TW201727751A - Features for improving process uniformity in a millisecond anneal system - Google Patents

Features for improving process uniformity in a millisecond anneal system Download PDF

Info

Publication number
TW201727751A
TW201727751A TW105142449A TW105142449A TW201727751A TW 201727751 A TW201727751 A TW 201727751A TW 105142449 A TW105142449 A TW 105142449A TW 105142449 A TW105142449 A TW 105142449A TW 201727751 A TW201727751 A TW 201727751A
Authority
TW
Taiwan
Prior art keywords
processing chamber
annealing system
millisecond annealing
reflector
wafer
Prior art date
Application number
TW105142449A
Other languages
Chinese (zh)
Other versions
TWI753873B (en
Inventor
亞歷山大 克西伏
馬庫斯 哈格多恩
克利斯蒂安 普法爾
Original Assignee
瑪森科技公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑪森科技公司 filed Critical 瑪森科技公司
Publication of TW201727751A publication Critical patent/TW201727751A/en
Application granted granted Critical
Publication of TWI753873B publication Critical patent/TWI753873B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • H01L21/2686Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation using incoherent radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/6719Apparatus for manufacturing or treating in a plurality of work-stations characterized by the construction of the processing chambers, e.g. modular processing chambers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67207Apparatus for manufacturing or treating in a plurality of work-stations comprising a chamber adapted to a particular process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67248Temperature monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68785Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by the mechanical construction of the susceptor, stage or support
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/0033Heating devices using lamps
    • H05B3/0038Heating devices using lamps for industrial applications
    • H05B3/0047Heating devices using lamps for industrial applications for semiconductor manufacture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B17/00Furnaces of a kind not covered by any preceding group
    • F27B17/0016Chamber type furnaces
    • F27B17/0025Especially adapted for treating semiconductor wafers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B5/00Muffle furnaces; Retort furnaces; Other furnaces in which the charge is held completely isolated
    • F27B5/04Muffle furnaces; Retort furnaces; Other furnaces in which the charge is held completely isolated adapted for treating the charge in vacuum or special atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B5/00Muffle furnaces; Retort furnaces; Other furnaces in which the charge is held completely isolated
    • F27B5/06Details, accessories, or equipment peculiar to furnaces of these types
    • F27B5/16Arrangements of air or gas supply devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

Systems and methods for improving process uniformity in a millisecond anneal system are provided. In some implementations, a process for thermally treating a substrate in a millisecond anneal system can include obtaining data indicative of a temperature profile associated with one or more substrates during processing in a millisecond anneal system. The process can include one or more of (1) changing the pressure inside the processing chamber of the millisecond anneal system; (2) manipulating the irradiation distribution by way of the refracting effect of a water window in the millisecond anneal system; (3) adjusting the angular positioning of the substrate; and/or (4) configuring the shape of the reflectors used in the millisecond anneal system.

Description

毫秒退火系統中改進處理均勻性的方法 Method for improving uniformity of processing in millisecond annealing system

本申請案主張於2015年12月30日申請,標題名稱為「毫秒退火系統中改進處理均勻性的方法」之美國臨時專利申請案序號62/272,817的優先權,此文件納入本文列為參考。 The present application claims the benefit of priority to U.S. Provisional Patent Application Serial No. 62/272, the entire disclosure of which is incorporated herein by reference.

本發明一般而言係關於熱處理室,更明確地說是關於處理如半導體基板的毫秒退火熱處理室。 The present invention relates generally to thermal processing chambers, and more particularly to processing millisecond annealing thermal processing chambers such as semiconductor substrates.

毫秒退火系統可被用於半導體處理以便用於超快速熱處理基板,例如像是矽晶圓。半導體處理時,快速熱處理可被用來當作一退火步驟以修補佈植損壞,改善沉積層品質,改善層間介面品質,以活化摻雜劑並達成其他目的,而在同一時間控制摻雜物種的擴散。 The millisecond annealing system can be used for semiconductor processing for ultra-rapid thermal processing of substrates such as, for example, germanium wafers. In semiconductor processing, rapid thermal processing can be used as an annealing step to repair implant damage, improve the quality of the deposited layer, improve the quality of the interlayer interface, activate the dopant and achieve other purposes, while controlling the doping species at the same time. diffusion.

可使用一強且短的光曝照,以可超過每秒104℃的速率加熱該基板整個頂面,達成半導體基板的毫秒(或超快速)溫度處理。快速加熱基板的僅僅一個表面,可造成貫穿該基板厚度的一大溫度梯度,而同時基板大部分維持光照之前的溫度。因而該基板的大部分充當一散熱器,導致頂面的快速冷 卻速率。 A strong and short exposure to light can be used to heat the entire top surface of the substrate at a rate of more than 10 4 ° C per second to achieve millisecond (or ultra-fast) temperature processing of the semiconductor substrate. Rapid heating of only one surface of the substrate can result in a large temperature gradient across the thickness of the substrate while at the same time the substrate is mostly maintained at a temperature prior to illumination. Thus the majority of the substrate acts as a heat sink, resulting in a rapid cooling rate of the top surface.

本案之具體實施例的觀點及優點將有部分在以下描述中提出,或可從該敘述習得,或可經由實行該等具體實施例而學會。 The views and advantages of the specific embodiments of the present invention will be set forth in part in the description which follows.

本案一示範觀點是關於在一毫秒退火系統中熱處理一基板的方法。該方法可包含在一毫秒退火系統中處理期間,取得顯示與一或多個基板相關聯之溫度分佈的資料。該毫秒退火系統可具有一晶圓平面板,將該處理室區分成一頂處理室以及一底處理室。該方法可包含調整該處理室內的壓力以造成跨一或多個基板的溫度均勻性。 An exemplary view of the present invention is a method of heat treating a substrate in a one millisecond annealing system. The method can include obtaining data indicative of a temperature distribution associated with one or more substrates during processing in a one millisecond annealing system. The millisecond annealing system can have a wafer plane plate that divides the processing chamber into a top processing chamber and a bottom processing chamber. The method can include adjusting the pressure within the processing chamber to cause temperature uniformity across one or more substrates.

本案另一示例觀點是關於在一毫秒退火系統中熱處理一基板的方法。該方法可包含:在一毫秒退火系統中處理期間,取得顯示與一或多個基板相關聯之溫度分佈的資料。該毫秒退火系統可具有一晶圓平面板,將該處理室區分成一頂處理室以及一底處理室。該方法可包含:至少部分依據該溫度分佈,判定該毫秒退火系統內一邊緣反射器或一楔形反射器其中一或多個的形狀及配置。 Another exemplary aspect of the present invention is a method of heat treating a substrate in a one millisecond annealing system. The method can include obtaining data indicative of a temperature distribution associated with one or more substrates during processing in a one millisecond annealing system. The millisecond annealing system can have a wafer plane plate that divides the processing chamber into a top processing chamber and a bottom processing chamber. The method can include determining a shape and configuration of one or more of an edge reflector or a wedge reflector in the millisecond annealing system based at least in part on the temperature profile.

本案又一示範觀點是關於在一毫秒退火系統中熱處理一基板的方法。該方法可包含在一毫秒退火系統中處理期間,取得顯示與一或多個基板相關聯之溫度分佈的資料。該毫秒退火系統可具有一晶圓平面板,將該處理室區分成一頂處理 室以及一底處理室。該晶圓平面板可包含一非旋轉式基板支撐。該方法可包含判定一角度位置,用於該毫秒退火系統之處理室內的裝置基板之放置。該角度位置可至少部分依據顯示該溫度分佈的資料加以判定。 Yet another exemplary aspect of the present invention is a method of heat treating a substrate in a one millisecond annealing system. The method can include obtaining data indicative of a temperature distribution associated with one or more substrates during processing in a one millisecond annealing system. The millisecond annealing system can have a wafer plane plate to divide the processing chamber into a top processing Room and a bottom treatment room. The wafer plane plate can include a non-rotating substrate support. The method can include determining an angular position for placement of a device substrate within the processing chamber of the millisecond annealing system. The angular position can be determined at least in part by data showing the temperature distribution.

本案的示範觀點可有變異以及修改。本案的其他示例觀點是關於用於熱處理一半導體基板的系統、方法、裝置及程序。 The demonstration views of this case may vary and be modified. Other exemplary aspects of the present disclosure are related to systems, methods, apparatus, and procedures for heat treating a semiconductor substrate.

參照以下描述以及隨附申請專利範圍,將能更加瞭解各種具體實施例的這些以及其他特徵、觀點及優勢。本說明書所附圖示納入本文並構成本說明書的一部分,說明本揭示的具體實施例,並與詳細描述共同用來解釋相關的原理。 These and other features, aspects, and advantages of the various embodiments will be apparent from the description and appended claims. The accompanying drawings, which are set forth in the claims,

