TW201728964A - System for adjusting field depth distance of multiple-depth displaying and method thereof that comprises at least one fixed micro projector and more than one adjustable micro projector to achieve the purpose of multiple-depth displaying - Google Patents

System for adjusting field depth distance of multiple-depth displaying and method thereof that comprises at least one fixed micro projector and more than one adjustable micro projector to achieve the purpose of multiple-depth displaying Download PDF

Info

Publication number
TW201728964A
TW201728964A TW105103659A TW105103659A TW201728964A TW 201728964 A TW201728964 A TW 201728964A TW 105103659 A TW105103659 A TW 105103659A TW 105103659 A TW105103659 A TW 105103659A TW 201728964 A TW201728964 A TW 201728964A
Authority
TW
Taiwan
Prior art keywords
depth
projector
micro
field
adjusting
Prior art date
Application number
TW105103659A
Other languages
Chinese (zh)
Other versions
TWI594019B (en
Inventor
tai-guo Chen
hong-bin Cai
Original Assignee
tai-guo Chen
hong-bin Cai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by tai-guo Chen, hong-bin Cai filed Critical tai-guo Chen
Priority to TW105103659A priority Critical patent/TWI594019B/en
Application granted granted Critical
Publication of TWI594019B publication Critical patent/TWI594019B/en
Publication of TW201728964A publication Critical patent/TW201728964A/en

Links

Abstract

Disclosed are system for adjusting field depth distance of multiple-depth displaying, as well as method thereof, which comprises at least one fixed micro projector and more than one adjustable micro projector. The fixed micro projector and the adjustable micro projector are both capable of respectively projecting a two-dimensional image onto at least one reflector. Light beams reflected by the reflector, when intersecting each other at a direction opposite to the light beams, form a virtual image. Then, an increased number of superimposingly focused images can be formed by controlling a distance between the adjustable micro projector and the fixed micro projector, or varying an angle of an optical path and an image output position of the adjustable micro projector, or allowing the adjustable micro projector and the fixed micro projector to respectively project images on different reflectors. With the technique of this invention, when viewed one single eye, optical focus can be formed; if the technique of this invention is applied to two eyes, then the virtual image observed by the two eyes may be combined to obtain an effect of stereo depth to thereby achieve the purpose of multiple-depth image.

Description

一種調整多深度顯示之景深距離的系統及其方法System and method for adjusting depth of field of multi-depth display

本發明係關於一種調整多深度顯示之景深距離的系統及其方法,特別是指一種能夠透過多光源或多光源角度、來達成多景深影像之效果之系統及其方法。The present invention relates to a system and method for adjusting the depth of field of a multi-depth display, and more particularly to a system and method for achieving the effect of multiple depth of field images through multiple light sources or multiple light source angles.

目前,智慧眼鏡將開創新的行動運算裝置使用模式。Google Glass在業界掀起話題後,智慧眼鏡開發熱潮正持續延燒,目前大多製造商皆計畫導入微投影顯示技術,進而實現可透視的顯示器,並配合簡單操作的軟體介面,讓產品提供多功能用途,吸引消費者採購。At present, smart glasses will open a new mobile computing device usage model. After Google Glass started a topic in the industry, the development trend of smart glasses is continuing to burn. At present, most manufacturers plan to introduce micro-projection display technology to realize a see-through display, and with a simple operation software interface, the product can provide multi-purpose use. To attract consumers to purchase.

目前主流的微投影顯示技術可分為數位光源處理(DLP)、微機電系統(MEMS)雷射、液晶覆矽(LCOS,Liquid Crystal on Silicon)微型投影機等,其中,LCoS微投影顯示技術原先應用於微投影應用,不過其因具有省電、體積小、虛擬螢幕尺寸優勢,適合應用在智慧眼鏡產品(例如Google Glass智慧眼鏡採用的便是LCoS微投影顯示技術),讓使用者能夠獲得猶如大尺寸畫面的視覺享受。At present, the mainstream micro-projection display technology can be divided into digital light source processing (DLP), micro-electromechanical system (MEMS) laser, liquid crystal on-silicon (LCOS) micro-projector, etc., wherein LCoS micro-projection display technology originally It is used in micro-projection applications, but it has the advantages of power saving, small size, and virtual screen size. It is suitable for smart glasses products (such as LCoS micro-projection display technology used by Google Glass smart glasses), so that users can get as much as they can. Visual enjoyment of large size screens.

其中LCoS是一種CMOS晶片,採用CMOS backplane半導體製程技術,其最大特色在於基底所使用的材質為單晶矽,故具有良好的電子移動率;此外,LCoS不僅具有高解析、高品質及低成本的優勢,更繼承了LCD技術的優點,並克服LCD的不足之處,因此LCoS擁有諸多LCD所不具備的優點;LCoS is a CMOS chip that uses CMOS backplane semiconductor process technology. Its main feature is that the substrate is made of single crystal germanium, so it has good electron mobility. In addition, LCoS not only has high resolution, high quality and low cost. Advantages, and inherit the advantages of LCD technology, and overcome the shortcomings of LCD, so LCoS has many advantages that LCD does not have;

然而,目前的三維立體影像通常採用兩台LCOS光學引擎雙鏡頭兩路同步輸出信號,從而達到畫面重疊的目的,而習用有使用多層玻璃以達到景深的效果,但為了提高景深的效果,則必須使用越多層玻璃,因此反射鏡本身則會越來越厚,由此可知,習用透過多層玻璃來達到景深的效果是有缺限存在的。However, the current three-dimensional stereoscopic image usually uses two LCOS optical engine dual-lens two-way synchronous output signals to achieve the purpose of overlapping images, and the use of multiple layers of glass to achieve depth of field is used, but in order to improve the depth of field effect, it is necessary to The more the multi-layer glass is used, the larger the thickness of the mirror itself is. Therefore, it is known that there is a limitation in the effect of using the multi-layer glass to achieve the depth of field.

因此,若能夠使用至少一組可調整式微型投影器與一組以上的固定式微型投影器,並進行控制一可調整式微型投影器與一固定式微型投影器之間的距離或/及改變光路徑的角度,則能夠形成虛像以達到顯示多景深影像之目的,如此將能夠克服習用三維立體影像產生之缺點,如此應為一最佳解決方案。Therefore, if at least one set of adjustable micro-projectors and more than one set of fixed micro-projectors can be used, and the distance between the adjustable micro-projector and a fixed micro-projector can be controlled and/or changed The angle of the light path can form a virtual image to achieve the purpose of displaying multiple depth of field images, which will overcome the shortcomings of the conventional three-dimensional image generation, and this should be an optimal solution.

本發明即在於提供一種調整多深度顯示之景深距離的系統及其方法,能夠透過控制一可調整式微型投影器與一固定式微型投影器之間的距離或/及改變光路徑的角度,則能夠增加形成多個重疊聚焦的影像,以達到顯示多景深影像之目的。The present invention is to provide a system and method for adjusting the depth of field of a multi-depth display, which can control the distance between an adjustable micro-projector and a fixed micro-projector or/and change the angle of the optical path. It is possible to increase the formation of multiple overlapping focused images for the purpose of displaying multiple depth of field images.

