有數字、屬性之測量及等等,在所有情形中都應予以理解成以用語「約(about)」進行修飾。因此,除非另有相反指示,在前述說 明書及隨附實施例清單所提出的數值參數,可依據所屬技術領域中具有通常知識者運用本揭露的教示而欲獲得之理想特性而有所變化。起碼,至少應鑑於有效位數的個數,並且藉由套用普通捨入技術,詮釋各數值參數,但意圖不在於限制所主張實施例範疇均等論之應用。 All numbers, attributes, and the like of all expressions or components in the specification and examples are to be understood in all instances as modified by the term "about" unless otherwise indicated. Therefore, unless otherwise stated otherwise, The numerical parameters set forth in the specification and the accompanying examples of the invention may be varied in accordance with the preferred characteristics of those skilled in the art in the application of the present disclosure. At the very least, the numerical parameters should be interpreted at least in view of the number of significant digits and by applying ordinary rounding techniques, but are not intended to limit the application of the scope of the claimed embodiment.

在本說明書及申請專利範圍中之用語「包含、組成(comprises)」及其變化形並不具限制意思。 The words "comprises" and variations thereof in the specification and claims are not intended to be limiting.

在本揭露之實施例中之用語「較佳(preferred)」和「較佳地(preferably)」表示在某些情況下可能可以提供某些效益。然而,其他實施例在相同或其他情況下亦可為較佳的。此外,對於一個或多個較佳實施例之引述並不意味其他實施例非係有用的,也沒有意圖將其他實施例從本揭露之範疇中排除。 The terms "preferred" and "preferably" in the embodiments of the present disclosure indicate that certain benefits may be provided in certain circumstances. However, other embodiments may be preferred in the same or other circumstances. In addition, the description of one or more preferred embodiments does not imply that other embodiments are not useful, and are not intended to exclude other embodiments from the scope of the disclosure.

本說明書全文提及的「一個實施例(one embodiment)」、「某些實施例(certain embodiments)」、「一或多個實施例(one or more embodiments)」、或「一實施例(an embodiment)」,不論在用語「實施例(embodiment)」之前是否包括有用語「例示性(exemplary)」,皆意指與該實施例連結之所述特定特徵、結構、材料、或特性都包括在本揭露某些例示性實施例的至少一個實施例中。因此,在本說明書全文中各處出現的用語,諸如「在一或多個實施例中(in one or more embodiments)」、「在某些實施例中(in certain embodiments)」、「在一個實施例中(in one embodiment)」、「在許多實施例中(in many embodiments)」或「在一實施例中(in an embodiment)」,並不必然參照本揭露某些例示性實施例的相同實施 例。更進一步,該等特定特徵、結構、材料、或特性可在一或多個實施例中用任何合適的方式結合。 The "one embodiment", "certain embodiments", "one or more embodiments", or "an embodiment" (an embodiment) And the use of the phrase "exemplary" before the term "embodiment" means that the specific feature, structure, material, or characteristic described in connection with the embodiment is included in the present invention. At least one embodiment of certain exemplary embodiments is disclosed. Thus, terms appearing throughout the specification, such as "in one or more embodiments", "in certain embodiments", "in one implementation" In the "in one embodiment", "in many embodiments" or "in an embodiment", does not necessarily refer to the same implementation of certain exemplary embodiments. example. Furthermore, the particular features, structures, materials, or characteristics may be combined in any suitable manner in one or more embodiments.

有關金屬基質中一或多個填料的用語「分散(dispersed)」是指該一或多個填料分布遍及該金屬基質,比如提供一包括該金屬及該(等)填料而實質上均質的金屬基質複合物。這是對比於一金屬基質複合物的區域有一或多個填料的濃度比在該金屬基質複合物不同位置的區域高出至少兩倍(例如,在該金屬基質複合物中數層的或數團的一填料)。雖然有可能觀察到該一或更多填料未確切均質分布在金屬基質中之一金屬基質複合物的足夠小體積,該(等)填料仍是分散在該金屬中。 The term "dispersed" with respect to one or more fillers in a metal matrix means that the one or more fillers are distributed throughout the metal matrix, such as providing a substantially homogeneous metal matrix comprising the metal and the (etc.) filler. Complex. This is that the concentration of one or more fillers in the region of a metal matrix composite is at least two times higher than the region at different locations of the metal matrix composite (eg, several layers or groups in the metal matrix composite) a filler). Although it is possible to observe that the one or more fillers are not exactly homogeneously distributed in a sufficiently small volume of one of the metal matrix composites in the metal matrix, the (etc.) filler is still dispersed in the metal.

用語「燒結(sinter)」是指藉由加熱粉狀材料但不完全液化以使其聚合成固體或多孔塊體。亦可選地在燒結期間擠壓該粉狀材料。 The term "sinter" refers to polymerization of a powdery material but not complete liquefaction to polymerize it into a solid or porous mass. The powdered material is also optionally extruded during sintering.

有關粒子的用語「包封密度(envelope density)」是指質量除以包封體積。該「包封體積(envelope volume)」是指各粒子中固體及該粒子中任何空隙的體積總和。類似地,有關金屬基質複合物的用語「包封密度」是指質量除以包封體積,其中該「包封體積」是指該金屬基質複合物中固體及該金屬基質複合物中任何空隙的體積總和。 The term "envelope density" in relation to particles refers to the mass divided by the envelope volume. The "envelope volume" refers to the sum of the solids in each particle and any voids in the particle. Similarly, the term "encapsulation density" with respect to a metal matrix composite means mass divided by the encapsulation volume, wherein the "encapsulation volume" refers to the solid in the metal matrix composite and any voids in the metal matrix composite. The sum of the volumes.

有關多孔粒子的用語「骨架密度(skeleton density)」是指質量除以骨架體積。該「骨架體積(skeleton volume)」是指固體材料及粒子內任何封閉孔的體積總和。 The term "skeleton density" with respect to porous particles refers to the mass divided by the volume of the skeleton. The "skeleton volume" refers to the sum of the volume of the solid material and any closed pores within the particle.

用語「軟化點(softening point)」是指材料(例如,處於固相)開始因為自己的重量而開始塌陷的溫度或溫度範圍。對於具有明確熔點(例如,金屬)的材料,軟化點大致上可視為金屬或金屬合金的熔點。然而,對於沒有明確熔點的材料,軟化點可以是材料的彈性行為變成塑性流的溫度。例如,玻璃、玻璃-陶瓷、或瓷的軟化點會出現在材料的玻璃-轉移溫度,而且可由黏度107.65泊所定義。一般例如以Vicat法(例如,ASTM-D1525或ISO 306)或以熱變形測試(例如,ASTM-D648)來測定玻璃的軟化點。 The term "softening point" refers to the temperature or temperature range at which a material (eg, at a solid phase) begins to collapse due to its own weight. For materials having a defined melting point (eg, metal), the softening point can be considered substantially as the melting point of the metal or metal alloy. However, for materials that do not have a clear melting point, the softening point can be the temperature at which the elastic behavior of the material changes to a plastic flow. For example, the softening point of glass, glass-ceramic, or porcelain can occur at the glass-transfer temperature of the material and can be defined by a viscosity of 10.75 poise. The softening point of the glass is generally determined, for example, by the Vicat method (for example, ASTM-D1525 or ISO 306) or by a heat distortion test (for example, ASTM-D648).

用語「應變(strain)」是指拉應變。用語「拉應變(tensile strain)」是指材料受張力拉伸、彎曲、或牽引的形變。 The term "strain" refers to the tensile strain. The term "tensile strain" refers to the deformation of a material that is stretched, bent, or drawn by tension.

用語「塑性降伏(plastic yield)」是指材料發生預定量的永久形變時的應力。 The term "plastic yield" refers to the stress at which a material undergoes a predetermined amount of permanent deformation.

用語「拉塑性降伏(tensile plastic yield)」是指材料經受到拉力時,該材料發生預定量的永久形變時的應力。 The term "tensile plastic yield" refers to the stress at which a predetermined amount of permanent deformation occurs when a material is subjected to a tensile force.

用語「降伏強度」是指認為材料已經開始塑性延伸時的應力。在本文中使用時,係以0.2%的偏移判定降伏強度。ASTM B557M-15揭示「7.6降伏強度-用偏移法以0.2%的偏移判定降伏強度。接受或拒收材料可基於負載延伸法(Extension-Under-Load Method)決定。對於仲裁試驗,應使用該偏移法(offset method)。7.6.1偏移法-藉由「偏移法」判定降伏強度,需要確保可繪製應力-應變圖的資料(自動圖繪或以數值表示)。然後在應力-應變圖(圖16)標出等於偏移指定值的Om,平行OA繪製mn,因而找出r,其為mn和應 力-應變圖的交點(註12)。記述以此方法得到的降伏強度時,應於用語降伏強度後在括號內記載「偏移」之特定值。如此:降伏強度(偏移=0.2%)=360MPa」。 The term "falling strength" refers to the stress at which the material is considered to have begun to plastically extend. As used herein, the fall strength is determined with an offset of 0.2%. ASTM B557M-15 reveals "7.6 Depth Strength - Determining the drop strength with an offset of 0.2% using the offset method. Acceptance or rejection of materials can be determined based on the Extension-Under-Load Method. For arbitration tests, use The offset method. 7.6.1 Offset Method - The "offset method" determines the intensity of the fall, and it is necessary to ensure that the stress-strain map can be plotted (automatic plot or numerically). Then, in the stress-strain diagram (Fig. 16), Om equal to the specified value of the offset is marked, and parallel OA draws mn , thus finding r , which is the intersection of mn and the stress-strain diagram (Note 12). When the fall strength obtained by this method is described, the specific value of "offset" is described in parentheses after the word fall strength. Thus: the drop strength (offset = 0.2%) = 360 MPa".

用語「過渡型氧化鋁(transitional-alumina)」是指從鋁氫氧化物到α-氧化鋁的任意氧化鋁。特定的過渡型氧化鋁粒子包括δ-氧化鋁、η-氧化鋁、θ-氧化鋁、χ-氧化鋁、κ-氧化鋁、ρ-氧化鋁、及γ-氧化鋁。過渡型氧化鋁粒子係在鋁氫氧化物或鋁氧基氫氧化物的熱處理期間產生。熱力學上最穩定的形式一般是α-氧化鋁。 The term "transitional-alumina" means any alumina from aluminum hydroxide to alpha-alumina. Specific transition-type alumina particles include δ-alumina, η-alumina, θ-alumina, lanthanum-alumina, κ-alumina, ρ-alumina, and γ-alumina. The transition alumina particles are produced during the heat treatment of the aluminum hydroxide or aluminum oxyhydroxide. The most thermodynamically stable form is alpha-alumina.

現將說明本揭露的各種例示性實施例。本揭示之例示性實施例可有各種修改及改變,而不悖離本揭示之精神及範疇。因此,應理解本揭示之該等實施例不受限於以下該等說明之例示性實施例,而是由該等申請專利範圍及任何其均等者所提限制所管制。 Various illustrative embodiments of the present disclosure will now be described. Various modifications and changes may be made to the illustrative embodiments of the present disclosure without departing from the spirit and scope of the disclosure. Therefore, it is to be understood that the embodiments of the present disclosure are not limited by the description of the embodiments of the invention, and the scope of the claims.

在一態樣中,本揭露提供一種金屬基質複合物。該金屬基質複合物包括一金屬、複數個無機粒子、及複數個不連續纖維。該等無機粒子及該等不連續纖維係分散在該金屬中。該等無機粒子具有比該金屬之一密度小至少30%、至少40%、或比該金屬之一密度小至少50%之一包封密度。該金屬包含鋁、鎂、或其合金。 In one aspect, the present disclosure provides a metal matrix composite. The metal matrix composite includes a metal, a plurality of inorganic particles, and a plurality of discontinuous fibers. The inorganic particles and the discontinuous fibers are dispersed in the metal. The inorganic particles have an encapsulation density that is at least 30% less than one of the metals, at least 40%, or at least 50% less than the density of one of the metals. The metal comprises aluminum, magnesium, or an alloy thereof.

參照圖1,其提供一金屬基質複合物100的示意性剖面圖。金屬基質複合物100包括一金屬10、複數個無機粒子12、及複數個不連續纖維14。無機粒子12及不連續纖維14係分散在金屬10中。為簡單起見,該金屬基質複合物係繪示成具有單塊形狀;然而,可取決於所需應用而以一些不同的形狀形成該金屬基質複合物。金屬 基質複合物可應用於若干產業中,諸如建築、汽車、及電子業,可以金屬基質複合物組件取代其中特定金屬組件。 Referring to Figure 1, a schematic cross-sectional view of a metal matrix composite 100 is provided. The metal matrix composite 100 includes a metal 10, a plurality of inorganic particles 12, and a plurality of discontinuous fibers 14. The inorganic particles 12 and the discontinuous fibers 14 are dispersed in the metal 10. For simplicity, the metal matrix composite is depicted as having a monolithic shape; however, the metal matrix composite can be formed in a number of different shapes depending on the desired application. metal Matrix composites can be used in several industries, such as construction, automotive, and electronics, where metal matrix composite components can be substituted for specific metal components.

在一些實施例中,該金屬包含一多孔基質結構。多孔基質結構常由粉狀金屬獲得,其中該粉末含有一金屬結構,其中氣體(例如,空氣)係合併到該固體金屬結構中。於替代實施例中,該金屬包含一非多孔基質結構。非多孔基質結構常由熔融金屬獲得。 In some embodiments, the metal comprises a porous matrix structure. The porous matrix structure is often obtained from a powdered metal wherein the powder contains a metal structure in which a gas (e.g., air) is incorporated into the solid metal structure. In an alternate embodiment, the metal comprises a non-porous matrix structure. Non-porous matrix structures are often obtained from molten metal.

一般而言,該金屬存在數量為該金屬基質複合物的50重量百分比或更多、55重量百分比或更多、60重量百分比或更多、65重量百分比或更多、70重量百分比或更多、或75重量百分比或更多;以及數量為95重量百分比或更少、90重量百分比或更少、85重量百分比或更少、或80重量百分比或更少。以另一種方式記載,該金屬存在數量可係介於該金屬基質複合物的50重量百分比及95重量百分比(含)之間,或介於該金屬基質複合物的70重量百分比及95重量百分比(含)之間。該金屬包含鋁、鎂、或其合金(即一鋁合金或一鎂合金)。適當金屬包括例如而沒有限制純鋁(純度至少99.0%的鋁粉末,例如,AA1100、AA1050、AA1070等,諸如可購自Eckart(Louisville,KY)的純鋁粉末);或含鋁及以質量計0.2至2%的另一金屬的一鋁合金。如此類合金包括:Al-Cu合金(AA2017等)、Al-Mg合金(AA5052等)、Al-Mg-Si合金(AA6061等)、Al-Zn-Mg合金(AA7075等)及Al-Mn合金,可以單獨一個也可以是二或更多個的混合物。各種合適的金屬粉末可購自Atlantic Equipment Engineers(Upper Saddle River,NJ)。 In general, the metal is present in an amount of 50 weight percent or more, 55 weight percent or more, 60 weight percent or more, 65 weight percent or more, 70 weight percent or more, of the metal matrix composite, Or 75 weight percent or more; and the amount is 95 weight percent or less, 90 weight percent or less, 85 weight percent or less, or 80 weight percent or less. Stated another way, the metal may be present in an amount between 50 weight percent and 95 weight percent (inclusive) of the metal matrix composite, or between 70 weight percent and 95 weight percent of the metal matrix composite ( Between). The metal comprises aluminum, magnesium, or an alloy thereof (i.e., an aluminum alloy or a magnesium alloy). Suitable metals include, for example, without limitation, pure aluminum (aluminum powder having a purity of at least 99.0%, such as AA1100, AA1050, AA1070, etc., such as pure aluminum powder available from Eckart (Louisville, KY)); or containing aluminum and by mass 0.2 to 2% of an aluminum alloy of another metal. Such alloys include: Al-Cu alloy (AA2017, etc.), Al-Mg alloy (AA5052, etc.), Al-Mg-Si alloy (AA6061, etc.), Al-Zn-Mg alloy (AA7075, etc.), and Al-Mn alloy, It may be a single one or a mixture of two or more. A variety of suitable metal powders are available from Atlantic Equipment Engineers (Upper Saddle River, NJ).

