TW201730966A - Ultrahigh selective polysilicon etch with high throughput - Google Patents
Ultrahigh selective polysilicon etch with high throughput Download PDFInfo
- Publication number
- TW201730966A TW201730966A TW105136072A TW105136072A TW201730966A TW 201730966 A TW201730966 A TW 201730966A TW 105136072 A TW105136072 A TW 105136072A TW 105136072 A TW105136072 A TW 105136072A TW 201730966 A TW201730966 A TW 201730966A
- Authority
- TW
- Taiwan
- Prior art keywords
- wafer
- polysilicon layer
- plasma
- layer
- species
- Prior art date
Links
- 229910021420 polycrystalline silicon Inorganic materials 0.000 title claims abstract description 177
- 229920005591 polysilicon Polymers 0.000 title claims abstract description 176
- 238000000034 method Methods 0.000 claims abstract description 120
- 229910052731 fluorine Inorganic materials 0.000 claims abstract description 65
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims abstract description 64
- 239000011737 fluorine Substances 0.000 claims abstract description 64
- 239000001257 hydrogen Substances 0.000 claims abstract description 52
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 52
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 48
- 150000004767 nitrides Chemical class 0.000 claims abstract description 35
- 239000006227 byproduct Substances 0.000 claims abstract description 29
- 239000007787 solid Substances 0.000 claims abstract description 24
- 239000007789 gas Substances 0.000 claims description 65
- 238000012545 processing Methods 0.000 claims description 55
- 150000003254 radicals Chemical class 0.000 claims description 35
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 31
- 229910052732 germanium Inorganic materials 0.000 claims description 26
- 238000009616 inductively coupled plasma Methods 0.000 claims description 17
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 claims description 16
- 238000011065 in-situ storage Methods 0.000 claims description 16
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 claims description 13
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 claims description 10
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 8
- QKCGXXHCELUCKW-UHFFFAOYSA-N n-[4-[4-(dinaphthalen-2-ylamino)phenyl]phenyl]-n-naphthalen-2-ylnaphthalen-2-amine Chemical compound C1=CC=CC2=CC(N(C=3C=CC(=CC=3)C=3C=CC(=CC=3)N(C=3C=C4C=CC=CC4=CC=3)C=3C=C4C=CC=CC4=CC=3)C3=CC4=CC=CC=C4C=C3)=CC=C21 QKCGXXHCELUCKW-UHFFFAOYSA-N 0.000 claims description 8
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 claims description 8
- 230000008878 coupling Effects 0.000 claims description 6
- 238000010168 coupling process Methods 0.000 claims description 6
- 238000005859 coupling reaction Methods 0.000 claims description 6
- 229910018503 SF6 Inorganic materials 0.000 claims description 5
- SFZCNBIFKDRMGX-UHFFFAOYSA-N sulfur hexafluoride Chemical compound FS(F)(F)(F)(F)F SFZCNBIFKDRMGX-UHFFFAOYSA-N 0.000 claims description 5
- 229960000909 sulfur hexafluoride Drugs 0.000 claims description 5
- 229910021529 ammonia Inorganic materials 0.000 claims description 4
- 239000013078 crystal Substances 0.000 claims 1
- 230000015572 biosynthetic process Effects 0.000 abstract description 19
- 210000002381 plasma Anatomy 0.000 description 202
- 235000012431 wafers Nutrition 0.000 description 190
- 230000008569 process Effects 0.000 description 92
- 238000005530 etching Methods 0.000 description 30
- 239000000463 material Substances 0.000 description 28
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 27
- 229910001936 tantalum oxide Inorganic materials 0.000 description 27
- 150000003839 salts Chemical group 0.000 description 21
- 238000006243 chemical reaction Methods 0.000 description 19
- 239000004065 semiconductor Substances 0.000 description 17
- 238000004519 manufacturing process Methods 0.000 description 16
- 239000000203 mixture Substances 0.000 description 14
- 150000002500 ions Chemical class 0.000 description 12
- 239000003989 dielectric material Substances 0.000 description 11
- -1 hydrogen radicals Chemical class 0.000 description 9
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 8
- 230000037361 pathway Effects 0.000 description 8
- 229920002120 photoresistant polymer Polymers 0.000 description 8
- 239000012159 carrier gas Substances 0.000 description 7
- 238000001020 plasma etching Methods 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 6
- DIOQZVSQGTUSAI-UHFFFAOYSA-N decane Chemical compound CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- QPJSUIGXIBEQAC-UHFFFAOYSA-N n-(2,4-dichloro-5-propan-2-yloxyphenyl)acetamide Chemical compound CC(C)OC1=CC(NC(C)=O)=C(Cl)C=C1Cl QPJSUIGXIBEQAC-UHFFFAOYSA-N 0.000 description 6
- 239000001301 oxygen Substances 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- 229910017855 NH 4 F Inorganic materials 0.000 description 5
- 230000002411 adverse Effects 0.000 description 5
- 238000013461 design Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 238000012546 transfer Methods 0.000 description 5
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 4
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 4
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 4
- 238000000151 deposition Methods 0.000 description 4
- 230000008021 deposition Effects 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 4
- 230000006698 induction Effects 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910052707 ruthenium Inorganic materials 0.000 description 4
- 238000000231 atomic layer deposition Methods 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 230000002401 inhibitory effect Effects 0.000 description 3
- 230000000670 limiting effect Effects 0.000 description 3
- 238000001459 lithography Methods 0.000 description 3
- 239000000376 reactant Substances 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- XPDWGBQVDMORPB-UHFFFAOYSA-N Fluoroform Chemical compound FC(F)F XPDWGBQVDMORPB-UHFFFAOYSA-N 0.000 description 2
- YZCKVEUIGOORGS-UHFFFAOYSA-N Hydrogen atom Chemical compound [H] YZCKVEUIGOORGS-UHFFFAOYSA-N 0.000 description 2
- 229910052772 Samarium Inorganic materials 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- IAQRGUVFOMOMEM-UHFFFAOYSA-N butene Natural products CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- RWRIWBAIICGTTQ-UHFFFAOYSA-N difluoromethane Chemical compound FCF RWRIWBAIICGTTQ-UHFFFAOYSA-N 0.000 description 2
- 238000010494 dissociation reaction Methods 0.000 description 2
- 230000005593 dissociations Effects 0.000 description 2
- 230000005669 field effect Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical group [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 229910052754 neon Inorganic materials 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 239000007800 oxidant agent Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical compound [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 2
- 238000012876 topography Methods 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 239000004341 Octafluorocyclobutane Substances 0.000 description 1
- 229910008284 Si—F Inorganic materials 0.000 description 1
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 1
- 238000003848 UV Light-Curing Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- CFJRGWXELQQLSA-UHFFFAOYSA-N azanylidyneniobium Chemical compound [Nb]#N CFJRGWXELQQLSA-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000005524 ceramic coating Methods 0.000 description 1
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000013626 chemical specie Substances 0.000 description 1
- 238000001723 curing Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 125000004431 deuterium atom Chemical group 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- YUCFVHQCAFKDQG-UHFFFAOYSA-N fluoromethane Chemical compound F[CH] YUCFVHQCAFKDQG-UHFFFAOYSA-N 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- BIXHRBFZLLFBFL-UHFFFAOYSA-N germanium nitride Chemical compound N#[Ge]N([Ge]#N)[Ge]#N BIXHRBFZLLFBFL-UHFFFAOYSA-N 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 231100001261 hazardous Toxicity 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- WMIYKQLTONQJES-UHFFFAOYSA-N hexafluoroethane Chemical compound FC(F)(F)C(F)(F)F WMIYKQLTONQJES-UHFFFAOYSA-N 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 238000010849 ion bombardment Methods 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 1
- 229910000484 niobium oxide Inorganic materials 0.000 description 1
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- BCCOBQSFUDVTJQ-UHFFFAOYSA-N octafluorocyclobutane Chemical compound FC1(F)C(F)(F)C(F)(F)C1(F)F BCCOBQSFUDVTJQ-UHFFFAOYSA-N 0.000 description 1
- 235000019407 octafluorocyclobutane Nutrition 0.000 description 1
- QYSGYZVSCZSLHT-UHFFFAOYSA-N octafluoropropane Chemical compound FC(F)(F)C(F)(F)C(F)(F)F QYSGYZVSCZSLHT-UHFFFAOYSA-N 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- DAFIBNSJXIGBQB-UHFFFAOYSA-N perfluoroisobutene Chemical group FC(F)=C(C(F)(F)F)C(F)(F)F DAFIBNSJXIGBQB-UHFFFAOYSA-N 0.000 description 1
- 229960004065 perflutren Drugs 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 238000011112 process operation Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000006557 surface reaction Methods 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/306—Chemical or electrical treatment, e.g. electrolytic etching
- H01L21/3065—Plasma etching; Reactive-ion etching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02296—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
- H01L21/02299—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
- H01L21/02312—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a gas or vapour
- H01L21/02315—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a gas or vapour treatment by exposure to a plasma
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/22—Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
- H01L21/225—Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
- H01L21/2251—Diffusion into or out of group IV semiconductors
- H01L21/2254—Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides
- H01L21/2257—Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides the applied layer being silicon or silicide or SIPOS, e.g. polysilicon, porous silicon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3205—Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
- H01L21/321—After treatment
- H01L21/3213—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
- H01L21/32133—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
- H01L21/32135—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only
- H01L21/32136—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only using plasmas
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/324—Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67098—Apparatus for thermal treatment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/7806—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices involving the separation of the active layers from a substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66787—Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel
- H01L29/66795—Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/46—Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Plasma & Fusion (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Electromagnetism (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Ceramic Engineering (AREA)
- Drying Of Semiconductors (AREA)
Abstract
Description
本揭露內容通常關於晶圓上多晶矽的蝕刻,尤其關於具有高選擇性之晶圓上多晶矽之電漿基礎的蝕刻。The present disclosure generally relates to the etching of polysilicon on a wafer, and more particularly to the etching of a plasma based polycrystalline silicon on a wafer with high selectivity.
電漿基礎的蝕刻可為半導體元件與積體電路生產中的重要處理步驟。The etching of the plasma base can be an important processing step in the production of semiconductor components and integrated circuits.
通常,多晶矽的移除可使用濕式或乾式反應性離子蝕刻(RIE)製程執行。然而,用以移除多晶矽的濕式蝕刻製程可能導致低多晶矽蝕刻速率,此導致低產能。再者,移除多晶矽的濕式蝕刻製程可能無法達到和乾式蝕刻製程一樣高的對其他材料之選擇性。至少部分地因使用外部偏壓以控制離子方向與能量之複雜的硬體,故乾式RIE製程可能導致較高成本。此外,因暴露至離子與光子通量,故乾式RIE製程的使用可能損壞周圍結構。周圍結構可為由例如暴露的氮化物及/或氧化物所製的側壁。這樣的周圍結構可包括低k介電材料、氮化矽(Si3 N4 )、氮化鈦(TiN)、及包括熱矽氧化物的矽氧化物(SiO2 )。Typically, the removal of polysilicon can be performed using a wet or dry reactive ion etching (RIE) process. However, the wet etch process used to remove the polysilicon may result in a low polysilicon etch rate, which results in low throughput. Furthermore, the wet etch process to remove polysilicon may not achieve the same selectivity for other materials as the dry etch process. Dry RIE processes can result in higher costs, at least in part due to the use of external biases to control the complexity of the ion direction and energy. In addition, the use of a dry RIE process can damage surrounding structures due to exposure to ion and photon flux. The surrounding structure can be a sidewall made of, for example, exposed nitride and/or oxide. Such surrounding structures may include low-k dielectric materials, tantalum nitride (Si 3 N 4 ), titanium nitride (TiN), and tantalum oxide (SiO 2 ) including hot tantalum oxide.
此外,許多材料(包括包含矽與金屬之半導體晶圓)表面上原生氧化物層之存在可能不利地影響這樣的材料的圖案化。此可能為半導體晶片、記憶元件、邏輯元件之生產中重要的部分。例如,多晶矽上之原生氧化物層可實質上抑制並減少多晶矽蝕刻的均勻性。當使含矽表面暴露至環境條件或氧時,可能形成原生氧化物層。Moreover, the presence of native oxide layers on the surface of many materials, including semiconductor wafers containing germanium and metal, can adversely affect the patterning of such materials. This may be an important part of the production of semiconductor wafers, memory components, and logic components. For example, a native oxide layer on a polysilicon can substantially inhibit and reduce the uniformity of polysilicon etch. When the cerium-containing surface is exposed to ambient conditions or oxygen, a native oxide layer may be formed.
通常,原生氧化物移除可使用濕式製程執行,像是使用稀釋的氫氟酸(HF)處理原生氧化物。然而,這樣用以移除原生氧化物之濕式蝕刻製程的使用可能昂貴、可能引起嚴重的安全問題、可能無法達到對其它材料之高選擇性、及可能造成額外暴露至環境條件而允許原生氧化物在蝕刻多晶矽之前重新生長。濕式製程對於涉及高縱橫比特徵部之元件亦可能是有問題的。Typically, native oxide removal can be performed using a wet process, such as treating the native oxide with dilute hydrofluoric acid (HF). However, such wet etching processes for removing native oxides can be expensive, can cause serious safety problems, may not achieve high selectivity for other materials, and may cause additional exposure to environmental conditions to allow for native oxidation. The material re-grows before etching the polysilicon. Wet processes can also be problematic for components involving high aspect ratio features.
本揭露內容關於自晶圓移除多晶矽層的方法。方法包括提供具有多晶矽層的晶圓、使包括氫基物種與氟基物種之蝕刻劑流至遠端電漿源中(其中氫基物種之濃度大於氟基物種之濃度)、在遠端電漿源中產生遠端電漿(其中遠端電漿包括氫基物種與氟基物種之自由基)、及使晶圓暴露至遠端電漿以移除多晶矽層(其中維持晶圓在一溫度範圍內,使得晶圓在暴露至遠端電漿期間實質上沒有固體副產物的殘留物)。The present disclosure relates to a method of removing a polysilicon layer from a wafer. The method includes providing a wafer having a polycrystalline germanium layer, flowing an etchant comprising a hydrogen-based species and a fluorine-based species to a remote plasma source (where the concentration of the hydrogen-based species is greater than a concentration of the fluorine-based species), at the distal plasma A remote plasma is generated in the source (where the distal plasma includes radicals of a hydrogen-based species and a fluorine-based species), and the wafer is exposed to a remote plasma to remove the polysilicon layer (where the wafer is maintained at a temperature range) Inside, the wafer is substantially free of residues of solid by-products during exposure to the remote plasma.
在一些實施例中,晶圓包括暴露的氮化物及/或氧化物。在一些實施例中,在多晶矽層的移除期間,多晶矽對於暴露的氮化物及/或氧化物結構之選擇性大於約500:1。在一些實施例中,氫基物種包括氫或氨,而氟基物種包括三氟化氮或四氟化碳。在一些實施例中,溫度範圍小於約60℃。在一些實施例中,使晶圓暴露至具有小於約5Torr之壓力之腔室中的遠端電漿。在一些實施例中,將晶圓支撐在具有複數熱區的靜電卡盤上,配置該熱區以在晶圓上定義複數不同的溫度。在一些實施例中,多晶矽層在大於每分鐘約2000Å之蝕刻速率下移除。在一些實施例中,氟基物種之濃度介於約0.7%與約10%的體積百分比之間,且其中氫基物種之濃度大於約50%的體積百分比。在一些實施例中,蝕刻劑更包括不同於氟基物種的改質氣體物種,其中改質氣體物種包括三氟化氮、四氟化碳、氟甲烷、與六氟化硫之至少一者。在一些實施例中,晶圓被支撐在靜電卡盤上且更包括原生氧化物層,而方法進一步包括:施加偏壓至靜電卡盤以在遠端電漿源與靜電卡盤之間產生至少氟基蝕刻劑的電容耦合電漿、與使晶圓暴露至電容耦合電漿以移除原生氧化物層,其中原位執行原生氧化物層的移除與多晶矽層的移除。In some embodiments, the wafer includes exposed nitrides and/or oxides. In some embodiments, the selectivity of the polysilicon to the exposed nitride and/or oxide structure during the removal of the polysilicon layer is greater than about 500:1. In some embodiments, the hydrogen-based species include hydrogen or ammonia, and the fluorine-based species includes nitrogen trifluoride or carbon tetrafluoride. In some embodiments, the temperature range is less than about 60 °C. In some embodiments, the wafer is exposed to a distal plasma in a chamber having a pressure of less than about 5 Torr. In some embodiments, the wafer is supported on an electrostatic chuck having a plurality of hot zones that are configured to define a plurality of different temperatures on the wafer. In some embodiments, the polysilicon layer is removed at an etch rate greater than about 2000 Å per minute. In some embodiments, the concentration of the fluorine-based species is between about 0.7% and about 10% by volume, and wherein the concentration of the hydrogen-based species is greater than about 50% by volume. In some embodiments, the etchant further comprises a modified gas species other than a fluorine-based species, wherein the modified gas species comprises at least one of nitrogen trifluoride, carbon tetrafluoride, fluoromethane, and sulfur hexafluoride. In some embodiments, the wafer is supported on the electrostatic chuck and further includes a native oxide layer, and the method further includes applying a bias to the electrostatic chuck to create at least between the remote plasma source and the electrostatic chuck. The fluorine-based etchant capacitively couples the plasma, and exposes the wafer to a capacitively coupled plasma to remove the native oxide layer, wherein the removal of the native oxide layer and the removal of the polysilicon layer are performed in situ.
