TW201730582A - Weather phenomenon occurrence possibility determination system and method - Google Patents

Weather phenomenon occurrence possibility determination system and method Download PDF

Info

Publication number
TW201730582A
TW201730582A TW105134830A TW105134830A TW201730582A TW 201730582 A TW201730582 A TW 201730582A TW 105134830 A TW105134830 A TW 105134830A TW 105134830 A TW105134830 A TW 105134830A TW 201730582 A TW201730582 A TW 201730582A
Authority
TW
Taiwan
Prior art keywords
mode
occurrence
radar
tornado
dimensional data
Prior art date
Application number
TW105134830A
Other languages
Chinese (zh)
Other versions
TWI625537B (en
Inventor
Tetsuya Kobayashi
Original Assignee
Toshiba Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Kk filed Critical Toshiba Kk
Publication of TW201730582A publication Critical patent/TW201730582A/en
Application granted granted Critical
Publication of TWI625537B publication Critical patent/TWI625537B/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/95Radar or analogous systems specially adapted for specific applications for meteorological use
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01WMETEOROLOGY
    • G01W1/00Meteorology
    • G01W1/10Devices for predicting weather conditions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Atmospheric Sciences (AREA)
  • Environmental Sciences (AREA)
  • Ecology (AREA)
  • Electromagnetism (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

In an embodiment, this system is characterized by being provided with: an acquisition means for using a radar to irradiate radar waves into the sky, receive reflected or scattered waves resulting from the reflection or scattering of the radar waves by particles composing a cloud, and repeatedly acquire a series of three-dimensional data necessary to predict a weather phenomenon from the reflected or scattered waves within a period of time shorter than the time necessary for the weather phenomenon to occur; an analysis means for carrying out analysis for detecting a particular temporal variation in a parameter relating to the weather phenomenon from the three-dimensional data that is repeatedly acquired; and a determination means for, on the basis of the analysis result, determining the possibility of the occurrence of the weather phenomenon if the particular temporal variation has been detected.

Description

氣象現象發生可能性判定系統及方法 Meteorological phenomenon occurrence possibility determination system and method

本發明之實施形態,係有關於用以判定氣象現象之發生可能性的系統及方法。 Embodiments of the present invention relate to systems and methods for determining the likelihood of occurrence of a meteorological phenomenon.

從先前起,便使用藉由拋物面型之氣象雷達所取得的資料,來預測氣象現象。例如,若藉由此種拋物面型之氣象雷達,則係取得展現有降水雲之2維性之特徵的資料。之後,基於此所取得的資料,係進行有像是對於降水雲等之氣象現象的發生可能性進行評價等之氣象現象的預測。 From the past, the data obtained by parabolic meteorological radars were used to predict meteorological phenomena. For example, if such a parabolic meteorological radar is used, data showing the characteristics of the two-dimensional nature of the precipitation cloud is obtained. Then, based on the data obtained, the weather phenomenon such as the evaluation of the possibility of occurrence of meteorological phenomena such as precipitation clouds is predicted.

[先前技術文獻] [Previous Technical Literature] [專利文獻] [Patent Literature]

[專利文獻1]日本特開2011-520127號公報 [Patent Document 1] Japanese Patent Laid-Open Publication No. 2011-520127

[專利文獻2]WO2015/005020號公報 [Patent Document 2] WO2015/005020

[專利文獻3]日本特開2010-249550號公報 [Patent Document 3] Japanese Patent Laid-Open Publication No. 2010-249550

然而,像是降水雲一般之氣象現象的態樣,係具備有3維性之特徵。 However, the appearance of meteorological phenomena like precipitation clouds is characterized by three-dimensionality.

因此,係有著難以基於2維性之特徵來以高準確度預測各種的氣象現象之問題。 Therefore, there is a problem that it is difficult to predict various weather phenomena with high accuracy based on the characteristics of two-dimensionality.

又,為了得到對於使用拋物面型之氣象雷達來對於降水雲等之態樣進行3維性之解析一事而言所需要的雷達資料,例如係需要5~10分鐘程度的時間。 In addition, in order to obtain radar data required for the analysis of the three-dimensional nature of the precipitation cloud or the like using a parabolic meteorological radar, for example, it takes about 5 to 10 minutes.

因此,係亦有著難以基於使用拋物面型之氣象雷達所取得的降水雲等之3維性之態樣來對於像是龍捲風之類的以1分鐘程度之極短時間而發生的顯著氣象現象之發生可能性進行預測的問題。 Therefore, it is also difficult to generate a significant meteorological phenomenon that occurs in a very short time of 1 minute, such as a tornado, based on the three-dimensional nature of the precipitation cloud obtained by using a parabolic meteorological radar. The possibility of making predictions.

又,就算是在使用拋物面型之氣象雷達以外的雷達來取得3維資料的情況時,亦同樣的,係有著在對於氣象現象之解析而言為必要的一組之3維資料的取得中所需要之時間(亦即是時間解析度)並非為能夠達到可對於像是龍捲風之類的以1分鐘程度之極短時間而發生的顯著氣象現象之發生可能性進行預測之高解析度的問題。 In addition, even when a three-dimensional data is acquired by using a radar other than a parabolic meteorological radar, the same is true for the acquisition of a set of three-dimensional data necessary for the analysis of meteorological phenomena. The time required (that is, the time resolution) is not a high-resolution problem that can be predicted for the occurrence of significant weather phenomena occurring in a very short time of 1 minute such as a tornado.

因此,在使用此種先前之技術的情況時,係會有導致對於像是龍捲風之類的以極短時間而發生之顯著氣象現象的發生可能性所進行之預測失準並造成發生之預測的錯誤之虞。 Therefore, in the case of using such prior art, there is a prediction misalignment that causes a possibility of occurrence of a significant meteorological phenomenon such as a tornado, which occurs in a very short time, and causes a prediction to occur. The fault is wrong.

本發明,係為注目於上述事態所進行者,其目的,係在於提供一種藉由以短時間來取得對於氣象現象之解析而言為必要的一組之3維資料而成為就算是對於像是龍捲風一般之以極短時間而發生的顯著氣象現象也能夠以高精確度來進行預測的系統以及方法。 The present invention has been made in view of the above-described circumstances, and an object thereof is to provide a set of three-dimensional data necessary for obtaining a weather phenomenon analysis in a short period of time, even if it is for an image. A system and method in which a tornado generally makes a significant meteorological phenomenon in a very short time and can be predicted with high accuracy.

實施形態之系統,係為使用雷達來判定氣象現象之發生的可能性之有無之氣象現象發生可能性判定系統,其特徵為,係具備有取得手段、和解析手段、以及判定手段。取得手段,係使用雷達,而朝向上空發射雷達波,並接收雷達波被構成雲之粒子所反射或散射所成的反射波或散射波,並且根據反射波或散射波,來在較氣象現象之發生所需要的時間而更短之時間內,反覆取得在氣象現象之預測中所需要的一連串之3維資料。解析手段,係根據反覆取得之各3維資料,而進行用以檢測出關連於氣象現象之參數的特異性之時間變化之解析。判定手段,係當基於解析之結果而檢測出了特異性之時間變化的情況時,判定氣象現象之發生的可能性之有無。 The system according to the embodiment is a meteorological phenomenon occurrence possibility determination system that uses a radar to determine the possibility of occurrence of a meteorological phenomenon, and is characterized in that the acquisition means, the analysis means, and the determination means are provided. The means of obtaining is to use a radar to transmit a radar wave toward the sky and receive a reflected wave or a scattered wave formed by the radar wave reflected or scattered by the particles constituting the cloud, and according to the reflected wave or the scattered wave, in a weather phenomenon In a shorter period of time, the series of 3D data required for the prediction of meteorological phenomena is obtained in a shorter period of time. The analysis means performs analysis for detecting the temporal change of the specificity of the parameter related to the meteorological phenomenon based on the three-dimensional data acquired repeatedly. The determination means determines whether or not there is a possibility of occurrence of a meteorological phenomenon when a temporal change in specificity is detected based on the result of the analysis.

1‧‧‧氣象現象發生可能性判定系統 1‧‧‧Weather occurrence probability determination system

8‧‧‧高速掃描氣象雷達 8‧‧‧High-speed scanning weather radar

8a‧‧‧拋物面天線 8a‧‧‧Parabolic antenna

9‧‧‧雷達訊號處理部 9‧‧‧Radar Signal Processing Department

9a‧‧‧取得部 9a‧‧‧Acquisition Department

10‧‧‧雷達解析部 10‧‧‧Radar Analysis Department

11‧‧‧通訊介面 11‧‧‧Communication interface

12‧‧‧RAW資料處理部 12‧‧‧RAW Data Processing Department

13‧‧‧RAW資料儲存部 13‧‧‧RAW Data Storage Department

14‧‧‧雷達資料解析演算部 14‧‧‧Radar Data Analysis and Calculation Department

15‧‧‧解析資料儲存部 15‧‧‧Analytical data storage department

20‧‧‧龍捲風預測部 20‧‧‧ Tornado Forecasting Department

21‧‧‧龍捲風發生可能性解析部 21‧‧‧ Tornado occurrence possibility analysis department

22‧‧‧解析資料儲存部 22‧‧‧Analytical data storage department

23‧‧‧顯示通知部 23‧‧‧Show notification department

30‧‧‧解析資料取得部 30‧‧‧Analysis of Data Acquisition Department

32‧‧‧參數解析部 32‧‧‧Parameter Analysis Department

34‧‧‧龍捲風徵兆偵測部 34‧‧‧ Tornado Sign Detection Department

40‧‧‧控制部 40‧‧‧Control Department

41‧‧‧偵測資訊取得部 41‧‧‧Detection Information Acquisition Department

42‧‧‧切換部 42‧‧‧Switching Department

44‧‧‧方位算出部 44‧‧‧Azimuth calculation department

46‧‧‧切換判定部 46‧‧‧Switching judgment department

48‧‧‧控制資訊產生部 48‧‧‧Control Information Generation Department

49‧‧‧切換資訊記憶部 49‧‧‧Switching information memory

50‧‧‧降水雲 50‧‧‧ precipitation cloud

50a‧‧‧降水雲 50a‧‧‧ precipitation cloud

50b‧‧‧降水雲 50b‧‧‧ precipitation cloud

50c‧‧‧降水雲 50c‧‧‧ precipitation cloud

50d‧‧‧降水雲 50d‧‧‧ precipitation cloud

50e‧‧‧降水雲 50e‧‧‧ precipitation cloud

50f‧‧‧降水雲 50f‧‧‧ precipitation cloud

50-1‧‧‧降水雲 50-1‧‧‧ precipitation cloud

50-2‧‧‧降水雲 50-2‧‧‧ precipitation cloud

51‧‧‧降水核心 51‧‧‧Precipitation core

51a‧‧‧降水核心 51a‧‧‧Precipitation core

51b‧‧‧降水核心 51b‧‧‧Precipitation core

51c‧‧‧降水核心 51c‧‧‧Precipitation core

51d‧‧‧降水核心 51d‧‧‧Precipitation core

51e‧‧‧降水核心 51e‧‧‧Precipitation core

51f‧‧‧降水核心 51f‧‧‧Precipitation core

52‧‧‧線 52‧‧‧ line

53‧‧‧線 53‧‧‧ line

60‧‧‧線 60‧‧‧ line

60a‧‧‧線 60a‧‧‧ line

60b‧‧‧線 60b‧‧‧ line

60c‧‧‧線 60c‧‧‧ line

60d‧‧‧線 60d‧‧‧ line

60e‧‧‧線 60e‧‧‧ line

70‧‧‧反曲點 70‧‧‧reflexion point

70a‧‧‧反曲點 70a‧‧‧reflexion point

70c‧‧‧反曲點 70c‧‧‧recurve

70d‧‧‧反曲點 70d‧‧‧recurve point

70e‧‧‧反曲點 70e‧‧‧reflexion point

90‧‧‧反曲點 90‧‧‧reflexion point

A‧‧‧龍捲風預測參數 A‧‧‧ tornado prediction parameters

B‧‧‧龍捲風預測參數 B‧‧‧ Tornado prediction parameters

C‧‧‧龍捲風預測參數 C‧‧‧ Tornado prediction parameters

C1‧‧‧觀測範圍 C1‧‧‧Scope of observation

C2‧‧‧觀測範圍 C2‧‧‧Scope of observation

D‧‧‧龍捲風預測參數 D‧‧‧ tornado prediction parameters

D1‧‧‧龍捲風預測參數 D1‧‧‧ tornado prediction parameters

D2‧‧‧龍捲風預測參數 D2‧‧‧ tornado prediction parameters

D3‧‧‧龍捲風預測參數 D3‧‧‧ Tornado prediction parameters

D4‧‧‧龍捲風預測參數 D4‧‧‧ tornado prediction parameters

D0-1‧‧‧偵測方位 D0-1‧‧‧Detecting position

D0-2‧‧‧偵測方位 D0-2‧‧‧Detecting position

E‧‧‧龍捲風預測參數 E‧‧‧ tornado prediction parameters

P02‧‧‧取得點 P02‧‧‧Get the point

P03‧‧‧取得點 P03‧‧‧Get the point

P04‧‧‧取得點 P04‧‧‧Get the point

P05‧‧‧取得點 P05‧‧‧Get the point

P11‧‧‧取得點 P11‧‧‧Get the point

P12‧‧‧取得點 P12‧‧‧Get the point

P-1‧‧‧取得點 P-1‧‧‧Get the point

P-2‧‧‧取得點 P-2‧‧‧Get the point

P-3‧‧‧取得點 P-3‧‧‧Get the point

P-4‧‧‧取得點 P-4‧‧‧Get the point

P-5‧‧‧取得點 P-5‧‧‧Get the point

P-6‧‧‧取得點 P-6‧‧‧Get the point

P-7‧‧‧取得點 P-7‧‧‧Get the point

Pa‧‧‧取得點 Pa‧‧‧Get the point

Pb‧‧‧取得點 Pb‧‧‧Get the point

Pc‧‧‧取得點 Pc‧‧‧Get the point

Pd‧‧‧取得點 Pd‧‧‧Get the point

Pe‧‧‧取得點 Pe‧‧‧Get the point

R‧‧‧半徑 R‧‧‧ Radius

T0‧‧‧時間點 T0‧‧‧ time

T01‧‧‧時間點 T01‧‧‧ time

T02‧‧‧時間點 T02‧‧‧ time

T03‧‧‧時間點 T03‧‧‧ time

T04‧‧‧時間點 T04‧‧‧ time

T05‧‧‧時間點 T05‧‧‧ time

T11‧‧‧時間點 T11‧‧‧ time

T12‧‧‧時間點 T12‧‧‧ time

T0a‧‧‧時間點 T0a‧‧‧ time

T0b‧‧‧時間點 T0b‧‧‧ time

T0c‧‧‧時間點 T0c‧‧‧ time

T0d‧‧‧時間點 T0d‧‧‧ time

T0e‧‧‧時間點 T0e‧‧‧ time

T1m‧‧‧時間點 T1m‧‧‧ time

T1n‧‧‧時間點 T1n‧‧‧ time

a0‧‧‧訊號處理結果 A0‧‧‧ signal processing results

b0‧‧‧訊號處理結果 B0‧‧‧ signal processing results

c0‧‧‧RAW資料 c0‧‧‧RAW data

d0‧‧‧雷達資料 D0‧‧‧ radar data

e0‧‧‧解析資料 E0‧‧‧ Analytical data

f‧‧‧結果 F‧‧‧ Results

g‧‧‧資訊 g‧‧‧Information

i‧‧‧資料 i‧‧‧Information

k‧‧‧方位關連資訊 k‧‧‧Location related information

n‧‧‧判定結果 n‧‧‧Results

r0‧‧‧受訊訊號資料 R0‧‧‧Received signal data

r‧‧‧偵測距離 r‧‧‧Detection distance

r1‧‧‧距離 R1‧‧‧ distance

s1‧‧‧偵測資訊 S1‧‧‧Detection information

s2‧‧‧控制資訊 S2‧‧‧Control information

w‧‧‧雷達資訊 W‧‧‧ radar information

θ1‧‧‧角度 Θ1‧‧‧ angle

θ2‧‧‧角度 Θ2‧‧‧ angle

圖1,係為對於適用有本發明之第1實施形態之氣象現象發生可能性判定方法的氣象現象發生可能性判定系統之構成例作展示之圖。 Fig. 1 is a view showing a configuration example of a meteorological phenomenon occurrence possibility determination system to which the weather phenomenon occurrence possibility determination method according to the first embodiment of the present invention is applied.

圖2,係為對於在該實施形態之氣象現象發生可能性判定系統中的龍捲風發生預測部之構成例作展示之圖。 FIG. 2 is a view showing a configuration example of a tornado occurrence prediction unit in the meteorological phenomenon occurrence possibility determination system of the embodiment.

圖3,係為對於在該實施形態之氣象現象發生可能性判定系統中的龍捲風發生可能性解析部之構成例作展示之圖。 FIG. 3 is a view showing a configuration example of a tornado occurrence possibility analysis unit in the weather phenomenon occurrence possibility determination system of the embodiment.

