TW201727954A - Thermoelectric conversion device and thermoelectric converter - Google Patents

Thermoelectric conversion device and thermoelectric converter Download PDF

Info

Publication number
TW201727954A
TW201727954A TW105101665A TW105101665A TW201727954A TW 201727954 A TW201727954 A TW 201727954A TW 105101665 A TW105101665 A TW 105101665A TW 105101665 A TW105101665 A TW 105101665A TW 201727954 A TW201727954 A TW 201727954A
Authority
TW
Taiwan
Prior art keywords
electrode
type thermoelectric
thermoelectric material
type
conversion device
Prior art date
Application number
TW105101665A
Other languages
Chinese (zh)
Other versions
TWI570972B (en
Inventor
朱旭山
翁震灼
張志豪
Original Assignee
財團法人工業技術研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人工業技術研究院 filed Critical 財團法人工業技術研究院
Priority to TW105101665A priority Critical patent/TWI570972B/en
Priority to CN201610139336.5A priority patent/CN106992244B/en
Application granted granted Critical
Publication of TWI570972B publication Critical patent/TWI570972B/en
Publication of TW201727954A publication Critical patent/TW201727954A/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N19/00Integrated devices, or assemblies of multiple devices, comprising at least one thermoelectric or thermomagnetic element covered by groups H10N10/00 - H10N15/00
    • H10N19/101Multiple thermocouples connected in a cascade arrangement

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

A thermoelectric conversion device includes at least two strip P-type thermoelectric materials and N-type thermoelectric materials, a first electrode, and a second electrode. Each P-type and the N-type thermoelectric material has a first edge and a second edge at two ends in length direction respectively. The P-type thermoelectric materials are paralleled with the N-type thermoelectric materials alternately in a length direction. The first edges of the P-type and the N-type thermoelectric materials are at the same side, and the second edges of the P-type and the N-type thermoelectric materials are at the same side. The first electrode is electrically connected to at least two sides of the first edges of the P-type thermoelectric material and the next N-type thermoelectric material, and the second electrode is electrically connected to at least two sides of the second edges of the N-type thermoelectric material and the next P-type thermoelectric material. The first electrode and the second electrode are protruded from the first edges and the second edges of the P-type and the N-type thermoelectric materials along the length direction.

Description

熱電轉換裝置以及熱電轉換器Thermoelectric conversion device and thermoelectric converter

本揭露是有關於一種熱電轉換裝置以及熱電轉換器,且特別是有關於一種具有可與流體直接接觸的突出電極的熱電轉換裝置以及熱電轉換器。The present disclosure relates to a thermoelectric conversion device and a thermoelectric converter, and more particularly to a thermoelectric conversion device having a protruding electrode that can be in direct contact with a fluid, and a thermoelectric converter.

由於能源短缺問題,再生能源技術的發展成為了重要議題。熱電轉換技術為目前一種可直接將熱能與電能進行轉換的新興再生能源技術,此熱電轉換效應是藉由熱電材料內部載子移動讓熱能與電能達到能量轉換之功效。近年來,熱電轉換技術受到各國相關研究單位高度重視並投入大量研發能量,除了材料的開發,也積極進行熱電技術應用。The development of renewable energy technologies has become an important issue due to energy shortages. The thermoelectric conversion technology is an emerging renewable energy technology that can directly convert thermal energy and electrical energy. The thermoelectric conversion effect is to convert energy between thermal energy and electrical energy by the internal carrier movement of the thermoelectric material. In recent years, thermoelectric conversion technology has been highly valued by relevant research units in various countries and has invested a large amount of research and development energy. In addition to the development of materials, it is also actively applying thermoelectric technology.

熱電模組(thermoelectric module)是熱電轉換技術的應用產品之一。具體地說,熱電模組為一種具有熱與電兩種能量互相轉換特性之元件。對熱電模組通入直流電時,熱電模組兩端產生溫差,由冷端吸熱將熱能送到熱端放出,達到熱泵(heat pump)的功能,此為珀爾帖效應(Peltier effect)。另一方面,若熱電模組兩端處於不同溫度時,熱電模組即產生直流電,溫差越大的時候,產生的電功率越高,此為塞貝克效應(Seebeck effect)。The thermoelectric module is one of the applications of thermoelectric conversion technology. Specifically, the thermoelectric module is an element having a mutual conversion characteristic between heat and electricity. When the thermoelectric module is connected to the direct current, a temperature difference is generated at both ends of the thermoelectric module, and the heat is transferred from the cold end to the hot end to reach the heat pump function, which is the Peltier effect. On the other hand, if the two ends of the thermoelectric module are at different temperatures, the thermoelectric module generates direct current. When the temperature difference is larger, the electric power generated is higher, which is the Seebeck effect.

根據上述兩種原理,如何使熱電材料與金屬電極的接合處所產生之熱電轉換效應可以有效傳導進行應用,是非常重要的課題。According to the above two principles, how to make the thermoelectric conversion effect generated at the junction of the thermoelectric material and the metal electrode can be effectively conducted and applied is a very important subject.

本揭露提供一種熱電轉換裝置。熱電轉換裝置包括至少兩個以上的長型的P型熱電材料、至少兩個以上的長型的N型熱電材料、第一電極以及第二電極。P型熱電材料的長度方向的兩端分別具有第一端部以及第二端部,且N型熱電材料的長度方向的兩端分別具有第一端部以及第二端部。P型熱電材料以及N型熱電材料以於長度方向平行的方式而設置為交錯排列,且P型熱電材料的第一端部與N型熱電材料的第一端部位於同一側,P型熱電材料的第二端部與N型熱電材料的第二端部位於同一側。第一電極電連接P型熱電材料的第一端部的至少兩側面以及下一個N型熱電材料的第一端部的至少兩側面,其中第一電極沿著長度方向而突出於P型熱電材料的第一端部以及N型熱電材料的第一端部之外。第二電極電連接N型熱電材料的第二端部的至少兩側面以及下一個P型熱電材料的第二端部的至少兩側面,其中第二電極沿著長度方向而突出於P型熱電材料的第二端部以及N型熱電材料的第二端部之外,前述第一電極或前述第二電極為兩片的片狀電極,且其中一片的片狀電極電連接於前述P型熱電材料以及前述N型熱電材料的相對向的側面,而另一片的片狀電極電連接於與前述P型熱電材料以及前述N型熱電材料的相對向的側面相反側的側面,並且前述兩片的片狀電極不互相接觸。The present disclosure provides a thermoelectric conversion device. The thermoelectric conversion device includes at least two or more elongated P-type thermoelectric materials, at least two or more elongated N-type thermoelectric materials, a first electrode, and a second electrode. Both ends of the P-type thermoelectric material in the longitudinal direction have a first end portion and a second end portion, respectively, and both ends of the N-type thermoelectric material in the longitudinal direction have a first end portion and a second end portion, respectively. The P-type thermoelectric material and the N-type thermoelectric material are arranged in a staggered manner in a longitudinal direction, and the first end of the P-type thermoelectric material is on the same side as the first end of the N-type thermoelectric material, and the P-type thermoelectric material The second end is on the same side as the second end of the N-type thermoelectric material. The first electrode is electrically connected to at least two sides of the first end of the P-type thermoelectric material and at least two sides of the first end of the next N-type thermoelectric material, wherein the first electrode protrudes from the P-type thermoelectric material along the length direction The first end portion and the first end portion of the N-type thermoelectric material. The second electrode is electrically connected to at least two sides of the second end of the N-type thermoelectric material and at least two sides of the second end of the next P-type thermoelectric material, wherein the second electrode protrudes from the P-type thermoelectric material along the length direction In addition to the second end portion and the second end portion of the N-type thermoelectric material, the first electrode or the second electrode is a two-piece sheet electrode, and one of the sheet electrodes is electrically connected to the P-type thermoelectric material. And the opposite side faces of the N-type thermoelectric material, and the other sheet-shaped electrode is electrically connected to the side opposite to the opposite side faces of the P-type thermoelectric material and the N-type thermoelectric material, and the two sheets are The electrodes do not touch each other.

