TW201732793A - Semiconductor memory apparatus - Google Patents

Semiconductor memory apparatus Download PDF

Info

Publication number
TW201732793A
TW201732793A TW105116663A TW105116663A TW201732793A TW 201732793 A TW201732793 A TW 201732793A TW 105116663 A TW105116663 A TW 105116663A TW 105116663 A TW105116663 A TW 105116663A TW 201732793 A TW201732793 A TW 201732793A
Authority
TW
Taiwan
Prior art keywords
sense amplifier
data
divided
lines
semiconductor memory
Prior art date
Application number
TW105116663A
Other languages
Chinese (zh)
Other versions
TWI592941B (en
Inventor
吉岡重實
Original Assignee
力晶科技股份有限公司 30078 新竹科學工業園區力行一路12號
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 力晶科技股份有限公司 30078 新竹科學工業園區力行一路12號 filed Critical 力晶科技股份有限公司 30078 新竹科學工業園區力行一路12號
Application granted granted Critical
Publication of TWI592941B publication Critical patent/TWI592941B/en
Publication of TW201732793A publication Critical patent/TW201732793A/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C14/00Digital stores characterised by arrangements of cells having volatile and non-volatile storage properties for back-up when the power is down
    • G11C14/0009Digital stores characterised by arrangements of cells having volatile and non-volatile storage properties for back-up when the power is down in which the volatile element is a DRAM cell

Abstract

A big peak current IDDP of a refreshing semiconductor apparatus is reduced, and a sense amplifier margin of bit lines is ensured to be above a predetermined value. In the semiconductor apparatus, memory cells are respectively at each intersection of a plurality of word lines and a plurality of bit lines. The semiconductor apparatus includes sense amplifiers and sense amplifier latch circuits. The semiconductor apparatus reads data from a plurality of data lines of the plurality of memory cells. The sense amplifier latch circuits has a first transistor latching data from the plurality of data lines. The plurality of sense amplifiers of the same column lines in parallel with the plurality of word lines are divided into a plurality of sense amplifier circuit groups. The divided sense amplifier circuit group includes a second transistor. The second transistor latches a read out data according to a latch signal delaying from an active beginning of the word line of reading data.

Description

半導體記憶裝置Semiconductor memory device

本發明是有關於一種例如動態存取記憶體(dynamic access memory)(以下稱作DRAM)等半導體記憶裝置。The present invention relates to a semiconductor memory device such as a dynamic access memory (hereinafter referred to as DRAM).

DRAM具有揮發性記憶元件,為了保持被保存於該揮發性記憶元件中的資料(data),必須進行再新(refresh)。此處,DRAM的再新包含自動再新(auto refresh)與自我再新(self refresh)。再新是使比通常的讀取與寫入操作更多數的感測放大器(sense amplifier)啟動。 現有技術文獻 專利文獻The DRAM has a volatile memory element that must be refreshed in order to maintain the data stored in the volatile memory element. Here, the DRAM renews itself with auto refresh and self refresh. The new is to activate a larger number of sense amplifiers than the usual read and write operations. Prior art literature

專利文獻1:美國專利第5999471號說明書 專利文獻2:美國專利第7535785號說明書 專利文獻3:美國專利第6084811號說明書 專利文獻4:美國專利第5251176號說明書 專利文獻5:美國專利第4912678號說明書 [發明所欲解決之課題]Patent Document 1: U.S. Patent No. 5,997,471, Patent Document 2: U.S. Patent No. 7,535,785, Patent Document 3: U.S. Patent No. 6,084,811, Patent Document 4: U.S. Patent No. 5,251,176, Patent Document 5: U.S. Patent No. 4,912,678 [Problems to be solved by the invention]

所述再新的大的峰值(peak)電流會生成DRAM的電源匯流排(bus)上的不必要的雜訊(noise),由此會對DRAM的再新動作或系統(system)側的動作造成影響。為了降低再新的峰值電流,已知有以下二種方法。The renewed large peak current will generate unnecessary noise on the power bus of the DRAM, thereby renewing the DRAM or operating on the system side. Make an impact. In order to reduce the renewed peak current, the following two methods are known.

(習知例1)將DRAM分割為多個存儲單元(bank)。 (習知例2)將DRAM的一個存儲單元的感測放大器電路分割為多個群組(group)。(Conventional Example 1) The DRAM is divided into a plurality of memory cells. (Conventional Example 2) The sense amplifier circuit of one memory cell of the DRAM is divided into a plurality of groups.

圖1A是表示習知例1的分割為四個存儲單元B0~B3的DRAM的結構例的方塊圖。圖1B是表示在圖1A的DRAM中將四個存儲單元B0~B3同時啟動時的動作例的時序圖(timing chart)。圖1C是表示在圖1A的DRAM中將各存儲單元B0~B3的每一個啟動時的動作例的時序圖。1A is a block diagram showing a configuration example of a DRAM divided into four memory cells B0 to B3 in Conventional Example 1. FIG. 1B is a timing chart showing an operation example when four memory cells B0 to B3 are simultaneously activated in the DRAM of FIG. 1A. FIG. 1C is a sequence diagram showing an operation example when each of the memory cells B0 to B3 is activated in the DRAM of FIG. 1A.

在圖1A中,DRAM例如被分割為四個存儲單元B0~B3,在各存儲單元B0~B3上連接有感測放大器電路SA。此處,WL0~WL3為字元線(word line),NS0/PS0~NS3/PS3為感測放大器啟動信號(active signal)。如圖1B所示,在圖1A的DRAM中將四個存儲單元B0~B3同時啟動時,在流經電源端子VDD的電源電流IDD中,於再新時會有大的峰值電流IDDP流動。並且,在圖1A的DRAM中,將各存儲單元B0~B3的每一個啟動時,如圖1C所示,電源電流IDD降低至1/4。In FIG. 1A, the DRAM is divided into four memory cells B0 to B3, for example, and a sense amplifier circuit SA is connected to each of the memory cells B0 to B3. Here, WL0 to WL3 are word lines, and NS0/PS0 to NS3/PS3 are sense amplifier active signals. As shown in FIG. 1B, when four memory cells B0 to B3 are simultaneously activated in the DRAM of FIG. 1A, a large peak current IDDP flows when renewed in the power source current IDD flowing through the power supply terminal VDD. Further, in the DRAM of FIG. 1A, when each of the memory cells B0 to B3 is activated, as shown in FIG. 1C, the power source current IDD is lowered to 1/4.