圖4,係為對於在該實施形態之氣象現象發生可能性判定系統中的龍捲風徵兆偵測處理程序之其中一例作展示 之流程圖。 Fig. 4 is a view showing an example of a tornado symptom detection processing program in the meteorological phenomenon occurrence possibility determination system of the embodiment. Flow chart.

圖5,係為用以對於在該實施形態之氣象現象發生可能性判定系統中的龍捲風徴兆偵測處理中所被使用之龍捲風預測參數的時間變化作說明之圖。 Fig. 5 is a view for explaining temporal changes of the tornado prediction parameters used in the tornado detection processing in the meteorological phenomenon occurrence possibility determination system of the embodiment.

圖6,係為用以對於在該實施形態之氣象現象發生可能性判定系統中的龍捲風徴兆偵測處理中之龍捲風發生可能性的危險度作說明之圖。 Fig. 6 is a diagram for explaining the risk of occurrence of a tornado in the tornado detection processing in the meteorological phenomenon occurrence possibility determination system of the embodiment.

圖7,係為對於適用有本發明之第2實施形態之氣象現象發生可能性判定方法的氣象現象發生可能性判定系統之構成例作展示之圖。 Fig. 7 is a view showing a configuration example of a meteorological phenomenon occurrence possibility determination system to which the meteorological phenomenon occurrence possibility determination method according to the second embodiment of the present invention is applied.

圖8,係為對於在該實施形態之氣象現象發生可能性判定系統中的控制部之構成例作展示之圖。 FIG. 8 is a view showing a configuration example of a control unit in the meteorological phenomenon occurrence possibility determination system of the embodiment.

圖9,係為用以對於在該實施形態之氣象現象發生可能性判定系統中的被偵測到顯著氣象現象之發生的徵兆之方位作說明之圖。 Fig. 9 is a view for explaining the orientation of the detection of the occurrence of a significant weather phenomenon in the meteorological phenomenon occurrence possibility determination system of the embodiment.

圖10,係為對於在該實施形態之氣象現象發生可能性判定系統中的龍捲風徵兆偵測處理程序之其中一例作展示之流程圖。 Fig. 10 is a flowchart showing an example of a tornado symptom detection processing program in the meteorological phenomenon occurrence possibility determination system of the embodiment.

圖11,係為對於在該實施形態之氣象現象發生可能性判定系統中的模式切換處理程序之其中一例作展示之流程圖。 Fig. 11 is a flowchart showing an example of a mode switching processing program in the weather phenomenon occurrence possibility determination system of the embodiment.

(第1實施形態) (First embodiment)

以下,參考圖面,對於適用有本發明之第1實施形態之氣象現象發生可能性判定方法的氣象現象發生可能性判定系統作說明。 Hereinafter, a meteorological phenomenon occurrence possibility determination system to which the weather phenomenon occurrence possibility determination method according to the first embodiment of the present invention is applied will be described with reference to the drawings.

此氣象現象發生可能性判定系統,係為用以偵測出龍捲風等之顯著氣象現象的徵兆之系統,並為用以判定顯著氣象現象之發生的可能性之系統。換言之,係為用以在顯著氣象現象發生之前,偵測出此顯著氣象現象的徵兆,並基於所偵測出之徵兆,來預測並判定顯著氣象現象之發生的可能性之系統。 This meteorological phenomenon occurrence possibility determination system is a system for detecting a sign of a significant meteorological phenomenon such as a tornado, and is a system for determining the possibility of occurrence of a significant meteorological phenomenon. In other words, it is a system used to detect the signs of this significant meteorological phenomenon before the occurrence of significant meteorological phenomena, and to predict and determine the likelihood of significant meteorological phenomena based on the detected signs.

又,此氣象現象發生可能性判定系統,例如,係為對於藉由高速掃描氣象雷達所得到的雷達資料進行解析,並當基於降水雲之盛衰、降水雲內之降水核心、或者是降水雲內之鉛直渦的連續性且高密度之時間變化,而判定顯著氣象現象之發生的可能性為大的情況時,將此事對於使用者作通知之系統。 Moreover, the meteorological phenomenon occurrence possibility determination system, for example, is to analyze the radar data obtained by the high-speed scanning meteorological radar, and is based on the rise and fall of the precipitation cloud, the precipitation core in the precipitation cloud, or the precipitation cloud. In the case where the continuity of the vertical vortex is high and the time of high density is changed, and the possibility that the occurrence of a significant meteorological phenomenon is determined to be large, the user is notified of the matter.

顯著氣象現象,係為以5分鐘~10分鐘程度之極短時間而發生的現象,例如,係為龍捲風、在局部性之地區中所發生的大雨等之豪雨、強陣風、雷雨或者是降雹等之極端的氣象現象。 A significant meteorological phenomenon occurs in a very short period of time ranging from 5 minutes to 10 minutes. For example, heavy rain, strong gusts, thunderstorms, or hail, etc., caused by tornadoes, heavy rains occurring in localized areas, etc. Extreme weather phenomena.

高速掃描氣象雷達,係為能夠對於上空等而以高速來進行掃描的雷達,例如,係為相位陣列氣象雷達。例如,係為能夠以較顯著氣象現象之從發生起直到消滅為止的時間(例如5分鐘~10分鐘程度之極短時間)而更短之時間(例如較1分鐘而更短之時間,以下,稱作「高解析度 時間」)來進行掃描的雷達。另外,代替相位陣列氣象雷達,亦可使用能夠以高解析度時間來進行掃描之拋物面天線。又,相位陣列氣象雷達,係可為雙重偏波相位陣列氣象雷達,亦可為單偏波相位陣列氣象雷達。 The high-speed scanning weather radar is a radar capable of scanning at a high speed for sky or the like, for example, a phase array weather radar. For example, it can be a shorter time (for example, a very short time of 5 minutes to 10 minutes) from the occurrence of a more significant meteorological phenomenon (for example, a very short time of 5 minutes to 10 minutes) (for example, a shorter time than 1 minute, below, High resolution Time") to scan the radar. In addition, instead of the phase array weather radar, a parabolic antenna capable of scanning at a high resolution time can also be used. Moreover, the phase array weather radar can be a double-biased phase array weather radar or a single-bias phase array weather radar.

並且,係使用高速掃描氣象雷達,而朝向涵蓋有關連於顯著氣象現象之發生的範圍之上空發射雷達波,而能夠受訊所發射之雷達波被雲等所反射所成的反射波或散射波。 In addition, a high-speed scanning weather radar is used to transmit a radar wave that is transmitted over a range that is connected to a significant meteorological phenomenon, and that can be reflected or reflected by a cloud or the like. .

另外,以下,作為顯著氣象現象,雖係針對龍捲風作說明,但是,針對其他之顯著氣象現象,係亦可同樣的作說明。 In addition, although the following is a description of the tornado as a significant meteorological phenomenon, the other significant weather phenomena can be similarly explained.

具體而言,係參照圖1之構成例,對於適用有本實施形態之氣象現象發生可能性判定方法的氣象現象發生可能性判定系統1作說明。 Specifically, the weather phenomenon occurrence possibility determination system 1 to which the meteorological phenomenon occurrence possibility determination method of the present embodiment is applied will be described with reference to the configuration example of FIG.

氣象現象發生可能性判定系統1,係具備有:具備取得部9a之雷達訊號處理部9、和雷達解析部10、以及龍捲風預測部20。 The meteorological phenomenon occurrence possibility determination system 1 includes a radar signal processing unit 9 including an acquisition unit 9a, a radar analysis unit 10, and a tornado prediction unit 20.

雷達訊號處理部9,係對於藉由高速掃描氣象雷達8所受訊的反射波或散射波之受訊訊號資料r0,而進行一般性之放大處理或調變處理等的訊號處理。之後,將該訊號處理結果a0輸出至雷達解析部10處。 The radar signal processing unit 9 performs signal processing such as general amplification processing or modulation processing on the received signal data r0 of the reflected wave or the scattered wave received by the high-speed scanning weather radar 8. Thereafter, the signal processing result a0 is output to the radar analysis unit 10.

取得部9a,係在較對於龍捲風之發生而言所需要之時間更短的時間內,反覆取得為了判定龍捲風之發生的可能性所需要的一連串之3維資料。 The acquisition unit 9a repeatedly acquires a series of three-dimensional data necessary for determining the possibility of occurrence of a tornado in a shorter time period than that required for the occurrence of a tornado.

雷達解析部10,係具備有通訊介面(I/F)11、RAW資料處理部12、RAW資料儲存部13、雷達資料解析演算部14、以及解析資料儲存部15。 The radar analysis unit 10 includes a communication interface (I/F) 11, a RAW data processing unit 12, a RAW data storage unit 13, a radar data analysis calculation unit 14, and an analysis data storage unit 15.

雷達解析部10,係進行藉由高速掃描氣象雷達8所得到的受訊訊號資料r0之解析。具體而言,係基於從雷達訊號處理部9所取得的訊號處理結果a0,來產生3維資料,並基於所產生的3維資料,而為了對於龍捲風之發生作預測,來進行用以算出為了偵測出龍捲風之發生的徵兆並判定龍捲風之發生的可能性所需要之參數(以下,稱作「龍捲風預測參數」)之解析。 The radar analysis unit 10 performs analysis of the received signal data r0 obtained by the high-speed scanning of the weather radar 8. Specifically, based on the signal processing result a0 obtained from the radar signal processing unit 9, three-dimensional data is generated, and based on the generated three-dimensional data, in order to predict the occurrence of the tornado, the calculation is performed for The analysis of the parameters required to detect the occurrence of a tornado and the parameters required for the occurrence of a tornado (hereinafter referred to as "tornado prediction parameters").

另外,藉由產生3維資料,係可得知降水雲之形狀等的3維性之態樣。 In addition, by generating three-dimensional data, it is possible to know the three-dimensional nature of the shape of the precipitation cloud.

龍捲風預測參數,例如,係為有關於在降水雲之最下層部處的鉛直渦之渦度的參數。例如,係為代表在鉛直渦中之上昇氣流的高度或強度之參數。另外,針對龍捲風預測參數,係參考圖6來作詳細敘述。 The tornado prediction parameter, for example, is a parameter relating to the vorticity of the vertical vortex at the lowest layer of the precipitation cloud. For example, it is a parameter that represents the height or intensity of the ascending airflow in the vertical vortex. In addition, the tornado prediction parameters are described in detail with reference to FIG. 6.

通訊I/F11,係為用以與雷達處理部9進行通訊之介面,例如,係將從雷達處理部9所反覆取得的訊號處理結果a0,作為訊號處理結果b0來輸出至RAW資料處理部12處。 The communication I/F 11 is an interface for communicating with the radar processing unit 9. For example, the signal processing result a0 obtained repeatedly from the radar processing unit 9 is output to the RAW data processing unit 12 as the signal processing result b0. At the office.

RAW資料處理部12,係為了基於從通訊I/F11所取得的訊號處理結果b0來產生包含3維資料之RAW資料c0,而進行用以將在訊號處理結果b0中所包含之藉由雷達訊號處理部9所作了處理的受訊訊號資料r0轉換為 RAW資料c0之處理。 The RAW data processing unit 12 performs the RAW data c0 including the three-dimensional data based on the signal processing result b0 obtained from the communication I/F 11, and performs the radar signal included in the signal processing result b0. The processed signal data r0 processed by the processing unit 9 is converted into Processing of RAW data c0.

3維資料,係使用在該技術領域中之周知的手法來產生。之後,將包含3維資料之RAW資料c0輸出至RAW資料儲存部13處。又,RAW資料c0,例如,當作為高速掃描氣象雷達而使用雙重偏波相位陣列氣象雷達的情況時,係亦包含各偏波參數之極座標資料等的資料。極座標資料,例如,係包含仰角方向之資料。 3-dimensional data is produced using well-known techniques in the art. Thereafter, the RAW data c0 including the three-dimensional data is output to the RAW data storage unit 13. Further, the RAW data c0, for example, when a double-biased phase array weather radar is used as a high-speed scanning weather radar, includes data such as polar coordinates of each polarization parameter. Polar coordinates, for example, contain information on the direction of elevation.

RAW資料儲存部13,係將從RAW資料處理部12所取得的RAW資料c0例如作暫時性的儲存。之後,係將為了算出龍捲風預測參數所需要的體積(volumn)掃描資料(亦即是,例如,與從降水雲之上部起直到下部為止的全部高度相對應之全體之3維資料)、或者是為了算出龍捲風預測參數所需要的3維資料之全體中之一部分的3維資料,作為雷達資料d0而輸出至雷達資料解析演算部14處。 The RAW data storage unit 13 temporarily stores the RAW data c0 acquired from the RAW data processing unit 12, for example. Then, in order to calculate the volumetric scan data required for the tornado prediction parameter (that is, for example, the entire three-dimensional data corresponding to the entire height from the upper portion of the precipitation cloud to the lower portion), or The three-dimensional data of one of the three-dimensional data necessary for calculating the tornado prediction parameter is output to the radar data analysis calculation unit 14 as the radar data d0.

3維資料之全體中的一部分之3維資料,例如,係為對於全方位而發射雷達波所得到的3維資料之全體中的一部分之3維資料。 The three-dimensional data of a part of the whole of the three-dimensional data is, for example, a three-dimensional data of a part of the whole three-dimensional data obtained by transmitting the radar wave for all directions.

雷達資料解析演算部14,係進行用以基於從RAW資料儲存部13所取得的雷達資料d0而算出龍捲風預測參數的解析演算處理。 The radar data analysis calculation unit 14 performs an analysis and calculation process for calculating a tornado prediction parameter based on the radar data d0 acquired from the RAW data storage unit 13.

之後,將包含有所算出的龍捲風預測參數資訊之解析資料e0,輸出至解析資料儲存部15處。 Thereafter, the analysis data e0 including the calculated tornado prediction parameter information is output to the analysis data storage unit 15.

又,雷達資料解析演算部14,係亦可構成為藉由在 取得了包含有為了對於雷達資料d0進行解析所需要的RAW資料c0之全部的雷達資料d0的情況時而啟動,來開始雷達資料d0之解析。 Further, the radar data analysis calculation unit 14 may be configured to When the radar data d0 including all of the RAW data c0 necessary for analyzing the radar data d0 is acquired, the radar data d0 is started.

雷達資料解析演算部14,第1,係進行降水雲內之降水核心的檢測。之後,當檢測出了降水核心的情況時,係算出關連於降水核心之參數,例如,係算出關連於降水核心之重心位置以及高度的參數(龍捲風預測參數A)、或者是關連於降水核心之最大反射強度的參數(龍捲風預測參數B)。 The radar data analysis calculation unit 14 first detects the precipitation core in the precipitation cloud. Then, when the precipitation core is detected, the parameters related to the precipitation core are calculated, for example, the parameters relating to the position and height of the center of gravity of the precipitation core (tornado prediction parameter A), or related to the precipitation core are calculated. Maximum reflection intensity parameter (tornado prediction parameter B).

另外,關連於龍捲風預測參數A、B之降水核心的落下速度,一般而言,例如係在5分鐘以內而改變。因此,可以想見,龍捲風預測參數A也會在5分鐘以內而改變。 In addition, the drop speed of the precipitation core related to the tornado prediction parameters A and B is generally changed within, for example, within 5 minutes. Therefore, it is conceivable that the tornado prediction parameter A will also change within 5 minutes.

雷達資料解析演算部14,第2,係進行降水雲內之鉛直渦的檢測。之後,在檢測出了鉛直渦的情況時,係算出關連於鉛直渦之參數,例如,係算出代表在降水雲之最下層部處的鉛直渦之渦度之參數(龍捲風預測參數C)、或者是代表渦度為例如1.0×10-2(S-1)以上的鉛直渦之深度之參數(龍捲風預測參數D)。另外,渦度,例如,係為為了代表鉛直渦之成長程度所一般性地使用之指標。 The radar data analysis calculation unit 14 and the second method detect the vertical vortex in the precipitation cloud. Then, when a vertical vortex is detected, the parameter related to the vertical vortex is calculated, for example, a parameter representing the vorticity of the vertical vortex at the lowermost portion of the precipitation cloud (tornado prediction parameter C), or It is a parameter representing the depth of the vertical vortex of the vorticity of, for example, 1.0 × 10 -2 (S -1 ) or more (tornado prediction parameter D). Further, the vorticity is, for example, an index generally used to represent the degree of growth of the vertical vortex.

又,龍捲風預測參數C,例如,係亦為代表在後述之圖5之圖表(a)中所示的各降水核心51之最低高度之參數。又,龍捲風預測參數D,例如,係亦為代表在後述之圖5之圖表(a)中所示的各降水雲50之雲的深度或雲的厚度之參數。 Further, the tornado prediction parameter C is, for example, a parameter representing the lowest height of each of the precipitation cores 51 shown in the graph (a) of Fig. 5 to be described later. Further, the tornado prediction parameter D is, for example, a parameter representing the depth of the cloud of each precipitation cloud 50 or the thickness of the cloud shown in the graph (a) of Fig. 5 to be described later.