60‧‧‧半導體基板 60‧‧‧Semiconductor substrate

80‧‧‧毫秒退火系統 80‧‧ millisecond annealing system

[100]‧‧‧矽晶格面 [100]‧‧‧矽晶晶面

<110>‧‧‧晶格面 <110>‧‧‧lattice

150‧‧‧溫度測量系統 150‧‧‧Temperature measurement system

152‧‧‧溫度感測器 152‧‧‧temperature sensor

154‧‧‧溫度感測器 154‧‧‧Temperature Sensor

158‧‧‧參照溫度感測器 158‧‧‧reference temperature sensor

160‧‧‧處理器電路 160‧‧‧ processor circuit

200‧‧‧毫秒退火系統 200‧‧ millisecond annealing system

200‧‧‧處理室 200‧‧‧Processing room

202‧‧‧頂處理室 202‧‧‧ top processing room

204‧‧‧底處理室 204‧‧‧ bottom processing room

210‧‧‧晶圓平面板 210‧‧‧ Wafer flat panel

212‧‧‧支撐銷 212‧‧‧Support pin

220‧‧‧頂弧光燈 220‧‧‧ top arc lamp

220‧‧‧頂部燈具陣列 220‧‧‧Top lamp array

222‧‧‧陰極 222‧‧‧ cathode

225‧‧‧石英管 225‧‧‧Quartz tube

226‧‧‧電漿 226‧‧‧ Plasma

228‧‧‧水壁 228‧‧‧Water Wall

229‧‧‧氬氣柱 229‧‧‧ argon column

230‧‧‧陽極 230‧‧‧Anode

232‧‧‧尖端 232‧‧‧ tip

234‧‧‧散熱器 234‧‧‧heatsink

235‧‧‧基座 235‧‧‧Base

236‧‧‧水冷卻通道 236‧‧‧Water cooling channel

240‧‧‧底弧光燈 240‧‧‧ bottom arc lamp

247.2‧‧‧直線輪廓 247.2‧‧‧Line profile

250‧‧‧處理室壁面 250‧‧ ‧ treatment room wall

252‧‧‧頂處理室壁面 252‧‧‧ top treatment room wall

254‧‧‧底處理室壁面 254‧‧‧ bottom processing chamber wall

260‧‧‧水窗 260‧‧‧Water Window

262‧‧‧反射器 262‧‧‧ reflector

264‧‧‧邊緣反射器/楔形反射器 264‧‧‧Edge Reflector/Wedge Reflector

270‧‧‧反射鏡 270‧‧‧Mirror

272‧‧‧楔形反射器 272‧‧‧Wedge reflector

274‧‧‧反射元件/楔形反射器 274‧‧‧Reflecting element / wedge reflector

274.4‧‧‧組合輪廓 274.4‧‧‧Combined contour

276‧‧‧刻槽 276‧‧‧ grooves

282‧‧‧內側玻片 282‧‧‧Inside slide

284‧‧‧外側玻片 284‧‧‧ lateral slide

300‧‧‧封閉迴路系統 300‧‧‧Closed loop system

302‧‧‧水/進氣口 302‧‧‧Water/air inlet

304‧‧‧氬氣/下游管線 304‧‧‧Argon/downstream pipeline

306‧‧‧水/氣混合物 306‧‧‧Water/gas mixture

310‧‧‧分離器 310‧‧‧Separator

315‧‧‧壓力感測器 315‧‧‧pressure sensor

320‧‧‧噴射幫浦/控制器 320‧‧‧jet pump/controller

325‧‧‧閥門 325‧‧‧ Valve

330‧‧‧幫浦 330‧‧‧ pump

340‧‧‧聚結濾器 340‧‧‧ coalescing filter

340‧‧‧下游廢氣導管 340‧‧‧Down exhaust duct

350‧‧‧氬氣源/顆粒濾器 350‧‧‧Argon source/particle filter

350‧‧‧顆粒濾器 350‧‧‧Particle filter

370‧‧‧離子交換濾器 370‧‧‧Ion exchange filter

372‧‧‧閥門 372‧‧‧ Valve

380‧‧‧活性碳濾器旁通迴路 380‧‧‧Active carbon filter bypass circuit

390‧‧‧熱交換器 390‧‧‧ heat exchanger

500‧‧‧產品晶圓 500‧‧‧Product Wafer

502‧‧‧凹口 502‧‧‧ notch

510‧‧‧代表圖 510‧‧‧ representative map

520‧‧‧冷點 520‧‧‧ cold spots

525‧‧‧晶圓邊緣 525‧‧‧ wafer edge

針對本技藝中具一般能力者的具體實施例之詳細討論將在本說明書中提出,其係參照附屬圖示如下:第一圖係繪出依據本案之示例具體實施例的一示例毫秒退火加熱曲線的示意圖;第二圖係繪出依據本案示例實施例的一示範毫秒退火系統一部分的示例透視圖;第三圖係繪出依據本案之示例具體實施例的一示例毫秒退火系統的一分解圖;第四圖係繪出依據本案之示例具體實施例的一示例毫秒退火系統的一橫剖面圖; 第五圖係繪出依據本案之示例具體實施例的一示例毫秒退火系統中所使用示例燈具的一透視圖;第六圖係繪出依據本案示例實施例的一毫秒退火系統的一晶圓平面板中所用之示例邊緣反射器的示意圖;第七圖係繪出依據本案之示例具體實施例的一毫秒退火系統中可使用的示例反射器的示意圖;第八圖係繪出依據本案之示例具體實施例的一毫秒退火系統中可使用的一示例弧光燈的示意圖;第九至第十圖係繪出依據本案之示例具體實施例的一示例弧光燈的操作示意圖;第十一係繪出依據本案之示例具體實施例的一示例電極的一橫剖面圖;第十二圖是一示例封閉迴路系統的示意圖,其用來供應水和氣體(例如,氬)給依據本案示例具體實施例的一毫秒退火系統中所用的示例弧光燈;第十三圖係繪出依據本案之示例具體實施例的一毫秒退火系統所用的一示例溫度測量系統的示意圖;第十四圖係繪出一示例氣流系統的示意圖,其係用於調整依據本案之示例具體實施例的一示例毫秒退火系統之處理室內的壓力;第十五圖係繪出依據本案之示例具體實施例的一毫秒退火系統中一水窗之變化形狀的示意圖; 第十六係繪出依據本案之示例具體實施例的一毫秒退火系統中一水窗之變化形狀的示意圖;第十七圖係繪出一示例產品晶圓的示意圖,其具有以一陣列安排之多個裝置;第十八圖係繪出毫秒退火系統中一晶圓的一示例殘餘照射不均勻性的示意圖;第十九圖係繪出依據本案示例實施例一產品晶圓採不同角度定向放置在一處理室內部的示意圖;第二十圖係繪出依據本案示例實施例一產品晶圓相對於支撐銷採不同角度定向放置在一處理室內部的示意圖;第二十一圖係繪出一橫剖視圖,顯示依據示例具體實施例之毫秒退火系統中一處理室內的頂部楔形反射器和邊緣反射器的位置;第二十二(a)及二十二(b)圖係繪出依據本案示例具體實施例具有變化楔角的示例頂部楔形的示意圖;第二十三(a)及二十三(b)圖係繪出依據本案示例具體實施例,藉由調整頂部楔形楔角的示例照射分佈改善之示意圖;第二十四圖係繪出用在依據本案示例具體實施例的毫秒退火處理室中的示例邊緣反射器之示意圖;第二十五圖係繪出具有一直線輪廓的一示例邊緣反射器的示意圖; 第二十六(a)、二十六(b)及二十六(c)圖係繪出依據本案示例具體實施例由變化形狀及位置之邊緣反射器在一晶圓上各種受熱區的示意圖。 A detailed discussion of specific embodiments of those skilled in the art will be set forth in this specification, which is set forth with reference to the accompanying drawings in which: FIG. 1 illustrates an exemplary millisecond annealing heating curve in accordance with an exemplary embodiment of the present disclosure. 2 is an exploded perspective view of a portion of an exemplary millisecond annealing system in accordance with an exemplary embodiment of the present invention; and a third drawing is an exploded view of an exemplary millisecond annealing system in accordance with an exemplary embodiment of the present disclosure; The fourth drawing depicts a cross-sectional view of an exemplary millisecond annealing system in accordance with an exemplary embodiment of the present disclosure; 5 is a perspective view of an exemplary luminaire used in an exemplary millisecond annealing system in accordance with an exemplary embodiment of the present invention; and a sixth drawing depicts a wafer level of a millisecond annealing system in accordance with an exemplary embodiment of the present disclosure. A schematic diagram of an exemplary edge reflector used in a panel; a seventh diagram is a schematic diagram of an exemplary reflector that can be used in a one millisecond annealing system in accordance with an exemplary embodiment of the present invention; and the eighth figure depicts an example in accordance with the example of the present application. A schematic diagram of an exemplary arc lamp that can be used in a one millisecond annealing system of an embodiment; ninth through tenth drawings depict an operation diagram of an exemplary arc lamp according to an exemplary embodiment of the present invention; A cross-sectional view of an exemplary electrode of an exemplary embodiment of the present invention; a twelfth diagram is a schematic illustration of an exemplary closed loop system for supplying water and gas (eg, argon) to a specific embodiment in accordance with the present exemplary embodiment An example arc lamp used in a millisecond annealing system; a thirteenth diagram depicts an example of a one millisecond annealing system in accordance with an exemplary embodiment of the present disclosure A schematic diagram of a degree measuring system; a fourteenth drawing is a schematic diagram of an example airflow system for adjusting the pressure in a processing chamber of an exemplary millisecond annealing system in accordance with an exemplary embodiment of the present invention; A schematic diagram of a change shape of a water window in a one millisecond annealing system according to an exemplary embodiment of the present invention; The sixteenth drawing is a schematic diagram showing the changed shape of a water window in a one millisecond annealing system according to an exemplary embodiment of the present invention; and the seventeenth drawing is a schematic diagram of an exemplary product wafer, which has an array arrangement. A plurality of devices; an eighteenth drawing is a schematic diagram showing an example residual illumination unevenness of a wafer in a millisecond annealing system; and a nineteenth drawing is a drawing of a product wafer at different angles according to an exemplary embodiment of the present invention. A schematic diagram of a chamber interior; a twentieth diagram showing a schematic diagram of a product wafer placed at a different angle relative to a support pin in a processing chamber according to an exemplary embodiment of the present invention; A cross-sectional view showing the position of a top wedge reflector and an edge reflector in a processing chamber in a millisecond annealing system according to an exemplary embodiment; the twenty-second (a) and twenty-two (b) diagrams are drawn according to the example of the present invention DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A schematic diagram of an example top wedge having varying wedge angles; and twenty-third (a) and twenty-three (b) drawings depicting a top wedge wedge angle in accordance with an exemplary embodiment of the present disclosure A schematic diagram of an example illumination profile improvement; a twenty-fourth diagram depicting an exemplary edge reflector for use in a millisecond annealing processing chamber in accordance with an exemplary embodiment of the present invention; and a twenty-fifth diagram depicting a contour having a contour A schematic diagram of an example edge reflector; The twenty-sixth (a), twenty-sixth (b) and twenty-sixth (c) drawings depict schematic representations of various heated regions on a wafer by edge reflectors of varying shape and position in accordance with an exemplary embodiment of the present invention. .

現在將詳細參照具體實施例,其一或多個示範例在圖式中繪出。所提出各示範例是要解釋該等具體實施例,並非要做為本案的限制。事實上,熟習此項技術者應能看出該等具體實施例可有各種修改及變異而不會偏離本案的範疇及精神。舉例來說,繪出或描述為一具體實施例之某部分的特徵,可配合另一具體實施使用以產出又更進一步的具體實施例。因此,本案的觀點是要涵括此等修改及變異。 Reference will now be made in detail to the particular embodiments embodiments The examples are presented to explain the specific embodiments and are not intended to be limiting. In fact, those skilled in the art should be able to see that the specific embodiments can be modified and varied without departing from the scope and spirit of the invention. For example, features illustrated or described as part of a particular embodiment can be used in conjunction with another embodiment to yield further embodiments. Therefore, the point of view in this case is to include such modifications and variations.

概要summary

本案的示例觀點係關於為改善在一毫秒退火系統中處理期間,橫跨遍及一基板(例如一半導體晶圓)之溫度均勻性的多個特徵。本案之觀點的討論是參照一「晶圓」或半導體晶圓以供圖解及討論目的。本技術領中具一般能力者,使用本文所提供的揭示,應能理解本案的示例觀點可與任何工件、半導體基板或其他適當基板配合使用。「大約」一詞與一數值合用,指的是在所提出數值的10%之內。 An exemplary aspect of the present invention relates to a plurality of features across the temperature uniformity throughout a substrate (e.g., a semiconductor wafer) during processing in a one millisecond annealing system. The discussion of this point of view is based on a "wafer" or semiconductor wafer for illustration and discussion purposes. Those of ordinary skill in the art will appreciate that the exemplary aspects of the present disclosure can be used in conjunction with any workpiece, semiconductor substrate, or other suitable substrate, using the disclosure provided herein. The word "about" is used in conjunction with a numerical value to mean within 10% of the stated value.

可使用一強且短的光照,以可超過約每秒104℃的速率加熱該基板整個頂面,達成半導體基板的毫秒(或超快速)溫度處理。該閃光典型上係實施至一半導體基板,其係以 高達每秒150℃的斜線上升率加熱至一中間溫度Ti。加熱步驟之後,半導體基板被留在處理室內以供降溫。低加溫程序及降溫兩者皆可造成側向溫差,導致橫跨該基板的不均勻溫度分佈。許多例子中,熱處理應用例可對溫度敏感。此外,晶圓應力可受該晶圓材料內的熱梯度驅使。大的側向熱梯度可因而導致晶圓翹曲、滑動,甚至晶圓破裂。 A strong and short illumination can be used to heat the entire top surface of the substrate at a rate of more than about 10 4 ° C per second to achieve millisecond (or ultra-fast) temperature processing of the semiconductor substrate. The flash is typically applied to a semiconductor substrate that is heated to an intermediate temperature Ti at a ramp rate of up to 150 ° C per second. After the heating step, the semiconductor substrate is left in the processing chamber for cooling. Both the low warming process and the cooling can cause a lateral temperature differential resulting in a non-uniform temperature distribution across the substrate. In many instances, heat treatment applications are temperature sensitive. In addition, wafer stress can be driven by thermal gradients within the wafer material. Large lateral thermal gradients can thus cause wafer warpage, slippage, and even wafer breakage.

熱處理期間溫度差異的主要原因在於光源對晶圓的不均勻照射。降溫期間溫度差異的主要原因可由晶圓自身的體形所導致。舉例來說,晶圓可為碟狀,且由於其體形之故,該晶圓的邊緣會比晶圓中央降溫更快。溫差的另一原因,可由周遭氣體的對流冷卻導致。 The main reason for the temperature difference during heat treatment is the uneven illumination of the wafer by the light source. The main reason for the temperature difference during cooling can be caused by the shape of the wafer itself. For example, the wafer can be dished, and due to its shape, the edge of the wafer will cool faster than the center of the wafer. Another cause of the temperature difference can be caused by convective cooling of the surrounding gas.

不均勻性可藉由使用高度反射的鏡子來緩和。例如說,照射不均勻性可藉由一具有鏡壁之立方體的整合作用(integrating effect)而得到緩和。降溫不均勻性,可藉由將所發射的光從晶圓中央重導向,去讓晶圓邊緣再吸收而得到緩和。同理,這可藉由一具有鏡壁的立方體之整合作用來達成。 Inhomogeneities can be mitigated by using highly reflective mirrors. For example, the illumination unevenness can be mitigated by an integrating effect of a cube having a mirror wall. Cooling non-uniformity can be mitigated by redirecting the emitted light from the center of the wafer to reabsorb the edge of the wafer. In the same way, this can be achieved by the integration of a cube with a mirror wall.

即使毫秒退火系統中的處理室可利用鏡壁的整合作用,但仍然會有一殘餘不均勻性,需要進一步予以補償。補償殘餘不均勻性的主要影響因子,可藉由操縱照射分佈來控制。 Even though the processing chamber in the millisecond annealing system can utilize the integration of the mirror walls, there is still a residual non-uniformity that needs to be further compensated. The main influence factor that compensates for residual inhomogeneities can be controlled by manipulating the illumination distribution.

依據本案的示例具體實施例,揭示了用於在一毫秒退火系統中改進處理期間半導體基板溫度均勻性的各種特 徵。舉例來說,這些特徵可包含:(1)改變毫秒退火系統之處理室內部的壓力;(2)藉由毫秒退火系統中一水窗之折射效應,操控照射分佈;(3)晶圓的角度位置;以及(或)(4)配置毫秒退火系統中所使用反射器的形狀及(或)位置。 In accordance with an exemplary embodiment of the present disclosure, various features are disclosed for improving the temperature uniformity of a semiconductor substrate during processing in a one millisecond annealing system Sign. For example, these features may include: (1) changing the pressure inside the processing chamber of the millisecond annealing system; (2) manipulating the illumination distribution by the refraction effect of a water window in the millisecond annealing system; (3) the angle of the wafer Position; and/or (4) configure the shape and/or position of the reflector used in the millisecond annealing system.

