TW201733821A - Elements assembly temporary fixing sheet and manufacturing method wherein the element assembly temporary fixing sheet comprises an element assembly fixing layer and a support layer with alignment marks set on the support layer - Google Patents

Elements assembly temporary fixing sheet and manufacturing method wherein the element assembly temporary fixing sheet comprises an element assembly fixing layer and a support layer with alignment marks set on the support layer Download PDF

Info

Publication number
TW201733821A
TW201733821A TW106107113A TW106107113A TW201733821A TW 201733821 A TW201733821 A TW 201733821A TW 106107113 A TW106107113 A TW 106107113A TW 106107113 A TW106107113 A TW 106107113A TW 201733821 A TW201733821 A TW 201733821A
Authority
TW
Taiwan
Prior art keywords
layer
element assembly
alignment mark
temporary fixing
component assembly
Prior art date
Application number
TW106107113A
Other languages
Chinese (zh)
Other versions
TWI769151B (en
Inventor
Yuki Ebe
Hiroshi Noro
wen-jun Ma
Ryota Mita
Yoshihiko Kitayama
Original Assignee
Nitto Denko (Shanghai Songjiang) Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko (Shanghai Songjiang) Co Ltd filed Critical Nitto Denko (Shanghai Songjiang) Co Ltd
Publication of TW201733821A publication Critical patent/TW201733821A/en
Application granted granted Critical
Publication of TWI769151B publication Critical patent/TWI769151B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • H01L33/486Containers adapted for surface mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/544Marks applied to semiconductor devices or parts, e.g. registration marks, alignment structures, wafer maps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0095Post-treatment of devices, e.g. annealing, recrystallisation or short-circuit elimination
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/544Marks applied to semiconductor devices or parts
    • H01L2223/54426Marks applied to semiconductor devices or parts for alignment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0016Processes relating to electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Led Device Packages (AREA)
  • Adhesive Tapes (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Magnetic Record Carriers (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

The present invention relates to an element assembly temporary fixing sheet and a manufacturing method. The element assembly temporary fixing sheet comprises an element assembly fixing layer for temporarily fixing an element assembly in which a plurality of optical semiconductor elements are arranged, and a support layer for supporting the element assembly fixing layer and containing a synthetic resin. Alignment marks are set on the support layer.

Description

元件集合體暫固定片及製造方法Component assembly temporary fixing sheet and manufacturing method

本發明係關於元件集合體暫固定片及製造方法,詳細而言係關於元件集合體暫固定片及其製造方法。The present invention relates to a component assembly temporary fixing sheet and a manufacturing method thereof, and more particularly to a component assembly temporary fixing sheet and a method of manufacturing the same.

以往,公知有利用螢光體層等覆蓋層覆蓋複數個LED來製作覆蓋LED之方法。 例如,提出有如下方法:準備具備硬質之支持板之支持片,將半導體元件配置於支持片之上表面,且用密封層覆蓋半導體元件,其後,將密封層對應於半導體元件而切斷(例如,參照日本專利特開2014-168036號公報)。 於日本專利特開2014-168036號公報中,於支持板設置有基準標記,以該基準標記為基準切斷密封層。Conventionally, a method of covering a plurality of LEDs with a cover layer such as a phosphor layer has been known. For example, there has been proposed a method of preparing a support sheet having a rigid support plate, disposing a semiconductor element on the upper surface of the support sheet, and covering the semiconductor element with a sealing layer, and thereafter, cutting the sealing layer corresponding to the semiconductor element ( For example, refer to Japanese Patent Laid-Open Publication No. 2014-168036. In Japanese Laid-Open Patent Publication No. 2014-168036, a support mark is provided on a support plate, and the seal layer is cut based on the reference mark.

然而,由於支持板為硬質,因此存在難以設置標記之不良情形。 本發明之目的在於提供一種能夠於支持層容易地設置對準標記之元件集合體暫固定片之製造方法及藉由該製造方法獲得之元件集合體暫固定片。 本發明[1]係一種元件集合體暫固定片,其特徵在於,該元件集合體暫固定片具備:元件集合體固定層,其對複數個光半導體元件排列配置而成之元件集合體進行暫固定;支持層,其支持上述元件集合體固定層,包含合成樹脂;且於上述支持層設置有對準標記。 於該元件集合體暫固定片中,於包含合成樹脂之支持層設置有對準標記,因此,對準標記可容易地形成於支持層。 本發明[2]係如[1]所記載之元件集合體暫固定片,其特徵在於,上述對準標記包含碳材料。 根據該元件集合體暫固定片,對準標記包含碳材料,因此,能夠提高對準標記之視認性。 本發明[3]係如[2]所記載之元件集合體暫固定片,其特徵在於,上述碳材料包含碳黑。 根據該元件集合體暫固定片,上述碳材料包含碳黑,因此,能夠提高對準標記之視認性。 本發明[4]係如[1]~[3]中任一項所記載之元件集合體暫固定片,其特徵在於,上述對準標記係藉由自包含感熱轉印及噴墨印刷之群選擇之至少1種方法而設置之圖案。 根據該元件集合體暫固定片,對準標記係藉由自包含感熱轉印及噴墨印刷之群選擇之至少1種方法而設置之圖案,因此可容易地設置對準標記。 本發明[5]包含[1]所記載之元件集合體暫固定片,其特徵在於,上述元件集合體固定層及上述支持層係透明,上述對準標記係不透明。 根據該元件集合體暫固定片,能夠確實地視認到不透明之對準標記。因此,能夠以對準標記為基準確實地暫固定元件集合體,或者又能夠確實地將密封元件集合體之密封層切斷。 本發明[6]包含[1]所記載之元件集合體暫固定片,其特徵在於,上述對準標記係顯影圖案。 根據該元件集合體暫固定片,對準標記係顯影圖案,因此可容易地設置對準標記。 本發明[7]包含[1]或[6]所記載之元件集合體暫固定片,其特徵在於,上述對準標記包含銀。 根據該元件集合體暫固定片,對準標記包含銀,因此能夠提高對準標記之視認性。 本發明[8]具備[1]所記載之元件集合體暫固定片,其特徵在於,上述元件集合體固定層及上述支持層係有色,上述對準標記係貫通上述元件集合體固定層及上述支持層之貫通孔。 根據該元件集合體暫固定片,元件集合體固定層及支持層係有色,對準標記係貫通元件集合體固定層及支持層之貫通孔,因此能夠確實地視認到對準標記。 本發明[9]包含[1]所記載之元件集合體暫固定片,其特徵在於,上述元件集合體固定層之厚度未達120 μm。 該元件集合體暫固定片之元件集合體固定層之厚度較薄,未達120 μm,因此處理性優異。 本發明[10]包含[1]所記載之元件集合體暫固定片,其特徵在於,上述元件集合體固定層設置於上述支持層之至少一面。 於該元件集合體暫固定片中,元件集合體固定層設置於支持層之至少一面,因此,能夠提高對準標記之視認性。 本發明[11]係一種元件集合體暫固定片之製造方法,其特徵在於,該元件集合體暫固定片之製造方法具備:準備設置有感光層之支持層之步驟(1);藉由光微影自上述感光層以顯影圖案之形式形成對準標記之步驟(2);及將對複數個光半導體元件排列配置而成之元件集合體進行暫固定之元件集合體固定層設置於上述支持層之步驟(3)。 根據該元件集合體暫固定片之製造方法,可簡便地設置對準標記。 本發明[12]包含元件集合體暫固定片之製造方法,其特徵在於,該元件集合體暫固定片之製造方法具備:自碳材料於支持層形成對準標記之步驟(2);及將對複數個光半導體元件排列配置而成之元件集合體進行暫固定之元件集合體固定層設置於上述支持層之步驟(3)。 根據該元件集合體暫固定片之製造方法,可簡便地設置對準標記。 本發明[13]係如[12]所記載之元件集合體暫固定片之製造方法,其特徵在於,上述碳材料包含碳黑。 根據該元件集合體暫固定片之製造方法,可設置視認性得以提高之對準標記。 本發明[14]係如[12]或[13]所記載之元件集合體暫固定片之製造方法,其特徵在於,於上述步驟(2)中,藉由自包含感熱轉印及噴墨印刷之群選擇之至少1種方法而形成上述對準標記。 根據該元件集合體暫固定片之製造方法,可容易地設置對準標記。 本發明[15]包含元件集合體暫固定片之製造方法,其特徵在於,該元件集合體暫固定片之製造方法具備:將對複數個光半導體元件排列配置而成之元件集合體進行暫固定之元件集合體固定層設置於支持層之步驟(3);及將貫通上述元件集合體固定層及上述支持層之貫通孔設置為對準標記之步驟(4)。 根據該元件集合體暫固定片之製造方法,可簡便地設置對準標記。However, since the support board is hard, there is a problem that it is difficult to set the mark. An object of the present invention is to provide a method of manufacturing a component assembly temporary fixing sheet capable of easily providing an alignment mark on a support layer, and a component assembly temporary fixing sheet obtained by the manufacturing method. The present invention [1] is a component assembly temporary fixing sheet, characterized in that the element assembly temporary fixing sheet includes a component assembly fixed layer that temporarily suspends a component assembly in which a plurality of optical semiconductor elements are arranged a support layer supporting the above-mentioned component assembly fixing layer, comprising a synthetic resin; and an alignment mark provided on the support layer. In the element assembly temporary fixing sheet, an alignment mark is provided on the support layer containing the synthetic resin, and therefore, the alignment mark can be easily formed on the support layer. [2] The component assembly temporary fixing sheet according to [1], wherein the alignment mark comprises a carbon material. According to the temporary assembly of the element assembly, the alignment mark contains the carbon material, and therefore the visibility of the alignment mark can be improved. [3] The component assembly temporary fixing sheet according to [2], wherein the carbon material contains carbon black. According to the element assembly temporary fixing piece, since the carbon material contains carbon black, the visibility of the alignment mark can be improved. The component assembly temporary fixing sheet according to any one of [1] to [3] wherein the alignment mark is a self-contained group of thermal transfer and inkjet printing. A pattern set by at least one of the methods selected. According to the element assembly temporary fixing sheet, the alignment mark is provided by at least one method including the group selection of the thermal transfer printing and the ink jet printing, so that the alignment mark can be easily provided. [5] The component assembly temporary fixing sheet according to [1], wherein the element assembly fixing layer and the support layer are transparent, and the alignment mark is opaque. According to the element assembly temporary fixing piece, the opaque alignment mark can be reliably recognized. Therefore, it is possible to surely fix the element assembly with the alignment mark as a reference, or to reliably cut the sealing layer of the sealing element assembly. [6] The component assembly temporary fixing sheet according to [1], wherein the alignment mark is a development pattern. According to the element assembly temporary fixing piece, the alignment mark is a development pattern, and thus the alignment mark can be easily set. [7] The component assembly temporary fixing sheet according to [1] or [6], wherein the alignment mark contains silver. According to the temporary assembly of the element assembly, the alignment mark contains silver, so that the visibility of the alignment mark can be improved. The component assembly temporary fixing sheet according to the aspect [1], wherein the element assembly fixing layer and the support layer are colored, and the alignment mark penetrates the element assembly fixing layer and the The through hole of the support layer. According to the element assembly temporary fixing piece, the element assembly fixing layer and the support layer are colored, and the alignment mark penetrates the through hole of the element assembly fixing layer and the support layer, so that the alignment mark can be reliably recognized. [9] The component assembly temporary fixing sheet according to [1], wherein the element assembly fixing layer has a thickness of less than 120 μm. The element assembly fixing layer of the element assembly temporary fixing sheet has a thin thickness of less than 120 μm, and therefore has excellent handleability. The component assembly temporary fixing sheet according to [1], wherein the element assembly fixing layer is provided on at least one surface of the support layer. In the element assembly temporary fixing sheet, since the element assembly fixing layer is provided on at least one side of the support layer, the visibility of the alignment mark can be improved. The invention [11] is a method for manufacturing a component assembly temporary fixing sheet, characterized in that the method for manufacturing the component assembly temporary fixing sheet comprises: a step (1) of preparing a support layer provided with a photosensitive layer; a step (2) of forming an alignment mark in the form of a development pattern from the photosensitive layer; and a component assembly fixing layer for temporarily fixing the element assembly in which the plurality of optical semiconductor elements are arranged in an array is provided in the above support Step (3) of the layer. According to the method of manufacturing the element assembly temporary fixing piece, the alignment mark can be easily provided. The present invention [12] includes a method of manufacturing a component assembly temporary fixing sheet, characterized in that the method for manufacturing the component assembly temporary fixing sheet comprises: a step (2) of forming an alignment mark from a carbon material on a support layer; The element assembly fixing layer for temporarily fixing the element assembly in which the plurality of optical semiconductor elements are arranged in an array is provided in the support layer (3). According to the method of manufacturing the element assembly temporary fixing piece, the alignment mark can be easily provided. The method of producing a component assembly temporary fixing sheet according to the above [12], wherein the carbon material contains carbon black. According to the manufacturing method of the component assembly temporary fixing sheet, an alignment mark with improved visibility can be provided. The method of manufacturing a component assembly temporary fixing sheet according to the above [12] or [13], characterized in that in the above step (2), by self-contained thermal transfer and inkjet printing The alignment mark is formed by at least one of the group selection methods. According to the manufacturing method of the component assembly temporary fixing sheet, the alignment mark can be easily provided. According to a fifth aspect of the invention, there is provided a method of manufacturing a component assembly temporary fixing sheet, comprising: temporarily fixing a component assembly in which a plurality of optical semiconductor elements are arranged in an array The step (3) of providing the element assembly fixing layer on the support layer; and the step (4) of providing the through hole penetrating through the element assembly fixing layer and the support layer as alignment marks. According to the method of manufacturing the element assembly temporary fixing piece, the alignment mark can be easily provided.