雷達資料解析演算部14,第3,係進行代表降水雲之發達程度的雷達回波頂之高度之算出。之後,係基於所算出的回波頂之高度,來算出代表回波頂之高度的參數(龍捲風預測參數E)。又,龍捲風預測參數E,例如,係亦為代表在後述之圖5之圖表(a)中所示的各降水核心51之最高高度之參數。 The radar data analysis calculation unit 14 thirdly calculates the height of the radar echo top representing the degree of development of the precipitation cloud. Thereafter, a parameter representing the height of the echo top (tornado prediction parameter E) is calculated based on the calculated height of the echo top. Further, the tornado prediction parameter E is, for example, a parameter representing the highest height of each of the precipitation cores 51 shown in the graph (a) of Fig. 5 to be described later.

另外,此些之各龍捲風預測參數A、B、C、D、E,例如,係可使用關連於各龍捲風預測參數之特定的方程式來算出。 In addition, each of these tornado prediction parameters A, B, C, D, E, for example, can be calculated using a specific equation relating to each tornado prediction parameter.

如此這般,雷達資料解析演算部14,係算出龍捲風預測參數A、B、C、D、E。之後,將此些之龍捲風預測參數A、B、C、D、E,作為解析資料e0來儲存在解析資料儲存部15中。 In this manner, the radar data analysis calculation unit 14 calculates the tornado prediction parameters A, B, C, D, and E. Thereafter, the tornado prediction parameters A, B, C, D, and E are stored in the analysis data storage unit 15 as the analysis data e0.

另外,雷達資料解析演算部14,係亦可代替解析資料儲存部15,而例如將解析資料e0儲存在被與氣象現象發生可能性判定系統1作了連接的其他之網路上。 Further, the radar data analysis calculation unit 14 may store the analysis data e0 on another network connected to the meteorological phenomenon occurrence possibility determination system 1 instead of the analysis data storage unit 15.

龍捲風預測部20,係基於被儲存在解析資料儲存部15或者是其他之網路上的解析資料e0,來預測龍捲風之發生。 The tornado prediction unit 20 predicts the occurrence of a tornado based on the analysis data e0 stored in the analysis data storage unit 15 or another network.

龍捲風預測部20,係如同圖2中所示一般,具備有龍捲風發生可能性解析部21、和解析資料儲存部22、以及顯示通知部23。 The tornado prediction unit 20 includes a tornado occurrence possibility analysis unit 21, an analysis data storage unit 22, and a display notification unit 23 as shown in FIG.

龍捲風發生可能性解析部21,係基於從解析資料儲存部15所取得的解析資料e0,來進行關連於龍捲風之發 生可能性的解析以及判定。 The tornado occurrence possibility analysis unit 21 associates the tornado based on the analysis data e0 acquired from the analysis data storage unit 15 Analysis and judgment of the possibility of birth.

龍捲風發生可能性解析部21,係如同圖3中所示一般,具備有解析資料取得部30、和參數解析部32、以及龍捲風徵兆偵測部34。 The tornado occurrence possibility analysis unit 21 includes an analysis data acquisition unit 30, a parameter analysis unit 32, and a tornado symptom detection unit 34 as shown in FIG.

解析資料取得部30,係將在解析資料e0中所包含之龍捲風預測參數A、B、C、D、E,輸出至參數解析部32處。 The analysis data acquisition unit 30 outputs the tornado prediction parameters A, B, C, D, and E included in the analysis data e0 to the parameter analysis unit 32.

參數解析部32,係對於龍捲風預測參數A、B、C、D、E進行解析。具體而言,係進行用以從藉由取得部9所反覆取得之各3維資料而檢測出龍捲風預測參數A、B、C、D、E的特異性之時間變化之解析。例如,係檢測出龍捲風預測參數A、B、C、D、E之相對於時間的特異性之反曲點。 The parameter analysis unit 32 analyzes the tornado prediction parameters A, B, C, D, and E. Specifically, analysis is performed to detect temporal changes in the specificity of the tornado prediction parameters A, B, C, D, and E from the respective three-dimensional data acquired by the acquisition unit 9. For example, the inflection point of the specificity of the tornado prediction parameters A, B, C, D, E with respect to time is detected.

在龍捲風發生之前,各龍捲風預測參數A、B、C、D、E係會作時間性地變化。具體而言,龍捲風預測參數A,若是發生降水雲內之降水核心的下降,則會歷時性地變化。龍捲風預測參數B,若是降水雲內之降水核心的最大反射強度例如成為40dBZ以上,則會歷時性地變化。龍捲風預測參數C,若是在降水雲之最下層部處而鉛直渦之渦度成為增加傾向,則會歷時性地變化。 Before the occurrence of a tornado, the prediction parameters A, B, C, D, and E of each tornado will change temporally. Specifically, the tornado prediction parameter A will change over time if the precipitation core in the precipitation cloud occurs. The tornado prediction parameter B, if the maximum reflection intensity of the precipitation core in the precipitation cloud is, for example, 40 dBZ or more, it will change over time. The tornado prediction parameter C will change over time if the vorticity of the vertical vortex increases at the lowest layer of the precipitation cloud.

龍捲風預測參數D,若是降水雲內之鉛直渦成為增加傾向,則會歷時性地變化。龍捲風預測參數E,若是10dBZ之回波頂的高度成為10km以上,則會歷時性地變化。 The tornado prediction parameter D, if the vertical vortex in the precipitation cloud becomes a tendency to increase, will change over time. The tornado prediction parameter E will change over time if the height of the echo top of 10 dBZ is 10 km or more.

參數解析部32,係對於龍捲風預測參數A、B、C、D、E之相對於時間的變化進行解析,並將其之結果f輸出至龍捲風徵兆偵測部34處。 The parameter analysis unit 32 analyzes the change in the tornado prediction parameters A, B, C, D, and E with respect to time, and outputs the result f to the tornado symptom detecting unit 34.

龍捲風徵兆偵測部34,係當基於由參數解析部32所致之解析之結果而檢測出了特異性之時間變化的情況時,判定龍捲風之發生的可能性之有無。具體而言,當基於從參數解析部32所輸出的結果f而檢測出龍捲風預測參數A、B、C、D、E之相對於時間的特異性之反曲點的情況時,此反曲點,係判定為龍捲風之徵兆。 The tornado symptom detecting unit 34 determines whether or not the occurrence of the tornado is likely to occur when a temporal change in specificity is detected based on the result of the analysis by the parameter analyzing unit 32. Specifically, when the inflection point of the specificity of the tornado prediction parameters A, B, C, D, and E with respect to time is detected based on the result f output from the parameter analysis unit 32, the inflection point It is judged as a sign of a tornado.

又,龍捲風徵兆偵測部34,係因應於藉由參數解析部32而檢測出了特異性之時間變化的次數,來決定代表龍捲風之發生的可能性之高低的等級。 Further, the tornado symptom detecting unit 34 determines the level of the possibility of occurrence of the tornado in response to the number of times the specific time change is detected by the parameter analyzing unit 32.

之後,基於所決定的等級,來判定龍捲風之發生的可能性。此代表龍捲風之發生的可能性之高低的等級,係為代表龍捲風之發生的危險度之等級。另外,針對此等級,係參考圖6來作詳細敘述。 Thereafter, based on the determined level, the possibility of occurrence of a tornado is determined. This represents the level of the likelihood of a tornado occurring as a level of risk representing the occurrence of a tornado. In addition, this level is described in detail with reference to FIG.

之後,龍捲風徵兆偵測部34,係將關連於此些之判定結果的資訊g,輸出至解析資料儲存部22處。 Thereafter, the tornado symptom detecting unit 34 outputs the information g relating to the determination results of these to the analysis data storage unit 22.

解析資料儲存部22,係將關連於藉由龍捲風徵兆偵測部34所得到的判定結果之資訊g,例如作暫時性的儲存。 The analysis data storage unit 22 temporarily stores the information g related to the determination result obtained by the tornado symptom detection unit 34, for example, for temporary storage.

顯示通知部23,係當藉由龍捲風徵兆偵測部34而判定係存在有龍捲風之發生之可能性的情況時,提示關連於龍捲風之發生之可能性之資訊。具體而言,係將被儲存在 解析資料儲存部22中之資訊g因應於需要而取出,並加工成用以從被設置在使用者所持有之攜帶終端處的畫面等來進行顯示之資料i,之後,將此資料i從被設置在使用者所持有之攜帶終端處的畫面等來進行顯示。 The notification unit 23 displays information on the possibility of occurrence of a tornado when it is determined by the tornado symptom detecting unit 34 that there is a possibility of occurrence of a tornado. Specifically, the system will be stored in The information g in the analysis data storage unit 22 is taken out as needed, and processed into a material i for display from a screen or the like provided at the portable terminal held by the user, and thereafter, the data i is read from It is displayed on a screen or the like provided at the portable terminal held by the user.

藉由此,顯示通知部23,係從被設置在使用者所持有之攜帶終端處的畫面等,來顯示代表是否存在有龍捲風之發生的可能性之資訊。 By this, the display notification unit 23 displays information indicating whether or not there is a possibility of occurrence of a tornado from a screen or the like provided at the portable terminal held by the user.

本實施形態之氣象現象發生可能性判定系統1,係將從由高速掃描氣象雷達8所致之受訊訊號資料r0之取得起直到對於被設置在使用者所持有之攜帶終端處之畫面等所進行之龍捲風發生可能性之顯示為止的一連串之處理,在例如1分鐘以內一般之較龍捲風之發生所需要的時間而更短之時間內來進行。如此這般,本實施形態之氣象現象發生可能性判定系統1,係相較於先前技術而具備有更高的時間解析度。 The meteorological phenomenon occurrence possibility determination system 1 of the present embodiment is a screen from the acquisition of the received signal data r0 by the high-speed scanning weather radar 8 to the screen placed at the portable terminal held by the user. The series of processes until the occurrence of the occurrence of the tornado is performed in a shorter period of time, for example, within one minute of the time required for the occurrence of the tornado. As described above, the meteorological phenomenon occurrence possibility determination system 1 of the present embodiment has a higher temporal resolution than the prior art.

另外,在請求項中,使用雷達而朝向上空發射雷達波,並接收雷達波被構成雲之粒子所反射或散射所成的反射波或散射波,並且根據反射波或散射波,來在較氣象現象之發生所需要的時間而更短之時間內,反覆取得在氣象現象之預測中所需要的一連串之3維資料的取得手段,例如,係對應於通訊I/F11或解析資料取得部30。根據反覆取得之各3維資料,而進行用以檢測出關連於氣象現象之參數的特異性之時間變化之解析之解析手段,例如,係對應於參數解析部32。當基於解析之結果而檢測出了特異 性之時間變化的情況時,判定氣象現象之發生的可能性之有無之判定手段,例如,係對應於龍捲風徵兆偵測部34。 In addition, in the request item, a radar wave is used to transmit a radar wave toward the sky, and a reflected wave or a scattered wave formed by the radar wave reflected or scattered by the particles constituting the cloud is received, and the reflected wave or the scattered wave is used according to the reflected wave or the scattered wave. In a shorter period of time, the means for obtaining a series of three-dimensional data required for the prediction of meteorological phenomena is obtained in a shorter period of time, for example, corresponding to the communication I/F 11 or the analysis data acquisition unit 30. The analysis means for analyzing the temporal change of the specificity of the parameter related to the meteorological phenomenon based on the three-dimensional data acquired in the reverse, for example, corresponds to the parameter analysis unit 32. When the specificity is detected based on the result of the analysis In the case where the time of the sex changes, the means for determining the possibility of occurrence of the meteorological phenomenon is, for example, corresponding to the tornado symptom detecting unit 34.

又,在請求項中,當藉由判定手段而判定係存在有氣象現象之發生之可能性的情況時,提示關連於氣象現象之發生之可能性之資訊之提示手段,例如,係對應於顯示通知部23。 Further, in the case of the request, when it is determined by the determination means that there is a possibility that the weather phenomenon is likely to occur, the information prompting means for information relating to the possibility of occurrence of the meteorological phenomenon, for example, corresponding to the display Notification unit 23.

接著,參考圖4之流程圖,針對氣象現象發生可能性判定處理程序之其中一例作說明。 Next, an example of the weather phenomenon occurrence possibility determination processing program will be described with reference to the flowchart of FIG.

首先,藉由取得部9a,上述一般之3維資料,係在較對於龍捲風之發生而言所需要之時間更短的時間內而被反覆取得(步驟S40)。之後,藉由解析資料取得部30,而從解析資料儲存部15來取得龍捲風預測參數A、B、C、D、E(步驟S42)。 First, by the acquisition unit 9a, the general three-dimensional data is repeatedly acquired in a shorter time period than the time required for the occurrence of the tornado (step S40). Thereafter, the analysis data storage unit 15 acquires the tornado prediction parameters A, B, C, D, and E by the analysis data acquisition unit 30 (step S42).

接著,藉由參數解析部32,而進行用以檢測出在步驟S42中所取得的龍捲風預測參數A、B、C、D、E之特異性之時間變化之解析(步驟S44)。 Next, the parameter analysis unit 32 performs analysis for detecting the temporal change in the specificity of the tornado prediction parameters A, B, C, D, and E acquired in step S42 (step S44).

之後,當作為在步驟S44中之解析的結果,而龍捲風預測參數A、B、C、D、E之特異性之時間變化被檢測出來的情況時,將該被檢測出的特異性之時間變化作為龍捲風之發生的徵兆之測出,而藉由龍捲風徵兆偵測部34來判定是否偵測到了龍捲風之發生的徵兆(步驟S46)。當判定為並未偵測出龍捲風之發生之徵兆的情況時(S46:NO),係回到步驟S40,並再度時間性地取得下一個的龍 捲風預測參數A、B、C、D、E。 Thereafter, when the time change of the specificity of the tornado prediction parameters A, B, C, D, and E is detected as a result of the analysis in step S44, the time variation of the detected specificity is changed. As a measure of the occurrence of the tornado, the tornado symptom detecting unit 34 determines whether or not a sign of occurrence of the tornado is detected (step S46). When it is determined that the sign of the occurrence of the tornado is not detected (S46: NO), the process returns to step S40, and the next dragon is again obtained temporally. The wind forecast parameters A, B, C, D, E.

另一方面,當判定係偵測到了龍捲風之發生之徵兆的情況時(步驟S46:YES),藉由龍捲風徵兆偵測部34,來因應於所偵測到的徵兆而判定龍捲風之發生的可能性之有無(步驟S48)。例如,係因應於偵測到龍捲風預測參數A、B、C、D、E之特異性之時間變化的次數、亦即是因應於徵兆被偵測出的次數,來決定代表龍捲風之發生之危險度的等級,並判定龍捲風之發生的可能性之有無(步驟S48)。 On the other hand, when it is determined that the sign of the occurrence of the tornado is detected (step S46: YES), the tornado symptom detecting unit 34 determines the possibility of occurrence of the tornado in response to the detected sign. The presence or absence of sex (step S48). For example, the number of times of change in the specificity of the tornado prediction parameters A, B, C, D, and E, that is, the number of times the sign is detected, determines the risk of occurrence of a tornado. The degree of degree is determined, and the possibility of occurrence of a tornado is determined (step S48).

而,當判定為並沒有龍捲風之發生之可能性的情況時(步驟S48:NO),係回到步驟S40,並再度時間性地取得下一個的龍捲風預測參數A、B、C、D、E。 On the other hand, when it is determined that there is no possibility of occurrence of a tornado (step S48: NO), the process returns to step S40, and the next tornado prediction parameters A, B, C, D, E are again obtained temporally. .

另一方面,當判定為係存在有龍捲風之發生之可能性的情況時(步驟S48:YES),係藉由顯示通知部23,來將關連於龍捲風之發生之可能性之資訊,例如與在步驟S48中所決定的等級附加關連性,並提示給使用者(步驟S50)。具體而言,龍捲風發生預測資訊,係作為資訊g而對於使用者進行通知,並作為資料i而被從被設置在使用者所持有之攜帶終端處的畫面等來作顯示(步驟S50)。 On the other hand, when it is determined that there is a possibility that the tornado is likely to occur (step S48: YES), the information relating to the possibility of occurrence of the tornado is displayed by the display notification unit 23, for example, The level determined in step S48 is additionally related and presented to the user (step S50). Specifically, the tornado occurrence prediction information is notified to the user as the information g, and is displayed as a material i from a screen or the like provided at the portable terminal held by the user (step S50).

接著,參考圖5,針對龍捲風預測參數之時間變化作說明。 Next, with reference to FIG. 5, the time variation of the tornado prediction parameters will be described.

圖表(a),係對於降水雲50之盛衰的其中一例之時間變化作示意性展示。又,圖表(b),係對於先前技術 之用以預測顯著氣象現象之參數的時間變化作展示。另一方面,圖表(c),係對於在本實施形態之氣象現象發生可能性判定處理中的龍捲風預測參數之時間變化作展示。 Diagram (a) is a schematic representation of the time variation of one of the rise and fall of precipitation cloud 50. Again, chart (b) is for prior art The time variation of the parameters used to predict significant meteorological phenomena is shown. On the other hand, the graph (c) shows the temporal change of the tornado prediction parameter in the meteorological phenomenon occurrence possibility determination processing of the present embodiment.