本案一示範具體實施例是關於在一毫秒退火系統中熱處理一基板的方法。該方法包含:在一毫秒退火系統中處理期間,取得顯示與一或多個基板相關聯之溫度分佈的資料。該毫秒退火系統包含一晶圓平面板,將該處理室區分成一頂處理室以及一底處理室。該方法包含:至少部分依據顯示溫度分佈的資料,調整處理室內部壓力,以造成跨一或多個基板的溫度均勻性。舉例來說,某些具體實施例中,調整壓力包含:在該等一或多個基板至少其中之一的處理期間,調整處理室內的壓力,以調整該等一或多個基板至少其中之一的溫度分佈。舉例來說,壓力可在相對於大氣壓力為+2kPA至-2kPA的值域範圍內加以調整。 An exemplary embodiment of the present invention is directed to a method of heat treating a substrate in a one millisecond annealing system. The method includes obtaining data indicative of a temperature distribution associated with one or more substrates during processing in a one millisecond annealing system. The millisecond annealing system includes a wafer planar plate that divides the processing chamber into a top processing chamber and a bottom processing chamber. The method includes adjusting a pressure inside the processing chamber based at least in part on the data indicative of the temperature distribution to cause temperature uniformity across the one or more substrates. For example, in some embodiments, adjusting the pressure comprises: adjusting a pressure within the processing chamber during processing of at least one of the one or more substrates to adjust at least one of the one or more substrates Temperature distribution. For example, the pressure can be adjusted over a range of values from +2 kPA to -2 kPA relative to atmospheric pressure.

某些具體實施例中,調整處理室內壓力包含:調整處理室與一經配置以處理氣體流過該處理室的氣流系統下游管線之間的壓差。下游管線可位於該處理室中一或多個排氣口的下游。調整壓差可包含:調整放置在該下游管線中的閥門。該閥門,可依據一或多個來自一經配置以測量處理室內壓力之壓力感測器的信號,藉由一或多個控制器而加以調整。該壓力可被調整以影響處理室內的處理氣體流動模式。 In some embodiments, adjusting the pressure in the process chamber includes adjusting a pressure differential between the process chamber and a downstream line of the gas flow system configured to process gas flow through the process chamber. The downstream line may be located downstream of one or more exhaust ports in the process chamber. Adjusting the differential pressure can include adjusting a valve placed in the downstream line. The valve can be adjusted by one or more controllers based on one or more signals from a pressure sensor configured to measure the pressure within the processing chamber. This pressure can be adjusted to affect the process gas flow pattern within the process chamber.

某些具體實施例中,調整處理室內的壓力包含依據處理室內的壓力來翹曲一水窗。水窗可包含一內板以及一外板,而水在內板與外板之間流動。內板相對於外板係更靠近處理室放置。某些實施例中,水窗可被翹曲,以致於水窗的內板彎離處理室,以提供對於該燈光的散焦效應。某些實施例中,水窗可被翹曲,以致於水窗的內板彎向處理室,以提供對於該燈光的聚焦效應。 In some embodiments, adjusting the pressure within the processing chamber includes warping a water window based on the pressure within the processing chamber. The water window may include an inner panel and an outer panel, and water flows between the inner panel and the outer panel. The inner panel is placed closer to the processing chamber relative to the outer panel. In some embodiments, the water window can be warped such that the inner panel of the water window is bent away from the processing chamber to provide a defocusing effect on the light. In some embodiments, the water window can be warped such that the inner panel of the water window is bent toward the processing chamber to provide a focusing effect on the light.

本案另一示範具體實施例是關於在一毫秒退火系統中熱處理一基板的方法。該方法包含:在一毫秒退火系統中處理期間,取得顯示與一或多個基板相關聯之溫度分佈的資料。該毫秒退火系統可包含一晶圓平面板,將該處理室區分成一頂處理室以及一底處理室。該方法可包含:至少部分依據該溫度分佈,調整該毫秒退火系統內一邊緣反射器或一楔形反射器其中一或多個的形狀、配置或位置。 Another exemplary embodiment of the present invention is directed to a method of heat treating a substrate in a one millisecond annealing system. The method includes obtaining data indicative of a temperature distribution associated with one or more substrates during processing in a one millisecond annealing system. The millisecond annealing system can include a wafer planar plate that divides the processing chamber into a top processing chamber and a bottom processing chamber. The method can include adjusting a shape, configuration, or position of one or more of an edge reflector or a wedge reflector within the millisecond annealing system based at least in part on the temperature profile.

某些具體實施例中,楔形反射器可被放置在靠近晶圓平面板的一處理室壁上。調整毫秒退火系統內一邊緣反射器或一楔形反射器其中一或多個的形狀、配置或位置,包含調整一楔角以及(或)該楔形反射器的高度。 In some embodiments, the wedge reflector can be placed on a processing chamber wall adjacent to the wafer plane plate. Adjusting the shape, configuration or position of one or more of an edge reflector or a wedge reflector within the millisecond annealing system includes adjusting a wedge angle and/or the height of the wedge reflector.

某些具體實施例中,邊緣反射器係被放置在晶圓平面板內。調整毫秒退火系統中一邊緣反射器或一楔形反射器其中一或多個的形狀、配置或位置,包含調整用於該邊緣反射器的表面輪廓。某些具體實施例中,調整毫秒退火系統中一邊緣反射器或 一楔形反射器其中一或多個的形狀、配置或位置,包含在處理基板期間調整(以一或多個控制器)楔形反射器相對於基板的位置。 In some embodiments, the edge reflector is placed within the wafer plane plate. Adjusting the shape, configuration or position of one or more of an edge reflector or a wedge reflector in a millisecond annealing system includes adjusting a surface profile for the edge reflector. In some embodiments, adjusting an edge reflector in a millisecond annealing system or The shape, configuration or location of one or more of the wedge reflectors includes adjusting (in one or more controllers) the position of the wedge reflector relative to the substrate during processing of the substrate.

本案另一示範具體實施例是關於在一毫秒退火系統中熱處理一基板的方法。該方法包含:在一毫秒退火系統中處理期間取得顯示與一或多個基板相關聯之溫度分佈的資料。該毫秒退火系統可包含一晶圓平面板,將該處理室區分成一頂處理室以及一底處理室。該方法可包含判定一角度位置,其用於該毫秒退火系統之處理室內的裝置基板的放置。該角度位置可至少部分依據該溫度分佈加以判定。某些具體實施例中,該角度位置可至少部分依據毫秒退火系統中一或多個支撐銷的位置加以判定。 Another exemplary embodiment of the present invention is directed to a method of heat treating a substrate in a one millisecond annealing system. The method includes obtaining data indicative of a temperature distribution associated with one or more substrates during processing in a one millisecond annealing system. The millisecond annealing system can include a wafer planar plate that divides the processing chamber into a top processing chamber and a bottom processing chamber. The method can include determining an angular position for placement of a device substrate within a processing chamber of the millisecond annealing system. The angular position can be determined based at least in part on the temperature profile. In some embodiments, the angular position can be determined based at least in part on the position of one or more support pins in the millisecond annealing system.

範例毫秒退火系統Example millisecond annealing system

一示範毫秒退火系統可經組態,以提供一強而短的光曝照,以用可超過(例如像是)約104℃/s的速率加熱一晶圓的頂面。第一圖所繪一半導體基板的示例溫度曲線(100),係使用一毫秒退火系統完成。如第一圖所示,一斜線上升階段(102)期間,大部分的該半導體基板(例如,一矽晶圓),係被加熱至一中間溫度Ti。該中間溫度可在約450℃至約900℃的值域內。當中間溫度Ti已達到時,該半導體基板的頂面可曝照於一極短暫的強烈閃光,導致高達每秒約104℃的加熱速率。視窗(110)繪出該短而強閃光期間的半導體基板溫度 分佈。曲線(112)代表閃光曝照期間半導體基板頂面的急速加熱。曲線(116)繪出閃光曝照期間半導體基板的其餘或大部分之溫度。曲線(114)代表藉由傳導急速降溫的半導體基板頂面冷卻,此係藉由大部分半導體基板作為散熱器所致。半導體基板的大部分作為一散熱器,產生用於該基板的高頂面冷卻速率。曲線(104)代表大部分半導體基板藉由熱輻射及對流的緩慢降溫,以一處理氣體作為冷卻劑。本文中「約(about)」這個字若參照一數值使用,指的是在所提出數值的30%之內。 An exemplary millisecond annealing system can be configured to provide a strong and short exposure to light to heat the top surface of a wafer at a rate that exceeds (e.g.,) about 10 4 ° C/s. An exemplary temperature profile (100) of a semiconductor substrate depicted in the first figure is accomplished using a one millisecond annealing system. As shown in the first figure, during a ramp up phase (102), most of the semiconductor substrate (e.g., a wafer) is heated to an intermediate temperature Ti. The intermediate temperature can be in the range of from about 450 °C to about 900 °C. When the intermediate temperature Ti has been reached, the top surface of the semiconductor substrate can be exposed to a very brief intense flash, resulting in a heating rate of up to about 10 4 ° C per second. A window (110) plots the temperature distribution of the semiconductor substrate during the short, strong flash. Curve (112) represents the rapid heating of the top surface of the semiconductor substrate during flash exposure. Curve (116) plots the temperature of the remainder or most of the semiconductor substrate during flash exposure. The curve (114) represents the top surface cooling of the semiconductor substrate by conduction rapid cooling, which is caused by the majority of the semiconductor substrate acting as a heat sink. Most of the semiconductor substrate acts as a heat sink, creating a high top surface cooling rate for the substrate. Curve (104) represents the slow cooling of most semiconductor substrates by thermal radiation and convection with a process gas as the coolant. In this paper, the word "about" is used with reference to a numerical value and refers to within 30% of the proposed value.

一示例毫秒退火系統可包含複數個弧光燈(例如,四個氬氣弧光燈),作為半導體基板頂面之強烈毫秒長曝照(所謂「閃光」)的光源。當基板已被加熱至一中間溫度(例如,約450℃至約900℃)時,閃光可實施至半導體基板。複數個連續模式弧光燈(例如,兩個氬氣弧光燈),可被用來加熱該半導體基板至該中間溫度。某些具體實施例中,半導體基板加熱至中間溫度,係透過半導體基板底面,以加熱該晶圓整個大部分的斜線上升速率來達成。 An exemplary millisecond annealing system can include a plurality of arc lamps (e.g., four argon arc lamps) as a source of intense millisecond long exposure (so-called "flash") on the top surface of the semiconductor substrate. When the substrate has been heated to an intermediate temperature (for example, about 450 ° C to about 900 ° C), the flash can be applied to the semiconductor substrate. A plurality of continuous mode arc lamps (e.g., two argon arc lamps) can be used to heat the semiconductor substrate to the intermediate temperature. In some embodiments, the semiconductor substrate is heated to an intermediate temperature that is transmitted through the bottom surface of the semiconductor substrate to heat the ramp rate of the majority of the wafer.

第二至第五圖繪出的是,依據本案示例具體實施例的一示例毫秒退火系統(80)各種觀點的圖式。如第二至第四圖所示,一毫秒退火系統(80)可包含一處理室(200)。處理室(200)可被一晶圓平面板(210)分隔成一頂處理室(202)和一底處理室(204)。一半導體基板(60)(例如,矽晶圓),可由安裝至一晶圓支撐板(214)(例如,插入晶圓平面板(210)的石英玻璃 板)的支撐銷(212)(例如,石英支撐銷)加以支撐。 The second through fifth figures depict a representation of various aspects of an exemplary millisecond annealing system (80) in accordance with an exemplary embodiment of the present invention. As shown in the second through fourth figures, the one millisecond annealing system (80) can include a processing chamber (200). The processing chamber (200) can be separated into a top processing chamber (202) and a bottom processing chamber (204) by a wafer plane plate (210). A semiconductor substrate (60) (eg, a germanium wafer) may be mounted to a wafer support plate (214) (eg, quartz glass inserted into the wafer planar plate (210)) A support pin (212) of the plate) (for example, a quartz support pin) is supported.

如第二圖及第四圖所示,毫秒退火系統(80)可包含複數個弧光燈(220)(例如,四個氬氣弧光燈),其鄰近頂處理室(202)放置,作為用於半導體基板(60)頂面之強烈毫秒長曝照(所謂「閃光」)的光源。當基板已被加熱至一中間溫度(例如,約450℃至約900℃)時,閃光可被實施至半導體基板。 As shown in the second and fourth figures, the millisecond annealing system (80) can include a plurality of arc lamps (220) (eg, four argon arc lamps) placed adjacent to the top processing chamber (202) for use as A light source with a strong millisecond long exposure (so-called "flash") on the top surface of the semiconductor substrate (60). When the substrate has been heated to an intermediate temperature (for example, about 450 ° C to about 900 ° C), the flash can be applied to the semiconductor substrate.

鄰近底處理室(204)放置的複數個連續模式弧光燈(240)(例如,兩個氬氣孤光燈),可被用來加熱該半導體基板(60)至該中間溫度。某些具體實施例中,半導體基板(60)加熱至中間溫度,係從底處理室(204)經由半導體基板(60)底面,以加熱該晶圓整個體積的斜線上升速率來達成。 A plurality of continuous mode arc lamps (240) placed adjacent to the bottom processing chamber (204) (e.g., two argon orphan lamps) can be used to heat the semiconductor substrate (60) to the intermediate temperature. In some embodiments, the heating of the semiconductor substrate (60) to an intermediate temperature is achieved from the bottom processing chamber (204) via the bottom surface of the semiconductor substrate (60) to increase the ramp rate of the entire volume of the wafer.