然而,在此情況下,存在下述問題:無法降低各存儲單元B0~B3的再新峰值電流IDDP,詳細情況如後述般,無法充分保持感測放大器的感測容限(sensing margin)。However, in this case, there is a problem in that the renewed peak current IDDP of each of the memory cells B0 to B3 cannot be lowered, and as will be described later, the sensing margin of the sense amplifier cannot be sufficiently maintained.

圖2A是表示習知例2的分割為四個存儲單元B0~B3的DRAM的結構例的方塊圖。圖2B是表示在圖2A的DRAM中將四個存儲單元B0~B3同時啟動時的動作例的時序圖。圖2C是表示在圖2A的DRAM中將感測放大器電路分割為2個群組,將各存儲單元B0~B3的每一個啟動時的動作例的時序圖。2A is a block diagram showing a configuration example of a DRAM divided into four memory cells B0 to B3 in Conventional Example 2. FIG. 2B is a timing chart showing an operation example when four memory cells B0 to B3 are simultaneously activated in the DRAM of FIG. 2A. 2C is a timing chart showing an operation example when the sense amplifier circuit is divided into two groups in the DRAM of FIG. 2A, and each of the memory cells B0 to B3 is activated.

在圖2A的習知例2中,特徵在於:將DRAM分割為例如四個存儲單元B0~B3,且將連接於各存儲單元B0~B3的感測放大器電路分割為2個感測放大器電路群組SA、SAa。在圖2A中,WL0~WL3為字元線,NS0/PS0~NS3/PS3為對第1感測放大器電路群組SA的感測放大器啟動信號,NS0a/PS0a~NS3a/PS3a為對第2感測放大器電路群組SAa的感測放大器啟動信號。In the conventional example 2 of FIG. 2A, the DRAM is divided into, for example, four memory cells B0 to B3, and the sense amplifier circuit connected to each of the memory cells B0 to B3 is divided into two sense amplifier circuit groups. Group SA, SAa. In FIG. 2A, WL0 to WL3 are word lines, and NS0/PS0 to NS3/PS3 are sense amplifier enable signals for the first sense amplifier circuit group SA, and NS0a/PS0a to NS3a/PS3a are for the second sense. The sense amplifier enable signal of the amp circuit group SAa.

根據圖2B可明確的是,在圖2A的DRAM中,將四個存儲單元B0~B3同時啟動時,產生大的峰值電流IDDP。繼而,圖2C表示將感測放大器電路分割為2個群組,且將各存儲單元B0~B3的每一個啟動時。在圖2C中,101表示針對存儲單元B0~B3的第1感測放大器電路群組SA的啟動,102表示針對存儲單元B0~B3的第2感測放大器電路群組SAa的啟動。根據圖2C可明確的是,儘管可將峰值電流IDDP降低至1/8,但存在無法對第2感測放大器電路群組SAa保持充分的感測電壓容限的問題。As is clear from FIG. 2B, in the DRAM of FIG. 2A, when four memory cells B0 to B3 are simultaneously activated, a large peak current IDDP is generated. Next, FIG. 2C shows that the sense amplifier circuit is divided into two groups, and each of the memory cells B0 to B3 is activated. In FIG. 2C, 101 indicates activation of the first sense amplifier circuit group SA for the memory cells B0 to B3, and 102 indicates activation of the second sense amplifier circuit group SAa for the memory cells B0 to B3. As is clear from FIG. 2C, although the peak current IDDP can be lowered to 1/8, there is a problem that the sensing voltage tolerance of the second sense amplifier circuit group SAa cannot be maintained sufficiently.

圖3A是表示圖2A的DRAM的詳細結構例的電路圖。在圖3A中,DRAM是具備X解碼器(decoder)11、字元線驅動器(word line driver)電路12、包含2個感測放大器電路群組BG0~BG1的記憶體區域、以及產生感測放大器啟動信號PS0、NS0、PS0a、NS0a的控制電路10而構成。在各字元線WL0~WLn與各位元線(bit line)BL_0(0)~BL_m(0)、BL_0(1)~BL_m(1)的交叉點處,連接有作為揮發性記憶元件的記憶胞元(memory cell)MC。Fig. 3A is a circuit diagram showing a detailed configuration example of the DRAM of Fig. 2A. In FIG. 3A, the DRAM is provided with an X decoder 11, a word line driver circuit 12, a memory region including two sense amplifier circuit groups BG0 to BG1, and a sense amplifier. The control circuit 10 of the signals PS0, NS0, PS0a, and NS0a is activated. A memory cell as a volatile memory element is connected to an intersection of each of the word lines WL0 to WLn and each of the bit lines BL_0(0) to BL_m(0) and BL_0(1) to BL_m(1) (memory cell) MC.

在感測放大器電路群組BG0中,在各BL_0(0)~BL_m(0)及/BL_0(0)~/BL_m(0)的每一條上連接有感測放大器SA,多個感測放大器SA經由資料線(data line)DL00、DL01而連接於感測放大器鎖存(sense amplifier latch)電路SLA0。感測放大器鎖存電路SLA0是具備P通道(P Channel)金屬氧化物半導體(Metal Oxide Semiconductor,MOS)電晶體(transistor)Ptr0與N通道MOS電晶體Ntr0而構成,資料線DL00經由MOS電晶體Ptr0而連接於電源電壓VDD,資料線DL01經由MOS電晶體Ntr0而連接於接地電壓VSS。來自控制電路10的感測放大器啟動信號PS0、NS0被分別施加至MOS電晶體Ptr0、Ntr0的各閘極(gate)。In the sense amplifier circuit group BG0, a sense amplifier SA, a plurality of sense amplifiers SA, are connected to each of each of BL_0(0) to BL_m(0) and /BL_0(0) to /BL_m(0) Connected to the sense amplifier latch circuit SLA0 via data lines DL00, DL01. The sense amplifier latch circuit SLA0 is composed of a P channel metal oxide semiconductor (MOS) transistor Ptr0 and an N channel MOS transistor Ntr0, and the data line DL00 is via the MOS transistor Ptr0. Connected to the power supply voltage VDD, the data line DL01 is connected to the ground voltage VSS via the MOS transistor Ntr0. The sense amplifier enable signals PS0, NS0 from the control circuit 10 are applied to the gates of the MOS transistors Ptr0, Ntr0, respectively.