另外,在圖表(b)中所示之先前技術之參數,係亦可並非為龍捲風預測參數。例如,係為降水雲50之伴隨著時間變化而改變的參數,而為能夠與龍捲風預測參數作比較之參數。又,圖表(c)中所示之龍捲風預測參數,係為如同上述之龍捲風預測參數A、B、C、D、E一般之為了判定龍捲風之發生之可能性所必要的參數。 In addition, the parameters of the prior art shown in the diagram (b) may not be the tornado prediction parameters. For example, it is a parameter that changes with time variation of the precipitation cloud 50, and is a parameter that can be compared with the tornado prediction parameter. Further, the tornado prediction parameter shown in the graph (c) is a parameter necessary for determining the possibility of occurrence of a tornado as in the above-described tornado prediction parameters A, B, C, D, and E.

圖5之圖表(a)、(b)、(c)之橫軸,係分別代表時間(分鐘)。又,圖表(a)之縱軸係代表高度,圖表(b)、圖表(c)之縱軸係代表各參數之值。 The horizontal axes of the graphs (a), (b), and (c) of Fig. 5 represent time (minutes), respectively. Further, the vertical axis of the graph (a) represents the height, and the vertical axes of the graph (b) and the graph (c) represent the values of the respective parameters.

首先,針對圖5之圖表(a)作時間序列性之說明。 First, a description of time series will be given for the graph (a) of FIG. 5.

首先,在時間點T05(於圖中,係為0分鐘)處,降水雲50a係發生。在圖5中,係將時間點T05,作為在氣象現象發生可能性判定處理中之成為基準的時間點。 First, at the time point T05 (in the figure, it is 0 minutes), the precipitation cloud 50a occurs. In FIG. 5, the time point T05 is taken as a time point which becomes a reference in the meteorological phenomenon occurrence possibility determination process.

接著,在時間點T04(於圖中,係為10分鐘)處,降水雲50,係成長為較降水雲50a而更大之降水雲50b,亦即是成長為高度為高之降水雲50。在圖中,降水雲50b之高度,係為約8km。又,降水雲50b,係包含相當於降水區域之降水核心51b。 Next, at time point T04 (in the figure, it is 10 minutes), the precipitation cloud 50 grows into a precipitation cloud 50b which is larger than the precipitation cloud 50a, that is, a precipitation cloud 50 which grows to a high height. In the figure, the height of the precipitation cloud 50b is about 8 km. Further, the precipitation cloud 50b includes a precipitation core 51b corresponding to the precipitation area.

之後,在時間點T03(於圖中,係為20分鐘)處,降水雲50,係成長為較降水雲50b而高度為更高並且包含降水區域51c之降水雲50c。又,關於相當於降水核心 51的最高高度之回波頂,相當於降水核心51c之回波頂的降水核心51之最高高度(在圖中,係為高度約12km),亦係成為較相當於降水核心51b之回波頂的降水核心51之最高高度(在圖中,係為高度約7km)而更高。 Thereafter, at time point T03 (in the figure, 20 minutes), the precipitation cloud 50 grows into a precipitation cloud 50c which is higher than the precipitation cloud 50b and has a higher height and includes the precipitation region 51c. Also, about the equivalent of the precipitation core The echo top of the highest height of 51 is equivalent to the highest height of the precipitation core 51 of the echo top of the precipitation core 51c (in the figure, the height is about 12km), and it is also the echo top equivalent to the precipitation core 51b. The highest height of the precipitation core 51 (in the figure, the height is about 7km) is higher.

之後,在時間點T02(於圖中,係為30分鐘)處,降水雲50,係成長為具備有降水核心51之尺寸為較降水核心51c之尺寸而更大的降水核心51d。 Thereafter, at time point T02 (in the figure, it is 30 minutes), the precipitation cloud 50 is grown to have a precipitation core 51d having a size larger than that of the precipitation core 51c.

之後,在時間點T0(於圖中,係為30分鐘~40分鐘之間的時間點)處,龍捲風(未圖示)係發生。 Thereafter, at the time point T0 (in the figure, the time point between 30 minutes and 40 minutes), a tornado (not shown) occurs.

之後,在時間點T11(於圖中,係為40分鐘)處,降水雲50,係與降水核心51一同衰退。例如,降水雲50,係衰退為較降水雲50d之最高高度(在圖中,係為約11km)而更低的最高高度(在圖中,係為約9km)之降水雲50e。又,降水核心51,係衰退為較降水核心51d之最高高度(在圖中,係為約10km)而更低的最高高度(在圖中,係為約8km)之降水核心51e。 Thereafter, at time point T11 (40 minutes in the figure), the precipitation cloud 50 is degraded along with the precipitation core 51. For example, the precipitation cloud 50 is a precipitation cloud 50e that is reduced to a maximum height of 50d from the precipitation cloud (about 11km in the figure) and a lower maximum height (about 9km in the figure). Further, the precipitation core 51 is a precipitation core 51e which is reduced to the highest height (in the figure, about 10 km) and the lower highest height (in the figure, about 8 km).

之後,在時間點T12(於圖中,係為50分鐘)處,降水雲50,係衰退為具備有最高高度為較降水核心51e而更低的降水核心51f之降水雲50f。 Thereafter, at time point T12 (in the figure, 50 minutes), the precipitation cloud 50 is reduced to a precipitation cloud 50f having a precipitation core 51f having a height higher than that of the precipitation core 51e.

另外,在時間點T0處所發生的龍捲風,例如,係與降水雲50之衰退一同地而消滅。 In addition, the tornado occurring at the time point T0, for example, is eliminated together with the decline of the precipitation cloud 50.

接著,一面對於圖5之圖表(b)中所示之參數以及圖5之圖表(c)中所示之龍捲風預測參數之時間變化作 比較,一面作說明。 Next, the time variation of the parameters shown in the graph (b) of FIG. 5 and the tornado prediction parameters shown in the graph (c) of FIG. 5 is made. Compare, one side for explanation.

首先,在對應於時間點T05之取得點P05處,參數之值(P05)(未圖示)係被取得。以下,取得點P,例如,係代表參數所被取得的時間點。又,取得點P,係亦為用以判定龍捲風之發生之可能性的解析之被進行的時間點。又,取得點P05,係對應於降水雲50a。 First, at the acquisition point P05 corresponding to the time point T05, the parameter value (P05) (not shown) is acquired. Hereinafter, the point P is obtained, for example, the time point at which the parameter is acquired. Further, the acquisition point P is also a time point at which the analysis for determining the possibility of occurrence of the tornado is performed. Further, the point P05 is obtained, which corresponds to the precipitation cloud 50a.

又,參數之值(P05),例如,係代表發生了降水雲50a。 Further, the value of the parameter (P05), for example, represents that the precipitation cloud 50a has occurred.

接著,在對應於時間點T04之取得點P04處,參數之值(P04)係被取得。另外,取得點P04,係對應於降水雲50b。又,參數之值(P04),例如,係代表降水雲50a成長為降水雲50b。又,在圖5中,係對於隨著降水雲50從降水雲50a成長為降水雲50b而參數之值亦變大一事有所展示。 Next, at the acquisition point P04 corresponding to the time point T04, the value of the parameter (P04) is obtained. Further, the point P04 is obtained, which corresponds to the precipitation cloud 50b. Further, the value of the parameter (P04), for example, represents that the precipitation cloud 50a grows into the precipitation cloud 50b. Further, in Fig. 5, the value of the parameter becomes larger as the precipitation cloud 50 grows from the precipitation cloud 50a to the precipitation cloud 50b.

又,在圖5之圖表(b)中所示之代表先前技術之參數的時間變化之線52處,參數之值(P04)係展現有與參數之值(P05)略相同之值。另一方面,在圖5之圖表(c)中所示之代表本實施形態之龍捲風預測參數的時間變化之線53處,參數之值(P04)係與先前技術同樣的而展現有與參數之值(P05)相同之值。然而,在從時間點T05~時間點T04的10分鐘之間,參數之值係與先前技術相異,並非為一定而係有所變動。 Further, at the time line 52 representing the time variation of the parameters of the prior art shown in the graph (b) of Fig. 5, the value of the parameter (P04) exhibits a value which is slightly the same as the value of the parameter (P05). On the other hand, at the line 53 representing the time variation of the tornado prediction parameter of the present embodiment shown in the graph (c) of Fig. 5, the value of the parameter (P04) is the same as that of the prior art and exhibits parameters and parameters. The value (P05) is the same value. However, between 10 minutes from the time point T05 to the time point T04, the value of the parameter is different from the prior art, and is not necessarily constant.

此係因為,在本實施形態中,例如,係使用有如同上述一般之高速掃描氣象雷達之故。又,係因為本實施形態 之龍捲風預測參數,例如係為用以預測顯著氣象現象中之特別是龍捲風之發生所使用的參數之故。 This is because, in the present embodiment, for example, a general high-speed scanning weather radar as described above is used. Also, because this embodiment The tornado prediction parameters are, for example, used to predict parameters used in the occurrence of tornadoes, particularly in meteorological phenomena.

又,取得點P04係對應於降水雲50b,將在取得點P05處之龍捲風預測參數和在取得點P04處之龍捲風預測參數作比較一事,係相當於將降水雲50a和降水雲50b作比較。 Further, the acquisition point P04 corresponds to the precipitation cloud 50b, and comparing the tornado prediction parameter at the acquisition point P05 with the tornado prediction parameter at the acquisition point P04 is equivalent to comparing the precipitation cloud 50a with the precipitation cloud 50b.

接著,在對應於時間點T03之取得點P03處,參數之值(P03)係被取得。另外,取得點P03,係對應於降水雲50c。又,參數之值(P03),例如,係代表降水雲50b成長為降水雲50c。又,在圖5中,係對於隨著降水雲50從降水雲50b成長為降水雲50c而參數之值變小一事有所展示。 Next, at the acquisition point P03 corresponding to the time point T03, the value of the parameter (P03) is acquired. Further, the acquisition point P03 corresponds to the precipitation cloud 50c. Further, the value of the parameter (P03), for example, represents that the precipitation cloud 50b grows into the precipitation cloud 50c. Further, in Fig. 5, it is shown that the value of the parameter becomes smaller as the precipitation cloud 50 grows from the precipitation cloud 50b to the precipitation cloud 50c.

如此這般,也會有隨著降水雲50之成長而參數之值變小的情況。此事,例如,係代表著作為龍捲風預測參數所使用之參數,係如同參考圖6而於後再述一般為存在有複數,各龍捲風預測參數,係代表相異的時間變化之故。 In this way, there will be cases where the value of the parameter becomes smaller as the precipitation cloud 50 grows. This matter, for example, represents the parameters used for the tornado prediction parameters, as will be described later with reference to Figure 6 and generally there are complex numbers, and each tornado prediction parameter represents a different time variation.

接著,在對應於時間點T02之取得點P02處,參數之值(P02)係被取得。另外,取得點P02,係對應於降水雲50d。又,參數之值(P02),例如,係代表降水雲50c成長為降水雲50d。又,在圖5中,係對於隨著降水雲50從降水雲50c成長為降水雲50d而參數之值幾乎沒有改變一事有所展示。 Next, at the acquisition point P02 corresponding to the time point T02, the value of the parameter (P02) is obtained. In addition, the point P02 is obtained, which corresponds to the precipitation cloud 50d. Further, the value of the parameter (P02), for example, represents that the precipitation cloud 50c grows into a precipitation cloud 50d. Further, in Fig. 5, it is shown that the value of the parameter hardly changes as the precipitation cloud 50 grows from the precipitation cloud 50c to the precipitation cloud 50d.

而,在時間點T02~時間點T11之間,龍捲風係發生。於此期間,在先前技術中,由於係並未使用有高速掃 描氣象雷達,因此,例如係僅能夠在每5~10分鐘而取得新的參數。另一方面,在本實施形態中,係藉由使用高速掃描氣象雷達,而能夠在約每30秒~1分鐘,而於與取得點P-2、P-3、P-4、P-5、P-6相對應的時間點處取得新的龍捲風預測參數。另外,取得點P02,係相當於取得點P-1,取得點P11,係相當於取得點P-7。 However, between the time point T02 and the time point T11, a tornado wind occurs. During this period, in the prior art, because the system did not use a high-speed sweep The weather radar is described so that, for example, new parameters can only be obtained every 5 to 10 minutes. On the other hand, in the present embodiment, by using a high-speed scanning weather radar, it is possible to acquire points P-2, P-3, P-4, and P-5 every about 30 seconds to 1 minute. At the time point corresponding to P-6, new tornado prediction parameters are obtained. Further, the acquisition point P02 corresponds to the acquisition point P-1, and the acquisition point P11 corresponds to the acquisition point P-7.

又,在圖5中雖並未詳細圖示,但是,在圖5之圖表(c)處,於從時間點T05起而至時間點T12的全部區間中,係與從時間點T02起而至時間點T11同樣地,而例如在約10分鐘之間更進而存在有5個的取得點P。另外,例如,係亦可構成為僅在偵測到了龍捲風之發生的徵兆之後之特定之期間、例如僅在時間點T02~時間點T11之間,而取得新的龍捲風預測參數。 Further, although not shown in detail in FIG. 5, in the graph (c) of FIG. 5, in all the sections from the time point T05 to the time point T12, from the time point T02 to Similarly, at time point T11, for example, there are five acquisition points P between about 10 minutes. Further, for example, it may be configured to acquire a new tornado prediction parameter only during a specific period after the occurrence of the occurrence of the tornado, for example, only between the time point T02 and the time point T11.

之後,在時間點T11~時間點T12處,降水雲50係衰退,於此同時地,在圖5中係展現有參數之值亦有所變小一事。另外,係展示有:在此期間中,先前技術之參數的時間變化,係成為直線狀,而本實施形態之參數的時間變化,則係平緩地以曲線狀而變化。 Thereafter, at the time point T11 to the time point T12, the precipitation cloud 50 is degraded, and at the same time, the value of the parameter shown in Fig. 5 is also reduced. Further, it is shown that during this period, the temporal change of the parameters of the prior art is linear, and the temporal change of the parameters of the present embodiment is gently changed in a curved shape.

接著,參考圖6,針對由龍捲風預測參數之時間變化所致的龍捲風發生可能性之危險度等的判定作說明。 Next, with reference to FIG. 6, the determination of the risk degree of occurrence of a tornado caused by the temporal change of the tornado prediction parameter will be described.

圖6之圖表(a)、(b)、(c)、(d)、(e),係分別代表上述之龍捲風預測參數A、B、C、D、E的時間變化。圖6之圖表(f),係對因應於各龍捲風預測參數之特異性之時間變化被檢測出來的次數所決定之危險度 作展示。 The graphs (a), (b), (c), (d), and (e) of Fig. 6 represent temporal changes of the above-described tornado prediction parameters A, B, C, D, and E, respectively. Figure (f) of Figure 6 is the risk determined by the number of times the time variation of the specificity of each tornado prediction parameter is detected. For display.

圖6之圖表(a)、(b)、(c)、(d)、(e)、(f)之橫軸,係代表時間(分鐘)。另外,在圖6之圖表(a)、(b)、(c)、(d)、(e)、(f)中所示之各線,係代表在約1小時內所得到的龍捲風預測參數之時間變化。 The horizontal axes of the graphs (a), (b), (c), (d), (e), and (f) of Fig. 6 represent time (minutes). In addition, the lines shown in the graphs (a), (b), (c), (d), (e), and (f) of Fig. 6 represent the tornado prediction parameters obtained in about one hour. Change of time.

又,圖6之圖表(a)、(b)、(c)、(d)、(e)的縱軸,係分別代表龍捲風預測參數A之值(km)、龍捲風預測參數B之值(dBZ)、龍捲風預測參數C之值(s-1)、龍捲風預測參數D之值(km)、龍捲風預測參數E之值(km)。又,圖6之圖表(f)之縱軸,係代表危險度之等級。 Moreover, the vertical axes of the graphs (a), (b), (c), (d), and (e) of Fig. 6 represent the value of the tornado prediction parameter A (km) and the value of the tornado prediction parameter B (dBZ, respectively). ), the value of the tornado prediction parameter C (s-1), the value of the tornado prediction parameter D (km), and the value of the tornado prediction parameter E (km). Moreover, the vertical axis of the graph (f) of Fig. 6 represents the level of risk.

龍捲風預測參數A,係如同線60a處所示一般,在從時間點T0b起直到時間點T0d為止的期間(約10分鐘之間)中,具備有反曲點70a。又,係展示有:龍捲風預測參數A之值,在直到時間點T0a為止的期間中係有所增加,但是,在時間點Ta處係開始減少。於此情況,在與取得點Pa相對應之時間點T0a或者是與反曲點70a相對應之時間點(未圖示)處,係被檢測出有特異性之時間變化,而視為偵測到了龍捲風之發生的徵兆。 The tornado prediction parameter A is generally as shown in the line 60a, and has an inflection point 70a in a period from the time point T0b to the time point T0d (between about 10 minutes). Further, it is shown that the value of the tornado prediction parameter A increases during the period up to the time point T0a, but starts to decrease at the time point Ta. In this case, at the time point T0a corresponding to the acquisition point Pa or the time point (not shown) corresponding to the inflection point 70a, a specific time change is detected and is regarded as detection. It is a sign of the occurrence of a tornado.