一般而言,金屬以粉末形式使用時,該金屬粉末包含300奈米(nm)或更大的一平均粒徑、400nm或更大、500nm或更大、750nm或更大、1微米(μm)或更大、2μm或更大、5μm或更大、7μm或更大、10μm或更大、20μm或更大、35μm或更大、50μm或更大、或75μm或更大;以及100μm或更小、75μm或更小、50μm或更小、35μm或更小、或25μm或更小。以另一種方式記載,該金屬粉末包含範圍在300nm及100μm(含)之間的一平均粒徑;範圍在1μm及100μm(含)之間;或範圍在1μm及50μm(含)之間。例如,可使用光學顯微鏡及雷射繞射分析粒徑。 In general, when the metal is used in the form of a powder, the metal powder contains an average particle diameter of 300 nanometers (nm) or more, 400 nm or more, 500 nm or more, 750 nm or more, and 1 micrometer (μm). Or larger, 2 μm or more, 5 μm or more, 7 μm or more, 10 μm or more, 20 μm or more, 35 μm or more, 50 μm or more, or 75 μm or more; and 100 μm or less 75 μm or less, 50 μm or less, 35 μm or less, or 25 μm or less. Stated another way, the metal powder comprises an average particle size ranging between 300 nm and 100 μm inclusive; ranging between 1 μm and 100 μm inclusive; or ranging between 1 μm and 50 μm inclusive. For example, particle size can be analyzed using optical microscopy and laser diffraction.

合適無機粒子包括的粒子具有每立方公分2.00克或更少的一最大包封密度、每立方公分1.75克或更少、每立方公分1.50克或更少、每立方公分1.25克或更少、或每立方公分1.00克或更少。一般而言,該複數個無機粒子包含一實質上球形形狀或一針狀形狀,而在一些實施例中該等無機粒子包含多單元泡(multicelled bubble)。該等粒子通常有2:1或更小的最長軸對最短軸的縱橫比。 Suitable inorganic particles include particles having a maximum encapsulation density of 2.00 grams per cubic centimeter or less, 1.75 grams or less per cubic centimeter, 1.50 grams or less per cubic centimeter, 1.25 grams or less per cubic centimeter, or 1.00 g or less per cubic centimeter. Generally, the plurality of inorganic particles comprise a substantially spherical shape or a needle-like shape, and in some embodiments the inorganic particles comprise a multicelled bubble. These particles typically have an aspect ratio of the longest axis to the shortest axis of 2:1 or less.

一般而言,該複數個無機粒子包含50奈米(nm)或更大的一平均粒徑、250nm或更大、500nm或更大、750nm或更大、1微米(μm)或更大、2μm或更大、5μm或更大、7μm或更大、10μm或更大、20μm或更大、35μm或更大、50μm或更大、75μm或更大、或100μm或更大;以及5毫米(mm)或更小、3mm或更小、2mm或更小、1mm或更小、750μm或更小、500μm或更小、或250μm或更小。以另一種方式記載,該複數個無機粒子包含範圍在50nm 及5mm(含)之間的一平均粒徑;範圍在1μm及1mm(含)之間;或範圍在10μm及500μm(含)之間。 In general, the plurality of inorganic particles comprise an average particle diameter of 50 nanometers (nm) or more, 250 nm or more, 500 nm or more, 750 nm or more, 1 micrometer (μm) or more, 2 μm. Or larger, 5 μm or larger, 7 μm or larger, 10 μm or larger, 20 μm or larger, 35 μm or larger, 50 μm or larger, 75 μm or larger, or 100 μm or larger; and 5 mm (mm) Or smaller, 3 mm or less, 2 mm or less, 1 mm or less, 750 μm or less, 500 μm or less, or 250 μm or less. In another manner, the plurality of inorganic particles comprise a range of 50 nm. And an average particle size between 5 mm (inclusive); ranging between 1 μm and 1 mm (inclusive); or ranging between 10 μm and 500 μm inclusive.

分散在該金屬中的無機粒子數量沒有特定限制。該複數個無機粒子存在數量通常為該金屬基質複合物的至少1重量百分比、至少2重量百分比、至少5重量百分比、至少8重量百分比、至少10重量百分比、至少15重量百分比、或該金屬基質複合物的至少20重量百分比;及至多50重量百分比、至多28重量百分比、至多26重量百分比、至多24重量百分比、或該金屬基質複合物的至多22重量百分比。在某些實施例中,該等無機粒子存在該金屬基質複合物之數量為該金屬基質複合物的1重量百分比及30重量百分比之間、或2重量百分比及25重量百分比之間、或2重量百分比及15重量百分比(含)之間。包括小於1重量百分比的該等無機粒子造成該金屬基質複合物包封密度極微小的下降,然而包括多於30重量百分比的該等無機粒子會因為該金屬基質複合物含有金屬及纖維的量不足而對該金屬基質複合物的機械性質造成負面的衝擊。 There is no particular limitation on the amount of inorganic particles dispersed in the metal. The plurality of inorganic particles are typically present in an amount of at least 1 weight percent, at least 2 weight percent, at least 5 weight percent, at least 8 weight percent, at least 10 weight percent, at least 15 weight percent, or the metal matrix composite of the metal matrix composite. At least 20 weight percent of the article; and up to 50 weight percent, up to 28 weight percent, up to 26 weight percent, up to 24 weight percent, or up to 22 weight percent of the metal matrix composite. In certain embodiments, the inorganic particles are present in the metal matrix composite in an amount between 1 weight percent and 30 weight percent, or between 2 weight percent and 25 weight percent, or 2 weight percent of the metal matrix composite Percentage and 15 weight percent (inclusive). The inclusion of less than 1 weight percent of the inorganic particles results in a very slight decrease in the encapsulation density of the metal matrix composite, however, including more than 30 weight percent of the inorganic particles may result in insufficient metal and fiber content of the metal matrix composite. This has a negative impact on the mechanical properties of the metal matrix composite.

在某些實施例中該複數個無機粒子包含多孔粒子。在本文中使用時,「多孔粒子(porous particles)」是指本身具有細孔的粒子,也指在至少一些非多孔初級粒子之間包括孔的非多孔初級粒子黏聚物。有用的多孔粒子的實例包括例如且沒有限制於多孔金屬氧化物粒子、多孔金屬氫氧化物粒子、多孔金屬碳酸鹽、多孔碳粒子、多孔矽石粒子、多孔脫水鋁矽酸鹽粒子、多孔脫水金屬水合物粒子、沸石粒子、多孔玻璃粒子、膨脹珍珠岩粒子、膨脹蛭石粒子、多孔矽酸鈉 粒子、工程多孔陶瓷粒子、非多孔初級粒子之黏聚物、或其組合。在某些實施例中,該金屬氧化物、金屬氫氧化物、或金屬碳酸鹽的該金屬係選自鋁、鎂、鋯、鈣、或其組合。在選用實施例中,該等多孔粒子包含多孔氧化鋁粒子、多孔碳粒子、多孔矽石粒子、多孔鋁氫氧化物粒子、或其組合。該等多孔粒子一般而言已經從其移除相關的水,常是透過加熱該等多孔粒子。該等多孔粒子可選地包含過渡型氧化鋁粒子。合適的多孔粒子包括例如而沒有限制可購自UOP LLC(Des Plaines,IL)的Versal 250水鋁石粉末、Zibo Yinghe Chemical Company,Ltd.(Shandong,China)的YH-D 16水鋁石粉末、以及PIDC International(Ann Arbor,MI)的Alumax PB300水鋁石。 In certain embodiments the plurality of inorganic particles comprise porous particles. As used herein, "porous particles" refers to particles having pores per se, and also refers to non-porous primary particle cohesomers comprising pores between at least some of the non-porous primary particles. Examples of useful porous particles include, for example and without limitation, porous metal oxide particles, porous metal hydroxide particles, porous metal carbonates, porous carbon particles, porous vermiculite particles, porous dehydrated aluminosilicate particles, porous dehydrated metal Hydrate particles, zeolite particles, porous glass particles, expanded perlite particles, expanded vermiculite particles, porous sodium citrate Particles, engineered porous ceramic particles, non-porous primary particles, or a combination thereof. In certain embodiments, the metal of the metal oxide, metal hydroxide, or metal carbonate is selected from the group consisting of aluminum, magnesium, zirconium, calcium, or combinations thereof. In selected embodiments, the porous particles comprise porous alumina particles, porous carbon particles, porous vermiculite particles, porous aluminum hydroxide particles, or a combination thereof. The porous particles have generally removed the associated water therefrom, often by heating the porous particles. The porous particles optionally comprise transitional alumina particles. Suitable porous particles include, for example, without limitation, Versal 250 diaspore powder available from UOP LLC (Des Plaines, IL), YH-D 16 diaspore powder from Zibo Yinghe Chemical Company, Ltd. (Shandong, China), And Alumax PB300 diaspore of PIDC International (Ann Arbor, MI).

在某些實施例中,該複數個無機粒子包含陶瓷泡或玻璃泡。陶瓷泡及玻璃泡的合適材料包括例如而沒有限制氧化鋁、鋁矽酸鹽、矽石、或其組合。可購得的玻璃泡包括例如可得自Cenostar Corporation(Amesbury,MA)的LightStar、EconoStar、以及High Alumina微珠(cenosphere)。較佳的是該等陶瓷泡及玻璃泡係未塗佈(例如,以一金屬材料,用來幫助以該金屬基質潤濕該等泡)。 In certain embodiments, the plurality of inorganic particles comprise ceramic bubbles or glass bubbles. Suitable materials for ceramic bubbles and glass bubbles include, for example, without limitation aluminum oxide, aluminosilicate, vermiculite, or combinations thereof. Commercially available glass bubbles include, for example, LightStar, EconoStar, and High Alumina microspheres available from Cenostar Corporation (Amesbury, MA). Preferably, the ceramic bubbles and glass bubbles are uncoated (e.g., in a metallic material to aid in wetting the bubbles with the metal matrix).

在一些實施例中,有利的是,該複數個玻璃泡包含的玻璃耐受加熱到攝氏700度的溫度達至少兩小時而不軟化。更具體地,在某些實施例中,該等玻璃泡包含的玻璃具有範圍從攝氏700度到攝氏785度(含)的一玻璃軟化溫度,或者從攝氏715度到攝氏735度。 In some embodiments, it is advantageous for the plurality of glass bubbles to contain glass that is resistant to heating to a temperature of 700 degrees Celsius for at least two hours without softening. More specifically, in certain embodiments, the glass bubbles comprise glass having a glass softening temperature ranging from 700 degrees Celsius to 785 degrees Celsius (inclusive), or from 715 degrees Celsius to 735 degrees Celsius.

使用耐高溫玻璃泡讓該等玻璃泡允許其等合併於金屬基質複合物中,否則其等會以提升到足以損壞該等玻璃泡的溫度來製備,諸如軟化至少一些該等玻璃泡到它們變形及/或破裂的程度。 The use of high temperature resistant glass bubbles allows the glass bubbles to be allowed to be incorporated into the metal matrix composite, which would otherwise be prepared at elevated temperatures sufficient to damage the glass bubbles, such as softening at least some of the glass bubbles to their deformation. And/or the extent of the rupture.

另一種適當類型的玻璃泡包括和去離子水攪拌2小時而每克玻璃泡在去離子水中溶出鈉離子小於100微克的玻璃泡。具如此低的鈉溶出速率的玻璃泡的一個優點是其等在電子業應用上很有用,於此鈉離子溶出時常是不可接受的。在一實施例中,用於製備此類低鈉玻璃泡的適當化合物包括矽石、石灰、硼酸、磷酸鈣、煅氧化鋁矽酸鹽、以及鎂矽酸鹽。在某些實施例中,如熱膨脹測量法所測得,此類低鈉玻璃泡展現一軟化點在717℃及735℃(含)之間。 Another suitable type of glass bulb includes agitation with deionized water for 2 hours and dissolution of glass bubbles having less than 100 micrograms of sodium ions per gram of glass bubbles in deionized water. One advantage of glass bubbles having such a low sodium dissolution rate is that they are useful in electronics applications where sodium ion dissolution is often unacceptable. In one embodiment, suitable compounds for making such low sodium glass bubbles include vermiculite, lime, boric acid, calcium phosphate, calcined aluminosilicates, and magnesium niobates. In certain embodiments, such low sodium glass bubbles exhibit a softening point between 717 ° C and 735 ° C (inclusive) as measured by thermal expansion measurements.

在玻璃泡技術領域中眾所皆知藉由調整玻璃泡組成物組分的相對比例可以變化玻璃泡的性質。例如,在密度、強度、軟化溫度及澆鑄指數有差異的各種玻璃泡可用一低鈉玻璃泡組成物來製備,該低鈉玻璃泡組成物包括矽石、石灰、硼酸、磷酸鈣、煅氧化鋁矽酸鹽、及鎂矽酸鹽。澆鑄指數是一種經驗指數,範圍從1到10,其基於玻璃被加熱到華氏2500度(攝氏1371度)的溫度時評斷熔融玻璃有多容易澆鑄。澆鑄指數指示玻璃在熔化溫度的黏度。澆鑄指數10表指玻璃黏度夠低而可輕易澆鑄。澆鑄指數1表示玻璃黏度非常高使得玻璃不會流出(例如,玻璃在嘗試澆鑄的期間幾乎不會移動)。雖然不希望受理論束縛,據信澆鑄指數及玻璃泡組成軟化溫度互相關聯。也就是說,隨著玻璃組成物的澆鑄指數下降,該玻璃泡組成物的軟化溫度上升。換言之,具有相似的澆鑄指數的玻璃泡組成物據信會具有相似 的軟化溫度。一般而言,適當的玻璃泡組成物具有6或更低的澆鑄指數,較佳的是5或更低、4或更低、3或更低、或者2或更低。在某些實施例中,適當的玻璃泡具有澆鑄指數1。 It is well known in the art of glass bubbles that the properties of glass bubbles can be varied by adjusting the relative proportions of the composition of the glass bubbles. For example, various glass bubbles having differences in density, strength, softening temperature, and casting index can be prepared using a low-sodium glass bubble composition including vermiculite, lime, boric acid, calcium phosphate, and calcined alumina. Citrate, and magnesium citrate. The casting index is an empirical index ranging from 1 to 10, which is based on how easily the molten glass is cast when the glass is heated to a temperature of 2500 degrees Fahrenheit (1371 degrees Celsius). The casting index indicates the viscosity of the glass at the melting temperature. Casting index 10 means that the glass viscosity is low enough to be easily cast. A casting index of 1 indicates that the glass viscosity is so high that the glass does not flow out (for example, the glass hardly moves during the attempted casting). While not wishing to be bound by theory, it is believed that the casting index and the glass bubble composition softening temperature are interrelated. That is, as the casting index of the glass composition decreases, the softening temperature of the glass bubble composition rises. In other words, glass bubble compositions with similar casting indices are believed to be similar Softening temperature. In general, a suitable glass bubble composition has a casting index of 6 or less, preferably 5 or less, 4 or less, 3 or less, or 2 or less. In certain embodiments, a suitable glass bubble has a casting index of one.

在一些實施例中,該複數個玻璃泡可選地包含介於每立方公分0.50及2.30克(含)之間的一平均包封密度,諸如介於每立方公分0.50及1.50克之間或介於每立方公分0.50及0.90克之間。 In some embodiments, the plurality of glass bubbles optionally comprise an average encapsulation density between 0.50 and 2.30 grams per cubic centimeter, such as between 0.50 and 1.50 grams per cubic centimeter or between Between 0.50 and 0.90 grams per cubic centimeter.

在某些實施例中,適當玻璃泡可具有一組成物包括矽石、石灰、硼酸、磷酸鈣、煅氧化鋁矽酸鹽、鎂矽酸鹽及至多約1wt.%的Na2O,同時展現6或更低的一澆鑄指數。在一些實施例中,該等玻璃泡包含範圍從2.5到7.5(含)的一矽石對氧化鋁重量比,或從5.0到7.5(含)。 In certain embodiments, a suitable glass bubble can have a composition including vermiculite, lime, boric acid, calcium phosphate, calcined alumina silicate, magnesium silicate, and up to about 1 wt.% Na 2 O, while exhibiting A casting index of 6 or lower. In some embodiments, the glass bubbles comprise a weight ratio of vermiculite to alumina ranging from 2.5 to 7.5 inclusive, or from 5.0 to 7.5 inclusive.

下表1提供例示性低鈉玻璃泡組成物及自其製備之玻璃泡之性質(亦即,密度、強度、軟化溫度及澆鑄指數)。 Table 1 below provides the properties of exemplary low sodium glass bubble compositions and glass bubbles prepared therefrom (i.e., density, strength, softening temperature, and casting index).

