TW201725868A - Encoding and decoding using low-density parity-check matrices - Google Patents

Encoding and decoding using low-density parity-check matrices Download PDF

Info

Publication number
TW201725868A
TW201725868A TW105139901A TW105139901A TW201725868A TW 201725868 A TW201725868 A TW 201725868A TW 105139901 A TW105139901 A TW 105139901A TW 105139901 A TW105139901 A TW 105139901A TW 201725868 A TW201725868 A TW 201725868A
Authority
TW
Taiwan
Prior art keywords
block
block size
matrix
codeword
sub
Prior art date
Application number
TW105139901A
Other languages
Chinese (zh)
Other versions
TWI722063B (en
Inventor
Ajit Nimbalker
Tao Xu
Original Assignee
Intel Ip Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intel Ip Corp filed Critical Intel Ip Corp
Publication of TW201725868A publication Critical patent/TW201725868A/en
Application granted granted Critical
Publication of TWI722063B publication Critical patent/TWI722063B/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Error Detection And Correction (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Technology for a user equipment (UE) operable to encode information for transmission to an eNodeB is disclosed. The UE can acquire a block of information bits. The UE can select a modulation and coding scheme. The UE can determine a matrix prototype and a code word sub-block size based on a size of the block of information bits and the modulation and coding scheme. The UE can encode at least a portion of the block of information bits to obtain an encoded code word block. At least the portion of the block of information bits can be encoded based on the matrix prototype and the code word sub-block size. The UE can select a subset of bits from the encoded code word block. The UE can generate the subset of bits for transmission to an eNodeB.

Description

使用低密度同位檢查矩陣之編碼及解碼技術Encoding and decoding techniques using low density parity check matrix

本發明係有關於使用低密度同位檢查矩陣之編碼及解碼技術。The present invention relates to encoding and decoding techniques using low density parity check matrices.

無線行動通訊技術使用各種標準與協定以在一節點(例如一傳輸站)與一無線裝置(例如一行動裝置)之間傳輸資料。有些無線裝置在一下行鏈路(DL)傳輸中使用正交分頻多工多重進接(OFDMA)並在一上行鏈路(UL)中使用單載波分頻多工多重進接(SC-FDMA)進行通訊。使用正交分頻多工(OFDM)用於信號傳輸之標準與協定包括第三代合夥專案(3GPP)長期演進技術(LTE)、產業群組俗稱為WiMAX (全球互通微波接取)的電機電子工程師學會(IEEE) 702.16標準(例如702.16e、702.16m)、以及產業群組俗稱為WiFi的IEEE 702.11標準。Wireless mobile communication technologies use various standards and protocols to transfer data between a node (e.g., a transmission station) and a wireless device (e.g., a mobile device). Some wireless devices use orthogonal frequency division multiplexing multiple access (OFDMA) in one downlink (DL) transmission and single carrier frequency division multiplexing multiple access (SC-FDMA) in one uplink (UL) ) to communicate. Standards and protocols for the use of Orthogonal Frequency Division Multiplexing (OFDM) for signal transmission include 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE), industry group commonly known as WiMAX (Worldwide Interoperability for Microwave Access) The Institute of Engineers (IEEE) 702.16 standard (eg 702.16e, 702.16m), and the industry group commonly known as the IEEE 702.11 standard for WiFi.

在3GPP無線電存取網路(RAN) LTE系統中,節點可以是演進式通用地面無線電存取網路(E-UTRAN)節點B (亦常表示為演進式節點B、增強型節點B、eNodeB或eNB)以及與稱為一用戶設備(UE)之無線裝置進行通訊之無線電網路控制器(RNC)的一組合。該下行鏈路(DL)傳輸可以是自該節點(例如eNodeB)至該無線裝置(例如UE)之一通訊,而該上行鏈路(UL)傳輸可以是自該無線裝置至該節點之一通訊。In a 3GPP Radio Access Network (RAN) LTE system, the node may be an Evolved Universal Terrestrial Radio Access Network (E-UTRAN) Node B (also often referred to as an evolved Node B, an enhanced Node B, an eNodeB, or eNB) and a combination of Radio Network Controllers (RNCs) that communicate with wireless devices called a User Equipment (UE). The downlink (DL) transmission may be from one of the nodes (e.g., eNodeB) to the wireless device (e.g., UE), and the uplink (UL) transmission may be from one of the wireless devices to the node. .

依據本發明之一實施例,係特地提出一種用戶設備(UE)之裝備,可操作用以編碼供傳輸至一eNodeB之資訊,該裝備包含一或多個處理器及記憶體,被組配來:於該UE,獲取一資訊位元塊;於該UE,選擇一調變與寫碼方案;於該UE,基於該資訊位元塊之一尺寸及該調變與寫碼方案,判定一矩陣原型及一碼字子塊尺寸;於該UE,編碼至少一部分之該資訊位元塊以取得一已編碼之碼字塊,其中至少該部分之資訊位元塊為基於該矩陣原型與該碼字子塊尺寸來編碼;於該UE,自該已編碼之碼字塊選擇一位元子集;以及於該UE,產生供傳輸至一eNodeB之該位元子集。In accordance with an embodiment of the present invention, a user equipment (UE) apparatus is specifically provided for encoding information for transmission to an eNodeB, the apparatus comprising one or more processors and memory, configured to be And acquiring, by the UE, an information bit block; selecting, by the UE, a modulation and write code scheme; and determining, by the UE, a matrix based on a size of the information bit block and the modulation and write code scheme a prototype and a codeword sub-block size; at the UE, encoding at least a portion of the information bit block to obtain an encoded codeword block, wherein at least the portion of the information bit block is based on the matrix prototype and the codeword The sub-block size is encoded; at the UE, a subset of bits is selected from the encoded codeword block; and at the UE, the subset of bits for transmission to an eNodeB is generated.

在揭示並說明本技術之前,要瞭解的是,此技術並不受限於本文中所述的特定結構、程序動作或材料,而是得以延伸到其均等論述,如所屬技術領域中具有通常知識者將會認知的那樣。亦應瞭解的是,本文中運用的術語只是為了說明特定實例而使用,並非意欲作為限制。不同圖式中相同的參考符號代表相同的元件。流程圖與程序中所提供的數字符號是為了清楚繪示動作與操作而提供,並不必然指出一特定順序或次序。 例示性實施例Before the present technology is disclosed and described, it is to be understood that the invention is not limited to the specific structures, program acts or materials described herein, but rather extended to the equivalents thereof The person will recognize it. It should also be understood that the terminology used herein is for the purpose of describing particular examples and is not intended to be limiting. The same reference symbols in different figures represent the same elements. Numerical symbols provided in the flowcharts and the procedures are provided for the purpose of clearly illustrating the acts and operations, and do not necessarily indicate a particular order or order. Illustrative embodiment

下文提供技術實施例之一初始概述,並且接著在後面進一步詳細說明特定技術實施例。此初始彙總係意欲輔助讀者更快速理解本技術,但非意欲指認本技術之關鍵特徵或重要特徵,也非意欲限制所訴求標的內容之範疇。An initial overview of one of the technical embodiments is provided below, and then specific technical embodiments are described in further detail below. This initial summary is intended to assist the reader in a more rapid understanding of the technology, but is not intended to identify key features or important features of the technology, and is not intended to limit the scope of the claimed content.

可透過一通訊通道將資訊自一傳送器傳送至一接收器。通訊通道中固有的雜訊會在傳送的資訊中產生錯誤。為了減輕雜訊在通訊通道中的效應,可在傳輸時包括冗餘,而且此冗餘可使接收器能夠準確地重構原始資訊,與通訊通道中的雜訊無關。此冗餘容許接收器偵檢傳輸期間會出現之有限數量的錯誤,並且通常校正這些錯誤而不用再傳輸。Information can be transmitted from a transmitter to a receiver via a communication channel. The noise inherent in the communication channel can cause errors in the transmitted information. In order to reduce the effect of noise in the communication channel, redundancy can be included in the transmission, and this redundancy enables the receiver to accurately reconstruct the original information regardless of the noise in the communication channel. This redundancy allows the receiver to detect a limited number of errors that occur during transmission and usually corrects these errors without retransmission.

可將若干可能的寫碼方案用於判定待於所傳送資訊中包括之冗餘量及其本質。此冗餘的形式可以是冗餘位元,可將此等冗餘位元加入所傳送之資訊。寫碼方案可隨所欲錯誤校正程度、解碼複雜度、自錯誤定位/校正或恢復之能力、校正叢發錯誤之能力、以及其他各種特性而變。另外,若干符碼可用於一特定寫碼方案,其中此等符碼可依據資訊位元數量及冗餘位元數量(或有時亦稱為同位位元)而改變。此等符碼可具有系統性或非系統性。關於系統性符碼,可將冗餘位元舉例而言,加入一資訊位元流之末端。關於非系統性符碼,一所傳送位元流中可不存在此等資訊位元之一些或全部。Several possible code writing schemes can be used to determine the amount of redundancy to be included in the transmitted information and its nature. This form of redundancy can be redundant bits that can be added to the transmitted information. The coding scheme can vary depending on the degree of error correction desired, the complexity of decoding, the ability to locate/correct or recover from errors, the ability to correct burst errors, and various other characteristics. In addition, a number of symbols can be used for a particular code writing scheme, wherein such symbols can vary depending on the number of information bits and the number of redundant bits (or sometimes referred to as parity bits). These symbols can be systemic or non-systematic. Regarding systemic symbols, redundant bits can be added, for example, to the end of an information bit stream. Regarding non-systematic symbols, some or all of these information bits may not exist in a transmitted bit stream.

可基於各種準則選擇要使用的寫碼方案及實際符碼。舉例而言,這些準則包括例如傳輸系統之一期望塊錯誤率(BLER)、一所欲BLER、與一特定符碼相關聯之一傳輸額外負荷量、待處理此符碼之一處理量等。另外,一最大錯誤部分(或可校正之遺漏位元)可基於所用之寫碼方案來判定,使得不同寫碼方案可適用於不同狀況。The code writing scheme to be used and the actual symbol can be selected based on various criteria. For example, these criteria include, for example, one of the transmission system's desired block error rate (BLER), a desired BLER, one of the associated transmissions associated with a particular symbol, an amount of processing to process the symbol, and the like. Additionally, a maximum error portion (or calibratable missing bit) can be determined based on the write code scheme used, such that different write code schemes can be adapted to different conditions.

可用於在一有雜訊通訊通道中將資訊編碼及解碼之一個例示性符碼乃一低密度同位檢查(LDPC)碼。LDPC碼乃錯誤校正碼(亦即可用於向前錯誤校正或通道寫碼之符碼)。換句話說,傳送器可使用一LDPC碼採用一冗餘方式將資料編碼,而接收器可使用LDPC解碼演算法(例如信念傳播)將此資料解碼,使得傳輸時的任何錯誤受到校正。LDPC碼乃具有含二進位0與1之一同位檢查矩陣的同位檢查碼。同位檢查矩陣可依據一矩陣維度(例如資訊塊長度及同位檢查數量)、每行1的數量、以及每列1的數量來界定。同位檢查矩陣中的1可在同位檢查矩陣裡隨機分布。為求編碼/解碼有效率,同位檢查矩陣可使用每行及每列只有單個1之子矩陣來形成。因此,就一給定符碼,藉由此等子矩陣選擇不同維度,可形成區塊長度不同之若干同位檢查矩陣。An exemplary symbol that can be used to encode and decode information in a noisy communication channel is a low density parity check (LDPC) code. The LDPC code is an error correction code (also available for forward error correction or channel code). In other words, the transmitter can encode the data in a redundant manner using an LDPC code, and the receiver can decode the data using an LDPC decoding algorithm (e.g., belief propagation) such that any errors in transmission are corrected. The LDPC code is a parity check code having a parity check matrix containing one of the binary bits 0 and 1. The parity check matrix can be defined by a matrix dimension (eg, information block length and number of parity checks), the number of rows per row, and the number of columns per column. The 1 in the parity check matrix can be randomly distributed in the parity check matrix. For efficient encoding/decoding, the parity check matrix can be formed using only a single sub-matrix per row and per column. Therefore, for a given symbol, by selecting different dimensions by such sub-matrices, a plurality of parity check matrices having different block lengths can be formed.

在本技術中,可將LDPC碼用於3GPP系統,諸如第五代(5G)蜂巢式系統。LDPC碼可包括支援一已界定寫碼率之同位檢查矩陣。已界定碼率可指出一資料流有用(非冗餘)之一比例。舉例而言,若碼率為k/n,則就有用資訊之每k個位元,寫碼器產生總碼字的n個位元,其中n-k個位元乃冗餘位元或同位位元。在一特定實例中,本技術說明具有同位檢查矩陣之LDPC碼,其提供一為8/9之寫碼率,並且可支援每秒50億位元(Gbps)之一資料率。此等同位檢查矩陣可用於支援不同的區塊尺寸。另外,這些同位檢查矩陣可專門針對5G應用,因此,優於單純地再利用802.11n LDPC同位檢查矩陣。In the present technology, an LDPC code can be used for a 3GPP system, such as a fifth generation (5G) cellular system. The LDPC code can include a parity check matrix that supports a defined write rate. The defined code rate can indicate a ratio of useful (non-redundant) data streams. For example, if the code rate is k/n, then for every k bits of useful information, the code generator generates n bits of the total codeword, where nk bits are redundant bits or parity bits. . In a particular example, the present specification describes an LDPC code having a parity check matrix that provides a write rate of 8/9 and can support one data rate of one billion bits per second (Gbps). This equivalence check matrix can be used to support different block sizes. In addition, these parity check matrices can be specifically targeted at 5G applications, and therefore are better than simply reusing the 802.11n LDPC parity check matrix.

在一項實例中,3GPP LTE標準支援適應性調變與寫碼方案。舉例而言,3GPP LTE標準支援資源分配、調變與寫碼方案、封包尺寸(或輸送塊尺寸)、以及率相容通道寫碼之一粒集。此等適應性調變與寫碼方案可基於就增量冗餘(IR)混合自動重複請求(HARQ)支援具有圓形緩衝率匹配之渦輪碼。In one example, the 3GPP LTE standard supports adaptive modulation and coding schemes. For example, the 3GPP LTE standard supports resource allocation, modulation and coding schemes, packet size (or transport block size), and a set of rate compatible channel write codes. Such adaptive modulation and coding schemes may support turbo codes with circular buffer rate matching based on Incremental Redundancy (IR) Hybrid Automatic Repeat Request (HARQ).

就256正交調幅(QAM),支援之頻譜效率集合其範圍可自每赫茲每秒0.1個位元(bps/Hz)至7.6 bps/Hz。可界定調變與寫碼方案(MCS)程度以對應於大約1分貝(dB)步輻。率相容通道寫碼可根據一所選擇MCS程度以一任意寫碼率用於編碼一封包或輸送塊(TB),並且可界定多個冗餘版本以支援HARQ操作。For 256 Quadrature Amplitude Modulation (QAM), the supported spectral efficiency set can range from 0.1 bits per second per second (bps/Hz) to 7.6 bps/Hz. The modulation and coding scheme (MCS) level can be defined to correspond to approximately 1 decibel (dB) spoke. The rate compatible channel write code can be used to encode a packet or transport block (TB) at an arbitrary write rate based on a selected MCS level, and multiple redundancy versions can be defined to support HARQ operations.