本揭露內容亦關於用以自晶圓移除多晶矽層的設備。設備包括電漿蝕刻腔室,其中電漿蝕刻腔室包括遠端電漿源與用以支撐晶圓且在遠端電漿源外的晶圓支撐件,其中晶圓包括多晶矽層及氧化物層與氮化物層之至少一者。設備更包括配置成提供用以執行以下操作之指令的控制器:(a)使包括氫基物種與氟基物種之蝕刻劑流至遠端電漿源中,其中氫基物種之濃度大於氟基物種之濃度、(b)在遠端電漿源中產生遠端電漿,其中遠端電漿包括氫基物種與氟基物種之自由基、及(c)使晶圓暴露至遠端電漿以移除多晶矽層,其中維持晶圓在一溫度範圍內,使得晶圓在暴露至遠端電漿期間實質上沒有固體副產物的殘留物。The disclosure also relates to an apparatus for removing a polysilicon layer from a wafer. The apparatus includes a plasma etch chamber, wherein the plasma etch chamber includes a remote plasma source and a wafer support for supporting the wafer and outside the remote plasma source, wherein the wafer includes a polysilicon layer and an oxide layer At least one of the layers with the nitride. The apparatus further includes a controller configured to provide instructions for performing: (a) flowing an etchant comprising a hydrogen-based species and a fluorine-based species to a remote plasma source, wherein the concentration of the hydrogen-based species is greater than the fluorine-based species The concentration of the species, (b) the generation of far-end plasma in the remote plasma source, where the far-end plasma includes radicals of hydrogen-based species and fluorine-based species, and (c) exposes the wafer to the far-end plasma To remove the polysilicon layer, wherein the wafer is maintained within a temperature range such that the wafer is substantially free of residues of solid byproducts during exposure to the remote plasma.
在一些實施例中,設備更包括介於晶圓支撐件與遠端電漿源之間的噴淋頭,其中電漿蝕刻腔室配置成在遠端電漿源中產生感應耦合電漿,且其中電漿蝕刻腔室配置成在晶圓支撐件與噴淋頭之間產生電容耦合電漿。在一些實施例中,晶圓支撐件包括配置成在晶圓範圍定義複數不同溫度之複數熱區。在一些實施例中,溫度範圍小於約60℃。在一些實施例中,蝕刻劑更包括不同於氟基物種的改質氣體物種,其中改質氣體物種包括三氟化氮、四氟化碳、氟甲烷、與六氟化硫之至少一者。在一些實施例中,晶圓包括多晶矽層上之原生氧化物層,且控制器更配置有用以執行以下操作之指令:施加偏壓至晶圓支撐件以在遠端電漿源與晶圓支撐件之間產生至少氟基蝕刻劑的電容耦合電漿、與使晶圓暴露至電容耦合電漿以移除原生氧化物層,其中原位執行原生氧化物層的移除與多晶矽層的移除。In some embodiments, the apparatus further includes a showerhead between the wafer support and the remote plasma source, wherein the plasma etch chamber is configured to generate an inductively coupled plasma in the remote plasma source, and The plasma etch chamber is configured to create a capacitively coupled plasma between the wafer support and the showerhead. In some embodiments, the wafer support includes a plurality of thermal zones configured to define a plurality of different temperatures across the wafer range. In some embodiments, the temperature range is less than about 60 °C. In some embodiments, the etchant further comprises a modified gas species other than a fluorine-based species, wherein the modified gas species comprises at least one of nitrogen trifluoride, carbon tetrafluoride, fluoromethane, and sulfur hexafluoride. In some embodiments, the wafer includes a native oxide layer on the polysilicon layer, and the controller is further configured with instructions to apply a bias to the wafer support for remote plasma source and wafer support A capacitive coupling plasma of at least a fluorine-based etchant is generated between the pieces, and the wafer is exposed to a capacitively coupled plasma to remove the native oxide layer, wherein the removal of the native oxide layer and the removal of the polysilicon layer are performed in situ .
這些與其他實施例將參照圖式在以下進一步描述。These and other embodiments are further described below with reference to the drawings.
[前言] 在以下敘述中,提出許多特定細節以提供對所示概念之徹底了解。所示概念可在缺少一些或所有這些特定細節下實施。另一方面,為人熟知的製程操作並未詳加描述以免不必要地模糊所述概念。雖然一些概念將與特定實施例結合描述,但應理解不欲使這些實施例為限制性的。[Preface] In the following description, numerous specific details are set forth to provide a thorough understanding of the concepts illustrated. The concepts shown may be implemented in the absence of some or all of these specific details. On the other hand, well-known process operations are not described in detail to avoid unnecessarily obscuring the concepts. Although some concepts are described in conjunction with the specific embodiments, it is understood that these embodiments are not intended to be limiting.
電漿基礎的蝕刻可用在積體電路的生產中。對於各種技術節點(如在1x-nm或2x-nm節點中),用於結構(如記憶元件疊構)的新穎材料可提供驚人的好處。生產製程(如特定層的蝕刻)可能需要對這樣的新材料相對有利,同時仍以高效率蝕刻。雖可能期望為了高產能而以高效率達到某些材料(如多晶矽)的蝕刻,然亦可能期待最小化周圍暴露材料的損失以避免不利地影響元件性能。Plasma based etching can be used in the production of integrated circuits. For various technology nodes (as in 1x-nm or 2x-nm nodes), novel materials for structures such as memory element stacks can provide surprising benefits. Production processes, such as etching of a particular layer, may be relatively advantageous for such new materials while still being etched with high efficiency. While it may be desirable to achieve etching of certain materials (eg, polysilicon) with high efficiency for high throughput, it may also be desirable to minimize the loss of surrounding exposed materials to avoid adversely affecting device performance.
遠端或下游電漿可提供可接受的蝕刻速率並最小化周圍材料的損失。在一些實施例中,例如材料可包括Si3 N4 及/或TiN。Si3 N4 可用作為間隔件、襯墊、及/或蝕刻停止層,而TiN可用作為金屬閘極結構或電極。遠端或下游電漿可提供可使由直接的電漿暴露所導致的損傷(包括離子衝擊損傷、充電損傷、與因高能光子之高通量導致的缺陷)最小化的條件。 [元件結構]The distal or downstream plasma provides an acceptable etch rate and minimizes the loss of surrounding material. In some embodiments, for example, the material can include Si 3 N 4 and/or TiN. Si 3 N 4 can be used as a spacer, pad, and/or etch stop layer, while TiN can be used as a metal gate structure or electrode. The distal or downstream plasma can provide conditions that minimize damage caused by direct plasma exposure, including ion impact damage, charge damage, and defects due to high flux of high energy photons. [Component Structure]
圖1說明具有多晶矽層之元件結構範例的橫剖面。如圖1中元件結構100所示,多晶矽層110可在下方層120之上,其可包括Si3 N4 。多晶矽層110亦可藉由多重垂直結構130分開,每一垂直結構130可包括例如TiN及/或Si3 N4 。在一些實施例中,多晶矽層110可包括經退火的多晶矽。經退火的多晶矽可比未退火的多晶矽更呈結晶狀與鬆弛,且可以不同於未退火的多晶矽的速率蝕刻。該技術領域之通常知識者應理解:多晶矽層110可藉由任何數量之不同材料圍繞或分開。Figure 1 illustrates a cross section of an example of an element structure having a polysilicon layer. In the element structure shown in FIG. 1, the polysilicon layer 100 on the bottom layer 110 may be 120, which may comprise Si 3 N 4. The polysilicon layer 110 can also be separated by multiple vertical structures 130, each of which can include, for example, TiN and/or Si 3 N 4 . In some embodiments, the polysilicon layer 110 can include an annealed polysilicon. The annealed polycrystalline germanium may be more crystalline and relaxed than the unannealed polycrystalline germanium and may be etched at a different rate than the unannealed polycrystalline germanium. Those of ordinary skill in the art will appreciate that the polysilicon layer 110 can be surrounded or separated by any number of different materials.
在圖1的範例中,元件結構100可為記憶元件或邏輯元件。底下的Si3 N4 層120可作為蝕刻停止層,而TiN與Si3 N4 垂直結構130可為電極。在一些實施例中,蝕刻多晶矽層110並隨後使用介電材料填充TiN與Si3 N4 垂直結構130之間的空間,以在TiN與Si3 N4 垂直結構130之間產生電容。In the example of FIG. 1, component structure 100 can be a memory component or a logic component. The underlying Si 3 N 4 layer 120 can serve as an etch stop layer, while the TiN and Si 3 N 4 vertical structures 130 can be electrodes. In some embodiments, the polysilicon layer 110 is etched and then a space between the TiN and Si 3 N 4 vertical structures 130 is filled with a dielectric material to create a capacitance between the TiN and Si 3 N 4 vertical structures 130.
在圖1的範例中,多晶矽層110的厚度可介於約1μm與約2μm之間(如介於約1.10μm與約1.35μm之間)。此外,TiN與Si3 N4 垂直結構130可介於約1μm與約2μm之間(如介於約1.10μm與約1.35μm之間)。該技術領域之通常知識者應理解:記憶或邏輯元件結構100可具有變化的厚度與定向。In the example of FIG. 1, the thickness of the polysilicon layer 110 can be between about 1 [mu]m and about 2 [mu]m (eg, between about 1.10 [mu]m and about 1.35 [mu]m). Moreover, the TiN and Si 3 N 4 vertical structures 130 can be between about 1 μm and about 2 μm (eg, between about 1.10 μm and about 1.35 μm). Those of ordinary skill in the art will appreciate that the memory or logic element structure 100 can have varying thicknesses and orientations.
在圖1的範例中,多晶矽與其他特徵部的尺寸可取決於應用及技術節點。在一些實施例中,移除的多晶矽厚度可為約1.3μm(其可對應於2x-nm節點)。對於2x-nm之技術節點,此可對應於約22nm以下的特徵部(例如,閘極寬度)。在一些實施例中,移除的多晶矽厚度可為約1.5μm(其可對應於1x-nm節點)。對於1x-nm之技術節點,此可對應於約16nm以下的特徵部(例如,閘極寬度)。In the example of Figure 1, the size of the polysilicon and other features may depend on the application and technology node. In some embodiments, the removed polysilicon thickness can be about 1.3 [mu]m (which can correspond to a 2x-nm node). For a 2x-nm technology node, this may correspond to a feature below about 22 nm (eg, gate width). In some embodiments, the removed polysilicon thickness can be about 1.5 [mu]m (which can correspond to a 1 x-nm node). For a 1x-nm technology node, this may correspond to a feature below about 16 nm (eg, gate width).
多晶矽或任何其他含矽結構的移除可能因原生氧化物的存在而受阻。當暴露至環境條件或氧時,原生氧化物層可在多晶矽層或其他含矽層上形成。圖2說明具有在多晶矽層上之原生矽氧化物層的結構範例的橫剖面。Removal of polycrystalline germanium or any other germanium containing structure may be hindered by the presence of native oxides. When exposed to ambient conditions or oxygen, the native oxide layer can form on the polysilicon layer or other germanium containing layer. Figure 2 illustrates a cross section of an example of the structure of a native tantalum oxide layer on a polycrystalline germanium layer.
在圖2中,元件結構200可相似於圖1中稍早所提供的元件結構100。多晶矽層210可藉由垂直結構230分開,每一垂直結構可包括TiN及/或Si3 N4 。多晶矽層210亦可設置在下方層220(其可包括Si3 N4 )上。在一些實施例中,元件結構200可為記憶元件或邏輯元件,其中下方層220為蝕刻停止層,而垂直結構230為電極。原生矽氧化物層240可在多晶矽層210上形成。在一些實施例中,含氧層(例如,矽氧氮化物)可在垂直結構230中形成在Si3 N4 上。In FIG. 2, component structure 200 can be similar to component structure 100 provided earlier in FIG. The polysilicon layer 210 may be separated by a vertical structure 230, and each vertical structure may include TiN and/or Si 3 N 4 . The polysilicon layer 210 may also be disposed on the underlying layer 220 (which may include Si 3 N 4 ). In some embodiments, the component structure 200 can be a memory component or a logic component, wherein the lower layer 220 is an etch stop layer and the vertical structure 230 is an electrode. A native tantalum oxide layer 240 can be formed on the polysilicon layer 210. In some embodiments, an oxygen-containing layer (eg, hafnium oxynitride) can be formed on the Si 3 N 4 in the vertical structure 230.
當氧在含矽結構的表面與矽反應時,原生矽氧化物層240可能形成。原生矽氧化物層240可具有介於約5Å到約50Å之間、或介於約10Å到約30Å之間的厚度。由於原生矽氧化物層240並非有意製造或合成,而是在暴露至任何包含氧化劑之環境下時形成,因此原生矽氧化物層240之結構可能非均勻且高度非晶形。The native tantalum oxide layer 240 may form when oxygen reacts with the ruthenium on the surface of the ruthenium containing structure. The native tantalum oxide layer 240 can have a thickness of between about 5 Å to about 50 Å, or between about 10 Å to about 30 Å. Since the native tantalum oxide layer 240 is not intentionally fabricated or synthesized, but is formed upon exposure to any environment containing an oxidant, the structure of the native tantalum oxide layer 240 may be non-uniform and highly amorphous.
當嘗試於下方的材料上執行化學反應時,原生矽氧化物層240的存在可能阻礙化學反應。尤其,原生矽氧化物層240可能阻礙多晶矽層210的蝕刻,抑制並增加多晶矽移除的不均勻性。此可能不利地衝擊產能與元件性能。The presence of the native tantalum oxide layer 240 may hinder the chemical reaction when attempting to perform a chemical reaction on the underlying material. In particular, the native tantalum oxide layer 240 may hinder the etching of the polysilicon layer 210, inhibiting and increasing the non-uniformity of polysilicon removal. This can adversely impact productivity and component performance.
期望在移除多晶矽層210之前移除原生矽氧化物層240,同時造成周圍材料(如包含TiN及/或Si3 N4 的垂直結構230)之最小損失。在一些實施例中,期望移除原生矽氧化物層240與多晶矽層210兩者,同時造成周圍材料之最小損失。Desirable to remove the native silicon oxide layer 240 prior to removing the polysilicon layer 210, also causing the surrounding material (e.g., vertical structure comprising TiN and / or Si 3 N 4 230) of the minimal loss. In some embodiments, it is desirable to remove both the native tantalum oxide layer 240 and the polysilicon layer 210 while causing minimal loss of surrounding material.
通常,晶圓上的原生矽氧化物層之移除藉由濕式蝕刻處理達到,像是將晶圓浸至包含稀釋HF的槽浴中,並隨後傳送至用以進一步處理的另一反應腔室。此濕式蝕刻製程可能具有一些缺點,像是在等候時間同時傳送晶圓期間允許原生氧化物重新生長、相對高的擁有成本、及利用有毒、危險、與非環境友善的溶劑。此外,濕式處理可能危及元件中所發現之高縱橫比結構的完整性。然而,本文所述之所揭實施例可藉由應用以高選擇性移除晶圓上的原生矽氧化物層並使用乾式電漿蝕刻製程的方法而減輕至少一些缺點。在一些範例中,可原位執行用以移除原生矽氧化物層之乾式電漿蝕刻製程與多晶矽蝕刻製程。Typically, the removal of the native tantalum oxide layer on the wafer is achieved by a wet etch process, such as immersing the wafer in a bath containing diluted HF and subsequent transfer to another chamber for further processing. room. This wet etch process may have disadvantages such as allowing native oxide to re-grow during the simultaneous transfer of wafers during the waiting time, relatively high cost of ownership, and the use of toxic, hazardous, and non-environmentally friendly solvents. In addition, wet processing can compromise the integrity of the high aspect ratio structures found in the components. However, the disclosed embodiments can alleviate at least some of the disadvantages by applying a method that removes the native tantalum oxide layer on the wafer with high selectivity and uses a dry plasma etching process. In some examples, a dry plasma etch process and a polysilicon etch process to remove the native tantalum oxide layer can be performed in situ.