在感測放大器電路群組BG1中,在各BL_0(1)~BL_m(1)及/BL_0(1)~/BL_m(1)的每一條上連接有感測放大器SAa,多個感測放大器SAa經由資料線DL10、DL11而連接於感測放大器鎖存電路SLA1。感測放大器鎖存電路SLA1是具備P通道MOS電晶體Ptr0a與N通道MOS電晶體Ntr0a而構成,資料線DL10經由MOS電晶體Ptr0a而連接於電源電壓VDD,資料線DL11經由MOS電晶體Ntr0a而連接於接地電壓VSS。來自控制電路10的感測放大器啟動信號PS0a、NS0a被分別施加至MOS電晶體Ptr0a、Ntr0a的各閘極。In the sense amplifier circuit group BG1, a sense amplifier SAa, a plurality of sense amplifiers SAa, are connected to each of each of BL_0(1) to BL_m(1) and /BL_0(1) to /BL_m(1) The sense amplifier latch circuit SLA1 is connected via the data lines DL10, DL11. The sense amplifier latch circuit SLA1 is configured to include a P-channel MOS transistor Ptr0a and an N-channel MOS transistor Ntr0a. The data line DL10 is connected to the power supply voltage VDD via the MOS transistor Ptr0a, and the data line DL11 is connected via the MOS transistor Ntr0a. At ground voltage VSS. The sense amplifier enable signals PS0a, NSOa from the control circuit 10 are applied to the respective gates of the MOS transistors Ptr0a, Ntr0a, respectively.

圖3B是表示用於對圖2A及圖3A的DRAM的第1問題進行說明的、存儲單元B0的動作例的時序圖。在圖3B中,將1個存儲單元分割為2個感測放大器電路群組BG0、BG1,在如圖2C般依照各存儲單元B0~B3來依序啟動的情況下,必須以相對較小的電壓保持直至下個感測放大器電路群組的啟動為止的位元線電壓的不同資料間的電壓差DV,但若在位元線BL、/BL中存在漏電流,則所述電壓差DV會進一步減少而成為DVd,從而有可能導致DRAM的記憶胞元MC的再新失敗。FIG. 3B is a timing chart showing an operation example of the memory cell B0 for explaining the first problem of the DRAM of FIGS. 2A and 3A. In FIG. 3B, one memory cell is divided into two sense amplifier circuit groups BG0 and BG1, and in the case of sequentially starting in accordance with each memory cell B0 to B3 as shown in FIG. 2C, it must be relatively small. The voltage is maintained until the voltage difference DV between the different data of the bit line voltage until the start of the next sense amplifier circuit group, but if there is a leakage current in the bit lines BL, /BL, the voltage difference DV will Further reduction becomes DVd, which may cause a new failure of the memory cell MC of the DRAM.

圖4是表示用於對圖2A及圖3A的DRAM的第2問題進行說明的感測放大器電路群組BG0~BG1的動作例的時序圖。若位元線BLm(0)、/BLm(0)的資料與位元線BL0(1)、/BL0(1)的資料為反相,則例如位元線BL0(1)、/BL0(1)間的電壓差DV如圖4所示,在位元線BLm(0)、/BLm(0)的感測時,因來自位元線BLm(0)、/BLm(0)的耦合(coupling)而導致位元線BL0(1)、/BL0(1)的DV減少,由此存在位元線BL0(1)、/BL0(1)的感測放大器容限變小的問題。另外,在專利文獻1~專利文獻5中亦存在同樣的問題。4 is a timing chart showing an operation example of the sense amplifier circuit groups BG0 to BG1 for explaining the second problem of the DRAM of FIGS. 2A and 3A. If the data of the bit lines BLm(0), /BLm(0) and the data of the bit lines BL0(1), /BL0(1) are inverted, for example, the bit lines BL0(1), /BL0(1) The voltage difference DV between the two is shown in Fig. 4. During the sensing of the bit lines BLm(0) and /BLm(0), the coupling from the bit lines BLm(0), /BLm(0) (coupling) The DV of the bit lines BL0(1), /BL0(1) is reduced, whereby there is a problem that the sense amplifier tolerance of the bit lines BL0(1), /BL0(1) becomes small. Further, the same problems are also caused in Patent Documents 1 to 5.

本發明的目的在於解決以上的問題,提供一種半導體記憶裝置,可降低DRAM等半導體記憶裝置再新時的大峰值電流IDDP,並且可確保位元線的感測放大器容限為規定值以上。 [解決課題之手段]An object of the present invention is to solve the above problems and to provide a semiconductor memory device capable of reducing a large peak current IDDP when a semiconductor memory device such as a DRAM is renewed, and ensuring that a sense amplifier tolerance of a bit line is equal to or greater than a predetermined value. [Means for solving the problem]

本發明的半導體記憶裝置在多條字元線與多條位元線的各交叉點處分別具有記憶胞元,且具備從來自多個記憶胞元的多條資料線讀出資料的感測放大器、以及具有從多條資料線鎖存資料的第1電晶體的感測放大器鎖存電路,所述半導體記憶裝置的特徵在於, 與多條字元線平行的相同行線(column line)的多個感測放大器被分割為多個感測放大器電路群組, 經分割的所述感測放大器電路群組更包括第2電晶體,所述第2電晶體基於從資料讀出時的字元線啟動開始延遲的鎖存信號,來鎖存讀出資料。The semiconductor memory device of the present invention has memory cells at respective intersections of a plurality of word lines and a plurality of bit lines, and has a sense amplifier for reading data from a plurality of data lines from a plurality of memory cells. And a sense amplifier latch circuit having a first transistor that latches data from a plurality of data lines, the semiconductor memory device characterized by a plurality of identical line lines parallel to the plurality of word lines The sense amplifiers are divided into a plurality of sense amplifier circuit groups, and the divided sense amplifier circuit groups further include a second transistor, and the second transistors are based on word lines when read from data. A latch signal that starts to delay is started to latch the read data.

在所述半導體記憶裝置中,其特徵在於,經分割的所有感測放大器電路群組的所述感測放大器藉由共用的所述鎖存信號來同時被啟動。In the semiconductor memory device, the sense amplifiers of all of the divided sense amplifier circuit groups are simultaneously activated by the shared latch signal.

而且,在所述半導體記憶裝置中,其特徵在於,所述第2電晶體的驅動能力構成為比所述第1電晶體的驅動能力弱。Further, in the semiconductor memory device, the driving ability of the second transistor is configured to be weaker than the driving ability of the first transistor.