在一項實例中,802.11n/11ac,LDPC碼設計乃基於一有限之碼率與區塊尺寸集合。PHY協定資料單元(PPDU)編碼規則可用於在通道資源上編碼並傳送一封包。PPDU編碼規則可包括就傳送此封包進行編碼用於縮短並擊穿之機制。在此縮短機制中,一小尺寸封包可填補零並以一同位檢查矩陣來編碼,而且此填補零可在編碼後移除以達到一有效更低的碼率。在此擊穿機制中,一封包可用一同位檢查矩陣來編碼,而且可在編碼後擊穿此等同位位元以提升此有效碼率。In one example, the 802.11n/11ac, LDPC code design is based on a limited set of code rates and block sizes. PHY Protocol Data Unit (PPDU) encoding rules can be used to encode and transmit a packet on a channel resource. The PPDU encoding rules may include mechanisms for encoding and transmitting the packet for shortening and puncture. In this shortening mechanism, a small size packet can be padded with zeros and encoded with a parity check matrix, and this padding zero can be removed after encoding to achieve an effective lower code rate. In this breakdown mechanism, a packet can be encoded with a parity check matrix, and the equivalent bit can be broken after encoding to increase the effective bit rate.

在一項實例中,結構化LDPC碼已在諸如IEEE802.11n、IEEE802.11ac及IEEE802.11ad之無線技術標準中獲得採用。基於移位單位矩陣之結構化LDPC碼可容許向量化操作,其促進高產出量編碼及解碼。另外,結構化LDPC碼提供用以支援多種區塊尺寸及碼率之一框架。In one example, structured LDPC codes have been adopted in wireless technology standards such as IEEE 802.11n, IEEE 802.11ac, and IEEE 802.11ad. Structured LDPC codes based on shift unit matrices can tolerate vectorization operations that facilitate high throughput encoding and decoding. In addition, the structured LDPC code provides a framework to support multiple block sizes and code rates.

在一項實例中,一LDPC碼可具有一碼字長度n = z∙nb 、一資訊塊k = z∙kb 、以及一移位尺寸或子塊尺寸z。此LDPC碼可具有一碼率r = k/n = kb /nb 其中此LDPC碼之矩陣原型(如下文所界定)具有維度nb - kb x nb 。一LDPC編碼器可將資訊塊i = i0 , i1 ,i2 …ik-1 編碼成尺寸為n之一碼字c,c = (c0 , c1 ,….ck-1 ,ck ….cn-1 )。在系統性編碼中,此碼字之前k個位元典型與資訊位元相同,亦即cj = ij ,其中j = 0至k-1。碼字c滿足同位檢查方程式H∙cT = 0,其中H為一n-k x n同位檢查矩陣。換句話說,此LDPC碼可具有一特定碼率,並且就一給定數量之資訊位元,可將同位檢查位元加入此等資訊位元。同位檢查位元可藉由解答同位檢查方程式(H∙cT = 0)來取得。In one example, an LDPC code can have a codeword length n = z∙n b , an information block k = z∙k b , and a shift size or sub-block size z. This LDPC code may have a code rate r = k/n = k b /n b , where the matrix prototype of this LDPC code (as defined below) has a dimension n b - k b xn b . An LDPC encoder can encode the information block i = i 0 , i 1 , i 2 ... i k-1 into a codeword of size n, c = (c 0 , c 1 , . . . c k-1 , c k ....c n-1 ). In systematic coding, the first k bits of this codeword are typically the same as the information bits, ie c j = i j , where j = 0 to k-1. The codeword c satisfies the parity check equation H∙c T = 0, where H is a nk xn parity check matrix. In other words, the LDPC code can have a specific code rate, and for a given number of information bits, a parity check bit can be added to the information bits. The parity check bit can be obtained by solving the parity check equation (H∙c T = 0).

在一項實例中,於這些結構化LDPC碼中,可將各同位檢查矩陣分區成尺寸為z x z之正方形區塊、或子矩陣,其中z為一整數。這些子矩陣可以是一單位矩陣(或移位單位矩陣)或虛無矩陣之循環排列。可藉由將行向右循環移位i個元素,自zxz單位矩陣取得一循環排列矩陣PiIn one example, in these structured LDPC codes, each parity check matrix can be partitioned into square blocks, or sub-matrices, of size zxz, where z is an integer. These sub-matrices may be a cyclic arrangement of a unit matrix (or shift unit matrix) or a imaginary matrix. A cyclic permutation matrix P i can be obtained from the zxz identity matrix by cyclically shifting the row to the right by i elements.

下面展示三個不同的例示性子矩陣(P0 、P4 及P2 )。矩陣P0 乃一zxz單位矩陣,其中z=5。矩陣P0 乃以一為0之值右移。矩陣P4 表示以一為4之值右移之一單位矩陣。換句話說,矩陣P0 之各列以4循環旋轉而產出P0 。類似的是,P2 乃以一為2之值右移。因此,矩陣P0 之各列以2循環旋轉而產出P2 。另外,當子矩陣之每個元素都為0時,可使用一虛無矩陣。 Three different exemplary sub-matrices (P 0 , P 4 , and P 2 ) are shown below. The matrix P 0 is a zxz identity matrix, where z=5. The matrix P 0 is shifted to the right by a value of zero. The matrix P 4 represents a unit matrix shifted to the right by a value of four. In other words, the columns of the matrix P 0 are rotated by 4 cycles to produce P 0 . Similarly, P 2 is shifted to the right by a value of two. Therefore, each column of the matrix P 0 is rotated in 2 cycles to produce P 2 . In addition, when each element of the sub-matrix is 0, a null matrix can be used. , ,

在一項實例中,下面展示一矩陣H_r89_z96。 In one example, a matrix H_r89_z96 is shown below.

矩陣H_r89_z96乃用於一為8/9之寫碼率,具有等於96之一矩陣維度(或z)及等於3456之一碼字長度。在矩陣H_r89_z96中,各非負整數i表示循環排列矩陣Pi ,並且負整數項目(-1)或虛無項目(-)表示虛無或零子矩陣。矩陣H_r89_z96具有4列及36行。為了達到一為8/9之碼率,同位檢查矩陣可將一為32*96之資訊尺寸編碼以獲得一為36*96之碼字,其中32*96為資訊位元,而4*96為碼字位元。在這種狀況中,nb = 36、kb = 32且nb -kb = 4。矩陣H_r89_z96中之第一項目為31。此31類似於P31 。換句話說,一96x96單位矩陣乃以一為31之值向右旋轉,而且此子矩陣對應於矩陣H_r89_z96中之31。類似的是,矩陣H_r89_z96中之第二項目為1,其指出此96x96單位矩陣乃以一為1之值向右旋轉,而且此子矩陣對應於矩陣H_r89_z96中之1。矩陣H_r89_z96可稱為一矩陣原型。此矩陣原型乃實質當作速記標記使用。The matrix H_r89_z96 is used for a write rate of 8/9 with a matrix matrix equal to 96 (or z) and a codeword length equal to 3456. In the matrix H_r89_z96, each non-negative integer i represents a cyclic permutation matrix P i , and a negative integer item (-1) or a virtual no item (-) represents a null or zero submatrix. The matrix H_r89_z96 has 4 columns and 36 rows. In order to achieve a code rate of 8/9, the parity check matrix can encode a 32*96 information size to obtain a codeword of 36*96, where 32*96 is the information bit, and 4*96 is Code word bit. In this case, n b = 36, k b = 32 and n b - k b = 4. The first item in the matrix H_r89_z96 is 31. This 31 is similar to P 31 . In other words, a 96x96 unit matrix is rotated to the right by a value of 31, and this submatrix corresponds to 31 of the matrix H_r89_z96. Similarly, the second item in the matrix H_r89_z96 is 1, which indicates that the 96x96 unit matrix is rotated to the right by a value of one, and this submatrix corresponds to one of the matrices H_r89_z96. The matrix H_r89_z96 can be referred to as a matrix prototype. This matrix prototype is essentially used as a shorthand mark.

以5G蜂巢式系統來講,對於8/9之寫碼率,可就不同移位尺寸界定支援之碼字尺寸。舉例而言,支援之移位尺寸(z)可包括12、24、36、48、60、72、84及96。假設一矩陣原型之維度為4 x 36 (即nb = 36且kb = 32),此對應於z x 36之碼字區塊尺寸,其分別等於432、864、1296、1728、2160、2592、3024及3456。此4 x 36矩陣產出一為(36 – 4) / 36或8/9之寫碼率。對於各碼字區塊尺寸,可提供一矩陣原型。為了解碼這些矩陣原型之各者,各列可作為一同位檢查方程式來處理。矩陣原型列中之虛線項目可參與同位檢查方程式(即H∙cT = 0),而矩陣原型列中之非虛線項目並未參與同位檢查方程式。In the case of a 5G cellular system, for a write rate of 8/9, the supported code size can be defined for different shift sizes. For example, the supported shift size (z) may include 12, 24, 36, 48, 60, 72, 84, and 96. Suppose a matrix prototype has dimensions of 4 x 36 (ie, n b = 36 and k b = 32), which corresponds to the codeword block size of zx 36, which is equal to 432, 864, 1296, 1728, 2160, 2592, respectively. 3024 and 3456. This 4 x 36 matrix yields a write rate of (36 – 4) / 36 or 8/9. A matrix prototype can be provided for each codeword block size. To decode each of these matrix prototypes, each column can be treated as a parity check equation. The dashed line items in the matrix prototype column can participate in the parity check equation (ie H∙c T = 0), while the non-dashed items in the matrix prototype column do not participate in the parity check equation.

圖1A至1H分別繪示與一為8/9之寫碼率、及12、24、36、48、60、72、84與96之子塊尺寸相對應的矩陣原型。1A to 1H respectively show a matrix prototype corresponding to a sub-block size of 8/9 and a sub-block size of 12, 24, 36, 48, 60, 72, 84 and 96.

如圖1A所示,具有一為12之子塊尺寸或移位尺寸(z)的矩陣H_r89_z12乃一如下之4x36矩陣: As shown in FIG. 1A, a matrix H_r89_z12 having a sub-block size or a shift size (z) of 12 is a 4x36 matrix as follows:

如圖1B所示,具有一為24之子塊尺寸或移位尺寸(z)的矩陣H_r89_z24乃一如下之4x36矩陣: As shown in FIG. 1B, a matrix H_r89_z24 having a sub-block size or a shift size (z) of 24 is a 4x36 matrix as follows:

如圖1C所示,具有一為36之子塊尺寸或移位尺寸(z)的矩陣H_r89_z36乃一如下之4x36矩陣: As shown in FIG. 1C, a matrix H_r89_z36 having a sub-block size or a shift size (z) of 36 is a 4x36 matrix as follows:

如圖1D所示,具有一為48之子塊尺寸或移位尺寸(z)的矩陣H_r89_z48乃一如下之4x36矩陣: As shown in FIG. 1D, a matrix H_r89_z48 having a sub-block size or a shift size (z) of 48 is a 4x36 matrix as follows:

如圖1E所示,具有一為60之子塊尺寸或移位尺寸(z)的矩陣H_r89_z60乃一如下之4x36矩陣: As shown in FIG. 1E, a matrix H_r89_z60 having a sub-block size or a shift size (z) of 60 is a 4x36 matrix as follows:

如圖1F所示,具有一為72之子塊尺寸或移位尺寸(z)的矩陣H_r89_z72乃一如下之4x36矩陣: As shown in FIG. 1F, the matrix H_r89_z72 having a sub-block size or a shift size (z) of 72 is a 4x36 matrix as follows:

如圖1G所示,具有一為84之子塊尺寸或移位尺寸(z)的矩陣H_r89_z84乃一如下之4x36矩陣: As shown in FIG. 1G, a matrix H_r89_z84 having a sub-block size or a shift size (z) of 84 is a 4x36 matrix as follows:

如圖1H所示,具有一為96之子塊尺寸或移位尺寸(z)的矩陣H_r89_z96乃一如下之4x36矩陣: As shown in FIG. 1H, a matrix H_r89_z96 having a sub-block size or a shift size (z) of 96 is a 4x36 matrix as follows:

在一項實例中,此等原型矩陣可經設計以減少對應於此等原型矩陣之Tanner圖中若干長度為4及長度為6之週期。在此原型矩陣之構造中,當就各項目指派一移位尺寸時,此演算法可跑過不同候選值,並且選擇使週期數量降到最小之適合的值。一般而言,Tanner圖為二部圖,其乃用於敍述指定錯誤校正碼之狀態限制條件或方程式。在寫碼理論中,Tanner圖可用於由更小符碼建構更長符碼,而且編碼器及解碼器兩者都可運用Tanner圖。此等原型矩陣縮減對應於此等原型矩陣之Tanner圖中長度為4及長度為6之週期的數量,因此,對應於這些原型矩陣之LDPC碼具備有利的塊錯誤率效能及較低的錯誤底。In one example, such prototype matrices can be designed to reduce periods of length 4 and length 6 in a Tanner graph corresponding to such prototype matrices. In the construction of this prototype matrix, when assigning a shift size to each item, the algorithm can run through different candidate values and select a suitable value that minimizes the number of cycles. In general, a Tanner graph is a bipartite graph that is used to describe the state constraints or equations that specify the error correction code. In the theory of writing codes, the Tanner graph can be used to construct longer symbols from smaller symbols, and both the encoder and the decoder can use the Tanner graph. These prototype matrix reductions correspond to the number of periods of length 4 and length 6 in the Tanner graph of the prototype matrices. Therefore, the LDPC codes corresponding to the prototype matrices have favorable block error rate performance and low error bottom. .

圖2繪示一種使用一所選擇矩陣原型用於編碼資訊之例示性技巧。一傳送裝置可獲取一資訊塊以供傳輸之用。資訊塊可包括資訊位元(i)。傳送裝置可識別與傳輸相關聯之一調變與寫碼方案。傳送裝置可基於資訊塊之一尺寸、及調變與寫碼方案,判定一矩陣原型及一子塊尺寸。在一些狀況中,可藉由請求傳輸之實體來明確指出待使用之矩陣原型及子塊尺寸。所選擇之矩陣原型及對應之子塊尺寸可以是圖1A至1H中所示矩陣原型其中一者。傳送裝置可基於矩陣原型及子塊尺寸將資訊塊其中至少一部分編碼以取得一已編碼之碼字(c)。傳送裝置可自已編碼之碼字選擇一位元集合(d)以供傳輸至一接收裝置。舉一非限制實例來說,可選擇已編碼之碼字的起始位元以供傳輸之用。2 illustrates an exemplary technique for encoding information using a selection matrix prototype. A transmitting device can acquire an information block for transmission. The information block can include information bits (i). The transmitting device can identify one of the modulation and writing schemes associated with the transmission. The transmitting device can determine a matrix prototype and a sub-block size based on one of the size of the information block and the modulation and writing scheme. In some cases, the matrix prototype and sub-block size to be used may be explicitly indicated by the entity requesting the transmission. The selected matrix prototype and corresponding sub-block size may be one of the matrix prototypes shown in Figures 1A through 1H. The transmitting device may encode at least a portion of the information block based on the matrix prototype and the sub-block size to obtain an encoded codeword (c). The transmitting device can select a set of bits (d) from the encoded codeword for transmission to a receiving device. For a non-limiting example, the start bit of the encoded codeword can be selected for transmission.