於圖2中,紙面上下方向係上下方向(第1方向、厚度方向),紙面上側係上側(第1方向之一側、厚度方向之一側),紙面下側係下側(第1方向之另一側、厚度方向之另一側)。於圖2中,紙面左右方向係左右方向(與第1方向正交之第2方向、寬度方向),紙面右側係右側(第2方向之一側、寬度方向之一側),紙面左側係左側(第2方向之另一側、寬度方向之另一側)。於圖2中,紙厚方向係前後方向(與第1方向及第2方向正交之第3方向),紙面近前側係前側(第3方向之一側),紙面深側係後側(第3方向之另一側)。具體以各圖之方向箭頭為準。 1.第1實施形態 如圖1及圖2所示,元件集合體暫固定片1具有平板形狀,具體而言具有特定之厚度,沿著與厚度方向正交之面方向(左右方向及前後方向)延伸,具有平坦之正面及平坦之背面。此外,於元件集合體暫固定片1中,具有前後方向長度較左右方向長度(寬度)長之平板形狀。或者,元件集合體暫固定片1具有前後方向較長之長條形狀。 如圖2所示,元件集合體暫固定片1依序具備元件集合體固定層3、支持層2及第1感壓接著層4。具體而言,元件集合體暫固定片1具備:支持層2;元件集合體固定層3,其設置於支持層2之上;及第1感壓接著層4,其設置於支持層2之下。又,於該元件集合體暫固定片1中,元件集合體固定層3具備對準標記7。以下,說明各構件。 1-1.支持層 支持層2位於元件集合體暫固定片1之厚度方向中央。即,支持層2介於元件集合體固定層3及第1感壓接著層4之間。元件集合體暫固定片1具有平板形狀,具體而言,具有特定之厚度,沿著左右方向及前後方向延伸,具有平坦之正面及平坦之背面。又,支持層2具有撓性。支持層2支持元件集合體固定層3及第1感壓接著層4。 支持層2包含合成樹脂。作為合成樹脂,可列舉例如聚乙烯(例如、低密度聚乙烯、中密度聚乙烯、高密度聚乙烯、線性低密度聚乙烯等)、聚丙烯、乙烯-丙烯共聚物、乙烯-C4以上之α-烯烴共聚物等烯烴聚合物,例如乙烯-丙烯酸乙酯共聚物、乙烯-甲基丙烯酸甲酯共聚物、乙烯-丙烯酸正丁酯共聚物等乙烯-(甲基)丙烯酸酯共聚物、例如聚對苯二甲酸乙二醇酯(PET)、聚萘二甲酸乙二醇酯等聚酯、例如聚碳酸酯、例如聚胺基甲酸酯、例如聚醯亞胺等聚合物。共聚物亦可為無規共聚物及嵌段共聚物中之任一種。合成樹脂亦可單獨使用或組合使用兩種以上。又,支持層2亦可為上述之合成樹脂之多孔質。 較佳為,支持層2包含PET、聚碳酸酯。 又,支持層2亦可由單層或複數層構成。 又,上述之合成樹脂例如為透明。即,支持層2係透明。具體而言,支持層2之總光線透過率例如為80%以上,較佳為90%以上,更佳為95%以上,又,例如為99.9%以下。 支持層2之線膨脹係數例如為500×10-6 K-1 以下,較佳為300×10-6 K-1 以下,又,例如為2×10-6 K-1 以上,較佳為10×10-6 K-1 %以上。支持層2之線膨脹係數只要係上述之上限以下,則能夠達成以對準標記7為基準之光半導體元件11之排列、及/或密封層12之切斷。支持層2之線膨脹係數可藉由線膨脹係數測定裝置(TMA)測定。對於以下各構件之線膨脹係數亦可藉由同樣之方法測定。 支持層2之於25℃之拉伸彈性模數E例如為200 MPa以下,較佳為100 MPa以下,更佳為80 MPa以下,又,例如為50 MPa以上。支持層2之拉伸彈性模數E只要係上述之上限以下,則可確保撓性,從而可容易地設置對準標記7。 支持層2之厚度例如為10 μm以上,較佳為30 μm以上,又,例如為350 μm以下,較佳為100 μm以下。 1-2.元件集合體固定層 元件集合體固定層3位於元件集合體暫固定片1之上端部。元件集合體固定層3配置於支持層2之上表面。即,元件集合體固定層3形成元件集合體暫固定片1之上表面。元件集合體固定層3具有平板形狀,具體而言,具有特定之厚度,沿著左右方向及前後方向延伸,具有平坦之正面及平坦之背面(除了與後述之對準標記7對應之部分之外)。元件集合體固定層3以對複數個光半導體元件11排列配置而成之元件集合體16(如下所述。參照圖1及圖4B)進行暫固定之方式構成。 又,元件集合體固定層3具有感壓接著性(黏著性)。 元件集合體固定層3包含感壓接著劑。作為感壓接著劑,可列舉例如丙烯酸系感壓接著劑、橡膠系感壓接著劑、SIS(苯乙烯-異戊二烯-苯乙烯・嵌段共聚物)系感壓接著劑、矽酮系感壓接著劑、乙烯基烷基醚系感壓接著劑、聚乙烯醇系感壓接著劑、聚乙烯吡咯烷酮系感壓接著劑、聚丙烯醯胺系感壓接著劑、纖維素系感壓接著劑、胺基甲酸酯系感壓接著劑、聚酯系感壓接著劑、聚醯胺系感壓接著劑、環氧系感壓接著劑等。較佳可列舉矽酮系感壓接著劑。 又,元件集合體固定層3係透明。元件集合體固定層3之總光線透過率例如為80%以上,較佳為90%以上,更佳為95%以上,又例如為99.9%以下。 元件集合體固定層3之線膨脹係數例如為500×10-6 K-1 以下,較佳為300×10-6 K-1 以下,又,例如為2×10-6 K-1 以上,較佳為10×10-6 K-1 以上。 將元件集合體固定層3相對矽板感壓接著,於25℃將元件集合體固定層3以180度自矽板剝離時之剝離力例如為0.1 N/ mm以上,較佳為0.3 N/ mm以上,又,例如為1 N/ mm以下。元件集合體固定層3之剝離力只要係上述之下限以上,就可確實地暫固定複數個光半導體元件11。 元件集合體固定層3之厚度例如為5 μm以上,較佳為10 μm以上,又,例如未達120 μm,較佳為未達100 μm,更佳為80 μm以下,進一步較佳為60 μm以下。於元件集合體固定層3之厚度超過上述下限之情形時,可對元件集合體暫固定片1之上表面確實地賦予感壓接著性。因此,可簡便地製造元件集合體暫固定片1。於元件集合體固定層3之厚度低於上述之上限之情形時,能夠提高元件集合體固定層3之處理性。 1-3.第1感壓接著層 第1感壓接著層4位於元件集合體暫固定片1之下端部。又,第1感壓接著層4配置於支持層2之下表面。即、第1感壓接著層4形成元件集合體暫固定片1之下表面。進而,第1感壓接著層4於厚度方向與元件集合體固定層3之間隔著支持層2。第1感壓接著層4具有平板形狀,具體而言,具有特定之厚度,沿著左右方向及前後方向延伸,具有平坦之正面及平坦之背面。 第1感壓接著層4具有感壓接著性(黏著性)。具體而言,第1感壓接著層4包含與元件集合體固定層3相同之感壓接著劑。 第1感壓接著層4係透明。第1感壓接著層4之總光線透過率例如為80%以上,較佳為90%以上,更佳為95%以上,又,例如為99.9%以下。 第1感壓接著層4之線膨脹係數例如為500×10-6 K-1 以下,較佳為300×10-6 K-1 以下,又,例如為2×10-6 K-1 以上,較佳為10×10-6 K-1 %以上。第1感壓接著層4之厚度例如為5 μm以上,較佳為10 μm以上,又,例如未達100 μm,較佳為80 μm以下,更佳為60 μm以下。 1-4.對準標記 如圖2所示,對準標記7設置於支持層2之上表面。 如圖1及圖2所示,具體而言,對準標記7於支持層2之上表面之右端部設置有複數個。詳細而言,對準標記7設置於被劃分於元件集合體形成區域17之右側(寬度方向一側之一例)之標記形成區域18,於該元件集合體形成區域17設有後述之元件集合體16。標記形成區域18於元件集合體暫固定片1之右端部沿著前後方向配置。 對準標記7係用於將元件集合體16暫固定於元件集合體固定層3、且用於對密封元件集合體16之密封層12進行切斷之基準標記。具體而言,對準標記7具備排列標記8及切斷標記9。排列標記8及切斷標記9係與沿著左右方向排列成一行之複數個光半導體元件11(後述)對應而各配置有1個,且其等沿著左右方向相互隔開間隔而排列配置。 排列標記8係對準標記7中之位於左側之標記,沿著前後方向相互隔開間隔而配置有複數個。複數個排列標記8之各者具有例如大致圓形狀。 切斷標記9係對準標記7中之位於右側之標記,沿著前後方向相互隔開間隔而配置有複數個。具體而言,複數個切斷標記9分別以於沿左右方向投影時不與複數個排列標記8之各者重疊之方式配置。即,複數個排列標記8及複數個切斷標記9配置成交錯狀,即,於沿左右方向投影時沿著前後方向交替地配置。複數個切斷標記9之各者相對於複數個排列標記8之各者隔開間隔而配置於右斜前側。複數個切斷標記9之各者具有例如沿著左右方向延伸之大致桿(直線)形狀。 對準標記7係不透明。 為此,對準標記7包含不透明(後述)材料。作為此種材料,可列舉例如銀(金屬銀)等金屬材料、碳黑等碳材料等。 作為金屬材料,較佳為可列舉銀。只要係銀,就可更進一步提高對準標記7之視認性。 又,作為碳材料,較佳為可列舉碳黑。只要係碳黑,就可更進一步提高對準標記7之視認性。 對準標記7之尺寸可適當設定。排列標記8之直徑(最大長度)例如為0.05 mm以上,較佳為0.1 mm以上,又,例如為1 mm以下,較佳為0.5 mm以下。 相鄰之排列標記8之中心間之距離(即,間距)例如為0.05 mm以上,較佳為0.1 mm以上,又,例如為1.0 mm以下,較佳為0.8 mm以下。 切斷標記9之左右方向長度例如為0.05 mm以上,較佳為0.1 mm以上,又,例如為1 mm以下,較佳為0.5 mm以下。切斷標記9之寬度(前後方向長度)例如為0.05 mm以上,較佳為0.1 mm以上,又,例如為1 mm以下,較佳為0.25 mm以下。於沿前後方向投影時左右相鄰之排列標記8及切斷標記9之間隔例如為0.1 mm以上,較佳為0.2 mm以上,又,例如為1 mm以下,較佳為0.8 mm以下。切斷標記9之中心間之間距例如為0.05 mm以上,較佳為0.1 mm以上,又,例如為1.0 mm以下,較佳為0.8 mm以下。 對準標記7之厚度例如為0.5 μm以上,較佳為1 μm以上,又,例如為10 μm以下,較佳為5 μm以下。 對準標記7之總光線透過率例如為40%以下,較佳為20%以下,更佳為10%以下,又,例如為0.1%以上。 1-5.第1剝離層及第2剝離層 如圖2所示,元件集合體暫固定片1進而具備第1剝離層5及第2剝離層6。 如參照圖4A及圖4B般,第1剝離層5於直至藉由元件集合體固定層3暫固定光半導體元件11為止之期間,為了保護元件集合體固定層3而能夠剝離地貼合於元件集合體固定層3之正面。即,第1剝離層5係包含樹脂之撓性膜,於元件集合體暫固定片1之出廠、搬送、保管時,以覆蓋元件集合體固定層3之表面之方式積層於元件集合體固定層3之表面,且於即將使用元件集合體固定層3之前,可自元件集合體固定層3之正面以大致U字狀彎曲之方式剝離。又,撓性膜之貼合面根據需要進行剝離處理。作為撓性膜,可列舉例如聚乙烯膜、聚酯膜(PET等)等聚合物膜等。第1剝離層5之厚度例如為1 μm以上,較佳為10 μm以上,又,例如為2000 μm以下,較佳為1000 μm以下。 第2剝離層6於直至藉由載體10支持第1感壓接著層4為止之期間,為了保護第1感壓接著層4而能夠剝離地貼合於第1感壓接著層4之背面。即,第2剝離層6係包含樹脂之撓性膜,於元件集合體暫固定片1之出廠、搬送、保管時,以覆蓋第1感壓接著層4之背面之方式積層於第1感壓接著層4之背面,於即將使用第1感壓接著層4之前,可自第1感壓接著層4之背面以大致U字狀彎曲之方式剝離。又,撓性膜之貼合面根據需要進行剝離處理。作為撓性膜,可列舉例如聚乙烯膜、聚酯膜(PET等)等聚合物膜等。第2剝離層6之厚度例如為1 μm以上,較佳為10 μm以上,又,例如為2000 μm以下,較佳為1000 μm以下。 而且,該元件集合體暫固定片1不具備載體10及光半導體元件11,依序具備第2剝離層6、第1感壓接著層4、支持層2、元件集合體固定層3及第1剝離層5。較佳為,元件集合體暫固定片1僅由第2剝離層6、第1感壓接著層4、支持層2、元件集合體固定層3及第1剝離層5構成。 1-6.元件集合體暫固定片之製造方法 其次,說明元件集合體暫固定片1之製造方法。 參照圖2,於該方法中,首先準備支持層2,繼而設置對準標記7。 設置對準標記7之方法並沒有特別限定,可列舉例如使用光微影之方法、感熱轉印(參照例如日本專利特開2000-135871號公報)、壓印、凸版印刷、凹版印刷、孔版印刷(絲網印刷)、噴墨印刷(參照例如日本專利特開2014-10823號公報)等。自精度良好地配置對準標記7之觀點考慮,較佳為可列舉使用光微影之方法、絲網印刷,更佳為可列舉使用光微影之方法。又,自容易設置對準標記7之觀點考慮,可列舉感熱轉印、噴墨印刷。 於使用光微影之方法中,具體而言,如圖3A~圖3C所示,依序實施準備設置有感光層21之支持層2之步驟(1)(參照圖3A)、及藉由光微影自感光層21以顯影圖案23之形式形成對準標記7之步驟(2)(參照圖3B及圖3C)。 於步驟(1)中,如圖3A所示準備帶感光層之支持層22,該帶感光層之支持層22具備支持層2、設置於支持層2之上表面之感光層21。 感光層21設置於支持層2之整個上表面。感光層21包含可藉由光微影形成顯影圖案23之感光材料。作為感光材料,可列舉例如銀鹽乳劑。銀鹽乳劑含有例如銀鹽。作為銀鹽,可列舉例如鹵化銀等無機銀鹽、例如醋酸銀等有機銀鹽,較佳為,可列舉對於光之響應性優異之無機銀鹽。 感光層21之厚度例如為0.5 μm以上,較佳為1 μm以上,又,例如為10 μm以下,較佳為5 μm以下。 於步驟(2)中,如圖3B所示,經由光罩(未圖示)對感光層21照射活性能量射線。具體而言,使用包含不鏽鋼等金屬之金屬遮罩對感光層21進行局部地覆蓋,其後,對自金屬遮罩露出之感光層21照射雷射光(峰值波長150 nm以上、250 nm以下)。 由此,可於感光層21形成與對準標記7相同之圖案之曝光部分及與對準標記7相反之圖案之未曝光部分。 其後,如圖3C所示,將感光層21浸漬於顯影液中,保留曝光部分而去除未曝光部分(顯影)。由此,以顯影圖案23之形式形成對準標記7。 其後,於支持層2之上設置元件集合體固定層3(步驟(3)之一例),並且於支持層2之下設置第1感壓接著層4。 為了將元件集合體固定層3及第1感壓接著層4分別設置於支持層2,首先,分別準備元件集合體固定層3及第1感壓接著層4。 將元件集合體固定層3設置於例如第1剝離層5之表面。 將第1感壓接著層4例如設置於第2剝離層6之表面。 接下來,將元件集合體固定層3配置於支持層2之上表面。此時,以埋設對準標記7之方式將元件集合體固定層3配置於支持層2之上表面。 又,將第1感壓接著層4配置於支持層2之下表面。 由此,獲得元件集合體暫固定片1,該元件集合體暫固定片1具備支持層2、分別配置於支持層2之上下之元件集合體固定層3及第1感壓接著層4、分別配置於元件集合體固定層3及第1感壓接著層4之第1剝離層5及第2剝離層6。 元件集合體暫固定片1之厚度例如為15 μm以上,較佳為40 μm以上,又,例如為550 μm以下,較佳為260 μm以下。 又,該元件集合體暫固定片1具有撓性。 1-7.元件集合體暫固定片之使用方法 其次,說明元件集合體暫固定片1之使用方法。 如圖4A所示,首先,將載體10配置於第1感壓接著層4之下表面。 具體而言,首先,將圖2之以假想線所示之第2剝離層6自第1感壓接著層4剝離,其後,如圖4A所示,使載體10直接接觸於第1感壓接著層4之下表面。由此,使載體10感壓接著於第1感壓接著層4。 載體10係用於自下方支持元件集合體暫固定片1之支持板。載體10形成為沿著前後方向及左右方向延伸之大致平板狀。載體10於俯視下具有與元件集合體暫固定片1之形狀相同之形狀。載體10之厚度例如為100 μm以上,較佳為350 μm以上,又,例如為1000 μm以下,較佳為600 μm以下。載體10包含硬質材料。作為硬質材料,可列舉例如玻璃等透明材料、例如陶瓷、不鏽鋼等不透明材料。硬質材料之維氏硬度例如為0.5 GPa以上,較佳為1 GPa以上,更較佳為1.2 GPa以上,又,例如為10 GPa以下。只要載體10包含硬質材料,具體而言,只要硬質材料之維氏硬度係上述之下限以上,就可確實地支持元件集合體暫固定片1。 由此,可獲得依序具備載體10及元件集合體暫固定片1之暫固定構件30。又,暫固定構件30具有被設置於元件集合體暫固定片1之支持層2之對準標記7。 接下來,如圖4A之假想線箭頭所示,於將第1剝離層5自元件集合體固定層3之上表面剝離之後,如圖4B所示,將複數個光半導體元件11暫固定於元件集合體固定層3之上表面。此時,以排列標記8為基準,將複數個光半導體元件11排列配置(排列)於元件集合體固定層3之上表面。又,將複數個光半導體元件11設置於元件集合體固定層3之元件集合體形成區域17。 具體而言,一面視認排列標記8一面進行複數個光半導體元件11之左右方向及前後方向上之定位,並且使複數個光半導體元件11直接接觸於元件集合體固定層3之上表面。 為了視認排列標記8,藉由設置於暫固定構件30之上方之照相機等自排列標記8之上方視認排列標記8。此時,元件集合體固定層3係透明,因此,可自元件集合體固定層3之上方視認排列標記8。 此外,光半導體元件11具有上表面、沿著厚度方向與上表面對向配置之下表面、將上表面及下表面連結之周側面。於下表面上形成有電極。 複數個光半導體元件11排列配置於排列標記8之上表面,從而構成元件集合體16。 相鄰之光半導體元件11之間之間隔(前後方向及/或左右方向上之間隔)例如為0.05 mm以上,較佳為0.1 mm以上,又,例如為1.0 mm以下,較佳為0.8 mm以下。此外,複數個光半導體元件11各自之厚度(高度)例如為0.1 μm以上,較佳為0.2 μm以上,又,例如為500 μm以下,較佳為200 μm以下。複數個光半導體元件11各自之左右方向長度及/或前後方向長度例如為0.05 mm以上,較佳為0.1 mm以上,又,例如為1.0 mm以下,較佳為0.8 mm以下。 接下來,如圖4C之實線及圖1之單點劃線所示,藉由密封層12密封元件集合體16。 例如藉由包含半固態狀或固態狀之密封組成物之密封片密封元件集合體16。或者藉由灌注液體狀之密封組成物而密封元件集合體16。密封組成物含有矽酮樹脂、環氧樹脂等透明樹脂。密封組成物亦可根據需要以適當之比例含有填充材料、螢光體、光反射性粒子等粒子。 密封層12覆蓋複數個光半導體元件11各自之上表面及側面、自複數個光半導體元件11之各者露出之元件集合體固定層3之上表面。密封層12以使標記形成區域18中之元件集合體固定層3之上表面露出之方式設置於元件集合體形成區域17中的元件集合體固定層3之上表面。 由此,可獲得具備複數個光半導體元件11(元件集合體16)及1個密封層12之密封元件集合體19。即,密封元件集合體19以暫固定於元件集合體暫固定片1之狀態獲得。 密封層12之厚度例如為40 μm以上,較佳為50 μm以上,又,例如為500 μm以下,較佳為300 μm以下。 如圖1之雙點劃線及圖4D之單點劃線所示,接下來以將光半導體元件11單片化之方式將密封層12切斷。即,密封元件集合體19被單片化。 為了切斷密封層12,可使用例如具備切刀之切斷裝置、例如具備雷射照射源之切斷裝置。 作為具備切刀之切斷裝置,可列舉例如具備圓盤狀之切割鋸(切割刀片)之切割裝置、例如具備切割器之切割裝置。 較佳為使用具備切刀之切斷裝置,更較佳為使用切割裝置。 於利用上述切斷裝置之密封層12之切斷中,以對準標記7之切斷標記9為基準切斷密封層12。又,藉由與用於視認排列標記8之照相機相同之照相機,一面自上方視認對準標記7之切斷標記9、一面切斷密封層12。 已切斷之密封層12之前後方向長度及/或左右方向長度例如為20 mm以上,較佳為40 mm以上,又,例如為150 mm以下,較佳為100 mm以下。 由此,能以暫固定於元件集合體固定層3(暫固定構件30)之狀態,獲得複數個具有1個光半導體元件11及1個密封層12之密封光半導體元件13。 接下來,如圖4D之箭頭所示,將複數個密封光半導體元件13分別自元件集合體固定層3剝離。 繼而,於已將複數個密封光半導體元件13剝離之暫固定構件30中,將載體10自第1感壓接著層4剝離,對載體10進行再利用。另一方面,將元件集合體暫固定片1(支持層2、元件集合體固定層3及第1感壓接著層4)廢棄。即,元件集合體暫固定片1係拋棄式。 其後,如圖4E所示,將密封光半導體元件13覆晶安裝於基板14。 基板14具有沿著前後方向及左右方向延伸之平板形狀。於基板14之上表面形成有與光半導體元件11之電極電性連接之端子。 由此,可獲得具備密封光半導體元件13及基板14之光半導體裝置15。 2.第1實施形態之作用效果 而且,於該元件集合體暫固定片1中,於包含合成樹脂之支持層2設置有對準標記7,因此對準標記7可容易地形成於支持層2。 然而,於日本專利特開2014-168036號公報中,於硬質之支持板設置標記,因此無法對此種支持板進行再利用。然而,於該元件集合體暫固定片1中,並非於載體10而是於另行設置於元件集合體暫固定片1之支持層2設置對準標記7,因此,可將比較低廉之包含支持層2之元件集合體暫固定片1廢棄,另一方面可對載體10進行再利用。因此,可抑制密封光半導體元件13之製造成本,進而可抑制光半導體裝置15之製造成本。 根據該元件集合體暫固定片1,只要對準標記7包含碳材料,就可提高對準標記7之視認性。 根據該元件集合體暫固定片1,只要碳材料係碳黑,就可提高對準標記7之視認性。 根據該元件集合體暫固定片1,只要對準標記7係藉由自包含感熱轉印及噴墨印刷之群選擇之至少1種方法設置之圖案,就可容易地設置對準標記7。 又,根據該元件集合體暫固定片1,可隔著透明元件集合體固定層3確實地視認不透明對準標記7。因此,如圖4B所示,能以排列標記8為基準確實地暫固定元件集合體16,或者又如圖4D之單點劃線所示,能以切斷標記9為基準確實地切斷密封層12。 又,根據該元件集合體暫固定片1,如圖3B及圖3C所示,只要對準標記7係顯影圖案23,就可容易地設置對準標記7。 根據該元件集合體暫固定片1,只要對準標記7包含銀,就可提高對準標記7之視認性。 又,該元件集合體暫固定片1若元件集合體固定層之厚度未達120 μm,則其厚度較薄,因此元件集合體固定層3之處理性優異。 根據該元件集合體暫固定片1之製造方法,可簡便地設置對準標記7。 3.第1實施形態之變化例 於第1實施形態中,如圖1所示,排列標記8具有大致圓形狀,切斷標記9具有大致直線形狀。不過,對準標記7各自之形狀並沒有特別限定。 又,首先,將元件集合體固定層3形成於第1剝離層5(參照圖3之假想線)之表面之後,將元件集合體固定層3自第1剝離層5轉印於支持層2,但亦可例如將元件集合體固定層3直接形成於支持層2之上表面。 又,首先,將第1感壓接著層4形成於第2剝離層6(參照圖3之假想線)之表面之後,將第1感壓接著層4自第2剝離層6轉印於支持層2,亦可例如將第1感壓接著層4直接形成於支持層2之下表面。 又,於第1實施形態中,如圖2所示,對準標記7設置於支持層2之上表面。 於變化例中,如圖5所示,對準標記7設置於支持層2之下表面。 第1感壓接著層4埋設有對準標記7。 如參照圖4B般於將複數個光半導體元件11排列於元件集合體固定層3時,或者如參照圖4D般於切斷密封層12時,藉由配置於暫固定構件30之上方之照相機而隔著元件集合體固定層3及支持層2視認排列標記8或者切斷標記9。 進而,雖未圖示,但亦可將對準標記7設置於支持層2之上下兩表面。 較佳為,將對準標記7僅設置於支持層2之一面,即,僅設置於上表面或者僅設置於下表面。若將對準標記7僅設置於支持層2之一面,與將對準標記7設置於支持層2之上下兩表面之圖5之情形相比,可簡易地形成對準標記7,從而可相應地降低製造成本。 更佳為,如第1實施形態之圖2所示,對準標記7設置於支持層2之上表面。根據該構成,與對準標記7設置於支持層2之下表面之圖5之情形相比,可自上方更確實地視認對準標記7。 又,雖未圖示,但亦可將對準標記7設置為使支持層2於厚度方向中途凹陷之凹部。 進而,於第1實施形態之使用方法中,如圖4D之單點劃線所示,切斷密封層12而將密封元件集合體19單片化。 然而,於變化例中,如圖6A所示,不切斷密封層12就使密封元件集合體19自元件集合體固定層3剝離,其後,如圖6B所示,將密封元件集合體19覆晶安裝於基板14。 於該變化例中,不切斷密封層12,因此雖未圖示,但對準標記7亦可不具備切斷標記9而僅由排列標記8構成。 4.第2實施形態 於第2實施形態中,對於與第1實施形態相同之構件及步驟標註相同之參照符號,並省略其詳細之說明。 於第1實施形態中,如圖2及圖4A所示,於元件集合體暫固定片1(具體而言係支持層2)設置對準標記7。 於第2實施形態中,如圖8A所示,將對準標記7形成為貫通元件集合體暫固定片1之貫通孔26。 貫通孔26沿著厚度方向貫通元件集合體固定層3、支持層2及第1感壓接著層4。 於第2實施形態中,載體10係無色,元件集合體固定層3、支持層2及第1感壓接著層4中之至少任一層係有色,有色之至少一層例如以適當之比例具有染料、顏料等有色成分。 載體10之總光線透過率係例如80%以上,較佳為90%以上,更佳為95%以下,又,例如為99.9%以下。 有色之上述至少一層之總光線透過率係例如80%以下,較佳為65%以下,更佳為50%以下。 上述至少一層係有色,因此,貫通孔26於俯視下被視認成無色。即,可利用有色之上述至少一層與無色之貫通孔26之間之對比度而如圖7所示明確地視認到貫通孔26。 為了製造該元件集合體暫固定片1,如參照圖2般準備元件集合體暫固定片1,該元件集合體暫固定片1依序具備第2剝離層6、第1感壓接著層4、支持層2、元件集合體固定層3及第1剝離層5。 接下來,形成沿著厚度方向將第2剝離層6、第1感壓接著層4、支持層2、元件集合體固定層3及第1剝離層5一併貫通之貫通孔26。 貫通孔26藉由例如切削、沖裁、雷射加工等而形成。較佳為藉由雷射加工而形成貫通孔26。作為雷射加工,可列舉例如準分子雷射、YAG(Yttrium Aluminum Garnet,釔鋁石榴石)雷射、CO2 雷射等,自以卷對卷連續地製造元件集合體暫固定片1之觀點、及於大範圍區域形成貫通孔26之觀點考慮,較佳為可列舉YAG雷射。 於該元件集合體暫固定片1之使用方法中,將第2剝離層6自第1感壓接著層4剝離,其後,如圖8A所示,使載體10與第1感壓接著層4之下表面直接接觸。接下來,將第1剝離層5自元件集合體固定層3之上表面剝離。 其後,如圖8B所示,以排列標記8為基準將複數個光半導體元件11排列配置(排列)於元件集合體固定層3之上表面。 此時,一面視認排列標記8一面進行複數個光半導體元件11之左右方向及前後方向上之定位,並且使複數個光半導體元件11與元件集合體固定層3之上表面直接接觸。 具體而言,視認排列標記8(貫通孔26)為無色。可藉由與有色之上述至少一層之對比度而明確地視認排列標記8(貫通孔26)(參照圖7)。 又,如圖8D所示,於切斷密封層12時,以切斷標記9為基準。具體而言,藉由與上述之排列標記8(貫通孔26)之視認同樣之方法而視認切斷標記9(貫通孔26)(參照圖7)。 5、第2實施形態之作用效果 根據第2實施形態,可發揮與第1實施形態相同之作用效果。 尤其根據該方法,可將對準標記7簡便地設為貫通孔26。 6、第2實施形態之變化例 於上述說明中,如圖8A所示,形成有沿著厚度方向將元件集合體固定層3、支持層2、及第1感壓接著層4一併貫通之貫通孔26。然而,雖未圖示,但亦可形成不貫通第1感壓接著層4而貫通元件集合體固定層3及支持層2之貫通孔26。於該情形時,第1感壓接著層4係無色,集合體固定層3及支持層2中之至少一層係有色。 藉由該變化例,亦可發揮與第2實施形態同樣之作用效果。 6、第3實施形態 於第3實施形態中,對於與第1實施形態及第2實施形態相同之構件及步驟標註相同之參照符號,並省略其詳細之說明。 6-1.元件集合體暫固定片 如圖9所示,第3實施形態之元件集合體暫固定片1不具備第1感壓接著層4(參照圖2)而具備支持層2及元件集合體固定層3。又,元件集合體暫固定片1還可進而具備第1剝離層5。較佳為,元件集合體暫固定片1僅由支持層2及元件集合體固定層3構成,又,根據需要,較佳為僅由支持層2、元件集合體固定層3及第1剝離層5構成。 為了製造元件集合體暫固定片1,首先準備支持層2,接下來藉由上述方法(圖3A~圖3C之方法)將對準標記7設置於支持層2。其後,將元件集合體固定層3設置於支持層2之整個上表面。 6-2.元件集合體暫固定片之使用方法 其次,說明元件集合體暫固定片1之使用方法。 如圖10A所示,首先將第1剝離層5(參照圖9)自元件集合體固定層3剝離,接下來,將載體10配置於元件集合體固定層3之上表面。 載體10包含玻璃等透明材料。 由此,可獲得依序具備支持層2、元件集合體固定層3及載體10之暫固定構件30。較佳為,暫固定構件30僅由支持層2、元件集合體固定層3及載體10構成。 接下來,將第2感壓接著層25配置於載體10之上表面。 第2感壓接著層25具有平板形狀,具有特定之厚度,沿著左右方向及前後方向延伸,具有平坦之正面及平坦之背面。第2感壓接著層25具有感壓接著性(黏著性)。第2感壓接著層25具有與圖2所示之上述之元件集合體暫固定片1(支持層2、元件集合體固定層3、第1感壓接著層4)相同之層構成。又,第2感壓接著層25亦可包含日本專利特開2014-168036號公報所記載之黏著層。此外,第2感壓接著層25於俯視下具有比元件集合體暫固定片1之尺寸小之尺寸,具體而言,第2感壓接著層25以於沿厚度方向投影時不與對準標記7重疊之方式配置。具體而言,第2感壓接著層25配置於載體10之元件集合體形成區域17。第2感壓接著層25之厚度例如為30 μm以上,較佳為50 μm以上,又,例如為500 μm以下,較佳為300 μm以下。 如圖10B所示,接下來,將複數個光半導體元件11感壓接著於第2感壓接著層25之上表面。 此時,一面自暫固定構件30之上方視認對準標記7之排列標記8、一面以排列標記8為基準將複數個光半導體元件11排列配置(排列)於第2感壓接著層25之上表面。隔著透明載體10及元件集合體固定層3視認排列標記8。 由此,能以支持於載體10之狀態獲得具備1個第2感壓接著層25及複數個光半導體元件11之元件集合體16。即,元件集合體16被支持於載體10。即,元件集合體16隔著載體10暫固定於元件集合體暫固定片1(元件集合體固定層3)。 如圖10C所示,接下來,藉由密封層12密封元件集合體16之複數個光半導體元件11。 密封層12對複數個光半導體元件11各者之上表面及側面、自複數個光半導體元件11之各者露出之第2感壓接著層25之上表面進行覆蓋。另一方面,密封層12未形成於載體10之上表面。 由此,可獲得具備元件集合體16、覆蓋元件集合體16之密封層12之密封元件集合體19。密封元件集合體19依序具備1個第2感壓接著層25、複數個光半導體元件11及1個密封層12。較佳為,密封元件集合體19僅由1個第2感壓接著層25、複數個光半導體元件11及1個密封層12構成。 如圖10D之單點劃線所示,接下來切斷密封層12。 由此,能以暫固定於第2感壓接著層25之狀態獲得複數個具備1個光半導體元件11及1個密封層12之密封光半導體元件13。 如圖10E之箭頭所示,將密封元件集合體19自載體10之上表面剝離。接下來,將複數個密封光半導體元件13之各者自第2感壓接著層25剝離。 於暫固定構件30中,將載體10自元件集合體固定層3之上表面剝離而對載體10進行再利用。另一方面,將元件集合體暫固定片1(支持層2及元件集合體固定層3)廢棄。即,元件集合體暫固定片1係拋棄式。 如圖10F所示,其後,將密封光半導體元件13覆晶安裝於基板14而獲得光半導體裝置15。 7.第3實施形態之作用效果 根據第3實施形態,亦可發揮與第1實施形態及第2實施形態同樣之作用效果。 又,如圖9所示,該元件集合體暫固定片1不具備第1感壓接著層4(參照圖2),因此,與具備第1感壓接著層4之第1實施形態之元件集合體暫固定片1相比,可使層構成簡單。 8.第3實施形態之變化例 於第3實施形態中,如圖9所示,對準標記7設置於支持層2之上表面。 於變化例中,如圖11所示,對準標記7設置於支持層2之下表面。 對準標記7朝向下方露出。 如參照圖10B般於將複數個光半導體元件11排列於第2感壓接著層25時,或者如參照圖10D般於切斷密封層12時,藉由被配置於暫固定構件30之上方之照相機而隔著載體10、元件集合體固定層3及支持層2對排列標記8或者切斷標記9進行視認。 進而,雖未圖示,但亦可將對準標記7設置於支持層2之上下兩表面。 較佳為,將對準標記7僅設置於支持層2之一面,即,僅設置於上表面或者僅設置於下表面。若將對準標記7僅設置於支持層2之一面,則與將對準標記7設置於支持層2之上下兩表面之情形相比,可簡易地形成對準標記7,從而可相應地降低製造成本。 更較佳為,如第3實施形態之圖9所示,對準標記7設置於支持層2之上表面。根據該構成,與對準標記7設置於支持層2之下表面之圖11之情形相比,可自上方更確實地視認對準標記7。 又,雖未圖示,但亦可將對準標記7設置為使支持層2於厚度方向中途凹陷之凹部。 進而,於第3實施形態之使用方法中,如圖10D之單點劃線所示,切斷密封層12。 然而,於變化例中,如圖12A所示,不切斷密封層12就將第2感壓接著層25自載體10之上表面剝離。 接下來,如圖12B所示,將密封元件集合體19自複數個光半導體元件11各者之下表面、及密封層12之下表面剝離。 其後,如圖12C所示,將複數個光半導體元件11覆晶安裝於基板14。 於該變化例中,如圖12A所示,不切斷密封層12,因此,雖未圖示,但對準標記7亦可不具備切斷標記9而僅由排列標記8構成。 9. 第4實施形態 於第4實施形態中,對於與第1實施形態~第3實施形態相同之構件及步驟標註相同之參照符號,並省略其詳細之說明 如圖13A所示,亦可將對準標記7設置為沿著厚度方向貫通元件集合體暫固定片1之貫通孔26。 貫通孔26沿著厚度方向貫通支持層2及元件集合體固定層3。 於該變化例中,如參照圖7般,可藉由與支持層2及元件集合體固定層3之對比度而明確地視認貫通孔26。 於該元件集合體暫固定片1之使用方法中,將載體10配置於元件集合體固定層3之上表面。 如圖13A所示,接下來,將第2感壓接著層25配置於載體10之上表面。 如圖13B所示,接下來,將複數個光半導體元件11感壓接著於第2感壓接著層25之上表面。 此時,一面自暫固定構件30之上方視認對準標記7之排列標記8,一面以排列標記8為基準將複數個光半導體元件11排列配置(排列)於第2感壓接著層25之上表面。 此時,自上方隔著該載體10將排列標記8視認為有色之元件集合體固定層3及支持層2中之貫通孔26。可藉由與上述至少一層之對比度而明確地視認排列標記8(貫通孔26)(參照圖7)。 如圖13D之單點劃線所示,接下來,以對準標記7之切斷標記9為基準將密封層12切斷。 而且,根據該第4實施形態,亦可發揮與第3實施形態相同之作用效果。 實施例 於以下之記載中所使用之調配比例(含有比例)、物性值、參數等具體數值,可替代為上述之「用以實施發明之形態」中所記載之與其等對應之調配比例(含有比例)、物性值、參數等相應記載的上限值(被定義為「以下」、「小於」之數值)或下限值(被定義為「以上」、「超過」之數值)。 實施例1(與第1實施形態對應之實施例) 1.元件集合體暫固定片之製造 參照圖3A,首先準備帶感光層之支持層22,該帶感光層之支持層22具備包含PET之厚度175 μm之支持層2、設置於該支持層2之上表面且包含含有鹵化銀之銀鹽乳劑的厚度3 μm之感光層21(步驟(1))。帶感光層之支持層22之前後方向長度係600 mm,左右方向長度係500 mm。 支持層2之總光線透過率係95%。支持層2之線膨脹係數係70×10-6 K- 1 。支持層2之於25℃之拉伸彈性模數E係60 MPa。 元件集合體固定層3之總光線透過率係95%。元件集合體固定層3之線膨脹係數係220×10-6 K-1 。 接下來,如圖3B所示,使用包含不鏽鋼之金屬遮罩局部地覆蓋感光層21,其後,對自金屬遮罩露出之感光層21照射峰值波長為193 nm之雷射光。由此,以曝光圖案之形式形成排列標記8及切斷標記9。 其後,藉由將帶感光層之支持層22浸漬於顯影液中,殘留曝光部分而將未曝光部分去除(進行了顯影)。由此,如圖3C及圖1所示,以顯影圖案23之形式形成具有圓形狀之排列標記8及直線形狀之切斷標記9之對準標記7。 排列標記8之直徑係0.5 mm,相鄰之排列標記8之間之間隔係1.14 mm,相鄰之排列標記8之間距係1.64 mm。切斷標記9之左右方向長度係0.5 mm,前後方向長度係0.2 mm。相鄰之切斷標記9之間之間隔係1.62 mm,相鄰之切斷標記9之間距係1.64 mm。 對準標記7係不透明,具體而言,總光線透過率係10%。 另行於第1剝離層5之表面準備包含矽酮系接著劑之厚度25 μm之元件集合體固定層3,另一方面於第2剝離層6之表面準備包含矽酮系接著劑之厚度15 μm之第1感壓接著層4。 接下來,將元件集合體固定層3以包含對準標記7之方式配置於支持層2之上表面,並且將第1感壓接著層4配置於支持層2之下表面。 由此,如圖2所示,獲得依序具備第2剝離層6、第1感壓接著層4、支持層2、元件集合體固定層3及第1剝離層5之元件集合體暫固定片1。 2.元件集合體暫固定片之使用(密封光半導體元件及光半導體裝置之製造) 其後,使用元件集合體暫固定片1來製造密封光半導體元件13,接下來製造光半導體裝置15。 即,將第2剝離層6自第1感壓接著層4剝離,其後如圖4A所示,於第1感壓接著層4之下表面配置包含玻璃之厚度700 μm之載體10。 如圖4之假想線箭頭所示,將第1剝離層5自元件集合體固定層3之上表面剝離,其後如圖4B所示,以排列標記8為基準將複數個光半導體元件11排列配置於元件集合體固定層3。此時,照相機自上方視認排列標記8。 光半導體元件11之厚度為150 μm,光半導體元件11之左右方向長度及前後方向長度係1.14 mm,相鄰之光半導體元件11之間之間隔係0.5 mm以上。 如圖4C所示,接下來,藉由密封層12密封元件集合體16。密封層12包含含有100質量份之矽酮樹脂及15質量份之螢光體之密封組成物。密封層12之厚度為400 μm。由此,獲得具備複數個光半導體元件11及1個密封層12之密封元件集合體19。 如圖1及圖4D之單點劃線所示,接下來,以切斷標記9為基準,用切割鋸切斷密封層12,將密封元件集合體19單片化。此時,照相機自上方視認切斷標記9。已切斷之密封層12之左右方向長度及前後方向長度分別係100 mm。 藉此,以暫固定於暫固定構件30之狀態獲得具備光半導體元件11及密封層12之密封光半導體元件13。 接下來,如圖4D之箭頭所示,將複數個密封光半導體元件13之各者自元件集合體固定層3剝離。 其後,如圖4E所示,將密封光半導體元件13覆晶安裝於基板14。 實施例2(與第1實施形態對應之實施例) 除了藉由含有碳黑之塗佈液之噴墨印刷及乾燥而形成對準標記7以外,與實施例1同樣地進行處理而獲得元件集合體暫固定片1,接下來,使用元件集合體暫固定片1製造密封光半導體元件13,繼而製造出光半導體裝置15。 實施例3(與第2實施形態之變化例對應之實施例) 準備積層體(商品名「TRM-6250-L」、日東電工公司製造),該積層體具備包含聚醯亞胺之厚度25 μm之支持層2、包含矽酮系感壓接著劑之厚度6 μm之元件集合體固定層3、及包含聚酯之厚度50 μm之第1剝離層5。 支持層2之總光線透過率係95%。支持層2之線膨脹係數係70×10 6 K 1 。支持層2之於25℃之拉伸模數E係60 MPa。 元件集合體固定層3之總光線透過率係95%。元件集合體固定層3之線膨脹係數係220×10 6 K 1 。 接下來,藉由YAG雷射以與實施例1同樣之圖案形成貫通孔26。YAG雷射之條件如下所述。 YAG雷射:MODEL5330(公司ESI製造) 光束直徑:5 μm 雷射功率:2.5 W 脈衝之重複頻率:30 kHz 掃描速度=150毫米(mm)/秒 其後,於支持層2之下表面載置包含矽酮系黏著劑之厚度15 μm之第1感壓接著層4及第2剝離層6。由此,獲得元件集合體暫固定片1。 其後,與實施例1同樣地使用元件集合體暫固定片1而製造密封光半導體元件13(參照圖8A~8D),繼而製造光半導體裝置15(參照圖8E)。 實施例4(與第3實施形態對應之實施例) 1.元件集合體暫固定片之製造 除了不具備第2剝離層6及第1感壓接著層4以外,與實施例1同樣地進行處理而獲得元件集合體暫固定片1。 即,如圖9所示,該元件集合體暫固定片1依序具備支持層2、元件集合體固定層3及第1剝離層5。元件集合體暫固定片1之厚度為100 μm。 2.元件集合體暫固定片之使用(密封光半導體元件及光半導體裝置之製造) 其後,使用元件集合體暫固定片1來製造密封光半導體元件13,接下來製造光半導體裝置15。 即、首先將第1剝離層5自元件集合體固定層3剝離,接下來如圖10A所示,於元件集合體固定層3之上表面配置包含玻璃之厚度700 μm之載體10。另外將包含元件集合體暫固定片1之厚度90 μm之第2感壓接著層25配置於載體10之上表面,該元件集合體暫固定片1包含支持層2、元件集合體固定層3及第1感壓接著層4。 如圖10B所示,接下來,以排列標記8為基準將複數個光半導體元件11排列配置於第2感壓接著層25之上表面。此時,照相機自上方視認排列標記8。光半導體元件11之尺寸及相鄰之光半導體元件11之間之尺寸與實施例1相同。 由此,以隔著載體10支持於元件集合體暫固定片1之狀態獲得具備第2感壓接著層25及複數個光半導體元件11之元件集合體16。 如圖10C所示,接下來,利用密封層12密封元件集合體16之複數個光半導體元件11。密封層12包含含有100質量份之矽酮樹脂及15質量份之螢光體之密封組成物。密封層12之厚度為400 μm。 由此,獲得具備元件集合體16及覆蓋複數個光半導體元件11之密封層12之密封元件集合體19。 如圖10D之單點劃線所示,接下來,以切斷標記9為基準,利用切割鋸切斷密封層12。此時,照相機自上方對切斷標記9進行視認。已切斷之密封層12之左右方向長度及前後方向長度均為1.62 mm。 其後,如圖10E之箭頭般,將密封元件集合體19自載體10之上表面剝離。接下來,將複數個密封光半導體元件13之各者自第2感壓接著層25剝離。 其後,如圖10F所示,將密封光半導體元件13覆晶安裝於基板14而獲得光半導體裝置15。 實施例5(與第3實施形態對應之實施例) 除了藉由含有碳黑之塗佈液之噴墨印刷及乾燥而形成對準標記7以外,與實施例4同樣地進行處理而獲得元件集合體暫固定片1,接下來,使用元件集合體暫固定片1製造密封光半導體元件13,繼而製造光半導體裝置15。 實施例6(與第4實施形態對應之實施例) 除了不具備第2剝離層6及第1感壓接著層4以外,與實施例3同樣地進行處理而獲得元件集合體暫固定片1(參照圖13A)。 接下來,製造密封光半導體元件13(參照圖13A~13E),繼而製造出光半導體裝置15(參照圖13F)。 此外,上述說明係作為本發明之例示之實施形態而提供,但其只不過為例示,不應限定性之解釋。由本領域技術人員知曉之本發明之變化例包含於下述之申請專利範圍中。In FIG. 2, the upper and lower sides of the paper are in the vertical direction (the first direction and the thickness direction), and the upper side of the paper is on the upper side (one side in the first direction and one side in the thickness direction), and the lower side of the paper is on the lower side (the first direction) The other side, the other side of the thickness direction). In FIG. 2, the left-right direction of the paper surface is the left-right direction (the second direction orthogonal to the first direction, the width direction), and the right side of the paper surface is the right side (one side in the second direction, one side in the width direction), and the left side of the paper side is the left side. (the other side in the second direction and the other side in the width direction). In FIG. 2, the paper thickness direction is the front-back direction (the third direction orthogonal to the first direction and the second direction), the front side of the paper surface is the front side (one side in the third direction), and the deep side of the paper surface is the rear side (the third side) The other side of the 3 directions). Specifically, the direction arrows of each figure shall prevail. 1. In the first embodiment, as shown in FIG. 1 and FIG. 2, the component assembly temporary fixing sheet 1 has a flat plate shape, specifically, a specific thickness, and a direction perpendicular to the thickness direction (left-right direction and front-rear direction). ) extended with a flat front and a flat back. Further, in the element assembly temporary fixing sheet 1, a flat plate shape having a length in the front-rear direction and a length (width) in the left-right direction is long. Alternatively, the component assembly temporary fixing sheet 1 has a long strip shape having a long front and rear direction. As shown in FIG. 2, the element assembly temporary fixing sheet 1 includes the element assembly fixing layer 3, the support layer 2, and the first pressure-sensitive adhesive layer 4 in this order. Specifically, the component assembly temporary fixing sheet 1 includes: a support layer 2; a component assembly fixed layer 3 which is provided on the support layer 2; and a first pressure-sensitive adhesive layer 4 which is disposed under the support layer 2 . Further, in the element assembly temporary fixing sheet 1, the element assembly fixing layer 3 is provided with an alignment mark 7. Hereinafter, each member will be described. 