而且,本揭露提供一種熱電轉換器。熱電轉換器包括上述提及的熱電轉換裝置、第一流體通道以及第二流體通道。第一流體通道設置於前述第一電極側,其中第一電極位於第一流體通道內,以使流體直接流經第一電極。第二流體通道設置於第二電極側,其中第二電極位於第二流體通道內,以使流體直接流經第二電極。Moreover, the present disclosure provides a thermoelectric converter. The thermoelectric converter includes the above-mentioned thermoelectric conversion device, a first fluid passage, and a second fluid passage. The first fluid passage is disposed on the aforementioned first electrode side, wherein the first electrode is located in the first fluid passage to allow the fluid to directly flow through the first electrode. The second fluid channel is disposed on the second electrode side, wherein the second electrode is located in the second fluid channel to allow fluid to flow directly through the second electrode.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the invention will be apparent from the following description.

圖1為本揭露一實施例之熱電轉換裝置的示意結構圖。圖2為圖1之熱電轉換裝置的上視圖。請同時參照圖1以及圖2,熱電轉換裝置10a包括至少兩個以上的長型的P型熱電材料110、至少兩個以上的長型的N型熱電材料120、第一電極130以及第二電極140。此處所謂的「長型」的P型或N型熱電材料,是指熱電材料是由長度邊(圖1中的方向L)、寬度邊(圖1中的方向W)以及厚度邊(圖1中的方向T)所構成的長方體。舉例而言,一實施例中,長型的熱電材料的長度邊(L)相當程度的大於寬度邊(W)以及厚度邊(T),而使得熱電材料呈長條狀;一實施例中,將上述的長型的熱電材料之厚度邊(T)的厚度變小,將得到如同圖1所示的長型的片狀的熱電材料;一實施例中,上述的長型的熱電材料之厚度邊(T)的厚度相當程度的小於寬度邊(W)時,將得到長型的膜狀的熱電材料。FIG. 1 is a schematic structural diagram of a thermoelectric conversion device according to an embodiment of the present disclosure. 2 is a top view of the thermoelectric conversion device of FIG. 1. Referring to FIG. 1 and FIG. 2 together, the thermoelectric conversion device 10a includes at least two or more elongated P-type thermoelectric materials 110, at least two or more elongated N-type thermoelectric materials 120, a first electrode 130, and a second electrode. 140. The "long" P-type or N-type thermoelectric material referred to herein means that the thermoelectric material is composed of a length side (direction L in Fig. 1), a width side (direction W in Fig. 1), and a thickness side (Fig. 1). The cuboid formed by the direction T). For example, in one embodiment, the length side (L) of the elongated thermoelectric material is considerably larger than the width side (W) and the thickness side (T), so that the thermoelectric material is elongated; in one embodiment, The thickness of the thickness side (T) of the above-mentioned long thermoelectric material is made small, and a long sheet-like thermoelectric material as shown in Fig. 1 is obtained; in one embodiment, the thickness of the above-mentioned long thermoelectric material is obtained. When the thickness of the side (T) is considerably smaller than the width side (W), a long film-shaped thermoelectric material is obtained.

請繼續參照圖1以及圖2,P型熱電材料110分別在長度方向(L)的兩端具有第一端部110-E1以及第二端部110-E2,而且N型熱電材料120分別在長度方向(L)的兩端具有第一端部120-E1以及第二端部120-E2。多個P型熱電材料110與多個N型熱電材料120以於長度方向(L)平行的方式而設置為交錯排列,且P型熱電材料110的第一端部110-E1與N型熱電材料120的第一端部120-E1位於同一側,並且P型熱電材料110的第二端部110-E2與N型熱電材料120的第二端部120-E2位於同一側。在本實施例中,是使P型熱電材料110的具有較大表面積的側面111或112(亦即長度邊與寬度邊所構成的側面)與N型熱電材料120的具有較大表面積的側面121或122相對向而設置。P型熱電材料110以及N型熱電材料120可以是鉍碲系、鉛碲系、鎂矽系、方鈷礦系、鋅銻系等的熱電材料。1 and 2, the P-type thermoelectric material 110 has a first end portion 110-E1 and a second end portion 110-E2 at both ends in the longitudinal direction (L), respectively, and the N-type thermoelectric material 120 is respectively in length. Both ends of the direction (L) have a first end 120-E1 and a second end 120-E2. The plurality of P-type thermoelectric materials 110 and the plurality of N-type thermoelectric materials 120 are arranged in a staggered manner in parallel in the longitudinal direction (L), and the first end portions of the P-type thermoelectric material 110 are 110-E1 and the N-type thermoelectric materials. The first end 120-E1 of the 120 is on the same side, and the second end 110-E2 of the P-type thermoelectric material 110 is on the same side as the second end 120-E2 of the N-type thermoelectric material 120. In the present embodiment, the side surface 111 or 112 of the P-type thermoelectric material 110 having a large surface area (that is, the side surface formed by the length side and the width side) and the side surface 121 having a large surface area of the N-type thermoelectric material 120 are used. Or 122 is set opposite. The P-type thermoelectric material 110 and the N-type thermoelectric material 120 may be thermoelectric materials such as a lanthanide, a lead lanthanum, a magnesium lanthanide, a skutterudite system, or a zinc lanthanum system.

請繼續參照圖1以及圖2,沿著P型熱電材料110以及N型熱電材料120的排列方向(T),使第一電極130電連接P型熱電材料110的第一端部110-E1的至少兩側面以及下一個N型熱電材料120的第一端部120-E1的至少兩側面,並且其中第一電極130沿著長度方向而突出於P型熱電材料110的第一端部110-E1以及N型熱電材料120的第一端部120-E1之外。而且,第二電極140電連接N型熱電材料120的第二端部120-E2的至少兩側面以及下一個P型熱電材料110的第二端部110-E2的至少兩側面,並且其中第二電極140沿著長度方向而突出於P型熱電材料110的第二端部110-E2以及N型熱電材料的第二端部120-E2之外。藉由上述的P型熱電材料110、N型熱電材料120、第一電極130以及第二電極的配置方式,將能夠以串聯的方式構成本揭露的熱電轉換裝置。於本實施例中,第一電極130以及第二電極140的材質例如是可包括銅、鎳、鐵、銀、鈦、鋁、鉬等金屬及其合金。並且第一電極130以及第二電極140的形狀例如是可包括片狀或線狀。使第一電極130電連接於P型熱電材料110與N型熱電材料120的方式例如是可使用焊接。Referring to FIG. 1 and FIG. 2, the first electrode 130 is electrically connected to the first end portion 110-E1 of the P-type thermoelectric material 110 along the arrangement direction (T) of the P-type thermoelectric material 110 and the N-type thermoelectric material 120. At least two sides and at least two sides of the first end 120-E1 of the next N-type thermoelectric material 120, and wherein the first electrode 130 protrudes from the first end 110-E1 of the P-type thermoelectric material 110 along the length direction And the first end 120-E1 of the N-type thermoelectric material 120. Moreover, the second electrode 140 electrically connects at least two sides of the second end portion 120-E2 of the N-type thermoelectric material 120 and at least two sides of the second end portion 110-E2 of the next P-type thermoelectric material 110, and wherein the second portion The electrode 140 protrudes beyond the second end portion 110-E2 of the P-type thermoelectric material 110 and the second end portion 120-E2 of the N-type thermoelectric material along the length direction. The above-described P-type thermoelectric material 110, N-type thermoelectric material 120, first electrode 130, and second electrode arrangement means that the thermoelectric conversion device of the present disclosure can be configured in series. In the present embodiment, the material of the first electrode 130 and the second electrode 140 may be, for example, a metal such as copper, nickel, iron, silver, titanium, aluminum, molybdenum or the like and an alloy thereof. And the shape of the first electrode 130 and the second electrode 140 may be, for example, a sheet shape or a line shape. The manner in which the first electrode 130 is electrically connected to the P-type thermoelectric material 110 and the N-type thermoelectric material 120 can be, for example, soldering.