舉一例來說,資訊塊尺寸可以是3072個位元,而且調變與寫碼方案可對應於每赫茲每符號5.4位元之頻譜效率,其在64-QAM乃對應於一為5.4/6 = 0.9之寫碼率。此寫碼率可使用寫碼率8/9之一同位檢查矩陣來支援,因此,傳送裝置可判定與一為3072/32 = 96之子塊尺寸相對應之一矩陣原型(如圖1H中所示)。矩陣原型及子塊尺寸可用於將資訊塊編碼並取得碼字位元。取得碼字位元之後,傳送裝置可自此等碼字位元選擇一位元集合(例如3072/0.9四捨五入為6的倍數中最接近者,其乃64-QAM之調變階數)以取得供傳輸用之位元。此等位元可對應於每赫茲每符號5.4位元之一MCS。傳送裝置可傳送此位元集合至接收裝置。For example, the information block size can be 3072 bits, and the modulation and write code scheme can correspond to the spectral efficiency of 5.4 bits per Hz per symbol, which corresponds to a 5.4/6 in 64-QAM. 0.9 write rate. This code rate can be supported using a parity check matrix of 8/9 write rate, so the transmitting device can determine a matrix prototype corresponding to a sub-block size of 3072/32 = 96 (as shown in Figure 1H). ). The matrix prototype and sub-block size can be used to encode the information block and obtain the codeword bits. After obtaining the codeword bits, the transmitting device can select a set of bits from the codeword bits (eg, 3072/0.9 rounded to the nearest multiple of 6, which is the modulation order of 64-QAM) to obtain Bit for transmission. These bits may correspond to one of the 5.4 bits per symbol per Hz. The transmitting device can transmit the set of bits to the receiving device.

圖3繪示一種使用一所選擇矩陣原型用於解碼資訊之例示性技巧。一接收裝置可獲取一已接收位元塊(y)、一資訊塊尺寸長度、以及一相關聯調變與寫碼方案。接收裝置可自傳送裝置接收位元塊(y)。接收裝置可基於調變與寫碼方案及資訊塊尺寸來判定一矩陣原型及一子塊尺寸。所選擇之矩陣原型及對應之子塊尺寸可以是圖1A至1H中所示矩陣原型其中一者。此接收塊可基於矩陣原型及子塊尺寸解碼已接收位元塊以取得一估計之資訊塊(i)。FIG. 3 illustrates an exemplary technique for decoding information using a selection matrix prototype. A receiving device can acquire a received bit block (y), an information block size length, and an associated modulation and write code scheme. The receiving device can receive the bit block (y) from the transmitting device. The receiving device can determine a matrix prototype and a sub-block size based on the modulation and write code scheme and the information block size. The selected matrix prototype and corresponding sub-block size may be one of the matrix prototypes shown in Figures 1A through 1H. The receiving block can decode the received bit block based on the matrix prototype and the sub-block size to obtain an estimated information block (i).

在一項實例中,接收裝置可使用一分層信念傳播方案或用於將LDPC碼解碼之另一解碼技巧來解碼已接收位元塊。舉例而言,分層信念傳播方案可用於解碼同位檢查矩陣。同位檢查矩陣中若有一已界定之列數,則各列可視為一層。信念傳播可按列解答同位檢查方程式。第一列可處理其同位檢查方程式,並且可將第一列之結果傳遞到第二列。第二列可使用之前的結果來處理其同位檢查方程式,並且第二列可傳遞其結果到第三列,以此類推。In one example, the receiving device may decode the received bit block using a layered belief propagation scheme or another decoding technique for decoding the LDPC code. For example, a hierarchical belief propagation scheme can be used to decode the parity check matrix. If there is a defined number of columns in the parity check matrix, the columns can be considered as one layer. Faith propagation can solve the parity check equation by column. The first column can handle its parity check equation and the result of the first column can be passed to the second column. The second column can use the previous result to process its parity check equation, and the second column can pass its result to the third column, and so on.

另一實例提供一用戶設備(UE)之功能400,該用戶設備可操作用以將資訊編碼以供傳輸至一eNodeB,如圖4所示。此UE可包含一或多個處理器及記憶體,被組配來:於該UE,獲取一資訊位元塊,如程序塊410。此UE可包含一或多個處理器及記憶體,被組配來:於該UE,於該UE,選擇一調變與寫碼方案,如程序塊420。此UE可包含一或多個處理器及記憶體,被組配來:於該UE,基於該資訊位元塊之一尺寸、及該調變與寫碼方案,判定一矩陣原型及一碼字子塊尺寸,如程序塊430。此UE可包含一或多個處理器及記憶體,被組配來:於該UE,編碼該資訊位元塊其中至少一部分以取得一已編碼之碼字塊,其中該資訊位元塊其中至少該部分乃基於該矩陣原型與該碼字子塊尺寸來編碼,如程序塊440。此UE可包含一或多個處理器及記憶體,被組配來:於該UE,自該已編碼之碼字塊選擇一位元子集,如程序塊450。此UE可包含一或多個處理器及記憶體,被組配來:於該UE,產生該位元子集以供傳輸至一eNodeB,如程序塊460。Another example provides a User Equipment (UE) function 400 that is operable to encode information for transmission to an eNodeB, as shown in FIG. The UE may include one or more processors and memory that are configured to acquire an information bit block, such as block 410, for the UE. The UE may include one or more processors and memory that are configured to: at the UE, select a modulation and write code scheme, such as block 420, for the UE. The UE may include one or more processors and memory, and is configured to: determine, according to a size of the information bit block, and the modulation and write code scheme, a matrix prototype and a codeword. Sub-block size, such as block 430. The UE may include one or more processors and memory, and is configured to: at the UE, encode at least a portion of the information bit block to obtain an encoded codeword block, wherein the information bit block includes at least The portion is encoded based on the matrix prototype and the codeword sub-block size, such as block 440. The UE may include one or more processors and memory that are configured to select a subset of bits from the encoded codeword block, such as block 450, for the UE. The UE may include one or more processors and memory that are configured to generate the subset of bits for transmission to an eNodeB, such as block 460.

另一實例提供一用戶設備(UE)之功能500,該用戶設備可操作用以解碼接收自一eNodeB之資訊,如圖5所示。此UE可包含一或多個處理器及記憶體,被組配來:於該UE,識別接收自該eNodeB之一位元塊,其中該位元塊與一區塊尺寸長度及一調變與寫碼方案相關聯,如程序塊510。此UE可包含一或多個處理器及記憶體,被組配來:於該UE,基於該區塊尺寸長度及該調變與寫碼方案,判定一矩陣原型及一碼字子塊尺寸,如程序塊520。此UE可包含一或多個處理器及記憶體,被組配來:於該UE,解碼接收自該eNodeB之該位元塊以取得一已解碼資訊位元塊,其中該已解碼資訊位元塊乃基於該矩陣原型及該碼字子塊尺寸而取得,如程序塊530。Another example provides a User Equipment (UE) functionality 500 that is operable to decode information received from an eNodeB, as shown in FIG. The UE may include one or more processors and memory, and is configured to: identify, by the UE, a bit block received from the eNodeB, wherein the bit block and a block size length and a modulation The code encoding scheme is associated, such as block 510. The UE may include one or more processors and memory, and is configured to: determine, according to the block size length and the modulation and write code scheme, a matrix prototype and a codeword sub-block size, As in block 520. The UE may include one or more processors and memory, and is configured to: decode, by the UE, the bit block received from the eNodeB to obtain a decoded information bit block, where the decoded information bit The block is derived based on the matrix prototype and the codeword sub-block size, as in block 530.

另一實例提供至少一種上有具體實現於一eNodeB進行編碼與解碼用之指令600的至少一個機器可讀儲存媒體,如圖6所示。該等指令可於一機器上執行,其中該等指令乃包括於至少一個電腦可讀媒體或一個非暫時性機器可讀儲存媒體上。該等指令在受執行時,進行:使用該eNodeB之一或多個處理器,識別用於自該eNodeB傳輸至一用戶設備(UE)之一資訊位元塊,如程序塊610。該等指令在受執行時,進行:使用該eNodeB之該一或多個處理器,基於該資訊位元塊之一尺寸、及一調變與寫碼方案,判定一低密度同位檢查(LDPC)矩陣及一碼字子塊尺寸,如程序塊620。該等指令在受執行時,進行:使用該eNodeB之該一或多個處理器,編碼該資訊位元塊其中至少一部分以取得一已編碼之碼字塊,其中該資訊位元塊其中至少該部分乃基於該LDPC矩陣與該碼字子塊尺寸來編碼,如程序塊630。該等指令在受執行時,進行:使用該eNodeB之該一或多個處理器,自該已編碼之碼字塊選擇一位元子集,如程序塊640。該等指令在受執行時,進行:使用該eNodeB之一或多個處理器,格式化該位元子集以供傳輸至E-UTRAN中之UE,如程序塊650。Another example provides at least one machine readable storage medium having instructions 600 embodied and encoded for decoding by an eNodeB, as shown in FIG. The instructions can be executed on a machine, where the instructions are included on at least one computer readable medium or a non-transitory machine readable storage medium. The instructions, when executed, perform: identifying one of the information bit blocks for transmission from the eNodeB to a user equipment (UE), such as block 610, using one or more processors of the eNodeB. The instructions, when executed, perform: determining, by the one or more processors of the eNodeB, a low density parity check (LDPC) based on a size of the information bit block, and a modulation and write code scheme The matrix and a codeword sub-block size, such as block 620. The instructions, when executed, perform: encoding, by the one or more processors of the eNodeB, at least a portion of the information bit block to obtain an encoded codeword block, wherein the information bit block includes at least Portions are encoded based on the LDPC matrix and the codeword sub-block size, as in block 630. The instructions, when executed, perform: selecting the one-bit subset from the encoded codeword block, such as block 640, using the one or more processors of the eNodeB. The instructions, when executed, perform: using the one or more processors of the eNodeB, formatting the subset of bits for transmission to UEs in the E-UTRAN, such as block 650.

圖7提供一用戶設備(UE)裝置700及一節點720之一例示圖。UE裝置700可包括一無線裝置、一行動電台(MS)、一行動無線裝置、一行動通訊裝置、一平板電腦、一手持話機、或其他類型之無線裝置。UE裝置700可包括一或多個天線,其被組配用以與節點720或傳輸站進行通訊,例如一基地台(BS)、一演進式節點B (eNB)、一基頻單元(BBU)、一遠距無線電頭端(remote radio head, RRH)、一遠距無線電設備(remote radio equipment, RRE)、一中繼站(RS)、一無線電設備(RE)、一遠距無線電單元(remote radio unit, RRU)、一中央處理模組(CPM)、或其他類型之無線廣域網路(WWAN)接取點。節點720可包括一或多個處理器722及記憶體724。UE裝置700可被組配用以使用包括3GPP LTE、WiMAX、高速封包接取(HSPA)、藍牙及WiFi之至少一種無線通訊標準來進行通訊。UE裝置700可使用各無線通訊標準之分離天線或多種無線通訊標準之共享天線來進行通訊。UE裝置700可在一無線區域網路(WLAN)、一無線個人區域網路(WPAN)及/或一WWAN中進行通訊。FIG. 7 provides an illustration of a user equipment (UE) device 700 and a node 720. The UE device 700 can include a wireless device, a mobile station (MS), a mobile wireless device, a mobile communication device, a tablet, a handset, or other type of wireless device. The UE device 700 may include one or more antennas that are configured to communicate with a node 720 or a transmission station, such as a base station (BS), an evolved Node B (eNB), and a baseband unit (BBU). , a remote radio head (RRH), a remote radio equipment (RRE), a relay station (RS), a radio (RE), a remote radio unit (remote radio unit) , RRU), a central processing module (CPM), or other type of wireless wide area network (WWAN) access point. Node 720 can include one or more processors 722 and memory 724. The UE device 700 can be configured to communicate using at least one wireless communication standard including 3GPP LTE, WiMAX, High Speed Packet Access (HSPA), Bluetooth, and WiFi. The UE device 700 can communicate using a separate antenna of each wireless communication standard or a shared antenna of a plurality of wireless communication standards. The UE device 700 can communicate in a wireless local area network (WLAN), a wireless personal area network (WPAN), and/or a WWAN.

在一些實施例中,UE裝置700可包括至少如所示耦合在一起的應用電路系統702、基頻電路系統704、射頻(RF)電路系統706、前端模組(FEM)電路系統708及一或多個天線710。In some embodiments, UE device 700 can include application circuitry 702, baseband circuitry 704, radio frequency (RF) circuitry 706, front end module (FEM) circuitry 708, and/or at least coupled as shown. A plurality of antennas 710.

應用電路系統702可包括一或多個應用處理器。舉例而言,應用電路系統702可包括諸如,但不限於一或多個單核心或多核心處理器之電路系統。此(等)處理器可包括通用處理器及專屬處理器(圖形處理器、應用處理器等)之任何組合。此等處理器可與一儲存媒體耦合及/或可包括此儲存媒體,並且可被組配用以執行此儲存媒體中所儲存的指令以允許各種應用程式及/或作業系統在此系統上運行。Application circuitry 702 can include one or more application processors. For example, application circuitry 702 can include circuitry such as, but not limited to, one or more single core or multi-core processors. This (etc.) processor can include any combination of general purpose processors and proprietary processors (graphics processors, application processors, etc.). The processors can be coupled to a storage medium and/or can include the storage medium and can be configured to execute instructions stored in the storage medium to allow various applications and/or operating systems to operate on the system. .

基頻電路系統704可包括諸如,但不限於一或多個單核心或多核心處理器之電路系統。基頻電路系統704可包括一或多個基頻處理器及/或控制邏輯以處理從RF電路系統706之一接收信號路徑收到之基頻信號,並且為RF電路系統706之一傳送信號路徑產生基頻信號。基頻處理電路系統704可與應用電路系統702介接,用於產生並處理此等基頻信號,還用於控制RF電路系統706之操作。舉例而言,在一些實施例中,基頻電路系統704可包括一第二代(2G)基頻處理器704a、第三代(3G)基頻處理器704b、第四代(4G)基頻處理器704c、及/或其他現存世代、開發中或未來待開發世代(例如第五代(5G)、6G等)之(多個)其他基頻處理器704d。基頻電路系統704 (例如基頻處理器704a至704d之一或多者)可處理允許經由RF電路系統706與一或多個無線電網路進行通訊之各種無線電控制功能。此等無線電控制功能可包括,但不限於信號調變/解調變、編碼/解碼、射頻偏移等。在一些實施例中,基頻電路系統704的調變/解調變電路系統可包括快速傅立葉轉換(FFT)、預編碼、及/或星座圖映射/解映射功能。在一些實施例中,基頻電路系統704的編碼/解碼電路系統可包括卷積、尾碼消除卷積、渦輪、維特比(Viterbi)、及/或低密度同位檢查(LDPC)編碼器/解碼器功能。調變/解調變及編碼器/解碼器功能的實施例不受限於這些實例,並且可以在其他實施例中包括其他適合的功能。The baseband circuitry 704 can include circuitry such as, but not limited to, one or more single core or multi-core processors. The baseband circuitry 704 can include one or more baseband processors and/or control logic to process the received baseband signals from one of the RF circuitry 706 and transmit the signalpath to one of the RF circuitry 706. The baseband signal is generated. The baseband processing circuitry 704 can interface with the application circuitry 702 for generating and processing such baseband signals and for controlling the operation of the RF circuitry 706. For example, in some embodiments, the baseband circuitry 704 can include a second generation (2G) baseband processor 704a, a third generation (3G) baseband processor 704b, and a fourth generation (4G) baseband. Processor 704c, and/or other existing baseband processor(s) 704d (eg, fifth generation (5G), 6G, etc.) of existing generations, developments, or future generations. The baseband circuitry 704 (e.g., one or more of the baseband processors 704a through 704d) can handle various radio control functions that allow communication with one or more radio networks via the RF circuitry 706. Such radio control functions may include, but are not limited to, signal modulation/demodulation, encoding/decoding, radio frequency offset, and the like. In some embodiments, the modulation/demodulation circuitry of the baseband circuitry 704 can include Fast Fourier Transform (FFT), precoding, and/or constellation mapping/demapping functionality. In some embodiments, the encoding/decoding circuitry of the baseband circuitry 704 may include convolution, tail code cancellation convolution, turbo, Viterbi, and/or low density parity check (LDPC) encoder/decode. Function. Embodiments of modulation/demodulation and encoder/decoder functions are not limited to these examples, and other suitable functions may be included in other embodiments.