可達成上述一種調整多深度顯示之景深距離的系統及其方法,其中該使用多光源或多光源角度來調整多深度顯示之景深距離的系統,係包含:至少一反射鏡;至少一個固定式微型投影器,係將一二維影像投影至該反射鏡上;一個以上的可調整式微型投影器,係設置於該固定式微型投影器之一側,用以將一二維影像投影至該反射鏡上;以及一反射光束聚焦處理器,係與該固定式微型投影器及該可調整式微型投影器相連接,用以控制該固定式微型投影器及該可調整式微型投影器投影至該反射鏡上所產生之反射光束的路徑,以使該反射鏡反射出的光束於該反射光束的相反方向交會而形成虛像,以形成多重疊聚焦成像、並達到多景深影像之效果。The above system and method for adjusting the depth of field of a multi-depth display can be achieved, wherein the system for adjusting the depth of field of the multi-depth display using multiple light sources or multiple light source angles comprises: at least one mirror; at least one fixed miniature a projector that projects a two-dimensional image onto the mirror; one or more adjustable micro-projectors are disposed on one side of the fixed micro-projector for projecting a two-dimensional image to the reflection And a reflected beam focusing processor coupled to the fixed pico projector and the adjustable micro projector for controlling the fixed micro projector and the adjustable micro projector to project to the The path of the reflected beam generated on the mirror is such that the reflected beam of the mirror intersects in the opposite direction of the reflected beam to form a virtual image to form a multi-overlapping focused imaging and achieve multi-depth image.

更具體的說,所述固定式微型投影器係為一矽基液晶雷射投影裝置。More specifically, the fixed pico projector is a germanium-based liquid crystal laser projection device.

更具體的說,所述可調整式微型投影器係為一矽基液晶雷射投影裝置。More specifically, the adjustable micro-projector is a 矽-based liquid crystal laser projection device.

更具體的說,所述可調整式微型投影器係為一能夠移動的微型投影設備、一能夠改變投射方向的微型投影設備或是一能夠移動及改變投射方向的微型投影設備。More specifically, the adjustable micro-projector is a movable micro-projection device, a micro-projection device capable of changing the projection direction, or a micro-projection device capable of moving and changing the projection direction.

更具體的說,所述能夠控制該可調整式微型投影器與該固定式微型投影器之間的距離,能夠使重疊聚焦形成之虛像移動靠近或遠離該反射鏡,以達到多景深影像控制之效果。More specifically, the distance between the adjustable micro-projector and the fixed micro-projector can be controlled to move the virtual image formed by the overlapping focus closer to or away from the mirror to achieve multi-depth image control. effect.

更具體的說,所述能夠控制該可調整式微型投影器所產生之光路徑的角度,能夠使重疊聚焦形成之虛像移動靠近或遠離該反射鏡。More specifically, the ability to control the angle of the light path produced by the adjustable microprojector enables the virtual image formed by the overlapping focus to move closer to or away from the mirror.

更具體的說,所述能夠控制該可調整式微型投影器之影像輸出位置,能夠使重疊聚焦形成之虛像移動靠近或遠離該反射鏡。More specifically, the image output position of the adjustable micro projector can be controlled to move the virtual image formed by the overlapping focus closer to or away from the mirror.

更具體的說,所述更包含有兩個以上的反射鏡,而該可調整式微型投影器與該固定式微型投影器能夠分別投射在不同位置的反射鏡上,並由不同位置的反射鏡分別反射出的光束在反射光束的相反方向交會而形成虛像。More specifically, the further includes more than two mirrors, and the adjustable micro projector and the fixed micro projector can be respectively projected on mirrors at different positions, and mirrors at different positions The separately reflected beams intersect in opposite directions of the reflected beam to form a virtual image.

更具體的說,所述多景深影像係為三維影像或是景深隨時間改變的四維影像。More specifically, the multi-depth image is a three-dimensional image or a four-dimensional image in which the depth of field changes with time.

更具體的說,所述固定式微型投影器能夠於任一或多個方向可設置一個以上的可調整式微型投影器。More specifically, the fixed pico-projector can be configured with more than one adjustable micro-projector in either or more directions.

更具體的說,所述可調整式微型投影器數量越多,能夠同時形成的重疊聚焦會越多,則多景深影像之效果會越明顯。More specifically, the more the number of adjustable micro-projectors, the more overlapping focus that can be formed simultaneously, the more obvious the effect of multiple depth-of-field images.

更具體的說,所述固定式微型投影器與該可調整式微型投影器所輸出之二維影像的像素值係為相同。More specifically, the fixed micro-projector and the adjustable micro-projector output the same two-dimensional image pixel values.

更具體的說,所述反射光束聚焦處理器能夠控制該多重疊聚焦成像之位置係為不同光束路徑到達單一相同眼睛所形成、或是不同光束路徑分別到達不同眼睛後的虛像再重疊形成。More specifically, the reflected beam focusing processor can control the position of the multi-overlapping focus imaging to be formed by different beam paths reaching a single identical eye or after different beam paths respectively reaching different eyes.

而本發明之使用多光源或多光源角度來調整多深度顯示之景深距離的方法,其步驟為: (1)     透過至少一個固定式微型投影器與一個以上的可調整式微型投影器,將一二維影像分別投影至至少一反射鏡上;以及 (2)     再使該反射鏡反射出的光束於該反射光束的相反方向交會而形成虛像,以形成多重疊聚焦成像、並達到多景深影像之效果。The method of the present invention for adjusting the depth of field of a multi-depth display using multiple light sources or multiple light source angles is as follows: (1) transmitting at least one fixed micro projector and one or more adjustable micro projectors The two-dimensional images are respectively projected onto at least one of the mirrors; and (2) the light beams reflected by the mirrors are intersected in opposite directions of the reflected light beams to form a virtual image to form a multi-overlapping focused image and to achieve multiple depth of field images. effect.

更具體的說,所述固定式微型投影器及該可調整式微型投影器係為一種使用矽基液晶雷射投影技術之投影設備。More specifically, the fixed pico projector and the adjustable micro projector are projection devices using a silliman-based liquid crystal laser projection technology.

更具體的說,所述控制該固定式微型投影器及該可調整式微型投影器之間的距離,能夠使重疊聚焦形成之虛像移動靠近或遠離該反射鏡,以達到多景深影像控制之效果。More specifically, the controlling the distance between the fixed pico projector and the adjustable micro projector can move the virtual image formed by the overlapping focus closer to or away from the mirror to achieve the effect of multiple depth image control. .

更具體的說,所述能夠控制該可調整式微型投影器所產生之光路徑的角度,能夠使重疊聚焦形成之虛像移動靠近或遠離該反射鏡。More specifically, the ability to control the angle of the light path produced by the adjustable microprojector enables the virtual image formed by the overlapping focus to move closer to or away from the mirror.

更具體的說,所述能夠控制該可調整式微型投影器之影像輸出位置,能夠使重疊聚焦形成之虛像移動靠近或遠離該反射鏡。More specifically, the image output position of the adjustable micro projector can be controlled to move the virtual image formed by the overlapping focus closer to or away from the mirror.