於本實施例中,所使用的長型的P型熱電材料110以及N型熱電材料120為厚度邊為小的熱電材料,藉由如同本實施例的圖1以及圖2的配置方式,能夠有助於熱電轉換裝置本體的小型化。而且,第一電極130以及第二電極140接合於P型熱電材料110以及N型熱電材料120的兩側面,因此,即使是採用薄型的熱電材料,也能夠具有充分大的接合面積,從而能夠提升熱電轉換以及熱能輸送的效果。此外,於本實施中,使第一電極130以及第二電極140突出於P型熱電材料110以及N型熱電材料120的端部之外的構成,是為了使本揭露的熱電轉換裝置10a在後續使用時,能夠使流體直接流經第一電極130以及第二電極140以進行熱交換,從而能夠增加熱交換的效能。In the present embodiment, the long P-type thermoelectric material 110 and the N-type thermoelectric material 120 used are thermoelectric materials having a small thickness. By the arrangement of FIG. 1 and FIG. 2 of the present embodiment, it is possible to have Helps miniaturization of the body of the thermoelectric conversion device. Further, since the first electrode 130 and the second electrode 140 are bonded to both side faces of the P-type thermoelectric material 110 and the N-type thermoelectric material 120, even if a thin thermoelectric material is used, a sufficiently large bonding area can be obtained, thereby being able to be improved. Thermoelectric conversion and the effect of heat transfer. Further, in the present embodiment, the first electrode 130 and the second electrode 140 are protruded from the ends of the P-type thermoelectric material 110 and the N-type thermoelectric material 120 in order to make the thermoelectric conversion device 10a of the present disclosure follow-up. In use, fluid can be directly flowed through the first electrode 130 and the second electrode 140 for heat exchange, thereby increasing the efficiency of heat exchange.

而且,由使第一電極130以及第二電極140能夠得到與P型熱電材料110以及N型熱電材料120充分的接合面積的觀點,在一實施例中,第一電極130以及第2電極140可以為具有與P型熱電材料110以及N型熱電材料120相同寬度的片狀結構,並使第一電極130以及第二電極140接合於P型熱電材料110與N型熱電材料120的由長度邊與寬度邊所構成的側面。在一實施例中,相對於P型熱電材料110以及N型熱電材料120的一個側面的面積,第一電極130與P型熱電材料110以及N型熱電材料120的一個側面的接合面積可以為25%以下(大於0%小於等於25%),而且第二電極140與P型熱電材料110以及N型熱電材料120的一個側面的接合面積可以為25%以下(大於0%小於等於25%)。Further, from the viewpoint that the first electrode 130 and the second electrode 140 can obtain a sufficient bonding area with the P-type thermoelectric material 110 and the N-type thermoelectric material 120, in an embodiment, the first electrode 130 and the second electrode 140 may be A sheet-like structure having the same width as the P-type thermoelectric material 110 and the N-type thermoelectric material 120, and bonding the first electrode 130 and the second electrode 140 to the length side of the P-type thermoelectric material 110 and the N-type thermoelectric material 120 The side formed by the width edge. In one embodiment, the bonding area of the first electrode 130 to one side of the P-type thermoelectric material 110 and the N-type thermoelectric material 120 may be 25 with respect to the area of one side of the P-type thermoelectric material 110 and the N-type thermoelectric material 120. % or less (greater than 0% or less and 25%), and the bonding area of the second electrode 140 to one side of the P-type thermoelectric material 110 and the N-type thermoelectric material 120 may be 25% or less (greater than 0% or less and 25%).

請參照圖1,於本實施例中,第一電極130為寬度與P型熱電材料110以及N型熱電材料120相同的兩片的片狀電極131、132,且其中一片的片狀電極131電連接P型熱電材料110的側面111以及N型熱電材料120的側面122,亦即是藉由片狀電極131電連接P型熱電材料110以及N型熱電材料120的相對向的側面。而另一片的片狀電極132電連接於P型熱電材料110的側面112以及N型熱電材料120的側面121,亦即是,藉由片狀電極132電連接P型熱電材料110以及N型熱電材料120的與相對向的側面相反側的側面。而且,前述兩片的片狀電極131、132並不互相接觸。Referring to FIG. 1, in the embodiment, the first electrode 130 is two chip electrodes 131 and 132 having the same width as the P-type thermoelectric material 110 and the N-type thermoelectric material 120, and one of the chip electrodes 131 is electrically charged. The side surface 111 of the P-type thermoelectric material 110 and the side surface 122 of the N-type thermoelectric material 120 are connected, that is, the opposite side faces of the P-type thermoelectric material 110 and the N-type thermoelectric material 120 are electrically connected by the sheet electrode 131. The other sheet electrode 132 is electrically connected to the side surface 112 of the P-type thermoelectric material 110 and the side surface 121 of the N-type thermoelectric material 120, that is, the P-type thermoelectric material 110 and the N-type thermoelectric are electrically connected by the sheet electrode 132. The side of the material 120 opposite the opposite side. Further, the two sheets of the sheet electrodes 131, 132 are not in contact with each other.

而且,於本實施例中,第二電極140為寬度與P型熱電材料110以及N型熱電材料120相同的兩片的片狀電極141、142,且其中一片的片狀電極141電連接N型熱電材料120的側面121以及P型熱電材料的側面112,亦即是藉由片狀電極141電連接N型熱電材料120以及P型熱電材料110的相對向的側面。而另一片的片狀電極142電連接於N型熱電材料120的側面122以及P型熱電材料110的側面111,亦即是,藉由片狀電極142電連接N型熱電材料120以及P型熱電材料110的與相對向的側面相反側的側面。而且,前述兩片的片狀電極141、142並不互相接觸。Moreover, in the present embodiment, the second electrode 140 is two sheet-like electrodes 141, 142 having the same width as the P-type thermoelectric material 110 and the N-type thermoelectric material 120, and one of the sheet-like electrodes 141 is electrically connected to the N-type. The side surface 121 of the thermoelectric material 120 and the side surface 112 of the P-type thermoelectric material, that is, the opposite side faces of the N-type thermoelectric material 120 and the P-type thermoelectric material 110 are electrically connected by the sheet electrode 141. The other sheet electrode 142 is electrically connected to the side surface 122 of the N-type thermoelectric material 120 and the side surface 111 of the P-type thermoelectric material 110, that is, the N-type thermoelectric material 120 and the P-type thermoelectric are electrically connected by the sheet electrode 142. The side of the material 110 opposite the opposite side. Further, the two sheets of the sheet electrodes 141, 142 are not in contact with each other.

在本實施例中,藉由使第一電極130為兩片的片狀電極131、132,且片狀電極131、132不互相接觸,並藉由使第二電極140為兩片的片狀電極141、142,並且,且片狀電極141、142不互相接觸,因此每一片片狀電極131、132、141、142的突出部分的電極表面都能夠與流體接觸,與習知架構相較之下,第一電極130以及第二電極140能夠得到約兩倍以上的熱交換面積,因此能夠更為增加第一電極130以及第二電極140與流體的熱交換效能。此外,在本實施例中,是利用兩片的U型片狀電極來電連接P型熱電材料以及N型熱電材料的由長度邊與寬度邊所構成的兩側面,但本揭露並不限定於此,電極的形狀並不限定為U型,可依據實際需要(例如是電極加工容易性或是與流體接觸面積等)而為任意的適當形狀。而且,亦可以利用電極進一步電連接P型熱電材料以及N型熱電材料的由寬度邊與厚度邊所構成的側面,並使所形成的電極不互相接觸,以使流體能夠接觸所有電極的表面,藉由此種構成,可以使電極得到更大的熱交換面積,進一步增加電極與流體的熱交換效能。In the present embodiment, the first electrode 130 is made into two sheet electrodes 131, 132, and the sheet electrodes 131, 132 are not in contact with each other, and the second electrode 140 is made into two sheets of sheet electrodes. 141, 142, and the sheet electrodes 141, 142 are not in contact with each other, so that the electrode surfaces of the protruding portions of each of the sheet electrodes 131, 132, 141, 142 can be in contact with the fluid, compared with the conventional structure. The first electrode 130 and the second electrode 140 can obtain about twice or more of the heat exchange area, and thus the heat exchange performance of the first electrode 130 and the second electrode 140 with the fluid can be further increased. Further, in the present embodiment, the two sides of the P-type thermoelectric material and the N-type thermoelectric material are electrically connected by two U-shaped sheet electrodes, but the disclosure is not limited thereto. The shape of the electrode is not limited to a U shape, and may be any appropriate shape depending on actual needs (for example, ease of electrode processing or contact area with a fluid). Moreover, the P-type thermoelectric material and the side surface of the N-type thermoelectric material composed of the width side and the thickness side may be further electrically connected by the electrode, and the formed electrodes are not in contact with each other, so that the fluid can contact the surfaces of all the electrodes. With such a configuration, the electrode can be made to have a larger heat exchange area, further increasing the heat exchange efficiency between the electrode and the fluid.