如第三圖所示,來自底弧光燈(240)(例如,用於加熱半導體基板至一中間溫度)、以及頂弧光燈(220)(例如,為了藉由閃光來提供毫秒加熱而使用)之加熱半導體基板(60)的光,可穿透水窗(260)(例如,水冷卻石英玻璃窗)而進入處理室(200)。某些具體實施例中,水窗(260)可包含三明治構造,此係兩石英玻璃片之間有約4mm厚的水層循環以冷卻石英片,並為(舉例來說)約1400nm以上的波長提供一濾光器。 As shown in the third figure, from the bottom arc lamp (240) (for example, for heating the semiconductor substrate to an intermediate temperature), and the top arc lamp (220) (for example, for providing millisecond heating by flash) Light that heats the semiconductor substrate (60) can enter the processing chamber (200) through a water window (260) (eg, a water-cooled quartz glass window). In some embodiments, the water window (260) may comprise a sandwich construction having an aqueous layer of about 4 mm thick between the two quartz glass sheets to cool the quartz sheet and, for example, a wavelength of about 1400 nm or more. A filter is provided.

如第三圖進一步繪出,處理室壁面(250)可包含反射鏡(270),用於反射加熱光。舉例來說,反射鏡(270)可以是水冷卻的、抛光的鋁片。某些具體實施例中,用在毫秒退火系統中之弧光燈的主體,可包含用於燈具輻射的反射器。舉例來 說,第五圖的透視圖同時繪出可用在毫秒退火系統(200)中的頂部燈陣列(220)以及底部燈陣列(240)兩者。如圖中所示,各燈具陣列(220)和(240)的主體,可包含一反射器(262),用於反射加熱光。這些反射器(262)可形成毫秒退火系統(80)之處理室(200)的一部分反射面。 As further depicted in the third figure, the process chamber wall (250) can include a mirror (270) for reflecting the heated light. For example, the mirror (270) can be a water cooled, polished aluminum sheet. In some embodiments, the body of the arc lamp used in the millisecond annealing system can include a reflector for luminaire radiation. For example That is, the perspective view of the fifth diagram simultaneously depicts both the top lamp array (220) and the bottom lamp array (240) that can be used in the millisecond annealing system (200). As shown in the figures, the bodies of each of the arrays of lamps (220) and (240) may include a reflector (262) for reflecting the heated light. These reflectors (262) may form a portion of the reflective surface of the processing chamber (200) of the millisecond annealing system (80).

半導體基板的溫度均勻性,可藉由操縱落在半導體基板不同區域的光強度而受到控制。某些具體實施例中,均勻性調控,可藉由改變小尺寸反射器對主反射器的反射級數、及(或)藉由使用安裝在環繞該晶圖之晶圓支撐板上的邊緣反射器而達成。 The temperature uniformity of the semiconductor substrate can be controlled by manipulating the light intensity falling in different regions of the semiconductor substrate. In some embodiments, uniformity control can be achieved by varying the number of reflection stages of the small reflector to the primary reflector and/or by using edge reflections mounted on the wafer support plate surrounding the crystal. The machine is reached.

舉例來說,邊緣反射器可被用來將光線從底燈具(240)重導向至半導體基板(60)邊緣。舉一例,第六圖繪出形成一部分晶圓平面板(210)的示例邊緣反射器(264),可被用來引導光線從底部燈具(240)至半導體基板(60)邊緣。邊緣反射器(264)可被安裝至晶圓平面板(210),並可圍繞或至少部分圍繞該半導體基板(60)。 For example, an edge reflector can be used to redirect light from the bottom luminaire (240) to the edge of the semiconductor substrate (60). As an example, the sixth figure depicts an example edge reflector (264) that forms a portion of the wafer planar plate (210) that can be used to direct light from the bottom luminaire (240) to the edge of the semiconductor substrate (60). An edge reflector (264) can be mounted to the wafer planar panel (210) and can surround or at least partially surround the semiconductor substrate (60).

某些具體實施例中,額外的反射器也可被安裝至靠近晶圓平面板(210)的處理室壁面。舉例來說,第七圖繪出可被安裝至處理室壁面的示例反射器,作為用於加熱光的反射鏡。更明確地說,第七圖顯示安裝至底處理室壁面(254)的一示例楔形反射器(272)。第七圖也繪出安裝至一頂處理室壁面(252)之反射器(270)的一反射元件(274)。半導體基板(60)的處 理均勻性,可藉由改變處理室(200)內的楔形反射器(272),以及(或)其他反射元件(例如,反射元件(274))的反射級數而加以調節。 In some embodiments, additional reflectors can also be mounted to the processing chamber wall adjacent to the wafer plane plate (210). For example, the seventh figure depicts an example reflector that can be mounted to the wall of the processing chamber as a mirror for heating the light. More specifically, the seventh figure shows an example wedge reflector (272) mounted to the bottom processing chamber wall (254). The seventh diagram also depicts a reflective element (274) mounted to the reflector (270) of a processing chamber wall (252). Where the semiconductor substrate (60) is Uniformity can be adjusted by varying the number of reflection stages of the wedge reflector (272) within the processing chamber (200) and/or other reflective elements (e.g., reflective element (274)).

第八至十一圖繪出的示例頂弧光燈(220)的各個面向,其可被用來做為該半導體基板(60)頂面之強烈毫秒長曝照的光源(例如,「閃光」)。舉例來說,第八圖繪出一示例弧光燈(220)的一剖面圖。舉例來說,該弧光燈(220)可以是一暢噴弧光燈,其中加壓的氬氣(或其他適當氣體)在一電弧放電期間被轉換成高壓電漿。電弧放電是在一石英管(225)內一帶負電陰極(222)與一間隔放置之帶正電陽極(230)之間發生(例如,相距間距約300mm)。一旦陰極(222)與陽極(230)之間的電壓達到氬氣或其他適當氣體的崩潰電壓(例如,約30kV),就形成一穩定、低感應的電漿,其發射在電磁頻譜之可見光及紫外線值域內的光線。如第九圖所示,燈具可包含一燈反射器(262),可被用來反射由該燈具提供的光線,以供半導體基板(60)的處理。 The various faces of the example top arc lamp (220) depicted in Figures 8 through 11 can be used as a source of intense millisecond long exposure of the top surface of the semiconductor substrate (60) (e.g., "flash") . For example, the eighth figure depicts a cross-sectional view of an example arc lamp (220). For example, the arc lamp (220) can be a smooth arc lamp in which pressurized argon (or other suitable gas) is converted to high pressure plasma during an arc discharge. Arcing occurs between a negatively charged cathode (222) in a quartz tube (225) and a spaced positively charged anode (230) (e.g., about 300 mm apart). Once the voltage between the cathode (222) and the anode (230) reaches a breakdown voltage of argon or other suitable gas (eg, about 30 kV), a stable, low-induction plasma is formed that emits visible light in the electromagnetic spectrum. Light in the ultraviolet range. As shown in the ninth figure, the luminaire can include a lamp reflector (262) that can be used to reflect the light provided by the luminaire for processing by the semiconductor substrate (60).

第十及第十一圖繪出依據本案之示例具體實施例的一示例毫秒退火系統(80)之弧光燈(220)示例操作的諸觀點。更明確地說,一電漿(226)係被包含在一石英管(225)內,其由內側藉由一水壁(228)接受水冷卻。水壁(228)是在燈具(200)的陰極端以高流速注入並在陽極端排出。氬氣(229)也是如此,在陰極端進入燈具(220)並從陽極端排出。形成水壁(228) 的水,係垂直燈具軸注入,以致於離心力產生一水渦流。因此,沿著燈具的中線形成一通道供氬氣(229)使用。氬氣柱(229)以和水壁(228)相同的方向旋轉。一旦電漿(226)形成,水壁(228)即保護石英管(225)並拘限電漿(226)至中央軸線。僅水壁(228)和電極(陰極(230)和陽極(222))與高能電漿(226)直接接觸。 Tenth and eleventh views depict aspects of an example operation of an arc lamp (220) in accordance with an exemplary millisecond annealing system (80) in accordance with an exemplary embodiment of the present disclosure. More specifically, a plasma (226) is contained within a quartz tube (225) that is water cooled by a water wall (228) from the inside. The water wall (228) is injected at a high flow rate at the cathode end of the luminaire (200) and discharged at the anode end. The same is true for argon (229), which enters the luminaire (220) at the cathode end and exits from the anode end. Forming a water wall (228) The water is injected into the vertical lamp shaft so that the centrifugal force produces a water vortex. Therefore, a channel is formed along the center line of the luminaire for use with argon (229). The argon column (229) rotates in the same direction as the water wall (228). Once the plasma (226) is formed, the water wall (228) protects the quartz tube (225) and traps the plasma (226) to the central axis. Only the water wall (228) and the electrodes (cathode (230) and anode (222)) are in direct contact with the high energy plasma (226).

第十一圖繪出一與依據本案一示例具體實施例的弧光燈搭配使用的示例電極(例如,陰極(230))之剖視圖。第十一圖繪出一陰極(230)。然而一類似構造可被用於陽極(222)。 An eleventh drawing depicts a cross-sectional view of an example electrode (e.g., cathode (230)) for use with an arc lamp in accordance with an exemplary embodiment of the present invention. Figure 11 depicts a cathode (230). However a similar configuration can be used for the anode (222).

某些具體實施例中,由於電極經歷高熱負載,一或多個電極可各自包含一尖端(232)。該尖端可由鎢製成。該尖端可被耦合至及(或)熔燒至一水冷卻銅散熱器(234)。該銅散熱器(234)可包含至少一部分的電極之內部冷卻系統(例如,一或多個水冷卻通道(236))。電極可進一步包含一黃銅基座(235),其具有水冷卻通道(236)以供水或其他液體循環並冷卻電極。 In some embodiments, one or more of the electrodes may each include a tip (232) as the electrode experiences a high thermal load. The tip can be made of tungsten. The tip can be coupled to and/or melted to a water cooled copper heat sink (234). The copper heat sink (234) can include at least a portion of the internal cooling system of the electrodes (eg, one or more water cooling channels (236)). The electrode may further comprise a brass base (235) having a water cooling passage (236) for circulating water or other liquid and cooling the electrode.

用在依據本案之觀點的示例毫秒退火系統中的弧光燈,對於水及氬氣可以是一開放流系統。然而,為維護之故,某些具體實施例中兩媒材均可在一封閉迴路中循環。 An arc lamp for use in an exemplary millisecond annealing system in accordance with the teachings of the present invention may be an open flow system for water and argon. However, for maintenance, in some embodiments both media may be circulated in a closed loop.

第十二圖繪出用於供應水及氬氣的一示例封閉迴路系統(300),此係依據本案示例具體實施例的毫秒退火系統中所使用開放流氬氣弧光燈操作所需。 A twelfth diagram depicts an exemplary closed loop system (300) for supplying water and argon, which is required for operation of an open flow argon arc lamp used in the millisecond annealing system of the exemplary embodiment of the present invention.

更明確地說,高純度水(302)和氬氣(304)被注入燈具(220)。高純度水(302)係用於水壁以及電極冷卻。離開燈具的是氣/水混合物(306)。在可被重新注入燈具(220)的進氣口之前,此水/氣混合物(306)是藉由分離器(310)分成不含氣體的水(302)以及乾燥的氬氣(304)。為產生所需的跨燈具(220)壓力降,氣/水混合物(306)係藉由水驅動噴射幫浦(320)來加壓。 More specifically, high purity water (302) and argon (304) are injected into the luminaire (220). High purity water (302) is used for water wall and electrode cooling. Leaving the luminaire is a gas/water mixture (306). The water/gas mixture (306) is separated into a gas-free water (302) and a dry argon (304) by a separator (310) before being reinjected into the inlet of the luminaire (220). To produce the desired pressure drop across the luminaire (220), the gas/water mixture (306) is pressurized by a water driven jet pump (320).

一高功率電幫浦(330)供應水壓以驅動燈具(220)內的水壁、用於燈具電極的冷卻水,以及用於噴射幫浦(320)的驅動流。噴射幫浦(320)下游的分離器(310)可被用來從混合物抽出液相及氣相(氬)。重新進入燈具(220)之前,氬氣係在一聚結濾器(340)當中經過進一步乾燥。若有所需,額外的氬氣可從氬氣源(350)供應。 A high power electric pump (330) supplies water pressure to drive the water wall within the luminaire (220), the cooling water for the luminaire electrodes, and the drive flow for the jet pump (320). A separator (310) downstream of the jet pump (320) can be used to extract the liquid phase and gas phase (argon) from the mixture. Prior to re-entering the luminaire (220), the argon is further dried in a coalescing filter (340). Additional argon gas may be supplied from the argon source (350) if desired.