更具體的說,所述更能夠將該可調整式微型投影器與該固定式微型投影器能夠分別投射在不同位置的反射鏡上,並由不同位置的反射鏡分別反射出的光束在反射光束的相反方向交會而形成虛像。More specifically, the adjustable micro-projector and the fixed micro-projector can be respectively projected on mirrors at different positions, and the reflected light beams respectively reflected by the mirrors at different positions are reflected beams. The opposite direction meets to form a virtual image.

更具體的說,所述多景深影像係為三維影像或是景深隨時間改變的四維影像。More specifically, the multi-depth image is a three-dimensional image or a four-dimensional image in which the depth of field changes with time.

更具體的說,所述固定式微型投影器及該可調整式微型投影器的數量越多,同點形成聚焦次數越多,則多景深影像之效果會越明顯。More specifically, the more the number of the fixed micro-projector and the adjustable micro-projector, the more the number of times of focusing at the same point, the more obvious the effect of the multi-depth image.

更具體的說,所述固定式微型投影器及該可調整式微型投影器投影至該反射鏡上所產生之反射光束無法重疊聚焦時,能夠進一步控制該可調整式微型投影器所輸出之二維影像,來使該可調整式微型投影器至該反射鏡上所產生之虛像的畫素位置能重疊於該固定式微型投影器投影至該反射鏡上所產生之反射光束上(能夠透過控制該可調整式微型投影器與固定式微型投影器之間的距離、或是改變該可調整式微型投影器之光路徑的角度、影像輸出位置、亦或是將可調整式微型投影器與固定式微型投影器分別投影於不同的反射鏡上,來修正無法重疊聚焦之情況)。More specifically, when the fixed micro-projector and the reflected light beam generated by the adjustable micro-projector projected onto the mirror cannot overlap, the second output of the adjustable micro-projector can be further controlled. Dimensional image, such that the pixel position of the virtual image generated by the adjustable micro-projector to the mirror can be superimposed on the reflected beam generated by the fixed micro-projector projected onto the mirror (can be controlled by The distance between the adjustable micro projector and the fixed pico projector, or the angle of the light path of the adjustable micro projector, the image output position, or the adjustable micro projector and the fixed The miniature projectors are respectively projected on different mirrors to correct the case where the focus cannot be overlapped).

更具體的說,更能夠控制該可調整式微型投影器輸出光線或影像接近或遠離該固定式微型投影器的時間,而時間越短或是可調整式微型投影器之影像接近或遠離該固定式微型投影器輸出之影像的每一距離越短,則形成的重疊聚焦的影像則會越多、且影像之間改變景深的連續變化會越清楚。More specifically, it is more controllable for the time when the adjustable micro-projector outputs light or image close to or away from the fixed pico projector, and the shorter the time or the image of the adjustable micro-projector approaches or stays away from the fixed The shorter each distance of the image output by the pico-projector, the more overlapping images will be formed, and the more continuous changes in depth of field between images will become clearer.

更具體的說,所述固定式微型投影器及該可調整式微型投影器的數量越多,用以能夠形成不同點同時聚焦之多重景深同時出現。More specifically, the more the fixed pico projector and the adjustable micro projector are, the multiple depths of field that can be used to form different points while focusing simultaneously.

更具體的說,所述多重疊聚焦成像之位置係為不同光束路徑到達單一相同眼睛所形成、或是不同光束路徑分別到達不同眼睛後的虛像再重疊形成。More specifically, the position of the multi-overlapping focus imaging is formed by overlapping different images of different beam paths reaching a single identical eye or different beam paths reaching different eyes respectively.

有關於本發明其他技術內容、特點與功效,在以下配合參考圖式之較佳實施例的詳細說明中,將可清楚的呈現。Other details, features, and advantages of the present invention will be apparent from the following description of the preferred embodiments.

請參閱第1圖,為本發明一種調整多深度顯示之景深距離的系統及其方法之架構示意圖,由圖中可知,該一種調整多深度顯示之景深距離的系統係包含了一固定式微型投影器1、一個以上的可調整式微型投影器2、一反射光束聚焦處理器4及至少一反射鏡3,其中該固定式微型投影器1及該可調整式微型投影器2皆能夠將一二維影像投影至該反射鏡3上,而於該固定式微型投影器1能夠於任一或多個方向皆能夠設置一個以上的可調整式微型投影器2,而該固定式微型投影器1及該可調整式微型投影器2皆為矽基液晶雷射投影裝置(Lcos投影裝置);Please refer to FIG. 1 , which is a schematic structural diagram of a system and a method for adjusting a depth of field of a multi-depth display according to the present invention. As can be seen from the figure, the system for adjusting the depth of field of a multi-depth display includes a fixed pico projection. 1, one or more adjustable micro-projectors 2, a reflected beam focusing processor 4 and at least one mirror 3, wherein the fixed micro-projector 1 and the adjustable micro-projector 2 are capable of one or two The image is projected onto the mirror 3, and the fixed pico-projector 1 can be configured with one or more adjustable micro-projectors 2 in any or more directions, and the fixed-type micro-projector 1 and The adjustable micro projector 2 is a 矽-based liquid crystal laser projection device (Lcos projection device);

因此該可調整式微型投影器2則必須為一能夠移動的微型投影設備、一能夠改變投射方向的微型投影設備或是一能夠移動及改變投射方向的微型投影設備,因此該反射光束聚焦處理器4能夠進行移動該可調整式微型投影器2(改變該可調整式微型投影器2與該固定式微型投影器1之間的距離)或是改變該反射光束聚焦處理器4的入射角度(產生之光路徑的角度),以進行控制該固定式微型投影器1及該可調整式微型投影器2投影至該反射鏡3上所產生之反射光束的路徑,用以使該固定式微型投影器1及該可調整式微型投影器2投影至該反射鏡3上所產生之影像的畫素位置能重疊(以使該反射鏡反射出的光束於該反射光束的相反方向交會而形成虛像),以形成多重疊聚焦成像、並達到多景深影像之效果。Therefore, the adjustable micro-projector 2 must be a movable micro-projection device, a micro-projection device capable of changing the projection direction, or a micro-projection device capable of moving and changing the projection direction, and thus the reflected beam focusing processor 4 capable of moving the adjustable micro projector 2 (changing the distance between the adjustable micro projector 2 and the fixed micro projector 1) or changing the incident angle of the reflected beam focusing processor 4 (generated) a path of the light path for controlling the path of the reflected beam generated by the fixed pico projector 1 and the adjustable micro projector 2 projected onto the mirror 3 for the fixed pico projector 1 and the pixel positions of the image generated by the adjustable micro projector 2 projected onto the mirror 3 can overlap (so that the light beams reflected by the mirror intersect in opposite directions of the reflected beam to form a virtual image), To form multi-overlapping focused imaging and achieve multi-depth image effects.