另外,如圖1所示,熱電轉換裝置10a更可以包括導線190以及電力系統(未圖示),其中藉由導線190電性連接電力系統,而完成一個完整的電路迴路。電力系統例如是電力提供裝置或電力儲存裝置,本揭露不限於此。在本實施例中,電力系統例如是直流電提供裝置。In addition, as shown in FIG. 1, the thermoelectric conversion device 10a may further include a wire 190 and a power system (not shown) in which a complete circuit circuit is completed by electrically connecting the power system to the power system. The power system is, for example, a power supply device or a power storage device, and the disclosure is not limited thereto. In the present embodiment, the power system is, for example, a direct current power supply device.

請參照圖1,當熱電轉換裝置10a作為發熱裝置時,其簡單的運作如以下實施例說明。首先,通過導線190的設置,電力系統(未圖示)提供一直流電給熱電轉換裝置10a,藉由P型熱電材料110中帶有正電荷的電洞往鄰近的第一電極130移動以及N型熱電材料120中帶有負電荷的電子往鄰近的第一電極130移動,因此第一電極130因吸熱而被加熱,且第二電極140因被吸熱而降溫。因此,如在熱電轉換裝置10a的第一電極130側以及第二電極140側分別使流體通過,將能夠使流經第二電極140的流體被致冷,並使流經第一電極130的流體被加熱。據此,本實施例熱電轉換裝置10藉由珀爾帖效應(Peltier effect),達到熱泵(heat pump)的功能。Referring to Fig. 1, when the thermoelectric conversion device 10a is used as a heat generating device, its simple operation is as described in the following embodiments. First, through the arrangement of the wires 190, the power system (not shown) supplies the current to the thermoelectric conversion device 10a, and the positively charged holes in the P-type thermoelectric material 110 move toward the adjacent first electrode 130 and the N-type. The negatively charged electrons in the thermoelectric material 120 move toward the adjacent first electrode 130, so that the first electrode 130 is heated by the heat absorption, and the second electrode 140 is cooled by the heat absorption. Therefore, if the fluid is passed through the first electrode 130 side and the second electrode 140 side of the thermoelectric conversion device 10a, respectively, the fluid flowing through the second electrode 140 can be cooled, and the fluid flowing through the first electrode 130 can be made. It is heated. Accordingly, the thermoelectric conversion device 10 of the present embodiment achieves the function of a heat pump by the Peltier effect.

圖3為本揭露另一實施例之熱電轉換裝置的示意結構圖。圖3之實施例之熱電轉換裝置10b與上述圖1之熱電轉換裝置10a相似,因此相同或相似的元件以相同的或相似的符號表示,且不再重複說明。圖3之實施例與圖1之實施例主要差異處在於,P型熱電材料110與N型熱電材料120被設置於絕緣絕熱材料150中,而且,第一電極130以及第二電極140分別沿著P型熱電材料110以及N型熱電材料120的長度方向突出於絕緣絕熱材料150之外。絕緣絕熱材料150的材質例如是陶瓷、塑膠、壓克力、木頭、保麗龍及此些的混合物等。FIG. 3 is a schematic structural diagram of a thermoelectric conversion device according to another embodiment of the present disclosure. The thermoelectric conversion device 10b of the embodiment of Fig. 3 is similar to the above-described thermoelectric conversion device 10a of Fig. 1, and therefore the same or similar elements are denoted by the same or similar symbols, and the description thereof will not be repeated. The main difference between the embodiment of FIG. 3 and the embodiment of FIG. 1 is that the P-type thermoelectric material 110 and the N-type thermoelectric material 120 are disposed in the insulating heat insulating material 150, and the first electrode 130 and the second electrode 140 are respectively along The length direction of the P-type thermoelectric material 110 and the N-type thermoelectric material 120 protrudes beyond the insulating heat insulating material 150. The material of the insulating heat insulating material 150 is, for example, ceramic, plastic, acrylic, wood, styrofoam, and a mixture thereof.

就理論上而言,本揭露的核心元件為P型熱電材料110、N型熱電材料120、第一電極130以及第二電極140,藉由對上述構件所組成的熱電轉換裝置10a施加電流,就能夠達成本揭露的熱電轉換裝置10a的熱泵的功能。但於本實施例中,藉由將P型熱電材料110、N型熱電材料120設置於絕緣絕熱材料150中,能夠利用絕緣絕熱材料150更為穩固的固定P型熱電材料110、N型熱電材料120,並提供良好的絕緣絕熱效果。Theoretically, the core components of the present disclosure are a P-type thermoelectric material 110, an N-type thermoelectric material 120, a first electrode 130, and a second electrode 140. By applying a current to the thermoelectric conversion device 10a composed of the above components, The function of the heat pump of the thermoelectric conversion device 10a of the present disclosure can be achieved. However, in the present embodiment, by providing the P-type thermoelectric material 110 and the N-type thermoelectric material 120 in the insulating heat insulating material 150, the P-type thermoelectric material 110 and the N-type thermoelectric material can be more stably fixed by the insulating heat insulating material 150. 120, and provide good insulation insulation.

圖4為本揭露另一實施例之熱電轉換裝置的示意結構圖。圖4之實施例之熱電轉換裝置10c與上述圖3之熱電轉換裝置10b相似,因此相同或相似的元件以相同的或相似的符號表示,且不再重複說明。圖4之實施例與圖3之實施例主要差異處在於,熱電轉換裝置10c更包括外殼160。具體來說,熱電轉換裝置10c的外殼160包覆圖3中的熱電轉換裝置10b,而且,第一電極130以及第二電極140分別沿著P型熱電材料110以及N型熱電材料120的長度方向而突出於外殼160之外。FIG. 4 is a schematic structural diagram of a thermoelectric conversion device according to another embodiment of the present disclosure. The thermoelectric conversion device 10c of the embodiment of Fig. 4 is similar to the above-described thermoelectric conversion device 10b of Fig. 3, and therefore the same or similar elements are denoted by the same or similar symbols, and the description thereof will not be repeated. The main difference between the embodiment of FIG. 4 and the embodiment of FIG. 3 is that the thermoelectric conversion device 10c further includes a housing 160. Specifically, the outer casing 160 of the thermoelectric conversion device 10c encloses the thermoelectric conversion device 10b of FIG. 3, and the first electrode 130 and the second electrode 140 are along the length direction of the P-type thermoelectric material 110 and the N-type thermoelectric material 120, respectively. It protrudes beyond the outer casing 160.

外殼160的設置可對熱電轉換裝置10c進一步達到結構上的保護。而且,藉由將用以輸入電流的正負端子接點161設置於外殼160的一處,將有利於後續的使用。外殼160的材料例如是絕緣材料;舉例來說,可為電絕緣材料、熱絕緣材料或絕緣絕熱材料。此外,依照需求,藉由對外殼160進行適當的設計,以使得流體通道(未圖示)能夠容易的安裝於熱電轉換裝置10c。或者是,藉由對外殼160進行適當的設計,以能夠堆疊設置多個熱電轉換裝置10c。此外,於本實施例中,絕緣絕熱材料150與外殼160為分別設置的不同構件,但本揭露不以此為限,亦能夠採用絕緣絕熱材質的外殼來直接填充並包覆P型熱電材料110以及N型熱電材料120。The arrangement of the outer casing 160 provides further structural protection to the thermoelectric conversion device 10c. Moreover, by placing the positive and negative terminal contacts 161 for inputting current at one location of the housing 160, subsequent use will be facilitated. The material of the outer casing 160 is, for example, an insulating material; for example, it may be an electrically insulating material, a thermal insulating material, or an insulating heat insulating material. Further, the outer casing 160 is appropriately designed as needed so that a fluid passage (not shown) can be easily mounted to the thermoelectric conversion device 10c. Alternatively, the plurality of thermoelectric conversion devices 10c can be stacked by appropriately designing the outer casing 160. In addition, in the present embodiment, the insulating heat insulating material 150 and the outer casing 160 are different members respectively provided, but the disclosure is not limited thereto, and the outer casing of the insulating heat insulating material can be used to directly fill and cover the P-type thermoelectric material 110. And an N-type thermoelectric material 120.