進而,在所述半導體記憶裝置中,其特徵在於, 所述半導體記憶裝置的記憶體區域被分割為多個存儲單元群組, 與多條字元線平行的相同行線的多個感測放大器對應於經分割的每個所述存儲單元群組而被分割為多個感測放大器電路群組。Further, in the semiconductor memory device, the memory region of the semiconductor memory device is divided into a plurality of memory cell groups, and a plurality of sense amplifiers of the same row line parallel to the plurality of word line lines Divided into a plurality of sense amplifier circuit groups corresponding to each of the divided memory cell groups.

再進而,在所述半導體記憶裝置中,其特徵在於,所述資料讀出時是所述記憶胞元的再新時。Further, in the semiconductor memory device, the data reading is a renewed time of the memory cell.

再進而,在所述半導體記憶裝置中,其特徵在於,在經分割且彼此鄰接的所述感測放大器電路群組之間,形成有接地的虛設(dummy)位元線。 (發明的效果)Furthermore, in the semiconductor memory device, a dummy dummy bit line is formed between the divided sense amplifier circuit groups adjacent to each other. (Effect of the invention)

因而,根據本發明的半導體記憶裝置,可降低再新時的大峰值電流IDDP,並且可確保位元線的感測放大器容限為規定值以上。Therefore, according to the semiconductor memory device of the present invention, the large peak current IDDP at the time of renewing can be reduced, and the sense amplifier tolerance of the bit line can be ensured to be a predetermined value or more.

以下,參照圖式來說明本發明的實施形態。另外,在以下的各實施形態中,對於同樣的構成要素標註相同的符號。Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following embodiments, the same components are denoted by the same reference numerals.

實施形態1. 圖5A是表示本發明的實施形態1的DRAM的結構例的方塊圖。而且,圖5B是表示圖5A的DRAM的詳細結構例的電路圖。在圖5A及圖5B中,實施形態1的DRAM的特徵在於,與習知例的圖2A及圖3A的DRAM相比,以下方面不同。 (1)取代控制電路10而具備控制電路10A,該控制電路10A進而產生鎖存信號PSA、NSA,該鎖存信號PSA、NSA用於在資料感測的最初的規定的短時間內鎖存資料線DL00、DL01、DL10、DL11的資料。此處,鎖存信號PSA、NSA是在資料感測時的字元線的啟動時延遲規定時間後,使處於不同的感測放大器電路群組BG0、BG1內的感測放大器同時啟動。 (2)取代感測放大器鎖存電路SLA0而具備感測放大器鎖存電路SLA0A,該感測放大器鎖存電路SLA0A具備:P通道MOS電晶體PtrA,基於鎖存信號PSA來鎖存資料線DL00的資料;以及N通道MOS電晶體NtrA,基於鎖存信號NSA來鎖存資料線DL01的資料。 (3)取代感測放大器鎖存電路SLA1而具備感測放大器鎖存電路SLA1A,該感測放大器鎖存電路SLA1A具備:P通道MOS電晶體PtrA,基於鎖存信號PSA來鎖存資料線DL10的資料;以及N通道MOS電晶體NtrA,基於鎖存信號NSA來鎖存資料線DL11的資料。(Embodiment 1) FIG. 5A is a block diagram showing a configuration example of a DRAM according to Embodiment 1 of the present invention. 5B is a circuit diagram showing a detailed configuration example of the DRAM of FIG. 5A. In FIGS. 5A and 5B, the DRAM of the first embodiment differs from the DRAM of FIGS. 2A and 3A in the conventional example in the following points. (1) In place of the control circuit 10, the control circuit 10A is further provided, and the control circuit 10A further generates latch signals PSA and NSA for latching data in the first predetermined short time of data sensing. Data of lines DL00, DL01, DL10, DL11. Here, the latch signals PSA, NSA are delayed by a predetermined time after the start of the word line at the time of data sensing, and the sense amplifiers in the different sense amplifier circuit groups BG0, BG1 are simultaneously activated. (2) A sense amplifier latch circuit SLA0A is provided instead of the sense amplifier latch circuit SLA0. The sense amplifier latch circuit SLA0A is provided with a P-channel MOS transistor PtrA for latching the data line DL00 based on the latch signal PSA. And the N-channel MOS transistor NtrA, which latches the data of the data line DL01 based on the latch signal NSA. (3) A sense amplifier latch circuit SLA1A is provided instead of the sense amplifier latch circuit SLA1. The sense amplifier latch circuit SLA1A is provided with a P-channel MOS transistor PtrA for latching the data line DL10 based on the latch signal PSA. And the N-channel MOS transistor NtrA, which latches the data of the data line DL11 based on the latch signal NSA.

另外,與多條字元線WL0~WLn平行的相同行線的多個感測放大器例如對應於每個存儲單元群組B0~B3而被分割為多個感測放大器電路群組。而且,在圖5A中,僅圖示了存儲單元B0,但存儲單元B1~B3亦是同樣地構成。Further, the plurality of sense amplifiers of the same row line parallel to the plurality of word line lines WL0 to WLn are divided into a plurality of sense amplifier circuit groups, for example, corresponding to each of the memory cell groups B0 to B3. Further, in FIG. 5A, only the memory cell B0 is illustrated, but the memory cells B1 to B3 are also configured in the same manner.

在圖5B中,本實施形態的DRAM是具備X解碼器11、字元線驅動器電路12、包含2個感測放大器電路群組BG0~BG1的記憶體區域、以及產生感測放大器啟動信號PS0、NS0、PS0a、NS0a、PSA、NSA的控制電路10A而構成。在各字元線WL0~WLn與各位元線BL_0(0)~BL_m(0)、/BL_0(0)~/BL_m(0)、BL_0(1)~BL_m(1)、/BL_0(1)、/BL_m(1)的交叉點處,連接有作為揮發性記憶元件的記憶胞元MC。In FIG. 5B, the DRAM of the present embodiment includes an X decoder 11, a word line driver circuit 12, a memory region including two sense amplifier circuit groups BG0 to BG1, and a sense amplifier enable signal PS0. The control circuit 10A of NS0, PS0a, NS0a, PSA, and NSA is configured. Each of the word lines WL0 to WLn and each of the bit lines BL_0(0) to BL_m(0), /BL_0(0) to /BL_m(0), BL_0(1) to BL_m(1), /BL_0(1), At the intersection of /BL_m(1), a memory cell MC as a volatile memory element is connected.