而除了控制距離跟角度之外,更能夠控制該可調整式微型投影器2之影像輸出位置,因此即使距離跟角度都不變動,由於該可調整式微型投影器2投射至該反射鏡3上之影像輸出位置不同,亦能夠使重疊聚焦形成之虛像移動靠近或遠離該反射鏡3;In addition to controlling the distance and angle, the image output position of the adjustable micro projector 2 can be controlled, so that even if the distance and the angle do not change, since the adjustable micro projector 2 is projected onto the mirror 3 The image output position is different, and the virtual image formed by the overlapping focus can also be moved closer to or away from the mirror 3;

另外,亦能夠使用兩個以上的反射鏡3,而當該可調整式微型投影器2與該固定式微型投影器1分別投射在不同位置的反射鏡3上時,能夠由不同位置的反射鏡3分別反射出的光束在反射光束的相反方向交會而形成虛像,因此當控制該反射鏡3為不同位置時,亦能夠達到使重疊聚焦形成之虛像移動靠近或遠離該反射鏡3。In addition, it is also possible to use two or more mirrors 3, and when the adjustable micro projector 2 and the fixed micro projector 1 are respectively projected on the mirrors 3 at different positions, the mirrors can be different positions. The respectively reflected beams collide in opposite directions of the reflected beam to form a virtual image. Therefore, when the mirror 3 is controlled to be in different positions, the virtual image formed by the overlapping focus can be moved closer to or away from the mirror 3.

而多光源或多光源角度投影出來如第2圖所示,由於固定式微型投影器1一般情況下會搭配至少兩個可調整式微型投影器2,以使該固定式微型投影器1不論朝什麼方向投影,至少兩個可調整式微型投影器2能夠包含該固定式微型投影器1不論朝什麼方向所投影之影像的所有範圍,由於若只使用一個可調整式微型投影器2,當該可調整式微型投影器2為了與左邊的固定式微型投影器1所投影之影像重疊,則必須往左邊移動,但是一旦超過該固定式微型投影器1所投影之影像中間線時,該固定式微型投影器1所投影之右邊影像則很可能會無法與可調整式微型投影器2所投影之影像重疊,故為了避免類似的情況發生,於左右邊至少各設置一個可調整式微型投影器2,以避免有不重疊的情況發生;The multi-source or multi-source angle is projected as shown in Fig. 2, since the fixed micro-projector 1 is generally matched with at least two adjustable micro-projectors 2, so that the fixed micro-projector 1 In what direction projection, at least two adjustable micro projectors 2 can include all ranges of the image projected by the fixed pico projector 1 in any direction, since if only one adjustable micro projector 2 is used, The adjustable micro projector 2 has to be moved to the left in order to overlap the image projected by the fixed micro projector 1 on the left side, but when it exceeds the intermediate line of the image projected by the fixed micro projector 1, the fixed type The right image projected by the micro projector 1 may not overlap with the image projected by the adjustable micro projector 2, so in order to avoid a similar situation, at least one adjustable micro projector 2 is disposed on each of the left and right sides. To avoid non-overlapping situations;

但上下亦有可能有這種情況發生,故該可調整式微型投影器2除了兩個之外,更能夠於該固定式微型投影器1任一或多個方向皆能夠設置一個以上的可調整式微型投影器2,以使該固定式微型投影器1所投影之影像皆能夠受到所有的可調整式微型投影器2重疊。However, this may happen in the upper and lower directions. Therefore, in addition to the two, the adjustable micro projector 2 can set more than one adjustable in one or more directions of the fixed micro projector 1. The micro-projector 2 is such that the image projected by the fixed micro-projector 1 can be overlapped by all the adjustable micro-projectors 2.

而實際的投影情況如第3圖及第4A圖所示,第3、4A~4C圖中皆是固定式微型投影器1的半邊示意,因此僅以一個固定式微型投影器1及一個的可調整式微型投影器2進行實施說明,先由第3圖來看,反射鏡3內部具有半反射鏡面31、全反射鏡面32,33,當該固定式微型投影器1及該可調整式微型投影器2所投射出的光束11,21,其中光束11,21碰到該反射鏡3之全反射鏡面32會再反射至該全反射鏡面33,之後再反射至該半反射鏡面31後,該反射鏡3之半反射鏡面31反射出的光束會於該反射光束的相反方向交會而形成虛像A;The actual projection situation is shown in FIG. 3 and FIG. 4A, and the third, fourth, and fourth embodiments are all half-side of the fixed micro-projector 1, so that only one fixed micro-projector 1 and one can be used. The adjustment micro-projector 2 is described. First, as seen from FIG. 3, the mirror 3 has a semi-reflecting mirror surface 31 and a total reflection mirror surface 32, 33. When the fixed micro-projector 1 and the adjustable micro-projection The light beams 11, 21 projected by the device 2, wherein the total reflection mirror surface 32 of the light beam 11, 21 hitting the mirror 3 is reflected again to the total reflection mirror surface 33, and then reflected to the half mirror surface 31, the reflection The light beam reflected by the mirror surface 31 of the mirror 3 will intersect in the opposite direction of the reflected beam to form a virtual image A;

再由第4A圖中可知,當該固定式微型投影器1及該可調整式微型投影器2皆投射二維影像(光束11,21)於該反射鏡3上時,由於該固定式微型投影器1及該可調整式微型投影器2經由該反射鏡3反射後,會於反射光束的相反方向交會重疊以形成使用者之眼睛5能夠看到的虛像A(三維影像);As can be seen from FIG. 4A, when the fixed micro projector 1 and the adjustable micro projector 2 project two-dimensional images (light beams 11, 21) on the mirror 3, due to the fixed micro projection The reflector 1 and the adjustable micro projector 2 are reflected by the mirror 3 and overlap in opposite directions of the reflected beam to form a virtual image A (three-dimensional image) that can be seen by the user's eye 5;

然而當該可調整式微型投影器2朝向另一方向移動時,如第4B圖所示(為了區隔未移動的可調整式微型投影器與已移動的可調整式微型投影器,將未移動的可調整式微型投影器標號為2、將已移動的未移動的可調整式微型投影器標號為2’),因此當該可調整式微型投影器標號2’移動後,該可調整式微型投影器標號2’ 所投射二維影像會再與該固定式微型投影器1所投射二維影像重疊經過該反射鏡3反射後會形成虛像B(三維影像),再由第4C圖中可以發現,當該可調整式微型投影器標號2’移動後,離該反射鏡3較近的虛像A則會移動到離該反射鏡3較遠的虛像B;However, when the adjustable micro-projector 2 is moved in the other direction, as shown in FIG. 4B (in order to separate the non-moving adjustable micro-projector from the moved adjustable micro-projector, it will not move) The adjustable micro-projector is labeled 2, and the moved non-movable adjustable micro-projector is numbered 2'), so when the adjustable micro-projector number 2' is moved, the adjustable miniature The projected 2D image of the projector 2' will be superimposed on the 2D image projected by the fixed micro projector 1 and reflected by the mirror 3 to form a virtual image B (3D image), which can be found in FIG. 4C. When the adjustable micro projector 2' is moved, the virtual image A closer to the mirror 3 is moved to the virtual image B farther from the mirror 3;