有利的是,適當的高溫泡也具有高強度。可根據(已撤銷)ASTM 3102-72測量強度,其中此方法使用甘油代替水。在一些實施例中,80體積%的該等玻璃泡耐受4000psi(27.6MPa)的等靜壓而不破裂、耐受6000psi(41.4MPa)的等靜壓而不破裂、或耐受8000psi(55.2MPa)的等靜壓而不破裂。合適的高溫玻璃泡並不限制於上面說明的例示性組成物。例如,使用所屬領域中用以形成玻璃泡的一般方法,從一玻璃組成物(其包括SiO2(60.05wt.%)、CaO(3.77wt.%)、B2O3(6.65wt.%)、Al2O3(17.77wt.%)、MgO(3.18wt.%)、SrO(7.84wt.%)以及SO3(0.74wt.%))來製備具有軟化溫度781℃、密度1.0385克/cm3、以及強度8129psi(56MPa)的低鈉、耐高溫玻璃泡。 Advantageously, suitable high temperature bubbles also have high strength. The strength can be measured according to (withdrawn) ASTM 3102-72, where this method uses glycerin instead of water. In some embodiments, 80% by volume of the glass bubbles are resistant to 4000 psi (27.6 MPa) isostatic pressure without breaking, withstand 6000 psi (41.4 MPa) isostatic pressure without breaking, or withstand 8000 psi (55.2 Isostatic pressure of MPa) without breaking. Suitable high temperature glass bubbles are not limited to the illustrative compositions described above. For example, using a general method in the art for forming glass bubbles, from a glass composition comprising SiO 2 (60.05 wt.%), CaO (3.77 wt.%), B 2 O 3 (6.65 wt.%) , Al 2 O 3 (17.77 wt.%), MgO (3.18 wt.%), SrO (7.84 wt.%), and SO 3 (0.74 wt.%) were prepared to have a softening temperature of 781 ° C and a density of 1.0385 g/cm. 3 , and low-sodium, high-temperature glass bubbles with a strength of 8129 psi (56 MPa).

分散在該金屬基質複合物的該複數個不連續纖維沒有特定限制,而例如包括無機纖維,諸如玻璃、氧化鋁、鋁矽酸鹽、碳、玄武岩、或其一組合。更具體地,在某些實施例中該等纖維包含至少 一金屬氧化物、氧化鋁、氧化鋁-矽石、或其一組合。該等不連續纖維具有小於5厘米的一平均長度,和較長纖維相比更傾向有益於在金屬基質中分散。在許多實施例中,該等纖維具有比用以形成一金屬基質複合物之模具或模的最小尺寸更短的一平均長度,使得於該等纖維之定向不受限於該模具或模。該纖維長度對該模具或模之該最小尺寸的一比例時常是<1:1。在某些實施例中,該等不連續纖維具有小於4公分、小於3公分、或小於2公分之一平均長度。不連續纖維可從連續纖維形成,例如藉用所屬領域已知的方法,諸如裁剪及研磨。一般而言,該複數個不連續纖維包含10:1或更大的一縱橫比。 The plurality of discontinuous fibers dispersed in the metal matrix composite are not particularly limited, and include, for example, inorganic fibers such as glass, alumina, aluminosilicate, carbon, basalt, or a combination thereof. More specifically, in certain embodiments the fibers comprise at least a metal oxide, alumina, alumina- vermiculite, or a combination thereof. The discontinuous fibers have an average length of less than 5 centimeters and are more prone to dispersion in the metal matrix than longer fibers. In many embodiments, the fibers have an average length that is shorter than the smallest dimension of the mold or mold used to form a metal matrix composite such that the orientation of the fibers is not limited to the mold or mold. A ratio of the fiber length to the minimum dimension of the mold or mold is often < 1:1. In certain embodiments, the discontinuous fibers have an average length of less than 4 centimeters, less than 3 centimeters, or less than 2 centimeters. The discontinuous fibers can be formed from continuous fibers, such as by methods known in the art, such as cutting and grinding. Generally, the plurality of discontinuous fibers comprise an aspect ratio of 10:1 or greater.

合適的不連續纖維可具有各種組成物,諸如陶瓷纖維。該等陶瓷纖維可生產成連續的長度,其經裁剪或剪切,如本文所討論,以提供本揭露的該等陶瓷纖維。可從各種可購得之陶瓷絲生產該等陶瓷纖維。有用於形成該等陶瓷纖維有用的絲的實例包括以商標NEXTEL(3M Company,St.Paul,MN)銷售的該等陶瓷氧化物纖維。NEXTEL是一種連續絲陶瓷氧化物纖維,其在操作溫度具有低延伸及收縮,並且提供良好的化學抗性、低導熱性、耐熱衝擊性、及低孔隙度。NEXTEL纖維的特定實例包括NEXTEL 312、NEXTEL 440、NEXTEL 550、NEXTEL 610以及NEXTEL 720。NEXTEL 312及NEXTEL 440係包括Al2O3、SiO2以及B2O3的耐火鋁硼矽酸鹽。NEXTEL 550及NEXTEL 720係鋁矽酸鹽而NEXTEL 610係氧化鋁。製造期間,該等NEXTEL絲係塗佈有機塗料或精整物作用為紡織製程的輔助。塗料可包括使用施加到絲股以保護及有助於拿握的澱粉、 油、蠟或其他有機成分。藉由熱清潔(heat cleaning)該等絲或陶瓷纖維,如700℃的溫度一到四小時,該塗料可自該等陶瓷絲移除。 Suitable discontinuous fibers can have a variety of compositions, such as ceramic fibers. The ceramic fibers can be produced in continuous lengths that are cut or sheared, as discussed herein, to provide the ceramic fibers of the present disclosure. These ceramic fibers can be produced from a variety of commercially available ceramic filaments. Examples of useful filaments for forming such ceramic fibers include those ceramic oxide fibers sold under the trademark NEXTEL (3M Company, St. Paul, MN). NEXTEL is a continuous filament ceramic oxide fiber that has low elongation and shrinkage at operating temperatures and provides good chemical resistance, low thermal conductivity, thermal shock resistance, and low porosity. Specific examples of NEXTEL fibers include NEXTEL 312, NEXTEL 440, NEXTEL 550, NEXTEL 610, and NEXTEL 720. NEXTEL 312 and NEXTEL 440 are refractory aluminum borosilicates comprising Al 2 O 3 , SiO 2 and B 2 O 3 . NEXTEL 550 and NEXTEL 720 are aluminum silicates and NEXTEL 610 is alumina. During manufacture, the NEXTEL wire coating organic coating or finishing acts as an aid to the textile process. The coating may include the use of starch, oil, wax or other organic ingredients applied to the strands to protect and facilitate gripping. The coating can be removed from the ceramic filaments by heat cleaning the filaments or ceramic fibers, such as at a temperature of 700 ° C for one to four hours.

該等陶瓷纖維可經切削、研磨、或裁剪以便提供相對均勻的長度,其可在機械剪切操作或雷射切削操作、以及在其他切削操作之中,藉由切削陶瓷材料的連續的絲來達成。鑑於某些切削操作之高度受到控制之本質,該等陶瓷纖維之尺寸分布非常狹窄,而允許控制該複合物性質。 The ceramic fibers can be cut, ground, or cut to provide a relatively uniform length that can be used to cut continuous filaments of ceramic material during mechanical shearing operations or laser cutting operations, as well as in other cutting operations. Achieved. In view of the highly controlled nature of certain cutting operations, the ceramic fibers are very narrow in size distribution, allowing for control of the properties of the composite.

該陶瓷纖維的長度,例如,可用裝配有一CCD Camera(Olympus DP72,Tokyo,Japan)以及分析軟體(Olympus Stream Essentials,Tokyo,Japan)之一光學顯微鏡(Olympus MX61,Tokyo,Japan)來判定。可藉由將該陶瓷纖維的代表性取樣散布在玻璃玻片上並以10X放大率測量至少200個陶瓷纖維的長度來製備樣本。 The length of the ceramic fiber can be determined, for example, by an optical microscope (Olympus MX61, Tokyo, Japan) equipped with a CCD Camera (Olympus DP72, Tokyo, Japan) and analytical software (Olympus Stream Essentials, Tokyo, Japan). Samples can be prepared by spreading a representative sample of the ceramic fibers onto a glass slide and measuring the length of at least 200 ceramic fibers at 10X magnification.

合適的纖維包括例如以商標名NEXTEL(可購自3M Company,St.Paul,MN)銷售的陶瓷纖維,諸如NEXTEL 312、440、610以及720。目前較佳的一陶瓷纖維包含多晶體α-Al2O3。合適的氧化鋁纖維係描述於,例如美國專利第4,954,462號(Wood等人)以及美國專利第5,185,299號(Wood等人)中。例示性α氧化鋁纖維係以商標名稱NEXTEL 610(3M Company,St.Paul,MN)銷售。在一些實施例中,該等氧化鋁纖維係為多晶體α氧化物纖維,而且以理論氧化物基礎來看,基於該等氧化鋁纖維的總重量,該等氧化鋁纖維包含大於99重量百分比的Al2O3以及0.2至0.5重量百分比的SiO2。在其他實施例中,一些理想的多晶體α氧化鋁纖維包含之α氧 化鋁具有小於一微米的平均晶粒尺寸(或甚至在一些實施例中小於0.5微米)。在一些實施例中,多晶體α氧化鋁纖維具有至少1.6GPa的平均抗拉強度(在一些實施例中,至少2.1GPa,或甚至至少2.8GPa)。合適的鋁矽酸鹽纖維係描述於例如美國專利第4,047,965號(Karst等人)。例示性鋁矽酸鹽纖維係以商標名稱NEXTEL 440、及NEXTEL 720由3M Company(St.Paul,MN)銷售。鋁硼矽酸鹽纖維係描述於例如美國專利第3,795,524號(Sowman)。例示性鋁硼矽酸鹽纖維係以商標名稱NEXTEL 312由3M Company銷售。可如例如美國專利第3,429,722號(Economy)以及美國專利第5,780,154號(Okano等人)中所說明來製作硼氮化物纖維。 Suitable fibers include, for example, ceramic fibers sold under the trade name NEXTEL (available from 3M Company, St. Paul, MN), such as NEXTEL 312, 440, 610, and 720. A currently preferred ceramic fiber comprises polycrystalline α-Al 2 O 3 . Suitable alumina fiber systems are described, for example, in U.S. Patent No. 4,954,462 (Wood et al.) and U.S. Patent No. 5,185,299 (Wood et al.). Exemplary alpha alumina fibers are sold under the trade name NEXTEL 610 (3M Company, St. Paul, MN). In some embodiments, the alumina fibers are polycrystalline alpha oxide fibers, and based on the theoretical oxide, the alumina fibers comprise greater than 99 weight percent based on the total weight of the alumina fibers. Al 2 O 3 and 0.2 to 0.5% by weight of SiO 2 . In other embodiments, some desirable polycrystalline alpha alumina fibers comprise alpha alumina having an average grain size of less than one micron (or even less than 0.5 microns in some embodiments). In some embodiments, the polycrystalline alpha alumina fibers have an average tensile strength (in some embodiments, at least 2.1 GPa, or even at least 2.8 GPa) of at least 1.6 GPa. Suitable aluminosilicate fibers are described, for example, in U.S. Patent No. 4,047,965 (Karst et al.). Exemplary aluminosilicate fibers are sold under the tradenames NEXTEL 440, and NEXTEL 720 by 3M Company (St. Paul, MN). Aluminoborosilicate fibers are described, for example, in U.S. Patent No. 3,795,524 (Sowman). Exemplary aluminoborosilicate fibers are sold under the tradename NEXTEL 312 by 3M Company. Boron nitride fibers can be made as described in, for example, U.S. Patent No. 3,429,722 (Economy) and U.S. Patent No. 5,780,154 (Okano et al.).

亦可自其他適當陶瓷氧化物絲形成陶瓷纖維。此類陶瓷氧化物絲的實例包括可購自Central Glass Fiber Co.,Ltd.的彼等陶瓷氧化物絲(例如,EFH75-01、EFH150-31)。鋁硼矽酸鹽玻璃纖維也是較佳的,其含有小於約2%的鹼或實質上不含鹼(亦即,「E-玻璃」纖維)。E-玻璃纖維可從許多供應商購得。 Ceramic fibers can also be formed from other suitable ceramic oxide wires. Examples of such ceramic oxide filaments include those ceramic oxide filaments (e.g., EFH75-01, EFH150-31) available from Central Glass Fiber Co., Ltd. Aluminoborosilicate glass fibers are also preferred which contain less than about 2% alkali or substantially no alkali (i.e., "E-glass" fibers). E-glass fibers are commercially available from a number of suppliers.

分散在該金屬基質複合物中的不連續纖維數量沒有特定限制。該複數個纖維存在數量通常為該金屬基質複合物的至少1重量百分比、至少2重量百分比、至少3重量百分比、至少5重量百分比、至少10重量百分比、至少15重量百分比、至少20重量百分比、或該金屬基質複合物的至少25重量百分比;及至多50重量百分比、至多45重量百分比、至多40重量百分比、或至多35重量百分比的該金屬基質複合物。在某些實施例中,該等纖維存在該金屬基質複合物 之數量為該金屬基質複合物的1重量百分比及50重量百分比之間、或2重量百分比及25重量百分比之間、或5重量百分比及15重量百分比(含)之間。包括小於1重量百分比的該等纖維造成該金屬基質複合物強度極微小的上升,然而包括多於50重量百分比的該等纖維會因為該金屬基質複合物含有金屬及無機粒子的量不足而對該金屬基質複合物的包封密度造成負面的衝擊。在某些實施例中,該複數個無機粒子及該複數個不連續纖維以該金屬基質複合物的5重量百分比及50重量百分比(含)之間的數量結合存在。 There is no particular limitation on the amount of discontinuous fibers dispersed in the metal matrix composite. The plurality of fibers are typically present in an amount of at least 1 weight percent, at least 2 weight percent, at least 3 weight percent, at least 5 weight percent, at least 10 weight percent, at least 15 weight percent, at least 20 weight percent, or At least 25 weight percent of the metal matrix composite; and up to 50 weight percent, up to 45 weight percent, up to 40 weight percent, or up to 35 weight percent of the metal matrix composite. In certain embodiments, the fibers are present in the metal matrix composite The amount is between 1 weight percent and 50 weight percent, or between 2 weight percent and 25 weight percent, or between 5 weight percent and 15 weight percent (inclusive) of the metal matrix composite. Including less than 1 weight percent of such fibers causes a very slight increase in the strength of the metal matrix composite, however, including more than 50 weight percent of the fibers may be due to insufficient metal and inorganic particles in the metal matrix composite. The encapsulation density of the metal matrix composite causes a negative impact. In certain embodiments, the plurality of inorganic particles and the plurality of discrete fibers are present in combination between 5 weight percent and 50 weight percent, inclusive, of the metal matrix composite.

有利的是,該金屬基質複合物展現一減少的包封密度(和純金屬相比)以及也展現可接受的機械性質兩者。例如,該金屬基質複合物一般而言具有每立方公分1.35及2.70克(含)之間或每立方公分1.80及2.50克(含)之間的一包封密度。例如,該金屬基質複合物可具有每立方公分至少1.60克的一包封密度、每立方公分至少1.75、至少1.90、至少2.00、至少2.10、或至少2.25克;以及每立方公分至多2.70的一包封密度、至多2.60、至多2.50、至多2.40、或至多2.30克。 Advantageously, the metal matrix composite exhibits a reduced encapsulation density (as compared to pure metals) and also exhibits acceptable mechanical properties. For example, the metal matrix composite generally has an encapsulation density between 1.35 and 2.70 grams per cubic centimeter or between 1.80 and 2.50 grams per cubic centimeter. For example, the metal matrix composite may have an encapsulation density of at least 1.60 grams per cubic centimeter, at least 1.75, at least 1.90, at least 2.00, at least 2.10, or at least 2.25 grams per cubic centimeter; and a package of up to 2.70 per cubic centimeter; Sealing density, up to 2.60, up to 2.50, up to 2.40, or up to 2.30 grams.

在某些實施例中,該金屬包含鋁或其合金且該金屬基質複合物具有介於每立方公分1.80及2.50克(含)之間的一包封密度;每立方公分2.00及2.30克(含)之間;或每立方公分1.80及2.20克(含)之間。 In certain embodiments, the metal comprises aluminum or an alloy thereof and the metal matrix composite has an encapsulation density of between 1.80 and 2.50 grams per cubic centimeter; 2.00 and 2.30 grams per cubic centimeter (including Between; or between 1.80 and 2.20 grams per cubic centimeter (inclusive).

在某些實施例中,該金屬包含鎂或其合金且該金屬基質複合物具有介於每立方公分1.35及1.60克(含)之間的一包封密度; 每立方公分1.55及1.60克(含)之間;或每立方公分1.35及1.50克(含)之間。 In certain embodiments, the metal comprises magnesium or an alloy thereof and the metal matrix composite has an encapsulation density of between 1.35 and 1.60 grams per cubic centimeter; Between 1.55 and 1.60 grams (inclusive) per cubic centimeter; or between 1.35 and 1.50 grams per cubic centimeter (inclusive).