在一些實施例中,基頻電路系統704可包括一協定堆疊之元素,舉例而言例如一演進式通用地面無線電存取網路(EUTRAN)協定之元素,包括例如實體(PHY)、媒體存取控制(MAC)、無線電鏈路控制(RLC)、封包資料收斂協定(PDCP)、及/或無線電資源控制(RRC)元素。基頻電路系統704的中央處理單元(CPU) 704e可組配來運行此協定堆疊的元素以供PHY、MAC、RLC、PDCP及/或RRC的發信號之用。在一些實施例中,此基頻電路系統可包括一或多個音訊數位信號處理器(DSP) 704f。這(多個)音訊DSP 704f可以是或可包括用於壓縮/解壓縮及回音消除的元件,並且在其他實施例中可包括其他適合的處理元件。在一些實施例中,此基頻電路系統的組件可適當地組合於一單晶片、一單晶片組中、或設置於同一電路板上。在一些實施例中,基頻電路系統704及應用電路系統702的構成組件中有一些或全部可實施在一起,舉例而言例如實施於一系統單晶片(SOC)上。In some embodiments, baseband circuitry 704 can include an element of a protocol stack, such as, for example, an element of an Evolved Universal Terrestrial Radio Access Network (EUTRAN) protocol, including, for example, physical (PHY), media access. Control (MAC), Radio Link Control (RLC), Packet Data Convergence Protocol (PDCP), and/or Radio Resource Control (RRC) elements. A central processing unit (CPU) 704e of the baseband circuitry 704 can be configured to operate elements of this protocol stack for signaling by the PHY, MAC, RLC, PDCP, and/or RRC. In some embodiments, the baseband circuitry can include one or more audio digital signal processors (DSPs) 704f. The audio DSP(s) 704f may be or may include elements for compression/decompression and echo cancellation, and may include other suitable processing elements in other embodiments. In some embodiments, the components of the baseband circuitry can be suitably combined in a single wafer, in a single wafer set, or on the same circuit board. In some embodiments, some or all of the constituent components of the baseband circuitry 704 and the application circuitry 702 can be implemented together, such as, for example, on a system single chip (SOC).

在一些實施例中,基頻電路系統704可用來進行與一或多種無線電技術相容的通訊。舉例而言,在一些實施例中,基頻電路系統704可支援與一演進式通用地面無線電存取網路(EUTRAN)及/或其他無線都會區域網路(WMAN)、一無線區域網路(WLAN)、一無線個人區域網路(WPAN)之通訊。基頻電路系統704被組配用以支援超過一種無線協定之無線電通訊的實施例可稱為多模式基頻電路系統。In some embodiments, baseband circuitry 704 can be used to communicate with one or more radio technologies. For example, in some embodiments, the baseband circuitry 704 can support an evolved universal terrestrial radio access network (EUTRAN) and/or other wireless metropolitan area network (WMAN), a wireless local area network ( WLAN), a wireless personal area network (WPAN) communication. Embodiments in which baseband circuitry 704 is configured to support radio communications over more than one wireless protocol may be referred to as multimode baseband circuitry.

RF電路系統706可允許透過一非固體介質使用已調變電磁輻射與無線網路進行通訊。在各項實施例中,RF電路系統706可包括開關、濾波器、放大器等而有助於與此無線網路進行通訊。RF電路系統706可包括一接收信號路徑,該接收信號路徑可包括用以將接收自FEM電路系統708之RF信號降頻轉換並且對基頻電路系統704提供基頻信號的電路系統。RF電路系統706亦可包括一傳送信號路徑,其可包括用以將基頻電路系統704所提供之基頻信號升頻轉換並且對FEM電路系統708提供RF輸出信號以供傳輸之用的電路系統。The RF circuitry 706 can allow communication with the wireless network using modulated electromagnetic radiation through a non-solid medium. In various embodiments, RF circuitry 706 can include switches, filters, amplifiers, etc. to facilitate communication with the wireless network. RF circuitry 706 can include a receive signal path that can include circuitry to downconvert the RF signal received from FEM circuitry 708 and provide a baseband signal to baseband circuitry 704. RF circuitry 706 can also include a transmit signal path that can include circuitry for upconverting the baseband signal provided by baseband circuitry 704 and providing RF output signals to FEM circuitry 708 for transmission. .

在一些實施例中,RF電路系統706可包括一接收信號路徑及一傳送信號路徑。RF電路系統706的接收信號路徑可包括混頻器電路系統706a、放大器電路系統706b及濾波器電路系統706c。RF電路系統706的傳送信號路徑可包括濾波器電路系統706c及混頻器電路系統706a。RF電路系統706亦可包括用於將一頻率合成以供該接收信號路徑及該傳送信號路徑之混頻器電路系統706a使用之合成器電路系統706d。在一些實施例中,該接收信號路徑之混頻器電路系統706a可組配來基於合成器電路系統706d所提供的已合成頻率,將接收自FEM電路系統708的RF信號降頻轉換。放大器電路系統706b可組配來放大此等已降頻轉換信號,並且濾波器電路系統706c可以是組配來將不需要的信號從此等已降頻轉換信號移除以產生輸出基頻信號之一低通濾波器(LPF)或帶通濾波器(BPF)。可對基頻電路系統704提供輸出基頻信號以供進一步處理之用。在一些實施例中,此等輸出基頻信號可以是零頻基頻信號,但這非為必要條件。在一些實施例中,該接收信號路徑之混頻器電路系統706a可包含被動式混頻器,但此等實施例的範疇在這方面並不受限。In some embodiments, RF circuitry 706 can include a receive signal path and a transmit signal path. The receive signal path of RF circuitry 706 can include mixer circuitry 706a, amplifier circuitry 706b, and filter circuitry 706c. The transmit signal path of RF circuitry 706 can include filter circuitry 706c and mixer circuitry 706a. RF circuitry 706 can also include synthesizer circuitry 706d for synthesizing a frequency for use by the receive signal path and mixer circuit 706a of the transmit signal path. In some embodiments, the mixer circuit circuitry 706a of the receive signal path can be configured to downconvert the RF signal received from the FEM circuitry 708 based on the synthesized frequency provided by the synthesizer circuitry 706d. Amplifier circuitry 706b can be configured to amplify the downconverted signals, and filter circuitry 706c can be configured to remove unwanted signals from the downconverted signals to produce one of the output baseband signals. Low pass filter (LPF) or band pass filter (BPF). The baseband circuitry 704 can be provided with an output baseband signal for further processing. In some embodiments, the output baseband signals may be zero frequency baseband signals, but this is not a requirement. In some embodiments, the mixer circuit 706a that receives the signal path can include a passive mixer, although the scope of such embodiments is not limited in this respect.

在一些實施例中,該傳送信號路徑之混頻器電路系統706a可組配來基於合成器電路系統706d所提供的已合成頻率而將輸入基頻信號升頻轉換以產生供FEM電路系統708之用的RF輸出信號。此等基頻信號可藉由基頻電路系統704來提供,並且可藉由濾波器電路系統706c來濾波。濾波器電路系統706c可包括一低通濾波器(LPF),但此等實施例之範疇在這方面並不受限。In some embodiments, the transmit signal path mixer circuit 706a can be configured to upconvert the input baseband signal to generate the FEM circuitry 708 based on the synthesized frequency provided by the synthesizer circuitry 706d. The RF output signal used. These baseband signals may be provided by baseband circuitry 704 and may be filtered by filter circuitry 706c. Filter circuitry 706c may include a low pass filter (LPF), although the scope of such embodiments is not limited in this respect.

在一些實施例中,該接收信號路徑之混頻器電路系統706a及該傳送信號路徑之混頻器電路系統706a可包括二或更多個混頻器,並且可布置成分別用於正交降頻轉換及/或升頻轉換。在一些實施例中,該接收信號路徑之混頻器電路系統706a及該傳送信號路徑之混頻器電路系統706a可包括二或更多個混頻器,並且可布置成用於影像排斥(例如哈特萊(Hartley)影像排斥)。在一些實施例中,此接收信號路徑之混頻器電路系統706a、及混頻器電路系統706a可分別布置成用於直接降頻轉換及/或直接升頻轉換。在一些實施例中,該接收信號路徑之混頻器電路系統706a及該傳送信號路徑之混頻器電路系統706a可組配成用於超外差操作。In some embodiments, the mixer circuit 706a of the receive signal path and the mixer circuit 706a of the transmit signal path may include two or more mixers and may be arranged to be used for quadrature drop respectively. Frequency conversion and / or up conversion. In some embodiments, the mixer circuit circuitry 706a that receives the signal path and the mixer circuitry 706a of the transmit signal path can include two or more mixers and can be arranged for image rejection (eg, Hartley image exclusion). In some embodiments, the mixer circuit circuitry 706a and the mixer circuitry 706a of the receive signal path can be arranged for direct down conversion and/or direct up conversion, respectively. In some embodiments, the mixer circuit 706a of the receive signal path and the mixer circuit 706a of the transmit signal path can be configured for superheterodyne operation.

在一些實施例中,此等輸出基頻信號及此等輸入基頻信號可以是類比基頻信號,但此等實施例的範疇在這方面並不受限。在一些交替實施例中,此等輸出基頻信號及此等輸入基頻信號可以是數位基頻信號。在這些交替實施例中,RF電路系統706可包括類比數位轉換器(ADC)及數位類比轉換器(DAC)電路系統,而基頻電路系統704可包括一用以與RF電路系統706進行通訊之數位基頻介面。In some embodiments, the output baseband signals and the input baseband signals may be analog baseband signals, although the scope of such embodiments is not limited in this respect. In some alternate embodiments, the output baseband signals and the input baseband signals may be digital baseband signals. In these alternate embodiments, RF circuitry 706 can include analog-to-digital converters (ADCs) and digital analog converter (DAC) circuitry, while baseband circuitry 704 can include a means for communicating with RF circuitry 706. Digital baseband interface.

在一些雙模實施例中,可為各頻譜提供一用於處理信號的分離無線電IC,但此等實施例的範疇在這方面並不受限。In some dual mode embodiments, a separate radio IC for processing signals may be provided for each spectrum, although the scope of such embodiments is not limited in this respect.

在一些實施例中,合成器電路系統706d可以是一分數N合成器或一分數N/N+1合成器,但此等實施例的範疇在這方面並無限制,因為可以有其他適合類型的頻率合成器。舉例而言,合成器電路系統706d可以是一三角積分合成器、一倍頻器、或包含具有一除頻器之一鎖相迴路的一合成器。In some embodiments, synthesizer circuitry 706d may be a fractional-N synthesizer or a fractional N/N+1 synthesizer, although the scope of such embodiments is not limited in this respect as there may be other suitable types. Frequency synthesizer. For example, synthesizer circuitry 706d can be a delta-sigma synthesizer, a multiplier, or a synthesizer that includes a phase-locked loop with one of the dividers.

合成器電路系統706d可組配來基於一頻率輸入及一除法器控制輸入而將一輸出頻率合成以供RF電路系統706之混頻器電路系統706a使用。在一些實施例中,合成器電路系統706d可以是一分數N/N+1合成器。Synthesizer circuitry 706d can be configured to synthesize an output frequency for use by mixer circuitry 706a of RF circuitry 706 based on a frequency input and a divider control input. In some embodiments, synthesizer circuitry 706d can be a fractional N/N+1 synthesizer.

在一些實施例中,頻率輸入可藉由一電壓控制振盪器(VCO)來提供,但這非為必要條件。除法器控制輸入可藉由基頻電路系統704或應用處理器702擇一來提供,端視所欲輸出頻率而定。在一些實施例中,一除法器控制輸入(例如N)可基於一由應用處理器702所指示的一通道而經由一查詢表來判定。In some embodiments, the frequency input can be provided by a voltage controlled oscillator (VCO), but this is not a requirement. The divider control input can be provided by the baseband circuitry 704 or the application processor 702, depending on the desired output frequency. In some embodiments, a divider control input (e.g., N) can be determined via a lookup table based on a channel indicated by application processor 702.

RF電路系統706的合成器電路系統706d可包括一除法器、一延遲鎖定迴路(DLL)、一多工器及一相位累加器。在一些實施例中,此除法器可以是一雙模數除法器(DMD)而該相位累加器可以是一數位相位累加器(DPA)。在一些實施例中,該DMD可組配來將該輸入信號除以N或N+1 (例如基於一進位輸出)以提供一分數分配比。在一些例示性實施例中,該DLL可包括一組串級、可調、延遲元件、一檢相器、一電荷泵以及一D型正反器。在這些實施例中,此等延遲元件可被組配用以將一VCO週期分成Nd個相等的相位封包,其中Nd是延遲線中延遲元件的數量。依此作法,此DLL提供負回授而有助於確保經過此延遲線的總延遲為一個VCO週期。The synthesizer circuitry 706d of the RF circuitry 706 can include a divider, a delay locked loop (DLL), a multiplexer, and a phase accumulator. In some embodiments, the divider can be a dual modulus divider (DMD) and the phase accumulator can be a digital phase accumulator (DPA). In some embodiments, the DMD can be configured to divide the input signal by N or N+1 (eg, based on a carry output) to provide a fractional allocation ratio. In some exemplary embodiments, the DLL may include a set of cascades, adjustable, delay elements, a phase detector, a charge pump, and a D-type flip-flop. In these embodiments, the delay elements can be configured to divide a VCO period into Nd equal phase packets, where Nd is the number of delay elements in the delay line. In this way, the DLL provides negative feedback to help ensure that the total delay through this delay line is one VCO period.

在一些實施例中,合成器電路系統706d可被組配用以產生一載波頻率作為輸出頻率,而在其他實施例中,此輸出頻率可以是此載波頻率的倍數(例如此載波頻率的兩倍、此載波頻率的四倍),並且可搭配正交產生器及除法器電路系統用於在該載波頻率產生具有多個彼此不同相位的多個信號。在一些實施例中,此輸出頻率可以是一LO頻率(fLO)。在一些實施例中,RF電路系統706可包括一IQ/極性轉換器。In some embodiments, synthesizer circuitry 706d can be configured to generate a carrier frequency as the output frequency, while in other embodiments, the output frequency can be a multiple of the carrier frequency (eg, twice the carrier frequency) Four times this carrier frequency), and can be used in conjunction with an orthogonal generator and divider circuitry for generating a plurality of signals having a plurality of different phases from each other at the carrier frequency. In some embodiments, this output frequency can be an LO frequency (fLO). In some embodiments, RF circuitry 706 can include an IQ/polarity converter.