圖5為本揭露一實施例之熱電轉換器20a的示意結構圖,熱電轉換器20a至少包括熱電轉換裝置10c、第一流體通道210、第二流體通道220。如圖5所示,第一流體通道210設置於第一電極130側,其中第一電極130設置於第一流體通道210的內部,以使得當流體A流經第一流體通道210時,能夠與其中的第一電極130進行熱交換。而且,第二流體通道220設置於第二電極140側,其中第二電極140設置於第二流體通道220的內部,以使得當流體B流經第二流體通道220時,能夠與其中的第二電極140進行熱交換。此外,在本實施例中,第一流體通道210以及第二流體通道220所流通的流體的流動方向是設定為與第一電極130或第二電極140的排列方向(T方向)平行,但本揭露並不限定於此。FIG. 5 is a schematic structural diagram of a thermoelectric converter 20a according to an embodiment of the present disclosure. The thermoelectric converter 20a includes at least a thermoelectric conversion device 10c, a first fluid passage 210, and a second fluid passage 220. As shown in FIG. 5, the first fluid channel 210 is disposed on the side of the first electrode 130, wherein the first electrode 130 is disposed inside the first fluid channel 210 such that when the fluid A flows through the first fluid channel 210, The first electrode 130 therein performs heat exchange. Moreover, the second fluid passage 220 is disposed on the second electrode 140 side, wherein the second electrode 140 is disposed inside the second fluid passage 220 such that when the fluid B flows through the second fluid passage 220, it can be combined with the second The electrode 140 performs heat exchange. In addition, in the present embodiment, the flow direction of the fluid flowing through the first fluid passage 210 and the second fluid passage 220 is set to be parallel to the arrangement direction (T direction) of the first electrode 130 or the second electrode 140, but The disclosure is not limited to this.

圖6為本揭露另一實施例之熱電轉換器的示意結構圖。圖6之實施例之熱電轉換器20b與上述圖5之熱電轉換器20a相似,因此相同或相似的元件以相同的或相似的符號表示,且不再重複說明。圖6之實施例與圖5之實施例主要差異處在於,第一流體通道230以及第二流體通道240的流體流動方向與圖5之熱電轉換器20a的流體流動方向不同。具體來說,本實施例中的第一流體通道230所流通的流體A以及第二流體通道240所流通的流體B的流動方向是設定為與第一電極130或第二電極140的排列方向(T方向)垂直的方向(W方向)。藉由本實施例的此種設計,能夠視需要而堆疊設置多個熱電轉換器20b,並藉由使流體流經更多的第一電極130以及第二電極140,從而獲得更佳的熱泵功效。FIG. 6 is a schematic structural diagram of a thermoelectric converter according to another embodiment of the present disclosure. The thermoelectric converter 20b of the embodiment of Fig. 6 is similar to the thermoelectric converter 20a of Fig. 5 described above, and therefore the same or similar elements are denoted by the same or similar symbols, and the description thereof will not be repeated. The main difference between the embodiment of FIG. 6 and the embodiment of FIG. 5 is that the fluid flow directions of the first fluid passage 230 and the second fluid passage 240 are different from the fluid flow direction of the thermoelectric converter 20a of FIG. Specifically, the flow direction of the fluid A flowing through the first fluid passage 230 and the fluid B flowing through the second fluid passage 240 in the present embodiment is set to be aligned with the first electrode 130 or the second electrode 140 ( T direction) Vertical direction (W direction). With such a design of the present embodiment, a plurality of thermoelectric converters 20b can be stacked as needed, and by allowing fluid to flow through the more first electrodes 130 and the second electrodes 140, better heat pump efficiency can be obtained.

在上述圖5以及圖6的實施例中,其中的熱電轉換裝置10c如採用圖1的電連接方式,將能夠使流經第二電極140的流體被致冷,並使流經第一電極130的流體被加熱。但本揭露並不限定於此,亦可以採用與圖1相反的電連接方式,以使流經第二電極140的流體被加熱,並使流經第一電極130的流體被致冷。此外,在上述圖5以及圖6的實施例中,是將流體通道設置於熱電轉換裝置10c以分別構成熱電轉換器20a、20b,但本揭露並不限定於此,亦可以將流體通道設置於圖1的熱電轉換裝置10a或是圖3的熱電轉換裝置10b以構成熱電轉換器。In the above-described embodiments of FIGS. 5 and 6, the thermoelectric conversion device 10c therein, as with the electrical connection of FIG. 1, will enable the fluid flowing through the second electrode 140 to be cooled and flow through the first electrode 130. The fluid is heated. However, the present disclosure is not limited thereto, and an electrical connection opposite to that of FIG. 1 may be employed such that the fluid flowing through the second electrode 140 is heated and the fluid flowing through the first electrode 130 is cooled. Further, in the above-described embodiments of FIGS. 5 and 6, the fluid passages are provided in the thermoelectric conversion device 10c to constitute the thermoelectric converters 20a and 20b, respectively, but the disclosure is not limited thereto, and the fluid passage may be provided to The thermoelectric conversion device 10a of Fig. 1 or the thermoelectric conversion device 10b of Fig. 3 constitutes a thermoelectric converter.

此外,在上述對於熱電轉換裝置或是熱電轉換器的描述中,都是藉由電力系統提供電力給熱電轉換裝置或熱電轉換器,以藉由珀爾帖效應達到熱泵的功能,但本揭露並不限定於此,亦可以分別提供兩個彼此之間具有溫差的流體至第一電極130側以及第二電極140側,藉由流體間的溫差產生電流(即:Seebeck effect),使熱電轉換裝置或是熱電轉換器具發電功能。〈熱泵功能的測試〉 In addition, in the above description of the thermoelectric conversion device or the thermoelectric converter, power is supplied to the thermoelectric conversion device or the thermoelectric converter by the power system to achieve the function of the heat pump by the Peltier effect, but the disclosure The present invention is not limited thereto, and two fluids having a temperature difference from each other may be separately provided to the first electrode 130 side and the second electrode 140 side, and a current (ie, Seebeck effect) is generated by a temperature difference between the fluids, so that the thermoelectric conversion device is provided. Or the thermoelectric converter has a power generation function. <Test of heat pump function>

首先,準備5對的長條狀的P型熱電材料以及N型熱電材料,其中P型熱電材料以及N型熱電材料的尺寸為40mm(L)×5mm(W)×2mm(T)。在P型熱電材料以及N型熱電材料的兩端部個別形成有鎳金層,以用於後續與電極的連接。接著,使用厚度為200μm的銅箔作為電極,藉由焊接的方式依序串聯連接P型熱電材料以及N型熱電材料,然後彎折電極,以構成如圖1所示結構的測試裝置。接著,在電極位置裝置熱電偶,並對此測試裝置提供電力,以量測此測試裝置的兩側電極的昇溫與降溫特性。First, five pairs of long P-type thermoelectric materials and N-type thermoelectric materials are prepared, wherein the size of the P-type thermoelectric material and the N-type thermoelectric material is 40 mm (L) × 5 mm (W) × 2 mm (T). Nickel gold layers are individually formed on both ends of the P-type thermoelectric material and the N-type thermoelectric material for subsequent connection to the electrodes. Next, using a copper foil having a thickness of 200 μm as an electrode, a P-type thermoelectric material and an N-type thermoelectric material were sequentially connected in series by soldering, and then the electrodes were bent to constitute a test apparatus having the structure shown in FIG. Next, a thermocouple is placed at the electrode position, and power is supplied to the test device to measure the temperature rise and fall characteristics of the electrodes on both sides of the test device.