1-1. Support Layer The support layer 2 is located at the center in the thickness direction of the temporary assembly sheet 1 of the component assembly. That is, the support layer 2 is interposed between the element assembly fixed layer 3 and the first pressure sensitive layer 4. The element assembly temporary fixing sheet 1 has a flat plate shape, specifically, has a specific thickness, and extends in the left-right direction and the front-rear direction, and has a flat front surface and a flat back surface. Further, the support layer 2 has flexibility. The support layer 2 supports the element assembly fixed layer 3 and the first pressure-sensitive adhesive layer 4. The support layer 2 contains a synthetic resin. Examples of the synthetic resin include polyethylene (for example, low density polyethylene, medium density polyethylene, high density polyethylene, linear low density polyethylene, etc.), polypropylene, ethylene-propylene copolymer, and ethylene-C4 or higher. An olefin polymer such as an olefin copolymer, for example, an ethylene-ethyl acrylate copolymer, an ethylene-methyl methacrylate copolymer, an ethylene-n-butyl acrylate copolymer, or the like, an ethylene-(meth) acrylate copolymer, for example, a poly A polyester such as polyethylene terephthalate (PET) or polyethylene naphthalate, such as a polycarbonate, for example, a polyurethane, for example, a polymer such as polyimine. The copolymer may also be any of a random copolymer and a block copolymer. The synthetic resin may be used alone or in combination of two or more. Further, the support layer 2 may be porous as described above for the synthetic resin. Preferably, the support layer 2 comprises PET or polycarbonate. Further, the support layer 2 may be composed of a single layer or a plurality of layers. Further, the above synthetic resin is, for example, transparent. That is, the support layer 2 is transparent. Specifically, the total light transmittance of the support layer 2 is, for example, 80% or more, preferably 90% or more, more preferably 95% or more, and further, for example, 99.9% or less. The linear expansion coefficient of the support layer 2 is, for example, 500×10-6 K-1 Hereinafter, it is preferably 300×10-6 K-1 Hereinafter, again, for example, 2×10-6 K-1 Above, preferably 10×10-6 K-1 %the above. When the linear expansion coefficient of the support layer 2 is equal to or less than the above upper limit, the alignment of the optical semiconductor element 11 based on the alignment mark 7 and/or the cutting of the sealing layer 12 can be achieved. The coefficient of linear expansion of the support layer 2 can be measured by a linear expansion coefficient measuring device (TMA). The coefficient of linear expansion of the following members can also be determined by the same method. The tensile elastic modulus E of the support layer 2 at 25 ° C is, for example, 200 MPa or less, preferably 100 MPa or less, more preferably 80 MPa or less, and further, for example, 50 MPa or more. When the tensile elastic modulus E of the support layer 2 is less than or equal to the above upper limit, flexibility can be ensured, and the alignment mark 7 can be easily provided. The thickness of the support layer 2 is, for example, 10 μm or more, preferably 30 μm or more, and further, for example, 350 μm or less, preferably 100 μm or less. 1-2. Element assembly fixing layer The element assembly fixing layer 3 is located at the upper end of the element assembly temporary fixing piece 1. The element assembly fixing layer 3 is disposed on the upper surface of the support layer 2. That is, the element assembly fixing layer 3 forms the upper surface of the element assembly temporary fixing sheet 1. The element assembly fixing layer 3 has a flat plate shape, specifically, has a specific thickness, and extends in the left-right direction and the front-rear direction, and has a flat front surface and a flat back surface (except for a portion corresponding to the alignment mark 7 to be described later). ). The element assembly fixing layer 3 is configured such that the element assembly 16 in which a plurality of optical semiconductor elements 11 are arranged in an array (described below with reference to FIGS. 1 and 4B) is temporarily fixed. Further, the element assembly fixing layer 3 has pressure-sensitive adhesiveness (adhesiveness). The component assembly fixing layer 3 contains a pressure-sensitive adhesive. Examples of the pressure-sensitive adhesive include an acrylic pressure-sensitive adhesive, a rubber-based pressure-sensitive adhesive, an SIS (styrene-isoprene-styrene/block copolymer) pressure-sensitive adhesive, and an anthrone. Pressure-sensitive adhesive, vinyl alkyl ether pressure-sensitive adhesive, polyvinyl alcohol pressure-sensitive adhesive, polyvinylpyrrolidone pressure-sensitive adhesive, polypropylene amide-based pressure-sensitive adhesive, cellulose-based pressure-sensitive adhesive A urethane-based pressure-sensitive adhesive, a polyester-based pressure-sensitive adhesive, a polyamine-based pressure-sensitive adhesive, and an epoxy-based pressure-sensitive adhesive. Preferably, an anthrone-based pressure-sensitive adhesive is used. Further, the element assembly fixing layer 3 is transparent. The total light transmittance of the element assembly fixing layer 3 is, for example, 80% or more, preferably 90% or more, more preferably 95% or more, and for example, 99.9% or less. The linear expansion coefficient of the component assembly fixed layer 3 is, for example, 500×10-6 K-1 Hereinafter, it is preferably 300×10-6 K-1 Hereinafter, again, for example, 2×10-6 K-1 Above, preferably 10×10-6 K-1 the above. The element assembly fixing layer 3 is pressure-sensitive to the gusset, and the peeling force when the element assembly fixing layer 3 is peeled off from the gusset at 180 degrees at 25 ° C is, for example, 0.1 N/mm or more, preferably 0.3 N/mm. The above is, for example, 1 N/mm or less. When the peeling force of the element assembly fixing layer 3 is equal to or higher than the above lower limit, the plurality of optical semiconductor elements 11 can be surely fixed. The thickness of the element assembly fixing layer 3 is, for example, 5 μm or more, preferably 10 μm or more, and further, for example, less than 120 μm, preferably less than 100 μm, more preferably 80 μm or less, still more preferably 60 μm. the following. When the thickness of the element assembly fixing layer 3 exceeds the above lower limit, pressure-sensitive adhesiveness can be surely imparted to the upper surface of the element assembly temporary fixing sheet 1. Therefore, the component assembly temporary fixing sheet 1 can be easily manufactured. When the thickness of the element assembly fixing layer 3 is lower than the above upper limit, the rationality of the element assembly fixing layer 3 can be improved. 1-3. First pressure-sensitive adhesive layer The first pressure-sensitive adhesive layer 4 is located at the lower end portion of the component assembly temporary fixing sheet 1. Further, the first pressure-sensitive adhesive layer 4 is disposed on the lower surface of the support layer 2. That is, the first pressure-sensitive adhesive layer 4 forms the lower surface of the component assembly temporary fixing sheet 1. Further, the first pressure-sensitive adhesive layer 4 is spaced apart from the element assembly fixing layer 3 by the support layer 2 in the thickness direction. The first pressure-sensitive adhesive layer 4 has a flat plate shape, specifically, has a specific thickness, and extends in the left-right direction and the front-rear direction, and has a flat front surface and a flat back surface. The first pressure-sensitive adhesive layer 4 has pressure-sensitive adhesive properties (adhesiveness). Specifically, the first pressure-sensitive adhesive layer 4 includes the same pressure-sensitive adhesive as the element assembly fixed layer 3 . The first pressure-sensitive layer 4 is transparent. The total light transmittance of the first pressure-sensitive adhesive layer 4 is, for example, 80% or more, preferably 90% or more, more preferably 95% or more, and further, for example, 99.9% or less. The coefficient of linear expansion of the first pressure-sensitive adhesive layer 4 is, for example, 500 × 10-6 K-1 Hereinafter, it is preferably 300×10-6 K-1 Hereinafter, again, for example, 2×10-6 K-1 Above, preferably 10×10-6 K-1 %the above. The thickness of the first pressure-sensitive adhesive layer 4 is, for example, 5 μm or more, preferably 10 μm or more, and is, for example, less than 100 μm, preferably 80 μm or less, and more preferably 60 μm or less. 1-4. Alignment mark As shown in Fig. 2, the alignment mark 7 is provided on the upper surface of the support layer 2. As shown in FIGS. 1 and 2, specifically, the alignment mark 7 is provided in plural at the right end portion of the upper surface of the support layer 2. In detail, the alignment mark 7 is provided in the mark formation region 18 which is divided on the right side (one of the width direction side) of the element assembly forming region 17, and the element assembly forming region 17 is provided with a component assembly which will be described later. 16. The mark forming region 18 is disposed along the front-rear direction at the right end portion of the element assembly temporary fixing sheet 1. The alignment mark 7 is a reference mark for temporarily fixing the element assembly 16 to the element assembly fixing layer 3 and for cutting the sealing layer 12 of the sealing element assembly 16. Specifically, the alignment mark 7 is provided with the arrangement mark 8 and the cut mark 9. The alignment mark 8 and the cut mark 9 are arranged in correspondence with a plurality of optical semiconductor elements 11 (described later) arranged in a line in the left-right direction, and are arranged in a row at intervals in the left-right direction. The alignment mark 8 is a mark on the left side of the alignment mark 7, and a plurality of marks are arranged at intervals in the front-rear direction. Each of the plurality of alignment marks 8 has, for example, a substantially circular shape. The cut marks 9 are marks on the right side of the alignment marks 7, and are arranged at a plurality of intervals in the front-rear direction. Specifically, the plurality of cut marks 9 are arranged so as not to overlap each of the plurality of arrangement marks 8 when projected in the left-right direction. In other words, the plurality of array marks 8 and the plurality of cut marks 9 are arranged in a staggered manner, that is, alternately arranged in the front-rear direction when projected in the left-right direction. Each of the plurality of cut marks 9 is disposed on the right oblique front side with respect to each of the plurality of array marks 8 at intervals. Each of the plurality of cut marks 9 has, for example, a substantially rod (straight line) shape extending in the left-right direction. The alignment mark 7 is opaque. To this end, the alignment mark 7 contains an opaque (described later) material. Examples of such a material include a metal material such as silver (metal silver) and a carbon material such as carbon black. As a metal material, silver is preferable. As long as the silver is applied, the visibility of the alignment mark 7 can be further improved. Further, as the carbon material, carbon black is preferred. As long as the carbon black is used, the visibility of the alignment mark 7 can be further improved. The size of the alignment mark 7 can be appropriately set. The diameter (maximum length) of the alignment mark 8 is, for example, 0.05 mm or more, preferably 0.1 mm or more, and is, for example, 1 mm or less, preferably 0.5 mm or less. The distance (i.e., the pitch) between the centers of the adjacent alignment marks 8 is, for example, 0.05 mm or more, preferably 0.1 mm or more, and further, for example, 1.0 mm or less, preferably 0.8 mm or less. The length in the left-right direction of the cutting mark 9 is, for example, 0.05 mm or more, preferably 0.1 mm or more, and is, for example, 1 mm or less, preferably 0.5 mm or less. The width (length in the front-rear direction) of the cutting mark 9 is, for example, 0.05 mm or more, preferably 0.1 mm or more, and is, for example, 1 mm or less, preferably 0.25 mm or less. The interval between the arrangement marks 8 and the cut marks 9 which are adjacent to each other when projected in the front-rear direction is, for example, 0.1 mm or more, preferably 0.2 mm or more, and is, for example, 1 mm or less, preferably 0.8 mm or less. The distance between the centers of the cut marks 9 is, for example, 0.05 mm or more, preferably 0.1 mm or more, and further, for example, 1.0 mm or less, preferably 0.8 mm or less. The thickness of the alignment mark 7 is, for example, 0.5 μm or more, preferably 1 μm or more, and is, for example, 10 μm or less, or preferably 5 μm or less. The total light transmittance of the alignment mark 7 is, for example, 40% or less, preferably 20% or less, more preferably 10% or less, and further, for example, 0.1% or more. 1-5. First Peeling Layer and Second Peeling Layer As shown in FIG. 2, the element assembly temporary fixing sheet 1 further includes a first peeling layer 5 and a second peeling layer 6. As shown in FIG. 4A and FIG. 4B, the first peeling layer 5 is detachably attached to the component in order to protect the component assembly fixing layer 3 until the optical semiconductor element 11 is temporarily fixed by the component assembly fixing layer 3. The front side of the assembly fixed layer 3. In other words, the first release layer 5 is a flexible film containing a resin, and is laminated on the surface of the component assembly fixing layer 3 so as to cover the surface of the component assembly fixing layer 3 when it is shipped, transported, and stored. The surface of 3 may be peeled off from the front surface of the element assembly fixing layer 3 in a substantially U-shape before the element assembly fixing layer 3 is used. Further, the bonding surface of the flexible film is subjected to a release treatment as needed. The flexible film may, for example, be a polymer film such as a polyethylene film or a polyester film (PET or the like). The thickness of the first peeling layer 5 is, for example, 1 μm or more, preferably 10 μm or more, and is, for example, 2000 μm or less, or preferably 1000 μm or less. The second peeling layer 6 is peelably bonded to the back surface of the first pressure-sensitive adhesive layer 4 in order to protect the first pressure-sensitive adhesive layer 4 until the first pressure-sensitive adhesive layer 4 is supported by the carrier 10 . In other words, the second release layer 6 is a flexible film containing a resin, and is laminated on the first pressure-sensitive layer so as to cover the back surface of the first pressure-sensitive adhesive layer 4 when the component assembly temporary fixing sheet 1 is shipped, transported, and stored. Next, the back surface of the layer 4 can be peeled off from the back surface of the first pressure-sensitive adhesive layer 4 in a substantially U-shape immediately before the first pressure-sensitive adhesive layer 4 is used. Further, the bonding surface of the flexible film is subjected to a release treatment as needed. The flexible film may, for example, be a polymer film such as a polyethylene film or a polyester film (PET or the like). The thickness of the second peeling layer 6 is, for example, 1 μm or more, preferably 10 μm or more, and is, for example, 2000 μm or less, preferably 1000 μm or less. Further, the element assembly temporary fixing sheet 1 does not include the carrier 10 and the optical semiconductor element 11, and sequentially includes the second release layer 6, the first pressure-sensitive adhesive layer 4, the support layer 2, the element assembly fixed layer 3, and the first Peel layer 5. Preferably, the element assembly temporary fixing sheet 1 is composed only of the second release layer 6, the first pressure-sensitive adhesive layer 4, the support layer 2, the element assembly fixed layer 3, and the first release layer 5. 1-6. Method of Manufacturing Element Assembly Temporary Fixing Sheet Next, a method of manufacturing the element assembly temporary fixing sheet 1 will be described. Referring to Fig. 2, in the method, the support layer 2 is first prepared, and then the alignment mark 7 is set. The method of providing the alignment mark 7 is not particularly limited, and examples thereof include a method using photo lithography, a thermal transfer (see, for example, Japanese Patent Laid-Open Publication No. 2000-135871), embossing, letterpress printing, gravure printing, and stencil printing. (Screen printing), inkjet printing (refer to, for example, Japanese Patent Laid-Open Publication No. 2014-10823). From the viewpoint of accurately arranging the alignment mark 7, a method using photolithography or screen printing is preferable, and a method using photo lithography is more preferable. Moreover, from the viewpoint of easily providing the alignment mark 7, thermal transfer printing and inkjet printing are exemplified. In the method of using photolithography, specifically, as shown in FIGS. 3A to 3C, the step (1) of preparing the support layer 2 on which the photosensitive layer 21 is provided (see FIG. 3A), and by light are sequentially performed. The lithography self-photosensitive layer 21 forms the alignment mark 7 in the form of the development pattern 23 (see FIGS. 3B and 3C). In the step (1), the support layer 22 with the photosensitive layer is prepared as shown in FIG. 3A, and the support layer 22 with the photosensitive layer is provided with a support layer 2, and a photosensitive layer 21 provided on the upper surface of the support layer 2. The photosensitive layer 21 is disposed on the entire upper surface of the support layer 2. The photosensitive layer 21 contains a photosensitive material which can form the developing pattern 23 by photolithography. As a photosensitive material, a silver salt emulsion is mentioned, for example. Silver salt emulsions contain, for example, silver salts. The silver salt may, for example, be an inorganic silver salt such as a silver halide, or an organic silver salt such as silver acetate. Preferably, an inorganic silver salt which is excellent in light responsiveness is exemplified. The thickness of the photosensitive layer 21 is, for example, 0.5 μm or more, preferably 1 μm or more, and is, for example, 10 μm or less, preferably 5 μm or less. In the step (2), as shown in FIG. 3B, the photosensitive layer 21 is irradiated with an active energy ray via a photomask (not shown). Specifically, the photosensitive layer 21 is partially covered with a metal mask including a metal such as stainless steel, and then the photosensitive layer 21 exposed from the metal mask is irradiated with laser light (peak wavelength: 150 nm or more and 250 nm or less). Thereby, an exposed portion of the same pattern as the alignment mark 7 and an unexposed portion of the pattern opposite to the alignment mark 7 can be formed on the photosensitive layer 21. Thereafter, as shown in FIG. 3C, the photosensitive layer 21 is immersed in the developing solution, and the exposed portion is left to remove the unexposed portion (developing). Thereby, the alignment mark 7 is formed in the form of the development pattern 23. Thereafter, the element assembly fixing layer 3 is provided on the support layer 2 (an example of the step (3)), and the first pressure-sensitive adhesive layer 4 is provided under the support layer 2. In order to provide the element assembly fixing layer 3 and the first pressure-sensitive adhesive layer 4 in the support layer 2, first, the element assembly fixing layer 3 and the first pressure-sensitive adhesive layer 4 are prepared. The element assembly fixing layer 3 is provided on, for example, the surface of the first peeling layer 5. The first pressure-sensitive adhesive layer 4 is provided, for example, on the surface of the second peeling layer 6. Next, the element assembly fixing layer 3 is placed on the upper surface of the support layer 2. At this time, the element assembly fixing layer 3 is placed on the upper surface of the support layer 2 so as to embed the alignment mark 7. Further, the first pressure-sensitive adhesive layer 4 is disposed on the lower surface of the support layer 2. Thereby, the element assembly temporary fixing sheet 1 is provided, and the element assembly temporary fixing sheet 1 includes the support layer 2, the element assembly fixing layer 3 and the first pressure sensitive layer 4 which are respectively disposed above the support layer 2, and respectively The first assembly layer 5 and the second release layer 6 disposed on the element assembly fixing layer 3 and the first pressure sensitive layer 4 are disposed. The thickness of the element assembly temporary fixing sheet 1 is, for example, 15 μm or more, preferably 40 μm or more, and is, for example, 550 μm or less, or preferably 260 μm or less. Further, the component assembly temporary fixing sheet 1 has flexibility. 