FEM電路系統708可包括一接收信號路徑,該接收信號路徑可包括組配來在接收自一或多個天線710之RF信號上操作、將此等已接收信號放大、以及對RF電路系統706提供此等放大版已接收信號以供進一步處理之用的電路系統。FEM電路系統708亦可包括一傳送信號路徑,其可包括被組配用以將RF電路系統706所提供傳輸用信號放大以供一或多個天線710其中一或多者傳輸之用的電路系統。FEM circuitry 708 can include a receive signal path that can include being configured to operate on RF signals received from one or more antennas 710, amplify such received signals, and provide RF circuitry 706 These enlarged versions of the circuitry that have received signals for further processing. The FEM circuitry 708 can also include a transmit signal path that can include circuitry configured to amplify the transmit signals provided by the RF circuitry 706 for transmission by one or more of the one or more antennas 710. .

在一些實施例中,FEM電路系統708可包括一用以在傳送模式與接收模式操作之間進行切換的TX/RX開關。此FEM電路系統可包括一接收信號路徑及一傳送信號路徑。此FEM電路系統之接收信號路徑可包括一用以將已接收RF信號放大並提供此等經放大已接收RF信號作為一輸出(例如送至RF電路系統706)的低雜訊放大器(LNA)。FEM電路系統708之傳送信號路徑可包括一用以將(例如RF電路系統706所提供之)輸入RF信號放大的功率放大器(PA)、以及一或多個用以產生RF信號以供(例如藉由一或多個天線710中一或多者進行)後續傳輸之用的濾波器。In some embodiments, FEM circuitry 708 can include a TX/RX switch to switch between transmit mode and receive mode operation. The FEM circuitry can include a receive signal path and a transmit signal path. The receive signal path of the FEM circuitry can include a low noise amplifier (LNA) for amplifying the received RF signal and providing the amplified received RF signal as an output (e.g., to RF circuitry 706). The transmit signal path of FEM circuitry 708 can include a power amplifier (PA) for amplifying an input RF signal (as provided by RF circuitry 706), and one or more for generating an RF signal (eg, A filter for subsequent transmission by one or more of one or more antennas 710.

圖8提供此無線裝置之一例示圖,例如一用戶設備(UE)、一行動電台(MS)、一行動無線裝置、一行動通訊裝置、一平板電腦、一手持話機、或其他類型之無線裝置。此無線裝置可包括一或多個天線,其被組配用以與一節點、巨集節點、低功率節點(LPN)、或傳輸站進行通訊,例如一基地台(BS)、一演進式節點B (eNB)、一基頻處理單元(BBU)、一遠距無線電頭端(RRH)、一遠距無線電設備(RRE)、一中繼站(RS)、一無線電設備(RE)、或其他類型之無線廣域網路(WWAN)接取點。此無線裝置可被組配用以使用例如,但不限於3GPP LTE、WiMAX、高速封包接取(HSPA)、藍牙及WiFi之至少一種無線通訊標準來進行通訊。此無線裝置可使用各無線通訊標準之分離天線或多種無線通訊標準之共享天線來進行通訊。此無線裝置可在一無線區域網路(WLAN)、一無線個人區域網路(WPAN)及/或一WWAN中進行通訊。此無線裝置亦可包含一無線數據機。此無線數據機舉例而言,可包含一無線無線電收發器與基頻電路系統(例如一基頻處理器)。在一項實例中,此無線數據機可調變此無線裝置經由此一或多個天線傳送之信號、以及解調變此無線裝置經由此一或多個天線接收之信號。8 provides an illustration of the wireless device, such as a user equipment (UE), a mobile station (MS), a mobile wireless device, a mobile communication device, a tablet computer, a handset, or other type of wireless device. . The wireless device can include one or more antennas that are configured to communicate with a node, a macro node, a low power node (LPN), or a transmission station, such as a base station (BS), an evolved node B (eNB), a baseband processing unit (BBU), a remote radio head (RRH), a remote radio (RRE), a relay (RS), a radio (RE), or other type Wireless Wide Area Network (WWAN) access point. The wireless device can be configured to communicate using at least one wireless communication standard such as, but not limited to, 3GPP LTE, WiMAX, High Speed Packet Access (HSPA), Bluetooth, and WiFi. The wireless device can communicate using a separate antenna of each wireless communication standard or a shared antenna of a plurality of wireless communication standards. The wireless device can communicate in a wireless local area network (WLAN), a wireless personal area network (WPAN), and/or a WWAN. The wireless device can also include a wireless data unit. For example, the wireless data machine can include a wireless radio transceiver and a baseband circuitry (e.g., a baseband processor). In one example, the wireless data modem can modulate signals transmitted by the wireless device via the one or more antennas and demodulate signals received by the wireless device via the one or more antennas.

圖8亦提供一麥克風及一或多個揚聲器之一例示,其可用於此無線裝置之音訊輸入及輸出。此顯示螢幕可以是一液晶顯示(LCD)螢幕、或其他類型之顯示螢幕,例如一有機發光二極體(OLED)顯示器。此顯示螢幕可組配為一觸控螢幕。此觸控螢幕可使用電容性、電阻性、或另一種類型的觸控螢幕技術。一應用處理器及一圖形處理器可耦合至內部記憶體以提供處理及顯示功能。一非依電性記憶體連接埠亦可用於對一使用者提供資料輸入/輸出。此非依電性記憶體連接埠亦可用於擴充此無線裝置之記憶體功能。一鍵盤可與此無線裝置整合、或以無線方式連線至此無線裝置以提供附加使用者輸入。亦可使用此觸控螢幕提供一虛擬鍵盤。 實例Figure 8 also provides an illustration of a microphone and one or more speakers that can be used for audio input and output of the wireless device. The display screen can be a liquid crystal display (LCD) screen, or other type of display screen, such as an organic light emitting diode (OLED) display. This display screen can be combined as a touch screen. This touch screen can use capacitive, resistive, or another type of touch screen technology. An application processor and a graphics processor can be coupled to internal memory to provide processing and display functions. A non-electrical memory port can also be used to provide data input/output to a user. The non-electrical memory port can also be used to extend the memory function of the wireless device. A keyboard can be integrated with the wireless device or wirelessly connected to the wireless device to provide additional user input. You can also use this touch screen to provide a virtual keyboard. Instance

以下實例涉及特定技術實施例並指出特定特徵、元件或動作,其可經使用或按其他方式組合而獲得此等實施例。The following examples are directed to specific technical embodiments and are intended to identify particular features, elements or acts, which may be used or otherwise combined to obtain such embodiments.

實例1包括一種裝備,其屬於可操作用以將資訊編碼以供傳輸至一eNodeB之一用戶設備(UE),該裝備包含一或多個處理器及記憶體,被組配來:於該UE,獲取一資訊位元塊;於該UE,選擇一調變與寫碼方案;於該UE,基於該資訊位元塊之一尺寸、及該調變與寫碼方案,判定一矩陣原型及一碼字子塊尺寸;於該UE,編碼該資訊位元塊其中至少一部分以取得一已編碼之碼字塊,其中該資訊位元塊其中至少該部分乃基於該矩陣原型與該碼字子塊尺寸來編碼;於該UE,自該已編碼之碼字塊選擇一位元子集;以及於該UE,產生該位元子集以供傳輸至一eNodeB。Example 1 includes an apparatus operative to encode information for transmission to a user equipment (UE) of an eNodeB, the apparatus comprising one or more processors and memory, configured to: Obtaining a information bit block; selecting a modulation and write code scheme for the UE; determining, according to a size of the information bit block, and the modulation and write code scheme, determining a matrix prototype and a a codeword sub-block size; at the UE, encoding at least a portion of the information bit block to obtain an encoded codeword block, wherein at least the portion of the information bit block is based on the matrix prototype and the codeword sub-block The size is encoded; at the UE, a subset of bits is selected from the encoded codeword block; and at the UE, the subset of bits is generated for transmission to an eNodeB.

實例2包括實例1之裝備,其更包含一基頻處理器,可操作以:基於該資訊位元塊之該尺寸及該調變與寫碼方案來判定該矩陣原型及該碼字子塊尺寸;以及將該資訊位元塊其中至少該部分編碼以取得該已編碼之碼字塊;以及可操作以將該位元子集自該UE傳送至該eNodeB之一收發器。Example 2 includes the apparatus of example 1, further comprising a baseband processor operable to: determine the matrix prototype and the codeword sub-block size based on the size of the information bit block and the modulation and write code scheme And encoding the at least the portion of the information bit block to obtain the encoded codeword block; and operable to transmit the subset of bits from the UE to one of the eNodeB transceivers.

實例3包括實例1至2中任何一者之裝備,其中該矩陣原型對應於一已界定碼率,其中該已界定碼率乃一為8/9之寫碼率。Example 3 includes the apparatus of any one of examples 1 to 2, wherein the matrix prototype corresponds to a defined code rate, wherein the defined code rate is a write rate of 8/9.

實例4包括實例1至3中任何一者之裝備,其中該調變與寫碼方案對應於每赫茲每符號大約5.4位元之一頻譜效率。Example 4 includes the apparatus of any of examples 1 to 3, wherein the modulation and write coding scheme corresponds to one of a spectral efficiency of about 5.4 bits per hertz per symbol.

實例5包括實例1至4中任何一者之裝備,其中該碼字子塊尺寸乃84,並且該矩陣原型乃: Example 5 includes the apparatus of any one of Examples 1 to 4, wherein the codeword sub-block size is 84, and the matrix prototype is:

實例6包括實例1至5中任何一者之裝備,其中該碼字子塊尺寸乃72,並且該矩陣原型乃: Example 6 includes the apparatus of any one of examples 1 to 5, wherein the codeword sub-block size is 72, and the matrix prototype is:

實例7包括實例1至6中任何一者之裝備,其中該碼字子塊尺寸乃60,並且該矩陣原型乃: Example 7 includes the apparatus of any one of examples 1 to 6, wherein the codeword sub-block size is 60, and the matrix prototype is:

實例8包括實例1至7中任何一者之裝備,其中該碼字子塊尺寸乃48,並且該矩陣原型乃: Example 8 includes the apparatus of any one of examples 1 to 7, wherein the codeword sub-block size is 48, and the matrix prototype is:

實例9包括實例1至8中任何一者之裝備,其中該碼字子塊尺寸乃36,並且該矩陣原型乃: Example 9 includes the apparatus of any one of examples 1 to 8, wherein the codeword sub-block size is 36, and the matrix prototype is:

實例10包括實例1至9中任何一者之裝備,其中該碼字子塊尺寸乃24,並且該矩陣原型乃: Example 10 includes the apparatus of any one of examples 1 to 9, wherein the codeword sub-block size is 24 and the matrix prototype is:

實例11包括實例1至10中任何一者之裝備,其中該碼字子塊尺寸乃12,並且該矩陣原型乃: Example 11 includes the apparatus of any one of examples 1 to 10, wherein the codeword sub-block size is 12, and the matrix prototype is:

實例12包括一種裝備,其屬於可操作以將接收自一eNodeB之資訊解碼之一用戶設備(UE),該裝備包含一或多個處理器及記憶體,被組配來:於該UE,識別接收自該eNodeB之一位元塊,其中該位元塊與一區塊尺寸長度及一調變與寫碼方案相關聯;於該UE,基於該區塊尺寸長度及該調變與寫碼方案,判定一矩陣原型及一碼字子塊尺寸;以及於該UE,解碼接收自該eNodeB之該位元塊以取得一已解碼資訊位元塊,其中該已解碼資訊位元塊乃基於該矩陣原型及該碼字子塊尺寸而取得。Example 12 includes an apparatus operative to decode information received from an eNodeB, a user equipment (UE), the apparatus comprising one or more processors and memory, configured to: identify the UE Receiving a bit block from the eNodeB, wherein the bit block is associated with a block size length and a modulation and write code scheme; based on the block size length and the modulation and write code scheme of the UE Determining a matrix prototype and a codeword sub-block size; and decoding, by the UE, the bit block received from the eNodeB to obtain a decoded information bit block, wherein the decoded information bit block is based on the matrix The prototype and the code word sub-block size are obtained.

實例13包括實例12之裝備,其中該矩陣原型對應於一已界定碼率,其中該已界定碼率乃一為8/9之寫碼率。Example 13 includes the apparatus of example 12, wherein the matrix prototype corresponds to a defined code rate, wherein the defined code rate is a write rate of 8/9.

實例14包括實例12至13中任何一者之裝備,其中該調變與寫碼方案對應於每赫茲每符號大約5.4位元之一頻譜效率。Example 14 includes the apparatus of any one of examples 12 to 13, wherein the modulation and write coding scheme corresponds to one of a spectral efficiency of about 5.4 bits per hertz per symbol.

實例15包括實例12至14中任何一者之裝備,其中該碼字子塊尺寸乃84,並且該矩陣原型乃: Example 15 includes the apparatus of any one of embodiments 12 to 14, wherein the codeword sub-block size is 84 and the matrix prototype is:

實例16包括實例12至15中任何一者之裝備,其中該碼字子塊尺寸乃72,並且該矩陣原型乃: Example 16 includes the apparatus of any one of embodiments 12 to 15, wherein the codeword sub-block size is 72, and the matrix prototype is:

實例17包括實例12至16中任何一者之裝備,其中該碼字子塊尺寸乃60,並且該矩陣原型乃: Example 17 includes the apparatus of any one of embodiments 12 to 16, wherein the codeword sub-block size is 60, and the matrix prototype is:

實例18包括實例12至17中任何一者之裝備,其中該碼字子塊尺寸乃48,並且該矩陣原型乃: Example 18 includes the apparatus of any one of embodiments 12 to 17, wherein the codeword sub-block size is 48, and the matrix prototype is:

實例19包括實例12至18中任何一者之裝備,其中該碼字子塊尺寸乃36,並且該矩陣原型乃: Example 19 includes the apparatus of any one of examples 12 to 18, wherein the codeword sub-block size is 36, and the matrix prototype is:

實例20包括實例12至19中任何一者之裝備,其中該碼字子塊尺寸乃24,並且該矩陣原型乃: Example 20 includes the apparatus of any one of embodiments 12 to 19, wherein the codeword sub-block size is 24, and the matrix prototype is:

實例21包括實例12至20中任何一者之裝備,其中該碼字子塊尺寸乃12,並且該矩陣原型乃: Example 21 includes the apparatus of any one of embodiments 12 to 20, wherein the codeword sub-block size is 12, and the matrix prototype is:

實例22包括上有具體實現用於在一eNodeB將資訊編碼及解碼之指令的至少一個機器可讀儲存媒體,該等指令在受執行時以下程序塊:使用該eNodeB之一或多個處理器,識別用於自該eNodeB傳輸至一用戶設備(UE)之一資訊位元塊;使用該eNodeB之該一或多個處理器,基於該資訊位元塊之一尺寸、及一調變與寫碼方案,判定一低密度同位檢查(LDPC)矩陣及一碼字子塊尺寸;使用該eNodeB之該一或多個處理器,編碼該資訊位元塊其中至少一部分以取得一已編碼之碼字塊,其中該資訊位元塊其中至少該部分乃基於該LDPC矩陣與該碼字子塊尺寸來編碼;使用該eNodeB之該一或多個處理器,自該已編碼之碼字塊選擇一位元子集;以及使用該eNodeB之該一或多個處理器,格式化該位元子集以供傳輸至該UE。Example 22 includes at least one machine-readable storage medium having instructions embodied for encoding and decoding information at an eNodeB, the instructions being executed when the following program block: using one or more processors of the eNodeB, Identifying one of the information bit blocks for transmission from the eNodeB to a user equipment (UE); the one or more processors using the eNodeB, based on a size of the information bit block, and a modulation and writing code a method for determining a low density parity check (LDPC) matrix and a codeword sub-block size; using the one or more processors of the eNodeB, encoding at least a portion of the information bit block to obtain an encoded codeword block Wherein the at least the portion of the information bit block is encoded based on the LDPC matrix and the codeword sub-block size; using the one or more processors of the eNodeB, selecting a bit from the encoded codeword block a subset; and the one or more processors using the eNodeB, formatting the subset of bits for transmission to the UE.