在感測放大器電路群組BG0中,在各BL_0(0)~BL_m(0)及/BL_0(0)~/BL_m(0)的每一條上連接有感測放大器SA,多個感測放大器SA經由資料線DL00、DL01而連接於感測放大器鎖存電路SLA0A。感測放大器鎖存電路SLA0A是具備P通道MOS電晶體Ptr0、PtrA以及N通道MOS電晶體Ntr0、NtrA而構成,資料線DL00經由MOS電晶體Ptr0、PtrA而連接於電源電壓VDD,資料線DL01經由MOS電晶體Ntr0、NtrA而連接於接地電壓VSS。來自控制電路10A的感測放大器啟動信號PS0、NS0被分別施加至MOS電晶體Ptr0、Ntr0的各閘極。而且,來自控制電路10A的鎖存信號PSA、NSA被分別施加至MOS電晶體PtrA、NtrA的各閘極。In the sense amplifier circuit group BG0, a sense amplifier SA, a plurality of sense amplifiers SA, are connected to each of each of BL_0(0) to BL_m(0) and /BL_0(0) to /BL_m(0) It is connected to the sense amplifier latch circuit SLA0A via the data lines DL00 and DL01. The sense amplifier latch circuit SLA0A is configured to include P-channel MOS transistors Ptr0 and PtrA and N-channel MOS transistors Ntr0 and NtrA. The data line DL00 is connected to the power supply voltage VDD via the MOS transistors Ptr0 and PtrA, and the data line DL01 is connected via the data line DL01. The MOS transistors Ntr0 and NtrA are connected to the ground voltage VSS. The sense amplifier enable signals PS0, NS0 from the control circuit 10A are applied to the respective gates of the MOS transistors Ptr0, Ntr0, respectively. Further, the latch signals PSA, NSA from the control circuit 10A are applied to the respective gates of the MOS transistors PtrA, NtrA, respectively.

在感測放大器電路群組BG1中,在各BL_0(1)~BL_m(1)及/BL_0(1)~/BL_m(1)的每一條上連接有感測放大器SAa,多個感測放大器SAa經由資料線DL10、DL11而連接於感測放大器鎖存電路SLA1A。感測放大器鎖存電路SLA1A是具備P通道MOS電晶體Ptr0a、PtrA以及N通道MOS電晶體Ntr0a、NtrA而構成,資料線DL10經由MOS電晶體Ptr0a、PtrA而連接於電源電壓VDD,資料線DL11經由MOS電晶體Ntr0a、NtrA而連接於接地電壓VSS。來自控制電路10A的感測放大器啟動信號PS0a、NS0a被分別施加至MOS電晶體Ptr0a、Ntr0a的各閘極。而且,來自控制電路10A的鎖存信號PSA、NSA被分別施加至MOS電晶體PtrA、NtrA的各閘極。In the sense amplifier circuit group BG1, a sense amplifier SAa, a plurality of sense amplifiers SAa, are connected to each of each of BL_0(1) to BL_m(1) and /BL_0(1) to /BL_m(1) The sense amplifier latch circuit SLA1A is connected via the data lines DL10, DL11. The sense amplifier latch circuit SLA1A includes P-channel MOS transistors Ptr0a and PtrA and N-channel MOS transistors Ntr0a and NtrA. The data line DL10 is connected to the power supply voltage VDD via the MOS transistors Ptr0a and PtrA, and the data line DL11 is connected via the MOS transistor Ptr0a and PtrA. The MOS transistors Ntr0a and NtrA are connected to the ground voltage VSS. The sense amplifier enable signals PS0a, NSOa from the control circuit 10A are applied to the respective gates of the MOS transistors Ptr0a, Ntr0a, respectively. Further, the latch signals PSA, NSA from the control circuit 10A are applied to the respective gates of the MOS transistors PtrA, NtrA, respectively.

另外,感測放大器鎖存電路SLA0A及SAL1A的MOS電晶體中,基於鎖存信號PSA、NSA進行鎖存的MOS電晶體PtrA、NtrA的驅動能力較佳的是構成為,比習知例中所設的MOS電晶體Ptr0、Ptr0a、Ntr0、Ntr0a的驅動能力弱。具體而言,藉由使各電晶體的尺寸不同,從而對驅動能力賦予差異,這是因為,根據鎖存信號PSA及NSA進行動作的電晶體PtrA、NtrA是輔助性的電晶體,可降低整體的消耗電力。Further, in the MOS transistors of the sense amplifier latch circuits SLA0A and SAL1A, the driving ability of the MOS transistors PtrA and NtrA latched based on the latch signals PSA and NSA is preferably configured as compared with the conventional example. The driving ability of the MOS transistors Ptr0, Ptr0a, Ntr0, and Ntr0a is weak. Specifically, the difference in driving ability is made by making the sizes of the respective transistors different. This is because the transistors PtrA and NtrA that operate according to the latch signals PSA and NSA are auxiliary transistors, and the overall efficiency can be reduced. Consumption of electricity.

圖5C是表示圖5B的DRAM的動作例的時序圖。本實施形態中,例如分割為4個或4個以上的存儲單元群組,各存儲單元群組中分割為2個感測放大器電路群組。根據圖5C可明確的是,基於鎖存信號PSA、NSA,分別藉由MOS電晶體PtrA、NtrA來鎖存資料線DL00~DL11的資料,因此在資料感測的最初,可獲得比習知例大的各位元線的資料間的電壓差DV(圖5C的111、112),而且,可保持規定的電壓差DV以用於感測(圖5C的113)。Fig. 5C is a timing chart showing an operation example of the DRAM of Fig. 5B. In the present embodiment, for example, four or four or more memory cell groups are divided, and each memory cell group is divided into two sense amplifier circuit groups. As is clear from FIG. 5C, the data of the data lines DL00 to DL11 are latched by the MOS transistors PtrA and NtrA, respectively, based on the latch signals PSA and NSA. Therefore, at the beginning of the data sensing, a known example can be obtained. The voltage difference DV between the data of the large individual lines (111, 112 of Fig. 5C), and a predetermined voltage difference DV can be maintained for sensing (113 of Fig. 5C).