1-7. Method of using the component assembly temporary fixing piece Next, a method of using the element assembly temporary fixing piece 1 will be described. As shown in FIG. 4A, first, the carrier 10 is placed on the lower surface of the first pressure-sensitive adhesive layer 4. Specifically, first, the second peeling layer 6 shown by the imaginary line in FIG. 2 is peeled off from the first pressure-sensitive adhesive layer 4, and then, as shown in FIG. 4A, the carrier 10 is directly brought into contact with the first pressure-sensitive layer. Next to the lower surface of layer 4. Thereby, the carrier 10 is pressure-sensitive to the first pressure-sensitive adhesive layer 4. The carrier 10 is used for a support plate for temporarily fixing the sheet 1 from the lower support member assembly. The carrier 10 is formed in a substantially flat plate shape extending in the front-rear direction and the left-right direction. The carrier 10 has the same shape as that of the component assembly temporary fixing sheet 1 in plan view. The thickness of the carrier 10 is, for example, 100 μm or more, preferably 350 μm or more, and further, for example, 1000 μm or less, preferably 600 μm or less. Carrier 10 comprises a hard material. Examples of the hard material include a transparent material such as glass, and an opaque material such as ceramic or stainless steel. The Vickers hardness of the hard material is, for example, 0.5 GPa or more, preferably 1 GPa or more, more preferably 1.2 GPa or more, and further, for example, 10 GPa or less. As long as the carrier 10 contains a hard material, specifically, the Vickers hardness of the hard material is at least the above lower limit, and the element assembly temporary fixing sheet 1 can be surely supported. Thereby, the temporary fixing member 30 which has the carrier 10 and the element assembly temporary fixing sheet 1 in order can be obtained. Further, the temporary fixing member 30 has an alignment mark 7 provided on the support layer 2 of the element assembly temporary fixing sheet 1. Next, as shown by the imaginary line arrow in FIG. 4A, after the first peeling layer 5 is peeled off from the upper surface of the element assembly fixing layer 3, as shown in FIG. 4B, a plurality of optical semiconductor elements 11 are temporarily fixed to the element. The upper surface of the assembly layer 3 is fixed. At this time, a plurality of optical semiconductor elements 11 are arranged (arranged) on the upper surface of the element assembly fixing layer 3 with reference to the alignment mark 8. Further, a plurality of optical semiconductor elements 11 are provided in the element assembly forming region 17 of the element assembly fixing layer 3. Specifically, the plurality of optical semiconductor elements 11 are positioned in the left-right direction and the front-rear direction while viewing the alignment mark 8, and the plurality of optical semiconductor elements 11 are directly in contact with the upper surface of the element assembly fixing layer 3. In order to visually recognize the alignment mark 8, the alignment mark 8 is viewed from above the self-aligned mark 8 by a camera or the like provided above the temporary fixing member 30. At this time, since the element assembly fixing layer 3 is transparent, the alignment mark 8 can be viewed from above the element assembly fixing layer 3. Further, the optical semiconductor element 11 has an upper surface, a surface disposed opposite to the upper surface in the thickness direction, and a circumferential side surface connecting the upper surface and the lower surface. An electrode is formed on the lower surface. A plurality of optical semiconductor elements 11 are arranged side by side on the upper surface of the alignment mark 8, thereby constituting the element assembly 16. The interval between the adjacent optical semiconductor elements 11 (the interval in the front-rear direction and/or the left-right direction) is, for example, 0.05 mm or more, preferably 0.1 mm or more, and is, for example, 1.0 mm or less, preferably 0.8 mm or less. . Further, the thickness (height) of each of the plurality of optical semiconductor elements 11 is, for example, 0.1 μm or more, preferably 0.2 μm or more, and is, for example, 500 μm or less, or preferably 200 μm or less. The length in the left-right direction and/or the length in the front-rear direction of each of the plurality of optical semiconductor elements 11 is, for example, 0.05 mm or more, preferably 0.1 mm or more, and is, for example, 1.0 mm or less, preferably 0.8 mm or less. Next, the element assembly 16 is sealed by the sealing layer 12 as shown by the solid line in FIG. 4C and the alternate long and short dash line in FIG. The component assembly 16 is sealed, for example, by a sealing sheet comprising a semi-solid or solid sealing composition. Alternatively, the component assembly 16 is sealed by infusing a liquid sealing composition. The sealing composition contains a transparent resin such as an anthrone resin or an epoxy resin. The sealing composition may contain particles such as a filler, a phosphor, and light-reflecting particles in an appropriate ratio as needed. The sealing layer 12 covers the upper surface and the side surface of each of the plurality of optical semiconductor elements 11, and the upper surface of the element assembly fixing layer 3 exposed from each of the plurality of optical semiconductor elements 11. The sealing layer 12 is provided on the upper surface of the element assembly fixing layer 3 in the element assembly forming region 17 so that the upper surface of the element assembly fixing layer 3 in the mark forming region 18 is exposed. Thereby, the sealing element assembly 19 including the plurality of optical semiconductor elements 11 (the element assembly 16) and one sealing layer 12 can be obtained. In other words, the sealing element assembly 19 is obtained in a state of being temporarily fixed to the element assembly temporary fixing sheet 1. The thickness of the sealing layer 12 is, for example, 40 μm or more, preferably 50 μm or more, and is, for example, 500 μm or less, preferably 300 μm or less. As shown by the chain double-dashed line in FIG. 1 and the one-dot chain line in FIG. 4D, the sealing layer 12 is cut in such a manner that the optical semiconductor element 11 is singulated. That is, the sealing element assembly 19 is singulated. In order to cut the sealing layer 12, for example, a cutting device including a cutter, for example, a cutting device including a laser irradiation source can be used. As a cutting device provided with a cutter, for example, a cutting device including a disk-shaped dicing saw (cutting blade), for example, a cutting device including a cutter, may be mentioned. It is preferable to use a cutting device having a cutter, and it is more preferable to use a cutting device. In the cutting of the sealing layer 12 by the above-described cutting device, the sealing layer 12 is cut with reference to the cutting mark 9 of the alignment mark 7. Further, the sealing layer 12 is cut while viewing the cutting mark 9 of the alignment mark 7 from above by the same camera as the camera for viewing the alignment mark 8. The length of the sealing layer 12 that has been cut in the front-rear direction and/or the length in the left-right direction is, for example, 20 mm or more, preferably 40 mm or more, and is, for example, 150 mm or less, preferably 100 mm or less. Thereby, a plurality of sealed optical semiconductor elements 13 having one optical semiconductor element 11 and one sealing layer 12 can be obtained in a state of being temporarily fixed to the element assembly fixing layer 3 (temporary fixing member 30). Next, as shown by the arrow in FIG. 4D, a plurality of sealed optical semiconductor elements 13 are respectively peeled off from the element assembly fixing layer 3. Then, in the temporary fixing member 30 in which the plurality of sealed optical semiconductor elements 13 have been peeled off, the carrier 10 is peeled off from the first pressure-sensitive adhesive layer 4, and the carrier 10 is reused. On the other hand, the component assembly temporary fixing sheet 1 (the support layer 2, the element assembly fixed layer 3, and the first pressure sensitive layer 4) is discarded. That is, the component assembly temporary fixing sheet 1 is a disposable type. Thereafter, as shown in FIG. 4E, the sealed optical semiconductor element 13 is flip-chip mounted on the substrate 14. The substrate 14 has a flat plate shape extending in the front-rear direction and the left-right direction. A terminal electrically connected to the electrode of the optical semiconductor element 11 is formed on the upper surface of the substrate 14. Thereby, the optical semiconductor device 15 including the sealed optical semiconductor element 13 and the substrate 14 can be obtained. 2. Operation and Effect of the First Embodiment Further, in the element assembly temporary fixing sheet 1, the alignment mark 7 is provided on the support layer 2 including the synthetic resin, so that the alignment mark 7 can be easily formed on the support layer 2 . However, in Japanese Laid-Open Patent Publication No. 2014-168036, a mark is provided on a rigid support plate, and thus such a support plate cannot be reused. However, in the component assembly temporary fixing sheet 1, the alignment mark 7 is provided not on the carrier 10 but on the support layer 2 which is separately provided on the component assembly temporary fixing sheet 1, so that the support layer can be provided at a relatively low cost. The component assembly of 2 is temporarily discarded, and on the other hand, the carrier 10 can be reused. Therefore, the manufacturing cost of the sealed optical semiconductor element 13 can be suppressed, and the manufacturing cost of the optical semiconductor device 15 can be suppressed. According to the element assembly temporary fixing sheet 1, as long as the alignment mark 7 contains a carbon material, the visibility of the alignment mark 7 can be improved. According to the element assembly temporary fixing sheet 1, as long as the carbon material is carbon black, the visibility of the alignment mark 7 can be improved. According to the element assembly temporary fixing sheet 1, the alignment mark 7 can be easily provided by arranging the alignment mark 7 by a pattern provided by at least one method including group selection of thermal transfer and inkjet printing. Further, according to the element assembly temporary fixing sheet 1, the opaque alignment mark 7 can be surely viewed through the transparent element assembly fixing layer 3. Therefore, as shown in FIG. 4B, the component assembly 16 can be temporarily fixed with reference to the alignment mark 8, or as shown by the alternate long and short dash line in FIG. 4D, the sealing can be surely cut off based on the cut mark 9. Layer 12. Further, according to the element assembly temporary fixing sheet 1, as shown in Figs. 3B and 3C, the alignment mark 7 can be easily provided as long as the alignment mark 7 is the development pattern 23. According to the element assembly temporary fixing sheet 1, as long as the alignment mark 7 contains silver, the visibility of the alignment mark 7 can be improved. Further, in the element assembly temporary fixing sheet 1, if the thickness of the element assembly fixing layer is less than 120 μm, the thickness is thin, and therefore the element assembly fixing layer 3 is excellent in rationality. According to the manufacturing method of the element assembly temporary fixing sheet 1, the alignment mark 7 can be easily provided. 3. Modification of the first embodiment In the first embodiment, as shown in Fig. 1, the arrangement mark 8 has a substantially circular shape, and the cut mark 9 has a substantially linear shape. However, the shape of each of the alignment marks 7 is not particularly limited. In addition, after the element assembly fixing layer 3 is formed on the surface of the first peeling layer 5 (see the imaginary line of FIG. 3), the element assembly fixing layer 3 is transferred from the first peeling layer 5 to the support layer 2, However, for example, the component assembly fixing layer 3 may be formed directly on the upper surface of the support layer 2. Further, first, the first pressure-sensitive adhesive layer 4 is formed on the surface of the second release layer 6 (see the imaginary line of FIG. 3), and then the first pressure-sensitive adhesive layer 4 is transferred from the second release layer 6 to the support layer. 2. For example, the first pressure-sensitive adhesive layer 4 may be formed directly on the lower surface of the support layer 2, for example. Further, in the first embodiment, as shown in FIG. 2, the alignment mark 7 is provided on the upper surface of the support layer 2. In a variation, as shown in FIG. 5, the alignment mark 7 is disposed on the lower surface of the support layer 2. The alignment mark 7 is embedded in the first pressure-sensitive adhesive layer 4 . As shown in FIG. 4B, when a plurality of optical semiconductor elements 11 are arranged in the element assembly fixing layer 3, or when the sealing layer 12 is cut as shown in FIG. 4D, the camera is disposed above the temporary fixing member 30. The mark 8 or the cut mark 9 is viewed through the element assembly fixing layer 3 and the support layer 2. Further, although not shown, the alignment mark 7 may be provided on the upper and lower surfaces of the support layer 2. Preferably, the alignment mark 7 is provided only on one side of the support layer 2, that is, only on the upper surface or only on the lower surface. If the alignment mark 7 is provided only on one side of the support layer 2, the alignment mark 7 can be easily formed as compared with the case where the alignment mark 7 is disposed on the upper and lower surfaces of the support layer 2, thereby correspondingly Reduce manufacturing costs. More preferably, as shown in FIG. 2 of the first embodiment, the alignment mark 7 is provided on the upper surface of the support layer 2. According to this configuration, the alignment mark 7 can be visually recognized from the upper side as compared with the case where the alignment mark 7 is provided on the lower surface of the support layer 2. Further, although not shown, the alignment mark 7 may be provided as a recess in which the support layer 2 is recessed in the thickness direction. Further, in the method of use of the first embodiment, as shown by the alternate long and short dash line in FIG. 4D, the sealing layer 12 is cut and the sealing member assembly 19 is singulated. However, in the modified example, as shown in FIG. 6A, the sealing member assembly 19 is peeled off from the element assembly fixing layer 3 without cutting the sealing layer 12, and thereafter, as shown in FIG. 6B, the sealing member assembly 19 is used. The flip chip is mounted on the substrate 14. In this modification, the sealing layer 12 is not cut. Therefore, although not shown, the alignment mark 7 may be formed only by the arrangement mark 8 without the cutting mark 9. In the second embodiment, the same members and steps as those in the first embodiment are denoted by the same reference numerals, and the detailed description thereof will be omitted. In the first embodiment, as shown in FIGS. 2 and 4A, alignment marks 7 are provided on the element assembly temporary fixing sheet 1 (specifically, the support layer 2). In the second embodiment, as shown in FIG. 8A, the alignment mark 7 is formed to penetrate the through hole 26 of the element assembly temporary fixing sheet 1. The through hole 26 penetrates the element assembly fixing layer 3, the support layer 2, and the first pressure-sensitive adhesive layer 4 in the thickness direction. In the second embodiment, the carrier 10 is colorless, and at least one of the element assembly fixing layer 3, the support layer 2, and the first pressure-sensitive adhesive layer 4 is colored, and at least one of the colored layers has a dye, for example, in an appropriate ratio. Colored components such as pigments. The total light transmittance of the carrier 10 is, for example, 80% or more, preferably 90% or more, more preferably 95% or less, and further, for example, 99.9% or less. The total light transmittance of at least one of the above-mentioned colored layers is, for example, 80% or less, preferably 65% or less, more preferably 50% or less. Since at least one of the layers is colored, the through hole 26 is regarded as being colorless in plan view. That is, the through hole 26 can be clearly seen as shown in FIG. 7 by using the contrast between the at least one of the colored ones and the colorless through hole 26. In order to manufacture the element assembly temporary fixing sheet 1, the element assembly temporary fixing sheet 1 is prepared as shown in FIG. 2, and the element assembly temporary fixing sheet 1 includes the second peeling layer 6 and the first pressure-sensitive adhesive layer 4 in this order. The support layer 2, the element assembly fixed layer 3, and the first release layer 5. Next, the through hole 26 through which the second peeling layer 6 , the first pressure sensitive adhesive layer 4 , the support layer 2 , the element assembly fixed layer 3 , and the first peeling layer 5 are collectively penetrated is formed in the thickness direction. The through hole 26 is formed by, for example, cutting, punching, laser processing, or the like. Preferably, the through hole 26 is formed by laser processing. Examples of the laser processing include excimer laser, YAG (Yttrium Aluminum Garnet) laser, and CO.2 For the laser or the like, a YAG laser is preferable from the viewpoint of continuously manufacturing the component assembly temporary fixing sheet 1 in a roll-to-roll manner and forming the through hole 26 in a wide range. In the method of using the element assembly temporary fixing sheet 1, the second release layer 6 is peeled off from the first pressure-sensitive adhesive layer 4, and thereafter, as shown in FIG. 8A, the carrier 10 and the first pressure-sensitive adhesive layer 4 are formed. The surface is in direct contact. Next, the first peeling layer 5 is peeled off from the upper surface of the element assembly fixing layer 3. Thereafter, as shown in FIG. 8B, a plurality of optical semiconductor elements 11 are arranged (arranged) on the upper surface of the element assembly fixing layer 3 with reference to the alignment mark 8. At this time, the plurality of optical semiconductor elements 11 are positioned in the left-right direction and the front-rear direction while viewing the alignment mark 8, and the plurality of optical semiconductor elements 11 are in direct contact with the upper surface of the element assembly fixing layer 3. Specifically, the visual alignment mark 8 (through hole 26) is colorless. The alignment mark 8 (through hole 26) can be clearly viewed by the contrast with at least one of the above colored layers (see Fig. 7). Moreover, as shown in FIG. 8D, when the sealing layer 12 is cut, the cutting mark 9 is used as a reference. Specifically, the cut mark 9 (through hole 26) is visually recognized by the same method as the above-described alignment mark 8 (through hole 26) (see FIG. 7). 5. Operation and Effect of the Second Embodiment According to the second embodiment, the same operational effects as those of the first embodiment can be obtained. In particular, according to this method, the alignment mark 7 can be simply made into the through hole 26. 6. Variation of the second embodiment In the above description, as shown in FIG. 8A, the element assembly fixing layer 3, the support layer 2, and the first pressure-sensitive adhesive layer 4 are formed in the thickness direction. Through hole 26. However, although not shown, the through hole 26 penetrating the element assembly fixing layer 3 and the support layer 2 without penetrating the first pressure sensitive adhesive layer 4 may be formed. In this case, the first pressure-sensitive adhesive layer 4 is colorless, and at least one of the aggregate fixed layer 3 and the support layer 2 is colored. According to this modification, the same operational effects as those of the second embodiment can be exhibited. 6. In the third embodiment, the same members and steps as those in the first embodiment and the second embodiment are denoted by the same reference numerals, and the detailed description thereof will be omitted. 6-1. Element assembly temporary fixing sheet As shown in FIG. 9, the component assembly temporary fixing sheet 1 of the third embodiment includes the support layer 2 and the component set without including the first pressure sensitive adhesive layer 4 (see FIG. 2). Body fixing layer 3. Further, the element assembly temporary fixing sheet 1 may further include the first release layer 5. Preferably, the element assembly temporary fixing sheet 1 is composed only of the support layer 2 and the element assembly fixing layer 3, and if necessary, it is preferably only the support layer 2, the element assembly fixing layer 3, and the first peeling layer. 5 composition. In order to manufacture the component assembly temporary fixing sheet 1, the support layer 2 is first prepared, and then the alignment mark 7 is placed on the support layer 2 by the above method (the method of FIGS. 3A to 3C). Thereafter, the element assembly fixing layer 3 is provided on the entire upper surface of the support layer 2. 6-2. Method of using the temporary assembly of the component assembly Next, the method of using the temporary assembly of the component assembly will be described. As shown in FIG. 10A, first, the first peeling layer 5 (see FIG. 9) is peeled off from the element assembly fixing layer 3, and then the carrier 10 is placed on the upper surface of the element assembly fixing layer 3. The carrier 10 contains a transparent material such as glass. Thereby, the temporary fixing member 30 which has the support layer 2, the element assembly fixed layer 3, and the carrier 10 in order can be obtained. Preferably, the temporary fixing member 30 is composed only of the support layer 2, the element assembly fixing layer 3, and the carrier 10. Next, the second pressure-sensitive adhesive layer 25 is placed on the upper surface of the carrier 10. The second pressure-sensitive adhesive layer 25 has a flat plate shape and has a specific thickness, and extends in the left-right direction and the front-rear direction, and has a flat front surface and a flat back surface. The second pressure-sensitive adhesive layer 25 has pressure-sensitive adhesive properties (adhesiveness). The second pressure-sensitive adhesive layer 25 has the same layer configuration as the above-described component assembly temporary fixing sheet 1 (support layer 2, element assembly fixed layer 3, and first pressure-sensitive adhesive layer 4) shown in Fig. 2 . Further, the second pressure-sensitive adhesive layer 25 may include an adhesive layer described in JP-A-2014-168036. Further, the second pressure-sensitive adhesive layer 25 has a size smaller than that of the element assembly temporary fixing sheet 1 in plan view, and specifically, the second pressure-sensitive adhesive layer 25 is not aligned with the alignment mark when projected in the thickness direction. 