接著,將測試裝置設置在空氣環境下進行測試,測試的環境溫度為23℃,且輸入功率為約10W(1.6A/7V),量測的結果請參照圖7。於圖7中,溫度曲線的量測結果由高至低分別為CH001(熱電材料與電極接合放熱處溫度)、CH005(發熱電極溫度)、CH003(環境溫度)、CH006(致冷電極溫度)與CH004(熱電材料與電極接合吸熱處溫度),其中致冷端的電極片與加熱端的電極片的溫差最大到達52℃。Next, the test device was set in an air environment for testing. The ambient temperature of the test was 23 ° C, and the input power was about 10 W (1.6 A / 7 V). Refer to Figure 7 for the measurement results. In Figure 7, the measurement results of the temperature curve from high to low are CH001 (thermoelectric material and electrode junction exotherm temperature), CH005 (heating electrode temperature), CH003 (ambient temperature), CH006 (refrigerating electrode temperature) and CH004 (thermoelectric material and electrode junction heat absorption temperature), wherein the temperature difference between the electrode sheet at the cooling end and the electrode sheet at the heating end reaches a maximum of 52 °C.

接著,將測試裝置設置在作為絕緣絕熱材料的保麗龍之中,其中前述絕緣絕熱材料形成有可使流體分別流經測試裝置的兩側電極的流體通道。接著,對前述測試裝置進行通水以及通電,所得的測量結果如圖8所示。於圖8中,數列1以及數列2表示於加熱端所測得的水溫,數列3以及數列4表示於致冷端所測得的水溫。由圖8可知,在進行測試前的水溫約為28℃,在經由對測試裝置施加電力之後,加熱端的水溫提高至36℃,而且致冷端的水溫降低至27℃。因此,由上述圖7以及圖8的結果可知,不論是於空氣中或通水狀態下,本揭露的熱電轉換裝置確實具備熱電元件所具有的熱泵功能。〈接合面積影響的測試〉 Next, the test device is placed in a styrofoam as an insulating heat insulating material formed with a fluid passage through which the fluid can flow through the both side electrodes of the test device, respectively. Next, the test device was supplied with water and energized, and the obtained measurement results are shown in FIG. In Fig. 8, the sequence 1 and the sequence 2 indicate the water temperature measured at the heating end, and the series 3 and the column 4 indicate the water temperature measured at the cooling end. As can be seen from Fig. 8, the water temperature before the test was about 28 ° C, the temperature of the water at the heating end was increased to 36 ° C after the application of electric power to the test device, and the water temperature at the cold end was lowered to 27 ° C. Therefore, as is apparent from the results of FIGS. 7 and 8 described above, the thermoelectric conversion device of the present invention does have the heat pump function of the thermoelectric element regardless of whether it is in the air or in a water-passing state. <Test of the influence of joint area>

提供長條狀的P型熱電材料以及N型熱電材料,其中P型熱電材料以及N型熱電材料的尺寸為40mm(L)×5mm(W)×2mm(T)。接著,使用作為電極的銅箔對P型熱電材料以及N型熱電材料的由40mm(L)×5mm(W)構成的兩側面進行焊接,以構成N-P-N的結構。其中對於電極與P型熱電材料以及N型熱電材料接合的面積分別設定如下:5mm(W)×3mm(L)、5mm(W)×6mm(L)以及5mm(W)×10mm(L)。A long P-type thermoelectric material and an N-type thermoelectric material are provided, wherein the size of the P-type thermoelectric material and the N-type thermoelectric material is 40 mm (L) × 5 mm (W) × 2 mm (T). Next, the two side faces of the P-type thermoelectric material and the N-type thermoelectric material, which are composed of 40 mm (L) × 5 mm (W), were welded using a copper foil as an electrode to constitute a structure of N-P-N. The areas where the electrodes are bonded to the P-type thermoelectric material and the N-type thermoelectric material are set as follows: 5 mm (W) × 3 mm (L), 5 mm (W) × 6 mm (L), and 5 mm (W) × 10 mm (L).

接著,對於前述3種不同面積的熱電轉換裝置通入不同功率的直流電進行測試,量測接合電極的溫差,其結果如圖9所示。由圖9可知,在相同的熱電材料條件之下,藉由提高電極與熱電材料的接合面積,能夠增加致冷端的電極與加熱端的電極的的溫差,從而達到提高熱電熱泵的功效。Next, the above three different types of thermoelectric conversion devices are tested by passing direct current of different powers, and the temperature difference of the bonding electrodes is measured, and the result is shown in FIG. It can be seen from FIG. 9 that under the same thermoelectric material condition, by increasing the bonding area of the electrode and the thermoelectric material, the temperature difference between the electrode at the cold end and the electrode at the heating end can be increased, thereby improving the efficiency of the thermoelectric heat pump.

綜上所述,本揭露的熱電轉換裝置或熱電轉換器中的第一電極以及第二電極接合於P型熱電材料以及N型熱電材料的兩側面,因此能夠具有更大的接合面積,從而能夠更為提升熱電轉換以及熱能輸送的效果。另一方面,即使是將熱電材料小型化或者是薄型化,藉由本揭露的上述構成,也能夠確保充足的接合面積,從而能夠得到良好的熱電轉換以及熱能輸送的效果。In summary, the first electrode and the second electrode in the thermoelectric conversion device or the thermoelectric converter of the present disclosure are bonded to both sides of the P-type thermoelectric material and the N-type thermoelectric material, and thus can have a larger bonding area, thereby enabling It also enhances the effects of thermoelectric conversion and heat transfer. On the other hand, even if the thermoelectric material is miniaturized or thinned, the above-described configuration of the present invention can ensure a sufficient bonding area, and an excellent thermoelectric conversion and heat energy transfer effect can be obtained.

此外,本揭露的熱電轉換裝置或熱電轉換器中的第一電極以及第二電極突出於P型熱電材料以及N型熱電材料的端部(絕緣絕熱材料或是外殼)之外,本揭露的熱電轉換裝置或熱電轉換器在後續使用時,能夠使流體直接流經第一電極以及第二電極以進行熱交換,熱電材料與金屬電極的接合處所產生之熱電轉換效應可不需透過絕緣基板熱傳導進行應用,因此可不受限於絕緣基板本身的熱阻降低了實際可應用的性能。此外,亦不需在絕緣基板的外側進行熱交換,可減少熱電模組的熱電轉換效率再次受到損耗,從而能夠提升熱交換的效能。In addition, the first electrode and the second electrode in the thermoelectric conversion device or the thermoelectric converter of the present disclosure protrude beyond the end of the P-type thermoelectric material and the N-type thermoelectric material (insulating insulating material or outer casing), and the disclosed thermoelectricity The conversion device or the thermoelectric converter can directly flow the fluid through the first electrode and the second electrode for heat exchange, and the thermoelectric conversion effect generated by the junction of the thermoelectric material and the metal electrode can be applied without heat conduction through the insulating substrate. Therefore, the thermal resistance of the insulating substrate itself can be reduced without being practically applicable. In addition, heat exchange on the outside of the insulating substrate is not required, and the thermoelectric conversion efficiency of the thermoelectric module can be reduced again, thereby improving the efficiency of heat exchange.

而且,在本揭露的熱電轉換裝置或熱電轉換器中,藉由使第一電極以及第二電極分別為兩片的U型片狀電極,與習知架構相較之下,本揭露的第一電極以及第二電極能夠得到約兩倍以上的熱交換面積,因此能夠更為增加第一電極以及第二電極與流體的熱交換效能。Moreover, in the thermoelectric conversion device or the thermoelectric converter of the present disclosure, the first electrode and the second electrode are respectively two U-shaped sheet electrodes, and the first of the disclosure is compared with the conventional architecture. The electrode and the second electrode are capable of obtaining about twice or more of the heat exchange area, and thus the heat exchange efficiency of the first electrode and the second electrode with the fluid can be further increased.

綜合上述所揭示的各優點,本揭露的熱電轉換裝置或熱電轉換器即使是將熱電材料小型化或是薄型化的情況下,仍然能夠具有優良的熱電轉換以及熱能輸送的效果,因此,本揭露能夠提供小型化(或是薄型化)且具有高效能的熱電轉換裝置或熱電轉換器。In view of the advantages disclosed above, the thermoelectric conversion device or the thermoelectric converter of the present invention can have excellent thermoelectric conversion and thermal energy transfer effects even when the thermoelectric material is miniaturized or thinned. It is capable of providing miniaturization (or thinning) and high-performance thermoelectric conversion devices or thermoelectric converters.