圖3A說明範例性鰭式場效電晶體(FinFET)結構之一部分的三維示意圖。FinFET結構300可包括半導體晶圓305。半導體晶圓305可包括複數由矽所製成的鰭片305a。如淺溝槽隔離(STI, shallow trench isolation)氧化物的介電材料320在相鄰的矽鰭片305a之間形成。介電材料320可包括低介電氧化物材料(如矽氧化物)。複數多晶矽層310可在介電材料320之部分上形成。在一些實施例中,多晶矽層310可包括垂直於矽鰭片305a之多晶矽的垂直結構。FinFET結構300可更包括形成在介電材料320上與多晶矽層310周圍的矽氮化物襯墊330。FinFET結構300可更包括矽氮化物襯墊330與矽鰭片305a上的遮罩340。3A illustrates a three-dimensional schematic of a portion of an exemplary fin field effect transistor (FinFET) structure. FinFET structure 300 can include semiconductor wafer 305. The semiconductor wafer 305 can include a plurality of fins 305a made of tantalum. A dielectric material 320, such as a shallow trench isolation (STI) oxide, is formed between adjacent fin fins 305a. Dielectric material 320 can include a low dielectric oxide material such as tantalum oxide. A plurality of polysilicon layers 310 can be formed over portions of the dielectric material 320. In some embodiments, the polysilicon layer 310 can include a vertical structure that is perpendicular to the polysilicon of the samarium fin 305a. The FinFET structure 300 can further include a tantalum nitride liner 330 formed over the dielectric material 320 and around the polysilicon layer 310. The FinFET structure 300 can further include a germanium nitride liner 330 and a mask 340 on the fin fin 305a.
圖3B說明在蝕刻多晶矽之後的圖3A範例性FinFET結構的放大圖。圖3C說明在蝕刻多晶矽之後的圖3A範例性FinFET結構的另一放大圖。乾式蝕刻製程可選擇性地移除多晶矽層310。乾式蝕刻製程可對保護矽鰭片305a、介電材料320、與矽氮化物襯墊330的氧化物薄層(未顯示)具高度選擇性。因此,乾式蝕刻製程可有效地移除多晶矽,且同時對保護矽、矽氧化物、與矽氮化物之氧化物的薄層具有選擇性。在圖3B與3C中,乾式蝕刻製程移除多晶矽層,同時在沒有殘留物與缺陷之情形下保留矽鰭片305a、介電材料320、與矽氮化物襯墊330。 [製程條件]FIG. 3B illustrates an enlarged view of the exemplary FinFET structure of FIG. 3A after etching the polysilicon. FIG. 3C illustrates another enlarged view of the exemplary FinFET structure of FIG. 3A after etching the polysilicon. The dry etch process selectively removes the polysilicon layer 310. The dry etch process can be highly selective for protecting the ruthenium fin 305a, the dielectric material 320, and the oxide thin layer (not shown) of the tantalum nitride liner 330. Therefore, the dry etching process can effectively remove the polysilicon and at the same time have selectivity for protecting the thin layers of tantalum, niobium oxide, and niobium nitride oxides. In FIGS. 3B and 3C, the dry etch process removes the polysilicon layer while leaving the samarium fin 305a, the dielectric material 320, and the tantalum nitride liner 330 in the absence of residue and defects. [Process conditions]
本揭露內容關於在具有對暴露的氮化物及/或氧化物層之高選擇性之高蝕刻速率下移除多晶矽的方法。方法包括提供具有多晶矽層的晶圓。在一些實施例中,晶圓更包括多晶矽層上的原生氧化物層,以及氮化物層與氧化物層之至少一者。方法更包括使包括氫基物種與氟基物種之蝕刻劑流至遠端電漿源中,其中氫基物種之濃度大於氟基物種之濃度。在遠端電漿源中產生遠端電漿,其中遠端電漿包括氫基物種與氟基物種之自由基。使晶圓暴露至遠端電漿以移除多晶矽層,其中維持晶圓在一溫度範圍內,使得晶圓在暴露至遠端電漿期間實質上沒有固體副產物的殘留物。在一些實施例中,多晶矽層的移除在大於每分鐘約2000Å之蝕刻速率下執行,且具有對氮化物及/或氧化物大於約500:1的選擇性。The present disclosure relates to a method of removing polysilicon at high etch rates with high selectivity to exposed nitride and/or oxide layers. The method includes providing a wafer having a polysilicon layer. In some embodiments, the wafer further includes a native oxide layer on the polysilicon layer, and at least one of a nitride layer and an oxide layer. The method further includes flowing an etchant comprising a hydrogen-based species and a fluorine-based species to a remote plasma source, wherein the concentration of the hydrogen-based species is greater than the concentration of the fluorine-based species. A distal plasma is generated in the distal plasma source, wherein the distal plasma comprises a radical of a hydrogen-based species and a fluorine-based species. The wafer is exposed to a remote plasma to remove the polysilicon layer, wherein the wafer is maintained in a temperature range such that the wafer is substantially free of residues of solid byproducts during exposure to the remote plasma. In some embodiments, the removal of the polysilicon layer is performed at an etch rate greater than about 2000 Å per minute and has a selectivity to nitride and/or oxide greater than about 500:1.
晶圓可包括任何半導體晶圓、部分積體電路、印刷電路板、或其他適當的工作件。製程條件可取決於晶圓尺寸而改變。通常,為200-nm晶圓、300-nm、或450-nm晶圓配置許多生產設施。本文所述之所揭實施例係配置成在任何適當的晶圓尺寸(如300-nm與450-nm晶圓技術)上操作。The wafer can include any semiconductor wafer, partial integrated circuit, printed circuit board, or other suitable workpiece. Process conditions can vary depending on the wafer size. Typically, many production facilities are configured for 200-nm wafers, 300-nm, or 450-nm wafers. The disclosed embodiments are configured to operate on any suitable wafer size, such as 300-nm and 450-nm wafer technology.
在一些實施例中,多晶矽的移除可藉由具有遠端電漿源的電漿處理設備進行(如關於圖10所述之電漿處理設備或電漿反應器)。引導至圖10所述之電漿反應器中的氣體可隨應用而變化。在一些實施例中,蝕刻反應可使用氫基蝕刻劑進行。氫基蝕刻劑可包括例如氫(H2 )。另一範例可包括氨(NH3 )。在一些實施例中,蝕刻反應可使用H2 與氟基物種(如三氟化氮(NF3 )、四氟化碳(CF4 )、或六氟化硫(SF6 ))之組合進行。像是H2 與NF3 的氣體為無毒的,且通常對環境不具不利的影響。In some embodiments, the removal of polysilicon can be performed by a plasma processing apparatus having a remote plasma source (such as the plasma processing apparatus or plasma reactor described with respect to FIG. 10). The gas directed to the plasma reactor described in Figure 10 can vary from application to application. In some embodiments, the etching reaction can be performed using a hydrogen based etchant. The hydrogen-based etchant may include, for example, hydrogen (H 2 ). Another example may include ammonia (NH 3 ). In some embodiments, the etching reaction can be carried out using a combination of H 2 and a fluorine-based species such as nitrogen trifluoride (NF 3 ), carbon tetrafluoride (CF 4 ), or sulfur hexafluoride (SF 6 ). Gases such as H 2 and NF 3 are non-toxic and generally do not adversely affect the environment.
使用氫基物種作為蝕刻劑能有效地蝕刻多晶矽,且同時作為使其它暴露材料(例如TiN、Si3 N4 、與SiO2 )之氧化與損失最小化的還原劑。氧化劑(如氧)可增加多晶矽的蝕刻速率,但亦可能氧化並增加其它暴露材料的損失。添加作為蝕刻劑之氟基物種加上氫基物種可增加多晶矽的蝕刻速率,但若氟基物種之濃度超過一定限度,則亦可能增加對其它暴露材料的損失。The use of a hydrogen-based species as an etchant can effectively etch polysilicon and at the same time act as a reducing agent that minimizes oxidation and loss of other exposed materials such as TiN, Si 3 N 4 , and SiO 2 . An oxidizing agent such as oxygen can increase the etch rate of the polysilicon, but it can also oxidize and increase the loss of other exposed materials. The addition of a fluorine-based species as an etchant plus a hydrogen-based species increases the etch rate of the polysilicon, but if the concentration of the fluorine-based species exceeds a certain limit, it is also possible to increase the loss of other exposed materials.
如本文稍早討論,氫基物種可包括H2 或NH3 ,而氟基物種可包括NF3 、CF4 、或SF6 。其他氟基物種之範例可包括六氟乙烷(C2 F6 )、三氟甲烷(CHF3 )、二氟甲烷(CH2 F2 )、氟甲烷(CH3 F)、八氟丙烷(C3 F8 )、八氟環丁烷(C4 F8 )、八氟[1-]丁烯(C4 F8 )、八氟[2-]丁烯(C4 F8 )、八氟異丁烯(C4 F8 )、氟(F2 )、與相似物。電漿反應器可活化氫基物種與氟基物種以形成自由基、離子、或其他電漿活化物種。電漿反應器可產生包括氫基物種與氟基物種之自由基的電漿。電漿可用以執行多晶矽的電漿蝕刻,其中電漿蝕刻可為H2 /NF3 的電漿蝕刻。As discussed earlier herein, a hydrogen-based species may include H 2 or NH 3 , while a fluorine-based species may include NF 3 , CF 4 , or SF 6 . Examples of other fluorine-based species may include hexafluoroethane (C 2 F 6 ), trifluoromethane (CHF 3 ), difluoromethane (CH 2 F 2 ), fluoromethane (CH 3 F), octafluoropropane (C). 3 F 8 ), octafluorocyclobutane (C 4 F 8 ), octafluoro[1-]butene (C 4 F 8 ), octafluoro[2-]butene (C 4 F 8 ), octafluoroisobutylene (C 4 F 8 ), fluorine (F 2 ), and the like. The plasma reactor activates hydrogen-based species and fluorine-based species to form free radicals, ions, or other plasma activated species. A plasma reactor can produce a plasma comprising a radical of a hydrogen-based species and a fluorine-based species. The plasma can be used to perform plasma etching of polycrystalline germanium, wherein the plasma etching can be a plasma etching of H 2 /NF 3 .
電漿蝕刻的製程條件可影響多晶矽與暴露的氮化物及/或氧化物的蝕刻速率。各種製程參數(像是表面溫度、壓力、電源功率、氣體流速、氣體組成物、晶圓尺寸、與相關的蝕刻劑氣體濃度)可影響製程條件,並因此影響多晶矽與暴露的氮化物及/或氧化物的蝕刻速率。這樣的製程參數可在「製程視窗」中最佳化以最大化多晶矽的蝕刻速率,同時限制暴露的氮化物及/或氧化物的蝕刻速率。The process conditions of the plasma etch can affect the etch rate of the polysilicon and the exposed nitride and/or oxide. Various process parameters (such as surface temperature, pressure, power supply, gas flow rate, gas composition, wafer size, and associated etchant gas concentration) can affect process conditions and thus affect polysilicon and exposed nitride and/or The etch rate of the oxide. Such process parameters can be optimized in the "Process Window" to maximize the etch rate of the polysilicon while limiting the etch rate of the exposed nitride and/or oxide.
氫基物種提供在遠端電漿源將其離子化或自由基化以形成電漿之活性物種。在不受任何理論限制之情形下,多晶矽的蝕刻可藉由連續添加吸附的氫原子至矽原子以形成Si-Hx 錯合物而發生,其中化學吸附之氫原子的數目自x = 1、2、與3成長(亦即,SiH、SiH2 、與SiH3 )。這樣的反應機制至少在純H2 電漿的存在下進行。氫原子添加至SiH3 促進揮發性矽烷(SiH4 )的形成,此促進多晶矽的蝕刻。以下方程式可描述完整Si蝕刻反應:Si(s) + 4H* → SiH4(g) 。The hydrogen-based species provide an active species that is ionized or free radicalized at the distal plasma source to form a plasma. Without any theoretical limitation, the etching of polycrystalline germanium can occur by continuously adding adsorbed hydrogen atoms to germanium atoms to form a Si-H x complex, wherein the number of chemically adsorbed hydrogen atoms is from x = 1, 2. Growth with 3 (ie, SiH, SiH 2 , and SiH 3 ). Such a reaction mechanism is carried out at least in the presence of pure H 2 plasma. The addition of a hydrogen atom to SiH 3 promotes the formation of volatile decane (SiH 4 ), which promotes the etching of polysilicon. The following equation describes the complete Si etching reaction: Si (s) + 4H * → SiH 4(g) .
其他化學反應可促進多晶矽的移除。氟自由基可與矽原子反應並在以下反應中形成揮發性四氟矽烷(SiF4 ):Si(s) + 4F* → SiF4(g) 。當氫自由基及氟自由基與矽原子反應以分別形成揮發性矽烷與四氟矽烷時,沒有固體副產物形成。在沒有固體副產物形成之情形下移除矽原子的製程視窗可稱為「清潔狀態」。Other chemical reactions promote the removal of polysilicon. The fluorine radical can react with the ruthenium atom and form volatile tetrafluorodecane (SiF 4 ) in the following reaction: Si (s) + 4F * → SiF 4 (g) . When hydrogen radicals and fluorine radicals react with helium atoms to form volatile decane and tetrafluorodecane, respectively, no solid by-products are formed. A process window for removing germanium atoms without the formation of solid by-products may be referred to as a "clean state."
通常,電漿中氫基物種與氟基物種之導入形成氣相反應物(如HF、NH4 •HF、與NH4 F)。這些氣相反應物與其他電漿活化物種可能潛在地與矽原子反應以形成固體副產物,像是六氟矽酸銨((NH4 )2 SiF6 )。這樣的化學反應範例可在以下的化學路徑中顯示:Si(s) + 4HF(g) + 2NH4 F(g) → ((SiH4 )2 SiF6 )(g) + 2H2(g) 。移除矽原子但涉及固體副產物之形成的製程視窗可稱為「沉積狀態」。固體副產物可在稍微升高的溫度下昇華(如大於約60℃或大於約75℃的溫度),使得多晶矽被移除並在多晶矽的移除之後僅形成氣態副產物。Typically, in the plasma species with the hydrogen group of the introduced fluorine-based species formed in the gas phase reactants (e.g., HF, NH 4 • HF, and NH 4 F). These gas phase reactants and other plasma activated species may potentially react with deuterium atoms to form solid by-products such as ammonium hexafluoroantimonate ((NH 4 ) 2 SiF 6 ). An example of such a chemical reaction can be shown in the following chemical route: Si (s) + 4HF (g) + 2NH 4 F (g) → ((SiH 4 ) 2 SiF 6 ) (g) + 2H 2 (g) . A process window that removes germanium atoms but involves the formation of solid by-products may be referred to as a "deposited state." The solid by-product can be sublimed at a slightly elevated temperature (e.g., a temperature greater than about 60 ° C or greater than about 75 ° C) such that the polycrystalline germanium is removed and only gaseous by-products are formed after removal of the polycrystalline germanium.
圖4A顯示在蝕刻多晶矽之後具有鹽殘留物之元件結構的橫剖面示意圖。在蝕刻多晶矽(未顯示)之後,元件結構400a包括在垂直結構430之間的凹處440。垂直結構430可包括矽氮化物及/或矽氧化物的疊層(如熱矽氧化物)。元件結構400a更包括下方層420,該下方層420可包括矽氮化物及/或矽氧化物。用以形成凹處440之多晶矽蝕刻可發生達到下方層420。在一些實施例中,下方層420為蝕刻停止層,而垂直結構430為電極。在圖4A中,鹽殘留物450可能在垂直結構430之側壁上與下方層420的表面上形成。製程條件(包括溫度與壓力)在動力學上可能偏好圖4A中鹽殘留物450的形成。鹽殘留物450的移除可能需要溫度處理以在多晶矽的移除期間或之後使鹽殘留物450昇華。鹽殘餘物450的存在可能限制產能並不利地影響元件性能。4A is a schematic cross-sectional view showing the structure of an element having a salt residue after etching a polysilicon. After etching the polysilicon (not shown), the element structure 400a includes a recess 440 between the vertical structures 430. Vertical structure 430 can include a stack of tantalum nitride and/or tantalum oxide (eg, hot tantalum oxide). The component structure 400a further includes a lower layer 420, which may include tantalum nitride and/or tantalum oxide. The polysilicon etch to form the recess 440 can occur to the underlying layer 420. In some embodiments, the lower layer 420 is an etch stop layer and the vertical structure 430 is an electrode. In FIG. 4A, salt residue 450 may be formed on the sidewalls of vertical structure 430 and the surface of underlying layer 420. Process conditions, including temperature and pressure, may kinetically favor the formation of salt residue 450 in Figure 4A. Removal of the salt residue 450 may require a temperature treatment to sublime the salt residue 450 during or after removal of the polysilicon. The presence of salt residue 450 may limit production capacity and adversely affect component performance.