如以上所說明般,根據本實施形態,即使分割為多個感測放大器電路群組,亦不會對再新動作造成影響,可降低用於再新動作的峰值電流IDDP,並且可確保位元線的感測放大器容限為規定值以上。As described above, according to the present embodiment, even if divided into a plurality of sense amplifier circuit groups, the re-new operation is not affected, the peak current IDDP for the re-operation can be reduced, and the bit can be secured. The sense amplifier tolerance of the line is above the specified value.

實施形態2. 圖6A是表示本發明的實施形態2的DRAM的詳細結構例的電路圖。圖6A中的特徵在於:在習知例的圖3A的電路中,在鄰接的感測放大器電路群組BG0、BG1間的區域內,追加形成有連接於接地電壓VSS的虛設位元線13。其他結構與圖3A同樣。(Embodiment 2) FIG. 6A is a circuit diagram showing a detailed configuration example of a DRAM according to Embodiment 2 of the present invention. 6A is characterized in that, in the circuit of FIG. 3A of the conventional example, a dummy bit line 13 connected to the ground voltage VSS is additionally formed in a region between the adjacent sense amplifier circuit groups BG0 and BG1. The other structure is the same as that of Fig. 3A.

圖6B是表示圖6A的DRAM的動作例的時序圖。根據圖6B可明確的是,並沒有位元線BL_m-1(0)、/BL_m-1(0)與位元線BL_1(1)、/BL_1(1)之間的耦合,在資料感測的最初,可獲得比習知例大的各位元線的資料間的電壓差DV,而且,可保持規定的電壓差DV以用於感測。Fig. 6B is a timing chart showing an operation example of the DRAM of Fig. 6A. It can be clarified according to FIG. 6B that there is no coupling between the bit lines BL_m-1(0), /BL_m-1(0) and the bit lines BL_1(1), /BL_1(1) in the data sensing. Initially, a voltage difference DV between the data of the bit lines larger than the conventional example can be obtained, and a predetermined voltage difference DV can be maintained for sensing.

以上的實施形態中,在習知例的圖3A的電路中追加了虛設位元線13,但本發明並不限於此,亦可在實施形態1的圖5B的電路中追加虛設位元線13。藉此,具有實施形態1及實施形態2這兩者的作用效果。In the above embodiment, the dummy bit line 13 is added to the circuit of FIG. 3A of the conventional example. However, the present invention is not limited thereto, and the dummy bit line 13 may be added to the circuit of FIG. 5B of the first embodiment. . Thereby, the effects of both the first embodiment and the second embodiment are obtained.

本發明與專利文獻1~專利文獻5的不同點. (1)專利文獻1 專利文獻1中,揭示了將感測放大器分割為多個感測放大器電路群組,僅各經分割的感測放大器電路群組藉由感測放大器啟動信號來啟動。然而,經分割的感測放大器電路群組並非同時啟動,而且,並未揭示經分割的感測放大器電路群組間的虛設位元線。The present invention differs from Patent Document 1 to Patent Document 5. (1) Patent Document 1 Patent Document 1 discloses that a sense amplifier is divided into a plurality of sense amplifier circuit groups, and only the divided sense amplifiers are disclosed. The circuit group is activated by the sense amplifier enable signal. However, the split sense amplifier circuit groups are not simultaneously enabled, and the dummy bit lines between the divided sense amplifier circuit groups are not disclosed.

(2)專利文獻2 專利文獻2中,將感測放大器分割為多個感測放大器電路群組。僅各經分割的感測放大器電路群組藉由感測放大器啟動信號來啟動。然而,經分割的感測放大器電路群組並非同時啟動。(2) Patent Document 2 In Patent Document 2, a sense amplifier is divided into a plurality of sense amplifier circuit groups. Only each of the divided sense amplifier circuit groups is activated by the sense amplifier enable signal. However, the divided sense amplifier circuit groups are not simultaneously activated.

(3)專利文獻3 專利文獻3中,將感測放大器分割為多個感測放大器電路群組。其中,僅將進行讀出的感測放大器電路群組予以啟動,以降低資料讀出電流,藉此可提高讀出容限,但自我再新的峰值電流未變化。此處,首先,讀出資料的1個感測放大器電路群組被啟動後,剩餘的感測放大器群組被同時啟動。(3) Patent Document 3 In Patent Document 3, a sense amplifier is divided into a plurality of sense amplifier circuit groups. Among them, only the sense amplifier circuit group for reading is activated to reduce the data read current, thereby improving the read margin, but the self-renewed peak current does not change. Here, first, after one sense amplifier circuit group of the read data is activated, the remaining sense amplifier groups are simultaneously activated.

(4)專利文獻4 專利文獻4具有下述特徵:相同行線的感測放大器未被分割為相同的感測放大器電路群組。(4) Patent Document 4 Patent Document 4 has the feature that the sense amplifiers of the same row line are not divided into the same sense amplifier circuit group.

(5)專利文獻5 專利文獻5具有下述特徵:相同行線的感測放大器未被分割為多個感測放大器電路群組。 [產業上之可利用性](5) Patent Document 5 Patent Document 5 has a feature that the sense amplifiers of the same row line are not divided into a plurality of sense amplifier circuit groups. [Industrial availability]

如以上所詳述般,根據本發明的半導體記憶裝置,可降低再新時的大的峰值電流IDDP,並且可確保位元線的感測放大器容限為規定值以上。As described in detail above, according to the semiconductor memory device of the present invention, the large peak current IDDP at the time of renewing can be reduced, and the sense amplifier tolerance of the bit line can be ensured to be a predetermined value or more.