實例23包括實例22之至少一個機器可讀儲存媒體,其更包含在受執行時進行以下程序塊之指令:識別接收自該UE之一位元塊,其中該位元塊與一第二區塊尺寸長度及一第二調變與寫碼方案相關聯;基於該第二區塊尺寸長度及該第二調變與寫碼方案,判定一第二矩陣原型及一第二碼字子塊尺寸;以及解碼該位元塊以取得一已解碼資訊位元塊,其中該已解碼資訊位元塊乃基於該第二矩陣原型及該第二碼字子塊尺寸而取得。The example 23 includes the at least one machine-readable storage medium of the example 22, further comprising instructions for performing the following program block when executed: identifying a bit block received from the UE, wherein the bit block and a second block The size length and a second modulation are associated with the write code scheme; determining a second matrix prototype and a second codeword sub-block size based on the second block size length and the second modulation and write code scheme; And decoding the bit block to obtain a decoded information bit block, wherein the decoded information bit block is obtained based on the second matrix prototype and the second code word sub-block size.

實例24包括實例22至23其中任何一者之至少一個機器可讀儲存媒體,其中:該矩陣原型對應於一為8/9之寫碼率;以及該調變與寫碼方案對應於每赫茲每符號大約5.4位元之一頻譜效率。The example 24 includes the at least one machine-readable storage medium of any one of the examples 22 to 23, wherein: the matrix prototype corresponds to a write rate of 8/9; and the modulation and write code scheme corresponds to each Hertz The symbol is about 5.4 bits of spectral efficiency.

實例25包括實例22至24其中任何一者之至少一個機器可讀儲存媒體,其中: 該碼字子塊尺寸乃84,並且該矩陣原型乃:該碼字子塊尺寸乃72,並且該矩陣原型乃:該碼字子塊尺寸乃60,並且該矩陣原型乃:該碼字子塊尺寸乃48,並且該矩陣原型乃:該碼字子塊尺寸乃36,並且該矩陣原型乃:該碼字子塊尺寸乃24,並且該矩陣原型乃:該碼字子塊尺寸乃12,並且該矩陣原型乃: The example 25 includes the at least one machine-readable storage medium of any one of the examples 22 to 24, wherein: the codeword sub-block size is 84, and the matrix prototype is: The codeword sub-block size is 72, and the matrix prototype is: The codeword sub-block size is 60, and the matrix prototype is: The codeword sub-block size is 48, and the matrix prototype is: The codeword sub-block size is 36, and the matrix prototype is: The codeword sub-block size is 24, and the matrix prototype is: The codeword sub-block size is 12, and the matrix prototype is:

實例26包括一種裝備,其屬於可操作用以將資訊編碼以供傳輸至一eNodeB之一用戶設備(UE),該裝備包含一或多個處理器及記憶體,被組配來:於該UE,獲取一資訊位元塊;於該UE,選擇一調變與寫碼方案;於該UE,基於該資訊位元塊之一尺寸、及該調變與寫碼方案,判定一矩陣原型及一碼字子塊尺寸;於該UE,編碼該資訊位元塊其中至少一部分以取得一已編碼之碼字塊,其中該資訊位元塊其中至少該部分乃基於該矩陣原型與該碼字子塊尺寸來編碼;於該UE,自該已編碼之碼字塊選擇一位元子集;以及於該UE,產生該位元子集以供傳輸至一eNodeB。Example 26 includes an apparatus operative to encode information for transmission to a user equipment (UE) of an eNodeB, the apparatus comprising one or more processors and memory, configured to: Obtaining a information bit block; selecting a modulation and write code scheme for the UE; determining, according to a size of the information bit block, and the modulation and write code scheme, determining a matrix prototype and a a codeword sub-block size; at the UE, encoding at least a portion of the information bit block to obtain an encoded codeword block, wherein at least the portion of the information bit block is based on the matrix prototype and the codeword sub-block The size is encoded; at the UE, a subset of bits is selected from the encoded codeword block; and at the UE, the subset of bits is generated for transmission to an eNodeB.

實例27包括實例26之裝備,其更包含一基頻處理器,可操作以:基於該資訊位元塊之該尺寸及該調變與寫碼方案來判定該矩陣原型及該碼字子塊尺寸;以及將該資訊位元塊其中至少該部分編碼以取得該已編碼之碼字塊;以及可操作以將該位元子集自該UE傳送至該eNodeB之一收發器。Example 27 includes the apparatus of example 26, further comprising a baseband processor operative to: determine the matrix prototype and the codeword sub-block size based on the size of the information bit block and the modulation and write code scheme And encoding the at least the portion of the information bit block to obtain the encoded codeword block; and operable to transmit the subset of bits from the UE to one of the eNodeB transceivers.

實例28包括實例26至27中任何一者之裝備,其中該矩陣原型對應於一已界定碼率,其中該已界定碼率乃一為8/9之寫碼率。Example 28 includes the apparatus of any one of embodiments 26 to 27, wherein the matrix prototype corresponds to a defined code rate, wherein the defined code rate is a write rate of 8/9.

實例29包括實例26至28中任何一者之裝備,其中該調變與寫碼方案對應於每赫茲每符號大約5.4位元之一頻譜效率。Example 29 includes the apparatus of any one of embodiments 26 to 28, wherein the modulation and write coding scheme corresponds to one of a spectral efficiency of about 5.4 bits per hertz per symbol.

實例30包括實例26至29中任何一者之裝備,其中: 該碼字子塊尺寸乃84,並且該矩陣原型乃: 該碼字子塊尺寸乃84,並且該矩陣原型乃:該碼字子塊尺寸乃72,並且該矩陣原型乃:其中該碼字子塊尺寸乃60,並且該矩陣原型乃:該碼字子塊尺寸乃48,並且該矩陣原型乃:該碼字子塊尺寸乃36,並且該矩陣原型乃:該碼字子塊尺寸乃24,並且該矩陣原型乃:該碼字子塊尺寸乃12,並且該矩陣原型乃: Example 30 includes the apparatus of any one of embodiments 26 to 29, wherein: the codeword sub-block size is 84, and the matrix prototype is: the codeword sub-block size is 84, and the matrix prototype is: The codeword sub-block size is 72, and the matrix prototype is: Wherein the codeword sub-block size is 60, and the matrix prototype is: The codeword sub-block size is 48, and the matrix prototype is: The codeword sub-block size is 36, and the matrix prototype is: The codeword sub-block size is 24, and the matrix prototype is: The codeword sub-block size is 12, and the matrix prototype is:

實例31包括一種裝備,其屬於可操作以將接收自一eNodeB之資訊解碼之一用戶設備(UE),該裝備包含一或多個處理器及記憶體,被組配來:於該UE,識別接收自該eNodeB之一位元塊,其中該位元塊與一區塊尺寸長度及一調變與寫碼方案相關聯;於該UE,基於該區塊尺寸長度及該調變與寫碼方案,判定一矩陣原型及一碼字子塊尺寸;以及於該UE,解碼接收自該eNodeB之該位元塊以取得一已解碼資訊位元塊,其中該已解碼資訊位元塊乃基於該矩陣原型及該碼字子塊尺寸而取得。Example 31 includes an apparatus operative to decode information received from an eNodeB, a user equipment (UE), the apparatus comprising one or more processors and memory, configured to: identify the UE Receiving a bit block from the eNodeB, wherein the bit block is associated with a block size length and a modulation and write code scheme; based on the block size length and the modulation and write code scheme of the UE Determining a matrix prototype and a codeword sub-block size; and decoding, by the UE, the bit block received from the eNodeB to obtain a decoded information bit block, wherein the decoded information bit block is based on the matrix The prototype and the code word sub-block size are obtained.

實例32包括實例31之裝備,其中該矩陣原型對應於一已界定碼率,其中該已界定碼率乃一為8/9之寫碼率。Example 32 includes the apparatus of example 31, wherein the matrix prototype corresponds to a defined code rate, wherein the defined code rate is a write rate of 8/9.

實例33包括實例31至32中任何一者之裝備,其中該調變與寫碼方案對應於每赫茲每符號大約5.4位元之一頻譜效率。Example 33 includes the apparatus of any one of examples 31 to 32, wherein the modulation and write coding scheme corresponds to one of a spectral efficiency of about 5.4 bits per hertz per symbol.

實例34包括實例31至33中任何一者之裝備,其中: 該碼字子塊尺寸乃84,並且該矩陣原型乃:該碼字子塊尺寸乃72,並且該矩陣原型乃:其中該碼字子塊尺寸乃60,並且該矩陣原型乃:該碼字子塊尺寸乃48,並且該矩陣原型乃:該碼字子塊尺寸乃36,並且該矩陣原型乃:該碼字子塊尺寸乃24,並且該矩陣原型乃:該碼字子塊尺寸乃12,並且該矩陣原型乃: Example 34 includes the apparatus of any one of examples 31 to 33, wherein: the codeword sub-block size is 84, and the matrix prototype is: The codeword sub-block size is 72, and the matrix prototype is: Wherein the codeword sub-block size is 60, and the matrix prototype is: The codeword sub-block size is 48, and the matrix prototype is: The codeword sub-block size is 36, and the matrix prototype is: The codeword sub-block size is 24, and the matrix prototype is: The codeword sub-block size is 12, and the matrix prototype is:

實例35包括上有具體實現用於在一eNodeB將資訊編碼及解碼之指令的至少一個機器可讀儲存媒體,該等指令在受執行時以下程序塊:使用該eNodeB之一或多個處理器,識別用於自該eNodeB傳輸至一用戶設備(UE)之一資訊位元塊;使用該eNodeB之該一或多個處理器,基於該資訊位元塊之一尺寸、及一調變與寫碼方案,判定一低密度同位檢查(LDPC)矩陣及一碼字子塊尺寸;使用該eNodeB之該一或多個處理器,編碼該資訊位元塊其中至少一部分以取得一已編碼之碼字塊,其中該資訊位元塊其中至少該部分乃基於該LDPC矩陣與該碼字子塊尺寸來編碼;使用該eNodeB之該一或多個處理器,自該已編碼之碼字塊選擇一位元子集;以及使用該eNodeB之該一或多個處理器,格式化該位元子集以供傳輸至該UE。Example 35 includes at least one machine-readable storage medium having instructions embodied for encoding and decoding information at an eNodeB, the instructions being executed when the following program block: using one or more processors of the eNodeB, Identifying one of the information bit blocks for transmission from the eNodeB to a user equipment (UE); the one or more processors using the eNodeB, based on a size of the information bit block, and a modulation and writing code a method for determining a low density parity check (LDPC) matrix and a codeword sub-block size; using the one or more processors of the eNodeB, encoding at least a portion of the information bit block to obtain an encoded codeword block Wherein the at least the portion of the information bit block is encoded based on the LDPC matrix and the codeword sub-block size; using the one or more processors of the eNodeB, selecting a bit from the encoded codeword block a subset; and the one or more processors using the eNodeB, formatting the subset of bits for transmission to the UE.

實例36包括實例35之至少一個機器可讀儲存媒體,其更包含在受執行時進行以下程序塊之指令:識別接收自該UE之一位元塊,其中該位元塊與一第二區塊尺寸長度及一第二調變與寫碼方案相關聯;基於該第二區塊尺寸長度及該第二調變與寫碼方案,判定一第二矩陣原型及一第二碼字子塊尺寸;以及解碼該位元塊以取得一已解碼資訊位元塊,其中該已解碼資訊位元塊乃基於該第二矩陣原型及該第二碼字子塊尺寸而取得。The example 36 includes the at least one machine-readable storage medium of the embodiment 35, further comprising instructions for performing the following program block when executed: identifying a bit block received from the UE, wherein the bit block and a second block The size length and a second modulation are associated with the write code scheme; determining a second matrix prototype and a second codeword sub-block size based on the second block size length and the second modulation and write code scheme; And decoding the bit block to obtain a decoded information bit block, wherein the decoded information bit block is obtained based on the second matrix prototype and the second code word sub-block size.

實例37包括實例35至36其中任何一者之至少一個機器可讀儲存媒體,其中:該矩陣原型對應於一為8/9之寫碼率;以及該調變與寫碼方案對應於每赫茲每符號大約5.4位元之一頻譜效率。The example 37 includes at least one machine-readable storage medium of any one of examples 35 to 36, wherein: the matrix prototype corresponds to a write rate of 8/9; and the modulation and write code scheme corresponds to each Hertz The symbol is about 5.4 bits of spectral efficiency.

實例38包括實例35至37其中任何一者之至少一個機器可讀儲存媒體,其中: 該碼字子塊尺寸乃84,並且該矩陣原型乃: 該碼字子塊尺寸乃84,並且該矩陣原型乃:該碼字子塊尺寸乃72,並且該矩陣原型乃:該碼字子塊尺寸乃60,並且該矩陣原型乃:該碼字子塊尺寸乃48,並且該矩陣原型乃:該碼字子塊尺寸乃36,並且該矩陣原型乃:該碼字子塊尺寸乃24,並且該矩陣原型乃:該碼字子塊尺寸乃12,並且該矩陣原型乃: The example 38 includes at least one machine readable storage medium of any one of examples 35 to 37, wherein: the codeword sub-block size is 84, and the matrix prototype is: the codeword sub-block size is 84, and the matrix prototype Is: The codeword sub-block size is 72, and the matrix prototype is: The codeword sub-block size is 60, and the matrix prototype is: The codeword sub-block size is 48, and the matrix prototype is: The codeword sub-block size is 36, and the matrix prototype is: The codeword sub-block size is 24, and the matrix prototype is: The codeword sub-block size is 12, and the matrix prototype is:

實例39包括可操作以將資訊編碼及解碼之一eNodeB,該eNodeB包含:用於識別一資訊位元塊以供自該eNodeB傳輸至一用戶設備(UE)的手段;用於基於該資訊位元塊之一尺寸、及一調變與寫碼方案來判定一低密度同位檢查(LDPC)矩陣及一碼字子塊尺寸的手段;用於編碼該資訊位元塊其中至少一部分以取得一已編碼之碼字塊的手段,其中該資訊位元塊其中至少該部分乃基於該LDPC矩陣與該碼字子塊尺寸來編碼;用於自該已編碼之碼字塊選擇一位元子集的手段;以及用於格式化該位元子集以供傳輸至該UE的手段。Example 39 includes an eNodeB operable to encode and decode information, the eNodeB including: means for identifying an information bit block for transmission from the eNodeB to a user equipment (UE); for using the information element based on the information bit a means for determining a low density parity check (LDPC) matrix and a codeword subblock size by one of a block size and a modulation and write scheme; for encoding at least a portion of the information bit block to obtain an encoded Means of a codeword block, wherein at least the portion of the information bit block is encoded based on the LDPC matrix and the codeword sub-block size; means for selecting a subset of bits from the encoded codeword block And means for formatting the subset of bits for transmission to the UE.