而上述的實施僅是兩個三維影像,而上述僅是控制該固定式微型投影器1及該可調整式微型投影器2之間的距離(可調整式微型投影器2必須能夠可以移動),該可調整式微型投影器2亦能夠可以調整產生的光路徑角度,而所形成的影像就不只能夠遠近移動,而是能夠多角度多方向的變動,並加入時間控制的因素,使三維影像之景深隨時間改變,故能夠形成四維影像的概念;The above implementation is only two three-dimensional images, and the above only controls the distance between the fixed micro-projector 1 and the adjustable micro-projector 2 (the adjustable micro-projector 2 must be able to move), The adjustable micro projector 2 can also adjust the angle of the generated light path, and the formed image can not only move far and near, but can change in multiple angles and directions, and add time control factors to make the three-dimensional image The depth of field changes with time, so the concept of four-dimensional images can be formed;

因此,該固定式微型投影器1與該可調整式微型投影器2所輸出之二維影像的像素值係能夠相同(該固定式微型投影器1與該可調整式微型投影器2所輸出之二維影像是相同影像),但經由改變可調整式微型投影器2之光路徑角度,則能夠使得虛素位置有所改變。Therefore, the fixed micro-projector 1 and the two-dimensional image outputted by the adjustable micro-projector 2 can have the same pixel value (the fixed micro-projector 1 and the adjustable micro-projector 2 output the same) The two-dimensional image is the same image), but by changing the angle of the light path of the adjustable micro-projector 2, the position of the virtual element can be changed.

且上述的實施例中,更有以下情況會發生: (1)     當固定式微型投影器1與可調整式微型投影器2皆為一個時,由於能夠控制該可調整式微型投影器2輸出光線或影像接近或遠離該固定式微型投影器1的時間,因此當時間越短或是可調整式微型投影器2之影像接近或遠離該固定式微型投影器1輸出之影像的每一距離越短,則形成的重疊聚焦的影像則會越多、且影像之間改變景深的連續變化會越清楚; (2)     當固定式微型投影器1為一個、而該可調整式微型投影器2不只一個時,同時與該固定式微型投影器1所投射二維影像形成的重疊聚焦數量則會越多,因此當該可調整式微型投影器2的數量越多,則多景深影像之效果會越明顯; (3)     當該固定式微型投影器1及該可調整式微型投影器2皆不只一個時,如上所述,將能夠形成更多不同位置聚焦,因此則會形成多重景深同時出現。In the above embodiment, the following situations may occur: (1) When both the fixed micro projector 1 and the adjustable micro projector 2 are one, since the adjustable micro projector 2 can control the output light Or the time when the image is close to or away from the fixed pico-projector 1, so the shorter the time or the shorter the distance of the image of the adjustable micro-projector 2 near or away from the image output by the fixed micro-projector 1 , the more overlapping images are formed, and the more continuous changes in depth of field between images will be clearer; (2) When the fixed pico projector 1 is one, and the adjustable micro projector 2 is more than one At the same time, the number of overlapping focusings formed by the two-dimensional image projected by the fixed micro projector 1 is increased, so that the more the number of the adjustable micro projectors 2, the more obvious the effect of the multiple depth images. (3) When there is more than one of the fixed pico-projector 1 and the adjustable micro-projector 2, as described above, more different positions of focus will be formed, and thus will be shaped Multiple simultaneous depth of field.

另外,其中該固定式微型投影器1及該可調整式微型投影器2投影至該反射鏡3上所產生之反射光束無法重疊聚焦時,該反射光束聚焦處理器4能夠進一步控制該可調整式微型投影器2所輸出之二維影像,來使該可調整式微型投影器2至該反射鏡3上所產生之影像的畫素位置能重疊於該固定式微型投影器投影1至該反射鏡上所產生之反射光束上(其調整是透過控制該可調整式微型投影器2與固定式微型投影器1之間的距離、或是改變該可調整式微型投影器2之光路徑的角度、影像輸出位置、亦或是將可調整式微型投影器2與固定式微型投影器1分別投影於不同的反射鏡3上,來修正無法重疊聚焦之情況)。In addition, when the fixed micro-projector 1 and the adjustable micro-projector 2 project the reflected light beam generated on the mirror 3 cannot overlap, the reflected beam focusing processor 4 can further control the adjustable type. The two-dimensional image output by the micro-projector 2 is such that the pixel position of the image generated by the adjustable micro-projector 2 to the mirror 3 can be overlapped with the fixed micro-projector projection 1 to the mirror The reflected light beam generated thereon is adjusted by controlling the distance between the adjustable micro projector 2 and the fixed micro projector 1 or changing the angle of the light path of the adjustable micro projector 2, The image output position, or the adjustable micro projector 2 and the fixed micro projector 1 are respectively projected on different mirrors 3 to correct the case where the focus cannot be overlapped).

另外,本發明之調整多深度顯示之景深距離之流程示意圖,如第4圖所示,流程如下: (1)     透過至少一個固定式微型投影器與一個以上的可調整式微型投影器,將一二維影像分別投影至至少一反射鏡上401;以及 (2)     再使該反射鏡反射出的光束於該反射光束的相反方向交會而形成虛像,以形成多重疊聚焦成像、並達到多景深影像之效果402。In addition, the flow chart of adjusting the depth of field distance of the multi-depth display of the present invention, as shown in FIG. 4, is as follows: (1) transmitting at least one fixed micro-projector and one or more adjustable micro-projectors The two-dimensional images are respectively projected onto at least one mirror 401; and (2) the light beams reflected by the mirrors are intersected in opposite directions of the reflected light beam to form a virtual image to form a multi-overlapping focused image and achieve multiple depth of field images. Effect 402.

由單眼來看,如第4A圖及第4B圖所示,其重疊位置經由不同光束路徑到達眼睛而會形成光學聚焦(optical focus),如此則能夠進一步控制移動虛像重疊之聚焦位置來達到不同聚焦距離;但若是為兩眼所視時(使用者之左眼61、使用者之右眼62),當一虛像分別皆於該使用者之左眼61及使用者之右眼62之前方形成且重疊為一重疊虛像C時,則能夠形成立體景深(stereo depth)的效果。From the perspective of a single eye, as shown in FIG. 4A and FIG. 4B, the overlapping position reaches the eye through different beam paths to form an optical focus, so that the focus position of the moving virtual image overlap can be further controlled to achieve different focusing. Distance; however, if it is viewed by both eyes (the user's left eye 61, the user's right eye 62), a virtual image is formed in front of the user's left eye 61 and the user's right eye 62, respectively. When overlapping with an overlapping virtual image C, it is possible to form a stereo depth effect.