7 overlapping configuration. Specifically, the second pressure-sensitive adhesive layer 25 is disposed in the element assembly forming region 17 of the carrier 10 . The thickness of the second pressure-sensitive adhesive layer 25 is, for example, 30 μm or more, preferably 50 μm or more, and is, for example, 500 μm or less, or preferably 300 μm or less. As shown in FIG. 10B, next, a plurality of optical semiconductor elements 11 are pressure-sensitively applied to the upper surface of the second pressure-sensitive adhesive layer 25. At this time, the plurality of optical semiconductor elements 11 are arranged (arranged) on the second pressure-sensitive adhesive layer 25 by arranging the alignment marks 8 of the alignment marks 7 from the upper side of the temporary fixing member 30 and on the basis of the arrangement marks 8 surface. The alignment mark 8 is viewed through the transparent carrier 10 and the element assembly fixing layer 3. Thereby, the element assembly 16 including the one second pressure-sensitive adhesive layer 25 and the plurality of optical semiconductor elements 11 can be obtained in a state of being supported by the carrier 10. That is, the component assembly 16 is supported by the carrier 10. In other words, the element assembly 16 is temporarily fixed to the element assembly temporary fixing sheet 1 (the element assembly fixing layer 3) via the carrier 10. As shown in FIG. 10C, next, a plurality of optical semiconductor elements 11 of the element assembly 16 are sealed by the sealing layer 12. The sealing layer 12 covers the upper surface and the side surface of each of the plurality of optical semiconductor elements 11 and the upper surface of the second pressure-sensitive adhesive layer 25 exposed from each of the plurality of optical semiconductor elements 11. On the other hand, the sealing layer 12 is not formed on the upper surface of the carrier 10. Thereby, the sealing element assembly 19 including the element assembly 16 and the sealing layer 12 covering the element assembly 16 can be obtained. The sealing element assembly 19 includes one second pressure-sensitive adhesive layer 25, a plurality of optical semiconductor elements 11, and one sealing layer 12 in this order. Preferably, the sealing element assembly 19 is composed of only one second pressure-sensitive adhesive layer 25, a plurality of optical semiconductor elements 11, and one sealing layer 12. The sealing layer 12 is next cut as shown by the alternate long and short dash line in Fig. 10D. Thereby, a plurality of sealed optical semiconductor elements 13 including one optical semiconductor element 11 and one sealing layer 12 can be obtained in a state of being temporarily fixed to the second pressure-sensitive adhesive layer 25. As shown by the arrow in Fig. 10E, the sealing member assembly 19 is peeled off from the upper surface of the carrier 10. Next, each of the plurality of sealed optical semiconductor elements 13 is peeled off from the second pressure-sensitive adhesive layer 25. In the temporary fixing member 30, the carrier 10 is peeled off from the upper surface of the element assembly fixing layer 3, and the carrier 10 is reused. On the other hand, the component assembly temporary fixing sheet 1 (the support layer 2 and the element assembly fixed layer 3) is discarded. That is, the component assembly temporary fixing sheet 1 is a disposable type. As shown in FIG. 10F, thereafter, the sealed optical semiconductor element 13 is flip-chip mounted on the substrate 14 to obtain the optical semiconductor device 15. 7. Operation and Effect of the Third Embodiment According to the third embodiment, the same operational effects as those of the first embodiment and the second embodiment can be exhibited. Further, as shown in FIG. 9, the element assembly temporary fixing sheet 1 does not include the first pressure-sensitive adhesive layer 4 (see FIG. 2), and therefore, the element assembly of the first embodiment including the first pressure-sensitive adhesive layer 4 is provided. Compared with the body temporary fixing piece 1, the layer constitution can be made simple. 8. Variation of the third embodiment In the third embodiment, as shown in Fig. 9, the alignment mark 7 is provided on the upper surface of the support layer 2. In a variation, as shown in FIG. 11, the alignment mark 7 is provided on the lower surface of the support layer 2. The alignment mark 7 is exposed downward. As shown in FIG. 10B, when a plurality of optical semiconductor elements 11 are arranged in the second pressure-sensitive adhesive layer 25, or when the sealing layer 12 is cut as shown in FIG. 10D, it is disposed above the temporary fixing member 30. The alignment mark 8 or the cut mark 9 is visually recognized by the camera via the carrier 10, the element assembly fixing layer 3, and the support layer 2. Further, although not shown, the alignment mark 7 may be provided on the upper and lower surfaces of the support layer 2. Preferably, the alignment mark 7 is provided only on one side of the support layer 2, that is, only on the upper surface or only on the lower surface. If the alignment mark 7 is provided only on one side of the support layer 2, the alignment mark 7 can be easily formed as compared with the case where the alignment mark 7 is disposed on the upper and lower surfaces of the support layer 2, thereby being correspondingly lowered manufacturing cost. More preferably, as shown in FIG. 9 of the third embodiment, the alignment mark 7 is provided on the upper surface of the support layer 2. According to this configuration, the alignment mark 7 can be visually recognized from above in comparison with the case where the alignment mark 7 is provided on the lower surface of the support layer 2. Further, although not shown, the alignment mark 7 may be provided as a recess in which the support layer 2 is recessed in the thickness direction. Further, in the method of use of the third embodiment, the sealing layer 12 is cut as shown by a one-dot chain line in Fig. 10D. However, in the modified example, as shown in FIG. 12A, the second pressure-sensitive adhesive layer 25 is peeled off from the upper surface of the carrier 10 without cutting the sealing layer 12. Next, as shown in FIG. 12B, the sealing member assembly 19 is peeled off from the lower surface of each of the plurality of optical semiconductor elements 11 and the lower surface of the sealing layer 12. Thereafter, as shown in FIG. 12C, a plurality of optical semiconductor elements 11 are flip-chip mounted on the substrate 14. In this modification, as shown in FIG. 12A, the sealing layer 12 is not cut. Therefore, although not shown, the alignment mark 7 may be formed only by the arrangement mark 8 without the cutting mark 9. In the fourth embodiment, members and steps that are the same as those in the first embodiment to the third embodiment are denoted by the same reference numerals, and the detailed description thereof is omitted as shown in Fig. 13A. The alignment mark 7 is provided to penetrate the through hole 26 of the element assembly temporary fixing piece 1 in the thickness direction. The through hole 26 penetrates the support layer 2 and the element assembly fixing layer 3 in the thickness direction. In this modification, as shown in FIG. 7, the through hole 26 can be clearly seen by the contrast with the support layer 2 and the element assembly fixing layer 3. In the method of using the element assembly temporary fixing sheet 1, the carrier 10 is placed on the upper surface of the element assembly fixing layer 3. As shown in FIG. 13A, next, the second pressure-sensitive adhesive layer 25 is placed on the upper surface of the carrier 10. As shown in FIG. 13B, next, a plurality of optical semiconductor elements 11 are pressure-sensitively applied to the upper surface of the second pressure-sensitive adhesive layer 25. At this time, the alignment mark 8 of the alignment mark 7 is viewed from above the temporary fixing member 30, and a plurality of optical semiconductor elements 11 are arranged (arranged) on the second pressure-sensitive adhesive layer 25 with reference to the alignment mark 8 surface. At this time, the alignment mark 8 is regarded as a through-hole 26 in the element assembly fixing layer 3 and the support layer 2 which are colored by the carrier 10 from above. The alignment mark 8 (through hole 26) can be clearly viewed by the contrast with at least one of the above layers (see Fig. 7). As shown by the one-dot chain line in FIG. 13D, next, the sealing layer 12 is cut with reference to the cut mark 9 of the alignment mark 7. Further, according to the fourth embodiment, the same operational effects as those of the third embodiment can be exhibited. Specific values such as the blending ratio (content ratio), physical property value, and parameters used in the following descriptions may be substituted for the blending ratios described in the above-mentioned "Forms for Carrying Out the Invention". The upper limit value (defined as "the following", "less than") or the lower limit (defined as "above" and "exceeded") is the corresponding upper limit value (defined as "below" or "less than"). Example 1 (Example corresponding to the first embodiment) 1. Manufacturing of element assembly temporary fixing sheet Referring to Fig. 3A, first, a support layer 22 with a photosensitive layer is provided, and the support layer 22 with a photosensitive layer is provided with PET. A support layer 2 having a thickness of 175 μm, a photosensitive layer 21 having a thickness of 3 μm, which is provided on the upper surface of the support layer 2 and containing a silver salt emulsion containing silver halide (step (1)). The support layer 22 with the photosensitive layer has a length of 600 mm in the front and rear direction and a length of 500 mm in the left and right direction. The total light transmittance of support layer 2 is 95%. The linear expansion coefficient of support layer 2 is 70×10-6 K- 1 . The tensile modulus E of the support layer 2 at 25 ° C is 60 MPa. The total light transmittance of the element assembly fixing layer 3 was 95%. The linear expansion coefficient of the component assembly fixed layer 3 is 220×10-6 K-1 . Next, as shown in FIG. 3B, the photosensitive layer 21 is partially covered with a metal mask containing stainless steel, and thereafter, the photosensitive layer 21 exposed from the metal mask is irradiated with laser light having a peak wavelength of 193 nm. Thereby, the alignment mark 8 and the cut mark 9 are formed in the form of an exposure pattern. Thereafter, the support layer 22 with the photosensitive layer is immersed in the developer, and the exposed portion is left to remove the unexposed portion (developed). Thereby, as shown in FIG. 3C and FIG. 1, the alignment mark 7 having the circular arrangement mark 8 and the linear shape cut mark 9 is formed in the form of the development pattern 23. The diameter of the alignment mark 8 is 0.5 mm, the interval between adjacent alignment marks 8 is 1.14 mm, and the distance between adjacent alignment marks 8 is 1.64 mm. The length of the cut mark 9 in the left-right direction is 0.5 mm, and the length in the front-rear direction is 0.2 mm. The interval between adjacent cut marks 9 is 1.62 mm, and the distance between adjacent cut marks 9 is 1.64 mm. The alignment mark 7 is opaque, specifically, the total light transmittance is 10%. A component assembly fixing layer 3 having a thickness of 25 μm including an anthrone-based adhesive is prepared separately on the surface of the first release layer 5, and a thickness of 15 μm including an anthrone-based adhesive is prepared on the surface of the second release layer 6. The first sensitization is followed by layer 4. Next, the element assembly fixing layer 3 is disposed on the upper surface of the support layer 2 so as to include the alignment mark 7, and the first pressure-sensitive adhesive layer 4 is disposed on the lower surface of the support layer 2. As a result, as shown in FIG. 2, the element assembly temporary fixing piece including the second release layer 6, the first pressure sensitive adhesive layer 4, the support layer 2, the element assembly fixed layer 3, and the first release layer 5 in this order is obtained. 1. 2. Use of the current assembly of the component assembly (sealing of the sealed optical semiconductor device and the optical semiconductor device) Thereafter, the sealed optical semiconductor device 13 is manufactured by using the component assembly temporary fixing sheet 1, and then the optical semiconductor device 15 is manufactured. In other words, the second release layer 6 is peeled off from the first pressure-sensitive adhesive layer 4, and thereafter, as shown in FIG. 4A, a carrier 10 having a glass thickness of 700 μm is disposed on the lower surface of the first pressure-sensitive adhesive layer 4. As shown by the imaginary line arrow in Fig. 4, the first peeling layer 5 is peeled off from the upper surface of the element assembly fixing layer 3, and thereafter, as shown in Fig. 4B, a plurality of optical semiconductor elements 11 are arranged with reference to the alignment mark 8. It is disposed in the component assembly fixed layer 3. At this time, the camera visually recognizes the mark 8 from above. The thickness of the optical semiconductor element 11 is 150 μm, the length of the optical semiconductor element 11 in the left-right direction and the length in the front-rear direction are 1.14 mm, and the interval between the adjacent optical semiconductor elements 11 is 0.5 mm or more. As shown in FIG. 4C, next, the component assembly 16 is sealed by the sealing layer 12. The sealing layer 12 contains a sealing composition containing 100 parts by mass of an fluorenone resin and 15 parts by mass of a phosphor. The thickness of the sealing layer 12 is 400 μm. Thereby, the sealing element assembly 19 including the plurality of optical semiconductor elements 11 and one sealing layer 12 is obtained. As shown by the one-dot chain line in FIG. 1 and FIG. 4D, the sealing layer 12 is cut by a dicing saw with reference to the cutting mark 9, and the sealing element assembly 19 is singulated. At this time, the camera recognizes the cut mark 9 from above. The length in the left-right direction and the length in the front-rear direction of the cut seal layer 12 are respectively 100 mm. Thereby, the sealed optical semiconductor element 13 including the optical semiconductor element 11 and the sealing layer 12 is obtained in a state of being temporarily fixed to the temporary fixing member 30. Next, as shown by the arrow in FIG. 4D, each of the plurality of sealed optical semiconductor elements 13 is peeled off from the element assembly fixing layer 3. Thereafter, as shown in FIG. 4E, the sealed optical semiconductor element 13 is flip-chip mounted on the substrate 14. Example 2 (Examples corresponding to the first embodiment) A component set was obtained in the same manner as in Example 1 except that the alignment mark 7 was formed by inkjet printing and drying of a coating liquid containing carbon black. The body temporarily fixes the sheet 1, and then, the sealed optical semiconductor element 13 is manufactured using the element assembly temporary fixing sheet 1, and the optical semiconductor device 15 is subsequently manufactured. Example 3 (Examples corresponding to the modifications of the second embodiment) A laminate (trade name "TRM-6250-L", manufactured by Nitto Denko Corporation) having a thickness of 25 μm containing polyimine was prepared. The support layer 2, the element assembly fixing layer 3 having a thickness of 6 μm including an anthrone-based pressure-sensitive adhesive, and the first release layer 5 having a polyester thickness of 50 μm. The total light transmittance of support layer 2 is 95%. The linear expansion coefficient of support layer 2 is 70×10- 6 K- 1 . The tensile modulus E of the support layer 2 at 25 ° C is 60 MPa. The total light transmittance of the element assembly fixing layer 3 was 95%. The linear expansion coefficient of the component assembly fixed layer 3 is 220×10- 6 K- 1 . Next, the through hole 26 was formed in the same pattern as in the first embodiment by a YAG laser. The conditions of the YAG laser are as follows. YAG laser: MODEL5330 (manufactured by ESI) Beam diameter: 5 μm Laser power: 2.5 W Pulse repetition rate: 30 kHz Scan speed = 150 mm (mm) / sec. Thereafter, the surface is placed under the support layer 2 The first pressure-sensitive adhesive layer 4 and the second peeling layer 6 each having a thickness of 15 μm including an anthrone-based adhesive. Thereby, the element assembly temporary fixing sheet 1 is obtained. Then, the sealed assembly optical element 13 (see FIGS. 8A to 8D) is produced by using the element assembly temporary fixing sheet 1 in the same manner as in the first embodiment, and then the optical semiconductor device 15 is manufactured (see FIG. 8E). Example 4 (Examples corresponding to the third embodiment) 1. Manufacturing of the element assembly temporary fixing sheet was carried out in the same manner as in Example 1 except that the second peeling layer 6 and the first pressure-sensitive adhesive layer 4 were not provided. The component assembly is temporarily fixed to the sheet 1. That is, as shown in FIG. 9, the element assembly temporary fixing sheet 1 is provided with the support layer 2, the element assembly fixed layer 3, and the first peeling layer 5 in this order. The thickness of the component assembly temporary fixing sheet 1 is 100 μm. 2. Use of the current assembly of the component assembly (sealing of the sealed optical semiconductor device and the optical semiconductor device) Thereafter, the sealed optical semiconductor device 13 is manufactured by using the component assembly temporary fixing sheet 1, and then the optical semiconductor device 15 is manufactured. In other words, first, the first peeling layer 5 is peeled off from the element assembly fixing layer 3, and then, as shown in FIG. 10A, a carrier 10 having a glass thickness of 700 μm is placed on the upper surface of the element assembly fixing layer 3. Further, a second pressure-sensitive adhesive layer 25 including a thickness of 90 μm of the element assembly temporary fixing sheet 1 is disposed on the upper surface of the carrier 10, and the component assembly temporary fixing sheet 1 includes a support layer 2, a component assembly fixed layer 3, and The first sensitization is followed by layer 4. As shown in FIG. 10B, next, a plurality of optical semiconductor elements 11 are arranged on the upper surface of the second pressure-sensitive adhesive layer 25 with reference to the alignment mark 8. At this time, the camera visually recognizes the mark 8 from above. The size of the optical semiconductor element 11 and the size between the adjacent optical semiconductor elements 11 are the same as in the first embodiment. Thereby, the element assembly 16 including the second pressure-sensitive adhesive layer 25 and the plurality of optical semiconductor elements 11 is obtained in a state in which the carrier assembly temporary fixing sheet 1 is supported via the carrier 10. As shown in FIG. 10C, next, a plurality of optical semiconductor elements 11 of the element assembly 16 are sealed by the sealing layer 12. The sealing layer 12 contains a sealing composition containing 100 parts by mass of an fluorenone resin and 15 parts by mass of a phosphor. The thickness of the sealing layer 12 is 400 μm. Thereby, the sealing element assembly 19 including the element assembly 16 and the sealing layer 12 covering the plurality of optical semiconductor elements 11 is obtained. As shown by the alternate long and short dash line in FIG. 10D, the sealing layer 12 is cut by a dicing saw with reference to the cut mark 9. At this time, the camera recognizes the cut mark 9 from above. The length of the seal layer 12 which has been cut in the left-right direction and the length in the front-rear direction are both 1.62 mm. Thereafter, as shown by the arrow in Fig. 10E, the sealing member assembly 19 is peeled off from the upper surface of the carrier 10. Next, each of the plurality of sealed optical semiconductor elements 13 is peeled off from the second pressure-sensitive adhesive layer 25. Thereafter, as shown in FIG. 10F, the sealed optical semiconductor element 13 is flip-chip mounted on the substrate 14 to obtain the optical semiconductor device 15. Example 5 (Example corresponding to the third embodiment) A component set was obtained in the same manner as in Example 4 except that the alignment mark 7 was formed by inkjet printing and drying of a coating liquid containing carbon black. The body temporarily fixes the sheet 1. Next, the sealed optical semiconductor element 13 is manufactured using the element assembly temporary fixing sheet 1, and the optical semiconductor device 15 is subsequently manufactured. Example 6 (Examples corresponding to the fourth embodiment) The element assembly temporary fixing sheet 1 was obtained in the same manner as in Example 3 except that the second peeling layer 6 and the first pressure-sensitive adhesive layer 4 were not provided. Refer to Figure 13A). Next, the sealed optical semiconductor element 13 (see FIGS. 13A to 13E) is manufactured, and then the optical semiconductor device 15 is manufactured (see FIG. 13F). In addition, the above description is provided as an exemplified embodiment of the present invention, but it is merely illustrative and should not be construed as limiting. Variations of the invention known to those skilled in the art are included in the scope of the following claims.