雖然本揭露已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本揭露的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。The present disclosure has been disclosed in the above embodiments, but it is not intended to limit the invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the disclosure. The scope of the invention is defined by the scope of the appended claims.

10a、10b、10c‧‧‧熱電轉換裝置
20a、20b‧‧‧熱電轉換器
110‧‧‧P型熱電材料
110-E1、120-E1‧‧‧第一端部
111、112、121、122‧‧‧側面
120‧‧‧N型熱電材料
110-E2、120-E2‧‧‧第二端部
130‧‧‧第一電極
131、132、141、142‧‧‧片狀電極
140‧‧‧第二電極
150‧‧‧絕熱絕緣材料
160‧‧‧外殼
161‧‧‧端子接點
190‧‧‧導線
210、230‧‧‧第一流體通道
220、240‧‧‧第二流體通道
A、B‧‧‧流體
L、T、W‧‧‧方向
10a, 10b, 10c‧‧‧ thermoelectric conversion device
20a, 20b‧‧‧ thermoelectric converter
110‧‧‧P type thermoelectric materials
110-E1, 120-E1‧‧‧ first end
111, 112, 121, 122‧‧‧ side
120‧‧‧N type thermoelectric materials
110-E2, 120-E2‧‧‧ second end
130‧‧‧First electrode
131, 132, 141, 142‧‧‧ sheet electrodes
140‧‧‧second electrode
150‧‧‧Insulation insulation material
160‧‧‧Shell
161‧‧‧terminal contacts
190‧‧‧Wire
210, 230‧‧‧ first fluid passage
220, 240‧‧‧Second fluid passage
A, B‧‧‧ fluid
L, T, W‧‧‧ directions

圖1為本揭露一實施例之熱電轉換裝置的示意結構圖。 圖2為圖1之熱電轉換裝置的上視圖。 圖3為本揭露一實施例之熱電轉換裝置的示意結構圖。 圖4為本揭露一實施例之熱電轉換裝置的示意結構圖。 圖5為本揭露一實施例之熱電轉換器的示意結構圖。 圖6為本揭露一實施例之熱電轉換器的示意結構圖。 圖7為本揭露於空氣環境中測試熱電轉換裝置所得的溫度對時間的圖。 圖8為本揭露於通水環境中測試熱電轉換裝置所得的溫度對時間的圖。 圖9為本揭露測試不同的電極與熱電材料的結合面積所得的溫差對輸入功率的圖。FIG. 1 is a schematic structural diagram of a thermoelectric conversion device according to an embodiment of the present disclosure. 2 is a top view of the thermoelectric conversion device of FIG. 1. FIG. 3 is a schematic structural diagram of a thermoelectric conversion device according to an embodiment of the present disclosure. FIG. 4 is a schematic structural diagram of a thermoelectric conversion device according to an embodiment of the present disclosure. FIG. 5 is a schematic structural diagram of a thermoelectric converter according to an embodiment of the present disclosure. FIG. 6 is a schematic structural diagram of a thermoelectric converter according to an embodiment of the present disclosure. Figure 7 is a graph showing the temperature versus time obtained by testing a thermoelectric conversion device in an air environment. Figure 8 is a graph showing the temperature versus time obtained by testing a thermoelectric conversion device in a water-passing environment. Figure 9 is a graph showing the temperature difference versus input power obtained by testing the combined areas of different electrodes and thermoelectric materials.

10a‧‧‧熱電轉換裝置 10a‧‧‧Thermal conversion device

110‧‧‧P型熱電材料 110‧‧‧P type thermoelectric materials

110-E1、120-E1‧‧‧第一端部 110-E1, 120-E1‧‧‧ first end

120‧‧‧N型熱電材料 120‧‧‧N type thermoelectric materials

110-E2、120-E2‧‧‧第二端部 110-E2, 120-E2‧‧‧ second end

130‧‧‧第一電極 130‧‧‧First electrode

131、132、141、142‧‧‧片狀電極 131, 132, 141, 142‧‧‧ sheet electrodes

140‧‧‧第二電極 140‧‧‧second electrode

190‧‧‧導線 190‧‧‧Wire

Claims (9)