水係穿過一或多個顆粒濾器(350)以移除由電弧濺入水中的顆粒。離子污染物是藉由離子交換樹脂移除。一部分的水流過混合床離子交換濾器(370)。通到離子交換旁通(370)的入水口閥門(372),可藉由水的電阻率受到控制。若水的電阻率降到低於一較低數值,閥門(372)被開啟,若它達到一較高數值則閥門(372)被關閉。系統可包含一活性碳濾器旁通迴路(380),在此處一部分的水可被額外過濾以移除有機污染物。為維持水溫,水可通過一熱交換器(390)。 The water system passes through one or more particulate filters (350) to remove particles that are splashed into the water by the arc. Ionic contaminants are removed by ion exchange resins. A portion of the water flows through the mixed bed ion exchange filter (370). The water inlet valve (372) leading to the ion exchange bypass (370) can be controlled by the resistivity of the water. If the resistivity of the water drops below a lower value, the valve (372) is opened and if it reaches a higher value the valve (372) is closed. The system can include an activated carbon filter bypass circuit (380) where a portion of the water can be additionally filtered to remove organic contaminants. To maintain water temperature, water can pass through a heat exchanger (390).

依據本案示例具體實施例的毫秒退火系統,可包含獨立測量兩表面(例如,頂面及底面)溫度的能力。第十三 圖繪出用於毫秒退火系統(200)的一示例溫度測量系統(150)。 A millisecond annealing system in accordance with an exemplary embodiment of the present disclosure may include the ability to independently measure the temperature of both surfaces (e.g., top and bottom). thirteenth The figure depicts an example temperature measurement system (150) for a millisecond annealing system (200).

第十三圖中顯示的是毫秒退火系統(200)的一簡化代表圖。半導體基板(60)兩表面的溫度,皆可藉由溫度感測器獨立地測量,例如像是溫度感測器(152)和溫度感測器(154)。溫度感測器(152)可測量半導體基板(60)一頂面的溫度。溫度感測器(154)可測量半導體基板(60)一底面的溫度。某些具體實施例中,測量波長約1400nm的窄幅高溫計感測器,能夠作為溫度感測器(152)及(或)(154),以測量(例如像是)半導體基板(60)中心區域的溫度。某些具體實施例中,溫度感測器(152)和(154)可以是超快速輻射計(UFR),其具有足夠快速的取樣速率,以解析由閃光加熱所造成的毫秒溫度峰值。 Shown in the thirteenth figure is a simplified representation of the millisecond annealing system (200). The temperature of both surfaces of the semiconductor substrate (60) can be independently measured by a temperature sensor such as a temperature sensor (152) and a temperature sensor (154). A temperature sensor (152) measures the temperature of a top surface of the semiconductor substrate (60). The temperature sensor (154) measures the temperature of a bottom surface of the semiconductor substrate (60). In some embodiments, a narrow pyrometer sensor measuring a wavelength of about 1400 nm can be used as a temperature sensor (152) and/or (154) to measure (eg, like) the center of a semiconductor substrate (60). The temperature of the area. In some embodiments, the temperature sensors (152) and (154) may be ultrafast radiometers (UFR) having a sufficiently fast sampling rate to resolve millisecond temperature peaks caused by flash heating.

溫度感測器(152)和(154)的讀數可經放射率補償。如第十三圖所示,放射率補償架構可包含一偵錯閃光燈(156)、一參照溫度感測器(158),以及經配置以測量半導體晶圓的頂面和底面的溫度感測器(152)和(154)。偵錯加熱和測量可配合偵錯閃光燈(156)(例如,一測試閃光燈)使用。從參照溫度感測器(158)而來的測量值,可被用來作為溫度感測器(152)和(154)的放射率補償。 The readings of temperature sensors (152) and (154) can be compensated for by emissivity. As shown in FIG. 13, the emissivity compensation architecture can include a debug flash (156), a reference temperature sensor (158), and a temperature sensor configured to measure the top and bottom surfaces of the semiconductor wafer. (152) and (154). Debug heating and measurement can be used with a debug flash (156) (for example, a test flash). Measurements from the reference temperature sensor (158) can be used as emissivity compensation for the temperature sensors (152) and (154).

某些具體實施例中,毫秒退火系統(200)可包含水窗。水窗可提供一濾光器,其抑制溫度感測器(152)和(154)之測量頻帶當中的燈具輻射,以至於溫度感測器(152)和(154)僅測量從半導體基板而來的輻射。 In some embodiments, the millisecond annealing system (200) can include a water window. The water window can provide a filter that suppresses luminaire radiation in the measurement band of temperature sensors (152) and (154) such that temperature sensors (152) and (154) only measure from the semiconductor substrate. Radiation.

溫度感測器(152)和(154)的讀數可被提供至一處理器電路(160)。處理器電路(160)可被放置在該毫秒退火系統(200)的外殼內,雖然可替換地該處理器電路(160)可遠離毫秒退火系統(200)放置。若有所需,本文所描述的各種功能可藉由一單獨處理器電路實施,或藉由本機及(或)遠端處理器電路的其他組合實施。 The readings of temperature sensors (152) and (154) can be provided to a processor circuit (160). The processor circuit (160) can be placed within the housing of the millisecond annealing system (200), although alternatively the processor circuit (160) can be placed away from the millisecond annealing system (200). The various functions described herein can be implemented by a single processor circuit, or by other combinations of local and/or remote processor circuits, if desired.

溫度感測器(152)和(154)的讀數,可被處理器電路(160)用來判定橫跨基板的溫度分佈。該溫度分佈可提供基板在橫跨基板表面各個位置的溫度測量。溫度分佈可提供基板在處理期間之熱均勻性的測量。如後文詳述,顯示溫度分佈的資料可被用來改善熱均勻性,此係藉由:(1)改變毫秒退火系統之處理室內部的壓力;(2)藉由毫秒退火系統中一水窗之折射效應,操控照射分佈;(3)晶圓的角度位置;及(或)(4)配置毫秒退火系統中所使用反射器的形狀及(或)位置。 The readings of temperature sensors (152) and (154) can be used by processor circuit (160) to determine the temperature distribution across the substrate. This temperature profile provides temperature measurements of the substrate at various locations across the surface of the substrate. The temperature profile provides a measure of the thermal uniformity of the substrate during processing. As detailed later, data showing temperature distribution can be used to improve thermal uniformity by: (1) changing the pressure inside the processing chamber of the millisecond annealing system; and (2) annealing the system by milliseconds. The refractive effect of the window, manipulating the illumination distribution; (3) the angular position of the wafer; and/or (4) configuring the shape and/or position of the reflector used in the millisecond annealing system.

透過處理室壓力控制之示例均勻性改善Example uniformity improvement through process chamber pressure control

依據本案的示例觀點,在一毫秒退火系統中處理期間,一半導體基板的溫度均勻性,可藉由改變處理室內的壓力得到改善。處理室內的壓力,可影響處理室內的處理氣體流動模式,改變晶圓上不同區域的對流冷卻分佈。 According to an exemplary aspect of the present invention, the temperature uniformity of a semiconductor substrate during processing in a one millisecond annealing system can be improved by changing the pressure within the processing chamber. The pressure in the processing chamber can affect the processing gas flow pattern in the processing chamber and change the convective cooling distribution in different regions of the wafer.

毫秒退火系統內的處理室可在大氣壓力下操作。處理室可對環境大氣密封,以實現該處理室內的一超純淨氣體周圍。處理室內的壓力可在由該水窗之石英片的機械穩定度所 限定的範圍內加以修正。例如說,容許壓力值域可以是以大氣壓為基準的約+2kPa至約-2kPa。 The processing chamber within the millisecond annealing system can operate at atmospheric pressure. The processing chamber can be sealed to the ambient atmosphere to achieve an ultra-pure gas around the processing chamber. The pressure in the processing chamber can be determined by the mechanical stability of the quartz plate of the water window. Corrected within the limits. For example, the allowable pressure range may be from about +2 kPa to about -2 kPa based on atmospheric pressure.

舉例來說,在某些具體實施例中,在一毫秒退火系統中熱處理基板的一方法可包含:取得顯示與一或多個基板在一毫秒退火系統處理期間相關聯之溫度分佈的資料。溫度分佈可提供基板在處理期間之熱均勻性的測量。溫度分佈可提供基板上各點的溫度。顯示出一或多個基板之溫度分佈的資料,可經分析,以判定處理期間之溫度分佈的任何不均勻性。為解決不均勻性,處理室內的壓力可經調整,以導致跨一或多個基板的溫度均勻性。 For example, in some embodiments, a method of heat treating a substrate in a one millisecond annealing system can include obtaining data indicative of a temperature distribution associated with one or more substrates during a one millisecond annealing system process. The temperature profile provides a measure of the thermal uniformity of the substrate during processing. The temperature profile provides the temperature at various points on the substrate. Data showing the temperature distribution of one or more substrates can be analyzed to determine any non-uniformity in temperature distribution during processing. To address non-uniformities, the pressure within the processing chamber can be adjusted to result in temperature uniformity across one or more substrates.

某些具體實施例中,可取得顯示一基板在處理期間之溫度分佈的資料。溫度分佈圖中所識別出來的不均勻,可觸發在該半導體基板處理期間的壓力調整。如此一來,依據測得溫度分佈的一封閉迴路壓力控制,可用來調整一晶圓在處理期間的溫度均勻性。 In some embodiments, data showing the temperature distribution of a substrate during processing can be obtained. The unevenness identified in the temperature profile can trigger pressure adjustment during processing of the semiconductor substrate. As such, a closed loop pressure control based on the measured temperature profile can be used to adjust the temperature uniformity of a wafer during processing.

第十四圖係繪出一示例氣流系統的圖式,其係用於調整一依據本案之示例具體實施例的示例毫秒退火系統之處理室(200)內的壓力。處理室(200)可以是一暢流系統,其中處理氣體係經由位在處理室(200)頂部角落的進氣口埠,持續地從進氣口(302)進入處理室。處理氣體可經由位在處理室底部角落的排氣口埠離開處理室(200)。排氣口埠下游,四條排氣管可結合成一單獨的下游管線(304)。下游管線(304)可被連 接至一下游廢氣導管(340)。下游廢氣導管(340)可提供要從處理室排放處理氣體所必需的相對於該處理室的一壓差P△。藉由改變壓差P△,處理室內的壓力可受調整。 The fourteenth drawing depicts a diagram of an example airflow system for adjusting the pressure within a processing chamber (200) of an exemplary millisecond annealing system in accordance with an exemplary embodiment of the present invention. The processing chamber (200) can be a flow system in which the process gas system continuously enters the process chamber from the air inlet (302) via an air inlet port located at a top corner of the processing chamber (200). The process gas may exit the process chamber (200) via an exhaust port located at a bottom corner of the process chamber. Downstream of the exhaust port, the four exhaust pipes can be combined into a single downstream line (304). The downstream pipeline (304) can be connected Connected to a downstream exhaust conduit (340). The downstream exhaust conduit (340) provides a pressure differential P? relative to the processing chamber necessary to discharge the process gas from the process chamber. By varying the differential pressure P?, the pressure within the process chamber can be adjusted.

某些具體實施例中,壓差P△可藉由一控制器(320)來調整。控制器(320)可以是任何適當的控制裝置,例如像是一或多個處理器電路,執行儲存於一或多個記憶體裝置內的電腦可讀取指令。用於該控制器(320)的一控制變數,可以是安裝至該處理室的一壓力感測器(315)。壓力感測器(315)可測量處理室(200)內的壓力,並可透過一適當通信媒介,將顯示該壓力的信號傳送至控制器(320)。 In some embodiments, the differential pressure PΔ can be adjusted by a controller (320). The controller (320) can be any suitable control device, such as, for example, one or more processor circuits, executing computer readable instructions stored in one or more memory devices. A control variable for the controller (320) may be a pressure sensor (315) mounted to the processing chamber. A pressure sensor (315) can measure the pressure within the processing chamber (200) and can transmit a signal indicative of the pressure to the controller (320) via an appropriate communication medium.

控制器(320)的驅動器可以是位在排氣歧管內的一閥門(325)(例如,一蝶形閥),其改變氣流阻力,且因此改變下游管線(304)的壓差。低氣流阻力可降低處理室壓力。高氣流阻力可增加處理室壓力。用於控制器(320)的壓力設定點,可藉由一使用者加以定義,舉例來說,依據橫跨該基板的一溫度分佈。控制器(320)可經配置,以便依據從壓力感測器而來的信號而控制壓力,進而達到壓力設定點。某些具體實施例中,壓差可藉由被動機械式限制(例如,限流孔、氣閘或阻流板),或藉由設定外部廢氣管線的壓力而受到調整。 The actuator of the controller (320) may be a valve (325) (e.g., a butterfly valve) located within the exhaust manifold that changes the airflow resistance and thus changes the differential pressure of the downstream line (304). Low airflow resistance reduces process chamber pressure. High airflow resistance increases chamber pressure. The pressure set point for the controller (320) can be defined by a user, for example, based on a temperature profile across the substrate. The controller (320) can be configured to control the pressure based on the signal from the pressure sensor to achieve the pressure set point. In some embodiments, the differential pressure can be adjusted by passive mechanical restriction (e.g., a restriction, damper or baffle) or by setting the pressure of the external exhaust line.