1‧‧‧元件集合體暫固定片
2‧‧‧支持層
3‧‧‧元件集合體固定層
4‧‧‧第1感壓接著層
5‧‧‧第1剝離層
6‧‧‧第2剝離層
7‧‧‧對準標記
8‧‧‧排列標記
9‧‧‧切斷標記
10‧‧‧載體
11‧‧‧光半導體元件
12‧‧‧密封層
13‧‧‧光半導體元件
14‧‧‧基板
15‧‧‧光半導體裝置
16‧‧‧元件集合體
17‧‧‧元件集合體形成區域
18‧‧‧標記形成區域
19‧‧‧密封元件集合體
21‧‧‧感光層
22‧‧‧支持層
23‧‧‧顯影圖案
25‧‧‧第2感壓接著層
26‧‧‧貫通孔
30‧‧‧暫固定構件
A-A‧‧‧線
1‧‧‧Component assembly temporary fixed piece
2‧‧‧Support layer
3‧‧‧Component assembly fixed layer
4‧‧‧1st pressure-sensitive layer
5‧‧‧1st peeling layer
6‧‧‧Second peeling layer
7‧‧‧ alignment mark
8‧‧‧Alignment marks
9‧‧‧cut mark
10‧‧‧ Carrier
11‧‧‧Optical semiconductor components
12‧‧‧ Sealing layer
13‧‧‧Optical semiconductor components
14‧‧‧Substrate
15‧‧‧Optical semiconductor device
16‧‧‧Component assembly
17‧‧‧Component assembly area
18‧‧‧mark forming area
19‧‧‧ Sealing element assembly
21‧‧‧Photosensitive layer
22‧‧‧Support layer
23‧‧‧Development pattern
25‧‧‧2nd pressure-sensitive layer
26‧‧‧through holes
30‧‧‧ temporary fixed components
AA‧‧‧ line