10、10A‧‧‧控制電路
11‧‧‧X解碼器
12‧‧‧字元線驅動器電路
13‧‧‧虛設位元線
101、102‧‧‧啟動
111、112、113‧‧‧時間點
B0~B3‧‧‧存儲單元
BG0~BG1‧‧‧感測放大器電路群組
BL_0(0)~BL_m(0)、BL_0(1)~BL_m(1)、/BL_0(0)~/BL_m(0)、/BL_0(1)~/BL_m(1)、BL0(0)、/BL0(0)、BL0(1)、/BL0(1)、BLm(0)、/BLm(0)‧‧‧位元線
DL00~DL11‧‧‧資料線
IDD‧‧‧電源電流
IDDP‧‧‧峰值電流
MC‧‧‧記憶胞元
NS0~NS3、NS0a~NS3a、PS0~PS3、PS0a~PS3a‧‧‧感測放大器啟動信號
NSA、PSA‧‧‧鎖存信號
Ptr0、Ptr0a、Ntr0、Ntr0a、PtrA、NtrA‧‧‧MOS電晶體
SA、SAa‧‧‧感測放大器
SLA0、SLA1、SLA0A、SLA1A‧‧‧感測放大器鎖存電路
t‧‧‧時間
VDD‧‧‧電源端子(電源電壓)
VSS‧‧‧接地電壓
WL0~WLn‧‧‧字元線
DV、DVd‧‧‧電壓差
10, 10A‧‧‧ control circuit
11‧‧‧X decoder
12‧‧‧Word line driver circuit
13‧‧‧Digital bit line
101, 102‧‧‧ start
111, 112, 113‧‧‧ time points
B0~B3‧‧‧ storage unit
BG0~BG1‧‧‧Sense Amplifier Circuit Group
BL_0(0) to BL_m(0), BL_0(1) to BL_m(1), /BL_0(0) to /BL_m(0), /BL_0(1) to /BL_m(1), BL0(0), / BL0(0), BL0(1), /BL0(1), BLm(0), /BLm(0)‧‧‧ bit lines
DL00~DL11‧‧‧ data line
IDD‧‧‧Power supply current
IDDP‧‧‧ Peak current
MC‧‧‧ memory cell
NS0~NS3, NS0a~NS3a, PS0~PS3, PS0a~PS3a‧‧‧Sense amplifier start signal
NSA, PSA‧‧‧ latch signal
Ptr0, Ptr0a, Ntr0, Ntr0a, PtrA, NtrA‧‧‧MOS transistors
SA, SAa‧‧‧ sense amplifier
SLA0, SLA1, SLA0A, SLA1A‧‧‧ sense amplifier latch circuit
t‧‧‧Time
VDD‧‧‧Power terminal (power supply voltage)
VSS‧‧‧ Grounding voltage
WL0~WLn‧‧‧ character line
DV, DVd‧‧‧ voltage difference

圖1A是表示習知例1的分割為四個存儲單元B0~B3的DRAM的結構例的方塊圖。 圖1B是表示在圖1A的DRAM中將四個存儲單元B0~B3同時啟動時的動作例的時序圖。 圖1C是表示在圖1A的DRAM中將各存儲單元B0~B3的每一個啟動時的動作例的時序圖。 圖2A是表示習知例2的分割為四個存儲單元B0~B3的DRAM的結構例的方塊圖。 圖2B是表示在圖2A的DRAM中將四個存儲單元B0~B3同時啟動時的動作例的時序圖。 圖2C是表示在圖2A的DRAM中將感測放大器電路分割為2個感測放大器電路群組,且將各存儲單元B0~B3的每一個啟動時的動作例的時序圖。 圖3A是表示圖2A的DRAM的詳細結構例的電路圖。 圖3B是表示用於對圖2A及圖3A的DRAM的第1問題進行說明的存儲單元B0的動作例的時序圖。 圖4是表示用於對圖2A及圖3A的DRAM的第2問題進行說明的感測放大器電路群組BG0~BG1的動作例的時序圖。 圖5A是表示本發明的實施形態1的DRAM的結構例的方塊圖。 圖5B是表示圖5A的DRAM的詳細結構例的電路圖。 圖5C是表示圖5B的DRAM的動作例的時序圖。 圖6A是表示本發明的實施形態2的DRAM的詳細結構例的電路圖。 圖6B是表示圖6A的DRAM的動作例的時序圖。1A is a block diagram showing a configuration example of a DRAM divided into four memory cells B0 to B3 in Conventional Example 1. FIG. 1B is a timing chart showing an operation example when four memory cells B0 to B3 are simultaneously activated in the DRAM of FIG. 1A. FIG. 1C is a sequence diagram showing an operation example when each of the memory cells B0 to B3 is activated in the DRAM of FIG. 1A. 2A is a block diagram showing a configuration example of a DRAM divided into four memory cells B0 to B3 in Conventional Example 2. FIG. 2B is a timing chart showing an operation example when four memory cells B0 to B3 are simultaneously activated in the DRAM of FIG. 2A. 2C is a timing chart showing an operation example when the sense amplifier circuit is divided into two sense amplifier circuit groups in the DRAM of FIG. 2A, and each of the memory cells B0 to B3 is activated. Fig. 3A is a circuit diagram showing a detailed configuration example of the DRAM of Fig. 2A. FIG. 3B is a timing chart showing an operation example of the memory cell B0 for explaining the first problem of the DRAM of FIGS. 2A and 3A. 4 is a timing chart showing an operation example of the sense amplifier circuit groups BG0 to BG1 for explaining the second problem of the DRAM of FIGS. 2A and 3A. FIG. 5 is a block diagram showing a configuration example of a DRAM according to Embodiment 1 of the present invention. Fig. 5B is a circuit diagram showing a detailed configuration example of the DRAM of Fig. 5A. Fig. 5C is a timing chart showing an operation example of the DRAM of Fig. 5B. Fig. 6 is a circuit diagram showing a detailed configuration example of a DRAM according to a second embodiment of the present invention. Fig. 6B is a timing chart showing an operation example of the DRAM of Fig. 6A.

111、112、113‧‧‧時間點 111, 112, 113‧‧‧ time points

BL0(0)、/BL0(0)、BL0(1)、/BL0(1)‧‧‧位元線 BL0(0), /BL0(0), BL0(1), /BL0(1)‧‧‧ bit lines

IDD‧‧‧電源電流 IDD‧‧‧Power supply current

NS0、NS0a、PS0、PS0a‧‧‧感測放大器啟動信號 NS0, NS0a, PS0, PS0a‧‧‧ sense amplifier start signal

NSA、PSA‧‧‧鎖存信號 NSA, PSA‧‧‧ latch signal

t‧‧‧時間 t‧‧‧Time

WL0‧‧‧字元線 WL0‧‧‧ character line

ΔV‧‧‧電壓差 ΔV‧‧‧voltage difference

Claims (6)