處理室內的壓力,可影響處理室內處理氣體的流動模式。因此,藉由依據本案之示例具體實施例調整處理室內的壓力,晶圓上不同區域的對流冷卻分佈可得到調整。 The pressure in the processing chamber can affect the flow pattern of the process gas in the processing chamber. Thus, by adjusting the pressure within the process chamber in accordance with an exemplary embodiment of the present invention, the convective cooling profile of different regions on the wafer can be adjusted.

調整壓力也會影響毫秒退火系統中穿過水窗所提供燈光的照射分佈。舉例來說,某些具體實施例中,毫秒退火系統中處理期間一半導體基板的溫度均勻性,可依據毫秒退火系統中所用水窗的折射效應,藉由調整照射分佈而得到改善。一水窗在其正常狀態下是一平面-平行的玻片,具有如下堆疊順序:(1)石英;(2)水;(3)石英。水可流經兩石英片的夾層。翹曲該堆疊,可造成水窗如同一透鏡發揮作用,讓燈光穿過水窗,調整通過水窗的照射分佈。 Adjusting the pressure also affects the illumination distribution of the light provided through the water window in the millisecond annealing system. For example, in some embodiments, the temperature uniformity of a semiconductor substrate during processing in a millisecond annealing system can be improved by adjusting the illumination distribution in accordance with the refractive effect of the water window used in the millisecond annealing system. A water window is a plane-parallel slide in its normal state, having the following stacking order: (1) quartz; (2) water; (3) quartz. Water can flow through the interlayer of the two quartz sheets. Warping the stack can cause the water window to act as the same lens, allowing the light to pass through the water window and adjust the illumination distribution through the water window.

某些具體實施例中,水窗的翹曲,可藉由增加或減少處理室內的壓力而達成。如前文所討論,處理室內的壓力,可在由該水窗之石英片的機械穩定度所限定的範圍內加以修正。例如說,容許壓力值域可以是以大氣壓為基準的約+2kPa至約-2kPa。由於水窗內流動的冷卻水是處於十分接近大氣壓力的穩定壓力,處理室內的壓力變化會影響水窗的內側石英片。這會造成水層中央至邊緣的厚度變化。 In some embodiments, the warpage of the water window can be achieved by increasing or decreasing the pressure within the processing chamber. As discussed above, the pressure within the processing chamber can be corrected within the limits defined by the mechanical stability of the quartz crystal of the water window. For example, the allowable pressure range may be from about +2 kPa to about -2 kPa based on atmospheric pressure. Since the cooling water flowing in the water window is at a steady pressure very close to atmospheric pressure, the pressure change in the processing chamber affects the inner quartz piece of the water window. This causes a change in the thickness from the center to the edge of the water layer.

更明確地說,第十五及十六圖繪出一水窗(260),其具有一內側玻片(282)及一外側玻片(284)。內側玻片(282)和外側玻片(284)可由(例如)石英製成。水可在內側玻片(282)與外側玻片(284)之間流動。內側玻片(282)可相對於外側玻片(284)放置得更靠近毫秒退火系統的處理室。 More specifically, fifteenth and sixteenth drawings depict a water window (260) having an inner slide (282) and an outer slide (284). The inner slide (282) and the outer slide (284) may be made of, for example, quartz. Water can flow between the inner slide (282) and the outer slide (284). The inner slide (282) can be placed closer to the processing chamber of the millisecond annealing system relative to the outer slide (284).

如第十五圖所示,以相對大氣壓的正處理室壓,水窗(260)的內側玻片(282)向外彎(例如,遠離處理室),造成 對光具有散焦效果的一凸面水層。如第十六圖所示,以相對大氣壓的負處理室壓,水窗(260)的內側玻片(282)向內彎(例如,朝著處理室),造成對光具有聚焦效果的一凸面水層。 As shown in Fig. 15, the inner slide (282) of the water window (260) is bent outward (e.g., away from the processing chamber) at a relatively atmospheric pressure of the positive chamber pressure. A convex water layer that has a defocusing effect on light. As shown in Fig. 16, the inner slide (282) of the water window (260) is bent inward (e.g., toward the processing chamber) at a relatively atmospheric pressure negative chamber pressure, resulting in a convex surface having a focusing effect on the light. Water layer.

藉由晶圓角度位置達成之示例均勻性改善Example uniformity improvement achieved by wafer angular position

依據本案的示例觀點,一具有佈局圖案裝置晶圓(例如,一產品晶圓)在毫秒退火系統中處理期間的溫度均勻性,可藉由角度晶圓定位得到改善。一產品晶圓有時可包含數百晶粒以一陣列的形式安排於該晶圓的前表面上。 According to an exemplary aspect of the present disclosure, temperature uniformity during processing in a millisecond annealing system with a layout pattern device wafer (e.g., a product wafer) can be improved by angular wafer positioning. A product wafer can sometimes contain hundreds of dies arranged in an array on the front surface of the wafer.

舉例來說,第十七圖係繪出一示例產品晶圓(500)的圖式,其具有以一陣列安排的多個裝置。由於矽是一晶體,晶粒可順著晶格的主要軸線加以定向。最常見的就是,晶圓表面係沿著矽晶格面[110]來切割。晶圓具有一凹口(502),標示晶格<110>定向。晶粒排列導致側向變化的光線吸收能力。因此,晶粒陣列將不均勻光吸收特性加至晶圓表面。 For example, a seventeenth diagram depicts a diagram of an example product wafer (500) having a plurality of devices arranged in an array. Since germanium is a crystal, the grains can be oriented along the major axis of the crystal lattice. Most commonly, the wafer surface is cut along the twin plane [110]. The wafer has a notch (502) indicating the orientation of the lattice <110>. The grain arrangement results in a laterally varying light absorption capability. Thus, the die array adds uneven light absorption characteristics to the wafer surface.

第十八圖繪出一代表圖(510),其係毫秒退火系統中一晶圓之照射的示例殘餘不均勻性的圖式。如第十八圖所示,處理室可具有一殘餘的、固有的照射不均勻性,導致一側向晶圓溫度不均勻性。此固有的照射不均勻性,可(舉例來說)由於燈具定向、反射器位置以及毫秒退火系統的其他組件所致。 Figure 18 depicts a representative map (510) which is an illustration of an example residual non-uniformity of illumination of a wafer in a millisecond annealing system. As shown in Figure 18, the process chamber can have a residual, inherent illumination non-uniformity that results in side-to-wafer temperature non-uniformities. This inherent illumination non-uniformity can be due, for example, to luminaire orientation, reflector position, and other components of the millisecond annealing system.

依據本案示例觀點的毫秒退火系統,可使用一固定、非旋轉式的晶圓支撐配置。因此,角度晶圓定向可被用來 最佳化或改善溫度均勻性,此係藉由至少部分依據處理室固有的照射模式對齊所致。 According to the millisecond annealing system of the present example, a fixed, non-rotating wafer support configuration can be used. Therefore, the angle wafer orientation can be used Optimizing or improving temperature uniformity is achieved by at least partial alignment depending on the illumination mode inherent to the processing chamber.

更明確的說,在某些具體實施例中,在一毫秒退火系統中熱處理基板的方法,可包含取得顯示與一或多個基板在一毫秒退火系統處理期間相關聯之溫度分佈的資料。顯示一或多個基板之溫度分佈的資料,可經分析,以判定處理期間的任何溫度分佈不均勻性。為解決不均勻性,處理室內一或多個晶圓的角度定位,可經調整,以達成跨該等一或多個基板的溫度均勻性。 More specifically, in some embodiments, the method of heat treating a substrate in a one millisecond annealing system can include obtaining data indicative of a temperature distribution associated with one or more substrates during a one millisecond annealing system process. Data showing the temperature distribution of one or more substrates can be analyzed to determine any temperature distribution non-uniformity during processing. To address non-uniformities, the angular positioning of one or more wafers within the processing chamber can be adjusted to achieve temperature uniformity across the one or more substrates.

第十九圖係繪出位在一處理室(200)內的一產品晶圓(500)的圖式。如圖中所示,晶圓(500)可被放置在相對於處理室且相對於燈具不同的角度定向。第十九圖的示例中,晶圓(500)係如此地放置致使其凹口(502)位在凹口對齊角θ。因此,吸收圖案和照射圖案之間的相互作用,可藉由調整晶圓(500)的角度定向而加以強化。 A nineteenth drawing depicts a pattern of a product wafer (500) in a processing chamber (200). As shown in the figure, the wafer (500) can be placed at a different angle relative to the processing chamber and relative to the luminaire. In the example of the nineteenth figure, the wafer (500) is placed such that its notch (502) is at the notch alignment angle θ. Thus, the interaction between the absorption pattern and the illumination pattern can be enhanced by adjusting the angular orientation of the wafer (500).

某些具體實施例中,產品晶圓在被放在毫秒退火系統的裝卸系統之前,可經凹口對齊。凹口對齊角θ可決定處理室內的角度定向。晶圓定向可依據相對於處理室主軸(例如,由壁面所給定)的凹口位置來測出。其他具體實施例中,凹口對齊可在處理室內實施,例如說,藉由凹口對齊站或藉由整合至一自動機的一凹口對齊器。 In some embodiments, the product wafers can be aligned via the notches before being placed in the loading and unloading system of the millisecond annealing system. The notch alignment angle θ determines the angular orientation within the processing chamber. Wafer orientation can be measured based on the position of the notch relative to the process chamber spindle (eg, given by the wall). In other embodiments, the notch alignment can be performed within the processing chamber, for example, by a notch alignment station or by a notch aligner integrated into an automaton.

某些實施例中,晶圓可由安裝至一晶圓支撐板的 石英銷加以支撐。用於支撐晶圓之支撐銷的數目,可在三個至六個或更多個之間變化。一常見的晶圓支撐架構,使用四個支撐銷,安排成一等距於晶圓中央的正方形。通常來說,支撐銷可造成一局部冷點。而且支撐銷可誘發一機械性的應力模式。藉由晶圓相對於支撐銷的角度定向,支撐銷的負向衝擊可被移至更有益於該晶圓的區域。而且,藉由將接觸點偏移主要晶格軸線,晶圓應力可被緩和。 In some embodiments, the wafer can be mounted to a wafer support plate. The quartz pin is supported. The number of support pins used to support the wafer can vary from three to six or more. A common wafer support architecture uses four support pins arranged in a square equidistant from the center of the wafer. In general, the support pin can cause a partial cold spot. Moreover, the support pin can induce a mechanical stress mode. By the angular orientation of the wafer relative to the support pins, the negative impact of the support pins can be moved to areas that are more beneficial to the wafer. Moreover, by shifting the contact point away from the main lattice axis, wafer stress can be mitigated.

舉例來說,第二十圖係繪出處理室(200)內一晶圓(500)的圖式,其中示出支撐銷(212)相對於晶圓(500)的位置。晶圓(500)相對於支撐銷(212)的角度定向,可藉由將支撐銷(212)放在相對於晶圓(500)不同的位置而減低支撐銷(212)的影響。 For example, the twentieth diagram depicts a diagram of a wafer (500) within the processing chamber (200) showing the position of the support pin (212) relative to the wafer (500). The orientation of the wafer (500) relative to the support pin (212) can reduce the effect of the support pin (212) by placing the support pin (212) at a different location relative to the wafer (500).

藉由反射器之形狀及位置達成均勻性改進Improve uniformity by shape and position of the reflector

依據本案的示例具體實施例,一半導體基板在一毫秒退火系統中處理期間的溫度均勻性,可部分依據該毫秒退火系統處理室內一或多個反射器的形狀得到改善。舉例來說,一頂部楔形反射器及(或)一或多個邊緣反射器,可具有一形狀及(或)配置,其係經設計以改進熱均勻性。小尺寸的反射器可被用來減低毫秒退火系統中處理室的殘餘不均勻性。 In accordance with an exemplary embodiment of the present disclosure, temperature uniformity during processing of a semiconductor substrate in a one millisecond annealing system may be improved in part by the shape of one or more reflectors within the millisecond annealing system processing chamber. For example, a top wedge reflector and/or one or more edge reflectors can have a shape and/or configuration that is designed to improve thermal uniformity. Small sized reflectors can be used to reduce residual non-uniformities in the processing chamber in a millisecond annealing system.

在某些具體實施例中,在一毫秒退火系統中熱處理基板的一方法可包含:取得顯示與一或多個基板在一毫秒退火系統處理期間相關聯之溫度分佈的資料。顯示一或多個基板 之溫度分佈的資料可經分析,以判定處理期間的任何溫度分佈不均勻性。為解決不均勻性,處理室內一或多個晶圓的形狀、配置以及(或)位置可經調整,以達成跨該等一或多個基板的溫度均勻性。 In some embodiments, a method of heat treating a substrate in a one millisecond annealing system can include obtaining data indicative of a temperature distribution associated with one or more substrates during a one millisecond annealing system process. Display one or more substrates The temperature distribution data can be analyzed to determine any temperature distribution non-uniformity during processing. To address non-uniformities, the shape, configuration, and/or position of one or more wafers within the processing chamber can be adjusted to achieve temperature uniformity across the one or more substrates.