圖1係表示本發明之元件集合體暫固定片之第1實施形態之俯視圖。 圖2係表示圖1所示之元件集合體暫固定片之沿著A-A線之剖視圖。 圖3A~圖3C係使用光微影設置對準標記之方法之步驟圖, 圖3A表示準備具備支持層及感光層之帶感光層之支持層之步驟(1), 圖3B表示對感光層進行曝光之步驟, 圖3C表示對感光層進行顯影之步驟(2)。 圖4A~圖4E係使用圖2所示之元件集合體暫固定片之方法之步驟圖, 圖4A表示將載體設置於元件集合體暫固定片之下之步驟, 圖4B表示將複數個光半導體元件暫固定於元件集合體暫固定片之步驟, 圖4C表示藉由密封層對複數個光半導體元件進行密封之步驟, 圖4D表示將密封層切斷而將密封光半導體元件自元件集合體暫固定片剝離之步驟, 圖4E表示將密封光半導體元件覆晶安裝於基板之步驟。 圖5表示第1實施形態之變化例之元件集合體暫固定片之剖視圖。 圖6A及圖6B表示第1實施形態之元件集合體暫固定片之使用方法之變化例, 圖6A表示於不切斷之情形時將密封元件集合體自元件集合體暫固定片剝離之步驟, 圖6B表示將密封元件集合體覆晶安裝於基板之步驟。 圖7表示第2實施形態之元件集合體暫固定片之俯視圖。 圖8A~圖8E係使用圖7所示之元件集合體暫固定片之方法之步驟圖, 圖8A表示將載體設置於元件集合體暫固定片之下之步驟, 圖8B表示將複數個光半導體元件暫固定於元件集合體暫固定構件之步驟, 圖8C表示藉由密封層對複數個光半導體元件進行密封之步驟, 圖8D表示將密封層切斷而將密封光半導體元件自元件集合體暫固定片剝離之步驟, 圖8E表示將密封光半導體元件覆晶安裝於基板之步驟。 圖9表示本發明之元件集合體暫固定片之第3實施形態之俯視圖。 圖10A~圖10F係使用圖9所示之元件集合體暫固定片之方法之步驟圖, 圖10A表示將載體設置於元件集合體暫固定片之上、並且將第2感壓接著層設置於載體之上而準備暫固定構件之步驟, 圖10B表示將複數個光半導體元件暫固定於第2感壓接著層之步驟, 圖10C表示藉由密封層對複數個光半導體元件進行密封之步驟, 圖10D表示將密封層切斷之步驟, 圖10E表示將密封光半導體元件自第2感壓接著層剝離之步驟, 圖10F表示將密封光半導體元件覆晶安裝於基板之步驟。 圖11表示第3實施形態之變化例之元件集合體暫固定片。 圖12A~圖12C係第3實施形態之元件集合體暫固定片之使用方法之變化例, 圖12A表示不將密封元件集合體切斷而將第2感壓接著層自元件集合體暫固定片剝離之步驟, 圖12B表示將光半導體元件及密封層自第2感壓接著層剝離之步驟, 圖12C表示將光半導體元件覆晶安裝於基板之步驟。 圖13A~圖13F係使用第4實施形態之元件集合體暫固定片之方法之步驟圖, 圖13A表示將載體設置於元件集合體暫固定片之上、並且將第2感壓接著層設置於載體之上而準備暫固定構件之步驟, 圖13B表示將複數個光半導體元件暫固定於第2感壓接著層之步驟, 圖13C表示藉由密封層對複數個光半導體元件進行密封之步驟, 圖13D表示將密封層切斷之步驟, 圖13E表示將密封光半導體元件自第2感壓接著層剝離之步驟, 圖13F表示將密封光半導體元件覆晶安裝於基板之步驟。Fig. 1 is a plan view showing a first embodiment of a component assembly temporary fixing sheet of the present invention. Fig. 2 is a cross-sectional view taken along line A-A of the component assembly temporary fixing piece shown in Fig. 1. 3A to 3C are process diagrams showing a method of setting an alignment mark using photolithography, FIG. 3A shows a step (1) of preparing a support layer with a photosensitive layer and a photosensitive layer, and FIG. 3B shows a step of performing a photosensitive layer. The step of exposure, Fig. 3C shows the step (2) of developing the photosensitive layer. 4A to 4E are process diagrams showing a method of temporarily fixing a sheet using the component assembly shown in Fig. 2. Fig. 4A shows a step of disposing the carrier under the temporary assembly of the component assembly, and Fig. 4B shows a plurality of optical semiconductors. The component is temporarily fixed to the component assembly temporary fixing sheet, and FIG. 4C shows the step of sealing the plurality of optical semiconductor components by the sealing layer. FIG. 4D shows the sealing of the sealing layer and the sealing of the optical semiconductor component from the component assembly. The step of peeling the fixing piece, and FIG. 4E shows the step of flip-chip mounting the sealed optical semiconductor element on the substrate. Fig. 5 is a cross-sectional view showing a component assembly temporary fixing piece according to a modification of the first embodiment. 6A and 6B show a modification of the method of using the component assembly temporary fixing sheet of the first embodiment, and FIG. 6A shows a step of peeling the sealing element assembly from the element assembly temporary fixing sheet when the film is not cut. Fig. 6B shows a step of flip-chip mounting the sealing member assembly on the substrate. Fig. 7 is a plan view showing the component assembly temporary fixing sheet of the second embodiment. 8A to 8E are process diagrams of a method of temporarily fixing a sheet using the component assembly shown in Fig. 7. Fig. 8A shows a step of disposing the carrier under the temporary assembly of the component assembly, and Fig. 8B shows a plurality of optical semiconductors. The component is temporarily fixed to the component assembly temporary fixing member. FIG. 8C shows a step of sealing a plurality of optical semiconductor components by a sealing layer, and FIG. 8D shows that the sealing layer is cut to temporarily seal the optical semiconductor component from the component assembly. The step of peeling the fixing piece, and Fig. 8E shows the step of flip-chip mounting the sealed optical semiconductor element on the substrate. Fig. 9 is a plan view showing a third embodiment of the component assembly temporary fixing sheet of the present invention. 10A to 10F are process diagrams showing a method of temporarily fixing a sheet using the component assembly shown in Fig. 9. Fig. 10A shows that the carrier is placed on the temporary assembly of the component assembly, and the second pressure-sensitive adhesive layer is placed on Step of preparing a temporary fixing member on the carrier, FIG. 10B shows a step of temporarily fixing a plurality of optical semiconductor elements to the second pressure-sensitive adhesive layer, and FIG. 10C shows a step of sealing a plurality of optical semiconductor elements by a sealing layer. Fig. 10D shows a step of cutting the sealing layer, Fig. 10E shows a step of peeling the sealed optical semiconductor element from the second pressure-sensitive adhesive layer, and Fig. 10F shows a step of flip-chip mounting the sealed optical semiconductor element on the substrate. Fig. 11 shows a component assembly temporary fixing sheet according to a modification of the third embodiment. 12A to 12C are diagrams showing a modification of the method of using the component assembly temporary fixing sheet according to the third embodiment, and FIG. 12A shows that the second pressure-sensitive adhesive layer is temporarily fixed from the component assembly without cutting the sealing member assembly. In the step of peeling off, FIG. 12B shows a step of peeling off the optical semiconductor element and the sealing layer from the second pressure-sensitive adhesive layer, and FIG. 12C shows a step of flip-chip mounting the optical semiconductor element on the substrate. 13A to 13F are process diagrams of a method of temporarily fixing a sheet using the element assembly of the fourth embodiment, and Fig. 13A shows that the carrier is placed on the element assembly temporary fixing piece, and the second pressure sensitive layer is placed on a step of preparing a temporary fixing member on the carrier, FIG. 13B showing a step of temporarily fixing a plurality of optical semiconductor elements to the second pressure-sensitive adhesive layer, and FIG. 13C showing a step of sealing a plurality of optical semiconductor elements by a sealing layer, Fig. 13D shows a step of cutting the sealing layer, Fig. 13E shows a step of peeling the sealed optical semiconductor element from the second pressure-sensitive adhesive layer, and Fig. 13F shows a step of flip-chip mounting the sealed optical semiconductor element on the substrate.