另外,反曲點70,例如,係相當於各線60之斜率的正負符號發生變化之點。 Further, the inflection point 70 is, for example, a point corresponding to a change in the sign of the slope of each line 60.

龍捲風預測參數B,係如同線60b所示一般,龍捲風預測參數B之值,在時間點T0b處,係超過特定之臨限 值(在圖中,係為40dBZ)。於此情況,係將超過特定之臨限值(40dBZ)一事,作為特異性之時間變化而檢測出來。之後,在與取得點Pb相對應之時間點T0b處,視為偵測到了龍捲風之發生的徵兆。 The tornado prediction parameter B is as shown in line 60b. The value of the tornado prediction parameter B is greater than the specific threshold at time T0b. Value (in the figure, it is 40dBZ). In this case, the specific threshold value (40 dBZ) is detected as a specific time change. Thereafter, at the time point T0b corresponding to the acquisition point Pb, it is considered that the occurrence of the tornado is detected.

龍捲風預測參數C,係如同線60c處所示一般,在從時間點T0c起直到時間點T0為止的期間(約5分鐘之間)中,具備有反曲點70c。又,係展示有:龍捲風預測參數C之值,在直到時間點T0c為止的期間中係呈現略一定之值,並在時間點T0c處而急遽地增加。於此情況,係將龍捲風預測參數C急遽地增加一事,作為特異性之時間變化而檢測出來。又,在與取得點Pc相對應之時間點T0c或者是與反曲點70c相對應之時間點(未圖示)處,視為偵測到了龍捲風之發生的徵兆。 The tornado prediction parameter C is generally as shown in the line 60c, and has an inflection point 70c in a period from the time point T0c to the time point T0 (between about 5 minutes). Further, it is shown that the value of the tornado prediction parameter C exhibits a slightly constant value during the period up to the time point T0c, and increases sharply at the time point T0c. In this case, the tornado prediction parameter C is rapidly increased, and is detected as a specific time change. Further, at the time point T0c corresponding to the acquisition point Pc or the time point (not shown) corresponding to the inflection point 70c, it is considered that the occurrence of the tornado is detected.

龍捲風預測參數D,係如同線60d處所示一般,在從時間點T0d起直到時間點T0e為止的期間中,具備有反曲點70d。又,係展示有:龍捲風預測參數D之值,在直到時間點T0d為止的期間中係呈現略一定之值,並在時間點T0d處而開始增加。於此情況,在與取得點Pd相對應之時間點T0d或者是與反曲點70d相對應之時間點(未圖示)處,係被檢測出有特異性之時間變化,而視為偵測到了龍捲風之發生的徵兆。 The tornado prediction parameter D is generally as shown in the line 60d, and has an inflection point 70d in a period from the time point T0d to the time point T0e. Further, it is shown that the value of the tornado prediction parameter D is slightly longer in the period up to the time point T0d, and starts to increase at the time point T0d. In this case, at the time point T0d corresponding to the acquisition point Pd or the time point (not shown) corresponding to the inflection point 70d, a specific time change is detected, which is regarded as detection. It is a sign of the occurrence of a tornado.

龍捲風預測參數E,係如同線60e處所示一般,在從時間點T0d起直到時間點T0e為止的期間中,具備有反曲點70e。又,龍捲風預測參數E之值,在時間點T0e處, 係超過特定之臨限值(在圖中,係為10km)。於此情況,係將超過特定之臨限值(10km)一事,作為特異性之時間變化而檢測出來。又,在與取得點Pe相對應之時間點T0e或者是與反曲點70e相對應之時間點(未圖示)處,視為偵測到了龍捲風之發生的徵兆。 The tornado prediction parameter E is generally as shown in the line 60e, and has an inflection point 70e in a period from the time point T0d to the time point T0e. Again, the value of the tornado prediction parameter E is at time T0e, The system exceeds a certain threshold (in the figure, it is 10km). In this case, the specific threshold value (10 km) is detected as a specific time change. Further, at the time point T0e corresponding to the acquisition point Pe or the time point (not shown) corresponding to the inflection point 70e, it is considered that the occurrence of the tornado is detected.

如此這般,特異性之時間變化,例如,係包含有龍捲風預測參數之值從增加而轉變為減少之變化或者是從減少而轉變為增加之變化、龍捲風預測參數之值超過特定之臨限值之變化、龍捲風預測參數之值急遽地增加或減少等的變化率之變化、以及上述之相當於反曲點70之變化。 In this way, the temporal change in specificity, for example, includes changes in the value of the tornado prediction parameter from an increase to a decrease or from a decrease to an increase, and the value of the tornado prediction parameter exceeds a certain threshold. The change, the change in the value of the tornado prediction parameter, the change in the rate of change, and the change in the equivalent of the inflection point 70.

接著,參考圖6之圖表(f),針對龍捲風發生可能性之危險度作說明。 Next, referring to the graph (f) of Fig. 6, the risk of occurrence of a tornado will be explained.

危險度,係如同上述一般,因應於各龍捲風預測參數之特異性之時間變化被檢測出來的次數而被決定。又,因應於特異性之時間變化被檢測出來的次數,關連於危險度之資訊係被通知至使用者處。 The degree of risk is determined as described above in response to the number of times the time variation of the specificity of each tornado prediction parameter is detected. Further, the information related to the risk is notified to the user in response to the number of times the specific time change is detected.

在圖6中,係針對依照與取得點Pb相對應之龍捲風預測參數B之變化、與取得點Pd相對應之龍捲風預測參數D之變化、與取得點Pe相對應之龍捲風預測參數E之變化、與取得點Pa相對應之龍捲風預測參數A之變化以及與取得點Pc相對應之龍捲風預測參數C之變化的順序,而檢測出了各特異性之時間變化的情況作展示。另外,係並不被限定於此順序,亦能夠使特異性之時間變化以其他之順序而被檢測出來。 In FIG. 6, the change of the tornado prediction parameter B corresponding to the acquisition point Pb, the change of the tornado prediction parameter D corresponding to the acquisition point Pd, and the change of the tornado prediction parameter E corresponding to the acquisition point Pe, The change in the tornado prediction parameter A corresponding to the acquisition point Pa and the change in the tornado prediction parameter C corresponding to the acquisition point Pc are detected, and the time variation of each specificity is detected. Further, it is not limited to this order, and it is also possible to detect temporal changes in specificity in other orders.

等級(危險度)0,例如,係為在直到龍捲風預測參數B之變化被檢測出來為止所被設定之代表平常情形的等級。又,係亦為代表龍捲風之發生的可能性為最低一事之等級。進而,係為代表起因於龍捲風之發生所導致的災害等之危險性為最低的安全之狀態之等級。 The level (risk degree) 0 is, for example, a level representing a normal situation set until the change of the tornado prediction parameter B is detected. Also, the system is also the lowest level of possibility for the occurrence of a tornado. Further, it is a level that represents the state of safety that is the lowest in the risk of disasters caused by the occurrence of a tornado.

等級1,係為代表龍捲風預測參數B之變化被檢測出來一事的等級。又,係亦為代表危險度為較等級0而更高一事之等級。 Level 1 is the level at which the change in the tornado prediction parameter B is detected. Also, the rating is a level that represents a higher risk than level 0.

等級2,係為代表龍捲風預測參數D之變化被檢測出來一事的等級,並且亦為代表危險度為較等級1而更高一事之等級。 Level 2 is a level indicating that the change in the tornado prediction parameter D is detected, and is also a level indicating that the risk is higher than level 1.

等級3,係為代表龍捲風預測參數E之變化被檢測出來一事的等級,並且亦為代表危險度為較等級2而更高一事之等級。 Level 3 is a level that indicates that the change in the tornado prediction parameter E is detected, and is also a level that represents a higher risk than level 2.

等級4,係為代表龍捲風預測參數A之變化被檢測出來一事的等級,並且亦為代表危險度為較等級3而更高一事之等級。 Level 4 is the level at which the change in the tornado prediction parameter A is detected, and is also the level at which the risk is higher than level 3.

等級5,係為代表龍捲風預測參數C之變化被檢測出來一事的等級,並且亦為代表危險度為較等級4而更高一事之等級。 Level 5 is the level at which the change in the tornado prediction parameter C is detected, and is also the level at which the risk is higher than level 4.

另外,圖6之圖表(f)中所示之危險度,係僅為其中一例,例如,亦可使龍捲風預測參數D之變化較龍捲風預測參數B之變化而在時間上而言被更先檢測出來。 In addition, the degree of danger shown in the graph (f) of FIG. 6 is only one example. For example, the change of the tornado prediction parameter D may be detected earlier in time than the change of the tornado prediction parameter B. come out.

於此情況,當龍捲風預測參數B之變化被檢測出來的 情況時,等級1,係代表龍捲風預測參數D之變化被檢測出來一事。另一方面,等級2,係代表龍捲風預測參數B之變化被檢測出來一事。 In this case, when the change of the tornado prediction parameter B is detected In the case of level 1, the change in the tornado prediction parameter D is detected. On the other hand, level 2 represents the detection of a change in the tornado prediction parameter B.

又,在圖6中,雖係針對5個的龍捲風預測參數A、B、C、D、E作了說明,但是,例如,係亦可僅使用龍捲風預測參數A、B、C、D、E中之會在龍捲風正要發生前而變化的龍捲風預測參數C來進行危險度之判定。於此情況,例如,係亦可並不具有如同圖6之圖表(f)中所示一般之多階段的等級。例如,係亦可藉由代表危險或安全之2值來判定危險度。 Further, in FIG. 6, although five tornado prediction parameters A, B, C, D, and E are described, for example, it is also possible to use only tornado prediction parameters A, B, C, D, and E. In the event of a tornado forecasting parameter C that is changing before the tornado is about to occur, the risk is judged. In this case, for example, the system may not have a multi-stage level as shown in the diagram (f) of Fig. 6. For example, the risk can also be determined by a value representing two risks or safety.

另外,在對於龍捲風以外之顯著氣象現象之徵兆、例如對於豪雨之徵兆進行偵測的情況時,係亦能夠藉由將如同圖6之圖表(a)以及圖表(e)中所示一般之參數作為用以偵測出龍捲風以外之顯著氣象現象之徵兆的參數來使用,而對於龍捲風以外之顯著氣象現象之發生的徵兆進行偵測。 In addition, in the case of detection of significant meteorological phenomena other than tornadoes, such as the detection of signs of heavy rain, it is also possible to use the general parameters as shown in diagram (a) and diagram (e) of Figure 6. It is used as a parameter to detect signs of significant meteorological phenomena other than tornadoes, and to detect signs of significant meteorological phenomena other than tornadoes.

又,在本實施形態中,係亦可使用複數之高速掃描氣象雷達。於此情況,係基於使用從各高速掃描氣象雷達所得到的受訊訊號資料r0而得到之3維資料,來算出龍捲風預測參數。之後,例如,係亦可藉由針對所算出之各龍捲風預測參數而進行比較等之評價,來以更高的精確度而偵測出龍捲風之發生的徵兆。 Further, in the present embodiment, a plurality of high-speed scanning weather radars can be used. In this case, the tornado prediction parameters are calculated based on the three-dimensional data obtained by using the received signal data r0 obtained from each high-speed scanning weather radar. Thereafter, for example, it is also possible to detect the occurrence of the tornado with higher accuracy by performing evaluations such as comparisons with the calculated tornado prediction parameters.

又,除了上述一般之龍捲風預測參數以外,作為龍捲風預測參數,例如,係亦可使用代表與降水雲50之最高 高度相對應的降水雲50之頂點的仰角之參數或者是代表與降水核心51之最高高度相對應的降水核心51之頂點的仰角之參數。 Moreover, in addition to the above-mentioned general tornado prediction parameters, as a tornado prediction parameter, for example, the highest representative and precipitation cloud 50 can also be used. The parameter of the elevation angle of the apex of the height corresponding precipitation cloud 50 is either a parameter representing the elevation angle of the apex of the precipitation core 51 corresponding to the highest height of the precipitation core 51.

如同上述一般,若依據第1實施形態,則藉由以短時間來取得對於顯著氣象現象之解析而言為必要的一組之3維資料,就算是對於像是龍捲風一般之以極短時間而發生的顯著氣象現象,也成為能夠以高精確度來進行預測。又,係成為能夠對於降水雲50之3維性的態樣,而在高解析度之各時間中進行解析,並對於使用者通知龍捲風之發生的可能性。 As described above, according to the first embodiment, it is possible to obtain a set of three-dimensional data necessary for analysis of a significant weather phenomenon in a short period of time, even for a very short time like a tornado. Significant meteorological phenomena have also become predictive of high accuracy. Moreover, it is possible to analyze the three-dimensionality of the precipitation cloud 50, and analyze it at each time of high resolution, and notify the user of the possibility of occurrence of a tornado.

例如,針對龍捲風等之在科學上仍有多數之尚未究明之處的顯著氣象現象,係成為能夠在高解析度之各時間中對於降水雲50之3維性的態樣進行解析。又,藉由使用利用高速掃描氣象雷達而在每約數十秒中所分別得到的3維資料,來檢測出龍捲風預測參數之特異性之時間變化,並將被檢測出來的特異性之時間變化視為龍捲風之發生的徵兆,係成為能夠使龍捲風之發生可能性的預測之精確度提昇。 For example, a significant meteorological phenomenon in which there is still a large number of scientifically unconstrained aspects such as a tornado is able to analyze the three-dimensional nature of the precipitation cloud 50 at various times of high resolution. Further, by using a three-dimensional data obtained by using a high-speed scanning weather radar in each of several tens of seconds, the time variation of the specificity of the tornado prediction parameter is detected, and the time specificity of the detected specificity is changed. The sign of the occurrence of a tornado is an increase in the accuracy of the prediction of the possibility of a tornado.

又,係成為能夠以約數十秒之間隔來實行龍捲風之發生可能性的解析以及判定。因此,例如,係亦成為能夠將龍捲風發生預測資訊,在不會有對於龍捲風之發生作誤判(亦即是,對於發生像是雖然對於使用者通知了龍捲風發生預測資訊,但是龍捲風卻並未發生之預測落空的情形作抑制)之情形的前提下來連續性且高頻度地作提供。故 而,係亦成為能夠對於使用者通知高精確度之龍捲風發生預測資訊。 Further, it is possible to analyze and determine the possibility of occurrence of a tornado at intervals of about several tens of seconds. Therefore, for example, the department has become able to predict the occurrence of a tornado, and there is no misjudgment for the occurrence of a tornado (that is, for the occurrence of a tornado prediction information for the user, but the tornado did not occur. In the case of the case where the prediction is unsuccessful, the situation is continuously and frequently provided. Therefore However, the system has also become a predictive information for tornadoes that can notify users of high accuracy.

又,係亦成為能夠即時性(realtime)地對於使用者提供龍捲風發生預測資訊。例如,係使用以一般市民等之一般性的使用者作為對象的應用程式軟體等,來作為服務而對於一般使用者提供龍捲風發生預測資訊。藉由此,係能夠即時性地喚起一般使用者之對於龍捲風的注意,而成為亦能夠對於避難等之提醒有所助益。 Moreover, it is also possible to provide the user with prediction information about the tornado occurrence in real time. For example, an application software such as a general user such as a general citizen is used as a service to provide a tornado prediction information to a general user. By this, it is possible to immediately arouse the attention of the general user to the tornado, and it is also helpful to remind the evacuation and the like.

(第2實施形態) (Second embodiment)

以下,參考圖面,對於適用有本發明之第2實施形態之氣象現象發生可能性判定方法的氣象現象發生可能性判定系統1作說明。另外,對於與第1實施形態相同之構成以及內容,係附加相同之元件符號,並省略其說明。 In the following, a weather phenomenon occurrence possibility determination system 1 to which the meteorological phenomenon occurrence possibility determination method according to the second embodiment of the present invention is applied will be described with reference to the drawings. The same components and contents as those in the first embodiment are denoted by the same reference numerals, and their description will be omitted.

本實施形態之氣象現象發生可能性判定系統1,係藉由因應於是否偵測到顯著氣象現象之發生的徵兆一事,來對於用以對於全方位而取得一連串的3維資料之全方位掃描模式(第1觀測模式)和用以對於關連於顯著氣象現象之發生的特定之方位而取得一連串的3維資料之扇區掃描模式(第2觀測模式)作切換,而以高精確度來預測顯著氣象現象之發生。 The meteorological phenomenon occurrence possibility determination system 1 of the present embodiment is an omnidirectional scanning mode for obtaining a series of three-dimensional data for omnidirectional by responding to whether or not a symptom of occurrence of a significant meteorological phenomenon is detected. (1st observation mode) and a sector scan mode (second observation mode) for obtaining a series of 3-dimensional data for a specific orientation related to the occurrence of a significant meteorological phenomenon, and predicting with high accuracy The occurrence of meteorological phenomena.