第二十一圖係繪出一毫秒退火系統的橫切面剖視圖,顯示出毫秒退火系統內的處理室中,頂部楔形反射器(274)及邊緣反射器(264)的位置。頂部楔形反射器(274)可在處理室壁面上靠近晶圓平面板放置。頂部楔形反射器(274)可以是楔形。邊緣反射器(264)可被放置在晶圓平面板上並可在處理期間圍繞一基板。 The twenty-first figure depicts a cross-sectional view of a one millisecond annealing system showing the position of the top wedge reflector (274) and edge reflector (264) in the processing chamber within the millisecond annealing system. A top wedge reflector (274) can be placed on the wall of the processing chamber adjacent to the wafer plane. The top wedge reflector (274) can be wedge shaped. The edge reflector (264) can be placed on the wafer plane and can surround a substrate during processing.

某些具體實施例中,可有兩個頂部楔形反射器(264)被放置在毫秒退火系統一處理室的頂處理室中的處理室壁面上。頂部邊緣反射器(264)可被用來控制垂直於燈具主軸的照射分佈。某些具體實施例中,楔形反射器(264)可被安裝在處理室上半部,沿著面對門並面對處理室後端之鏡片底緣。 In some embodiments, there may be two top wedge reflectors (264) placed on the wall of the processing chamber in the top processing chamber of a processing chamber of the millisecond annealing system. The top edge reflector (264) can be used to control the illumination distribution perpendicular to the main axis of the fixture. In some embodiments, the wedge reflector (264) can be mounted in the upper half of the processing chamber along the bottom edge of the lens facing the door and facing the rear end of the processing chamber.

通常來說,晶圓溫度分佈在晶圓邊緣垂直於燈具定向處具有冷區。這些冷點的尺寸及強度可受楔形反射器(264)影響。毫秒退火系統可具有個別激發各個頂部燈具閃光釋放的能力。此能力主要應用於形塑閃光事件的時間-溫度分佈圖。此能力有一副作用,即照射圖案係隨時間而局部改變,這起因於頂部燈具是在相對於晶圓的不同位置。如此可對晶圓邊緣之冷點的尺寸有所作用,此係依靠燈具的激發順序而定。 使用具最佳化角度的楔形可補償這些效應。 Generally, the wafer temperature distribution has a cold zone at the edge of the wafer perpendicular to the orientation of the luminaire. The size and strength of these cold spots can be affected by the wedge reflector (264). The millisecond annealing system can have the ability to individually excite the flash release of each of the top luminaires. This ability is primarily used to shape the time-temperature profile of a flash event. This ability has the side effect that the illumination pattern changes locally over time, due to the fact that the top luminaire is at a different location relative to the wafer. This can have an effect on the size of the cold spot on the edge of the wafer, depending on the firing order of the luminaire. These effects can be compensated for by using a wedge with an optimized angle.

第二十二圖係繪出具有變化楔角的示例頂部楔形反射器(264)的圖式。更明確地說,第二十二(a)圖繪出具有0°楔角的一頂部楔形反射器(264)。第二十二(b)圖繪出具有10°楔角的一頂部楔形反射器。藉由改變楔角,射至邊緣區域的光量可受控制。某些具體實施例中,楔形反射器(264)可被安裝至一馬達或其他機械裝置,其可經組態用以調整楔形反射器(264)的楔角及(或)位置。舉例來說,控制器可實時回應基板的溫度測量值,調整楔形反射器楔角以提供更均勻處理。 The twenty-second figure depicts a diagram of an example top wedge reflector (264) having varying wedge angles. More specifically, the twenty-second (a) diagram depicts a top wedge reflector (264) having a wedge angle of 0°. Figure 22 (b) depicts a top wedge reflector with a 10° wedge angle. By varying the wedge angle, the amount of light that strikes the edge region can be controlled. In some embodiments, the wedge reflector (264) can be mounted to a motor or other mechanical device that can be configured to adjust the wedge angle and/or position of the wedge reflector (264). For example, the controller can respond to temperature measurements of the substrate in real time, adjusting the wedge reflector wedge angle to provide more uniform processing.

某些具體實施例中,楔角可藉由切削各零件而預先設定。均勻性的最佳化可藉由將一具有所選楔角的適當楔形安裝到該處理室而加以實施。其他具體實施例中,楔角可藉由以墊片偏斜楔形,或藉由固定螺釘而設定。某些具體實施例中,照射分佈係藉由額外地改變楔形高度及楔形反射率加以操控。 In some embodiments, the wedge angle can be preset by cutting the parts. Optimization of uniformity can be implemented by mounting a suitable wedge having a selected wedge angle to the processing chamber. In other embodiments, the wedge angle can be set by skewing the wedge with a spacer or by a set screw. In some embodiments, the illumination profile is manipulated by additionally varying the wedge height and the wedge reflectivity.

第二十三圖係繪出示例照射分佈改進的圖式,此係藉由調整頂部楔形的楔角從5°楔角成為1°楔角。更明確地說,第二十三(a)圖係繪出在一處理室內處理之晶圓的溫度分佈,該處理室有數個具5°楔角的頂部楔形反射器。如圖中所示,由於減量的照射,晶圓可在該晶圓邊緣具有冷點(520)。第二十三(b)圖係繪出在一處理室中處理之晶圓的溫度分佈之圖式,該處理室有數個具1°楔角的頂部楔形反射器。如圖中 所示,晶圓邊緣(525)的溫度更均勻,且冷點的出現已被減量。 The twenty-third figure plots an example of an improved illumination distribution by adjusting the wedge angle of the top wedge from a 5 wedge angle to a 1 wedge angle. More specifically, the twenty-third (a) diagram depicts the temperature profile of a wafer processed in a processing chamber having a plurality of top wedge reflectors having a 5° wedge angle. As shown in the figure, the wafer may have a cold spot (520) at the edge of the wafer due to the reduced illumination. Twenty-third (b) is a diagram depicting the temperature profile of a wafer processed in a processing chamber having a plurality of top wedge reflectors having a 1° wedge angle. As shown As shown, the temperature of the wafer edge (525) is more uniform and the occurrence of cold spots has been reduced.

操控晶圓邊緣之照射量的另一方法是藉由邊緣反射器(274)的位置、形狀以及反射率。第二十四圖係繪出用在處理室中四個邊緣反射器(274)的透視圖。邊緣反射器(274)可將光線從底部燈具重新引導至晶圓邊緣。邊緣反射器(274)的反射率,可藉由把刻槽(276)切入反射平面而加以修飾。刻槽面積對上剩餘反射器面積的比值,決定反射率的量。 Another method of manipulating the amount of illumination at the edge of the wafer is by the position, shape, and reflectivity of the edge reflector (274). The twenty-fourth drawing depicts a perspective view of four edge reflectors (274) used in the processing chamber. An edge reflector (274) redirects light from the bottom fixture to the edge of the wafer. The reflectivity of the edge reflector (274) can be modified by cutting the notch (276) into the reflective plane. The ratio of the groove area to the area of the remaining reflector is determined by the amount of reflectivity.

第二十五圖係繪出使用在毫秒退火系統中一標準邊緣反射器(274)的直線輪廓之圖式。依據本案之示例具體實施例,一晶圓的溫度均勻性可藉由將輪廓形狀從線性轉換成抛物線或其組合,以及(或)藉由晶圓的相對位置加以修正。如此做法決定了晶圓邊緣受熱區的尺寸及位置。 The twenty-fifth diagram depicts a straight line profile using a standard edge reflector (274) in a millisecond annealing system. In accordance with an exemplary embodiment of the present disclosure, temperature uniformity of a wafer can be corrected by linearly converting the contour shape to a parabola or a combination thereof, and/or by relative position of the wafer. This approach determines the size and location of the heated edge of the wafer edge.

更明確地說,第二十六(a)圖繪出藉由一具有直線輪廓(274.2)之邊緣反射器(274)而照到一基板(60)的光線反射。第二十六(b)圖繪出藉由具有抛物線和直線輪廓組合(274.4)之邊緣反射器(274),照到一基板(60)的光線反射。第二十六(c)圖繪出藉由一具有抛物線和直線輪廓組合(274.4)之邊緣反射器(274),照到一基板(60)的光線反射,但其具有相對於基板調整過的位置。 More specifically, the twenty-sixth (a) diagram depicts light reflection from a substrate (60) by an edge reflector (274) having a linear profile (274.2). Twenty-sixth (b) depicts light reflection from a substrate (60) by an edge reflector (274) having a parabolic and linear contour combination (274.4). Figure 26 (c) depicts light reflection from a substrate (60) by an edge reflector (274) having a parabolic and linear contour combination (274.4), but having an adjusted relative to the substrate position.

某些具體實施例中,邊緣反射器(274)可被安裝至一馬達或其他機械裝置,其可經組態用以調整邊緣反射器的位置及(或)表面輪廓。舉例來說,控制器可實時回應基板的溫 度測量值,調整一或多個邊緣反射器的位置以提供更均勻處理。 In some embodiments, the edge reflector (274) can be mounted to a motor or other mechanical device that can be configured to adjust the position and/or surface profile of the edge reflector. For example, the controller can respond to the temperature of the substrate in real time. The measured value adjusts the position of one or more edge reflectors to provide a more uniform process.

雖然本發明標的係相關於其特定示範性具體實施例作詳細描述,應可理解的是,那些熟悉此技術領域者一旦瞭解前文的解說,可輕易地對這些具體實施例進行改造、變化以及製造產生等效物。因此,本案的揭露範圍僅係舉例而非對其設限,且主題揭示並不排除將那些對於此技術領域具通常知識者而言可輕易得見之本發明標的此等修飾、變化與/或增添等納入其中。 Although the present invention has been described in detail with reference to the specific exemplary embodiments thereof, it should be understood that those skilled in the art can readily adapt, change, and Produce an equivalent. Therefore, the disclosure of the present invention is intended to be illustrative only and not limiting, and the subject matter of the present disclosure does not exclude such modifications, variations and/or modifications of the inventions which are readily apparent to those skilled in the art. Addition and so on.

200‧‧‧處理室 200‧‧‧Processing room

300‧‧‧封閉迴路系統 300‧‧‧Closed loop system

302‧‧‧進氣口 302‧‧‧air inlet

304‧‧‧下游管線 304‧‧‧Downstream pipeline

315‧‧‧壓力感測器 315‧‧‧pressure sensor

320‧‧‧控制器 320‧‧‧ Controller

325‧‧‧閥門 325‧‧‧ Valve

340‧‧‧下游廢氣導管 340‧‧‧Down exhaust duct

Claims (20)