圖4B顯示在蝕刻多晶矽之後沒有鹽殘留物之元件結構的橫剖面示意圖。在蝕刻多晶矽之後(未顯示),元件結構400b包括沒有鹽殘留物450之凹處440、垂直結構430、與下方層420。製程條件(包括溫度與壓力)在動力學上可能偏好在清潔狀態下的反應。如此,產能可藉由在不需分離之溫度處理步驟以使鹽殘留物450昇華之情形下蝕刻多晶矽而增加。4B is a schematic cross-sectional view showing the structure of an element having no salt residue after etching polycrystalline germanium. After etching the polysilicon (not shown), the element structure 400b includes a recess 440 without a salt residue 450, a vertical structure 430, and a lower layer 420. Process conditions, including temperature and pressure, may kinetically favor reactions in a clean state. As such, the throughput can be increased by etching the polysilicon in the presence of a temperature treatment step that does not require separation to sublime the salt residue 450.
如上討論,多晶矽可藉由以下化學路徑之至少一者移除:(1)Si(s) + 4H* → SiH4(g) ;(2)Si(s) + 4F* → SiF4(g) ;與(3) Si(s) + 4HF(g) + 2NH4 F(g) →((NH4 )2 SiF6 )(s) + 2H2(g) 。前兩種化學路徑避免固體副產物或鹽的形成,而最後的化學路徑涉及固體副產物或鹽的形成。製程條件(如入料氣體比、腔室壓力、與晶圓溫度)可影響反應動力學以較其他化學路徑而偏好某些化學路徑。反應動力學可藉由在晶圓表面之物種的活化能與擴散性驅動。在不受任何理論限制之情形下,氣態物種(如NH4 F)的擴散性可受到晶圓溫度影響。晶圓溫度的控制可控制氣態物種(如NH4 F)的擴散,因而限制固體副產物(如(NH4 )2 SiF6 )的形成。因此,適當的製程條件可控制化學路徑的選擇,以在清潔狀態或沉積狀態下蝕刻多晶矽。As discussed above, polysilicon can be removed by at least one of the following chemical pathways: (1) Si (s) + 4H * → SiH 4 (g) ; (2) Si (s) + 4F * → SiF 4 (g) And (3) Si (s) + 4HF (g) + 2NH 4 F (g) → ((NH 4 ) 2 SiF 6 ) (s) + 2H 2 (g) . The first two chemical pathways avoid the formation of solid by-products or salts, while the final chemical pathway involves the formation of solid by-products or salts. Process conditions (such as feed gas ratio, chamber pressure, and wafer temperature) can affect reaction kinetics to favor certain chemical pathways over other chemical pathways. The reaction kinetics can be driven by the activation energy and diffusivity of the species on the surface of the wafer. Without being bound by any theory, the diffusivity of gaseous species such as NH 4 F can be affected by wafer temperature. Wafer temperature control controls the diffusion of gaseous species such as NH 4 F, thus limiting the formation of solid by-products such as (NH 4 ) 2 SiF 6 . Thus, proper process conditions can control the choice of chemical path to etch polysilicon in a clean or deposited state.
清潔狀態的製程條件可在相對低溫及/或低壓條件下進行。在一些實施例中,晶圓的溫度可小於約120℃、或小於約60℃。例如,晶圓的溫度可在約20℃與約120℃之間、或在約20℃與約50℃之間。在一些實施例中,腔室壓力小於約5Torr、或小於約1Torr。例如,腔室壓力可在約0.1Torr與約5Torr之間。The process conditions in the clean state can be carried out under relatively low temperature and/or low pressure conditions. In some embodiments, the temperature of the wafer can be less than about 120 ° C, or less than about 60 ° C. For example, the temperature of the wafer can be between about 20 ° C and about 120 ° C, or between about 20 ° C and about 50 ° C. In some embodiments, the chamber pressure is less than about 5 Torr, or less than about 1 Torr. For example, the chamber pressure can be between about 0.1 Torr and about 5 Torr.
在一些實施例中,多晶矽的移除可在大於每分鐘約1000Å之蝕刻速率下進行,在清潔狀態下甚至大於每分鐘2000Å。在一些實施例中,晶圓可包括暴露的氮化物及/或氧化物層,其中暴露的氮化物層可以包括矽氮化物,而暴露的氧化物層可包括熱矽氧化物。暴露的氮化物及/或氧化物層的蝕刻速率可小於每分鐘約5Å、或小於每分鐘約2Å、或小於每分鐘約1Å。因此,多晶矽對暴露的氮化物及/或氧化物之選擇性可大於約100:1、或大於約500:1。可在多晶矽蝕刻速率大於每分鐘約2000Å時達到這樣的高選擇性。In some embodiments, the removal of polysilicon can be performed at an etch rate greater than about 1000 Å per minute, and even greater than 2000 Å per minute in a clean state. In some embodiments, the wafer can include an exposed nitride and/or oxide layer, wherein the exposed nitride layer can include tantalum nitride and the exposed oxide layer can include a hot tantalum oxide. The exposed nitride and/or oxide layer may have an etch rate of less than about 5 Å per minute, or less than about 2 Å per minute, or less than about 1 Å per minute. Thus, the selectivity of the polysilicon to the exposed nitride and/or oxide can be greater than about 100:1, or greater than about 500:1. Such high selectivity can be achieved at polysilicon etch rates greater than about 2000 Å per minute.
在一些實施例中,其中晶圓溫度大於60℃的製程條件可使鹽殘留物昇華,其中這樣使鹽殘留物昇華之晶圓溫度可代表沉積狀態。其中晶圓溫度小於60℃的製程條件不導致鹽形成,其中這樣不導致鹽形成之晶圓溫度可代表清潔狀態。在一些實施例中,在清潔狀態下的製程條件可在大於每分鐘2000Å之蝕刻速率下蝕刻多晶矽。此外,對TEOS之選擇性可大於500:1,而對Si3 N4 之選擇性可大於100:1。因此,清潔狀態不僅避免多餘的固體副產物沉積,而且清潔狀態可提供比沉積狀態更高的多晶矽蝕刻速率、及比沉積狀態更大的對氧化物與氮化物的選擇性。In some embodiments, process conditions in which the wafer temperature is greater than 60 ° C may sublime the salt residue, wherein the wafer temperature at which the salt residue sublimes may represent a deposition state. Process conditions in which the wafer temperature is less than 60 ° C do not result in salt formation, wherein the wafer temperature that does not result in salt formation can represent a clean state. In some embodiments, the process conditions in the clean state can etch the polysilicon at an etch rate greater than 2000 Å per minute. Further, the selectivity of TEOS may be greater than 500: 1, and the selectivity of the Si 3 N 4 may be greater than 100: 1. Thus, the clean state not only avoids the deposition of excess solid by-products, but the clean state provides a higher polysilicon etch rate than the deposited state, and a greater selectivity to oxides and nitrides than the deposited state.
圖5A至5C顯示具有用以在各種溫度狀態中偵測(NH4 )2 SiF6 之振動峰的FTIR圖。化學物種的偵測可藉由指示遭遇某些種類之振動模式(如拉伸與彎曲)之鍵結而達到。在圖5A中,(NH4 )2 SiF6 的偵測可藉由指示在約3300cm-1 峰值遭遇對稱拉伸之N-H鍵而達成。在圖5B中,(NH4 )2 SiF6 的偵測可藉由指示在約1425cm-1 峰值遭遇彎曲(例如,搖動)之N-H鍵而達成。在圖5C中,(NH4 )2 SiF6 的偵測可藉由指示在約717cm-1 峰值之Si-F鍵而達成。在FTIR圖之每一者中,在沉積狀態之溫度下偵測出(NH4 )2 SiF6 的存在。然而,在清潔狀態中,未偵測出(NH4 )2 SiF6 。雖沉積狀態中之晶圓溫度(例如,60℃以上)導致固體副產物形成,然使晶圓維持在清潔狀態的溫度(例如40℃以下)避免固體副產物的形成。5A to 5C show FTIR patterns having vibration peaks for detecting (NH 4 ) 2 SiF 6 in various temperature states. Detection of chemical species can be achieved by indicating the engagement of certain types of vibrational modes, such as stretching and bending. In Fig. 5A, the detection of (NH 4 ) 2 SiF 6 can be achieved by indicating that the NH bond at the peak of about 3300 cm -1 is symmetrically stretched. In FIG. 5B, detection of (NH 4 ) 2 SiF 6 can be achieved by indicating an NH bond that is subjected to bending (eg, shaking) at a peak of about 1425 cm −1 . In Figure 5C, detection of (NH 4 ) 2 SiF 6 can be achieved by indicating a Si-F bond at a peak of about 717 cm -1 . In each of the FTIR patterns, the presence of (NH 4 ) 2 SiF 6 was detected at the temperature of the deposition state. However, in the clean state, (NH 4 ) 2 SiF 6 was not detected. Although the wafer temperature in the deposited state (eg, above 60 ° C) results in the formation of solid by-products, the wafer is maintained in a clean state (eg, below 40 ° C) to avoid the formation of solid by-products.
圖6顯示用以自晶圓移除多晶矽之範例性製程的流程圖。製程600中的操作可依不同的次序及/或使用不同、更少、或附加的操作執行。Figure 6 shows a flow diagram of an exemplary process for removing polysilicon from a wafer. The operations in process 600 may be performed in different orders and/or using different, fewer, or additional operations.
製程600可始於方塊605,其中提供具有多晶矽層的晶圓。在一些實施例中,晶圓可為包括具有一或更多材料疊層(如沉積於其上之介電、導電、或半導體材料)之矽晶圓的半導體晶圓(如200mm、300mm、或450mm晶圓)。在一些實施例中,晶圓可為記憶元件或邏輯元件的一部分。記憶或邏輯元件可包括如圖1、圖2、與圖3A至3C中所示那些結構。晶圓可具有多晶矽層及氮化物與氧化物層之至少一者,其中氮化物層可包括矽氮化物或鈦氮化物,且其中氧化物層可包括矽氧化物(如熱矽氧化物)。在一些實施例中,晶圓亦可包括各種形貌的特徵部。這樣的特徵部可具有高度對側向尺寸至少約2:1、至少約10:1、或至少約20:1之縱橫比。在一些實施例中,矽氮化物與矽氧化物層之至少一者可為這樣的特徵部之一部分。Process 600 can begin at block 605 where a wafer having a polysilicon layer is provided. In some embodiments, the wafer can be a semiconductor wafer (eg, 200 mm, 300 mm, or including a germanium wafer having one or more material stacks (eg, dielectric, conductive, or semiconductor materials deposited thereon) 450mm wafer). In some embodiments, the wafer can be part of a memory element or logic element. The memory or logic elements can include those structures as shown in Figures 1, 2, and 3A through 3C. The wafer may have a polysilicon layer and at least one of a nitride and an oxide layer, wherein the nitride layer may include tantalum nitride or titanium nitride, and wherein the oxide layer may include tantalum oxide (eg, hot tantalum oxide). In some embodiments, the wafer may also include features of various topography. Such features can have an aspect ratio of height to lateral dimension of at least about 2:1, at least about 10:1, or at least about 20:1. In some embodiments, at least one of the tantalum nitride and tantalum oxide layers can be part of such a feature.
可將晶圓定位在電漿處理設備中的晶圓支撐件上。在一些實施例中,晶圓支撐件可為靜電卡盤(ESC)。在一些實施例中,靜電卡盤可包括複數配置以定義晶圓上複數不同溫度的熱區。熱區之每一者可為可獨立控制的。複數熱區可自中心到邊緣徑向分佈在靜電卡盤上。如此,可自晶圓中心到邊緣施加不同的晶圓溫度。The wafer can be positioned on a wafer support in a plasma processing apparatus. In some embodiments, the wafer support can be an electrostatic chuck (ESC). In some embodiments, an electrostatic chuck can include a plurality of configurations to define a plurality of hot zones at different temperatures on the wafer. Each of the hot zones can be independently controllable. The plurality of hot zones can be radially distributed from the center to the edge on the electrostatic chuck. In this way, different wafer temperatures can be applied from the center of the wafer to the edge.
在製程600的方塊610,使包括氫基物種與氟基物種之蝕刻劑流至遠端電漿源中。在一些實施例中,氫基物種之濃度大於氟基物種之濃度。在一些實施例中,氫基物種包括H2 或NH3 。在一些實施例中,氟基物種包括NF3 或CF4 。添加氟基物種通常可增加多晶矽的蝕刻速率。氟基物種之相對濃度可達到一定限度以在氮化物及/或氧化物層上維持期望的選擇性。在一些實施例中,氟基物種之濃度可小於約50%的體積百分比、小於約20%的體積百分比、或在約0.7%與約10%的體積百分比之間。在一些實施例中,氫基物種之濃度大於約50%的體積百分比、大於約80%的體積百分比、或大於約90%的體積百分比。At block 610 of process 600, an etchant comprising a hydrogen-based species and a fluorine-based species is passed to a remote plasma source. In some embodiments, the concentration of the hydrogen-based species is greater than the concentration of the fluorine-based species. In some embodiments, the hydrogen-based species comprises H 2 or NH 3 . In some embodiments, the fluorine-based species comprises NF 3 or CF 4 . The addition of fluorine-based species generally increases the etch rate of polysilicon. The relative concentration of the fluorine-based species can be limited to maintain the desired selectivity on the nitride and/or oxide layer. In some embodiments, the concentration of the fluorine-based species can be less than about 50% by volume, less than about 20% by volume, or between about 0.7% and about 10% by volume. In some embodiments, the concentration of the hydrogen-based species is greater than about 50% by volume, greater than about 80% by volume, or greater than about 90% by volume.
在一些實施例中,可使用蝕刻劑導入惰性載送氣體。據信惰性載送氣體可降低氣相中自由基重組之可能性。惰性載送氣體可能影響多晶矽之蝕刻速率。惰性載送氣體之範例可包括惰性氣體,像是氦(He)、氖(Ne)、與氬(Ar)。In some embodiments, an etchant can be used to introduce an inert carrier gas. It is believed that inert carrier gas reduces the likelihood of free radical recombination in the gas phase. The inert carrier gas may affect the etch rate of the polysilicon. Examples of inert carrier gases may include inert gases such as helium (He), neon (Ne), and argon (Ar).
在電漿處理設備中可使蝕刻劑朝向晶圓流至遠端電漿源中。電漿處理設備可包括連接至遠端電漿源的噴淋頭,透過噴淋頭可引導蝕刻劑至處理腔室或與晶圓支撐件相鄰之區域。可將遠端電漿源與噴淋頭定位在晶圓支撐件上方。範例性遠端電漿源之細節可參考圖10描述。The etchant can be directed toward the wafer into the remote plasma source in the plasma processing apparatus. The plasma processing apparatus can include a showerhead coupled to the remote plasma source through which the etchant can be directed to the processing chamber or to an area adjacent the wafer support. The remote plasma source and showerhead can be positioned above the wafer support. Details of an exemplary remote plasma source can be described with reference to FIG.
在製程600的方塊615,於遠端電漿源中產生遠端電漿。遠端電漿可包括氫基物種與氟基物種之自由基。各種物種可存在於遠端電漿中,例如離子、電子、自由基、中性物種、亞穩態物種、與其他物種。遠端電漿可在晶圓及處理腔室或鄰近晶圓支撐件之區域外部的上游產生。At block 615 of process 600, a distal plasma is generated in the remote plasma source. The distal plasma can include free radicals of hydrogen-based species and fluorine-based species. Various species may be present in the far-end plasma, such as ions, electrons, free radicals, neutral species, metastable species, and other species. The far end plasma can be generated upstream of the wafer and processing chamber or outside of the area adjacent the wafer support.
當使氫基物種與氟基物種導入遠端電漿源中時,可施加電源功率至遠端電漿源。電源功率可使感應線圈充能以產生遠端電漿,遠端電漿可為遠端電漿源中的感應耦合電漿。遠端電漿源可產生反應性物種,該反應性物種包括氫基物種與氟基物種之電漿活化物種(例如,自由基)。這樣的電漿活化物種可由氫基物種與氟基物種的離解而產生。例如,在遠端電漿中之H2 與NF3 的離解可產生包括F* 、N* 、NFx * 、與H* 的自由基。在一些範例中,自由基可再結合以在遠端電漿中形成HF與NH4 F的氣態副產物。When a hydrogen-based species and a fluorine-based species are introduced into a remote plasma source, power can be applied to the remote plasma source. The power supply powers the induction coil to produce a remote plasma, and the far end plasma can be an inductively coupled plasma in the remote plasma source. The distal plasma source can produce a reactive species comprising a hydrogen-based species and a plasma-activated species of a fluorine-based species (eg, free radicals). Such plasma activated species can result from the dissociation of hydrogen-based species from fluorine-based species. For example, H at the distal end of the plasma dissociation of NF 2 and 3 may generate a F *, N *, NF x *, H * radical and the. In some examples, radicals can recombine at the distal end to form gaseous byproducts in the plasma of HF and NH 4 F in.