實例40包括實例39之eNodeB,其更包含:用於識別接收自該UE之一位元塊的手段,其中該位元塊與一第二區塊尺寸長度及一第二調變與寫碼方案相關聯;用於基於該第二區塊尺寸長度及該第二調變與寫碼方案來判定一第二矩陣原型及一第二碼字子塊尺寸的手段;以及用於解碼該位元塊以取得一已解碼資訊位元塊的手段,其中該已解碼資訊位元塊乃基於該第二矩陣原型及該第二碼字子塊尺寸而取得。The example 40 includes the eNodeB of the example 39, further comprising: means for identifying a bit block received from the UE, wherein the bit block and a second block size length and a second modulation and write code scheme Corresponding means for determining a second matrix prototype and a second codeword sub-block size based on the second block size length and the second modulation and writing scheme; and decoding the bit block And a means for obtaining a decoded information bit block, wherein the decoded information bit block is obtained based on the second matrix prototype and the second code word sub-block size.

實例41包括實例39至40其中任何一者之eNodeB,其中:該矩陣原型對應於一為8/9之寫碼率;以及該調變與寫碼方案對應於每赫茲每符號大約5.4位元之一頻譜效率。Example 41 includes the eNodeB of any one of Examples 39 to 40, wherein: the matrix prototype corresponds to a write rate of 8/9; and the modulation and write code scheme corresponds to approximately 5.4 bits per Hz per symbol A spectral efficiency.

實例42包括實例39至41中任何一者之eNodeB,其中: 該碼字子塊尺寸乃84,並且該矩陣原型乃: 該碼字子塊尺寸乃84,並且該矩陣原型乃:該碼字子塊尺寸乃72,並且該矩陣原型乃:該碼字子塊尺寸乃60,並且該矩陣原型乃:該碼字子塊尺寸乃48,並且該矩陣原型乃:該碼字子塊尺寸乃36,並且該矩陣原型乃:該碼字子塊尺寸乃24,並且該矩陣原型乃:該碼字子塊尺寸乃12,並且該矩陣原型乃: The example 42 includes the eNodeB of any one of the examples 39 to 41, wherein: the codeword sub-block size is 84, and the matrix prototype is: the codeword sub-block size is 84, and the matrix prototype is: The codeword sub-block size is 72, and the matrix prototype is: The codeword sub-block size is 60, and the matrix prototype is: The codeword sub-block size is 48, and the matrix prototype is: The codeword sub-block size is 36, and the matrix prototype is: The codeword sub-block size is 24, and the matrix prototype is: The codeword sub-block size is 12, and the matrix prototype is:

各種技術、或其某些態樣或部分可採取的形式為諸如軟式磁片、光碟唯讀記憶體(CD-ROMs)、硬碟機、非暫時性電腦可讀儲存媒體、或任何其他機器可讀儲存媒體等有形媒體中具體實現的程式碼(即指令),其中當諸如一電腦之一機器載入並且執行該程式碼時,該機器變為一用於實踐此等各種技巧之裝備。一非暫時性電腦可讀儲存媒體可以是一不包括信號之電腦可讀儲存媒體。程式碼若是在可規劃電腦上執行,則此運算裝置可包括一處理器、一可由該處理器讀取之儲存媒體(包括依電性及非依電性記憶體及/或儲存元件)、至少一個輸入裝置、以及至少一個輸出裝置。該依電性及非依電性記憶體及/或儲存元件可以是一隨機存取記憶體(RAM)、可抹除可規劃唯讀記憶體(EPROM)、快閃驅動機、光學驅動機、磁性硬碟機、固態驅動機、或其他用於儲存電子資料之媒體。此節點及無線裝置亦可包括一收發器模組(即收發器)、一計數器模組(即計數器)、一處理模組(即處理器)、及/或一時脈模組(即時脈)或計時器模組(即計時器)。在一項實例中,該收發器模組經選擇之組件可位於一雲端無線電存取網路(C-RAN)中。本文中所述可實施或利用此等各種技巧之一或多個程式可使用一應用程式規劃介面(API)、可再用控制、以及類似者。此類程式可實施成用以與一電腦系統進行通訊之一高階程序性或物件導向程式規劃語言。然而,此(等)程式視所欲可實施成組合或機器語言。在任一例中,此語言可為一編譯式或解譯式語言,並且與硬體實作態樣組合。Various techniques, or some aspects or portions thereof, may take the form of, for example, a flexible magnetic disk, a CD-ROM, a hard disk drive, a non-transitory computer readable storage medium, or any other machine. A program (ie, an instruction) embodied in a tangible medium such as a storage medium is read, wherein when a machine such as a computer loads and executes the code, the machine becomes an apparatus for practicing the various techniques. A non-transitory computer readable storage medium can be a computer readable storage medium that does not include a signal. If the code is executed on a planable computer, the computing device can include a processor, a storage medium (including electrical and non-electrical memory and/or storage components) readable by the processor, at least An input device and at least one output device. The power-dependent and non-electrical memory and/or storage component may be a random access memory (RAM), an erasable programmable read-only memory (EPROM), a flash driver, an optical driver, A magnetic hard drive, solid state drive, or other medium used to store electronic data. The node and the wireless device may also include a transceiver module (ie, a transceiver), a counter module (ie, a counter), a processing module (ie, a processor), and/or a clock module (immediate pulse) or Timer module (ie timer). In one example, the selected component of the transceiver module can be located in a cloud radio access network (C-RAN). One or more of the various techniques described or implemented herein may use an application programming interface (API), reusable controls, and the like. Such programs can be implemented as a high-level procedural or object-oriented programming language for communicating with a computer system. However, this (etc.) program can be implemented as a combination or machine language as desired. In either case, the language can be a compiled or interpreted language and combined with a hardware implementation.

「電路系統」一詞於本文中使用時,可意指為、屬於部分之、或包括一特定應用積體電路(ASIC)、一電子電路、一處理器(共享、專屬、或群組)、及/或記憶體(共享、專屬、或群組),其執行提供所述功能之一或多個軟體或韌體程式、一組合邏輯電路、及/或其他適合的硬體組件。在一些實施例中,此電路系統可在一或多個軟體或韌體模組中實施,或與此電路系統相關聯之功能可藉由此一或多個軟體或韌體模組來實施。在一些實施例中,電路系統可包括至少部分可在硬體中操作的邏輯。The term "circuitry" as used herein may mean, be part of, or include an application-specific integrated circuit (ASIC), an electronic circuit, a processor (shared, exclusive, or group), And/or memory (shared, exclusive, or group) that performs one or more software or firmware programs, a combinational logic circuit, and/or other suitable hardware components that provide the described functionality. In some embodiments, the circuitry can be implemented in one or more software or firmware modules, or the functionality associated with the circuitry can be implemented by one or more software or firmware modules. In some embodiments, the circuitry can include logic that is at least partially operable in hardware.

應瞭解的是,本說明書中所述功能單元中有許多已標示為模組,以便更具體強調其實作態樣獨立性。舉例而言,可將一模組實施成包含自訂超大型積體(VLSI)電路或閘陣列、諸如邏輯晶片等現成半導體、電晶體、或其他分立組件之一硬體電路。一模組亦可實施成諸如可現場規劃閘陣列、可規劃陣列邏輯、可規劃邏輯裝置或類似者等可規劃硬體裝置。It should be understood that many of the functional units described in this specification have been labeled as modules to more specifically emphasize the factual independence. For example, a module can be implemented as a hard-wired circuit comprising a custom ultra-large integrated body (VLSI) circuit or gate array, an off-the-shelf semiconductor such as a logic die, a transistor, or other discrete component. A module can also be implemented as a programmable hardware device such as a field programmable gate array, programmable array logic, programmable logic devices, or the like.

模組亦可實施成供各種類型之處理器執行的軟體。一經識別可執行碼模組舉例來說,可包含一或多個電腦指令實體或邏輯塊,其舉例來說,可組織成一物件、程序或功能。然而,一經識別模組之執行檔可不實體位於一處,而是可包含儲存於不同位置的不同指令,其邏輯聯結在一起時,包含此模組並且達成此模組之所述目的。Modules can also be implemented as software for execution by various types of processors. An identified executable code module, for example, can include one or more computer instruction entities or logic blocks, which can be organized, for example, into an object, program, or function. However, an executable file of an identified module may not be physically located in one place, but may include different instructions stored in different locations that, when logically coupled together, include the module and achieve the stated purpose of the module.

一可執行碼模組的確可以是單一指令或許多指令,並且甚至可分布於數個不同碼段、不同程式及數個記憶體裝置。類似的是,運算資料在本文中可於模組內指認並說明,並且可具體實現為任何適合的形式並組織於任何適合類型的資料結構內。此運算資料可收集為單一資料集合,或可分布於不同位置,包括分布於不同儲存裝置,並且可僅作為電子信號至少部分存在於一系統或網路上。此等模組可為被動或主動,包括可操作以進行所欲功能之代理程式。An executable code module can be a single instruction or many instructions, and can even be distributed over several different code segments, different programs, and several memory devices. Similarly, operational data may be identified and described herein within a module, and may be embodied in any suitable form and organized in any suitable type of data structure. The operational data may be collected as a single data set, or may be distributed in different locations, including distributed to different storage devices, and may exist as an electronic signal at least partially on a system or network. These modules can be passive or active, including agents that are operable to perform the desired function.

整篇本說明書對「一實例」或「例示性」之參照意味著本技術之至少一項實施例中包括搭配此實例所述之一特定特徵、結構或特性。因此,「在一實例中」或「例示性」等詞在整篇本說明書各處表達時不必然全都意指為相同的實施例。Reference to "an example" or "exemplary" throughout this specification means that at least one embodiment of the present technology includes a particular feature, structure, or characteristic described in connection with the example. Thus, the words "in an embodiment" or "an"

複數個項目、結構化元件、組成元件、及/或材料於本文中使用時,可為了便利性而在一共同清單中呈現。然而,這些清單應視為仿彿此清單之各成員被個別指認為一不同且唯一的成員。因此,此清單不應有個別成員只因為其存在於一共同群組中且無相左指示,而被視為相同清單中任何其他成員之一實際均等者。另外,本技術的各項實施例和實例在本文中可意指為其各種組件的替代例。據瞭解,此類實施例、實例及替代例不視為彼此的實際均等例,而是視為本技術的不同且自主的表示型態。When multiple items, structured elements, component elements, and/or materials are used herein, they may be presented in a common list for convenience. However, these lists should be treated as if each member of the list was individually identified as a different and unique member. Therefore, this list should not have individual members who are considered to be physically equal to any other member of the same list because they exist in a common group and have no contralateral indication. Additionally, various embodiments and examples of the technology may be referred to herein as alternatives to various components thereof. It is understood that such embodiments, examples, and alternatives are not considered as actual equivalents of each other, but rather as distinct and autonomous representations of the present technology.

再者,所述特徵、結構或特性可在一或多項實施例中以任何適合的方式來組合。以下說明中提供諸如布局、距離、網路實例等用以透徹理解本技術之實施例的許多特定細節。然而,所屬技術領域中具有通常知識者將會認知的是,本技術可以不利用此等特定細節之一或多者、或可利用其他方法、組件、布局等來實踐。在其他例子中,為了避免混淆本技術之態樣,並未展示或詳細說明眾所周知的結構、材料或操作。Furthermore, the described features, structures, or characteristics may be combined in any suitable manner in one or more embodiments. Many specific details, such as layouts, distances, network instances, etc., are provided in the following description for a thorough understanding of embodiments of the present technology. However, it will be appreciated by those of ordinary skill in the art that the present technology may be practiced without one or more of the specific details, or other methods, components, arrangements, etc. In other instances, well-known structures, materials, or operations are not shown or described in detail in order to avoid obscuring aspects of the technology.

儘管前述實例說明了本技術在一或多種特定應用中的原理,所屬技術領域中具有通常知識者將會明白,可按照實作態樣的形式、用法及細節施作許多修改,但不需用到發明功能,也不會脫離本技術的原理及概念。因此,無意使本技術受到下文所提申請專利範圍以外的限制。Although the foregoing examples illustrate the principles of the present technology in one or more specific applications, those of ordinary skill in the art will appreciate that many modifications can be made in the form, usage and details of the embodiments, but are not required. The inventive functions are also not deviated from the principles and concepts of the technology. Therefore, it is not intended that the present technology be limited by the scope of the invention as set forth below.

400、500‧‧‧功能 410~460、510~530、610~650‧‧‧程序塊 600‧‧‧指令 700‧‧‧UE裝置 702‧‧‧應用電路系統 704‧‧‧基頻電路系統 704a~704d‧‧‧基頻處理器 704e‧‧‧中央處理單元 704f‧‧‧音訊數位信號處理器 706‧‧‧RF電路系統 706a‧‧‧混頻器電路系統 706b‧‧‧放大器電路系統 706c‧‧‧濾波器電路系統 706d‧‧‧合成器電路系統 708‧‧‧FEM電路系統 710‧‧‧天線 720‧‧‧節點 722‧‧‧處理器 724‧‧‧記憶體400, 500‧‧‧ Functions 410~460, 510~530, 610~650‧‧‧ Program Block 600‧‧‧Instruction 700‧‧‧UE Device 702‧‧‧Application Circuit System 704‧‧‧Base Frequency Circuit System 704a ~704d‧‧‧Base frequency processor 704e‧‧‧ central processing unit 704f‧‧‧ audio digital signal processor 706‧‧‧RF circuit system 706a‧‧‧ mixer circuit system 706b‧‧‧Amplifier circuit system 706c‧ ‧‧Filter Circuit System 706d‧‧‧Synthesizer Circuit System 708‧‧FEM Circuit System 710‧‧‧Antenna 720‧‧‧Node 722‧‧‧Processor 724‧‧‧ Memory

本揭露之特徵與優點在搭配附圖經由以下的詳細說明後將會顯而易見,此等附圖以舉例方式一起繪示本揭露之特徵;以及其中: 圖1A至1H根據一實例,分別繪示與一為8/9之寫碼率、及12、24、36、48、60、72、84與96之子塊尺寸相對應的矩陣原型; 圖2根據一實例,繪示一種使用一所選擇矩陣原型用於編碼資訊之技巧; 圖3根據一實例,繪示一種使用一所選擇矩陣原型用於解碼資訊之技巧; 圖4根據一實例,繪示一用戶設備(UE)之功能,該用戶設備可操作用以將資訊編碼以供傳輸至一eNodeB; 圖5根據一實例,繪示一用戶設備(UE)之功能,該用戶設備可操作用以解碼接收自一eNodeB之資訊; 圖6根據一實施例,繪示上有具體實現於一eNodeB編碼及解碼資訊用之指令之一機器可讀儲存媒體的一流程圖; 圖7根據一實例,繪示一無線裝置(例如UE)及一節點(例如eNodeB)的一簡圖;以及 圖8根據一實例,繪示一無線裝置(例如UE)的一簡圖。The features and advantages of the present disclosure will be apparent from the following description of the accompanying drawings in which <RTIgt; A matrix prototype corresponding to a code rate of 8/9 and sub-block sizes of 12, 24, 36, 48, 60, 72, 84 and 96; FIG. 2 illustrates a prototype using a selection matrix according to an example. 3 is a technique for encoding information; FIG. 3 illustrates a technique for decoding information using a selected matrix prototype according to an example; FIG. 4 illustrates a function of a user equipment (UE) according to an example, where the user equipment can The operation is used to encode information for transmission to an eNodeB. FIG. 5 illustrates a function of a user equipment (UE) operable to decode information received from an eNodeB according to an example. FIG. 6 is an implementation according to an implementation. For example, a flowchart of a machine readable storage medium embodied in an instruction for encoding and decoding information of an eNodeB is illustrated. FIG. 7 illustrates a wireless device (eg, a UE) and a node according to an example (eg, a simple one of eNodeB) ; And FIG. 8 according to an example, shows a wireless device (e.g. UE), a schematic view.