有利的是,在許多實施例中該金屬基質複合物具有比該金屬之該密度小至少8%之一包封密度(或小至少10%、小至少12%、小至少15%、或小至少17%)並且在破裂前可耐受1%之應變。此性質組合既提供該金屬的輕量化且在該金屬基質複合物中維持一些該金屬特性兩者。尤其,該金屬基質複合物較佳的是於一拉伸試驗中在破壞前展現一降伏強度。在某些實施例中該金屬基質複合物具有50百萬帕斯卡或更大、75百萬帕斯卡或更大、100百萬帕斯卡或更大、或150百萬帕斯卡或更大的一降伏強度。 Advantageously, in many embodiments the metal matrix composite has an encapsulation density of at least 8% less than the density of the metal (or at least 10% less, at least 12% smaller, at least 15% smaller, or at least less than at least 17%) and can withstand 1% strain before rupture. This combination of properties provides both weight reduction of the metal and maintaining some of the metallic properties in the metal matrix composite. In particular, the metal matrix composite preferably exhibits a relief strength prior to failure in a tensile test. In certain embodiments the metal matrix composite has a relief strength of 50 megapascals or greater, 75 megapascals or greater, 100 megapascals or greater, or 150 megapascals or greater.

發現本揭露的至少某些例示性實施例的該金屬基質複合物展現一應力-應變曲線顯示塑性降伏行為,而本揭露的至少某些例示性實施例的該金屬基質複合物展現一應力-應變曲線顯示抗拉塑性降伏行為。也就是說,該應力-應變曲線展現一區域的塑性流。該塑性降伏曲線及抗拉塑性降伏曲線係與一純脆性破壞機制形成對比。也就是說,該純脆性行為在該應力-應變曲線內展現僅一彈性區域,而沒有(或很小)塑性流區域。令人驚訝的是,根據本揭露之至少一些實施例在金屬基質複合物中作為填料之無機粒子及不連續纖維二者之結合,於應力-應變實驗提供一塑性降伏曲線及/或一抗拉塑性降伏行為。 The metal matrix composite of at least some exemplary embodiments of the present disclosure is found to exhibit a stress-strain curve exhibiting plasticity-floating behavior, while the metal matrix composite of at least some exemplary embodiments of the present disclosure exhibits a stress-strain The curve shows the tensile plasticity fluctuation behavior. That is, the stress-strain curve exhibits a plastic flow in a region. The plasticity curve and the tensile plasticity curve are contrasted with a pure brittle failure mechanism. That is, the pure brittle behavior exhibits only one elastic region within the stress-strain curve, and no (or very small) plastic flow region. Surprisingly, in combination with both inorganic particles and discontinuous fibers as fillers in a metal matrix composite according to at least some embodiments of the present disclosure, a plasticity drop curve and/or a tensile resistance is provided in a stress-strain experiment. Plasticity fluctuation behavior.

例如,參照圖3,含有纖維及多孔無機粒子二者(詳細說明如下)的實例13的應力-應變曲線在脆性破壞機制前出現降伏。 在某些實施例中,該金屬基質複合物破裂前可耐受0.5%、1%、1.5%、或甚至2%之應變。此外,出乎意料的,該金屬粉末與該等多孔無機粒子保持分離,而不是在燒結過程中被推進該等多孔無機粒子的一些細孔中(尤其是施加壓力下的燒結)。有趣的是,該等多孔無機粒子並沒有傾向於在燒結期間受損(例如,碎裂或壓碎),而是維持其多孔骨架結構。 For example, referring to Figure 3, the stress-strain curve of Example 13 containing both fibers and porous inorganic particles (described in detail below) appears to fluctuate before the brittle failure mechanism. In certain embodiments, the metal matrix composite can withstand a strain of 0.5%, 1%, 1.5%, or even 2% prior to rupture. Furthermore, unexpectedly, the metal powder remains separated from the porous inorganic particles, rather than being pushed into some of the pores of the porous inorganic particles during sintering (especially sintering under applied pressure). Interestingly, the porous inorganic particles do not tend to be damaged (e.g., chipped or crushed) during sintering, but rather maintain their porous framework structure.

在許多實施例中,該金屬基質複合物展現25百萬帕斯卡(MPa)或更大的一極限抗拉強度,諸如40MPa或更大、50MPa或更大、75MPa或更大、100MPa或更大、150MPa或更大、200MPa或更大、250MPa或更大、或300MPa或更大。因為金屬基質複合物的抗拉強度與金屬基質複合物的包封密度有關,一般而言一複合物輕量化的期間會犧牲抗拉強度,考慮金屬基質複合物的抗拉強度則可為進一步有用。在一些實施例中,該金屬基質複合物具有介於每立方公分1.80及2.50克(含)之間的一包封密度,以及50MPa或更大、100MPa或更大、150MPa或更大、200MPa或更大、250MPa或更大、或300MPa或更大的一極限抗拉強度。 In many embodiments, the metal matrix composite exhibits an ultimate tensile strength of 25 megapascals (MPa) or greater, such as 40 MPa or greater, 50 MPa or greater, 75 MPa or greater, 100 MPa or greater, 150 MPa or more, 200 MPa or more, 250 MPa or more, or 300 MPa or more. Since the tensile strength of the metal matrix composite is related to the encapsulation density of the metal matrix composite, in general, the tensile strength is sacrificed during the weight reduction of the composite, and the tensile strength of the metal matrix composite can be further useful. . In some embodiments, the metal matrix composite has an encapsulation density between 1.80 and 2.50 grams per cubic centimeter, and 50 MPa or greater, 100 MPa or greater, 150 MPa or greater, 200 MPa or An ultimate tensile strength of greater, 250 MPa or greater, or 300 MPa or greater.

有利的是,在某些實施例中獲得了理想的機械性質而不需該等無機粒子及該等不連續纖維以外的填料。在此類實施例中,該金屬基質複合物基本上由一金屬、複數個無機粒子、及複數個不連續纖維所組成。該金屬基質複合物因而可進一步含有對該金屬基質複合物的機械性質沒有實質衝擊的添加物。相比之下,基本上由一金屬、 複數個無機粒子、及複數個不連續纖維所組成的一金屬基質複合物不能進一步包括添加物諸如用於幫助該等填料分散的材料。 Advantageously, desirable mechanical properties are obtained in certain embodiments without the need for such inorganic particles and fillers other than the discontinuous fibers. In such embodiments, the metal matrix composite consists essentially of a metal, a plurality of inorganic particles, and a plurality of discrete fibers. The metal matrix composite may thus further comprise an additive that does not substantially impact the mechanical properties of the metal matrix composite. In contrast, basically by a metal, A metal matrix composite composed of a plurality of inorganic particles and a plurality of discontinuous fibers may not further include additives such as materials for assisting dispersion of the fillers.

製作本發明之一金屬基質複合物的方法包括粉末冶金製程諸如熱壓、粉末擠製、熱軋、加熱隨之溫軋(warm rolling)、冷壓並燒結、以及熱等靜壓。本發明的複合物亦能使用熔體或鑄造製程來生產,包括擠壓鑄造、壓力鑄造及攪拌鑄造,如具有通常知識之從業人士所知。 Methods of making a metal matrix composite of the present invention include powder metallurgical processes such as hot pressing, powder extrusion, hot rolling, heating followed by warm rolling, cold pressing and sintering, and hot isostatic pressing. The composites of the present invention can also be produced using melt or casting processes, including extrusion casting, pressure casting, and agitation casting, as is known to those of ordinary skill in the art.

在某些實施例中,製作一金屬基質複合物的一方法包括混合一金屬粉末、複數個無機粒子、及複數個不連續纖維,從而形成一混合物;並且燒結該混合物,從而形成該金屬基質複合物。該所得之金屬基質複合物的該金屬粉末、粒子、纖維、及性質係如上關於該第一態樣所述。 In some embodiments, a method of making a metal matrix composite includes mixing a metal powder, a plurality of inorganic particles, and a plurality of discontinuous fibers to form a mixture; and sintering the mixture to form the metal matrix composite Things. The metal powder, particles, fibers, and properties of the resulting metal matrix composite are as described above in relation to the first aspect.

在一些實施例中,該金屬粉末、無機粒子、及不連續纖維之混合係以人工進行,諸如以手搖動裝著該等材料的一容器。搖動時常進行至少15秒、至少20秒、至少30秒、至少45秒、或至少60秒、及至多2分鐘、至多100秒、至多90秒、或至多70秒。人工混合用於一金屬基質複合物的該等組分時,可選地將裝著該等材料的一容器倒置至少一次。在某些實施例中,該金屬粉末、無機粒子、及不連續纖維的混合係使用一聲學混合器、一機械混合器、一振盪板(shaker table)、或一滾筒(tumbler)進行。使用一設備來類似地進行混合達至少15秒、至少20秒、至少30秒、至少45秒、或至少60秒、及至多2分鐘、至多100秒、至多90秒、或至多70秒。藉由混合該 等組分所產生的該混合物包含分散在該金屬粉末中的該等粒子及該等纖維。如以上所討論,使該等無機粒子及不連續纖維分散在該金屬粉末提供一實質上均質的混合物。 In some embodiments, the mixing of the metal powder, inorganic particles, and discontinuous fibers is performed manually, such as by a container that holds the materials by hand. Shaking is often performed for at least 15 seconds, at least 20 seconds, at least 30 seconds, at least 45 seconds, or at least 60 seconds, and up to 2 minutes, up to 100 seconds, up to 90 seconds, or up to 70 seconds. When manually mixing the components for a metal matrix composite, a container containing the materials is optionally inverted at least once. In some embodiments, the mixing of the metal powder, inorganic particles, and discontinuous fibers is performed using an acoustic mixer, a mechanical mixer, a shaker table, or a tumbler. A device is used to similarly mix for at least 15 seconds, at least 20 seconds, at least 30 seconds, at least 45 seconds, or at least 60 seconds, and up to 2 minutes, up to 100 seconds, up to 90 seconds, or up to 70 seconds. By mixing The mixture produced by the equal components comprises the particles dispersed in the metal powder and the fibers. Dispersing the inorganic particles and discontinuous fibers in the metal powder provides a substantially homogeneous mixture as discussed above.

在混合以後,燒結該混合物。在大部分的實施例中,燒結進行至少30分鐘的時間、至少60分鐘、至少90分鐘、或至少2小時、及至多3小時或至多24小時;諸如在30分鐘及3小時(含)之間。一般而言,該混合物在一模(例如,一模具)中燒結。通常在一熱壓機或一爐中於至少攝氏250度(℃)、至少300℃、至少400℃、至少500℃、或至少600℃、及至多1,000℃、至多900℃、至多800℃、或至多700℃進行燒結;諸如在250℃及1,000℃(含)之間、或在400℃及900℃之間、或在600℃及800℃之間。在許多實施例中,溫度係以穩定速率增加直到到達所需最大溫度。 After mixing, the mixture was sintered. In most embodiments, the sintering is carried out for a period of at least 30 minutes, at least 60 minutes, at least 90 minutes, or at least 2 hours, and at most 3 hours or at most 24 hours; such as between 30 minutes and 3 hours (inclusive) . Generally, the mixture is sintered in a mold (e.g., a mold). Typically at least 250 degrees Celsius (°C), at least 300° C., at least 400° C., at least 500° C., or at least 600° C., and at most 1,000° C., at most 900° C., at most 800° C., or in a hot press or furnace Sintering is carried out at up to 700 ° C; such as between 250 ° C and 1,000 ° C (inclusive), or between 400 ° C and 900 ° C, or between 600 ° C and 800 ° C. In many embodiments, the temperature is increased at a steady rate until the desired maximum temperature is reached.

在某些實施例中,燒結進一步包含對該模中的該混合物施加壓力。例如,可選地在至少4百萬帕斯卡(MPa)、至少5MPa、至少7MPa、至少10MPa、至少12MPa、至少15MPa、或至少20MPa的一壓力進行燒結;及至多200MPa、至多150MPa、至多100MPa、至多75MPa、至多50MPa、或至多25MPa;諸如在4MPa及200MPa(含)之間、在4MPa及50MPa(含)之間、或在15MPa及200MPa(含)之間。在某些實施例中,在所施加壓力釋放後,該模經一惰性氣體(例如,氮氣或氬氣)沖洗。 In certain embodiments, sintering further comprises applying pressure to the mixture in the mold. For example, optionally at a pressure of at least 4 million Pascals (MPa), at least 5 MPa, at least 7 MPa, at least 10 MPa, at least 12 MPa, at least 15 MPa, or at least 20 MPa; and at most 200 MPa, at most 150 MPa, at most 100 MPa, at most 75 MPa, up to 50 MPa, or up to 25 MPa; such as between 4 MPa and 200 MPa (inclusive), between 4 MPa and 50 MPa (inclusive), or between 15 MPa and 200 MPa (inclusive). In certain embodiments, the mold is flushed with an inert gas (e.g., nitrogen or argon) after the applied pressure is released.

在燒結製程之後,可允許該金屬基質複合物冷卻(例如在該熱壓機或爐內或外)。在一些實施例中,允許該金屬基質複合物進 行爐冷(亦即藉由關閉該爐而且等待該金屬基質複合物自行冷卻)。在其他實施例中,一冷卻劑,其例如為而沒有限制為一惰性氣體(例如,氮氣、氬氣、等)通過該熱壓機或爐以幫助該金屬基質複合物更快冷卻。 After the sintering process, the metal matrix composite can be allowed to cool (e.g., inside or outside the hot press or furnace). In some embodiments, the metal matrix composite is allowed to enter The furnace is cooled (i.e., by shutting down the furnace and waiting for the metal matrix composite to cool itself). In other embodiments, a coolant, such as, but not limited to, an inert gas (e.g., nitrogen, argon, etc.) is passed through the hot press or furnace to aid in faster cooling of the metal matrix composite.

例示性實施例 Illustrative embodiment

實施例1係一金屬基質複合物。該金屬基質複合物包括一金屬;複數個無機粒子;及複數個不連續纖維。該等無機粒子及該等不連續纖維係分散在該金屬中。該金屬包含鋁、鎂、或其合金且該等無機粒子具有比該金屬之一密度小至少30%之一包封密度。 Example 1 is a metal matrix composite. The metal matrix composite comprises a metal; a plurality of inorganic particles; and a plurality of discontinuous fibers. The inorganic particles and the discontinuous fibers are dispersed in the metal. The metal comprises aluminum, magnesium, or an alloy thereof and the inorganic particles have an encapsulation density that is at least 30% less than the density of one of the metals.

實施例2係如實施例1之金屬基質複合物,其中該金屬基質複合物具有比該金屬之該密度小至少8%之一包封密度並且在破裂前可耐受1%之應變。 Embodiment 2 is the metal matrix composite of embodiment 1, wherein the metal matrix composite has an encapsulation density that is at least 8% less than the density of the metal and can withstand a strain of 1% prior to rupture.

實施例3係如實施例2之金屬基質複合物,其中該金屬基質複合物在破裂前可耐受2%之應變。 Embodiment 3 is a metal matrix composite as in Example 2, wherein the metal matrix composite can withstand a strain of 2% prior to rupture.

實施例4係如實施例1至實施例3中任一項之金屬基質複合物,其中該金屬基質複合物具有50百萬帕斯卡或更大的一降伏強度。 The metal matrix composite of any one of embodiments 1 to 3, wherein the metal matrix composite has a relief strength of 50 megapascals or more.

實施例5係如實施例1至實施例4中任一項之金屬基質複合物,其中該金屬基質複合物具有100百萬帕斯卡或更大的一降伏強度。 The metal matrix composite of any one of embodiments 1 to 4, wherein the metal matrix composite has a relief strength of 100 megapascals or more.

實施例6係如實施例1至實施例5中任一項之金屬基質複合物,其中該金屬基質複合物具有100百萬帕斯卡或更大的一極限抗拉強度。 The metal matrix composite of any one of embodiments 1 to 5, wherein the metal matrix composite has an ultimate tensile strength of 100 megapascals or more.

實施例7係如實施例1至實施例6中任一項之金屬基質複合物,其中該金屬基質複合物具有200百萬帕斯卡或更大的一極限抗拉強度。 The metal matrix composite of any one of embodiments 1 to 6, wherein the metal matrix composite has an ultimate tensile strength of 200 megapascals or more.

實施例8係如實施例1至實施例7中任一項之金屬基質複合物,其中該金屬基質複合物具有300百萬帕斯卡或更大的一極限抗拉強度。 Embodiment 8 is the metal matrix composite of any one of embodiments 1 to 7, wherein the metal matrix composite has an ultimate tensile strength of 300 megapascals or greater.

實施例9係如實施例1至實施例8中任一項之金屬基質複合物,其中該複數個無機粒子包含多孔粒子。 The metal matrix composite of any one of embodiments 1 to 8, wherein the plurality of inorganic particles comprise porous particles.

實施例10係如實施例9之金屬基質複合物,其中該等多孔粒子具有每立方公分2克或更少的一最大包封密度。 Embodiment 10 is the metal matrix composite of embodiment 9, wherein the porous particles have a maximum encapsulation density of 2 grams or less per cubic centimeter.