遠端電漿源中的製程條件可影響電漿的產生。例如,製程條件(如電漿頻率、電漿功率、蝕刻劑化學、氣體混合物、氣體流速、腔室壓力、腔室溫度、與時序)可增加或減少電漿中自由基的密度。遠端電漿源之設備設計亦可影響電漿的產生。例如,感應線圈的定位、感應線圈的長度、遠端電漿源的形狀、遠端電漿源的材料、噴淋頭中孔洞的分佈、與噴淋頭的材料可增加或減少電漿中自由基的密度。在一些實施例中,可最佳化遠端電漿源之製程條件與設備設計以增加電漿中自由基的密度。設備設計之實施態樣可促進遠端電漿源中之電漿再循環,以進一步增加電漿中自由基的密度。電漿中之高密度自由基可對應多晶矽之高蝕刻速率與對氮化物及/或氧化物之高選擇性。Process conditions in the remote plasma source can affect plasma generation. For example, process conditions (eg, plasma frequency, plasma power, etchant chemistry, gas mixture, gas flow rate, chamber pressure, chamber temperature, and timing) can increase or decrease the density of free radicals in the plasma. The equipment design of the remote plasma source can also affect the generation of plasma. For example, the positioning of the induction coil, the length of the induction coil, the shape of the distal plasma source, the material of the remote plasma source, the distribution of the holes in the showerhead, and the material of the showerhead can increase or decrease the freedom in the plasma. The density of the base. In some embodiments, the process conditions and equipment design of the remote plasma source can be optimized to increase the density of free radicals in the plasma. Embodiments of the device design can promote plasma recirculation in the remote plasma source to further increase the density of free radicals in the plasma. The high density of free radicals in the plasma can correspond to the high etch rate of polysilicon and the high selectivity to nitrides and/or oxides.
在製程600的方塊620,使晶圓暴露至遠端電漿以移除多晶矽層。使晶圓維持在一溫度範圍內,使得晶圓在暴露至遠端電漿期間實質上沒有固體副產物的殘留物。晶圓溫度可藉由控制晶圓支撐件的溫度而控制。遠端電漿中所產生的離子可藉由噴淋頭過濾,使得晶圓可更暴露於氫基物種與氟基物種之自由基。H* 自由基與F* 自由基(亦即,原子氫與原子氟)可與多晶矽層反應以蝕刻多晶矽。H* 自由基可與矽反應以形成矽烷的氣態副產物。F* 自由基可與矽反應以形成四氟矽烷的氣態副產物。因此,多晶矽層不僅可被原子氫蝕刻,亦可被原子氟蝕刻。可將晶圓的溫度維持在抑制固體副產物(如(NH4 )2 SiF6 )形成的溫度。在一些實施例中,溫度範圍小於約120℃、小於約60℃、或介於約20℃與約50℃之間。亦可控制腔室壓力以抑制固體副產物的形成。在一些實施例中,腔室壓力可小於約5Torr、或小於約1Torr。在不受任何理論限制之情形下,控制晶圓溫度或腔室壓力可限制在反應表面之HF及/或NH4 F的擴散性,因而抑制用以形成(NH4 )2 SiF6 的化學反應。控制晶圓溫度可控制表面反應路徑。At block 620 of process 600, the wafer is exposed to a remote plasma to remove the polysilicon layer. The wafer is maintained within a temperature range such that the wafer is substantially free of residues of solid by-products during exposure to the remote plasma. The wafer temperature can be controlled by controlling the temperature of the wafer support. The ions generated in the far-end plasma can be filtered by a showerhead, so that the wafer can be more exposed to free radicals of hydrogen-based species and fluorine-based species. H * radicals and F * radicals (i.e., atomic hydrogen and atomic fluorine) can react with the polycrystalline germanium layer to etch polycrystalline germanium. The H * radical can react with hydrazine to form a gaseous by-product of decane. The F * radical can react with hydrazine to form a gaseous by-product of tetrafluorodecane. Therefore, the polysilicon layer can be etched not only by atomic hydrogen but also by atomic fluorine. The temperature of the wafer can be maintained at a temperature that inhibits the formation of solid by-products such as (NH 4 ) 2 SiF 6 . In some embodiments, the temperature range is less than about 120 °C, less than about 60 °C, or between about 20 °C and about 50 °C. Chamber pressure can also be controlled to inhibit the formation of solid by-products. In some embodiments, the chamber pressure can be less than about 5 Torr, or less than about 1 Torr. Without being bound by any theory, controlling the wafer temperature or chamber pressure can limit the diffusivity of HF and/or NH 4 F at the reaction surface, thereby inhibiting the chemical reaction used to form (NH 4 ) 2 SiF 6 . . Controlling the wafer temperature controls the surface reaction path.
在某些製程條件(如相對低溫及/或相對低壓)下,可抑制固體副產物或鹽的形成。此可避免或以其他方式減少晶圓中多餘的缺陷並增加產能。這樣的製程條件不僅可避免多餘的固體副產物之殘留物,亦可增加多晶矽之蝕刻速率與增加對氮化物及/或氧化物層的選擇性。在一些實施例中,多晶矽層以大於每分鐘約2000Å的蝕刻速率移除。在一些實施例中,在多晶矽層的移除期間,多晶矽對氮化物及/或氧化物層的選擇性可大於約500:1。The formation of solid by-products or salts can be inhibited under certain process conditions, such as relatively low temperatures and/or relatively low pressures. This avoids or otherwise reduces excess defects in the wafer and increases throughput. Such process conditions not only avoid residues of excess solid by-products, but also increase the etch rate of the polysilicon and increase the selectivity to the nitride and/or oxide layer. In some embodiments, the polysilicon layer is removed at an etch rate greater than about 2000 Å per minute. In some embodiments, the selectivity of the polysilicon to the nitride and/or oxide layer during the removal of the polysilicon layer can be greater than about 500:1.
在一些實施例中,多晶矽的蝕刻速率可取決於蝕刻劑中反應物物種的混合物。除了氫基物種與氟基物種之外,蝕刻劑可更包括不同於氟基物種與氫基物種兩者之改質氣體物種,其中改質氣體物種包括NF3 、CF4 、CH3 F、與SF6 之至少一者。改質氣體物種之濃度小於約10%的體積百分比。可產生改質氣體物種之自由基,且可使晶圓暴露至這樣的自由基以有助於多晶矽層的移除。In some embodiments, the etch rate of the polysilicon may depend on the mixture of reactant species in the etchant. In addition to the hydrogen-based species and the fluorine-based species, the etchant may further include a modified gas species different from both the fluorine-based species and the hydrogen-based species, wherein the modified gas species include NF 3 , CF 4 , CH 3 F, and At least one of SF 6 . The concentration of the modified gas species is less than about 10% by volume. Free radicals of the modified gas species can be generated and the wafer can be exposed to such free radicals to aid in the removal of the polysilicon layer.
圖7說明顯示作為溫度函數之多晶矽蝕刻速率的圖。多晶矽蝕刻速率隨著減少靜電卡盤溫度而增加,直到鹽副產物的形成。此外,當添加改質氣體物種至蝕刻劑時,多晶矽蝕刻速率對溫度的敏感性則改變。如圖7所示,以小於10%之體積百分比的濃度添加NF3 、CF4 、CH3 F、與SF6 之至少一者增加多晶矽蝕刻速率對溫度的敏感性。Figure 7 illustrates a graph showing the polysilicon etch rate as a function of temperature. The polysilicon etch rate increases with decreasing electrostatic chuck temperature until formation of salt by-products. Furthermore, when a modified gas species is added to the etchant, the sensitivity of the polysilicon etch rate to temperature changes. As shown in FIG. 7, the volume percentage of less than 10% of the added concentration of NF 3, CF 4, CH 3 F, SF 6 and at least one of polysilicon etching rate increased sensitivity to temperature.
返回至圖6,在其中使晶圓支撐在具有複數熱區之靜電卡盤上的實施例中,製程600可更包括為改善多晶矽移除之均勻性,在使晶圓暴露至遠端電漿期間於熱區中施加應用複數不同的溫度。可徑向分佈複數熱區,使得不同的溫度可徑向分佈在晶圓上。自晶圓中心到邊緣之多晶矽的蝕刻速率可藉由自支撐晶圓之靜電卡盤的中心到邊緣施加不同的溫度而微調。Returning to Figure 6, in an embodiment in which the wafer is supported on an electrostatic chuck having a plurality of hot zones, process 600 can further include exposing the wafer to a remote plasma to improve uniformity of polysilicon removal. During the application, a plurality of different temperatures are applied in the hot zone. The plurality of hot zones can be radially distributed such that different temperatures can be radially distributed across the wafer. The etch rate of the polysilicon from the center of the wafer to the edge can be fine tuned by applying different temperatures from the center to the edge of the electrostatic chuck of the self-supporting wafer.
圖8A顯示範例性單區靜電卡盤之晶圓上多晶矽蝕刻均勻性。在整個靜電卡盤上施加的單一溫度100℃,多晶矽刻蝕範圍介在73.8nm與84.7nm之間。平均值為78.7nm、3-sigma標準差為8.9nm(11.3%)、而範圍為10.9nm(13.9%)。Figure 8A shows the polysilicon etch uniformity on a wafer of an exemplary single zone electrostatic chuck. At a single temperature of 100 ° C applied across the electrostatic chuck, the polysilicon etch range is between 73.8 nm and 84.7 nm. The average value was 78.7 nm, the 3-sigma standard deviation was 8.9 nm (11.3%), and the range was 10.9 nm (13.9%).
圖8B顯示範例性多區靜電卡盤之晶圓上多晶矽蝕刻均勻性。在靜電卡盤中心施加110℃的溫度、在圍繞靜電卡盤中心的第一環中施加100℃的溫度、在圍繞第一環的第二環中施加95℃的溫度、並在靜電卡盤周邊且環繞第二環的第三環中施加100℃的溫度。多晶矽蝕刻的範圍介在83.9nm與88.1nm之間。平均值為86.5nm、3-sigma標準差為3.4nm(3.9%)、而範圍為4.2nm(4.8%)。圖8A與8B中所示數據顯示晶圓上之多晶矽蝕刻均勻性可藉由控制靜電卡盤中之多重熱區上的溫度而改善。Figure 8B shows the polysilicon etch uniformity on a wafer of an exemplary multi-zone electrostatic chuck. Applying a temperature of 110 ° C at the center of the electrostatic chuck, applying a temperature of 100 ° C in the first ring around the center of the electrostatic chuck, applying a temperature of 95 ° C in the second ring surrounding the first ring, and surrounding the electrostatic chuck And a temperature of 100 ° C was applied in the third ring surrounding the second ring. The range of polysilicon etch is between 83.9 nm and 88.1 nm. The average value was 86.5 nm, the 3-sigma standard deviation was 3.4 nm (3.9%), and the range was 4.2 nm (4.8%). The data shown in Figures 8A and 8B shows that the polysilicon etch uniformity on the wafer can be improved by controlling the temperature across multiple hot zones in the electrostatic chuck.
返回至圖6,在其中原生氧化物層於多晶矽層上形成之實施例中,製程600可更包括施加偏壓至晶圓支撐件以在遠端電漿源與晶圓支撐件之間產生至少氟基蝕刻劑之電容耦合電漿,並使晶圓暴露至電容耦合電漿以移除原生氧化物層。在一些實施例中,氟基蝕刻劑可包括CF4 。可原位執行原生氧化物層之移除與多晶矽層之移除。Returning to Figure 6, in an embodiment wherein the native oxide layer is formed on the polysilicon layer, the process 600 can further include applying a bias to the wafer support to create at least between the remote plasma source and the wafer support. The fluorine-based etchant capacitively couples the plasma and exposes the wafer to a capacitively coupled plasma to remove the native oxide layer. In some embodiments, the fluorine-based etchant can include CF 4 . The removal of the native oxide layer and the removal of the polysilicon layer can be performed in situ.
多晶矽的移除可能因原生氧化物存在而受阻。當暴露至環境條件或氧時,原生氧化物層(如原生矽氧化物層)可在多晶矽層上形成(如圖2所示)。一些晶圓的範例性電漿處理以移除原生氧化物描述於2013年6月12日提出申請並題為「REMOVAL OF NATIVE OXIDE WITH HIGH SELECTIVITY」之美國專利申請案第13/916,497號(現公告為美國專利第9,034,773號)及2014年12月19日提出申請並題為「CONTACT CLEAN IN HIGH-ASPECT RATIO STRUCTURES」之美國專利申請案第14/577,977號中,其每一者之整體及所有目的以參考文獻合併於此。The removal of polysilicon may be hindered by the presence of native oxides. When exposed to ambient conditions or oxygen, a native oxide layer (such as a native tantalum oxide layer) can be formed on the polysilicon layer (as shown in Figure 2). Exemplary wafer processing of some wafers to remove native oxides. US Patent Application No. 13/916,497, entitled "REMOVAL OF NATIVE OXIDE WITH HIGH SELECTIVITY", filed on June 12, 2013, is hereby incorporated by reference. U.S. Patent No. 9/034,773, filed on Dec. 19, 2014, and the entire contents of each of This is incorporated herein by reference.
在一些實施例中,可在使用以移除多晶矽層之蝕刻劑流動之前使用以移除原生氧化物層之蝕刻劑流向晶圓。用以移除原生氧化物層之蝕刻劑可包括氟基蝕刻劑(如CF4 )或氫基蝕刻劑與氟基蝕刻劑之混合物(如H2 與NF3 )。用以移除原生氧化物層之蝕刻劑可在噴淋頭與晶圓支撐件之間的區域提供。可施加偏壓至晶圓支撐件以在噴淋頭與晶圓支撐件之間產生電容耦合電漿,其中噴淋頭可電性接地。電容耦合電漿可包括氟基蝕刻劑之離子、自由基、與其它電漿活化物種。暴露至電容耦合電漿可移除原生氧化物層以執行原生氧化物貫穿步驟。原生氧化物貫穿步驟可實質上接續在用以移除多晶矽層之遠端電漿源中的感應耦合電漿產生之後,其中原生氧化物貫穿步驟與多晶矽層之移除可在相同電漿處理設備中進行。換言之,原生氧化物貫穿與多晶矽層的移除可原位進行,使得晶圓不需轉移至單獨的工具或腔室。In some embodiments, the etchant used to remove the native oxide layer can be used to flow to the wafer prior to flow using the etchant to remove the polysilicon layer. The etchant used to remove the native oxide layer may include a fluorine-based etchant (such as CF 4 ) or a mixture of a hydrogen-based etchant and a fluorine-based etchant (such as H 2 and NF 3 ). An etchant to remove the native oxide layer can be provided in the region between the showerhead and the wafer support. A bias can be applied to the wafer support to create a capacitively coupled plasma between the showerhead and the wafer support, wherein the showerhead can be electrically grounded. Capacitively coupled plasmas can include ions of fluorine-based etchants, free radicals, and other plasma activated species. Exposure to a capacitively coupled plasma can remove the native oxide layer to perform a native oxide penetration step. The native oxide penetrating step can be substantially followed by the generation of the inductively coupled plasma in the remote plasma source for removing the polycrystalline germanium layer, wherein the primary oxide penetrating step and the polysilicon layer can be removed in the same plasma processing device. In progress. In other words, the removal of the native oxide through and the polysilicon layer can be performed in situ so that the wafer does not need to be transferred to a separate tool or chamber.
圖9顯示用以自晶圓移除原生氧化物與多晶矽之範例性製程的流程圖。製程900中的操作可說明原位移除原生氧化物與多晶矽的範例。製程900中的操作可依不同的次序及/或使用不同、更少、或附加的操作執行。Figure 9 shows a flow diagram of an exemplary process for removing native oxide and polysilicon from a wafer. The operation in process 900 illustrates an example of the in situ removal of native oxide and polysilicon. The operations in process 900 can be performed in different orders and/or using different, fewer, or additional operations.
製程900可始於方塊905,其中在多區靜電卡盤上提供晶圓,且其中晶圓具有多晶矽層、氮化物層與氧化物層之至少一者、及多晶矽層上之原生氧化物。在一些實施例中,晶圓可為半導體晶圓(如200-mm、300-mm、或450-mm晶圓),該半導體晶圓包括具有像是沉積於其上之介電(例如,低k介電材料)、導電、或半導體材料之一或更多材料疊層的矽晶圓。在一些實施例中,晶圓可為記憶元件或邏輯元件的一部分。記憶元件或邏輯元件可包括如圖1、圖2、與圖3A至3C所示之那些結構。在一些實施例中,氮化物層可包括矽氮化物或鈦氮化物,而氧化物層可包括矽氧化物(如熱矽氧化物)。在一些實施例中,晶圓亦可包括各種形貌的特徵部。這樣的特徵部可具有高度對橫向尺寸至少約2:1、至少約10:1、或至少約20:1之縱橫比。在一些實施例中,氮化物與氧化物層之至少一者可為這樣的特徵部的部分。The process 900 can begin at block 905 where a wafer is provided on a multi-zone electrostatic chuck, and wherein the wafer has a polysilicon layer, at least one of a nitride layer and an oxide layer, and a native oxide on the polysilicon layer. In some embodiments, the wafer can be a semiconductor wafer (eg, a 200-mm, 300-mm, or 450-mm wafer) that includes a dielectric (eg, low) that is deposited thereon. A germanium wafer in which one or more materials of k dielectric material, conductive, or semiconductor material are stacked. In some embodiments, the wafer can be part of a memory element or logic element. Memory elements or logic elements may include those shown in Figures 1, 2, and 3A through 3C. In some embodiments, the nitride layer can include tantalum nitride or titanium nitride, and the oxide layer can include tantalum oxide (eg, hot tantalum oxide). In some embodiments, the wafer may also include features of various topography. Such features can have an aspect ratio of height to lateral dimension of at least about 2:1, at least about 10:1, or at least about 20:1. In some embodiments, at least one of the nitride and oxide layers can be part of such a feature.