參考圖7之區塊圖,對於適用有本實施形態之氣象現象發生可能性判定方法的氣象現象發生可能性判定系統1之構成例作說明。以下,與第1實施形態相同的,作為顯 著氣象現象之其中一例,針對龍捲風作說明。 With reference to the block diagram of Fig. 7, a configuration example of the meteorological phenomenon occurrence possibility determination system 1 to which the meteorological phenomenon occurrence possibility determination method of the present embodiment is applied will be described. Hereinafter, the same as in the first embodiment, as a display One of the meteorological phenomena is described for the tornado.

氣象現象發生可能性判定系統1,係除了在圖1中所示一般之第1實施形態之氣象現象發生可能性判定系統1的構成要素之外,更進而具備有控制部40。 The meteorological phenomenon occurrence possibility determination system 1 includes the control unit 40 in addition to the components of the meteorological phenomenon occurrence possibility determination system 1 of the first embodiment shown in FIG.

在本實施形態中,作為高速掃描氣象雷達8,係想定為具備有小型的拋物面天線8a之拋物面型之氣象雷達。此高速掃描氣象雷達8,在全方位掃描模式中,例如,係藉由以較相位陣列氣象雷達之旋轉速度而更快的旋轉速度來使拋物面天線8a旋轉,而能夠以高速來至少掃描在為了以高精確度來預測龍捲風之發生所必要的一連串之3維資料(以下,稱作「一連串之全3維資料」)中之一部分之3維資料(以下,稱作「一連串之部分3維資料」),例如掃描為了偵測出龍捲風之發生的徵兆所需要之最小限度之3維資料。又,高速掃描氣象雷達8,在扇區掃描模式中,係能夠以高速來掃描一連串之全3維資料。 In the present embodiment, the high-speed scanning weather radar 8 is a weather radar equipped with a parabolic surface having a small parabolic antenna 8a. The high-speed scanning weather radar 8 can rotate at least at a high speed in the omni-directional scanning mode by, for example, rotating the parabolic antenna 8a at a faster rotational speed by the rotational speed of the phase-aligned weather radar. High-precision 3D data of a series of 3D data (hereinafter referred to as "a series of full 3D data") necessary for the occurrence of a tornado (hereinafter referred to as "a series of 3D data" "), for example, to scan the minimum 3-dimensional data needed to detect signs of a tornado. Further, the high-speed scanning weather radar 8 is capable of scanning a series of full 3-dimensional data at a high speed in the sector scanning mode.

另外,以下,當並不需要對於一連串之全3維資料和一連串之部分3維資料作區分的情況時,係將一連串之全3維資料和一連串之部分3維資料,記載為一連串之3維資料。 In addition, in the following, when it is not necessary to distinguish between a series of full 3-dimensional data and a series of partial 3-dimensional data, a series of full 3-dimensional data and a series of partial 3-dimensional data are recorded as a series of 3 dimensions. data.

高速掃描氣象雷達8,係基於後述之從控制部40所送來的關連於觀測模式之切換之控制資訊s2,來對於拋物面天線8a進行與各觀測模式相對應之控制。 The high-speed scanning weather radar 8 performs control corresponding to each observation mode on the parabolic antenna 8a based on the control information s2 associated with the switching of the observation mode sent from the control unit 40, which will be described later.

雷達訊號處理部9,係基於控制資訊s2,來對於觀測模式作切換,並例如進行關連於取得一連串之3維資料的 時序之同步處理,而在各觀測模式中,從高速掃描氣象雷達8來反覆取得一連串之3維資料。 The radar signal processing unit 9 switches the observation mode based on the control information s2, and is, for example, related to obtaining a series of 3-dimensional data. Synchronization of timing is performed, and in each observation mode, a series of 3-dimensional data is repeatedly obtained from the high-speed scanning weather radar 8.

龍捲風預測部20,係當基於藉由雷達訊號處理部9而在各觀測模式中所反覆取得的一連串之3維資料,來根據為了對於龍捲風之發生作預測而由龍捲風發生可能性解析部21所致的解析之結果,而在全方位掃描模式或者是扇區掃描模式中檢測出特異性之時間變化並偵測到龍捲風之發生之徵兆的情況時,判定龍捲風之發生的可能性之有無。 The tornado prediction unit 20 is based on a series of three-dimensional data that is repeatedly acquired in each observation mode by the radar signal processing unit 9, and is determined by the tornado occurrence possibility analysis unit 21 in order to predict the occurrence of the tornado. As a result of the analysis, when the time change of the specificity is detected in the omnidirectional scanning mode or the sector scanning mode and the sign of the occurrence of the tornado is detected, the possibility of occurrence of the tornado is determined.

又,龍捲風預測部20,係當在全方位掃描模式或者是扇區掃描模式中檢測出特異性之時間變化並偵測到龍捲風之發生之徵兆的情況時,將代表偵測到了龍捲風之發生之徵兆一事的偵測資訊s1,送至控制部40處。又,係當在扇區掃描模式中並未檢測出特異性之時間變化而並未偵測到龍捲風之發生之徵兆的情況時,將代表並未偵測到龍捲風之發生之徵兆一事的偵測資訊,送至控制部40處。 Further, the tornado prediction unit 20 detects that the occurrence of the tornado is detected when the time change of the specificity is detected in the omnidirectional scanning mode or the sector scanning mode and the sign of the occurrence of the tornado is detected. The detection information s1 of the symptom is sent to the control unit 40. Moreover, when the time change of the specificity is not detected in the sector scan mode and the sign of the occurrence of the tornado is not detected, the detection of the sign that the occurrence of the tornado is not detected will be detected. The information is sent to the control unit 40.

控制部40,係基於從龍捲風預測部20而來之偵測資訊s1,而進行用以對於觀測模式作切換之控制處理(以下,稱作「模式切換處理」)。之後,作為模式切換處理之結果,將控制資訊s2,送至高速掃描氣象雷達8以及雷達訊號處理部9處。 The control unit 40 performs control processing for switching the observation mode (hereinafter referred to as "mode switching processing") based on the detection information s1 from the tornado prediction unit 20. Thereafter, as a result of the mode switching process, the control information s2 is sent to the high-speed scanning weather radar 8 and the radar signal processing unit 9.

接著,參考圖8之區塊圖,針對控制部40之更詳細的構成例作說明。 Next, a more detailed configuration example of the control unit 40 will be described with reference to the block diagram of FIG.

控制部40,係具備有偵測資訊取得部41、和切換部 42、以及切換資訊記憶部49。又,切換部42,係具備有方位算出部44、和切換判定部46、以及控制資訊產生部48。 The control unit 40 includes a detection information acquisition unit 41 and a switching unit. 42. And switching the information storage unit 49. Further, the switching unit 42 includes an azimuth calculating unit 44, a switching determining unit 46, and a control information generating unit 48.

偵測資訊取得部41,係例如在各個預先所制定之一定期間的每一者中,取得從龍捲風預測部20所送來之偵測資訊s1。之後,將在所取得的偵測資訊s1中所包含之關連於偵測方位D之方位關連資訊k(D),送至方位算出部44處,該偵測方位D,係為關連於龍捲風之發生的特定之方位。 The detection information acquisition unit 41 acquires the detection information s1 sent from the tornado prediction unit 20, for example, in each of the predetermined periods defined in advance. Then, the azimuth related information k(D) related to the detected azimuth D included in the acquired detection information s1 is sent to the azimuth calculating unit 44, which is related to the tornado. The specific orientation that occurred.

在方位關連資訊k(D)中,係作為關連於偵測方位D之資訊,而例如包含有關連於被偵測到龍捲風之發生的徵兆之位置(以下,稱作「偵測位置」)之位置資訊、或者是關連於從高速掃描氣象雷達8所被設置之位置(以下,稱作「設置位置」)起直到偵測位置為止之距離(以下,稱作「偵測距離r」)之距離資訊。偵測位置,例如,係為降水雲50或降水核心51之中心位置。 In the azimuth related information k(D), it is used as information related to the detected position D, and for example, includes a position connected to the sign of the occurrence of the detected tornado (hereinafter referred to as "detected position"). The position information, or the distance from the position where the high-speed scanning weather radar 8 is set (hereinafter referred to as "set position") to the detected position (hereinafter, referred to as "detection distance r") News. The detected position, for example, is the center position of the precipitation cloud 50 or the precipitation core 51.

方位算出部44,係基於在從偵測資訊取得部41所送來的方位關連資訊k(D)中所包含之位置資訊,來算出在設置位置處之偵測方位D。又,係使用所算出的偵測方位D,來例如算出以偵測方位D為中心之方位的觀測範圍C。又,係基於在方位關連資訊k(D)中所包含之距離資訊,來算出偵測距離r。之後,將所算出的偵測方位D、觀測範圍C以及偵測距離r,送至切換判定部46處。 The azimuth calculation unit 44 calculates the detected orientation D at the installation position based on the position information included in the orientation-related information k(D) sent from the detection information acquisition unit 41. Further, using the calculated detected orientation D, for example, the observation range C in which the orientation centered on the detected orientation D is calculated is calculated. Further, the detection distance r is calculated based on the distance information included in the orientation-related information k(D). Thereafter, the calculated detection direction D, observation range C, and detection distance r are sent to the switching determination unit 46.

於此,參考圖9,針對偵測方位D等作更詳細的說 明。 Here, referring to FIG. 9, the detection orientation D and the like are described in more detail. Bright.

氣象現象發生可能性判定系統1,係在以高速掃描氣象雷達8為中心之半徑R之雷達範圍90中,對於成為龍捲風之發生之徵兆的偵測之對象之降水雲50進行觀測。 The meteorological phenomenon occurrence possibility determination system 1 observes the precipitation cloud 50 which is the target of the detection of the occurrence of the tornado in the radar range 90 having the radius R centered on the high-speed scanning weather radar 8.

方位算出部44,當在偵測方位D0-1處存在有降水雲50-1,並且針對降水雲50-1而偵測到了龍捲風之發生之徵兆的情況時,基於關連於降水雲50-1之方位關連資訊k(D0-1),來算出偵測方位D0-1。之後,算出以所算出的偵測方位D0-1為中心的從方位D1起直到方位D2為止之觀測範圍C1。於此,偵測方位D0-1和方位D1之間之角度θ1、以及偵測方位D0-1和方位D2之間之角度θ1,例如係為30度。 The azimuth calculating unit 44 is based on the case where the precipitation cloud 50-1 exists at the detected azimuth D0-1, and the sign of the occurrence of the tornado is detected for the precipitation cloud 50-1, based on the relationship with the precipitation cloud 50-1 The orientation is related to the information k (D0-1) to calculate the detected orientation D0-1. Thereafter, the observation range C1 from the orientation D1 to the orientation D2 centering on the calculated detection direction D0-1 is calculated. Here, the angle θ1 between the orientation D0-1 and the orientation D1 and the angle θ1 between the detection orientation D0-1 and the orientation D2 are detected, for example, 30 degrees.

又,方位算出部44,當降水雲50-1為存在於從高速掃描氣象雷達8起之半徑方向上的距離r1之位置處的情況時,係作為偵測距離r而例如算出距離r1。 Further, when the precipitation cloud 50-1 is at a position at a distance r1 in the radial direction from the high-speed scanning weather radar 8, the azimuth calculating unit 44 calculates the distance r1 as the detection distance r, for example.

又,方位算出部44,當降水雲50-1移動至降水雲50-2,並且針對降水雲50-2而偵測到了龍捲風之發生之徵兆的情況時,係基於關連於降水雲50-2之方位關連資訊k(D0-2),來算出偵測方位D0-2。之後,算出以所算出的偵測方位D0-2為中心的從方位D3起直到方位D4為止之觀測範圍C2。於此,偵測方位D0-2和方位D3之間之角度θ2、以及偵測方位D0-2和方位D4之間之角度θ2,例如係為30度。 Further, the azimuth calculating unit 44 is based on the case where the precipitation cloud 50-1 moves to the precipitation cloud 50-2 and detects the occurrence of the tornado against the precipitation cloud 50-2, based on the correlation with the precipitation cloud 50-2. The orientation information k (D0-2) is used to calculate the detected orientation D0-2. Thereafter, the observation range C2 from the orientation D3 to the orientation D4 centered on the calculated detection direction D0-2 is calculated. Here, the angle θ2 between the azimuth D0-2 and the azimuth D3 is detected, and the angle θ2 between the detected azimuth D0-2 and the azimuth D4 is, for example, 30 degrees.

如此這般,氣象現象發生可能性判定系統1,係能夠 隨著降水雲50之移動,而變更觀測範圍C之方位,來對於偵測到了龍捲風之發生之徵兆的降水雲50進行追蹤並對降水雲50進行觀測。 In this way, the meteorological phenomenon occurrence possibility determination system 1 is capable of As the precipitation cloud 50 moves, the orientation of the observation range C is changed to track the precipitation cloud 50 that detects the occurrence of the tornado and observe the precipitation cloud 50.

另外,角度θ,例如,係亦可因應於高速掃描氣象雷達8之性能、降水雲50等之氣象現象或者是龍捲風等之顯著氣象現象的種類、或者是偵測距離r,來設定為相異之值。例如,當高速掃描氣象雷達8具備有高時間解析度的情況時,係將角度θ縮小。又,當涵蓋廣範圍而發生氣象現象的情況時、或者是當以移動速度為快之氣象現象作為對象的情況時,係將角度θ增大。又,當偵測距離r為短的情況時,係將角度θ縮小。 In addition, the angle θ can be set to be different depending on, for example, the performance of the high-speed scanning weather radar 8, the meteorological phenomenon such as the precipitation cloud 50, or the type of significant weather phenomenon such as a tornado, or the detection distance r. The value. For example, when the high-speed scanning weather radar 8 has a high temporal resolution, the angle θ is reduced. Further, when a weather phenomenon occurs in a wide range, or when a weather phenomenon in which the moving speed is fast is targeted, the angle θ is increased. Further, when the detection distance r is short, the angle θ is reduced.

如此這般,藉由對於角度θ作變更,例如,係能夠為了以高精確度來預測龍捲風之發生,而對於更為合適之觀測範圍C進行扇區掃描。 In this way, by changing the angle θ, for example, it is possible to perform sector scanning for a more suitable observation range C in order to predict the occurrence of a tornado with high accuracy.

另外,扇區掃描,例如,係為藉由一面在方位方向上掃描觀測範圍C一面使拋物面天線8a在仰角方向上移動,而在短時間內對於較對全方位進行掃描而更窄的範圍內進行掃描,並能夠在高解析度時間內而取得一連串之全3維資料的掃描。 In addition, the sector scanning is performed by, for example, moving the parabolic antenna 8a in the elevation direction while scanning the observation range C in the azimuth direction, and narrowing it in a shorter time for scanning in a shorter time. Scanning is performed, and a series of full 3-dimensional data scans can be obtained in a high resolution time.

又,在圖9中,作為觀測範圍C,雖係展示有在特定之仰角處的特定之方位之範圍,但是,觀測範圍C,係為在特定之仰角的範圍中之特定之方位之範圍,亦即是係為2維之範圍。 Further, in FIG. 9, as the observation range C, although the range of the specific orientation at the specific elevation angle is shown, the observation range C is the range of the specific orientation in the range of the specific elevation angle. That is, it is a range of 2 dimensions.

回到圖8,方位算出部44,係亦可代替方位關連資訊 k(D),而使用被儲存在RAW資料儲存部13中之雷達資料d0。於此情況,例如,係以藉由偵測資訊取得部41而取得了偵測資訊s1一事作為觸發(trigger),來從RAW資料儲存部13取得關連於所取得的偵測資訊s1之雷達資料d0,並基於關連於在所取得的雷達資料d0中所包含之龍捲風之3維資料的極座標資料等,來算出偵測方位D等。 Referring back to FIG. 8, the azimuth calculation unit 44 can also replace the orientation related information. k(D), and the radar data d0 stored in the RAW data storage unit 13 is used. In this case, for example, the radar information of the acquired detection information s1 is obtained from the RAW data storage unit 13 by using the detection information acquisition unit 41 to obtain the detection information s1 as a trigger. D0, and based on the polar coordinate data related to the three-dimensional data of the tornado included in the obtained radar data d0, the detection direction D and the like are calculated.

又,方位算出部44,當已藉由龍捲風預測部20等而算出了偵測方位D,而在方位關連資訊k(D)中包含有偵測方位D的情況時,係並不算出偵測方位D地,而將在方位關連資訊k(D)中所包含之偵測方位D送至切換判定部46處。 Further, the azimuth calculating unit 44 calculates the detected azimuth D by the tornado prediction unit 20 or the like, and does not calculate the detection when the azimuth related information k(D) includes the detected azimuth D. The detection direction A included in the orientation-related information k(D) is sent to the switching determination unit 46.