本發明所提供之一種調整多深度顯示之景深距離的系統及其方法,與其他習用技術相互比較時,其優點如下: 1.         本發明能夠使用至少一組可調整式微型投影器與一組以上的固定式微型投影器,並透過該可調整式微型投影器與固定式微型投影器之間的距離、或是改變該可調整式微型投影器之光路徑的角度、影像輸出位置、亦或是將可調整式微型投影器與固定式微型投影器分別投影於不同的反射鏡上等調整方式,來形成以個以上的重疊聚焦的影像,以達到顯示多景深影像之目的,如此將能夠克服習用三維立體影像產生之缺點。 2.         本發明產生立體影像之方式不需複雜的裝置,且由於本發明是藉由多個重疊聚焦的影像來形成立體虛像,並藉由進一步控制,則能夠使立體影像與立體影像之間的可視感越明顯,因此能讓使用者看到連續的立體影像,而不至於如習用技術一般,立體影像與立體影像的連續性不明顯的情況發生。The system and method for adjusting the depth of field distance of a multi-depth display provided by the present invention have the following advantages when compared with other conventional techniques: 1. The present invention can use at least one set of adjustable micro-projectors and more than one set. Fixed pico projector and the distance between the adjustable micro projector and the fixed pico projector, or the angle of the optical path of the adjustable micro projector, the image output position, or Adjusting the adjustable micro-projector and the fixed micro-projector separately on different mirrors to form more than one overlapping and focused image to achieve the purpose of displaying multiple depth of field images, thus being able to overcome the conventional use The shortcomings of 3D stereoscopic images. 2. The method for generating a stereoscopic image of the present invention does not require a complicated device, and since the present invention forms a stereoscopic virtual image by using a plurality of overlapping and focused images, and by further controlling, a stereoscopic image and a stereoscopic image can be The more obvious the visual sense, the more the stereoscopic image can be seen by the user, and the situation in which the continuity of the stereoscopic image and the stereoscopic image is not obvious is not the case.

本發明已透過上述之實施例揭露如上,然其並非用以限定本發明,任何熟悉此一技術領域具有通常知識者,在瞭解本發明前述的技術特徵及實施例,並在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,因此本發明之專利保護範圍須視本說明書所附之請求項所界定者為準。The present invention has been disclosed in the above embodiments, and is not intended to limit the present invention. Any of those skilled in the art can understand the foregoing technical features and embodiments of the present invention without departing from the invention. In the spirit and scope, the scope of patent protection of the present invention is subject to the definition of the claims attached to the present specification.

1‧‧‧固定式微型投影器
11‧‧‧光束
2‧‧‧可調整式微型投影器
21‧‧‧光束
2’‧‧‧可調整式微型投影器
21’‧‧‧光束
3‧‧‧反射鏡
31‧‧‧半反射鏡面
32‧‧‧全反射鏡面
33‧‧‧全反射鏡面
4‧‧‧反射光束聚焦處理器
5‧‧‧使用者之眼睛
61‧‧‧使用者之左眼
62‧‧‧使用者之右眼
1‧‧‧Fixed miniature projector
11‧‧‧ Beam
2‧‧‧Adjustable miniature projector
21‧‧‧ Beam
2'‧‧‧Adjustable miniature projector
21'‧‧‧ Beam
3‧‧‧Mirror
31‧‧‧Semi-reflective mirror
32‧‧‧Full reflection mirror
33‧‧‧ total reflection mirror
4‧‧‧Reflected beam focusing processor
5‧‧‧ User's eyes
61‧‧‧User's left eye
62‧‧‧User's right eye

[第1圖]係本發明一種調整多深度顯示之景深距離的系統及其方法之架構示意圖。        [第2圖]係本發明一種調整多深度顯示之景深距離的系統及其方法之多光源或多光源角度反射示意圖。        [第3圖]係本發明一種調整多深度顯示之景深距離的系統及其方法之虛像成像示意圖。        [第4A圖]係本發明一種調整多深度顯示之景深距離的系統及其方法之成像實施示意圖。        [第4B圖]係本發明一種調整多深度顯示之景深距離的系統及其方法之成像實施示意圖。        [第4C圖]係本發明一種調整多深度顯示之景深距離的系統及其方法之移動後成像狀態示意圖。        [第5圖]係本發明一種調整多深度顯示之景深距離的系統及其方法之流程示意圖。        [第6圖]係本發明一種調整多深度顯示之景深距離的系統及其方法之雙眼所視示意圖。[Fig. 1] Fig. 1 is a schematic structural view of a system and a method for adjusting a depth of field of a multi-depth display according to the present invention. [Fig. 2] Fig. 2 is a schematic diagram showing an angle reflection of a multi-source or multi-source of a system for adjusting a depth of field of a multi-depth display and a method thereof. [Fig. 3] is a schematic diagram of virtual image imaging of a system and method for adjusting the depth of field of a multi-depth display according to the present invention. [Fig. 4A] Fig. 4 is a schematic diagram showing the imaging implementation of a system for adjusting the depth of field of a multi-depth display and a method thereof. [Fig. 4B] Fig. 4 is a schematic view showing the imaging implementation of a system for adjusting the depth of field of a multi-depth display and a method thereof. [FIG. 4C] FIG. 4 is a schematic diagram of a post-movement imaging state of a system and method for adjusting depth of field of a multi-depth display. [Fig. 5] Fig. 5 is a flow chart showing a system for adjusting the depth of field of a multi-depth display and a method thereof. [Fig. 6] Fig. 6 is a schematic view showing a system for adjusting a depth of field of a multi-depth display and a method thereof.

1‧‧‧固定式微型投影器 1‧‧‧Fixed miniature projector

2‧‧‧可調整式微型投影器 2‧‧‧Adjustable miniature projector

3‧‧‧反射光束聚焦處理器 3‧‧‧Reflected beam focusing processor

4‧‧‧反射鏡 4‧‧‧Mirror

Claims (26)