靜電卡盤可包括配置以在每一區中提供可獨立控制的溫度之複數熱區。複數熱區可在自中心到邊緣之徑向構造中定義。熱區可為圓形或環形的。可獨立控制熱區,使得可施加晶圓上之徑向溫度分佈。多區靜電卡盤之範例描述於2006年11月22日提出申請並題為「ELECTROSTATIC CHUCK HAVING RADIAL TEMPERATURE CONTROL CAPABILITY」之美國專利申請案第11/562,884號,其整體及所有目的以參考文獻合併於此。多晶矽蝕刻均勻性可藉由獨立地控制多區靜電卡盤中之每一熱區的溫度而改善。The electrostatic chuck can include a plurality of thermal zones configured to provide independently controllable temperatures in each zone. The complex hot zone can be defined in a radial configuration from center to edge. The hot zone can be circular or toroidal. The hot zone can be independently controlled such that a radial temperature distribution across the wafer can be applied. An example of a multi-zone electrostatic chuck is described in U.S. Patent Application Serial No. 11/562,884, filed on November 22, 2006, entitled "ELECTROSTATIC CHUCK HAVING RADIAL TEMPERATURE CONTROL CAPABILITY" this. Polysilicon etch uniformity can be improved by independently controlling the temperature of each hot zone in the multi-zone electrostatic chuck.
在製程900的方塊910,使CF4 朝向晶圓流動。可提供蝕刻劑至鄰近晶圓的區域內。在一些實施例中,透過噴淋頭傳遞蝕刻劑至晶圓支撐件與噴淋頭之間的區域中。At block 910 of process 900, CF 4 is caused to flow toward the wafer. An etchant can be provided to the area adjacent to the wafer. In some embodiments, the etchant is delivered through the showerhead to a region between the wafer support and the showerhead.
在製程900的方塊915,施加RF偏壓至多區靜電卡盤,以在噴淋頭與多區靜電卡盤之間產生CF4 的電容耦合電漿。當噴淋頭電性接地時,可使多區域靜電卡盤受偏壓。電容耦合電漿可包括CF4 的離子、自由基、與其它電漿活化物種。在一些實施例中,CF4 的電容耦合電漿為在噴淋頭與晶圓之間的CF4 的原位電漿,其中可控制偏壓以相對於所產生之原位電漿而增加或減少離子轟擊。在一些實施例中,偏壓可介於約100W與約2000W之間。At block 915 of process 900, an RF bias is applied to the multi-zone electrostatic chuck to create a CF 4 capacitively coupled plasma between the showerhead and the multi-zone electrostatic chuck. When the showerhead is electrically grounded, the multi-zone electrostatic chuck can be biased. Capacitively coupled plasmas can include CF 4 ions, free radicals, and other plasma activated species. In some embodiments, CF 4 plasma is capacitively coupled plasma in situ between the showerhead and the wafer of CF 4, wherein the bias voltage may be controlled in situ plasma is generated with respect to the increase or Reduce ion bombardment. In some embodiments, the bias voltage can be between about 100 W and about 2000 W.
在製程900的方塊920,使晶圓暴露至電容耦合電漿以移除原生氧化物。暴露至電容耦合電漿可移除原生氧化物以執行原生氧化物貫穿步驟。CF4 的電容耦合電漿可在相對高的蝕刻速率下蝕刻原生氧化物,同時避免鹽形成與聚合化學。再者,電容耦合電漿可對氮化物及/或氧化物層之蝕刻具選擇性。At block 920 of process 900, the wafer is exposed to a capacitively coupled plasma to remove native oxide. Exposure to a capacitively coupled plasma can remove native oxide to perform a native oxide penetration step. The CF 4 capacitively coupled plasma etches native oxide at relatively high etch rates while avoiding salt formation and polymerization chemistry. Furthermore, the capacitively coupled plasma can be selective for etching of the nitride and/or oxide layers.
在製程900的方塊925,使H2 與NF3 流至遠端電漿源中,其中H2 的濃度大於NF3 的濃度。在一些實施例中,NF3 的濃度可小於約50%體積百分比、小於約20%體積百分比、或約0.7%至約10%體積百分比之間。在一些實施例中,H2 的濃度大於約50%體積百分比、大於約80%體積百分比、或大於約90%體積百分比。在一些實施例中,惰性載送氣體可與H2 及NF3 一起流動。惰性載送氣體之範例可包括惰性氣體(如He、Ne、與Ar)。在一些實施例中,改質氣體物種(如CF4 、CH3 F、與SF6 )可在小於約10%體積百分比之濃度下與H2 與NF3 一起添加,以調節多晶矽蝕刻速率之溫度敏感性。In process block 925 900, so that H 2 and NF 3 stream to the remote plasma source, wherein the concentration of H 2 greater than the concentration of NF 3. In some embodiments, the concentration of NF 3 can be less than about 50% by volume, less than about 20% by volume, or between about 0.7% to about 10% by volume. In some embodiments, the concentration of H 2 greater than about 50% by volume, greater than about 80% by volume, or greater than about 90% by volume. In some embodiments, an inert carrier gas may flow together with H 2 and NF 3. Examples of inert carrier gases can include inert gases such as He, Ne, and Ar. In some embodiments, the modified gas species (eg, CF 4 , CH 3 F, and SF 6 ) may be added with H 2 and NF 3 at a concentration of less than about 10% by volume to adjust the temperature of the polysilicon etch rate. Sensitivity.
在製程900的方塊930,H2 與NF3 的感應耦合電漿在遠端電漿源中產生,其中感應耦合電漿包括氫自由基與氟自由基。感應耦合電漿中可存在各種物種,像是離子、電子、自由基、中性物種、亞穩態物種、與其它物種。電源功率可使感應線圈充能以產生感應耦合電漿。感應耦合電漿可自晶圓及鄰近晶圓之處理室或區域的外部的上游產生。930, H 2 and NF 3 is generated inductively coupled plasma source in a plasma in the distal end of the process block 900, wherein the inductively coupled plasma comprising hydrogen radicals and fluorine radicals. Various species can exist in the inductively coupled plasma, such as ions, electrons, free radicals, neutral species, metastable species, and other species. The power supply powers the induction coil to produce an inductively coupled plasma. Inductively coupled plasma can be generated upstream of the wafer and the exterior of the processing chamber or region adjacent to the wafer.
在一些實施例中,製程條件與遠端電漿源的設計可在感應耦合電漿中產生高自由基密度,其中較高的自由基密度可對應較高的多晶矽蝕刻速率,且增加的分子鈍化作用可導致較高的選擇性。在一些實施例中,施加至遠端電漿源之降低的線圈電壓可降低遠端電漿源與噴頭中的濺射,此增加自由基密度。在一些實施例中,較高的壓力可導致較高的RF耦合效率,此增加自由基密度。壓力可介於約0.1Torr與10Torr之間。其它製程條件與設備設計實施態樣可增加遠端電漿源中的自由基密度。In some embodiments, the process conditions and the design of the remote plasma source can produce a high radical density in the inductively coupled plasma, wherein a higher radical density can correspond to a higher polysilicon etch rate and increased molecular passivation The effect can lead to higher selectivity. In some embodiments, the reduced coil voltage applied to the remote plasma source can reduce sputtering in the distal plasma source and the showerhead, which increases the radical density. In some embodiments, higher pressures can result in higher RF coupling efficiencies, which increases the radical density. The pressure can be between about 0.1 Torr and 10 Torr. Other process conditions and equipment design implementations can increase the density of free radicals in the remote plasma source.
在製程900的方塊935,使晶圓暴露至感應耦合電漿以移除多晶矽層,其中使晶圓維持在低於60℃的溫度。晶圓溫度在電漿處理期間可藉由多區靜電卡盤主動地控制。藉由使晶圓溫度控制在60℃以下,可促進某些反應路徑且同時可抑制其它反應路徑。具體而言,促進反應途徑 Si(s) + 4H* → SiH4(g) 與 Si(s) + 4F* → SiF4(g) ,同時抑制反應途徑 Si(s) + 4HF(g) + 2NH4 F(g) → ((NH4 )2 SiF6 )(s) + 2H2(g) 。在一些實施例中,可使晶圓維持在介於約20℃與約50℃之間的溫度以避免(NH4 )2 SiF6 的形成。在感應耦合電漿中所產生的離子可藉由噴淋頭過濾,使得晶圓可更暴露於氫自由基與氟自由基。在一些實施例中,可控制腔室壓力以抑制用以形成(NH4 )2 SiF6 的反應路徑。例如,腔室壓力可小於約5Torr、或小於約1Torr。At block 935 of process 900, the wafer is exposed to an inductively coupled plasma to remove the polysilicon layer, wherein the wafer is maintained at a temperature below 60 °C. The wafer temperature can be actively controlled by the multi-zone electrostatic chuck during plasma processing. By controlling the wafer temperature below 60 ° C, certain reaction paths can be promoted while other reaction paths can be suppressed. Specifically, the reaction pathway Si (s) + 4H * → SiH 4 (g) and Si (s) + 4F * → SiF 4 (g) are promoted while inhibiting the reaction pathway Si (s) + 4HF (g) + 2NH. 4 F (g) → ((NH 4 ) 2 SiF 6 ) (s) + 2H 2 (g) . In some embodiments, the wafer can be maintained at a temperature between about 20 ° C and about 50 ° C to avoid the formation of (NH 4 ) 2 SiF 6 . The ions generated in the inductively coupled plasma can be filtered by a showerhead such that the wafer can be more exposed to hydrogen radicals and fluorine radicals. In some embodiments, the chamber pressure can be controlled to inhibit the reaction pathway used to form (NH 4 ) 2 SiF 6 . For example, the chamber pressure can be less than about 5 Torr, or less than about 1 Torr.
在一些實施例中,多晶矽層在大於每分鐘約2000Å之蝕刻速率下移除。在一些實施例中,於多晶矽層的移除期間,多晶矽對於氮化物及/或氧化物層之選擇性可大於約500:1。 [設備]In some embodiments, the polysilicon layer is removed at an etch rate greater than about 2000 Å per minute. In some embodiments, the selectivity of the polysilicon to the nitride and/or oxide layer may be greater than about 500:1 during removal of the polysilicon layer. [equipment]
用以執行多晶矽移除及/或原生氧化物移除的設備可包括電漿處理設備。電漿處理設備可包括電漿蝕刻腔室。上述方法可在感應耦合電漿腔室、電容耦合電漿腔室、或兩者之組合中執行。多晶矽與原生氧化物之移除可在相同的電漿處理設備中執行。在一些實施例中,電漿處理設備可電性連接至用以產生感應耦合電漿的電源功率與用以產生電容耦合電漿的偏壓功率。Apparatus for performing polysilicon removal and/or native oxide removal may include a plasma processing apparatus. The plasma processing apparatus can include a plasma etch chamber. The above method can be performed in an inductively coupled plasma chamber, a capacitively coupled plasma chamber, or a combination of both. The removal of polycrystalline germanium and native oxide can be performed in the same plasma processing equipment. In some embodiments, the plasma processing apparatus can be electrically coupled to the power source used to generate the inductively coupled plasma and the bias power used to generate the capacitively coupled plasma.
圖10顯示用以執行自晶圓移除多晶矽之製程的電漿處理設備的示意圖。電漿處理設備1000包括遠端電漿源1050與在遠端電漿源1050外部的處理腔室1025。遠端電漿源1050可配置成產生遠端電漿1060,其中遠端電漿1060可為感應耦合電漿。遠端電漿1060的活化物種1004可透過噴頭1054自遠端電漿源1050導入。可將晶圓1020定位在晶圓支撐件1010上,其中晶圓支撐件1010可藉由靜電卡盤將晶圓1020固持在適當位置。亦可採用其他夾持機構。晶圓1020可包括如圖1、圖2、與圖3A至3C中所示的那些結構。Figure 10 shows a schematic diagram of a plasma processing apparatus for performing a process for removing polysilicon from a wafer. The plasma processing apparatus 1000 includes a distal plasma source 1050 and a processing chamber 1025 external to the remote plasma source 1050. The distal plasma source 1050 can be configured to generate a distal plasma 1060, wherein the distal plasma 1060 can be an inductively coupled plasma. The activated species 1004 of the distal plasma 1060 can be introduced from the distal plasma source 1050 through the showerhead 1054. The wafer 1020 can be positioned on the wafer support 1010, wherein the wafer support 1010 can hold the wafer 1020 in place by an electrostatic chuck. Other clamping mechanisms can also be used. Wafer 1020 can include those structures as shown in Figures 1, 2, and 3A through 3C.
處理氣體1002可經由氣體入口1052供給至遠端電漿源1050。在一些實施例中,處理氣體1002包括氫基物種(如H2 或NH3 )與氟基物種(如NF3 、CF4 、或SF6 )。如上所述的其它載送氣體或改質氣體物種可與處理氣體1002一起導入。氣體入口1052可在感應耦合電漿產生之前將處理氣體1002分配至遠端電漿源1050中。一或更多閥可控制處理氣體1002導入遠端電漿源1050中。遠端電漿源1050可為任何合適形狀(如圓頂形、圓錐形、或圓柱形)的容器。在一些實施例中,可設計遠端電漿源1050的容器以最佳化電漿再循環流及電漿密度。氣體入口1052可配置成朝遠端電漿源1050的側壁或沿遠端電漿源1050的側壁分佈處理氣體1002。遠端電漿源1050的側壁可包括能夠增強電場的材料。例如,側壁可包括介電材料(如石英、鋁、氧化鋁、或陶瓷)。在一些實施例中,側壁可包括陶瓷塗層以限制濺射。Process gas 1002 can be supplied to remote plasma source 1050 via gas inlet 1052. In some embodiments, process gas 1002 comprises a hydrogen-based species (such as H 2 or NH 3 ) and a fluorine-based species (such as NF 3 , CF 4 , or SF 6 ). Other carrier gas or modified gas species as described above may be introduced with the process gas 1002. The gas inlet 1052 can distribute the process gas 1002 into the remote plasma source 1050 prior to inductively coupled plasma generation. One or more valves control the introduction of process gas 1002 into remote plasma source 1050. The distal plasma source 1050 can be any suitable shape (e.g., dome shaped, conical, or cylindrical) container. In some embodiments, a container of remote plasma source 1050 can be designed to optimize plasma recirculation flow and plasma density. The gas inlet 1052 can be configured to distribute the process gas 1002 toward the sidewall of the remote plasma source 1050 or along the sidewall of the remote plasma source 1050. The sidewalls of the remote plasma source 1050 can include materials that enhance the electric field. For example, the sidewalls can include a dielectric material such as quartz, aluminum, aluminum oxide, or ceramic. In some embodiments, the sidewalls can include a ceramic coating to limit sputtering.
線圈1056可圍繞遠端電漿源1050之容器的至少一部分。線圈1056可與用以在遠端電漿源1050中產生遠端電漿1060的RF功率源電性連通。在一些實施例中,線圈1056可圍繞容器的上部與容器的下部。在一些實施例中,線圈1056可分成頂部線圈1056a與底部線圈1056b,其中頂部線圈1056a構成以特定頻率供電之一區域,而底部線圈1056b構成以特定頻率供電之另一區域。雖圖10中的電漿處理設備1000顯示線圈1056之兩單獨的RF功率源,然電漿處理設備1000可限制於線圈1056之單一RF功率源。The coil 1056 can surround at least a portion of the container of the distal plasma source 1050. The coil 1056 can be in electrical communication with an RF power source used to generate the remote plasma 1060 in the remote plasma source 1050. In some embodiments, the coil 1056 can surround the upper portion of the container and the lower portion of the container. In some embodiments, the coil 1056 can be divided into a top coil 1056a and a bottom coil 1056b, wherein the top coil 1056a constitutes one region that is powered at a particular frequency and the bottom coil 1056b constitutes another region that is powered at a particular frequency. Although the plasma processing apparatus 1000 of FIG. 10 displays two separate RF power sources for the coil 1056, the plasma processing apparatus 1000 can be limited to a single RF power source of the coil 1056.