切換判定部46,係在模式切換處理中,進行基於高速掃描氣象雷達8之性能等來判定是否能夠在全方位掃描模式中而於高解析度時間內取得一連串之全3維資料之處理(以下,稱作「切換判定處理」),並將切換判定處理之判定結果n送至控制資訊產生部48處。例如,在切換判定處理中,係判定是否能夠在全方位掃描模式中而於高解析度時間內取得在包含有觀測範圍C之特定之仰角之範圍內的一連串之全3維資料。 In the mode switching process, the switching determination unit 46 determines whether or not it is possible to acquire a series of full three-dimensional data in the high-resolution time in the omni-scan mode based on the performance of the high-speed scanning weather radar 8 (hereinafter). This is referred to as "switching determination process", and the determination result n of the switching determination process is sent to the control information generating unit 48. For example, in the switching determination process, it is determined whether or not a series of all three-dimensional data within a range including the specific elevation angle of the observation range C can be acquired in the high-resolution time in the omni-directional scanning mode.

切換判定部46,當在切換判定處理中,判定並無法在全方位掃描模式中而於高解析度時間內取得一連串之全3維資料的情況時,將用以從全方位掃描模式而切換成扇區掃描模式之判定結果n送至控制資訊產生部48處。另 一方面,當判定係能夠在全方位掃描模式中而於高解析度時間內取得一連串之全3維資料的情況時,係將用以並不切換成扇區掃描模式而維持於全方位掃描模式之判定結果n送至控制資訊產生部48處。 The switching determination unit 46 is configured to switch from the omnidirectional scanning mode to the case where it is not possible to obtain a series of full three-dimensional data in the high-resolution time in the omnidirectional scanning mode in the switching determination process. The result of the determination of the sector scan mode is sent to the control information generating unit 48. another On the one hand, when the decision is made to obtain a series of full 3-dimensional data in the high-resolution time in the omni-scan mode, it will be maintained in the omni-directional scan mode instead of switching to the sector scan mode. The result of the determination n is sent to the control information generating unit 48.

切換資訊記憶部49,係預先記憶有關連於高速掃描氣象雷達8之性能的雷達資訊w、和關連於在各顯著氣象現象之每一者中而互為相異之高解析度時間的時間資訊、和關連於在各顯著氣象現象之每一者中而互為相異之觀測範圍C之角度θ的角度資訊、以及關連於現在之觀測模式的模式資訊等。 The switching information storage unit 49 pre-memorizes the radar information w related to the performance of the high-speed scanning weather radar 8, and the time information related to the high-resolution time which is different from each other in each significant weather phenomenon. And angle information related to the angle θ of the observation range C which is different from each other in each of the significant weather phenomena, and mode information related to the current observation mode.

切換判定部46,例如,係基於從方位算出部44而送來之觀測範圍C、以及被記憶在切換資訊記憶部49中之雷達資訊w,來進行切換判定處理。 The switching determination unit 46 performs switching determination processing based on, for example, the observation range C sent from the orientation calculation unit 44 and the radar information w stored in the switching information storage unit 49.

例如,切換判定部46,當正在使用之高速掃描氣象雷達8的性能為較特定之氣象雷達(例如相位陣列氣象雷達)的性能而更低的情況時,係判定並無法在全方位掃描模式中而於高解析度時間內取得一連串之全3維資料,並將用以從全方位掃描模式而切換成扇區掃描模式之判定結果n送至控制資訊產生部48處。 For example, the switching determination unit 46 determines that it is not possible in the omnidirectional scanning mode when the performance of the high-speed scanning weather radar 8 being used is lower than that of a specific weather radar (for example, a phase array weather radar). A series of full 3-dimensional data is acquired in the high-resolution time, and the determination result n for switching from the omni-scan mode to the sector scanning mode is sent to the control information generating unit 48.

另一方面,切換判定部46,當正在使用之高速掃描氣象雷達8的性能為與特定之氣象雷達(例如相位陣列氣象雷達)的性能同等程度的情況時,係判定能夠在全方位掃描模式中而於高解析度時間內取得一連串之全3維資料,並將用以並不切換成扇區掃描模式而維持於全方位掃 描模式之判定結果n送至控制資訊產生部48處。 On the other hand, when the performance of the high-speed scanning weather radar 8 being used is equal to the performance of a specific weather radar (for example, phase array weather radar), the switching determination unit 46 determines that it can be in the omnidirectional scanning mode. And a series of full 3D data is obtained in a high resolution time, and will be maintained in a full sweep without switching to the sector scan mode. The determination result n of the drawing mode is sent to the control information generating unit 48.

又,切換判定部46,當基於被記憶在切換資訊記憶部49中之時間資訊等而例如判定就算是在作為高速掃描氣象雷達8而使用相位陣列氣象雷達的情況時也無法在全方位掃描模式中而於高解析度時間內取得一連串之全3維資料的情況時,係將用以從全方位掃描模式而切換成扇區掃描模式之判定結果n送至控制資訊產生部48處。 Further, the switching determination unit 46 determines that the phase omnidirectional weather radar is used as the high-speed scanning weather radar 8 based on the time information or the like stored in the switching information storage unit 49, for example, even in the omnidirectional scanning mode. In the case where a series of full 3-dimensional data is acquired in the high-resolution time, the determination result n for switching from the omni-scan mode to the sector scanning mode is sent to the control information generating unit 48.

又,切換判定部46,當基於被記憶在切換資訊記憶部49中之模式資訊等而判定現在之觀測模式係身為扇區掃描模式的情況時,例如當從龍捲風預測部20而送來了代表並無法藉由扇區掃描模式來偵測到龍捲風之發生之徵兆一事之偵測資訊的情況時,係將用以從扇區掃描模式而切換成全方位掃描模式之判定結果n送至控制資訊產生部48處。 In addition, when the current observation mode is determined to be the sector scan mode based on the mode information or the like stored in the switching information storage unit 49, the switching determination unit 46 sends the information from the tornado prediction unit 20, for example. When the representative does not detect the detection information of the occurrence of the tornado by the sector scanning mode, the determination result n for switching from the sector scanning mode to the omnidirectional scanning mode is sent to the control information. The generating portion 48 is located.

控制資訊產生部48,係基於判定結果n,而產生用以對觀測模式作切換或者是維持觀測模式之控制資訊s2,並將所產生的控制資訊s2,送至高速掃描氣象雷達8以及雷達訊號處理部9處。 The control information generating unit 48 generates control information s2 for switching the observation mode or maintaining the observation mode based on the determination result n, and sends the generated control information s2 to the high-speed scanning weather radar 8 and the radar signal. At the processing unit 9.

另外,在本實施形態之氣象現象發生可能性判定系統1中,當在全方位掃描模式中而偵測到了顯著氣象現象之發生之徵兆的情況時,係亦可在模式切換處理中,並不進行切換判定處理地而從全方位掃描模式來切換成扇區掃描模式。於此情況,控制資訊產生部48,例如,係以藉由偵測資訊取得部41而取得了偵測資訊s1一事作為觸發, 來產生用以對觀測模式作切換之控制資訊s2。 Further, in the meteorological phenomenon occurrence possibility determination system 1 of the present embodiment, when the symptom of the occurrence of a significant weather phenomenon is detected in the omnidirectional scanning mode, the mode switching process may not be performed. The switching determination process is performed to switch from the omnidirectional scanning mode to the sector scanning mode. In this case, the control information generating unit 48, for example, triggers the detection information s1 by the detection information acquisition unit 41 as a trigger. To generate control information s2 for switching the observation mode.

接著,參考圖10之流程圖,針對本實施形態之龍捲風徵兆偵測處理程序之其中一例作說明。 Next, an example of the tornado symptom detection processing program of the present embodiment will be described with reference to the flowchart of FIG.

首先,在全方位掃描模式中,係與第1實施形態相同的,進行有步驟S40、S42、S44、S46之處理。 First, in the omnidirectional scan mode, the processes of steps S40, S42, S44, and S46 are performed in the same manner as in the first embodiment.

接著,藉由控制部40,而進行模式切換處理(步驟S47)。而,在全方位掃描模式中,係與第1實施形態相同的,進行有步驟S48、S50之處理。 Next, the mode switching process is performed by the control unit 40 (step S47). In the omnidirectional scanning mode, the processes of steps S48 and S50 are performed in the same manner as in the first embodiment.

又,在步驟S47中,當從全方位掃描模式而切換至扇區掃描模式的情況時,係以扇區掃描模式而進行步驟S40之處理。 Further, in the case where the mode is switched from the omnidirectional scanning mode to the sector scanning mode in step S47, the processing of step S40 is performed in the sector scanning mode.

另外,步驟S47之處理,係亦可在步驟S48或步驟S50之處理之後再進行。 In addition, the processing of step S47 may be performed after the processing of step S48 or step S50.

接著,參考圖11之流程圖,針對步驟S47之模式切換處理程序之其中一例作說明。另外,圖11之流程圖,係對於從全方位掃描模式而切換為扇區掃描模式的模式切換處理程序之其中一例作展示。 Next, an example of the mode switching processing procedure of step S47 will be described with reference to the flowchart of FIG. In addition, the flowchart of FIG. 11 shows an example of a mode switching processing program for switching from the omnidirectional scanning mode to the sector scanning mode.

首先,藉由方位算出部44,而算出偵測方位D(步驟S110)。 First, the azimuth calculating unit 44 calculates the detected azimuth D (step S110).

接著,藉由切換判定部46,而判定是否能夠在全方位掃描模式中而於高解析度時間內取得一連串之全3維資料、亦即是判定是否能夠在高解析度時間等之特定時間內取得偵測方位D之3維資料(步驟S112)。 Next, by the switching determination unit 46, it is determined whether or not it is possible to acquire a series of all three-dimensional data in the high-resolution time in the omni-directional scanning mode, that is, whether it is possible to determine whether it is possible to perform the high-resolution time or the like within a specific time. The 3-dimensional data of the detected orientation D is obtained (step S112).

而,當判定為並無法在全方位掃描模式中而於高解析 度時間內取得一連串之全3維資料的情況時(步驟S112:NO),藉由切換判定部46,觀測模式係被從全方位掃描模式而切換成扇區掃描模式(步驟S114)。 However, when it is determined that it is not possible to perform high resolution in the omnidirectional scan mode When a series of all three-dimensional data is acquired in a time (step S112: NO), the switching mode is switched from the omnidirectional scanning mode to the sector scanning mode by the switching determination unit 46 (step S114).

另一方面,當判定係能夠在全方位掃描模式中而於高解析度時間內取得一連串之全3維資料的情況時(步驟S112:YES),藉由切換判定部46,在維持於全方位掃描模式的狀態下,觀測模式係並不會被作切換(步驟S116),圖11之模式切換處理係結束。 On the other hand, when it is determined that the series of full three-dimensional data can be acquired in the high-resolution time in the omnidirectional scanning mode (step S112: YES), the switching determination unit 46 is maintained in all directions. In the state of the scan mode, the observation mode is not switched (step S116), and the mode switching process of Fig. 11 is ended.

另外,係亦可跳過步驟S112之處理,並在步驟S110之後,進行步驟S114之處理。於此情況,例如在步驟S110中而算出了偵測方位D的情況時,於步驟S114中觀測模式係被作切換,並對於包含有所算出的偵測方位D的觀測範圍C而進行扇區掃描。 In addition, the processing of step S112 may be skipped, and after step S110, the processing of step S114 is performed. In this case, for example, when the detection direction D is calculated in step S110, the observation mode is switched in step S114, and the sector is performed for the observation range C including the calculated detection direction D. scanning.

又,例如,當已預先得知所使用的高速掃描氣象雷達8之性能、作為對象之顯著氣象現象之高解析度時間、或者是觀測範圍C的情況時,係亦可在較步驟S110之處理更之前而預先進行步驟S112之處理。 Further, for example, when the performance of the high-speed scanning weather radar 8 used, the high-resolution time of the significant weather phenomenon as the target, or the observation range C is known in advance, it may be processed in step S110. The processing of step S112 is performed in advance.

另外,就算是在作為高速掃描氣象雷達8而使用了相位陣列氣象雷達的情況時,亦能夠適用本實施形態。 In addition, even when a phase array weather radar is used as the high-speed scanning weather radar 8, the present embodiment can be applied.

另外,在請求項中,當基於由解析手段所致之前述解析之結果而藉由第1模式來檢測出了特異性之時間變化的情況時從第1模式而切換至第2模式之切換手段,例如,係對應於切換部42。在基於由解析手段所致之解析之結果而藉由第1模式或第2模式來檢測出了特異性之時間變 化的情況時判定氣象現象之發生的可能性之有無之第1判定手段,例如,係對應於龍捲風徵兆偵測部34。又,在基於由解析手段所致之解析之結果而藉由第1模式來檢測出了特異性之時間變化的情況時判定是否能夠在較氣象現象之發生所需要的時間而更短之時間內藉由第1模式來取得一連串之3維資料之第2判定手段,例如,係對應於切換判定部46。 Further, in the case of the request, when the time change of the specificity is detected by the first mode based on the result of the analysis by the analysis means, the switching means is switched from the first mode to the second mode. For example, it corresponds to the switching unit 42. The time variation in which the specificity is detected by the first mode or the second mode based on the result of the analysis by the analysis means The first determining means for determining the possibility of occurrence of a meteorological phenomenon in the case of the case, for example, corresponds to the tornado symptom detecting unit 34. Further, when the time change of the specificity is detected by the first mode based on the result of the analysis by the analysis means, it is determined whether or not the time required for the occurrence of the meteorological phenomenon can be shorter. The second determination means for obtaining a series of three-dimensional data by the first mode corresponds to, for example, the switching determination unit 46.

如同上述一般,若依據第2實施形態,則除了藉由第1實施形態所能夠發揮的作用效果以外,係能夠進而得到下述一般之效果。 As described above, according to the second embodiment, in addition to the operational effects that can be exhibited by the first embodiment, the following general effects can be obtained.

在氣象現象發生可能性判定處理中,藉由因應於高速掃描氣象雷達8之性能等來在偵測到顯著氣象現象之徵兆的情況時將氣象現象發生可能性判定系統1之觀測模式切換為合適之觀測模式,例如就算是在使用了拋物面型之氣象雷達的情況時,亦成為能夠在高解析度時間內而取得一連串之全3維資料,而成為能夠以高精確度來預測顯著氣象現象之發生。 In the meteorological phenomenon occurrence possibility determination process, the observation mode of the meteorological phenomenon occurrence possibility determination system 1 is switched to an appropriate condition when the symptom of the significant weather phenomenon is detected in response to the performance of the high-speed scanning weather radar 8 or the like. The observation mode, for example, even when a parabolic meteorological radar is used, it is possible to obtain a series of full 3-dimensional data in a high resolution time, and it is possible to predict significant weather phenomena with high accuracy. occur.

雖係針對本發明之數個實施形態而作了說明,但是,此些之實施形態,係僅為作為例子所提示者,而並非為對於本發明之範圍作限定。此些之新穎的實施形態,係可藉由其他之各種的形態來實施,在不脫離發明之要旨的範圍內,係可進行各種的省略、置換、變更。此些之實施形態及其變形,係被包含於發明之範圍以及要旨內,並且亦被包含於申請專利範圍中所記載之發明及其均等範圍內。 Although the embodiments of the present invention have been described, the embodiments are not intended to limit the scope of the present invention. The present invention may be embodied in various other forms, and various omissions, substitutions and changes may be made without departing from the scope of the invention. The embodiments and variations thereof are included in the scope of the invention and the scope of the invention, and are also included in the scope of the invention described in the claims.