一種調整多深度顯示之景深距離的系統,係包含: 至少一反射鏡; 至少一個固定式微型投影器,係將一二維影像投影至該反射鏡上; 一個以上的可調整式微型投影器,係設置於該固定式微型投影器之一側,用以將一二維影像投影至該反射鏡上;以及 一反射光束聚焦處理器,係與該固定式微型投影器及該可調整式微型投影器相連接,用以控制該固定式微型投影器及該可調整式微型投影器投影至該反射鏡上所產生之反射光束的路徑,以使該反射鏡反射出的光束於該反射光束的相反方向交會而形成虛像,以形成多重疊聚焦成像、並達到多景深影像之效果。A system for adjusting a depth of field of a multi-depth display, comprising: at least one mirror; at least one fixed micro-projector projecting a two-dimensional image onto the mirror; and more than one adjustable micro-projector, And disposed on one side of the fixed pico projector for projecting a two-dimensional image onto the mirror; and a reflected beam focusing processor coupled to the fixed micro projector and the adjustable micro projection Connected to control the path of the fixed micro-projector and the reflected beam generated by the adjustable micro-projector projected onto the mirror, so that the reflected light of the mirror is opposite to the reflected beam The direction intersects to form a virtual image to form a multi-overlapping focused imaging and achieve multiple depth of field images. 如請求項1所述之一種調整多深度顯示之景深距離的系統,其中該固定式微型投影器係為一矽基液晶雷射投影裝置。A system for adjusting a depth of field of a multi-depth display according to claim 1, wherein the fixed pico projector is a fluorene-based liquid crystal laser projection apparatus. 如請求項1所述之一種調整多深度顯示之景深距離的系統,其中該可調整式微型投影器係為一矽基液晶雷射投影裝置。A system for adjusting a depth of field of a multi-depth display according to claim 1, wherein the adjustable micro-projector is a 矽-based liquid crystal laser projection device. 如請求項1所述之一種調整多深度顯示之景深距離的系統,其中該可調整式微型投影器係為一能夠移動的微型投影設備、一能夠改變投射方向的微型投影設備或是一能夠移動及改變投射方向的微型投影設備。A system for adjusting a depth of field of a multi-depth display according to claim 1, wherein the adjustable micro-projector is a movable micro-projection device, a micro-projection device capable of changing a projection direction, or a movable And a miniature projection device that changes the direction of projection. 如請求項1所述之一種調整多深度顯示之景深距離的系統,其中能夠控制該可調整式微型投影器與該固定式微型投影器之間的距離,能夠使重疊聚焦形成之虛像移動靠近或遠離該反射鏡。A system for adjusting a depth of field of a multi-depth display according to claim 1, wherein the distance between the adjustable micro-projector and the fixed micro-projector can be controlled, and the virtual image formed by the overlapping focus can be moved closer to or Stay away from the mirror. 如請求項1所述之一種調整多深度顯示之景深距離的系統,其中能夠控制該可調整式微型投影器所產生之光路徑的角度,能夠使重疊聚焦形成之虛像移動靠近或遠離該反射鏡。A system for adjusting a depth of field of a multi-depth display according to claim 1, wherein the angle of the light path generated by the adjustable micro-projector can be controlled, and the virtual image formed by the overlapping focus can be moved closer to or away from the mirror . 如請求項1所述之一種調整多深度顯示之景深距離的系統,其中能夠控制該可調整式微型投影器之影像輸出位置,能夠使重疊聚焦形成之虛像移動靠近或遠離該反射鏡。A system for adjusting a depth of field of a multi-depth display according to claim 1, wherein the image output position of the adjustable micro-projector can be controlled, and the virtual image formed by the overlapping focus can be moved closer to or away from the mirror. 如請求項1所述之一種調整多深度顯示之景深距離的系統,其中更包含有兩個以上的反射鏡,而該可調整式微型投影器與該固定式微型投影器能夠分別投射在不同位置的反射鏡上,並由不同位置的反射鏡分別反射出的光束在反射光束的相反方向交會而形成虛像。A system for adjusting a depth of field of a multi-depth display according to claim 1, further comprising two or more mirrors, wherein the adjustable micro projector and the fixed pico projector are respectively projected in different positions On the mirror, the beams reflected by the mirrors at different positions intersect in opposite directions of the reflected beam to form a virtual image. 如請求項1所述之一種調整多深度顯示之景深距離的系統,其中該多景深影像係為三維影像或是景深隨時間改變的四維影像。A system for adjusting a depth of field of a multi-depth display according to claim 1, wherein the multi-depth image is a three-dimensional image or a four-dimensional image whose depth of field changes with time. 如請求項1所述之一種調整多深度顯示之景深距離的系統,其中該固定式微型投影器能夠於任一或多個方向可設置一個以上的可調整式微型投影器。A system for adjusting a depth of field of a multi-depth display as claimed in claim 1, wherein the fixed pico-projector is capable of arranging more than one adjustable micro-projector in any one or more directions. 如請求項1所述之一種調整多深度顯示之景深距離的系統,其中該可調整式微型投影器數量越多,能夠同時形成的重疊聚焦會越多,則多景深影像之效果會越明顯。A system for adjusting a depth of field of a multi-depth display according to claim 1, wherein the more the number of the adjustable micro-projectors, the more overlapping focusings that can be simultaneously formed, and the effect of the multi-depth image is more obvious. 如請求項1所述之一種調整多深度顯示之景深距離的系統,其中該固定式微型投影器與該可調整式微型投影器所輸出之二維影像的像素值係為相同。A system for adjusting a depth of field of a multi-depth display according to claim 1, wherein the fixed micro-projector and the two-dimensional image output by the adjustable micro-projector have the same pixel value. 如請求項1所述之一種調整多深度顯示之景深距離的系統,其中該反射光束聚焦處理器能夠控制該多重疊聚焦成像之位置係為不同光束路徑到達單一相同眼睛所形成、或是不同光束路徑分別到達不同眼睛後的虛像再重疊形成。A system for adjusting a depth of field of a multi-depth display according to claim 1, wherein the reflected beam focusing processor is capable of controlling the position of the multi-overlapping focused imaging to be formed by different beam paths reaching a single identical eye or different beams. The virtual images after the paths reach different eyes respectively overlap and form. 一種調整多深度顯示之景深距離的方法,其步驟為: 透過至少一個固定式微型投影器與一個以上的可調整式微型投影器,將一二維影像分別投影至至少一反射鏡上; 再使該反射鏡反射出的光束於該反射光束的相反方向交會而形成虛像,以形成多重疊聚焦成像、並達到多景深影像之效果。A method for adjusting a depth of field distance of a multi-depth display, the method comprising: projecting a two-dimensional image onto at least one mirror through at least one fixed micro-projector and one or more adjustable micro-projectors; The light beams reflected by the mirror intersect in opposite directions of the reflected light beam to form a virtual image to form a multi-overlapping focused image and achieve the effect of multiple depth of field images. 如請求項14所述之一種調整多深度顯示之景深距離的方法,其中該固定式微型投影器及該可調整式微型投影器係為一種使用矽基液晶雷射投影技術之投影設備。A method for adjusting a depth of field of a multi-depth display according to claim 14, wherein the fixed pico projector and the adjustable micro projector are projection devices using a silliman-based liquid crystal laser projection technology. 如請求項14所述之一種調整多深度顯示之景深距離的方法,其中控制該固定式微型投影器及該可調整式微型投影器之間的距離,能夠使重疊聚焦形成之虛像靠近或遠離該反射鏡移動。A method for adjusting a depth of field of a multi-depth display according to claim 14, wherein controlling the distance between the fixed pico projector and the adjustable micro projector enables the virtual image formed by overlapping focusing to be close to or away from the The mirror moves. 如請求項14所述之一種調整多深度顯示之景深距離的方法,其中能夠控制該可調整式微型投影器所產生之光路徑的角度,能夠使重疊聚焦形成之虛像移動靠近或遠離該反射鏡移動。A method for adjusting a depth of field of a multi-depth display according to claim 14, wherein the angle of the light path generated by the adjustable micro-projector can be controlled, and the virtual image formed by the overlapping focus can be moved closer to or away from the mirror mobile. 如請求項14所述之一種調整多深度顯示之景深距離的方法,其中能夠控制該可調整式微型投影器之影像輸出位置,能夠使重疊聚焦形成之虛像移動靠近或遠離該反射鏡。A method for adjusting a depth of field of a multi-depth display as claimed in claim 14, wherein the image output position of the adjustable micro-projector can be controlled to move the virtual image formed by the overlapping focus closer to or away from the mirror. 如請求項14所述之一種調整多深度顯示之景深距離的方法,其中更能夠將該可調整式微型投影器與該固定式微型投影器能夠分別投射在不同位置的反射鏡上,並由不同位置的反射鏡分別反射出的光束在反射光束的相反方向交會而形成虛像。A method for adjusting a depth of field of a multi-depth display according to claim 14, wherein the adjustable micro-projector and the fixed micro-projector are further capable of being projected on mirrors at different positions, respectively, and different The beams reflected by the mirrors at the position intersect in opposite directions of the reflected beam to form a virtual image. 如請求項14所述之一種調整多深度顯示之景深距離的方法,其中多景深影像係為三維影像或是景深隨時間改變的四維影像。A method for adjusting a depth of field of a multi-depth display according to claim 14, wherein the multi-depth image is a three-dimensional image or a four-dimensional image whose depth of field changes with time. 如請求項14所述之一種調整多深度顯示之景深距離的方法,其中該固定式微型投影器及該可調整式微型投影器的數量越多,同點形成聚焦次數越多,則多景深影像之效果會越明顯。A method for adjusting a depth of field of a multi-depth display according to claim 14, wherein the more the number of the fixed micro-projector and the adjustable micro-projector, the more the number of times of focusing at the same point, the multi-depth image The effect will be more obvious. 如請求項14所述之一種調整多深度顯示之景深距離的方法,其中該固定式微型投影器及該可調整式微型投影器投影至該反射鏡上所產生之反射光束無法重疊聚焦時,能夠進一步微調該可調整式微型投影器所輸出之二維影像,來使該可調整式微型投影器至該反射鏡上所產生之虛像的畫素位置能夠進一步重疊於該固定式微型投影器投影至該反射鏡上所產生之反射光束上(調整角度 距離 影像輸出位置 多反射鏡)。A method for adjusting a depth of field distance of a multi-depth display according to claim 14, wherein the fixed micro-projector and the reflected beam generated by the adjustable micro-projector projected onto the mirror cannot overlap and focus, Further fine-tuning the two-dimensional image output by the adjustable micro-projector, so that the pixel position of the virtual image generated by the adjustable micro-projector to the mirror can be further overlapped by the fixed micro-projector to The reflected beam is generated on the mirror (adjusting the angle from the image output position to multiple mirrors). 如請求項14所述之一種調整多深度顯示之景深距離的方法,其中更能夠控制該可調整式微型投影器輸出光線或影像接近或遠離該固定式微型投影器的時間,而時間越短或是可調整式微型投影器之影像接近或遠離該固定式微型投影器輸出之影像的每一距離越短,則形成的重疊聚焦的影像則會越多、且影像之間改變景深的連續變化會越清楚。A method for adjusting a depth of field of a multi-depth display according to claim 14, wherein the adjustable micro-projector is more capable of controlling the time when the output light or image is close to or away from the fixed pico projector, and the shorter the time or The shorter the distance between the image of the adjustable micro-projector and the image output from the fixed micro-projector, the more overlapping images will be formed, and the continuous change of the depth of field between the images will be The more clear. 如請求項14所述之一種調整多深度顯示之景深距離的方法,其中該固定式微型投影器及該可調整式微型投影器的數量越多,用以能夠形成不同點同時聚焦之多重景深同時出現。A method for adjusting a depth of field of a multi-depth display according to claim 14, wherein the fixed micro-projector and the adjustable micro-projector are provided in a plurality of positions to simultaneously form different depths of different points while simultaneously focusing. appear. 如請求項14所述之一種調整多深度顯示之景深距離的方法,其中該反射鏡的數量越多,不論該可調整式微型投影器與該固定式微型投影器是投射在不同或相同位置的反射鏡上,皆能夠用以形成不同點同時聚焦之多重景深同時出現。A method for adjusting a depth of field distance of a multi-depth display according to claim 14, wherein the more the number of the mirrors, whether the adjustable micro projector and the fixed pico projector are projected at different or the same position, On the mirror, multiple depths of field that can be used to form different points while focusing simultaneously appear simultaneously. 如請求項14所述之一種調整多深度顯示之景深距離的方法,其中該多重疊聚焦成像之位置係為不同光束路徑到達單一相同眼睛所形成、或是不同光束路徑分別到達不同眼睛後的虛像再重疊形成。A method for adjusting a depth of field of a multi-depth display according to claim 14, wherein the position of the multi-overlapping focus imaging is formed by different beam paths reaching a single identical eye or different virtual beam paths respectively reaching different eyes. Then overlap to form.
TW105103659A 2016-02-04 2016-02-04 A system and method for adjusting the depth of field of multi-depth display TWI594019B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105103659A TWI594019B (en) 2016-02-04 2016-02-04 A system and method for adjusting the depth of field of multi-depth display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105103659A TWI594019B (en) 2016-02-04 2016-02-04 A system and method for adjusting the depth of field of multi-depth display