實施例11係如實施例9或實施例10之金屬基質複合物,其中該等多孔粒子包含多孔金屬氧化物粒子、多孔金屬氫氧化物粒子、多孔金屬碳酸鹽、多孔碳粒子、多孔矽石粒子、多孔脫水鋁矽酸鹽粒子、多孔脫水金屬水合物粒子、沸石粒子、多孔玻璃粒子、膨脹珍珠岩粒子、膨脹蛭石粒子、多孔矽酸鈉粒子、工程多孔陶瓷粒子、非多孔初級粒子之黏聚物、或其組合。 Embodiment 11 is the metal matrix composite of Embodiment 9 or Embodiment 10, wherein the porous particles comprise porous metal oxide particles, porous metal hydroxide particles, porous metal carbonate, porous carbon particles, porous vermiculite particles , porous dehydrated aluminum silicate particles, porous dehydrated metal hydrate particles, zeolite particles, porous glass particles, expanded perlite particles, expanded vermiculite particles, porous sodium citrate particles, engineered porous ceramic particles, non-porous primary particles Polymer, or a combination thereof.

實施例12係如實施例9至實施例11中任一項之金屬基質複合物,其中該等多孔粒子包含多孔氧化鋁粒子、多孔碳粒子、多孔矽石粒子、多孔鋁氫氧化物粒子、或其組合。 Embodiment 12 is the metal matrix composite of any one of Embodiments 9 to 11, wherein the porous particles comprise porous alumina particles, porous carbon particles, porous vermiculite particles, porous aluminum hydroxide particles, or Its combination.

實施例13係如實施例12之金屬基質複合物,其中該等多孔粒子包含過渡型氧化鋁粒子。 Embodiment 13 is the metal matrix composite of embodiment 12, wherein the porous particles comprise transitional alumina particles.

實施例14係如實施例1至實施例8中任一項之金屬基質複合物,其中該複數個無機粒子包含陶瓷泡或玻璃泡。 The metal matrix composite of any one of embodiments 1 to 8, wherein the plurality of inorganic particles comprise ceramic bubbles or glass bubbles.

實施例15係如實施例14之金屬基質複合物,其中該複數個無機粒子具有每立方公分2克或更少的一最大包封密度。 Embodiment 15 is the metal matrix composite of embodiment 14, wherein the plurality of inorganic particles have a maximum encapsulation density of 2 grams or less per cubic centimeter.

實施例16係如實施例14或實施例15之金屬基質複合物,其中該等玻璃泡包含的玻璃耐受加熱到攝氏700度的溫度達至少兩小時而不軟化。 Embodiment 16 is the metal matrix composite of embodiment 14 or embodiment 15, wherein the glass bubbles comprise glass that is resistant to heating to a temperature of 700 degrees Celsius for at least two hours without softening.

實施例17係如實施例14至實施例16中任一項之金屬基質複合物,其中該等玻璃泡係和去離子水攪拌2小時而每克玻璃泡在去離子水中溶出鈉離子小於100微克的玻璃泡。 The metal matrix composite of any one of embodiments 14 to 16, wherein the glass bubbles and deionized water are stirred for 2 hours and the sodium ions are less than 100 micrograms per gram of glass bubbles in deionized water. Glass bubbles.

實施例18係如實施例14或實施例15之金屬基質複合物,其中該複數個無機粒子包含氧化鋁、鋁矽酸鹽、矽石、或其組合。 Embodiment 18 is the metal matrix composite of Embodiment 14 or Embodiment 15, wherein the plurality of inorganic particles comprise alumina, aluminosilicate, vermiculite, or a combination thereof.

實施例19係如實施例11至實施例15或實施例18中任一項之金屬基質複合物,其中該等無機粒子包含多單元泡。 The metal matrix composite of any one of embodiments 11 to 15, wherein the inorganic particles comprise a plurality of unit cells.

實施例20係如實施例1至實施例19中任一項之金屬基質複合物,其中該複數個無機粒子具有一實質上球形形狀或一針狀形狀。 The metal matrix composite of any one of embodiments 1 to 19, wherein the plurality of inorganic particles have a substantially spherical shape or a needle-like shape.

實施例21係如實施例1至實施例20中任一項之金屬基質複合物,其中該複數個無機粒子具有範圍在50奈米(nm)及5毫米(mm)(含)之間的一平均粒徑。 The metal matrix composite of any one of embodiments 1 to 20, wherein the plurality of inorganic particles have a range of between 50 nanometers (nm) and 5 millimeters (mm) inclusive. The average particle size.

實施例22係如實施例1至實施例21中任一項之金屬基質複合物,其中該複數個無機粒子具有範圍在1微米(μm)及1mm(含)之間的一平均粒徑。 The metal matrix composite of any one of embodiments 1 to 21, wherein the plurality of inorganic particles have an average particle size ranging between 1 micrometer (μm) and 1 mm (inclusive).

實施例23係如實施例1至實施例22中任一項之金屬基質複合物,其中該複數個無機粒子具有範圍在10μm及500μm(含)之間的一平均粒徑。 The metal matrix composite of any one of embodiments 1 to 22, wherein the plurality of inorganic particles have an average particle diameter ranging between 10 μm and 500 μm inclusive.

實施例24係如實施例1至實施例23中任一項之金屬基質複合物,其中該複數個不連續纖維包含玻璃、氧化鋁、鋁矽酸鹽、碳、玄武岩、或其一組合。 The metal matrix composite of any one of embodiments 1 to 23, wherein the plurality of discontinuous fibers comprise glass, alumina, aluminosilicate, carbon, basalt, or a combination thereof.

實施例25係如實施例1至實施例24中任一項之金屬基質複合物,其中該複數個不連續纖維具有10:1或更大的一縱橫比。 The metal matrix composite of any one of embodiments 1 to 24, wherein the plurality of discontinuous fibers have an aspect ratio of 10:1 or greater.

實施例26係如實施例1至實施例25中任一項之金屬基質複合物,其中該金屬包含一多孔基質結構。 The metal matrix composite of any one of embodiments 1 to 25, wherein the metal comprises a porous matrix structure.

實施例27係如實施例1至實施例26中任一項之金屬基質複合物,其中該金屬包含鋁或其合金。 The metal matrix composite of any one of embodiments 1 to 26, wherein the metal comprises aluminum or an alloy thereof.

實施例28係如實施例1至實施例27中任一項之金屬基質複合物,其中該金屬基質複合物具有介於每立方公分1.80及2.50克(含)之間的一包封密度。 The metal matrix composite of any one of embodiments 1 to 27, wherein the metal matrix composite has an encapsulation density of between 1.80 and 2.50 grams per cubic centimeter.

實施例29係如實施例1至實施例28中任一項之金屬基質複合物,其中該金屬基質複合物具有介於每立方公分2.00及2.30克(含)之間的一包封密度。 The metal matrix composite of any one of embodiments 1 to 28, wherein the metal matrix composite has an encapsulation density of between 2.00 and 2.30 grams per cubic centimeter.

實施例30係如實施例1至實施例28中任一項之金屬基質複合物,其中該金屬基質複合物具有介於每立方公分1.80及2.20克(含)之間的一包封密度。 The metal matrix composite of any one of embodiments 1 to 28, wherein the metal matrix composite has an encapsulation density of between 1.80 and 2.20 grams per cubic centimeter.

實施例31係如實施例1至實施例26中任一項之金屬基質複合物,其中該金屬包含鎂或其合金。 The metal matrix composite of any one of embodiments 1 to 26, wherein the metal comprises magnesium or an alloy thereof.

實施例32係如實施例31之金屬基質複合物,其中該金屬基質複合物具有介於每立方公分1.35及1.60克(含)之間的一包封密度。 Embodiment 32 is the metal matrix composite of embodiment 31, wherein the metal matrix composite has an encapsulation density of between 1.35 and 1.60 grams per cubic centimeter.

實施例33係如實施例31或實施例32之金屬基質複合物,其中該金屬基質複合物具有介於每立方公分1.55及1.60克(含)之間的一包封密度。 Embodiment 33 is the metal matrix composite of Embodiment 31 or Embodiment 32, wherein the metal matrix composite has an encapsulation density of between 1.55 and 1.60 grams per cubic centimeter.

實施例34係如實施例31或實施例32之金屬基質複合物,其中該金屬基質複合物具有介於每立方公分1.35及1.50克(含)之間的一包封密度。 Embodiment 34 is the metal matrix composite of embodiment 31 or embodiment 32, wherein the metal matrix composite has an encapsulation density of between 1.35 and 1.50 grams per cubic centimeter.

實施例35係如實施例1至實施例34中任一項之金屬基質複合物,其中該金屬基質複合物於一抗拉測試中在破壞前展現一降伏強度。 The metal matrix composite of any one of embodiments 1 to 34, wherein the metal matrix composite exhibits a relief strength prior to failure in a tensile test.

實施例36係如實施例1至實施例35中任一項之金屬基質複合物,其中該金屬存在數量為該金屬基質複合物的50重量百分比及95重量百分比(含)之間。 The metal matrix composite of any one of embodiments 1 to 35, wherein the metal is present in an amount between 50 weight percent and 95 weight percent (inclusive) of the metal matrix composite.

實施例37係如實施例1至實施例36中任一項之金屬基質複合物,其中該複數個無機粒子存在數量為介於該金屬基質複合物的2重量百分比及25重量百分比(含)之間。 The metal matrix composite of any one of embodiments 1 to 36, wherein the plurality of inorganic particles are present in an amount of 2% by weight and 255% by weight (inclusive) of the metal matrix composite. between.

實施例38係如實施例1至實施例37中任一項之金屬基質複合物,其中該複數個不連續纖維存在數量為介於該金屬基質複合物的2重量百分比及25重量百分比(含)之間。 The metal matrix composite of any one of embodiments 1 to 37, wherein the plurality of discontinuous fibers are present in an amount of 2% by weight and 255% by weight (inclusive) of the metal matrix composite. between.

實施例39係如實施例1至實施例38中任一項之金屬基質複合物,其中該複數個無機粒子及該複數個不連續纖維以該金屬基質複合物的5重量百分比及50重量百分比(含)之間的數量結合存在。 The metal matrix composite of any one of embodiments 1 to 38, wherein the plurality of inorganic particles and the plurality of discontinuous fibers are 5 weight percent and 50 weight percent of the metal matrix composite ( The number between the two contains a combination.

實施例40係如實施例1至實施例39中任一項之金屬基質複合物,其中該等無機粒子之該包封密度係比該金屬之該密度小至少40%。 The metal matrix composite of any one of embodiments 1 to 39, wherein the encapsulation density of the inorganic particles is at least 40% less than the density of the metal.

實施例41係如實施例1至實施例40中任一項之金屬基質複合物,其中該等無機粒子之該包封密度係比該金屬之該密度小至少50%。 The metal matrix composite of any one of embodiments 1 to 40, wherein the encapsulation density of the inorganic particles is at least 50% less than the density of the metal.

實施例42係如實施例1至實施例41中任一項之金屬基質複合物,其中該金屬基質複合物基本上由以下組成:該金屬;該複數個無機粒子;及該複數個不連續纖維。 The metal matrix composite of any one of embodiments 1 to 41, wherein the metal matrix composite consists essentially of: the metal; the plurality of inorganic particles; and the plurality of discontinuous fibers .

實施例43係一些玻璃泡。該等玻璃泡包含的玻璃耐受加熱到攝氏700度的溫度達至少兩小時而不軟化並且在攝氏1371度展現6或更小的澆鑄指數。 Example 43 is a glass bubble. The glass bubbles comprise glass that withstands heating to a temperature of 700 degrees Celsius for at least two hours without softening and exhibits a casting index of 6 or less at 1371 degrees Celsius.

實施例44係如實施例43的玻璃泡,在攝氏1371度展現5或更小、4或更小、3或更小、或2或更小的澆鑄指數。 Example 44 is a glass bubble as in Example 43 exhibiting a casting index of 5 or less, 4 or less, 3 or less, or 2 or less at 1371 degrees Celsius.

實施例45係如實施例43或實施例44的玻璃泡,在攝氏1371度展現1的澆鑄指數。 Example 45 is a glass bubble as in Example 43 or Example 44 exhibiting a casting index of 1 at 1371 degrees Celsius.

實施例46係如實施例43至實施例45中任一項之玻璃泡,其包含之玻璃具有範圍從攝氏700度到攝氏785度(含)的一玻璃軟化溫度。 Embodiment 46 is the glass foam of any one of embodiments 43 to 45, which comprises glass having a glass softening temperature ranging from 700 degrees Celsius to 785 degrees Celsius (inclusive).

實施例47係如實施例43至實施例46中任一項之玻璃泡,其包含之玻璃具有範圍從攝氏715度到攝氏735度的一玻璃軟化溫度。 Embodiment 47 is the glass foam of any one of embodiments 43 to 46, which comprises glass having a glass softening temperature ranging from 715 degrees Celsius to 735 degrees Celsius.

實施例48係如實施例43至實施例47中任一項之玻璃泡,其包含和去離子水攪拌2小時而每克玻璃泡在去離子水中溶出鈉離子小於100微克的玻璃。 Embodiment 48 is the glass blister of any one of embodiments 43 to 47, which comprises stirring with deionized water for 2 hours to dissolve less than 100 micrograms of sodium ion per gram of glass bubbles in deionized water.

實施例49係如實施例43至實施例48中任一項之玻璃泡,包含介於每立方公分0.5至2.3克(g/cc)的一包封密度、0.5至1.5g/cc、或0.5至0.9g/cc。 Embodiment 49 is the glass foam of any one of embodiments 43 to 48, comprising an envelope density of from 0.5 to 2.3 grams per cubic centimeter (g/cc), from 0.5 to 1.5 g/cc, or 0.5. To 0.9g/cc.

實施例50係如實施例43至實施例49中任一項之玻璃泡,其中80體積%的該等玻璃泡耐受4000psi(27.6MPa)的等靜壓而不破裂。 The glass foam of any one of embodiments 43 to 49, wherein 80% by volume of the glass bubbles are resistant to isostatic pressing of 4000 psi (27.6 MPa) without breaking.

實施例51係如實施例43至實施例50中任一項之玻璃泡,其中80體積%的該等玻璃泡耐受6000psi(41.4MPa)的等靜壓而不破裂。 The photocell of any one of embodiments 43 to 50, wherein 80% by volume of the glass bubbles are resistant to isostatic pressing of 6000 psi (41.4 MPa) without breaking.

實施例52係如實施例43至實施例51中任一項之玻璃泡,其中80體積%的該等玻璃泡耐受8000psi(55.2MPa)的等靜壓而不破裂。 Embodiment 52 is the glass blister of any one of embodiments 43 to 51, wherein 80% by volume of the glass bubbles are resistant to an isostatic pressure of 8000 psi (55.2 MPa) without breaking.

實施例53係如實施例43至實施例52中任一項之玻璃泡,其包含矽石、石灰、硼酸、磷酸鈣、煅氧化鋁矽酸鹽、鎂矽酸鹽、及至多約1wt.%Na2O。 Embodiment 53 is a glass foam according to any one of embodiments 43 to 52, which comprises vermiculite, lime, boric acid, calcium phosphate, calcined alumina silicate, magnesium citrate, and up to about 1 wt.% Na 2 O.

實施例54係如實施例43至實施例53中任一項之玻璃泡,其包含範圍從2.5到7.5(含)的一矽石對氧化鋁重量比。 Embodiment 54 is a glass foam according to any one of embodiments 43 to 53, which comprises a weight ratio of meteorite to alumina ranging from 2.5 to 7.5 inclusive.

實施例55係如實施例43至實施例54中任一項之玻璃泡,其包含範圍從5.0到7.5(含)的一矽石對氧化鋁重量比。 Embodiment 55 is the glass foam of any one of embodiments 43 to 54 which comprises a weight ratio of vermiculite to alumina ranging from 5.0 to 7.5 inclusive.

實例Instance

這些實例僅用於闡釋之目的,並非意圖過度限制隨附申請專利範圍的範疇。雖然本揭露之廣泛範疇內提出之數值範圍及參數係近似值,但盡可能準確地報告在特定實例中提出之數值。然而,任何數值本質上都含有其各自試驗測量時所發現的標準偏差必然導致的某些誤差。起碼,至少應鑑於有效位數的個數,並且藉由套用普通捨入技術,詮釋各數值參數,但意圖不在於限制所主張申請專利範圍範疇均等者學說之應用。 These examples are for illustrative purposes only and are not intended to unduly limit the scope of the appended claims. The numerical ranges and parameters set forth in the broad scope of the disclosure are approximations, and the values presented in the particular examples are reported as accurately as possible. However, any numerical value inherently contains certain errors necessarily resulting from the standard deviations found in the respective test. At the very least, the numerical parameters should be interpreted at least in view of the number of significant digits, and by applying ordinary rounding techniques, but the intention is not to limit the application of the doctrine of the equal scope of the claimed patent.