21‧‧‧龍捲風發生可能性解析部 21‧‧‧ Tornado occurrence possibility analysis department

30‧‧‧解析資料取得部 30‧‧‧Analysis of Data Acquisition Department

32‧‧‧參數解析部 32‧‧‧Parameter Analysis Department

34‧‧‧龍捲風徵兆偵測部 34‧‧‧ Tornado Sign Detection Department

e0‧‧‧解析資料 E0‧‧‧ Analytical data

A、B、C、D、E‧‧‧龍捲風預測參數 A, B, C, D, E‧‧‧ tornado prediction parameters

f‧‧‧結果 F‧‧‧ Results

g‧‧‧資訊 g‧‧‧Information

Claims (17)

一種系統,係為使用雷達而判定氣象現象之發生的可能性之有無之系統,其特徵為,係具備有:取得手段,係朝向上空發射雷達波,並接收前述雷達波被構成雲之粒子所反射或散射所成的反射波或散射波,並且根據前述反射波或散射波,來在較前述氣象現象之發生所需要的時間而更短之時間內,反覆取得在前述氣象現象之預測中所需要的一連串之3維資料;和解析手段,係根據前述反覆取得之各3維資料,而進行用以檢測出關連於前述氣象現象之參數的特異性之時間變化之解析;和判定手段,係當基於前述解析之結果而檢測出了前述特異性之時間變化的情況時,判定前述氣象現象之發生的可能性之有無。 A system is a system for determining the possibility of occurrence of a meteorological phenomenon using a radar, and is characterized by: acquiring means for transmitting a radar wave toward the sky and receiving the particle of the radar wave Reflecting or scattering the reflected wave or scattered wave, and according to the reflected wave or the scattered wave, it is repeatedly obtained in the prediction of the meteorological phenomenon in a shorter time than the time required for the occurrence of the meteorological phenomenon. A series of three-dimensional data required; and an analytical means for performing a time change for detecting the specificity of a parameter related to the meteorological phenomenon based on the respective three-dimensional data obtained in the foregoing; and determining means When the temporal change of the specificity is detected based on the result of the above analysis, the possibility of occurrence of the aforementioned meteorological phenomenon is determined. 如申請專利範圍第1項所記載之系統,其中,前述雷達,係包含相位陣列氣象雷達。 The system of claim 1, wherein the radar comprises a phased array weather radar. 如申請專利範圍第1項或第2項所記載之系統,其中,前述解析手段,係檢測出前述參數之相對於時間的特異性之反曲點。 The system according to claim 1 or 2, wherein the analysis means detects an inflection point of the specificity of the parameter with respect to time. 如申請專利範圍第1項或第2項所記載之系統,其中,前述參數,係包含複數之參數,前述解析手段,係針對前述複數之參數的各者而檢測出前述特異性之時間變化, 前述判定手段,係因應於藉由前述解析手段而檢測出了前述特異性之時間變化的次數,來決定代表前述氣象現象之發生的可能性之高低之等級,並基於前述所決定之等級,來判定前述氣象現象之發生的可能性之有無。 The system according to claim 1 or 2, wherein the parameter includes a plurality of parameters, and the analyzing means detects a temporal change of the specificity for each of the plurality of parameters. The determination means determines the level of the possibility of occurrence of the meteorological phenomenon based on the number of times the temporal change of the specificity is detected by the analysis means, and based on the determined level. The possibility of determining the occurrence of the aforementioned meteorological phenomenon is determined. 如申請專利範圍第1項或第2項所記載之系統,其中,係更進而具備有:提示手段,係當藉由前述判定手段而判定係存在有前述氣象現象之發生之可能性的情況時,提示關連於前述氣象現象之發生之可能性之資訊。 The system according to the first or second aspect of the invention, wherein the system further includes: a prompting means for determining that there is a possibility of occurrence of the weather phenomenon by the determining means; , prompts information about the likelihood of occurrence of the aforementioned meteorological phenomena. 一種方法,係為使用雷達而判定氣象現象之發生的可能性之有無之方法,其特徵為:係朝向涵蓋關連於氣象現象之發生的範圍之上空發射雷達波,並接收前述雷達波被構成雲之粒子所反射或散射所成的反射波或散射波,並且根據前述反射波或散射波,來在較前述氣象現象之發生所需要的時間而更短之時間內,反覆取得在前述氣象現象之預測中所需要的一連串之3維資料,根據前述反覆取得之各3維資料,而進行用以檢測出關連於前述氣象現象之參數的特異性之時間變化之解析,當基於前述解析之結果而檢測出了前述特異性之時間變化的情況時,判定前述氣象現象之發生的可能性之有無。 A method is a method for determining the possibility of occurrence of a meteorological phenomenon using a radar, characterized in that a radar wave is transmitted over a range covering a occurrence of a meteorological phenomenon, and the radar wave is received to constitute a cloud. The reflected or scattered wave formed by the particles reflected or scattered by the particles, and according to the reflected wave or the scattered wave, the meteorological phenomenon is repeatedly obtained in a shorter time than the time required for the occurrence of the meteorological phenomenon. A series of three-dimensional data required for the prediction, based on the three-dimensional data obtained in the above-mentioned manner, and the analysis of the temporal change of the specificity of the parameter related to the meteorological phenomenon, based on the result of the foregoing analysis When the time change of the specificity is detected, the possibility of occurrence of the weather phenomenon is determined. 如申請專利範圍第6項所記載之方法,其中,前述雷達,係包含相位陣列氣象雷達。 The method of claim 6, wherein the radar comprises a phased array weather radar. 如申請專利範圍第6項或第7項所記載之方法, 其中,進行前述解析一事,係包含檢測出前述參數之相對於時間的特異性之反曲點。 If the method described in item 6 or item 7 of the patent application is applied, Among them, the above analysis includes the detection of the inflection point of the specificity of the aforementioned parameter with respect to time. 如申請專利範圍第6項或第7項所記載之方法,其中,前述參數,係包含複數之參數,進行前述解析一事,係包含針對前述複數之參數的各者而檢測出前述特異性之時間變化,進行前述判定一事,係因應於檢測出了前述特異性之時間變化的次數,來決定代表前述氣象現象之發生的可能性之高低之等級,並基於前述所決定之等級,來判定前述氣象現象之發生的可能性之有無。 The method of claim 6 or 7, wherein the parameter includes a plurality of parameters, and the analyzing is performed by including a time for detecting the specificity for each of the parameters of the plurality of parameters. The change is performed by determining the level of the possibility of occurrence of the meteorological phenomenon in response to the number of times of the change in the specificity of the specificity, and determining the weather based on the determined level. The possibility of occurrence of a phenomenon. 如申請專利範圍第6項或第7項所記載之方法,其中,係更進而包含有:當判定係存在有前述氣象現象之發生之可能性的情況時,提示關連於前述氣象現象之發生之可能性之資訊。 The method of claim 6 or 7, wherein the method further includes: when the determination is that the possibility of occurrence of the meteorological phenomenon occurs, the prompt is related to the occurrence of the meteorological phenomenon. Information about the possibilities. 一種系統,係為使用雷達而判定氣象現象之發生的可能性之有無之系統,其特徵為,係具備有:取得手段,係朝向上空發射雷達波,並接收前述雷達波被構成雲之粒子所反射或散射所成的反射波或散射波,並且根據前述反射波或散射波,來藉由第1模式或第2模式來反覆取得在前述氣象現象之預測中所需要的一連串之3維資料,其中,前述第1模式,係對於全方位而取得前述一連串之3維資料,前述第2模式,係對於關連於前述 氣象現象之發生的特定之方位而取得前述一連串之3維資料;和解析手段,係根據藉由前述第1模式或前述第2模式所取得之前述反覆取得之各3維資料,而進行用以檢測出關連於前述氣象現象之參數的特異性之時間變化之解析;和切換手段,係當基於由前述解析手段所致之前述解析之結果而藉由前述第1模式來檢測出了前述特異性之時間變化的情況時,從前述第1模式來切換為前述第2模式:和第1判定手段,係當基於由前述解析手段所致之前述解析之結果而藉由前述第1模式或前述第2模式來檢測出了前述特異性之時間變化的情況時,判定前述氣象現象之發生的可能性之有無。 A system is a system for determining the possibility of occurrence of a meteorological phenomenon using a radar, and is characterized by: acquiring means for transmitting a radar wave toward the sky and receiving the particle of the radar wave Reflecting or scattering a reflected wave or a scattered wave, and repeatedly obtaining a series of three-dimensional data required for prediction of the weather phenomenon by the first mode or the second mode based on the reflected wave or the scattered wave. In the first mode, the series of three-dimensional data is obtained for all directions, and the second mode is related to the foregoing. Obtaining the series of three-dimensional data in a specific orientation of the occurrence of the meteorological phenomenon; and the analyzing means is based on each of the three-dimensional data acquired by the above-mentioned first mode or the second mode Detecting a temporal change in the specificity of the parameter related to the meteorological phenomenon; and switching means detecting the specificity by the first mode based on the result of the analysis by the analysis means When the time is changed, switching from the first mode to the second mode and the first determining means are based on the result of the analysis by the analyzing means, and the first mode or the first In the case where the time change of the specificity is detected in the 2 mode, the possibility of occurrence of the weather phenomenon is determined. 如申請專利範圍第11項所記載之系統,其中,前述雷達,係包含拋物面型之氣象雷達。 The system of claim 11, wherein the radar includes a parabolic meteorological radar. 如申請專利範圍第11項或第12項所記載之系統,其中,係更進而具備有:第2判定手段,係當基於由前述解析手段所致之前述解析之結果而藉由前述第1模式來檢測出了前述特異性之時間變化的情況時,判定是否能在較前述氣象現象之發生所需要之時間而更短的時間內藉由前述第1模式來取得前述一連串之3維資料,前述切換手段,係當藉由前述第2判定手段而判定並 不可能藉由前述第1模式來取得前述一連串之3維資料的情況時,從前述第1模式來切換至前述第2模式,並當藉由前述第2判定手段而判定為能夠藉由前述第1模式來取得前述一連串之3維資料的情況時,並不從前述第1模式來切換至前述第2模式地而維持於前述第1模式。 The system according to claim 11 or 12, further comprising: the second determining means, wherein the first mode is based on a result of the analysis by the analyzing means When the time change of the specificity is detected, it is determined whether the series of three-dimensional data can be obtained by the first mode in a shorter time than the time required for the occurrence of the meteorological phenomenon. The switching means is determined by the second determining means When it is not possible to obtain the above-described series of three-dimensional data by the first mode, it is possible to switch from the first mode to the second mode, and it is determined by the second determination means that the first When the first three-dimensional data is acquired in the first mode, the first mode is not switched from the first mode to the second mode. 如申請專利範圍第11項或第12項所記載之系統,其中,前述切換手段,當基於由前述解析手段所致之前述解析之結果,而並未藉由前述第2模式來檢測前述特異性之時間變化的情況時,係從前述第2模式而切換至前述第1模式。 The system according to claim 11, wherein the switching means detects the specificity by the second mode based on the result of the analysis by the analyzing means. When the time changes, the second mode is switched to the first mode. 一種方法,係為使用雷達而判定氣象現象之發生的可能性之有無之方法,其特徵為:係朝向上空發射雷達波,並接收前述雷達波被構成雲之粒子所反射或散射所成的反射波或散射波,並且根據前述反射波或散射波,來藉由第1模式或第2模式來反覆取得在前述氣象現象之預測中所需要的一連串之3維資料,其中,前述第1模式,係對於全方位而取得前述一連串之3維資料,前述第2模式,係對於關連於前述氣象現象之發生的特定之方位而取得前述一連串之3維資料,根據藉由前述第1模式或前述第2模式所取得之前述反覆取得之各3維資料,而進行用以檢測出關連於前述氣象現象之參數的特異性之時間變化之解析,當基於前述解析之結果而藉由前述第1模式來檢測出了前述特異性之時間變化的情況時,從前述第1模式來切 換為前述第2模式,當基於前述解析之結果而藉由前述第1模式或前述第2模式來檢測出了前述特異性之時間變化的情況時,判定前述氣象現象之發生的可能性之有無。 A method for determining the possibility of occurrence of a meteorological phenomenon using a radar is characterized in that a radar wave is emitted toward the sky and receives a reflection of the radar wave reflected or scattered by particles constituting the cloud. a series of three-dimensional data required for the prediction of the weather phenomenon by the first mode or the second mode, based on the reflected wave or the scattered wave, and the first mode, Obtaining the series of three-dimensional data for all directions, wherein the second mode acquires the series of three-dimensional data for a specific orientation related to the occurrence of the meteorological phenomenon, according to the first mode or the foregoing In the three-dimensional data obtained by the above-mentioned two modes, the three-dimensional data obtained by the above-mentioned repeated detection, the analysis of the temporal change of the specificity of the parameter related to the meteorological phenomenon is performed, and based on the result of the analysis, the first mode is used. When the time change of the specificity is detected, the first mode is cut. In the second mode, when the temporal change of the specificity is detected by the first mode or the second mode based on the result of the analysis, it is determined whether or not the possibility of occurrence of the meteorological phenomenon is present. . 如申請專利範圍第15項所記載之方法,其中,係更進而當基於前述解析之結果而藉由前述第1模式來檢測出了前述特異性之時間變化的情況時,判定是否能在較前述氣象現象之發生所需要之時間而更短的時間內藉由前述第1模式來取得前述一連串之3維資料,進行前述切換一事,係當藉由判定是否能夠取得前述一連串之3維資料一事而判定並不可能藉由前述第1模式來取得前述一連串之3維資料的情況時,從前述第1模式來切換至前述第2模式,並當藉由判定是否能夠取得前述一連串之3維資料一事而判定為可能藉由前述第1模式來取得前述一連串之3維資料的情況時,並不從前述第1模式來切換至前述第2模式地而維持於前述第1模式。 The method according to claim 15, wherein when the temporal change of the specificity is detected by the first mode based on the result of the analysis, it is determined whether the When the meteorological phenomenon takes place in a shorter period of time, the aforementioned three-dimensional data is acquired by the first mode, and the switching is performed by determining whether or not the series of three-dimensional data can be obtained. When it is determined that it is not possible to obtain the series of three-dimensional data by the first mode, the first mode is switched to the second mode, and it is determined whether or not the series of three-dimensional data can be obtained. When it is determined that the above-described series of three-dimensional data is acquired by the first mode, the first mode is not switched from the first mode to the second mode. 如申請專利範圍第15項或第16項所記載之方法,其中,進行前述切換一事,當基於前述解析之結果,而並未藉由前述第2模式來檢測前述特異性之時間變化的情況時,係從前述第2模式而切換至前述第1模式。 The method of claim 15 or claim 16, wherein the switching is performed, and when the temporal change of the specificity is not detected by the second mode based on the result of the analysis The system switches from the second mode to the first mode.
TW105134830A 2016-01-22 2016-10-27 Meteorological phenomenon occurrence possibility determination system and method TWI625537B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016010892 2016-01-22

Publications (2)

Publication Number Publication Date
TW201730582A true TW201730582A (en) 2017-09-01
TWI625537B TWI625537B (en) 2018-06-01

Family

ID=59362670

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105134830A TWI625537B (en) 2016-01-22 2016-10-27 Meteorological phenomenon occurrence possibility determination system and method

Country Status (3)

Country Link
JP (1) JP2017134062A (en)
TW (1) TWI625537B (en)
WO (1) WO2017126171A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI676815B (en) * 2018-03-05 2019-11-11 日商東芝股份有限公司 Weather radar device and rain forecasting method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3940431A4 (en) 2019-03-12 2022-11-30 Kabushiki Kaisha Toshiba Lightning estimation device, system, and method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3473385B2 (en) * 1998-03-25 2003-12-02 三菱電機株式会社 Weather radar control method
JP3636076B2 (en) * 2001-01-19 2005-04-06 三菱電機株式会社 Turbulence detector
JP4067999B2 (en) * 2003-04-11 2008-03-26 三菱電機株式会社 Lightning observation system
US7109913B1 (en) * 2004-05-04 2006-09-19 Rockwell Collins, Inc. Airborne weather radar system and radar display
JP5395692B2 (en) * 2009-04-02 2014-01-22 株式会社東芝 Meteorological radar apparatus and meteorological observation method
US8665133B2 (en) * 2010-02-04 2014-03-04 Honeywell International Inc. Methods and systems for presenting weather hazard information on an in-trail procedures display
CN103245950A (en) * 2012-02-09 2013-08-14 北京雷音电子技术开发有限公司 Meteorological terminal matched and connected with multifunctional radar
JP2014173865A (en) * 2013-03-06 2014-09-22 Toshiba Corp Weather radar device, observation sequence creation method and observation sequence creation program
CN104730524B (en) * 2015-03-11 2017-05-24 马舒庆 Array weather radar detection system and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI676815B (en) * 2018-03-05 2019-11-11 日商東芝股份有限公司 Weather radar device and rain forecasting method

Also Published As

Publication number Publication date
JP2017134062A (en) 2017-08-03
WO2017126171A1 (en) 2017-07-27
TWI625537B (en) 2018-06-01

Similar Documents

Publication Publication Date Title
US8818029B1 (en) Weather forecasting systems and methods
US9869766B1 (en) Enhancement of airborne weather radar performance using external weather data
US9535158B1 (en) Weather radar system and method with fusion of multiple weather information sources
US10302815B1 (en) System and method of integrating global convective weather
EP2182386B1 (en) Enhanced alerting of characteristic weather hazards
EP2339371B1 (en) Inference of turbulence hazard from proximity to radar turbulence measurement
US9689984B1 (en) Weather radar system and method with latency compensation for data link weather information
JP6689396B2 (en) Weather forecasting device, weather forecasting method, and program
JP6756889B1 (en) Vortex detector, vortex detection method, program and trained model
JP2009031188A (en) Suspicious ship supervisory device
CN112949782A (en) Target detection method, device, equipment and storage medium
CN111175755A (en) Lightning comprehensive detection early warning system and lightning detection method thereof
TWI625537B (en) Meteorological phenomenon occurrence possibility determination system and method
CN110596710A (en) Fire monitoring and decision-making system and method based on X-band dual-polarization weather radar network
CN104237890A (en) Recognition and forecast method for rainstorm caused by train effect
JP7386136B2 (en) Cloud height measurement device, measurement point determination method, and cloud type determination method
KR20220026400A (en) System for real-time weather changes prediction and method thereof
Domps et al. A reanalysis of the October 2016 “Meteotsunami” in British Columbia with help of high-frequency radars and autoregressive modeling
US20200363460A1 (en) Lightning estimation apparatus, system, and method
JP6316970B2 (en) Weather radar control apparatus, weather observation system, weather radar control method, and weather radar control program
CN111366920A (en) Radar photoelectric tracking system of offshore wind farm
JP4266858B2 (en) Local heavy rain monitoring system
KR20130049521A (en) Apparatus and method for predicting precipitation echo route
Rossi et al. Real-time hazard approximation of long-lasting convective storms using emergency data
JP2011033528A (en) Method and system of automatically tracking weather phenomenon