線圈1056的排列可影響用以增加自由基的密度之RF功率與遠端電漿1060的耦合。例如,線圈1056的定位、線圈1056的長度、及線圈1056與容器之間的間隔可影響RF功率與遠端電漿1060的耦合。當處理氣體1002在遠端電漿源1050中提供且線圈1056充能時,可點燃遠端電漿1060以形成處理氣體1002的活化物種1004。活化物種1004可包括處理氣體1002的自由基、離子、與其他活性物種。活化物種1004可通過噴淋頭1054朝向晶圓1020。在一些實施例中,來自遠端電漿1060之活化物種1004可用以在具有高選擇性之高蝕刻速率下蝕刻晶圓1020上的多晶矽。在一些實施例中,噴淋頭1054可過濾掉活化物種1004的離子。The arrangement of the coils 1056 can affect the coupling of the RF power to increase the density of the free radicals to the remote plasma 1060. For example, the positioning of coil 1056, the length of coil 1056, and the spacing between coil 1056 and the container can affect the coupling of RF power to remote plasma 1060. When process gas 1002 is provided in remote plasma source 1050 and coil 1056 is energized, remote plasma 1060 can be ignited to form activated species 1004 of process gas 1002. The activated species 1004 can include free radicals, ions, and other active species of the processing gas 1002. The activated species 1004 can be directed toward the wafer 1020 by the showerhead 1054. In some embodiments, activated species 1004 from remote plasma 1060 can be used to etch polysilicon on wafer 1020 at high etch rates with high selectivity. In some embodiments, the showerhead 1054 can filter out ions of the activated species 1004.
在一些實施例中,晶圓支撐件1010可為用以支撐晶圓1020的基座,可主動地使該基座冷卻或主動地使其加熱以控制晶圓1020的溫度。例如,可使晶圓1020的溫度維持在某一溫度範圍,像是小於約120℃、小於約60℃、或介於約20℃與約50℃之間。此可在晶圓1020暴露至遠端電漿1060期間限制固體副產物的形成。In some embodiments, wafer support 1010 can be a susceptor to support wafer 1020, which can be actively cooled or actively heated to control the temperature of wafer 1020. For example, the temperature of wafer 1020 can be maintained at a temperature range, such as less than about 120 ° C, less than about 60 ° C, or between about 20 ° C and about 50 ° C. This may limit the formation of solid byproducts during exposure of wafer 1020 to remote plasma 1060.
在一些實施例中,晶圓支撐件1010可包括靜電卡盤,其中靜電卡盤可包括用以在蝕刻製程期間施加偏壓至晶圓1020的偏壓電極。當施加偏壓至晶圓1020時,原位的電漿1030可在噴淋頭1054與晶圓1020之間產生,其中原位的電漿1030可為電容耦合電漿。可將氣體或氣體混合物1006導入至遠端電漿源1050外部的處理腔室1025中。氣體或氣體混合物1006可從噴淋頭1054或從耦合至處理腔室1025之一或更多氣體入口(未顯示)導入。在一些實施例中,氣體或氣體混合物1006可包括至少一氟基蝕刻劑(如CF4 )。所施加的偏壓可對噴淋頭1054與晶圓1020之間的氣體或氣體混合物1006產生RF場。噴淋頭1054可電性接地並可與晶圓支撐件1010耦合以點燃原位電漿。在一些實施例中,可陽極處理噴淋頭1054。氣體或氣體混合物1006之離子化可點燃原位電漿1030以形成氣體或氣體混合物1006的活化物種。在一些實施例中,原位電漿1030的活化物種可用以蝕刻晶圓1020上的原生氧化物。In some embodiments, the wafer support 1010 can include an electrostatic chuck, wherein the electrostatic chuck can include a bias electrode to apply a bias to the wafer 1020 during the etching process. When a bias is applied to the wafer 1020, the in-situ plasma 1030 can be created between the showerhead 1054 and the wafer 1020, wherein the in-situ plasma 1030 can be a capacitively coupled plasma. The gas or gas mixture 1006 can be introduced into the processing chamber 1025 external to the remote plasma source 1050. The gas or gas mixture 1006 can be introduced from the shower head 1054 or from one or more gas inlets (not shown) coupled to the processing chamber 1025. In some embodiments, the gas or gas mixture 1006 can include at least one fluorine-based etchant (such as CF 4 ). The applied bias voltage can create an RF field for the gas or gas mixture 1006 between the showerhead 1054 and the wafer 1020. The showerhead 1054 can be electrically grounded and can be coupled to the wafer support 1010 to ignite the in-situ plasma. In some embodiments, the showerhead 1054 can be anodized. Ionization of the gas or gas mixture 1006 can ignite the in situ plasma 1030 to form an activated species of gas or gas mixture 1006. In some embodiments, the activated species of in-situ plasma 1030 can be used to etch native oxide on wafer 1020.
在一些實施例中,晶圓支撐件1010可包括配置以在每一區中提供可獨立控制溫度的複數熱區。複數熱區可在自中心到邊緣之徑向構造中定義。熱區可為圓形或環形的。可獨立地控制熱區,使得可施加晶圓1020上的徑向溫度分佈。晶圓支撐件1010中的熱區可改善晶圓1020上之蝕刻均勻性。In some embodiments, wafer support 1010 can include a plurality of thermal zones configured to provide independently controllable temperatures in each zone. The complex hot zone can be defined in a radial configuration from center to edge. The hot zone can be circular or toroidal. The hot zone can be independently controlled such that a radial temperature distribution across the wafer 1020 can be applied. The hot zone in the wafer support 1010 can improve the etch uniformity on the wafer 1020.
範例性電漿處理設備之細節描述於2015年4月1日提出申請並題為「METHOD FOR ACHIEVING ULTRA-HIGH SELECTIVITY WHILE EETCHING SILICON NITRIDE」之美國專利申請案第14/676,710號,其整體及所有目的以參考文獻合併於此。</ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; This is incorporated herein by reference.
電漿處理設備1000可包括控制器1040。控制器1040可為系統的一部分,該系統可為電漿處理設備1000的一部分。這樣的系統可包含半導體處理設備,該半導體處理設備包括一或更多處理工具、一或更多腔室、一或更多處理平台、及/或特定處理元件(晶圓支撐件、氣流系統等)。這些系統可與用以在晶圓1020的處理之前、期間、與之後控制其操作的電子件整合。電子件可稱為「控制器」,其可以控制一或更多系統之不同元件或次零件。取決於處理要求及/或系統類型,可程式化控制器1040以控制任何本文所揭製程,包括處理氣體的輸送、溫度設定(如加熱及/或冷卻)、壓力設定、真空設定、功率設定、RF產生器設定、RF匹配電路設定、頻率設定、流速設定、流體輸送設定、位置與操作設定、進出工具與其他連接至或與特定系統接口之傳送工具及/或負載鎖的晶圓傳送。The plasma processing apparatus 1000 can include a controller 1040. Controller 1040 can be part of a system that can be part of plasma processing apparatus 1000. Such a system can include a semiconductor processing apparatus including one or more processing tools, one or more chambers, one or more processing platforms, and/or specific processing components (wafer supports, airflow systems, etc.) ). These systems can be integrated with electronics that are used to control their operation before, during, and after processing of wafer 1020. Electronic components may be referred to as "controllers" that can control different components or sub-parts of one or more systems. Depending on the processing requirements and/or system type, the controller 1040 can be programmed to control any of the processes disclosed herein, including delivery of process gases, temperature settings (eg, heating and/or cooling), pressure settings, vacuum settings, power settings, RF generator settings, RF matching circuit settings, frequency settings, flow rate settings, fluid delivery settings, position and operational settings, in and out tools, and other wafer transfers to and from transfer tools and/or load locks that interface with a particular system.
取決於處理條件及/或系統類型,可程式化控制器1040以控制任何本文所揭製程,包括氣體輸送、溫度設定(如加熱及/或冷卻)、壓力設定、真空設定、功率設定、RF產生器設定、RF匹配電路設定、頻率設定、流量設定、流體輸送設定、位置與操作設定,進出工具及/或連接至或與特定系統接口之負載鎖的晶圓傳送。控制器1040可提供用以執行上述蝕刻製程的程式指令。程式指令可控制各種製程參數,像是RF偏壓功率位準、RF電源功率位準、多區線圈之區域中的電流、多區靜電卡盤之熱區中的溫度、腔室壓力、氣體流速、氣體組成等。例如,控制器1040可提供用以將晶圓維持在低於約60℃之溫度範圍內的指令。控制器1040可提供用以在電漿處理設備1000中建立小於約5Torr、或在約0.1Torr與5Torr之間、或小於約1Torr之壓力的指令。Depending on the processing conditions and/or system type, controller 1040 can be programmed to control any of the processes disclosed herein, including gas delivery, temperature setting (eg, heating and/or cooling), pressure setting, vacuum setting, power setting, RF generation. Device settings, RF matching circuit settings, frequency settings, flow settings, fluid delivery settings, position and operational settings, access to the tool and/or wafer transfer to load locks that are interfaced with or interfaced to a particular system. Controller 1040 can provide program instructions to perform the etching process described above. Program instructions control various process parameters such as RF bias power level, RF power level, current in the region of the multi-zone coil, temperature in the hot zone of the multi-zone electrostatic chuck, chamber pressure, gas flow rate , gas composition, etc. For example, controller 1040 can provide instructions to maintain the wafer within a temperature range of less than about 60 °C. Controller 1040 can provide instructions to establish a pressure in plasma processing apparatus 1000 that is less than about 5 Torr, or between about 0.1 Torr and 5 Torr, or less than about 1 Torr.
概括地說,控制器可定義為具有接收指令、發出指令、控制操作、使清潔操作得以進行、使端點測量得以進行、及相似操作之各種積體電路、邏輯、記憶體、及/或軟體的電子件。積體電路可包括儲存程式指令之韌體形式的晶片、數位訊號處理器(DSP)、定義成特殊應用積體電路(ASIC)的晶片、及/或執行程式指令(例如,軟體)之一或更多微處理器或微控制器。程式指令可為以各種獨立設定(或程式檔案)之形式傳送至控制器的指令,並定義用以在或對半導體晶圓或系統執行特定製程的操作參數。在一些實施例中,操作參數可為藉由製程工程師定義之配方的一部分,以在一或更多疊層、材料、金屬、表面、電路、及/或晶圓之晶粒的生產期間完成一或更多處理步驟。In general terms, a controller can be defined as a variety of integrated circuits, logic, memory, and/or software having a receive command, an issue command, a control operation, a cleaning operation, an endpoint measurement, and the like. Electronic parts. The integrated circuit may include a die in the form of firmware for storing program instructions, a digital signal processor (DSP), a chip defined as an application specific integrated circuit (ASIC), and/or one of executable program instructions (eg, software) or More microprocessors or microcontrollers. Program instructions may be instructions that are transmitted to the controller in various independent settings (or program files) and define operational parameters for performing a particular process on or in a semiconductor wafer or system. In some embodiments, the operational parameters may be part of a formulation defined by a process engineer, completed during production of one or more of the stack, material, metal, surface, circuit, and/or wafer die. Or more processing steps.
在一些實施例中,控制器1040可為電腦的一部分或與其耦合,該電腦與系統整合、耦合至系統、以其他方式網路連結至系統、或其組合。例如,控制器1040可在「雲端」、或整個或晶圓廠主機系統的一部分中,其可容許晶圓處理之遠端存取。電腦可使對系統之遠端存取得以進行,以監控目前生產操作的進度、檢查過去生產操作的歷史、檢查來自複數生產操作的趨勢或性能指標、以改變目前處理的參數、設定處理步驟以接續目前處理、或開啟新製程。在一些範例中,遠端電腦(例如,伺服器)可透過網路提供製程配方至系統,該網路包括區域網路或網際網路。遠端電腦可包括使參數及/或設定之進入或程式化得以進行之人機介面,該參數及/或設定隨後自遠端電腦傳送至系統。在一些範例中,控制器接收資料形式的指令,該資料在一或更多操作期間指定待執行處理步驟之每一者的參數。應理解參數可特定於待執行製程的類型、與控制器用以與其接口或控制之工具的類型。因此如上所述,控制器可呈分佈狀,像是藉由包含以網路相連並朝共同目的(如本文所述的製程與控制)運作之一或更多離散式控制器。這樣目的之分佈狀控制器的範例可為與遠端定位 (如在平台水平上或遠端電腦的一部分)之一或更多積體電路連通之在腔室之一或更多積體電路,其合併以控制腔室上的製程。In some embodiments, controller 1040 can be part of or coupled to a computer that is integrated with the system, coupled to the system, otherwise networked to the system, or a combination thereof. For example, controller 1040 can be in the "cloud", or part of an entire or fab host system, which can accommodate remote access to wafer processing. The computer allows remote access to the system to monitor the progress of current production operations, check the history of past production operations, check trends or performance metrics from multiple production operations, change current processing parameters, and set processing steps to Continue to process or open a new process. In some examples, a remote computer (eg, a server) can provide a process recipe to the system over a network, including a local area network or the Internet. The remote computer may include a human interface that enables entry or programmatic execution of parameters and/or settings, which are then transmitted from the remote computer to the system. In some examples, the controller receives instructions in the form of data that specify parameters of each of the processing steps to be performed during one or more operations. It should be understood that the parameters may be specific to the type of process to be performed, to the type of tool with which the controller is to interface or control. Thus, as noted above, the controller can be distributed, such as by including one or more discrete controllers that are networked and operate toward a common purpose (such as the process and control described herein). An example of a distribution controller of such a purpose may be one or more integrated circuits in the chamber that are in communication with one or more integrated circuits located at a remote location (eg, at a platform level or a portion of a remote computer). They are combined to control the process on the chamber.
在沒有限制的情形下,範例性系統可包括電漿蝕刻腔室或模組、沉積腔室或模組、旋轉洗淨腔室或模組、金屬電鍍腔室或模組、清洗腔室或模組、斜邊蝕刻腔室或模組、物理氣相沉積(PVD)腔室或模組、化學氣相沉積(CVD)腔室或模組、原子層沉積(ALD)腔室或模組、原子層蝕刻(ALD)腔室或模組、離子植入腔室或模組、徑跡腔室或模組、與任何其他有關或用於半導體晶圓之生產及/或製造的半導體製程系統。Without limitation, the exemplary system may include a plasma etch chamber or module, a deposition chamber or module, a rotary cleaning chamber or module, a metal plating chamber or module, a cleaning chamber, or a mold. Group, bevel etch chamber or module, physical vapor deposition (PVD) chamber or module, chemical vapor deposition (CVD) chamber or module, atomic layer deposition (ALD) chamber or module, atom Layer etching (ALD) chambers or modules, ion implantation chambers or modules, track chambers or modules, semiconductor processing systems associated with or for the production and/or manufacture of semiconductor wafers.
如上所提,取決於待以工具執行之一或更多製程步驟,控制器1040可與以下連通:一或更多其他工具電路與模組、其他工具元件、叢集工具、其他工具介面、相鄰的工具、鄰近的工具、定位於整個工廠的工具、主電腦、另一控制器、或用於在半導體製造工廠內攜帶晶圓容器往來工具位置及/或裝載埠之材料輸送的工具。As mentioned above, depending on one or more process steps to be performed by the tool, the controller 1040 can be in communication with one or more other tool circuits and modules, other tool components, cluster tools, other tool interfaces, adjacent Tools, adjacent tools, tools located throughout the plant, host computer, another controller, or tools for carrying wafer containers to and from the tool location and/or loading material in a semiconductor manufacturing facility.