一種熱電轉換裝置,包括: 至少兩個以上的長型的P型熱電材料,於前述P型熱電材料的長度方向的兩端分別具有第一端部以及第二端部; 至少兩個以上的長型的N型熱電材料,於前述N型熱電材料的長度方向的兩端分別具有第一端部以及第二端部,其中前述P型熱電材料以及前述N型熱電材料以於前述長度方向平行的方式而設置為交錯排列,且前述P型熱電材料的第一端部與前述N型熱電材料的第一端部位於同一側,前述P型熱電材料的第二端部與前述N型熱電材料的第二端部位於同一側; 第一電極,電連接前述P型熱電材料的第一端部的至少兩側面以及下一個前述N型熱電材料的第一端部的至少兩側面,其中前述第一電極沿著前述長度方向而突出於前述P型熱電材料的第一端部以及前述N型熱電材料的第一端部之外;以及 第二電極,電連接前述N型熱電材料的第二端部的至少兩側面以及下一個前述P型熱電材料的第二端部的至少兩側面,其中前述第二電極沿著前述長度方向而突出於前述P型熱電材料的第二端部以及前述N型熱電材料的第二端部之外,其中前述第一電極或前述第二電極為兩片的片狀電極,且其中一片的片狀電極電連接於前述P型熱電材料以及前述N型熱電材料的相對向的側面,而另一片的片狀電極電連接於與前述P型熱電材料以及前述N型熱電材料的相對向的側面相反側的側面,並且前述兩片的片狀電極不互相接觸。A thermoelectric conversion device comprising: at least two or more elongated P-type thermoelectric materials having a first end and a second end at opposite ends of the P-type thermoelectric material; at least two or more lengths The N-type thermoelectric material has a first end portion and a second end portion at both ends in the longitudinal direction of the N-type thermoelectric material, wherein the P-type thermoelectric material and the N-type thermoelectric material are parallel to the longitudinal direction. Provided in a staggered manner, wherein the first end of the P-type thermoelectric material is on the same side as the first end of the N-type thermoelectric material, and the second end of the P-type thermoelectric material is adjacent to the N-type thermoelectric material. The second end portion is located on the same side; the first electrode electrically connects at least two sides of the first end portion of the P-type thermoelectric material and at least two sides of the first end portion of the next N-type thermoelectric material, wherein the first portion The electrode protrudes from the first end of the P-type thermoelectric material and the first end of the N-type thermoelectric material along the longitudinal direction; and the second electrode electrically connects the N-type thermoelectric material At least two sides of the two ends and at least two sides of the second end of the P-type thermoelectric material, wherein the second electrode protrudes from the second end of the P-type thermoelectric material along the length direction and the foregoing The second electrode of the N-type thermoelectric material, wherein the first electrode or the second electrode is a two-piece chip electrode, and one of the chip electrodes is electrically connected to the P-type thermoelectric material and the N-type thermoelectric The opposite side faces of the material, and the other sheet electrode is electrically connected to the side opposite to the opposite side faces of the P-type thermoelectric material and the N-type thermoelectric material, and the two sheets of the sheet electrodes are not in contact with each other. . 如申請專利範圍第1項所述的熱電轉換裝置,其中相對於前述P型熱電材料以及前述N型熱電材料的一個側面的面積,前述第一電極與前述P型熱電材料以及前述N型熱電材料的一個側面的接合面積為25%以下,且前述第二電極與前述P型熱電材料以及前述N型熱電材料的一個側面的接合面積為25%以下。The thermoelectric conversion device according to claim 1, wherein the first electrode and the P-type thermoelectric material and the N-type thermoelectric material are opposite to an area of one side surface of the P-type thermoelectric material and the N-type thermoelectric material. The joint area of one side surface is 25% or less, and the joint area of the second electrode and one side surface of the P-type thermoelectric material and the N-type thermoelectric material is 25% or less. 如申請專利範圍第1項所述的熱電轉換裝置,其中更包括絕緣絕熱材料,前述P型熱電材料以及前述N型熱電材料設置於前述絕緣絕熱材料之中,且前述第一電極以及前述第二電極突出於前述絕緣絕熱材料之外。The thermoelectric conversion device according to claim 1, further comprising an insulating heat insulating material, wherein the P-type thermoelectric material and the N-type thermoelectric material are disposed in the insulating insulating material, and the first electrode and the second The electrode protrudes beyond the aforementioned insulating heat insulating material. 如申請專利範圍第3項所述的熱電轉換裝置,其中前述絕緣絕熱材料的材質包括陶瓷、塑膠、壓克力、木頭、保麗龍或此些的混合物。The thermoelectric conversion device according to claim 3, wherein the material of the insulating insulating material comprises ceramic, plastic, acrylic, wood, styrofoam or a mixture thereof. 如申請專利範圍第3項所述的熱電轉換裝置,其中更包括外殼,包覆前述絕緣絕熱材料,且前述第一電極以及前述第二電極突出於前述外殼之外。The thermoelectric conversion device according to claim 3, further comprising an outer casing covering the insulating and insulating material, wherein the first electrode and the second electrode protrude beyond the outer casing. 如申請專利範圍第1項所述的熱電轉換裝置,其中前述P型熱電材料或前述N型熱電材料包括鉍碲系、鉛碲系、鎂矽系、方鈷礦系或是鋅銻系的熱電材料。The thermoelectric conversion device according to claim 1, wherein the P-type thermoelectric material or the N-type thermoelectric material comprises a lanthanide, a lead lanthanum, a magnesium lanthanum, a skutterite or a zinc lanthanum thermoelectric. material. 如申請專利範圍第1項所述的熱電轉換裝置,其中前述第一電極或前述第二電極的材質包括銅、鎳、鐵、銀、鈦、鋁、鉬或是此些的合金。The thermoelectric conversion device according to claim 1, wherein the material of the first electrode or the second electrode comprises copper, nickel, iron, silver, titanium, aluminum, molybdenum or an alloy thereof. 如申請專利範圍第1項所述的熱電轉換裝置,其中前述P型熱電材料與前述N型熱電材料被設置於一絕緣絕熱材料中,前述第一電極以及前述第二電極分別沿著前述P型熱電材料以及前述N型熱電材料的長度方向突出於前述絕緣絕熱材料之外。The thermoelectric conversion device according to claim 1, wherein the P-type thermoelectric material and the N-type thermoelectric material are disposed in an insulating heat insulating material, and the first electrode and the second electrode are respectively along the P-type The thermoelectric material and the length direction of the aforementioned N-type thermoelectric material protrude beyond the aforementioned insulating heat insulating material. 一種熱電轉換器,包括: 如申請專利範圍第1項至第8項的其中一項所述的熱電轉換器; 第一流體通道,設置於前述第一電極側,其中前述第一電極位於前述第一流體通道內,以使流體直接流經前述第一電極;以及 第二流體通道,設置於前述第二電極側,其中前述第二電極位於前述第二流體通道內,以使流體直接流經前述第二電極。A thermoelectric converter comprising: the thermoelectric converter according to any one of claims 1 to 8, wherein the first fluid passage is disposed on the first electrode side, wherein the first electrode is located in the foregoing a fluid passageway for direct flow of the fluid through the first electrode; and a second fluid passageway disposed on the second electrode side, wherein the second electrode is located in the second fluid passageway to allow fluid to flow directly through the foregoing Second electrode.
TW105101665A 2016-01-20 2016-01-20 Thermoelectric conversion device and thermoelectric converter TWI570972B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW105101665A TWI570972B (en) 2016-01-20 2016-01-20 Thermoelectric conversion device and thermoelectric converter
CN201610139336.5A CN106992244B (en) 2016-01-20 2016-03-11 Thermoelectric conversion device and thermoelectric converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105101665A TWI570972B (en) 2016-01-20 2016-01-20 Thermoelectric conversion device and thermoelectric converter

Publications (2)

Publication Number Publication Date
TWI570972B TWI570972B (en) 2017-02-11
TW201727954A true TW201727954A (en) 2017-08-01

Family

ID=58608190

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105101665A TWI570972B (en) 2016-01-20 2016-01-20 Thermoelectric conversion device and thermoelectric converter

Country Status (2)

Country Link
CN (1) CN106992244B (en)
TW (1) TWI570972B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102429506B1 (en) * 2018-06-26 2022-08-05 현대자동차주식회사 Thermoelectric conversion module and method for manufacturing thereof

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10243670A (en) * 1997-02-24 1998-09-11 Central Res Inst Of Electric Power Ind Thermoelectric transducing system
CN1236488A (en) * 1997-08-25 1999-11-24 时至准钟表股份有限公司 Thermoelectric device
JP2006156818A (en) * 2004-11-30 2006-06-15 Denso Corp Thermoelectric conversion device and its manufacturing method
JP4896742B2 (en) * 2004-12-20 2012-03-14 株式会社東芝 Thermoelectric conversion module and heat exchanger and thermoelectric generator using the same
US20090038667A1 (en) * 2005-11-29 2009-02-12 Kabushiki Kaisha Toshiba Thermoelectric conversion module and heat exchanger and thermoelectric power generator using it
TW200908251A (en) * 2007-08-14 2009-02-16 Mercury Microsystems Company Ltd Multi-pillar micro thermoelectric cooler having large surface area and its manufacturing method
JP2009065044A (en) * 2007-09-07 2009-03-26 Sumitomo Chemical Co Ltd Thermoelectric conversion module and its evaluation method
JP5241928B2 (en) * 2009-02-05 2013-07-17 エルジー・ケム・リミテッド Thermoelectric element module and method of manufacturing thermoelectric element
TWI473309B (en) * 2009-02-27 2015-02-11 Hon Hai Prec Ind Co Ltd Thermoelectric power generation apparatus
CN103460387A (en) * 2011-02-02 2013-12-18 阿尔法贝特能源公司 Electrode structures for arrays of nanostructures and methods thereof
TWI446982B (en) * 2011-12-20 2014-08-01 Ind Tech Res Inst Solid liquid inter-diffusion bonding structure of thermoelectric module and fabricating method thereof
KR102111604B1 (en) * 2014-05-13 2020-05-15 엘지이노텍 주식회사 Device using thermoelectric moudule

Also Published As

Publication number Publication date
CN106992244B (en) 2019-01-18
CN106992244A (en) 2017-07-28
TWI570972B (en) 2017-02-11

Similar Documents

Publication Publication Date Title
JP4949841B2 (en) Thermoelectric conversion module
JP5336373B2 (en) Thermoelectric conversion module
US8648246B2 (en) Thermoelectric module and power generation apparatus
JP2006294935A (en) High efficiency and low loss thermoelectric module
TW201138170A (en) Thermoelectric generating module
CA3039119A1 (en) Flexible thermoelectric generator
JPWO2018174173A1 (en) Thermoelectric generator module, thermoelectric generator using the same, and temperature measuring method
KR20120080820A (en) Thermoelectric module
TWI570972B (en) Thermoelectric conversion device and thermoelectric converter
US11393969B2 (en) Thermoelectric generation cell and thermoelectric generation module
US20050126618A1 (en) Device for producing electric energy
JP6002623B2 (en) Thermoelectric conversion module
CN211698908U (en) Piezoelectric module and electronic equipment
US10340435B2 (en) Thermoelectric conversion device
JP2023512476A (en) generator
KR102021664B1 (en) Multi-multi-array themoeletric generator and its manufacturing method
JP7396621B2 (en) Thermoelectric cells and thermoelectric modules
JPH04280482A (en) Cooling device utilizing solar light
JP2019140294A (en) Thermoelectric conversion device and manufacturing method thereof
JP2019029504A (en) Thermoelectric conversion device
JP2017152618A (en) Thermoelectric module and manufacturing method thereof and thermoelectric device
US20200028058A1 (en) Thermoelectric conversion device
JPH02151087A (en) Thermoelectric energy direct conversion equipment
RU153533U1 (en) THERMOELECTRIC GENERATOR
JP2023531413A (en) generator