材料概述Material overview

除非另有說明,本說明書中之實例及其餘部分中的份數、百分率、比率等皆依重量計。表2提供下面實例使用的材料的說明及來源: Parts, percentages, ratios, and the like in the examples and the remainder of the specification are by weight unless otherwise indicated. Table 2 provides a description and source of the materials used in the following examples:

測試方法1.三點彎曲測試 Test Method 1. Three-point bending test

金屬基質複合物的應力及應變係使用三點彎曲測試判定。在三點彎曲測試,一樣本沿長度方向放置於間隔32毫米(mm)的兩圓柱狀支撐之間。吊掛自測試設備的加載元(load cell)的一第三加載圓柱降下來以便接觸該樣本的中點。MTS Systems Corporation(Eden Prairie,MN)提供的一軟體控制的加載框裝有一100千牛頓(KN)加載元,其用來經由該中間加載圓柱施加一負載到該樣本中心。該系統測量施加到該樣本的力量以及針對各時間點之該中間加載圓柱距其起始位置的位移。使用標準力量方程式,將這些值各別換算成應力及應變。 The stress and strain of the metal matrix composite were determined using a three-point bending test. In the three-point bending test, the same length is placed between the two cylindrical supports spaced 32 mm apart. A third loading cylinder of the load cell of the self-test device is lowered to contact the midpoint of the sample. A software controlled loading frame provided by MTS Systems Corporation (Eden Prairie, MN) is equipped with a 100 kilonewton (KN) load cell for applying a load to the center of the sample via the intermediate loading cylinder. The system measures the force applied to the sample and the displacement of the intermediate loading cylinder from its starting position for each time point. These values are each converted to stress and strain using standard force equations.

測試方法2.聲學分散法 Test Method 2. Acoustic Dispersion Method

為了在一金屬中均質分散一或多種填料材料,所有材料倒進一50毫升(mL)的玻璃瓶,接著將其確實蓋好。接著,把該瓶裝進一Resodyn LabRAM聲學混合器(Resodyn Corporation,Butte,MT),且以70%的強度使用自動頻率調整搖3分鐘,然後將其抵靠一堅硬表面拍3至5次以使所有材料落在該瓶底部。 To homogenously disperse one or more filler materials in a metal, all materials were poured into a 50 ml (mL) glass vial and then surely covered. Next, the bottle was loaded into a Resodyn LabRAM Acoustic Mixer (Resodyn Corporation, Butte, MT) and shaken for 3 minutes at 70% intensity using automatic frequency adjustment, then placed 3 to 5 times against a hard surface to make all The material falls on the bottom of the bottle.

測試方法3.離子溶出測試 Test Method 3. Ion Dissolution Test

100g玻璃珠樣本與1000g去離子(DI)水在超音波振盪器中攪拌約2小時。然後以每分鐘10,000轉藉由離心作用將該等玻璃珠與該DI水分開達10分鐘。藉由離子層析法測量所得之瀝取溶液的離子濃度。藉由繪製該等標準件中各離子之區域對上該標準件中該離 子濃度,來製備各離子個別的校準曲線。自該等樣本溶出之各離子濃度係使用各離子之該測量區域來判定。各離子之識別係僅透過滯留匹配法(retention matching)達成。 A 100 g glass bead sample was stirred with 1000 g of deionized (DI) water in an ultrasonic oscillator for about 2 hours. The glass beads were then separated from the DI water by centrifugation at 10,000 rpm for 10 minutes. The ion concentration of the resulting leaching solution was measured by ion chromatography. By drawing the regions of the ions in the standard parts, the separation in the standard part Subconcentration to prepare individual calibration curves for each ion. The concentration of each ion eluted from the samples is determined using the measurement region of each ion. The identification of each ion is achieved only by retention matching.

製備實例1 Preparation example 1

列於下面表3中的各材料的數量係混合並放置於一石英玻璃坩堝內。然後該混合物於一爐中在華氏2320度(攝氏1271度)加熱達4小時。接著,該材料係冷卻到室溫(例如,約攝氏23度)。將該材料從該坩堝鑿出,並且以一盤式研磨機(BICO Inc.,Burbank,CA)壓碎成玻璃料粒子。該玻璃料的最大尺寸小於5毫米(mm)。接著使用一噴射研磨機(Hosokawa Alpine,Augsburg,Germany)將該等玻璃料粒子噴射研磨成具有質量中值直徑(D50)係20微米(μm)的粒徑的粉末。1000g的該粉末接著混合1100g的水、2重量百分比的補充硼酸、及來自硫酸鋅的0.3重量百分比的硫、以及1重量百分比的CMC,各基於該等玻璃粉末的總重量。該漿體的總固體係製成48重量百分比。該水/玻璃料粉末漿體係以LabStar研磨機(NETZSCH Premier Technologies,LLC,Exton,PA)研磨下降到D50為一次粒徑1.4μm。來自該研磨的該漿體經噴霧乾燥以形成黏聚進料粒子。從該噴霧乾燥進料通過一天然氣火焰來生產該等玻璃泡。該總玻璃泡密度及火焰條件列於下表4中。該等所得之玻璃泡具有7微米的一D5、35微米的一D50、及60微米的一D90。 The amounts of each of the materials listed in Table 3 below were mixed and placed in a quartz glass crucible. The mixture was then heated in an oven at 2320 degrees Fahrenheit (1271 degrees Celsius) for 4 hours. The material is then cooled to room temperature (eg, about 23 degrees Celsius). The material was cut from the crucible and crushed into glass frit particles by a disc grinder (BICO Inc., Burbank, CA). The maximum size of the frit is less than 5 millimeters (mm). The glass frit particles were then jet milled into a powder having a mass median diameter (D50) of 20 micrometers (μm) using a jet mill (Hosokawa Alpine, Augsburg, Germany). 1000 g of this powder was then mixed with 1100 g of water, 2 weight percent of supplemental boric acid, and 0.3 weight percent of sulfur from zinc sulfate, and 1 weight percent of CMC, each based on the total weight of the glass powders. The total solids of the slurry was made to 48 weight percent. The water/glass frit slurry system was milled to a D50 of a primary particle size of 1.4 μm using a LabStar mill (NETZSCH Premier Technologies, LLC, Exton, PA). The slurry from the milling is spray dried to form cohesive feed particles. The glass bubbles are produced from the spray dried feed through a natural gas flame. The total glass bubble density and flame conditions are listed in Table 4 below. The resulting glass bubbles have a D5 of 7 microns, a D50 of 35 microns, and a D90 of 60 microns.

比較例1 Comparative example 1

10克(g)的Al 1-511粉末倒進具有內徑1.5英吋(3.81公分)的圓形石墨模中。該Al 1-511粉末係如下燒結:該模裝進一HP50-7010熱壓機(Thermal Technology LLC,Santa Rosa,CA),然後以泵將設定環境抽到真空。該模從室溫以每分鐘攝氏25度(度C/分 鐘)加熱到攝氏600度,於該溫度保持15分鐘(min)。在溫度保持15分鐘後,在攝氏600度施加640公斤(kg)的力量(對於這個大小的模是每平方英吋800磅的壓力)達1小時(hr)。接著釋放壓力、將腔充氮、而允許該模爐冷回降到室溫。所產生之燒結圓盤之尺寸以及其質量,係經測量以計算出每立方公分1.91克(g/cc)的一包封密度,係比完全緻密的純鋁小29%。從該圓盤的中間切下寬約0.5英吋(1.27公分)長1.5英吋(3.81公分)的一條,而此條經受上述的三點彎曲測試。該樣本具有31百萬帕斯卡(MPa)的一極限抗拉強度。結果顯示於以下表6中及圖2中。 Ten grams (g) of Al 1-511 powder was poured into a circular graphite mold having an inner diameter of 1.5 inches (3.81 cm). The Al 1-511 powder was sintered as follows: The mold was loaded into an HP50-7010 hot press (Thermal Technology LLC, Santa Rosa, CA) and the set environment was pumped to a vacuum with a pump. The mold is 25 degrees Celsius per minute from room temperature (degree C/min The clock is heated to 600 degrees Celsius and held at this temperature for 15 minutes (min). After a temperature of 15 minutes, a force of 640 kilograms (kg) was applied at 600 degrees Celsius (800 pounds per square inch for this size) for 1 hour (hr). The pressure is then released, the chamber is filled with nitrogen, and the mold furnace is allowed to cool down to room temperature. The size of the resulting sintered disc and its mass were measured to calculate an envelope density of 1.91 grams per cubic centimeter (g/cc), which is 29% less than fully dense pure aluminum. A strip having a width of about 0.5 inch (1.27 cm) and a length of 1.5 inches (3.81 cm) was cut from the middle of the disc, and the strip was subjected to the three-point bending test described above. The sample has an ultimate tensile strength of 31 megapascals (MPa). The results are shown in Table 6 below and in Figure 2.

比較例2 Comparative example 2

10g的Al 1-511粉末及1g的玻璃泡經由上述該人工分散法混合,而該混合物倒入如比較例1的相同石墨模。該設定環境接著經受上述比較例1的相同燒結程序。該所得之燒結圓盤具有1.58g/cc的一包封密度。三點彎曲測試的結果顯示於以下表6中及圖2中。 10 g of Al 1-511 powder and 1 g of glass bubbles were mixed by the above-described artificial dispersion method, and the mixture was poured into the same graphite mold as in Comparative Example 1. This setting environment was then subjected to the same sintering procedure of Comparative Example 1 described above. The resulting sintered disc had an envelope density of 1.58 g/cc. The results of the three-point bending test are shown in Table 6 below and in Figure 2.

比較例3 Comparative example 3

10g的Al 1-511粉末及1g的陶瓷纖維經由上述該人工分散法混合,且該混合物倒入如比較例1及比較例2的相同石墨模。該設定環境接著經受上述比較例1的相同燒結程序。該所得之圓盤具 有2.11g/cc的一包封密度。三點彎曲測試的結果顯示於以下表6中及圖2中。 10 g of Al 1-511 powder and 1 g of ceramic fiber were mixed by the above-described artificial dispersion method, and the mixture was poured into the same graphite mold as in Comparative Example 1 and Comparative Example 2. This setting environment was then subjected to the same sintering procedure of Comparative Example 1 described above. The resulting disc There is a packing density of 2.11 g/cc. The results of the three-point bending test are shown in Table 6 below and in Figure 2.

比較例4 Comparative example 4

9g的Al 1-511粉末、0.3g的玻璃泡、及1.7g的陶瓷纖維經粗略攪拌,且該混合物倒入如比較例1至比較例3的相同石墨模。該設定環境接著經受上述比較例1的相同燒結程序。該所得之圓盤具有1.72g/cc的一包封密度。三點彎曲測試的結果顯示於以下表6中及圖2中。 9 g of Al 1-511 powder, 0.3 g of glass bubbles, and 1.7 g of ceramic fibers were roughly stirred, and the mixture was poured into the same graphite mold as Comparative Examples 1 to 3. This setting environment was then subjected to the same sintering procedure of Comparative Example 1 described above. The resulting disc had an envelope density of 1.72 g/cc. The results of the three-point bending test are shown in Table 6 below and in Figure 2.

實例5 Example 5

9g的Al 1-511粉末、0.3g的玻璃泡、及1.7g的陶瓷纖維經由上述該人工分散法混合,而該混合物倒入如比較例1至比較例4的相同石墨模。該設定環境接著經受上述比較例1的相同燒結程序。該所得之圓盤具有1.83g/cc的一包封密度。三點彎曲測試的結果顯示於圖2之下表6中。 9 g of Al 1-511 powder, 0.3 g of glass bubbles, and 1.7 g of ceramic fibers were mixed by the above-described artificial dispersion method, and the mixture was poured into the same graphite mold as Comparative Examples 1 to 4. This setting environment was then subjected to the same sintering procedure of Comparative Example 1 described above. The resulting disc had an envelope density of 1.83 g/cc. The results of the three point bending test are shown in Table 6 below Figure 2.

實例6 Example 6

10g的Al 1-511粉末、0.5g的玻璃泡、及0.5g的陶瓷纖維經由上述該人工分散法混合,而該混合物倒入如比較例1至比較例4及實例5的相同石墨模。該設定環境接著經受上述比較例1的 相同燒結程序。該所得之圓盤具有1.71g/cc的一包封密度。三點彎曲測試的結果顯示於以下表6中。 10 g of Al 1-511 powder, 0.5 g of glass bubbles, and 0.5 g of ceramic fibers were mixed by the above-described artificial dispersion method, and the mixture was poured into the same graphite molds as Comparative Examples 1 to 4 and 5. The setting environment is then subjected to the above Comparative Example 1 The same sintering procedure. The resulting disc had an envelope density of 1.71 g/cc. The results of the three point bending test are shown in Table 6 below.

實例7 Example 7

8g的Al 1-511粉末、0.45g的玻璃泡、及2.55g的陶瓷纖維經由上述該人工分散法混合,而該混合物倒入如比較例1至比較例4及實例5至實例6的相同石墨模。該設定環境接著經受上述比較例1的相同燒結程序。該所得之圓盤具有1.78g/cc的一包封密度。三點彎曲測試的結果顯示於以下表6中。 8 g of Al 1-511 powder, 0.45 g of glass bubbles, and 2.55 g of ceramic fibers were mixed by the above-described artificial dispersion method, and the mixture was poured into the same graphite as Comparative Examples 1 to 4 and Examples 5 to 6. mold. This setting environment was then subjected to the same sintering procedure of Comparative Example 1 described above. The resulting disc had an envelope density of 1.78 g/cc. The results of the three point bending test are shown in Table 6 below.

實例8 Example 8

7g的Al 1-511粉末、0.6g的玻璃泡、及3.4g的陶瓷纖維經由上述該人工分散法混合,而該混合物倒入如比較例1至比較例4及實例5至實例7的相同石墨模。該設定環境接著經受上述比較例1的相同燒結程序。該所得之圓盤具有1.63g/cc的一包封密度。三點彎曲測試的結果顯示於以下表6中。 7 g of Al 1-511 powder, 0.6 g of glass bubbles, and 3.4 g of ceramic fibers were mixed by the above-described artificial dispersion method, and the mixture was poured into the same graphite as Comparative Examples 1 to 4 and Examples 5 to 7. mold. This setting environment was then subjected to the same sintering procedure of Comparative Example 1 described above. The resulting disc had an enveloping density of 1.63 g/cc. The results of the three point bending test are shown in Table 6 below.

比較例9 Comparative Example 9

10.8克(g)的Al 6063粉末倒進具有內徑1.575英吋(4.00公分)的一圓形石墨模中。該Al 6063粉末係如下燒結:該模裝進一Toshiba Machine GMP-411VA玻璃模壓機(Toshiba Machine Co.,Numazu-shi,Japan),且該設定環境充氮60秒、接著以泵抽到真空。該模從攝氏40度以每分鐘攝氏28度(度C/分鐘)加熱到攝氏600度。一旦該模達到600度C,保持在彼溫度同時該模上的該力量逐漸從零施力增加到21,000牛頓(對於這個大小的模是2400psi(或16.55MPa)的壓力)。在20分鐘的過程中所發生的力量漸增大約為線性。一旦達到21,000N的全部力量,該模在600度C保持在此狀態達1小時。接著釋放壓力、且允許該模爐冷降到室溫。所產生之燒結圓盤之尺寸以及其質量,係經測量以計算出每立方公分2.51克(g/cc)的一包封密度,係比完全緻密的鋁6063小7%。從該圓盤的中間切下寬約0.5英吋(1.27公分)長1.5英吋(3.81公分)的一條,而此條經受上述的三點彎曲測試。該樣本具有203百萬帕斯卡(MPa)的一極限抗拉強度。結果顯示於以下表7中及圖3中。 10.8 grams (g) of Al 6063 powder was poured into a circular graphite mold having an inner diameter of 1.575 inches (4.00 cm). The Al 6063 powder was sintered as follows: the mold was loaded into a Toshiba Machine GMP-411VA glass molding machine (Toshiba Machine Co., Numazu-shi, Japan), and the set environment was nitrogen-filled for 60 seconds, followed by pumping to vacuum. . The mold is heated from 40 degrees Celsius to 28 degrees Celsius (degrees C/min) to 600 degrees Celsius. Once the mold reached 600 degrees C, it remained at that temperature while the force on the mold gradually increased from zero to 21,000 Newtons (2400 psi (or 16.55 MPa) pressure for this size mold). The increase in force that occurs during the course of 20 minutes is approximately linear. Once the full force of 21,000 N is reached, the mold remains in this state for 1 hour at 600 degrees C. The pressure is then released and the mold is allowed to cool down to room temperature. The size of the resulting sintered disc and its mass were measured to calculate an envelope density of 2.51 grams per cubic centimeter (g/cc), which is 7% less than the fully dense aluminum 6063. A strip having a width of about 0.5 inch (1.27 cm) and a length of 1.5 inches (3.81 cm) was cut from the middle of the disc, and the strip was subjected to the three-point bending test described above. The sample has an ultimate tensile strength of 203 megapascals (MPa). The results are shown in Table 7 below and in Figure 3.