一種在一毫秒退火系統中熱處理一基板的方法,其包含:取得顯示與一或多個基板在一毫秒退火系統處理期間相關聯之溫度分佈的資料,該毫秒退火系統具有一晶圓平面板,將該處理室區分成一頂處理室和一底處理室;以及至少部分依據顯示溫度分佈的資料,調整處理室內部壓力,以造成跨一或多個基板的溫度均勻性。 A method of heat treating a substrate in a one millisecond annealing system, comprising: obtaining data indicative of a temperature distribution associated with one or more substrates during a one millisecond annealing system process, the millisecond annealing system having a wafer planar plate, The processing chamber is divided into a top processing chamber and a bottom processing chamber; and the pressure inside the processing chamber is adjusted based at least in part on the data indicative of the temperature distribution to cause temperature uniformity across the one or more substrates. 如申請專利範圍第1項的方法,其中調整壓力包含在該等一或多個基板至少其中之一的處理期間,調整處理室內的壓力,以調整該等一或多個基板至少其中之一的溫度分佈。 The method of claim 1, wherein adjusting the pressure comprises adjusting a pressure within the processing chamber during processing of at least one of the one or more substrates to adjust at least one of the one or more substrates Temperature Distribution. 如申請專利範圍第1項的方法,其中該壓力係在相對於大氣壓力為約+2kPA至約-2kPA的值域範圍內加以調整。 The method of claim 1, wherein the pressure is adjusted within a range of from about +2 kPA to about -2 kPA relative to atmospheric pressure. 如申請專利範圍第1項的方法,其中調整該處理室內的壓力包含,調整該處理室與一經配置而使處理氣體流過該處理室的氣流系統下游管線之間的壓差,該下游管線位在該處理室內的一或多個排氣口之下游。 The method of claim 1, wherein the adjusting the pressure in the processing chamber comprises adjusting a pressure difference between the processing chamber and a downstream line of the airflow system configured to flow the processing gas through the processing chamber, the downstream pipeline position Downstream of one or more exhaust ports within the processing chamber. 如申請專利範圍第4項的方法,其中調整壓差包含調整被放置在該下游管線的一閥門。 The method of claim 4, wherein adjusting the differential pressure comprises adjusting a valve placed in the downstream line. 如申請專利範圍第5項的方法,其中該閥門係依據從一經配置以測量處理室內壓力的壓力感測器而來的一或多個信號,藉由一或多個控制器而加以調整。 The method of claim 5, wherein the valve is adjusted by one or more controllers based on one or more signals from a pressure sensor configured to measure pressure within the processing chamber. 如申請專利範圍第1項的方法,其中該壓力係經調整,以影響該處理室內一處理氣體的流動模式。 The method of claim 1, wherein the pressure is adjusted to affect a flow pattern of a process gas within the processing chamber. 如申請專利範圍第1項的方法,其中調整該處理室內的壓力包含,依據該處理室內的壓力翹曲一水窗。 The method of claim 1, wherein adjusting the pressure in the processing chamber comprises warping a water window according to the pressure in the processing chamber. 如申請專利範圍第8項的方法,其中該水窗包含一內側玻片以及一外側玻片,其具有水在該內側玻片與該外側玻片之間流動,該內側玻片係相對於該外側玻片更接近該處理室放置。 The method of claim 8, wherein the water window comprises an inner slide and an outer slide having water flowing between the inner slide and the outer slide, the inner slide being relative to the The outer slide is placed closer to the processing chamber. 如申請專利範圍第9項的方法,其中該水窗係經翹曲,以致於水窗的內側玻片彎離處理室,以提供對於燈光的散焦效應。 The method of claim 9, wherein the water window is warped such that the inner slide of the water window is bent away from the processing chamber to provide a defocusing effect on the light. 如申請專利範圍第9項的方法,其中該水窗係經翹曲,以致於水窗的內側玻片彎向處理室,以提供對於燈光的聚焦效應。 The method of claim 9, wherein the water window is warped such that the inner slide of the water window is bent toward the processing chamber to provide a focusing effect on the light. 一種在一毫秒退火系統中熱處理一基板的方法,其包含:取得顯示與一或多個基板在一毫秒退火系統處理期間相關聯之溫度分佈的資料,該毫秒退火系統具有一晶圓平面板,將該處理室區分成一頂處理室和一底處理室;至少部分依據該溫度分佈,調整該毫秒退火系統內一邊緣反射器或一楔形反射器其中一或多個的形狀、配置或位置。 A method of heat treating a substrate in a one millisecond annealing system, comprising: obtaining data indicative of a temperature distribution associated with one or more substrates during a one millisecond annealing system process, the millisecond annealing system having a wafer planar plate, The processing chamber is divided into a top processing chamber and a bottom processing chamber; the shape, configuration or position of one or more of an edge reflector or a wedge reflector in the millisecond annealing system is adjusted based at least in part on the temperature profile. 如申請專利範圍第12項的方法,其中該楔形反射器係放置在靠近該晶圓平面板的一處理室壁面上。 The method of claim 12, wherein the wedge reflector is placed on a wall of a processing chamber adjacent to the planar panel of the wafer. 如申請專利範圍第13項的方法,其中調整該毫秒退火系統中一邊緣反射器或一楔形反射器其中一或多個的形狀、配置或位置,包含調整用於該楔形反射器的一楔角。 The method of claim 13, wherein adjusting the shape, configuration or position of one or more of an edge reflector or a wedge reflector in the millisecond annealing system comprises adjusting a wedge angle for the wedge reflector . 如申請專利範圍第13項的方法,其中調整該毫秒退火系統中一邊緣反射器或一楔形反射器其中一或多個的形狀、配置或位置,包含調整用於該楔形反射器的一高度。 The method of claim 13, wherein adjusting the shape, configuration or position of one or more of an edge reflector or a wedge reflector in the millisecond annealing system comprises adjusting a height for the wedge reflector. 如申請專利範圍第13項的方法,其中該邊緣反射器係放置在該晶圓平面板內。 The method of claim 13, wherein the edge reflector is placed in the wafer plane plate. 如申請專利範圍第12項的方法,其中調整該毫秒退火系統中一邊緣反射器或一楔形反射器其中一或多個的形狀、配置或位置,包含調整用於該邊緣反射器的一表面輪廓。 The method of claim 12, wherein adjusting the shape, configuration or position of one or more of an edge reflector or a wedge reflector in the millisecond annealing system comprises adjusting a surface profile for the edge reflector . 如申請專利範圍第12項的方法,其中調整該毫秒退火系統中一邊緣反射器或一楔形反射器其中一或多個的形狀、配置或位置,包含在處理基板期間,以一或多個控制器,調整該楔形反射器相對於該基板的位置。 The method of claim 12, wherein adjusting the shape, configuration or position of one or more of an edge reflector or a wedge reflector in the millisecond annealing system is included in one or more controls during processing of the substrate And adjusting the position of the wedge reflector relative to the substrate. 一種在一毫秒退火系統中熱處理一基板的方法,其包含:取得顯示與一或多個基板在一毫秒退火系統處理期間相關聯之溫度分佈的資料,該毫秒退火系統具有一晶圓平面板,將該處理室區分成一頂處理室和一底處理室,該晶圓平面板包含一非旋轉式基板支撐;判定一角度位置,用於一裝置基板在該毫秒退火系統之一處理室內的放置,該角度位置係至少部分依據該溫度分佈來判定。 A method of heat treating a substrate in a one millisecond annealing system, comprising: obtaining data indicative of a temperature distribution associated with one or more substrates during a one millisecond annealing system process, the millisecond annealing system having a wafer planar plate, Dividing the processing chamber into a top processing chamber and a bottom processing chamber, the wafer flat panel comprising a non-rotating substrate support; determining an angular position for placement of a device substrate in a processing chamber of the millisecond annealing system, The angular position is determined based at least in part on the temperature profile. 如申請專利範圍第19項的方法,其中該角度位置,係至少部分依據該毫秒退火系統中一或多個支撐銷的位置來判定。 The method of claim 19, wherein the angular position is determined based at least in part on the position of one or more support pins in the millisecond annealing system.
TW105142449A 2015-12-30 2016-12-21 Features for improving process uniformity in a millisecond anneal system TWI753873B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562272817P 2015-12-30 2015-12-30
US62/272,817 2015-12-30

Publications (2)

Publication Number Publication Date
TW201727751A true TW201727751A (en) 2017-08-01
TWI753873B TWI753873B (en) 2022-02-01

Family

ID=59225810

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105142449A TWI753873B (en) 2015-12-30 2016-12-21 Features for improving process uniformity in a millisecond anneal system

Country Status (5)

Country Link
US (2) US10770309B2 (en)
KR (1) KR102104468B1 (en)
CN (1) CN108028200B (en)
TW (1) TWI753873B (en)
WO (1) WO2017116708A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10840114B1 (en) * 2016-07-26 2020-11-17 Raytheon Company Rapid thermal anneal apparatus and method
WO2018137735A1 (en) * 2017-01-26 2018-08-02 Gross, Leander Kilian Method and device for separating different material layers of a composite component
US20210043478A1 (en) * 2019-08-07 2021-02-11 Samsung Electronics Co., Ltd. Pressure heating apparatus
KR20210083411A (en) * 2019-12-26 2021-07-07 삼성디스플레이 주식회사 Glass substrate chemical strengthening furnace device
CN111755364B (en) * 2020-08-13 2023-04-07 抚州华成半导体科技有限公司 Semiconductor diode production equipment
CN112274143B (en) * 2020-12-29 2021-06-01 四川写正智能科技有限公司 Human body existing state detection method and detection device

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6114216A (en) * 1996-11-13 2000-09-05 Applied Materials, Inc. Methods for shallow trench isolation
JP4151749B2 (en) 1998-07-16 2008-09-17 東京エレクトロンAt株式会社 Plasma processing apparatus and method
US6204203B1 (en) 1998-10-14 2001-03-20 Applied Materials, Inc. Post deposition treatment of dielectric films for interface control
US6771895B2 (en) * 1999-01-06 2004-08-03 Mattson Technology, Inc. Heating device for heating semiconductor wafers in thermal processing chambers
KR100838874B1 (en) * 2000-07-06 2008-06-16 어플라이드 머티어리얼스, 인코포레이티드 Thermally processing a substrate
US6594446B2 (en) * 2000-12-04 2003-07-15 Vortek Industries Ltd. Heat-treating methods and systems
CN100416243C (en) * 2001-12-26 2008-09-03 加拿大马特森技术有限公司 Temperature measurement and heat-treating methods and system
US20040058560A1 (en) * 2002-09-20 2004-03-25 Applied Materials, Inc. Fast gas exchange for thermal conductivity modulation
US7442415B2 (en) 2003-04-11 2008-10-28 Sharp Laboratories Of America, Inc. Modulated temperature method of atomic layer deposition (ALD) of high dielectric constant films
US8323754B2 (en) 2004-05-21 2012-12-04 Applied Materials, Inc. Stabilization of high-k dielectric materials
US7790633B1 (en) 2004-10-26 2010-09-07 Novellus Systems, Inc. Sequential deposition/anneal film densification method
CN101702950B (en) * 2007-05-01 2012-05-30 加拿大马特森技术有限公司 Irradiance pulse heat-treating methods and apparatus
US8617794B2 (en) * 2007-06-12 2013-12-31 Fujifilm Corporation Method of forming patterns
US7972444B2 (en) * 2007-11-07 2011-07-05 Mattson Technology, Inc. Workpiece support with fluid zones for temperature control
US7800081B2 (en) * 2007-11-08 2010-09-21 Applied Materials, Inc. Pulse train annealing method and apparatus
US9498845B2 (en) * 2007-11-08 2016-11-22 Applied Materials, Inc. Pulse train annealing method and apparatus
JP2009123810A (en) * 2007-11-13 2009-06-04 Dainippon Screen Mfg Co Ltd Heat treatment apparatus
US8107800B2 (en) 2008-01-08 2012-01-31 International Business Machines Corporation Method and structure to control thermal gradients in semiconductor wafers during rapid thermal processing
JP2009164451A (en) * 2008-01-09 2009-07-23 Dainippon Screen Mfg Co Ltd Heat treatment equipment
FR2929446B1 (en) * 2008-03-28 2011-08-05 Soitec Silicon On Insulator IMPLANTATION AT CONTROLLED TEMPERATURE
US8548311B2 (en) * 2008-04-09 2013-10-01 Applied Materials, Inc. Apparatus and method for improved control of heating and cooling of substrates
US20100068898A1 (en) * 2008-09-17 2010-03-18 Stephen Moffatt Managing thermal budget in annealing of substrates
JP2011040544A (en) * 2009-08-10 2011-02-24 Toshiba Corp Heat treatment apparatus, and method for manufacturing semiconductor device
US20110081137A1 (en) * 2009-10-06 2011-04-07 Advantest Corporation Manufacturing equipment and manufacturing method
US8383513B2 (en) * 2010-10-05 2013-02-26 Taiwan Semiconductor Manufacturing Company, Ltd. Asymmetric rapid thermal annealing to reduce pattern effect
US8809175B2 (en) 2011-07-15 2014-08-19 Taiwan Semiconductor Manufacturing Company, Ltd. Methods of anneal after deposition of gate layers
US10388493B2 (en) * 2011-09-16 2019-08-20 Lam Research Corporation Component of a substrate support assembly producing localized magnetic fields
JP6234674B2 (en) * 2012-12-13 2017-11-22 株式会社Screenホールディングス Heat treatment equipment
WO2014113179A1 (en) * 2013-01-16 2014-07-24 Applied Materials, Inc Quartz upper and lower domes
US9093468B2 (en) 2013-03-13 2015-07-28 Taiwan Semiconductor Manufacturing Company, Ltd. Asymmetric cyclic depositon and etch process for epitaxial formation mechanisms of source and drain regions
JP2014175638A (en) * 2013-03-13 2014-09-22 Dainippon Screen Mfg Co Ltd Heat treatment equipment and heat treatment method
JP2016529733A (en) * 2013-08-30 2016-09-23 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Substrate support system
US20150140838A1 (en) 2013-11-19 2015-05-21 Intermolecular Inc. Two Step Deposition of High-k Gate Dielectric Materials
US9941144B2 (en) * 2015-12-30 2018-04-10 Mattson Technology, Inc. Substrate breakage detection in a thermal processing system
KR102085076B1 (en) * 2015-12-30 2020-03-05 맷슨 테크놀로지, 인크. Nitrogen injection for arc lamps
US9892956B1 (en) * 2016-10-12 2018-02-13 Lam Research Corporation Wafer positioning pedestal for semiconductor processing
GB201706284D0 (en) * 2017-04-20 2017-06-07 Spts Technologies Ltd A method and apparatus for controlling stress variation in a material layer formed via pulsed DC physical vapour deposition
US20210109450A1 (en) * 2019-10-11 2021-04-15 Tokyo Electron Limited Apparatus and Methods for Beam Processing of Substrates

Also Published As

Publication number Publication date
US10770309B2 (en) 2020-09-08
KR20180030232A (en) 2018-03-21
US20200402811A1 (en) 2020-12-24
KR102104468B1 (en) 2020-04-27
CN108028200A (en) 2018-05-11
US20170194163A1 (en) 2017-07-06
WO2017116708A1 (en) 2017-07-06
CN108028200B (en) 2022-05-27
TWI753873B (en) 2022-02-01

Similar Documents

Publication Publication Date Title
TWI753873B (en) Features for improving process uniformity in a millisecond anneal system
TWI744268B (en) Preheat processes for millisecond anneal system
JP5063995B2 (en) Heat treatment equipment
US9029739B2 (en) Apparatus and methods for rapid thermal processing
US20110174790A1 (en) Annealing apparatus
CN108352344B (en) Fluid leak detection for millisecond anneal systems
KR102148834B1 (en) Gas flow control for millisecond annealing systems
KR102090152B1 (en) Chamber wall heating for millisecond annealing systems