現將參照所示的例示性實施例,並且將會在本文中使用特定語言說明此等實施例。然而,將瞭解的是,並不意欲藉此限制本技術的範疇。Reference will now be made to the exemplary embodiments illustrated, However, it will be appreciated that it is not intended to limit the scope of the technology.

Claims (25)

一種用戶設備(UE)之裝備,可操作用以編碼供傳輸至一eNodeB之資訊,該裝備包含一或多個處理器及記憶體,被組配來: 於該UE,獲取一資訊位元塊; 於該UE,選擇一調變與寫碼方案; 於該UE,基於該資訊位元塊之一尺寸及該調變與寫碼方案,判定一矩陣原型及一碼字子塊尺寸; 於該UE,編碼至少一部分之該資訊位元塊以取得一已編碼之碼字塊,其中至少該部分之資訊位元塊為基於該矩陣原型與該碼字子塊尺寸來編碼; 於該UE,自該已編碼之碼字塊選擇一位元子集;以及 於該UE,產生供傳輸至一eNodeB之該位元子集。A user equipment (UE) device operative to encode information for transmission to an eNodeB, the apparatus comprising one or more processors and memory, configured to: acquire an information bit block for the UE Selecting a modulation and write code scheme for the UE; determining, by the UE, a matrix prototype and a codeword sub-block size based on a size of the information bit block and the modulation and write code scheme; Transmitting, by the UE, at least a portion of the information bit block to obtain an encoded codeword block, wherein at least the portion of the information bit block is encoded based on the matrix prototype and the codeword sub-block size; The encoded codeword block selects a subset of bits; and at the UE, generates the subset of bits for transmission to an eNodeB. 如請求項1之裝備,更包含: 一基頻處理器,其可操作以: 基於該資訊位元塊之尺寸及該調變與寫碼方案,判定該矩陣原型及該碼字子塊尺寸;以及 編碼至少該部分之該資訊位元塊以取得該已編碼之碼字塊;以及 可操作以將該位元子集自該UE傳送至該eNodeB之收發器。The equipment of claim 1, further comprising: a baseband processor operable to: determine the matrix prototype and the codeword sub-block size based on the size of the information bit block and the modulation and write code scheme; And encoding the at least the portion of the information bit block to obtain the encoded codeword block; and the transceiver operable to transmit the subset of bits from the UE to the eNodeB. 如請求項1之裝備,其中該矩陣原型對應於一已界定碼率,其中該已界定碼率為一8/9之寫碼率。The apparatus of claim 1, wherein the matrix prototype corresponds to a defined code rate, wherein the defined code rate is a write rate of 8/9. 如請求項1之裝備,其中該調變與寫碼方案對應於每赫茲每符號大約5.4位元之一頻譜效率。The apparatus of claim 1, wherein the modulation and write coding scheme corresponds to a spectral efficiency of about 5.4 bits per hertz per symbol. 如請求項1之裝備,其中該碼字子塊尺寸為84,並且該矩陣原型為: The apparatus of claim 1, wherein the codeword sub-block size is 84, and the matrix prototype is: 如請求項1之裝備,其中該碼字子塊尺寸為72,並且該矩陣原型為: The apparatus of claim 1, wherein the codeword sub-block size is 72, and the matrix prototype is: 如請求項1之裝備,其中該碼字子塊尺寸為60,並且該矩陣原型為: The apparatus of claim 1, wherein the codeword sub-block size is 60, and the matrix prototype is: 如請求項1之裝備,其中該碼字子塊尺寸為48,並且該矩陣原型為: The apparatus of claim 1, wherein the codeword sub-block size is 48, and the matrix prototype is: 如請求項1之裝備,其中該碼字子塊尺寸為36,並且該矩陣原型為: The equipment of claim 1, wherein the codeword sub-block size is 36, and the matrix prototype is: 如請求項1之裝備,其中該碼字子塊尺寸為24,並且該矩陣原型為: The equipment of claim 1, wherein the codeword sub-block size is 24, and the matrix prototype is: 如請求項1之裝備,其中該碼字子塊尺寸為12,並且該矩陣原型為: The equipment of claim 1, wherein the codeword sub-block size is 12, and the matrix prototype is: 一種用戶設備(UE)之裝備,可操作用以解碼接收自一eNodeB之資訊,該裝備包含一或多個處理器及記憶體,被組配來: 於該UE,識別接收自該eNodeB之一位元塊,其中該位元塊與一區塊尺寸長度及一調變與寫碼方案相關聯; 於該UE,基於該區塊尺寸長度及該調變與寫碼方案,判定一矩陣原型及一碼字子塊尺寸;以及 於該UE,解碼接收自該eNodeB之該位元塊以取得一已解碼資訊位元塊,其中該已解碼資訊位元塊為基於該矩陣原型及該碼字子塊尺寸而取得。A user equipment (UE) device operable to decode information received from an eNodeB, the apparatus comprising one or more processors and memory, configured to: receive, by the UE, one of the eNodeBs received from the eNodeB a bit block, wherein the bit block is associated with a block size length and a modulation and write code scheme; and the UE determines a matrix prototype based on the block size length and the modulation and write code scheme a codeword sub-block size; and the UE, decoding the bit block received from the eNodeB to obtain a decoded information bit block, wherein the decoded information bit block is based on the matrix prototype and the codeword Obtained from the block size. 如請求項12之裝備,其中該矩陣原型對應於一已界定碼率,其中該已界定碼率為一8/9之寫碼率。The apparatus of claim 12, wherein the matrix prototype corresponds to a defined code rate, wherein the defined code rate is a write rate of 8/9. 如請求項12之裝備,其中該調變與寫碼方案對應於每赫茲每符號大約5.4位元之一頻譜效率。The apparatus of claim 12, wherein the modulation and write coding scheme corresponds to a spectral efficiency of about 5.4 bits per hertz per symbol. 如請求項12之裝備,其中該碼字子塊尺寸為84,並且該矩陣原型為: The apparatus of claim 12, wherein the codeword sub-block size is 84, and the matrix prototype is: 如請求項12之裝備,其中該碼字子塊尺寸為72,並且該矩陣原型為: The apparatus of claim 12, wherein the codeword sub-block size is 72, and the matrix prototype is: 如請求項12之裝備,其中該碼字子塊尺寸為60,並且該矩陣原型為: The apparatus of claim 12, wherein the codeword sub-block size is 60, and the matrix prototype is: 如請求項12之裝備,其中該碼字子塊尺寸為48,並且該矩陣原型為: The apparatus of claim 12, wherein the codeword sub-block size is 48, and the matrix prototype is: 如請求項12之裝備,其中該碼字子塊尺寸為36,並且該矩陣原型為: The apparatus of claim 12, wherein the codeword sub-block size is 36, and the matrix prototype is: 如請求項12之裝備,其中該碼字子塊尺寸為24,並且該矩陣原型為: The apparatus of claim 12, wherein the codeword sub-block size is 24, and the matrix prototype is: 如請求項12之裝備,其中該碼字子塊尺寸為12,並且該矩陣原型為: The apparatus of claim 12, wherein the codeword sub-block size is 12, and the matrix prototype is: 一種其上包含用於在一eNodeB編碼及解碼資訊之指令的至少一個非暫時性機器可讀儲存媒體,該等指令在被執行時進行下述: 使用該eNodeB之一或多個處理器,識別供自該eNodeB傳輸至一用戶設備(UE)之一資訊位元塊; 使用該eNodeB之該一或多個處理器,基於該資訊位元塊之一尺寸及一調變與寫碼方案,判定一低密度同位檢查(LDPC)矩陣及一碼字子塊尺寸; 使用該eNodeB之該一或多個處理器,編碼至少一部分之該資訊位元塊以取得一已編碼之碼字塊,其中至少該部分之該資訊位元塊為基於該LDPC矩陣與該碼字子塊尺寸來編碼; 使用該eNodeB之該一或多個處理器,自該已編碼之碼字塊選擇一位元子集;以及 使用該eNodeB之該一或多個處理器,格式化該位元子集以供傳輸至該UE。An at least one non-transitory machine readable storage medium having instructions thereon for encoding and decoding information at an eNodeB, the instructions being executed as follows: using one or more processors of the eNodeB to identify Transmitting from the eNodeB to one of the user equipment (UE) information bit blocks; using the one or more processors of the eNodeB, determining based on a size of the information bit block and a modulation and write code scheme a low density parity check (LDPC) matrix and a codeword sub-block size; using the one or more processors of the eNodeB, encoding at least a portion of the information bit block to obtain an encoded codeword block, wherein at least The information bit block of the portion is encoded based on the LDPC matrix and the codeword sub-block size; using the one or more processors of the eNodeB, selecting a one-bit subset from the encoded codeword block; And using the one or more processors of the eNodeB, formatting the subset of bits for transmission to the UE. 如請求項22之非暫時性機器可讀儲存媒體,更包含在執行時進行下述之指令: 識別接收自該UE之一位元塊,其中該位元塊與一第二區塊尺寸長度及一第二調變與寫碼方案相關聯; 基於該第二區塊尺寸長度及該第二調變與寫碼方案,判定一第二矩陣原型及一第二碼字子塊尺寸;以及 解碼該位元塊以取得一已解碼資訊位元塊,其中該已解碼資訊位元塊為基於該第二矩陣原型及該第二碼字子塊尺寸而取得。The non-transitory machine readable storage medium of claim 22, further comprising: executing, upon execution, an instruction to: identify a bit block received from the UE, wherein the bit block and a second block size length and a second modulation is associated with the write code scheme; determining a second matrix prototype and a second codeword sub-block size based on the second block size length and the second modulation and write code scheme; and decoding the The bit block obtains a decoded information bit block, wherein the decoded information bit block is obtained based on the second matrix prototype and the second code word sub-block size. 如請求項22之非暫時性機器可讀儲存媒體,其中: 該矩陣原型對應於一8/9之寫碼率;以及 該調變與寫碼方案對應於每赫茲每符號大約5.4位元之一頻譜效率。A non-transitory machine readable storage medium as claimed in claim 22, wherein: the matrix prototype corresponds to a write rate of 8/9; and the modulation and write code scheme corresponds to one of about 5.4 bits per Hz per symbol Spectral efficiency. 如請求項22之非暫時性機器可讀儲存媒體,其中: 該碼字子塊尺寸為84,並且該矩陣原型為:該碼字子塊尺寸為72,並且該矩陣原型為:該碼字子塊尺寸為60,並且該矩陣原型為:該碼字子塊尺寸為48,並且該矩陣原型為:該碼字子塊尺寸為36,並且該矩陣原型為:該碼字子塊尺寸為24,並且該矩陣原型為:該碼字子塊尺寸為12,並且該矩陣原型為: A non-transitory machine readable storage medium as claimed in claim 22, wherein: the codeword sub-block size is 84, and the matrix prototype is: The codeword sub-block size is 72, and the matrix prototype is: The codeword sub-block size is 60, and the matrix prototype is: The codeword sub-block size is 48, and the matrix prototype is: The codeword sub-block size is 36, and the matrix prototype is: The codeword sub-block size is 24, and the matrix prototype is: The codeword sub-block size is 12, and the matrix prototype is:
TW105139901A 2016-01-04 2016-12-02 Encoding and decoding using low-density parity-check matrices TWI722063B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201662274545P 2016-01-04 2016-01-04
US62/274,545 2016-01-04
WOPCT/US16/32931 2016-05-17
PCT/US2016/032931 WO2017119922A1 (en) 2016-01-04 2016-05-17 Encoding and decoding using low-density parity-check matrices

Publications (2)

Publication Number Publication Date
TW201725868A true TW201725868A (en) 2017-07-16
TWI722063B TWI722063B (en) 2021-03-21

Family

ID=56096706

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105139901A TWI722063B (en) 2016-01-04 2016-12-02 Encoding and decoding using low-density parity-check matrices

Country Status (4)

Country Link
CN (1) CN108370284B (en)
HK (1) HK1258269A1 (en)
TW (1) TWI722063B (en)
WO (1) WO2017119922A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI785134B (en) * 2017-10-31 2022-12-01 日商索尼股份有限公司 Sending device, sending method, receiving device, and receiving method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019191923A1 (en) * 2018-04-04 2019-10-10 Qualcomm Incorporated Techniques and apparatuses for codeword bit selection for rate-compatible polar coding
CN109298967A (en) * 2018-10-24 2019-02-01 江苏华存电子科技有限公司 A kind of method of the flash memory component error rate modulation core compiling bit rate amount of saving energy
CN111277354B (en) * 2018-12-04 2023-03-10 华为技术有限公司 Coding and decoding method and related device of low-density parity check LDPC code
WO2021253158A1 (en) * 2020-06-15 2021-12-23 Zte Corporation Wireless data transmissions using parity blocks
WO2024036634A1 (en) * 2022-08-19 2024-02-22 华为技术有限公司 Encoding method and apparatus, and decoding method and apparatus

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100996029B1 (en) * 2003-04-29 2010-11-22 삼성전자주식회사 Apparatus and method for coding of low density parity check code
US7581157B2 (en) * 2004-06-24 2009-08-25 Lg Electronics Inc. Method and apparatus of encoding and decoding data using low density parity check code in a wireless communication system
CN101076946B (en) * 2004-06-24 2012-05-30 Lg电子株式会社 A method and apparatus for encoding and decoding data using low density parity check code in a wireless communication system
US7934146B2 (en) * 2006-10-18 2011-04-26 Nokia Corporation Method, apparatus and computer program product providing for data block encoding and decoding
US8341492B2 (en) * 2008-07-28 2012-12-25 Broadcom Corporation Quasi-cyclic LDPC (low density parity check) code construction
US8467331B2 (en) * 2008-09-09 2013-06-18 Qualcomm Incorporated Common mode and unified frame format

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI785134B (en) * 2017-10-31 2022-12-01 日商索尼股份有限公司 Sending device, sending method, receiving device, and receiving method

Also Published As

Publication number Publication date
CN108370284B (en) 2021-05-14
TWI722063B (en) 2021-03-21
CN108370284A (en) 2018-08-03
HK1258269A1 (en) 2019-11-08
WO2017119922A1 (en) 2017-07-13

Similar Documents

Publication Publication Date Title
US10999010B2 (en) Rate matching using low-density parity-check codes
TWI717473B (en) Polar codes for harq transmissions
TWI722063B (en) Encoding and decoding using low-density parity-check matrices
US11784750B2 (en) HARQ for advanced channel codes
US10812173B2 (en) Receive beam indication for 5G systems
US20210329641A1 (en) Scrambling for control messages
TWI707569B (en) Grant-less pusch uplink
TWI756189B (en) Communication apparatuses and non-transistory computer-readable storage media for rate-compatible operation with low density parity-check codes
CN110214420B (en) Mutual information-based recursive polarization code construction
TW201722182A (en) System and method for downlink control indicator design in beam aggregation system
CN108432167B (en) Apparatus, system, and computer readable medium for encoding and decoding a message
US10911071B2 (en) Apparatus, method and system to support codes with variable codeword lengths and information lengths
US20220052709A1 (en) Crc interleaving pattern for polar codes
US10396878B2 (en) Channel coding and interleaving for control and user data in the physical uplink shared channel
US11134484B2 (en) Physical downlink control channel, PDCCH, search space design for fifth generation, 5G, and latency reduction
WO2018063190A1 (en) Transmission of beam refinement reference signals (brrs)
WO2017078784A1 (en) Adaptive packet retransmission systems
WO2018080569A1 (en) Channel coding schemes for 5g wearables