比較例10 Comparative Example 10

8.64g的Al 6063粉末及0.48g的氧化鋁粉末經由上述該聲學分散法混合,且該混合物倒入如比較例9的相同石墨模。該設定環境接著經受上述比較例9的相同燒結程序。該所得之燒結圓盤具有2.34g/cc的一包封密度。三點彎曲測試的結果顯示於以下表7中及圖3中。 8.64 g of Al 6063 powder and 0.48 g of alumina powder were mixed by the above-described acoustic dispersion method, and the mixture was poured into the same graphite mold as in Comparative Example 9. This setting environment was then subjected to the same sintering procedure of Comparative Example 9 described above. The resulting sintered disc had an encapsulation density of 2.34 g/cc. The results of the three-point bending test are shown in Table 7 below and in Figure 3.

比較例11 Comparative Example 11

9.72g的Al 6063粉末及1.56g的陶瓷纖維經由上述該聲學分散法混合,且該混合物倒入如比較例9至比較例10的相同石墨模。該設定環境接著經受上述比較例9的相同燒結程序。該所得之圓盤具有2.65g/cc的一包封密度。三點彎曲測試的結果顯示於以下表7中及圖3中。 9.72 g of Al 6063 powder and 1.56 g of ceramic fiber were mixed by the above-described acoustic dispersion method, and the mixture was poured into the same graphite mold as Comparative Example 9 to Comparative Example 10. This setting environment was then subjected to the same sintering procedure of Comparative Example 9 described above. The resulting disc had an encapsulation density of 2.65 g/cc. The results of the three-point bending test are shown in Table 7 below and in Figure 3.

實例12 Example 12

7.56g的Al 6063粉末、0.48g的氧化鋁粉末、及1.56g的陶瓷纖維經由上述該聲學分散法混合,且該混合物倒入如比較例9至比較例11的相同石墨模。該設定環境接著經受上述比較例9的相同燒結程序。該所得之圓盤具有2.45g/cc的一包封密度。三點彎曲測試的結果顯示於以下表7中及圖3中。 7.56 g of Al 6063 powder, 0.48 g of alumina powder, and 1.56 g of ceramic fiber were mixed by the above-described acoustic dispersion method, and the mixture was poured into the same graphite mold as Comparative Example 9 to Comparative Example 11. This setting environment was then subjected to the same sintering procedure of Comparative Example 9 described above. The resulting disc had an envelope density of 2.45 g/cc. The results of the three-point bending test are shown in Table 7 below and in Figure 3.

實例13 Example 13

5.4g的Al 6063粉末、0.96g的氧化鋁粉末、及1.56g的陶瓷纖維經由上述該聲學分散法混合,且該混合物倒入如比較例9至比較例11及實例12的相同石墨模。該設定環境接著經受上述比較例9的相同燒結程序。該所得之圓盤具有2.11g/cc的一包封密度。三點彎曲測試的結果顯示於以下表7中及圖3中。 5.4 g of Al 6063 powder, 0.96 g of alumina powder, and 1.56 g of ceramic fiber were mixed by the above-described acoustic dispersion method, and the mixture was poured into the same graphite mold as Comparative Example 9 to Comparative Example 11 and Example 12. This setting environment was then subjected to the same sintering procedure of Comparative Example 9 described above. The resulting disc had an envelope density of 2.11 g/cc. The results of the three-point bending test are shown in Table 7 below and in Figure 3.

實例14 Example 14

5.4g的Al 6063粉末、0.96g的氧化鋁粉末、及1.56g的陶瓷纖維經由上述該聲學分散法混合,且該混合物倒入如比較例9至比較例11及實例12至實例13的相同石墨模。該模裝進一Toshiba Machine GMP-411VA玻璃模壓機(Toshiba Machine Co.,Numazu-shi,Japan),且該設定環境充氮60秒、接著以泵抽到真空。該模從攝氏40度以30度C/min加熱到攝氏630度。一旦該模達到攝氏630度,保持在彼溫度同時該模上的該力量逐漸從零施力增加到34,664牛頓(對於這個大小的模是4000psi(或27.58MPa)的壓力)。在20分鐘的過程中所發生的力量漸增大約為線性。一旦達到34,664N的全部力量,該模在630度C保持在此狀態達1小時。接著釋放壓力、且允許該模爐冷降到室溫。該所得之圓盤具有2.19g/cc的一包封密度。三點彎曲測試的結果顯示於以下表7中及圖3中。 5.4 g of Al 6063 powder, 0.96 g of alumina powder, and 1.56 g of ceramic fiber were mixed by the above-described acoustic dispersion method, and the mixture was poured into the same graphite as Comparative Example 9 to Comparative Example 11 and Example 12 to Example 13. mold. The mold was loaded into a Toshiba Machine GMP-411VA glass molding machine (Toshiba Machine Co., Numazu-shi, Japan), and the set environment was nitrogen-filled for 60 seconds, followed by pumping to vacuum. The mold is heated from 30 degrees Celsius to 30 degrees C/min to 630 degrees Celsius. Once the mold reaches 630 degrees Celsius, it remains at that temperature while the force on the mold gradually increases from zero to 34,664 Newtons (for this size the mold is 4000 psi (or 27.58 MPa)). The increase in force that occurs during the course of 20 minutes is approximately linear. Once the full force of 34,664 N is reached, the mold remains in this state for 1 hour at 630 degrees C. The pressure is then released and the mold is allowed to cool down to room temperature. The resulting disc had an encapsulation density of 2.19 g/cc. The results of the three-point bending test are shown in Table 7 below and in Figure 3.

表7:實例的組成物及機械性質 Table 7 : Composition and mechanical properties of the examples

比較例15 Comparative Example 15

10.8克(g)的Al 6063粉末倒進具有內徑1.575英吋(4.00公分)的一圓形石墨模裡。該Al 6063粉末係如下燒結:該模裝進一Toshiba Machine GMP-411VA玻璃模壓機(Toshiba Machine Co.,Numazu-shi,Japan),且該設定環境充氮60秒、接著以泵抽到真空。該模從攝氏40度以每分鐘攝氏28度(度C/分鐘)加熱到攝氏615度。一旦該模達到615度C,保持在彼溫度同時該模上的該力量逐漸從零力量增加到21,000牛頓(對於這個大小的模是1600psi的壓力)。在20分鐘的過程中所發生的力量漸增大約為線性。一旦達到21,000N的全部力量,該模在600度C保持在此狀態達1小時。接著釋放壓力、且允許該模爐冷降到室溫。所產生之燒結圓盤之尺寸以及其質量,係經測量以計算出每立方公分2.51克(g/cc)的一包封密度,係比完全緻密的鋁6063小7%。從該圓盤的中間切下寬約0.5英吋(1.27公分)長1.575英吋(4.00公分)的一條,而此條經受上述的三點彎曲測試。該樣本具有203百萬帕斯卡(MPa)的一極限抗拉強度。結果顯示於以下表8中及圖4。 10.8 grams (g) of Al 6063 powder was poured into a circular graphite mold having an inner diameter of 1.575 inches (4.00 cm). The Al 6063 powder was sintered as follows: the mold was loaded into a Toshiba Machine GMP-411VA glass molding machine (Toshiba Machine Co., Numazu-shi, Japan), and the set environment was nitrogen-filled for 60 seconds, followed by pumping to vacuum. . The mold is heated from 40 degrees Celsius to 28 degrees Celsius (degrees C/min) to 615 degrees Celsius. Once the mold reached 615 degrees C, it remained at that temperature while the force on the mold gradually increased from zero force to 21,000 Newtons (pressure of 1600 psi for this size mold). The increase in force that occurs during the course of 20 minutes is approximately linear. Once the full force of 21,000 N is reached, the mold remains in this state for 1 hour at 600 degrees C. The pressure is then released and the mold is allowed to cool down to room temperature. The size of the resulting sintered disc and its mass were measured to calculate an envelope density of 2.51 grams per cubic centimeter (g/cc), which is 7% less than the fully dense aluminum 6063. A strip having a width of about 0.5 inch (1.27 cm) and a length of 1.575 inches (4.00 cm) was cut from the middle of the disc, and the strip was subjected to the above three-point bending test. The sample has an ultimate tensile strength of 203 megapascals (MPa). The results are shown in Table 8 below and Figure 4.

實例16 Example 16

5.4g的Al 1-511粉末、0.96g的玻璃泡、及0.78g的陶瓷纖維經由上述該聲學分散法混合,且該混合物倒入如比較例15的相同石墨模。該模裝進一Toshiba Machine GMP-411VA玻璃模壓機(Toshiba Machine Co.,Numazu-shi,Japan),且該設定環境充氮60秒、接著以泵抽到真空。該模從攝氏40度以每分鐘攝氏30度(度C/分鐘)加熱到攝氏615度。一旦該模達到615度C,保持在彼溫度同時該模上的該力量逐漸從零力量增加到13,954牛頓(對於這個大小的模是1600psi的壓力)。在20分鐘的過程中所發生的力量漸增大約為線性。一旦達到13,954N的全部力量,該模在615度C保持在此狀態達1小時。接著釋放壓力、且允許該模爐冷降到室溫。該所得之圓盤具有1.93g/cc的一包封密度。三點彎曲測試的結果顯示於以下表8中及圖4。 5.4 g of Al 1-511 powder, 0.96 g of glass bubbles, and 0.78 g of ceramic fibers were mixed by the above-described acoustic dispersion method, and the mixture was poured into the same graphite mold as in Comparative Example 15. The mold was loaded into a Toshiba Machine GMP-411VA glass molding machine (Toshiba Machine Co., Numazu-shi, Japan), and the set environment was nitrogen-filled for 60 seconds, followed by pumping to vacuum. The mold is heated from 40 degrees Celsius to 30 degrees Celsius (degrees C/min) to 615 degrees Celsius. Once the mold reached 615 degrees C, it remained at that temperature while the force on the mold gradually increased from zero force to 13,954 Newtons (pressure of 1600 psi for this size mold). The increase in force that occurs during the course of 20 minutes is approximately linear. Once the full force of 13,954 N is reached, the mold remains in this state for 1 hour at 615 degrees C. The pressure is then released and the mold is allowed to cool down to room temperature. The resulting disc had an envelope density of 1.93 g/cc. The results of the three point bending test are shown in Table 8 below and in Figure 4.

實例17 Example 17

5.4g的Al 1-511粉末、0.96g的玻璃泡、及0.78g的陶瓷纖維經由上述該聲學分散法混合,且該混合物倒入如實例16的相同石墨模。該裝置接著經受上述實例16的相同燒結程序。該所得之圓盤具有1.91g/cc的一包封密度。三點彎曲測試的結果顯示於以下表8中及圖4。 5.4 g of Al 1-511 powder, 0.96 g of glass bubbles, and 0.78 g of ceramic fibers were mixed by the above-described acoustic dispersion method, and the mixture was poured into the same graphite mold as in Example 16. The apparatus was then subjected to the same sintering procedure of Example 16 above. The resulting disc had an envelope density of 1.91 g/cc. The results of the three point bending test are shown in Table 8 below and in Figure 4.

實例18 Example 18

5.4g的Al 1-511粉末、0.96g的Lightstar 106微珠、及0.78g的陶瓷纖維經由上述該聲學分散法混合,且該混合物倒入如實例16的相同石墨模。該裝置接著經受上述實例16的相同燒結程序。該所得之圓盤具有1.93g/cc的一包封密度。三點彎曲測試的結果顯示於以下表8中及圖4。 5.4 g of Al 1-511 powder, 0.96 g of Lightstar 106 microbeads, and 0.78 g of ceramic fibers were mixed by the above-described acoustic dispersion method, and the mixture was poured into the same graphite mold as in Example 16. The apparatus was then subjected to the same sintering procedure of Example 16 above. The resulting disc had an envelope density of 1.93 g/cc. The results of the three point bending test are shown in Table 8 below and in Figure 4.

實例19 Example 19

5.4g的Al 1-511粉末、0.96g的High Alumina 106微珠、及0.78g的陶瓷纖維經由上述該聲學分散法混合,且該混合物倒入如實例16的相同石墨模。該裝置接著經受上述實例16的相同燒結程序。該所得之圓盤具有1.95g/cc的一包封密度。三點彎曲測試的結果顯示於以下表8中及圖4。 5.4 g of Al 1-511 powder, 0.96 g of High Alumina 106 microbeads, and 0.78 g of ceramic fibers were mixed by the above-described acoustic dispersion method, and the mixture was poured into the same graphite mold as in Example 16. The apparatus was then subjected to the same sintering procedure of Example 16 above. The resulting disc had an envelope density of 1.95 g/cc. The results of the three point bending test are shown in Table 8 below and in Figure 4.

實例20 Example 20

5.4g的Al 1100粉末、0.96g的Econostar 106微珠、及0.78g的陶瓷纖維經由上述該聲學分散法混合,且該混合物倒入如實例16的相同石墨模。該裝置接著經受上述實例16的相同燒結程序。該所得之圓盤具有1.93g/cc的一包封密度。三點彎曲測試的結果顯示於以下表8中及圖4。 5.4 g of Al 1100 powder, 0.96 g of Econostar 106 microbeads, and 0.78 g of ceramic fibers were mixed by the above-described acoustic dispersion method, and the mixture was poured into the same graphite mold as in Example 16. The apparatus was then subjected to the same sintering procedure of Example 16 above. The resulting disc had an envelope density of 1.93 g/cc. The results of the three point bending test are shown in Table 8 below and in Figure 4.

表8:實例的組成物及機械性質 Table 8 : Composition and mechanical properties of the examples

實例21 Example 21

5.4g的Al 1-511粉末、0.96g的部分燒結碳化矽黏聚粒子、及0.78g的陶瓷纖維經由上述該聲學分散法混合,且該混合物倒入如實例16的相同石墨模。該裝置接著經受上述實例16的相同燒結程序。該產生之圓盤具有2.28g/cc的一包封密度、190MPa的一極限抗拉強度、及3.4%的一破壞應變。三點彎曲測試的結果顯示於圖5中。 5.4 g of Al 1-511 powder, 0.96 g of partially sintered niobium carbide-bonded particles, and 0.78 g of ceramic fibers were mixed by the above-described acoustic dispersion method, and the mixture was poured into the same graphite mold as in Example 16. The apparatus was then subjected to the same sintering procedure of Example 16 above. The resulting disc had an envelope density of 2.28 g/cc, an ultimate tensile strength of 190 MPa, and a strain at failure of 3.4%. The results of the three point bending test are shown in Figure 5.

實例22 Example 22

5.94g的Al 1-131粉末、0.96g的Lightstar 106微珠、及0.78g的陶瓷纖維經由上述該聲學分散法混合,且該混合物倒入如實例16的相同石墨模。該裝置接著經受上述實例16的相同燒結程序。該所得之圓盤具有1.98g/cc的一包封密度。三點彎曲測試的結果顯示於以下表9中及圖6中。 5.94 g of Al 1-131 powder, 0.96 g of Lightstar 106 microbeads, and 0.78 g of ceramic fibers were mixed by the above-described acoustic dispersion method, and the mixture was poured into the same graphite mold as in Example 16. The apparatus was then subjected to the same sintering procedure of Example 16 above. The resulting disc had an envelope density of 1.98 g/cc. The results of the three-point bending test are shown in Table 9 below and in Figure 6.

實例23 Example 23

7.56g的Al 1-131粉末、0.6g的Lightstar 106微珠、及0.78g的陶瓷纖維經由上述該聲學分散法混合,且該混合物倒入如實例16的相同石墨模。該裝置接著經受上述實例16的相同燒結程序。該所得之圓盤具有2.21g/cc的一包封密度。三點彎曲測試的結果顯示於表9中及圖6中。 7.56 g of Al 1-131 powder, 0.6 g of Lightstar 106 microbeads, and 0.78 g of ceramic fibers were mixed by the above-described acoustic dispersion method, and the mixture was poured into the same graphite mold as in Example 16. The apparatus was then subjected to the same sintering procedure of Example 16 above. The resulting disc had an envelope density of 2.21 g/cc. The results of the three point bending test are shown in Table 9 and in Figure 6.

實例24 Example 24

7.02g的Al 1-131粉末、0.72g的Lightstar 106微珠、及0.78g的陶瓷纖維經由上述該聲學分散法混合,且該混合物倒入如實例16的相同石墨模。該裝置接著經受上述實例16的相同燒結程序。該所得之圓盤具有2.12g/cc的一包封密度。三點彎曲測試的結果顯示於表9中及圖6中。 7.02 g of Al 1-131 powder, 0.72 g of Lightstar 106 microbeads, and 0.78 g of ceramic fibers were mixed by the above-described acoustic dispersion method, and the mixture was poured into the same graphite mold as in Example 16. The apparatus was then subjected to the same sintering procedure of Example 16 above. The resulting disc had an encapsulation density of 2.12 g/cc. The results of the three point bending test are shown in Table 9 and in Figure 6.