一種半導體記憶裝置,在多條字元線與多條位元線的各交叉點處分別具有記憶胞元,且具備從來自多個所述記憶胞元的多條資料線讀出資料的感測放大器、以及具有從所述多條資料線鎖存資料的第1電晶體的感測放大器鎖存電路,所述半導體記憶裝置的特徵在於, 與所述多條字元線平行的相同行線的多個感測放大器被分割為多個感測放大器電路群組, 經分割的所述感測放大器電路群組更包括第2電晶體,所述第2電晶體基於從資料讀出時的字元線啟動開始延遲的鎖存信號,來鎖存讀出資料。A semiconductor memory device having memory cells at respective intersections of a plurality of word lines and a plurality of bit lines, and having sensing for reading data from a plurality of data lines from the plurality of memory cells An amplifier, and a sense amplifier latch circuit having a first transistor that latches data from the plurality of data lines, the semiconductor memory device characterized by the same row line parallel to the plurality of word lines The plurality of sense amplifiers are divided into a plurality of sense amplifier circuit groups, and the divided sense amplifier circuit group further includes a second transistor, and the second transistor is based on characters when read from the data. The line starts to delay the latched signal to latch the read data. 如申請專利範圍第1項所述的半導體記憶裝置,其中 經分割的所有感測放大器電路群組的所述感測放大器藉由共用的所述鎖存信號來同時被啟動。The semiconductor memory device of claim 1, wherein the sense amplifiers of all of the divided sense amplifier circuit groups are simultaneously activated by the shared latch signal. 如申請專利範圍第1項或第2項所述的半導體記憶裝置,其中 所述第2電晶體的驅動能力構成為比所述第1電晶體的驅動能力弱。The semiconductor memory device according to claim 1 or 2, wherein the driving ability of the second transistor is weaker than the driving ability of the first transistor. 如申請專利範圍第1項或第2項所述的半導體記憶裝置,其中 所述半導體記憶裝置的記憶體區域被分割為多個存儲單元群組, 與所述多條字元線平行的相同行線的多個感測放大器對應於經分割的每個所述存儲單元群組而被分割為多個感測放大器電路群組。The semiconductor memory device according to claim 1 or 2, wherein the memory region of the semiconductor memory device is divided into a plurality of memory cell groups, and the same row parallel to the plurality of word lines A plurality of sense amplifiers of the line are divided into a plurality of sense amplifier circuit groups corresponding to each of the divided memory cell groups. 如申請專利範圍第1項或第2項所述的半導體記憶裝置,其中 所述資料讀出時是所述記憶胞元的再新時。The semiconductor memory device according to claim 1 or 2, wherein the data reading is a renewed time of the memory cell. 如申請專利範圍第1項或第2項所述的半導體記憶裝置,其中 在經分割且彼此鄰接的所述感測放大器電路群組之間,形成有接地的虛設位元線。The semiconductor memory device according to claim 1 or 2, wherein a grounded dummy bit line is formed between the group of the sense amplifier circuits which are divided and adjacent to each other.
TW105116663A 2016-03-08 2016-05-27 Semiconductor memory apparatus TWI592941B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016044135A JP6166810B1 (en) 2016-03-08 2016-03-08 Semiconductor memory device

Publications (2)

Publication Number Publication Date
TWI592941B TWI592941B (en) 2017-07-21
TW201732793A true TW201732793A (en) 2017-09-16

Family

ID=59351290

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105116663A TWI592941B (en) 2016-03-08 2016-05-27 Semiconductor memory apparatus

Country Status (3)

Country Link
JP (1) JP6166810B1 (en)
CN (1) CN107170479B (en)
TW (1) TWI592941B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114155896B (en) * 2020-09-04 2024-03-29 长鑫存储技术有限公司 Semiconductor device with a semiconductor device having a plurality of semiconductor chips

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6120297A (en) * 1984-07-06 1986-01-29 Toshiba Corp Sense amplifier driving signal supplying circuit of semiconductor memory
JP2666943B2 (en) * 1988-01-27 1997-10-22 株式会社東芝 Semiconductor storage device
JPH0289283A (en) * 1988-09-26 1990-03-29 Nec Ic Microcomput Syst Ltd Sense amplifier circuit
JPH04109488A (en) * 1990-08-29 1992-04-10 Mitsubishi Electric Corp Dynamic type semiconductor storage device
US5434815A (en) * 1994-01-19 1995-07-18 Atmel Corporation Stress reduction for non-volatile memory cell
GB2338808B (en) * 1998-06-23 2002-02-27 Mitel Semiconductor Ltd Semiconductor memories
JP3751594B2 (en) * 2002-01-11 2006-03-01 株式会社東芝 Semiconductor memory device
JP5215769B2 (en) * 2008-08-07 2013-06-19 ルネサスエレクトロニクス株式会社 Semiconductor integrated circuit

Also Published As

Publication number Publication date
JP2017162527A (en) 2017-09-14
TWI592941B (en) 2017-07-21
CN107170479B (en) 2020-06-09
CN107170479A (en) 2017-09-15
JP6166810B1 (en) 2017-07-19

Similar Documents

Publication Publication Date Title
US9418729B2 (en) Multi-port memory cell
US7158430B2 (en) Bit line sense amplifier control circuit
US7280384B2 (en) Semiconductor memory device
JP2006338793A (en) Semiconductor memory device
JP2009070480A (en) Semiconductor storage device
JP2004039204A (en) Word line driving circuit
US7170805B2 (en) Memory devices having bit line precharge circuits with off current precharge control and associated bit line precharge methods
JP2006324007A (en) Technique for pre-charging bit lines for dram array
JP2008027493A (en) Semiconductor memory device
CN115810372A (en) Apparatus and method for single-ended sense amplifier
KR20040019927A (en) Static semiconductor memory device and method of controlling the same
US6704238B2 (en) Semiconductor memory device including data bus pairs respectively dedicated to data writing and data reading
US9013914B2 (en) Semiconductor memory device and method for controlling semiconductor memory device
TWI592941B (en) Semiconductor memory apparatus
JP2005135461A (en) Semiconductor memory device of hierarchical word line system, and sub-word driver circuit used for it
TWI796112B (en) Control circuit, read switch driving circuit and method of controlling a bit line precharge circuit
JPH08339681A (en) Semiconductor memory device and its usage method
JPH1021688A (en) Semiconductor memory device
JP4406527B2 (en) Semiconductor integrated circuit device
US20230230625A1 (en) Semiconductor Device and Method of Operating the Same
US8553483B2 (en) Semiconductor memory device
JP4338045B2 (en) Semiconductor integrated circuit
JP2007019997A (en) Field-effect transistor circuit and designing method
JP2004014021A (en) Semiconductor memory device
JP2004303283A (en) Semiconductor memory device