1‧‧‧元件集合體暫固定片 1‧‧‧Component assembly temporary fixed piece

2‧‧‧支持層 2‧‧‧Support layer

7‧‧‧對準標記 7‧‧‧ alignment mark

8‧‧‧排列標記 8‧‧‧Alignment marks

9‧‧‧切斷標記 9‧‧‧cut mark

11‧‧‧光半導體元件 11‧‧‧Optical semiconductor components

12‧‧‧密封層 12‧‧‧ Sealing layer

16‧‧‧元件集合體 16‧‧‧Component assembly

17‧‧‧元件集合體形成區域 17‧‧‧Component assembly area

A-A‧‧‧線 A-A‧‧‧ line

Claims (15)

一種元件集合體暫固定片,其特徵在於具備:元件集合體固定層,其對複數個光半導體元件排列配置而成之元件集合體進行暫固定;及支持層,其對上述元件集合體固定層進行支持,包含合成樹脂;且 於上述支持層設置有對準標記。An element assembly temporary fixing sheet comprising: a component assembly fixing layer for temporarily fixing a component assembly in which a plurality of optical semiconductor elements are arranged in an array; and a support layer for fixing the component assembly Support is provided to include a synthetic resin; and an alignment mark is provided on the above support layer. 如請求項1之元件集合體暫固定片,其中上述對準標記包含碳材料。The component assembly of claim 1 is temporarily fixed, wherein the alignment mark comprises a carbon material. 如請求項2之元件集合體暫固定片,其中上述碳材料包含碳黑。The component assembly of claim 2 is temporarily fixed, wherein the carbon material comprises carbon black. 如請求項1至3中任一項之元件集合體暫固定片,其中上述對準標記係藉由自包含感熱轉印及噴墨印刷之群選擇之至少1種方法而設置之圖案。The element assembly temporary fixing sheet according to any one of claims 1 to 3, wherein the alignment mark is a pattern set by at least one of a method including group selection of thermal transfer printing and inkjet printing. 如請求項1之元件集合體暫固定片,其中上述元件集合體固定層及上述支持層係透明,且 上述對準標記係不透明。The component assembly temporary fixing sheet of claim 1, wherein the component assembly fixing layer and the support layer are transparent, and the alignment mark is opaque. 如請求項1之元件集合體暫固定片,其中上述對準標記係顯影圖案。The component assembly of claim 1 is temporarily fixed, wherein the alignment mark is a development pattern. 如請求項1或6之元件集合體暫固定片,其中上述對準標記包含銀。The component assembly of claim 1 or 6 is temporarily fixed, wherein the alignment mark comprises silver. 如請求項1之元件集合體暫固定片,其中上述對準標記係貫通上述元件集合體固定層及上述支持層之貫通孔。The component assembly temporary fixing sheet of claim 1, wherein the alignment mark penetrates through the through hole of the element assembly fixing layer and the support layer. 如請求項1之元件集合體暫固定片,其中上述元件集合體固定層之厚度未達120 μm。The component assembly of claim 1 is temporarily fixed, wherein the thickness of the fixed layer of the component assembly is less than 120 μm. 如請求項1之元件集合體暫固定片,其中上述元件集合體固定層設置於上述支持層之至少一面。The component assembly temporary fixing sheet of claim 1, wherein the component assembly fixing layer is disposed on at least one side of the support layer. 一種元件集合體暫固定片之製造方法,其特徵在於具備: 準備設置有感光層之支持層之步驟(1); 藉由光微影而自上述感光層以顯影圖案之形式形成對準標記之步驟(2);及 將對複數個光半導體元件排列配置而成之元件集合體進行暫固定之元件集合體固定層設置於上述支持層之步驟(3)。A method for manufacturing a component assembly temporary fixing sheet, comprising: a step (1) of preparing a support layer provided with a photosensitive layer; forming an alignment mark in the form of a development pattern from the photosensitive layer by photolithography Step (2); and a step (3) of disposing the element assembly fixing layer temporarily fixing the element assembly in which the plurality of optical semiconductor elements are arranged in the support layer. 一種元件集合體暫固定片之製造方法,其特徵在於具備: 自碳材料於支持層形成對準標記之步驟(2);及 將對複數個光半導體元件排列配置而成之元件集合體進行暫固定之元件集合體固定層設置於上述支持層之步驟(3)。A method for manufacturing a component assembly temporary fixing sheet, comprising: a step (2) of forming an alignment mark from a carbon material on a support layer; and temporarily suspending a component assembly in which a plurality of optical semiconductor elements are arranged in an array The fixed component assembly fixing layer is disposed in the step (3) of the support layer. 如請求項12之元件集合體暫固定片之製造方法,其中上述碳材料包含碳黑。A method of producing a component assembly temporary fixing sheet according to claim 12, wherein the carbon material comprises carbon black. 如請求項12或13之元件集合體暫固定片之製造方法,其中於上述步驟(2)中,藉由自包含感熱轉印及噴墨印刷之群選擇之至少1種方法而形成上述對準標記。The method of manufacturing a component assembly temporary fixing sheet according to claim 12 or 13, wherein in the step (2), the alignment is formed by at least one of a method including group selection including thermal transfer printing and inkjet printing. mark. 一種元件集合體暫固定片之製造方法,其特徵在於具備: 將對複數個光半導體元件排列配置而成之元件集合體進行暫固定之元件集合體固定層設置於支持層之步驟(3);及 將貫通上述元件集合體固定層及上述支持層之貫通孔設置為對準標記之步驟(4)。A method for manufacturing a component assembly temporary fixing sheet, comprising: a step (3) of providing a component assembly fixing layer for temporarily fixing a component assembly in which a plurality of optical semiconductor elements are arranged in an array; And a step (4) of providing a through hole penetrating through the element assembly fixing layer and the support layer as an alignment mark.
TW106107113A 2016-03-04 2017-03-03 Manufacturing method of component assembly temporary fixing sheet TWI769151B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201610125999 2016-03-04
CN201610125999.1 2016-03-04
CN201610917971.1 2016-10-20
CN201610917971.1A CN107154453B (en) 2016-03-04 2016-10-20 Temporary fixing sheet for element assembly and method for manufacturing the same

Publications (2)

Publication Number Publication Date
TW201733821A true TW201733821A (en) 2017-10-01
TWI769151B TWI769151B (en) 2022-07-01

Family

ID=59791927

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106107113A TWI769151B (en) 2016-03-04 2017-03-03 Manufacturing method of component assembly temporary fixing sheet

Country Status (3)

Country Link
KR (1) KR102345275B1 (en)
CN (1) CN107154453B (en)
TW (1) TWI769151B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11322381B2 (en) 2019-06-28 2022-05-03 Applied Materials, Inc. Method for substrate registration and anchoring in inkjet printing
US11329003B2 (en) 2019-06-28 2022-05-10 Applied Materials, Inc. Anchoring dies using 3D printing to form reconstructed wafer
TWI795648B (en) * 2019-06-28 2023-03-11 美商應用材料股份有限公司 Method and apparatus for substrate registration and anchoring in inkjet printing

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3357235B2 (en) * 1996-01-22 2002-12-16 住友ベークライト株式会社 Epoxy resin composition for semiconductor encapsulation
US9082940B2 (en) * 2012-06-29 2015-07-14 Nitto Denko Corporation Encapsulating layer-covered semiconductor element, producing method thereof, and semiconductor device
US20140001948A1 (en) * 2012-06-29 2014-01-02 Nitto Denko Corporation Reflecting layer-phosphor layer-covered led, producing method thereof, led device, and producing method thereof
US20140009060A1 (en) * 2012-06-29 2014-01-09 Nitto Denko Corporation Phosphor layer-covered led, producing method thereof, and led device
US20140001949A1 (en) * 2012-06-29 2014-01-02 Nitto Denko Corporation Phosphor layer-covered led, producing method thereof, and led device
TWI484670B (en) * 2012-11-09 2015-05-11 Fusheng Electronics Corp Method for manufacturing led leadframe
US9825209B2 (en) * 2012-12-21 2017-11-21 Panasonic Intellectual Property Management Co., Ltd. Electronic component package and method for manufacturing the same
JP2015041663A (en) * 2013-08-21 2015-03-02 日東電工株式会社 Sealing sheet, and method of manufacturing semiconductor device
TW201616689A (en) * 2014-06-25 2016-05-01 皇家飛利浦有限公司 Packaged wavelength converted light emitting device
CN104103527B (en) * 2014-07-22 2017-10-24 华进半导体封装先导技术研发中心有限公司 A kind of improved fan-out square chip level semiconductor die package technique
CN206282875U (en) * 2016-03-04 2017-06-27 日东电工(上海松江)有限公司 Elements assembly temporary fixing sheet

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11322381B2 (en) 2019-06-28 2022-05-03 Applied Materials, Inc. Method for substrate registration and anchoring in inkjet printing
US11329003B2 (en) 2019-06-28 2022-05-10 Applied Materials, Inc. Anchoring dies using 3D printing to form reconstructed wafer
US11367643B2 (en) 2019-06-28 2022-06-21 Applied Materials, Inc. Method for substrate registration and anchoring in inkjet printing
TWI795648B (en) * 2019-06-28 2023-03-11 美商應用材料股份有限公司 Method and apparatus for substrate registration and anchoring in inkjet printing
US11798831B2 (en) 2019-06-28 2023-10-24 Applied Materials, Inc. Method for substrate registration and anchoring in inkjet printing

Also Published As

Publication number Publication date
CN107154453B (en) 2021-11-16
KR20170103674A (en) 2017-09-13
KR102345275B1 (en) 2021-12-29
TWI769151B (en) 2022-07-01
CN107154453A (en) 2017-09-12

Similar Documents

Publication Publication Date Title
JP5618522B2 (en) Method for forming a semiconductor device
TW546721B (en) Element transfer method, element arrangement method using the same, and manufacturing method of image display device
JP5751615B2 (en) Wafer processing adhesive sheet, marking method using the sheet, and marking chip manufacturing method
TW201733821A (en) Elements assembly temporary fixing sheet and manufacturing method wherein the element assembly temporary fixing sheet comprises an element assembly fixing layer and a support layer with alignment marks set on the support layer
CN107709602B (en) Method for manufacturing vapor deposition mask, method for manufacturing organic semiconductor element, method for manufacturing organic EL display, vapor deposition mask preparation body, and vapor deposition mask
JP2007288170A (en) Die-bond dicing sheet
TW201234447A (en) Semiconductor device and method for manufacturing the same
KR20140002535A (en) Reflecting layer-phosphor layer-covered led, producing method thereof, led device, and producing method thereof
JP2014168032A (en) Phosphor layer covered led, manufacturing method of the same, and led device
KR20140002533A (en) Encapsulating layer-covered semiconductor element, producing method thereof, and semiconductor device
TW202039261A (en) Dynamic release tapes for assembly of discrete components
CN112267091A (en) Method for manufacturing vapor deposition mask, method for manufacturing organic semiconductor element, method for manufacturing organic EL display, vapor deposition mask preparation body, and vapor deposition mask
CN109585700A (en) A kind of display base plate and preparation method thereof, display device
TW201501222A (en) Method for manufacturing semiconductor chip
US20100144096A1 (en) Method of manufacturing semiconductor device in which bottom surface and side surface of semiconductor substrate are covered with resin protective film
JP2002353347A (en) Semiconductor device and method of manufacturing same
CN214625022U (en) Chip on film, display module and display device
TWI711191B (en) Manufacturing method of sealed optical semiconductor element
CN107154455B (en) Method for manufacturing sealed optical semiconductor element
CN205723603U (en) Elements assembly temporary fixing sheet
JP2022500857A (en) Manufacturing method of stamp for imprint lithography, stamp for imprint lithography, imprint roller and roll-to-roll substrate processing equipment
JP2010175680A (en) Method for producing display device
KR20180079687A (en) Patterned Heat Dissipation Sheet, Method for Manufacturing Heat Dissipation Sheet and In-Situ Method for Manufacturing Unit Chip Part Having Heat Dissipation Sheet
TW563212B (en) Semiconductor package and manufacturing method thereof
JP3953342B2 (en) Printing plate and manufacturing method thereof