實例25 Example 25

7.02g的Al粉末、0.72g的Lightstar 106微珠、及0.78g的陶瓷纖維經由上述該聲學分散法混合,且該混合物倒入如實例16的相同石墨模。該裝置接著經受上述實例16的相同燒結程序。該所得之圓盤具有2.00g/cc的一包封密度。三點彎曲測試的結果顯示於表9中及圖6中。 7.02 g of Al powder, 0.72 g of Lightstar 106 microbeads, and 0.78 g of ceramic fibers were mixed by the above-described acoustic dispersion method, and the mixture was poured into the same graphite mold as in Example 16. The apparatus was then subjected to the same sintering procedure of Example 16 above. The resulting disc had an encapsulation density of 2.00 g/cc. The results of the three point bending test are shown in Table 9 and in Figure 6.

表9:實例的組成物及機械性質 Table 9 : Composition and mechanical properties of the examples

實例26 Example 26

5.94g的Al 1-131粉末、0.84g的Lightstar 106微珠、及1.016g的玻璃纖維經由上述該聲學分散法混合,且該混合物倒入如實例16的相同石墨模。該裝置接著經受上述實例16的相同燒結程序。該產生之圓盤具有2.00g/cc的一包封密度、159MPa的一極限抗拉強度、及1.8%的一破壞應變。三點彎曲測試的結果顯示於圖7中。 5.94 g of Al 1-131 powder, 0.84 g of Lightstar 106 microbeads, and 1.016 g of glass fibers were mixed by the above-described acoustic dispersion method, and the mixture was poured into the same graphite mold as in Example 16. The apparatus was then subjected to the same sintering procedure of Example 16 above. The resulting disc had an envelope density of 2.00 g/cc, an ultimate tensile strength of 159 MPa, and a strain at failure of 1.8%. The results of the three point bending test are shown in Figure 7.

雖然本說明書已詳細描述某些例示性實施例,但將瞭解所屬技術領域中具有通常知識者在理解前文敘述後,可輕易設想出這些實施例的替代、變化、及等同物。更進一步地說,在本文中所提及的全部公開案與專利皆全文以引用方式併入本文中,其引用程度就如同將各個各別公開案或專利明確並且各別地指示以引用方式併入本文中。已描述各種例示性實施例。這些及其他實施例係在以下申請專利範圍的範疇之內。 While the present invention has been described in detail with reference to the preferred embodiments of the invention In addition, all publications and patents mentioned herein are hereby incorporated by reference in their entirety in their entirety herein in theties Into this article. Various illustrative embodiments have been described. These and other embodiments are within the scope of the following patent claims.

10‧‧‧金屬 10‧‧‧Metal

12‧‧‧無機粒子 12‧‧‧Inorganic particles

14‧‧‧不連續纖維 14‧‧‧Discontinuous fiber

100‧‧‧金屬基質複合物 100‧‧‧Metal matrix composite

Claims (15)

一種金屬基質複合物,其包含:a. 一金屬,該金屬包含鋁、鎂、或其合金;b. 複數個無機粒子,該等無機粒子具有比該金屬之一密度小至少30%之一包封密度(envelope density);以及c. 複數個不連續纖維,其中該等無機粒子及該等不連續纖維係分散在該金屬中。 A metal matrix composite comprising: a. a metal comprising aluminum, magnesium, or an alloy thereof; b. a plurality of inorganic particles having a density that is at least 30% less than a density of the metal Envelope density; and c. a plurality of discontinuous fibers, wherein the inorganic particles and the discontinuous fibers are dispersed in the metal. 如請求項1之金屬基質複合物,其中該金屬基質複合物具有比該金屬之該密度小至少8%之一包封密度並且在破裂前可耐受1%之一應變。 The metal matrix composite of claim 1, wherein the metal matrix composite has an encapsulation density that is at least 8% less than the density of the metal and can withstand a strain of 1% prior to rupture. 如請求項2之金屬基質複合物,其中該金屬基質複合物在破裂前可耐受2%之一應變。 A metal matrix composite according to claim 2, wherein the metal matrix composite is resistant to a strain of 2% prior to rupture. 如請求項1至3中任一項之金屬基質複合物,其中該金屬基質複合物具有50百萬帕斯卡或更大的一降伏強度。 The metal matrix composite according to any one of claims 1 to 3, wherein the metal matrix composite has a relief strength of 50 megapascals or more. 如請求項1至4中任一項之金屬基質複合物,其中該複數個無機粒子包含多孔粒子,該等多孔粒子包含多孔金屬氧化物粒子、多孔金屬氫氧化物粒子、多孔金屬碳酸鹽、多孔碳粒子、多孔矽石粒子、多孔脫水鋁矽酸鹽粒子、多孔脫水金屬水合物粒子、沸石粒子、多孔玻璃粒子、膨脹珍珠岩粒子、膨脹蛭石粒子、多孔矽酸鈉粒子、工程多孔陶瓷粒子、非多孔初級粒子之黏聚物、或其組合。 The metal matrix composite according to any one of claims 1 to 4, wherein the plurality of inorganic particles comprise porous particles, the porous particles comprising porous metal oxide particles, porous metal hydroxide particles, porous metal carbonate, porous Carbon particles, porous vermiculite particles, porous dehydrated aluminosilicate particles, porous dehydrated metal hydrate particles, zeolite particles, porous glass particles, expanded perlite particles, expanded vermiculite particles, porous sodium antimonate particles, engineered porous ceramic particles a binder of non-porous primary particles, or a combination thereof. 如請求項1至4中任一項之金屬基質複合物,其中該複數個無機粒子包含陶瓷泡或玻璃泡。 The metal matrix composite of any one of claims 1 to 4, wherein the plurality of inorganic particles comprise ceramic bubbles or glass bubbles. 如請求項6之金屬基質複合物,其中該複數個無機粒子包含氧化鋁、鋁矽酸鹽、矽石、或其組合。 The metal matrix composite of claim 6, wherein the plurality of inorganic particles comprise alumina, aluminosilicate, vermiculite, or a combination thereof. 如請求項1至7中任一項之金屬基質複合物,其中該複數個無機粒子包含範圍在1μm及1mm(含)之間的一平均粒徑。 The metal matrix composite of any one of claims 1 to 7, wherein the plurality of inorganic particles comprise an average particle size ranging between 1 μm and 1 mm (inclusive). 如請求項1至8中任一項之金屬基質複合物,其中該複數個不連續纖維包含玻璃、氧化鋁、鋁矽酸鹽、碳、玄武岩、或其一組合。 The metal matrix composite of any one of claims 1 to 8, wherein the plurality of discontinuous fibers comprise glass, alumina, aluminosilicate, carbon, basalt, or a combination thereof. 如請求項1至9中任一項之金屬基質複合物,其中該金屬包含一多孔基質結構。 The metal matrix composite of any one of claims 1 to 9, wherein the metal comprises a porous matrix structure. 如請求項1至10中任一項之金屬基質複合物,其中該金屬包含鋁或其合金且其中該金屬基質複合物具有每立方公分介於1.80及2.50克(含)之間的一包封密度。 The metal matrix composite of any one of claims 1 to 10, wherein the metal comprises aluminum or an alloy thereof and wherein the metal matrix composite has an envelope between 1.80 and 2.50 grams per cubic centimeter. density. 如請求項1至10中任一項之金屬基質複合物,其中該金屬包含鎂或其合金且其中該金屬基質複合物具有每立方公分介於1.35及1.60克(含)之間的一包封密度。 The metal matrix composite according to any one of claims 1 to 10, wherein the metal comprises magnesium or an alloy thereof and wherein the metal matrix composite has an envelope of between 1.35 and 1.60 grams per cubic centimeter. density. 如請求項1至12中任一項之金屬基質複合物,其中該金屬基質複合物於一抗拉測試中在破壞前展現一降伏強度。 The metal matrix composite of any one of claims 1 to 12, wherein the metal matrix composite exhibits a relief strength prior to failure in a tensile test. 如請求項1至13中任一項之金屬基質複合物,其中該金屬存在數量係介於該金屬基質複合物的50重量百分比及95重量百分比(含)之間。 The metal matrix composite of any one of claims 1 to 13, wherein the metal is present in an amount between 50 weight percent and 95 weight percent (inclusive) of the metal matrix composite. 如請求項1至14中任一項之金屬基質複合物,其中該金屬基質複合物基本上由以下組成:該金屬;該複數個無機粒子;及該複數個不連續纖維。 The metal matrix composite of any one of claims 1 to 14, wherein the metal matrix composite consists essentially of: the metal; the plurality of inorganic particles; and the plurality of discontinuous fibers.
TW105140338A 2015-12-08 2016-12-07 Metal matrix composites including inorganic particles and discontinuous fibers and methods of making same TW201736621A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201562264571P 2015-12-08 2015-12-08
US201562264564P 2015-12-08 2015-12-08
US201662356610P 2016-06-30 2016-06-30
US201662372088P 2016-08-08 2016-08-08

Publications (1)

Publication Number Publication Date
TW201736621A true TW201736621A (en) 2017-10-16

Family

ID=58995208

Family Applications (2)

Application Number Title Priority Date Filing Date
TW105140338A TW201736621A (en) 2015-12-08 2016-12-07 Metal matrix composites including inorganic particles and discontinuous fibers and methods of making same
TW105140628A TW201733713A (en) 2015-12-08 2016-12-08 Methods of making metal matrix composites including inorganic particles and discontinuous fibers

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW105140628A TW201733713A (en) 2015-12-08 2016-12-08 Methods of making metal matrix composites including inorganic particles and discontinuous fibers

Country Status (6)

Country Link
US (2) US20200299815A1 (en)
EP (2) EP3387160A2 (en)
KR (2) KR20180090867A (en)
CN (2) CN108699662A (en)
TW (2) TW201736621A (en)
WO (2) WO2017116590A2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11980922B2 (en) * 2018-05-08 2024-05-14 Materion Corporation Methods for producing metal matrix composite strip product
US20210205927A1 (en) * 2020-01-06 2021-07-08 Rohr, Inc. Enhanced coatings and structures via laser cladding with nano-modified feedstock
CN115261747B (en) * 2021-04-29 2023-08-22 苏州铜宝锐新材料有限公司 Powder metallurgy composite functional material, manufacturing method and application thereof
CN113821066B (en) * 2021-10-19 2022-07-15 中国工程物理研究院激光聚变研究中心 Device and method for reducing influence of dynamic protective gas on temperature control in heat treatment process
CN114231860B (en) * 2021-12-20 2022-08-05 哈尔滨工业大学 Preparation method of nano silicon carbide and hollow glass bead mixed reinforced porous aluminum-based composite material

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3429722A (en) 1965-07-12 1969-02-25 Carborundum Co Boron nitride fiber manufacture
US3795524A (en) 1971-03-01 1974-03-05 Minnesota Mining & Mfg Aluminum borate and aluminum borosilicate articles
US4047965A (en) 1976-05-04 1977-09-13 Minnesota Mining And Manufacturing Company Non-frangible alumina-silica fibers
US4568389A (en) * 1981-03-18 1986-02-04 Torobin Leonard B Shaped form or formed mass of hollow metal microspheres
CA1322876C (en) * 1986-01-22 1993-10-12 Tadao Inabata Light metallic composite material and method of producing thereof
EP0249927B1 (en) * 1986-06-17 1991-12-04 Kabushiki Kaisha Toyota Chuo Kenkyusho Fibrous material for composite materials, fiber-reinforced composite materials produced therefrom, and processes for producing same
US5185299A (en) 1987-06-05 1993-02-09 Minnesota Mining And Manufacturing Company Microcrystalline alumina-based ceramic articles
US4954462A (en) 1987-06-05 1990-09-04 Minnesota Mining And Manufacturing Company Microcrystalline alumina-based ceramic articles
US5177124A (en) * 1987-08-19 1993-01-05 Intaglio Ltd. Plastic molded pieces having the appearance of a solid metallic piece
DE3824149A1 (en) * 1988-07-16 1990-01-18 Gruenau Gmbh Chem Fab FLAME-RETARDANT COMPONENTS, IN PARTICULAR PANELS, AND METHOD FOR THEIR PRODUCTION
DE69503722T2 (en) 1994-03-22 1999-04-15 Tokuyama Corp BORONITRIDE FIBER AND METHOD FOR PRODUCING THE SAME
US7169465B1 (en) * 1999-08-20 2007-01-30 Karandikar Prashant G Low expansion metal-ceramic composite bodies, and methods for making same
JP2002356754A (en) * 2001-03-29 2002-12-13 Ngk Insulators Ltd Method for manufacturing composite material, and composite material manufactured by the same
JP4119770B2 (en) * 2003-02-20 2008-07-16 中央精機株式会社 Method for producing composite preform
US9208912B2 (en) * 2004-11-29 2015-12-08 Afsaneh Rabiei Composite metal foam and methods of preparation thereof
CN100410413C (en) * 2006-12-21 2008-08-13 上海交通大学 Carbon fiber mixing reinforced magnesium-base high modulus composite material and its preparing process
CA2695764A1 (en) * 2007-10-26 2009-04-30 H.C. Starck Gmbh Metal powder mixture and the use of the same
KR20120089431A (en) * 2009-06-12 2012-08-10 매튜스, 밴스 Catalyst comprising a metal and a supplemental component and process for hydrogenating oxygen containing organic products
KR20140007895A (en) * 2011-02-14 2014-01-20 신토고교 가부시키가이샤 Mold and die metallic material, air-permeable member for mold and die use, and method for manufacturing the same
US9096034B2 (en) * 2011-04-12 2015-08-04 Powdermet, Inc. Syntactic metal matrix materials and methods
WO2014056114A1 (en) * 2012-10-12 2014-04-17 Zhongwei Chen Method of producing porous electrodes for batteries and fuel cells
JP5633658B2 (en) * 2013-03-01 2014-12-03 三菱マテリアル株式会社 Porous aluminum sintered body
WO2014200770A1 (en) * 2013-06-10 2014-12-18 Apple Inc. Method and apparatus for forming a gold metal matrix composite
CN103878371B (en) * 2014-04-18 2015-11-11 益阳市菲美特新材料有限公司 One is composite porous and preparation method thereof

Also Published As

Publication number Publication date
KR20180090867A (en) 2018-08-13
WO2017116590A2 (en) 2017-07-06
EP3386663A1 (en) 2018-10-17
CN108699662A (en) 2018-10-23
KR20180091865A (en) 2018-08-16
WO2017100174A1 (en) 2017-06-15
EP3387160A2 (en) 2018-10-17
WO2017116590A3 (en) 2017-11-09
EP3386663A4 (en) 2019-06-12
CN108367358A (en) 2018-08-03
US20180272428A1 (en) 2018-09-27
US20200299815A1 (en) 2020-09-24
TW201733713A (en) 2017-10-01

Similar Documents

Publication Publication Date Title
TW201736621A (en) Metal matrix composites including inorganic particles and discontinuous fibers and methods of making same
JP6549273B2 (en) Refractory material and method of forming glass plate using refractory material
CA1232620A (en) Alumina ceramic comprising a siliceous binder and at least one of zirconia and hafnia
JP5657776B2 (en) Refractory, glass overflow molding block, and method for producing glass body
US20080160279A1 (en) Fired, Fire-Resistant Ceramic Product
EP1840101B1 (en) Fused siliceous refractory and production method thereof
JP2018537387A (en) Sintered zirconia mullite refractory composite, its production method and its use
US2842447A (en) Method of making a refractory body and article made thereby
WO2001092183A1 (en) Porous high alumina cast refractory and method for its production
US5389591A (en) Mixture of grains and particles of vitreous silica, and new material made of sintered vitreous silica
US20200216366A1 (en) Ceramic foam
AU2008293522B2 (en) Cast bodies, castable compositions, and methods for their production
JPS5964574A (en) Baddeleyite sinter refractory composition and refractory pr-oduct
CN105939981B (en) With the refractory product for improving flow
JP2011088759A (en) Alumina refractory and method of producing the same
JP4560199B2 (en) Ceramic heat treatment material with excellent thermal shock resistance
JPH01192761A (en) Ingot azs refractory composition
RU2796140C1 (en) Method for producing ceramic heat-resistant product with high homogeneous chemical composition
JP6214514B2 (en) Insulation
JP3925077B2 (en) GLASS CERAMIC, PROCESS FOR PRODUCING THE SAME, AND COMPOSITION FOR GLASS CERAMIC
JPH10140263A (en) Production of metal-ceramics composite
JPH10120462A (en) Zirconia refractory
JP3072877B2 (en) Zirconia-alumina electroformed refractories
JPH101380A (en) High strength damping material and its production