電漿處理設備1000可配置成自晶圓1020移除多晶矽層。晶圓1020包括多晶矽層及氧化物層與氮化物層之至少一者。在一些實施例中,晶圓1020更包括在多晶矽層上之原生氧化物層。電漿處理設備1000可包括遠端電漿源1050及用以支撐晶圓1020且在遠端電漿源1050之外的晶圓支撐件1010。電漿處理設備1000更包括配置以提供用以執行以下操作之指令的控制器1040:(a)使包括氫基物種與氟基物種的處理氣體1002(如蝕刻劑)流至遠端電漿源1050中,其中氫基物種的濃度大於氟基物種的濃度;(b)在遠端電漿源1050中產生遠端電漿1060,其中遠端電漿1060包括氫基物種與氟基物種的活化物種1004(如自由基);與(c)使晶圓暴露1020至遠端電漿1060以移除多晶矽層,其中將晶圓1020維持在一定溫度範圍內,使得晶圓1020在暴露至遠端電漿1060期間實質上沒有固體副產物的殘留物。在一些實施例中,氮化物層包括矽氮化物層與鈦氮化物層之至少一者,而氧化物層包括至少熱矽氧化物層。在一些實施例中,電漿處理設備1000更包括在晶圓支撐件1010與遠端電漿源1050之間的噴淋頭1054,其中配置電漿處理設備1000以在遠端電漿源1050中產生感應耦合電漿1060,且其中配置電漿處理設備1000以在晶圓支撐件1010與噴淋頭1054之間產生電容耦合電漿1030。在一些實施例中,更可以具有用以執行以下操作之指令配置控制器1040:施加偏壓至晶圓支撐件1010,以在遠端電漿源1050與晶圓支撐件1010之間產生至少一氟基蝕刻劑之電容耦合電漿1030;及使晶圓暴露1020至電容耦合電漿1030以移除原生氧化物層,其中原位執行原生氧化物層之移除與多晶矽層之移除。 [微影圖案化]The plasma processing apparatus 1000 can be configured to remove the polysilicon layer from the wafer 1020. The wafer 1020 includes a polysilicon layer and at least one of an oxide layer and a nitride layer. In some embodiments, wafer 1020 further includes a native oxide layer on the polysilicon layer. The plasma processing apparatus 1000 can include a remote plasma source 1050 and a wafer support 1010 for supporting the wafer 1020 and outside of the remote plasma source 1050. The plasma processing apparatus 1000 further includes a controller 1040 configured to provide instructions to: (a) flow a process gas 1002 (eg, an etchant) comprising a hydrogen-based species to a fluorine-based species to a remote plasma source In 1050, wherein the concentration of the hydrogen-based species is greater than the concentration of the fluorine-based species; (b) generating the distal plasma 1060 in the distal plasma source 1050, wherein the distal plasma 1060 includes activation of the hydrogen-based species and the fluorine-based species Species 1004 (eg, free radicals); and (c) exposing the wafer 1020 to the remote plasma 1060 to remove the polysilicon layer, wherein the wafer 1020 is maintained within a temperature range such that the wafer 1020 is exposed to the distal end There is substantially no residue of solid by-products during the plasma 1060. In some embodiments, the nitride layer comprises at least one of a tantalum nitride layer and a titanium nitride layer, and the oxide layer comprises at least a thermal tantalum oxide layer. In some embodiments, the plasma processing apparatus 1000 further includes a showerhead 1054 between the wafer support 1010 and the remote plasma source 1050, wherein the plasma processing apparatus 1000 is configured to be in the remote plasma source 1050. An inductively coupled plasma 1060 is produced, and wherein the plasma processing apparatus 1000 is configured to create a capacitively coupled plasma 1030 between the wafer support 1010 and the showerhead 1054. In some embodiments, there may be more instructions to configure the controller 1040 to apply a bias to the wafer support 1010 to create at least one between the remote plasma source 1050 and the wafer support 1010. A capacitive coupling of the fluorine-based etchant 1030; and exposing the wafer 1020 to the capacitively coupled plasma 1030 to remove the native oxide layer, wherein the removal of the native oxide layer and the removal of the polysilicon layer are performed in situ. [lithographic patterning]
上文所述設備/製程可用以與例如半導體元件、顯示器、發光二極體、太陽光電板、與相似者的生產或製造用的微影圖案化工具或製程結合。儘管非必要,但通常此工具/製程在一般的生產設備中將一起使用或進行。膜層的微影圖案化通常包括一些或所有下列操作,每一操作以許多可能的工具使之得以進行:(1)工作件上光阻的應用,亦即使用旋塗式或噴塗式工具的基板;(2)利用熱板或爐、或UV固化工具使光阻固化;(3)以如晶圓步進機的工具使光阻暴露至可見光、或紫外光、或X-射線光;(4)使光阻顯影以選擇性地移除光阻,並藉此使用如濕式槽的工具使其圖案化;(5)藉由使用乾式或電漿輔助蝕刻工具使光阻圖案轉移至底層膜或工作件中;及(6)利用如RF或微波電漿光阻剝離劑的工具移除光阻。 [其他實施例]The apparatus/process described above can be used in conjunction with, for example, semiconductor components, displays, light emitting diodes, solar photovoltaic panels, lithographic patterning tools or processes for the production or manufacture of similar ones. Although not necessary, usually this tool/process will be used or performed together in a typical production facility. The lithographic patterning of the film layer typically involves some or all of the following operations, each of which can be performed with a number of possible tools: (1) the application of photoresist on the workpiece, ie using a spin-on or spray tool. a substrate; (2) curing the photoresist using a hot plate or furnace, or a UV curing tool; (3) exposing the photoresist to visible light, or ultraviolet light, or X-ray light using a tool such as a wafer stepper; 4) developing the photoresist to selectively remove the photoresist and thereby patterning it using a tool such as a wet trench; (5) transferring the photoresist pattern to the underlying layer by using a dry or plasma-assisted etching tool In the film or workpiece; and (6) the photoresist is removed using a tool such as an RF or microwave plasma photoresist stripper. [Other Embodiments]
雖本文顯示並描述本發明之說明性實施例與應用,然仍在本發明之概念、範疇、與精神內的許多變化與變更係可能的,且這些變化在閱讀本申請案之後對於該領域之通常知識者將變為清楚。因此,本實施例應視為說明性而非限制性的,且本發明不受限於本文所給細節,而可在所附申請專利範圍之範疇與均等物內變更。While the illustrative embodiments and applications of the present invention have been shown and described herein, many variations and modifications are possible in the concept, scope, and spirit of the present invention, and these changes are in the field after reading this application. Usually the knowledge will become clear. Therefore, the present embodiments are to be considered as illustrative and not restrictive, and the scope of the invention
100‧‧‧元件結構
110‧‧‧多晶矽層
120‧‧‧下方層
130‧‧‧垂直結構
200‧‧‧元件結構
210‧‧‧多晶矽層
220‧‧‧下方層
230‧‧‧垂直結構
240‧‧‧原生矽氧化物層
300‧‧‧finFET結構
305‧‧‧半導體晶圓
305a‧‧‧鰭片
310‧‧‧多晶矽層
320‧‧‧介電材料
330‧‧‧矽氮化物襯墊
340‧‧‧遮罩
400a‧‧‧元件結構
400b‧‧‧元件結構
420‧‧‧下方層
430‧‧‧垂直結構
440‧‧‧凹處
450‧‧‧鹽殘留物
600‧‧‧製程
605‧‧‧方塊
610‧‧‧方塊
615‧‧‧方塊
620‧‧‧方塊
900‧‧‧製程
905‧‧‧方塊
910‧‧‧方塊
915‧‧‧方塊
920‧‧‧方塊
925‧‧‧方塊
930‧‧‧方塊
935‧‧‧方塊
1000‧‧‧設備
1002‧‧‧處理氣體
1004‧‧‧活化物種
1006‧‧‧氣體或氣體混合物
1010‧‧‧晶圓支撐件
1020‧‧‧晶圓
1025‧‧‧處理腔室
1030‧‧‧電漿
1040‧‧‧控制器
1050‧‧‧遠端電漿源
1052‧‧‧氣體入口
1054‧‧‧噴淋頭
1056‧‧‧線圈
1056a‧‧‧頂部線圈
1056b‧‧‧底部線圈
1060‧‧‧電漿100‧‧‧Component structure
110‧‧‧Polysilicon layer
120‧‧‧Under layer
130‧‧‧Vertical structure
200‧‧‧Component structure
210‧‧‧Polysilicon layer
220‧‧‧Under layer
230‧‧‧Vertical structure
240‧‧‧Primary yttrium oxide layer
300‧‧‧finFET structure
305‧‧‧Semiconductor wafer
305a‧‧‧Fins
310‧‧‧Polysilicon layer
320‧‧‧Dielectric materials
330‧‧‧矽Nitride liner
340‧‧‧ mask
400a‧‧‧Component structure
400b‧‧‧Component structure
420‧‧‧Under layer
430‧‧‧Vertical structure
440‧‧‧ recess
450‧‧‧Salt residue
600‧‧‧Process
605‧‧‧ square
610‧‧‧ square
615‧‧‧ square
620‧‧‧ square
900‧‧‧Process
905‧‧‧ square
910‧‧‧ square
915‧‧‧ square
920‧‧‧ squares
925‧‧‧ square
930‧‧‧ square
935‧‧‧ square
1000‧‧‧ equipment
1002‧‧‧Processing gas
1004‧‧‧Activated species
1006‧‧‧ gas or gas mixture
1010‧‧‧ Wafer Supports
1020‧‧‧ wafer
1025‧‧‧Processing chamber
1030‧‧‧ Plasma
1040‧‧‧ Controller
1050‧‧‧Remote plasma source
1052‧‧‧ gas inlet
1054‧‧‧Sprinkler
1056‧‧‧ coil
1056a‧‧‧Top coil
1056b‧‧‧ bottom coil
1060‧‧‧ Plasma
圖1說明具有在下方層上且具有多重垂直結構之多晶矽層的範例結構的橫剖面。1 illustrates a cross-section of an exemplary structure having a polysilicon layer on a lower layer and having multiple vertical structures.
圖2說明具有多晶矽層與多晶矽層上之原生矽氧化物層的結構範例的橫剖面。Figure 2 illustrates a cross section of an example of the structure of a native tantalum oxide layer on a polycrystalline germanium layer and a polycrystalline germanium layer.
圖3A說明範例性鰭式場效電晶體(FinFET)結構之一部分的三維示意圖。3A illustrates a three-dimensional schematic of a portion of an exemplary fin field effect transistor (FinFET) structure.
圖3B說明在蝕刻多晶矽之後的圖3A範例性FinFET結構的放大圖。FIG. 3B illustrates an enlarged view of the exemplary FinFET structure of FIG. 3A after etching the polysilicon.
圖3C說明在蝕刻多晶矽之後的圖3A之範例性FinFET結構的另一放大圖。FIG. 3C illustrates another enlarged view of the exemplary FinFET structure of FIG. 3A after etching the polysilicon.
圖4A顯示在蝕刻多晶矽之後具有鹽殘留物之元件結構的橫剖面示意圖。4A is a schematic cross-sectional view showing the structure of an element having a salt residue after etching a polysilicon.
圖4B顯示在蝕刻多晶矽之後沒有鹽殘留物之元件結構的橫剖面示意圖。4B is a schematic cross-sectional view showing the structure of an element having no salt residue after etching polycrystalline germanium.
圖5A至5C顯示具有用以在各種溫度狀態中偵測六氟矽酸銨((NH4 )2 SiF6 )之振動峰的傅立葉轉換紅外線光譜(FTIR)圖。5A to 5C show Fourier transform infrared spectroscopy (FTIR) patterns having vibration peaks for detecting ammonium hexafluoroantimonate ((NH 4 ) 2 SiF 6 ) in various temperature states.
圖6顯示用以自晶圓移除多晶矽的範例性製程的流程圖。Figure 6 shows a flow diagram of an exemplary process for removing polysilicon from a wafer.
圖7說明顯示作為溫度函數之多晶矽蝕刻速率的圖。Figure 7 illustrates a graph showing the polysilicon etch rate as a function of temperature.
圖8A顯示範例性單區靜電卡盤之晶圓上的多晶矽蝕刻均勻性。Figure 8A shows polysilicon etch uniformity on a wafer of an exemplary single zone electrostatic chuck.
圖8B顯示範例性多區靜電卡盤之晶圓上的多晶矽蝕刻均勻性。Figure 8B shows polysilicon etch uniformity on a wafer of an exemplary multi-zone electrostatic chuck.
圖9顯示用以自晶圓移除原生氧化物與多晶矽之範例性製程的流程圖。Figure 9 shows a flow diagram of an exemplary process for removing native oxide and polysilicon from a wafer.
圖10顯示用以執行自晶圓移除多晶矽之製程的電漿處理設備的示意圖。Figure 10 shows a schematic diagram of a plasma processing apparatus for performing a process for removing polysilicon from a wafer.
1000‧‧‧設備 1000‧‧‧ equipment
1002‧‧‧處理氣體 1002‧‧‧Processing gas
1004‧‧‧活化物種 1004‧‧‧Activated species
1006‧‧‧氣體或氣體混合物 1006‧‧‧ gas or gas mixture
1010‧‧‧晶圓支撐件 1010‧‧‧ Wafer Supports
1020‧‧‧晶圓 1020‧‧‧ wafer
1025‧‧‧處理腔室 1025‧‧‧Processing chamber
1030‧‧‧電漿 1030‧‧‧ Plasma
1040‧‧‧控制器 1040‧‧‧ Controller
1050‧‧‧遠端電漿源 1050‧‧‧Remote plasma source
1052‧‧‧氣體入口 1052‧‧‧ gas inlet
1054‧‧‧噴淋頭 1054‧‧‧Sprinkler
1056‧‧‧線圈 1056‧‧‧ coil
1056a‧‧‧頂部線圈 1056a‧‧‧Top coil
1056b‧‧‧底部線圈 1056b‧‧‧ bottom coil
1060‧‧‧電漿 1060‧‧‧ Plasma
Claims (25)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/938,635 | 2015-11-11 | ||
US14/938,635 US10283615B2 (en) | 2012-07-02 | 2015-11-11 | Ultrahigh selective polysilicon etch with high throughput |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201730966A true TW201730966A (en) | 2017-09-01 |
TWI727992B TWI727992B (en) | 2021-05-21 |
Family
ID=59052040
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW105136072A TWI727992B (en) | 2015-11-11 | 2016-11-07 | Ultrahigh selective polysilicon etch with high throughput |
Country Status (3)
Country | Link |
---|---|
KR (1) | KR20170058282A (en) |
CN (1) | CN107017162B (en) |
TW (1) | TWI727992B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI720568B (en) * | 2018-07-31 | 2021-03-01 | 台灣積體電路製造股份有限公司 | Die vessel workstation, and processing system and method of die vessel |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101981738B1 (en) * | 2017-09-19 | 2019-05-27 | 무진전자 주식회사 | Substrate processing method and apparatus |
KR102003362B1 (en) * | 2017-11-30 | 2019-10-17 | 무진전자 주식회사 | Dry clean apparatus and method for removing silicon oxide with high seletivity |
KR102018075B1 (en) * | 2017-11-30 | 2019-09-04 | 무진전자 주식회사 | Dry clean apparatus and method for removing polysilicon seletively |
KR20190097560A (en) | 2018-02-12 | 2019-08-21 | 한국기계연구원 | Atomic layer etching method for Si |
US10770305B2 (en) * | 2018-05-11 | 2020-09-08 | Tokyo Electron Limited | Method of atomic layer etching of oxide |
US11417534B2 (en) * | 2018-09-21 | 2022-08-16 | Applied Materials, Inc. | Selective material removal |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040018741A1 (en) * | 2002-07-26 | 2004-01-29 | Applied Materials, Inc. | Method For Enhancing Critical Dimension Uniformity After Etch |
US9324576B2 (en) * | 2010-05-27 | 2016-04-26 | Applied Materials, Inc. | Selective etch for silicon films |
US8808563B2 (en) * | 2011-10-07 | 2014-08-19 | Applied Materials, Inc. | Selective etch of silicon by way of metastable hydrogen termination |
US9435692B2 (en) * | 2014-02-05 | 2016-09-06 | Lam Research Corporation | Calculating power input to an array of thermal control elements to achieve a two-dimensional temperature output |
-
2016
- 2016-11-07 TW TW105136072A patent/TWI727992B/en active
- 2016-11-08 KR KR1020160148249A patent/KR20170058282A/en unknown
- 2016-11-11 CN CN201610996940.XA patent/CN107017162B/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI720568B (en) * | 2018-07-31 | 2021-03-01 | 台灣積體電路製造股份有限公司 | Die vessel workstation, and processing system and method of die vessel |
Also Published As
Publication number | Publication date |
---|---|
KR20170058282A (en) | 2017-05-26 |
CN107017162A (en) | 2017-08-04 |
CN107017162B (en) | 2020-11-10 |
TWI727992B (en) | 2021-05-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20190221654A1 (en) | Ultrahigh selective polysilicon etch with high throughput | |
KR102604345B1 (en) | Tin oxide mandrels in patterning | |
KR102580008B1 (en) | Tin oxide films in semiconductor device fabrication | |
KR102627546B1 (en) | Method and apparatus for anisotropic tungsten etching | |
TWI727992B (en) | Ultrahigh selective polysilicon etch with high throughput | |
KR102708853B1 (en) | Method for achieving ultra-high selectivity while etching silicon nitride | |
KR102402866B1 (en) | Contact clean in high-aspect ratio structures | |
KR102148035B1 (en) | Removal of polysilicon and native oxide with high selectivity | |
EP3038142A1 (en) | Selective nitride etch | |
KR20180005265A (en) | Apparatus and methods for spacer deposition and selective removal in an advanced patterning process | |
TW201936965A (en) | Atomic layer deposition and etch in a single plasma chamber for critical dimension control | |
KR20140016903A (en) | Remotely-excited fluorine and water vapor etch | |
CN112335016A (en) | Efficient cleaning and etching of high aspect ratio structures | |
KR20220022458A (en) | Methods for etching structures with oxygen pulsing | |
WO2020028119A1 (en) | Non-selective and selective etching through alternating layers of materials | |
WO2022132413A1 (en) | Tin oxide and tin carbide materials for semiconductor patterning applications |