Publications (2)

Publication Number Publication Date
TWI594019B TWI594019B (en) 2017-08-01
TW201728964A true TW201728964A (en) 2017-08-16

Family

ID=60186539

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105103659A TWI594019B (en) 2016-02-04 2016-02-04 A system and method for adjusting the depth of field of multi-depth display

Country Status (1)

Country Link
TW (1) TWI594019B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020199070A1 (en) * 2019-04-01 2020-10-08 京东方科技集团股份有限公司 Display device, and display method and display system therefor
TW202144856A (en) * 2020-05-19 2021-12-01 雅得近顯股份有限公司 Near-eye display device that comprises at least one display and one or more light condensation and constraint structures

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100429559C (en) * 2003-08-22 2008-10-29 株式会社电装 Virtual image display apparatus
TWI455074B (en) * 2011-12-27 2014-10-01 Automotive Res & Testing Ct Vehicle image display system and its correction method
DE102012200152A1 (en) * 2012-01-05 2013-07-11 Robert Bosch Gmbh Device and method for measuring a camera
TWI489140B (en) * 2014-02-24 2015-06-21 Quanta Comp Inc Head mounted display apparatus
CN204028465U (en) * 2014-07-31 2014-12-17 成都理想境界科技有限公司 3 D image display device

Also Published As

Publication number Publication date
TWI594019B (en) 2017-08-01

Similar Documents

Publication Publication Date Title
US10422997B2 (en) Head-mounted display device
US10409066B2 (en) Head-mounted display device with waveguide elements
US10353213B2 (en) See-through display glasses for viewing 3D multimedia
TWI498598B (en) Autostereoscopic projection device and display apparatus comprising thereof
TWI572906B (en) Three-dimension light field construction apparatus
TWI497116B (en) 3d image display device and 3d image display method
US20110234981A1 (en) Large three-dimensional image formation device
KR20220093041A (en) Systems and methods for displaying objects with depth
TWI604223B (en) Display apparatus
EP4258039A1 (en) Display module, and method and apparatus for adjusting position of virtual image
CN108873327A (en) Head-mounted display apparatus
TWI594019B (en) A system and method for adjusting the depth of field of multi-depth display
WO2017147801A1 (en) System for adjusting depth of field of multi-depth display and method thereof
US20180143435A1 (en) Displaying device and method thereof
TWM497800U (en) Combined optical lens and optical imaging device using the same
TWI614524B (en) Head mounted display
WO2021052104A1 (en) Holographic display system
US11269184B2 (en) Head-mounted display device
CN110703560A (en) Direct projection type one-screen multi-eye independent display technology
CN108152951B (en) Head-mounted display device
KR20090014921A (en) Stereoscopic vision projection system and device for stereoscopic vision projection
TWM474154U (en) Head-mounted 3D stereo imaging display device
WO2022247001A1 (en) Naked-eye three-dimensional display device
US20180364558A1 (en) Photo assistant device
TWI442097B (en) Polarization converting element group for projection apparatus and projection apparatus