TW201723649A - Substrate pretreatment for reducing fill time in nanoimprint lithography - Google Patents

Substrate pretreatment for reducing fill time in nanoimprint lithography Download PDF

Info

Publication number
TW201723649A
TW201723649A TW105127284A TW105127284A TW201723649A TW 201723649 A TW201723649 A TW 201723649A TW 105127284 A TW105127284 A TW 105127284A TW 105127284 A TW105127284 A TW 105127284A TW 201723649 A TW201723649 A TW 201723649A
Authority
TW
Taiwan
Prior art keywords
photoresist material
substrate
pretreatment composition
pretreatment
coating
Prior art date
Application number
TW105127284A
Other languages
Chinese (zh)
Other versions
TWI708118B (en
Inventor
尼亞茲 克斯迪諾夫
堤墨希 史塔維克
劉衛軍
Original Assignee
佳能股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US15/004,679 external-priority patent/US20170068159A1/en
Priority claimed from US15/195,789 external-priority patent/US20170066208A1/en
Application filed by 佳能股份有限公司 filed Critical 佳能股份有限公司
Publication of TW201723649A publication Critical patent/TW201723649A/en
Application granted granted Critical
Publication of TWI708118B publication Critical patent/TWI708118B/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/38Treatment before imagewise removal, e.g. prebaking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/022Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing characterised by the disposition or the configuration, e.g. dimensions, of the embossments or the shaping tools therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/028Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • G03F7/162Coating on a rotating support, e.g. using a whirler or a spinner

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Polymerisation Methods In General (AREA)
  • Paints Or Removers (AREA)

Abstract

A nanoimprint lithography method includes disposing a pretreatment composition on a substrate to form a pretreatment coating. The pretreatment composition includes a polymerizable component. Discrete imprint resist portions are disposed on the pretreatment coating, with each discrete portion of the imprint resist covering a target area of the substrate. A composite polymerizable coating is formed on the substrate as each discrete portion of the imprint resist spreads beyond its target area. The composite polymerizable coating includes a mixture of the pretreatment composition and the imprint resist. The composite polymerizable coating is contacted with a template, and is polymerized to yield a composite polymeric layer on the substrate. The interfacial surface energy between the pretreatment composition-and air exceeds the interfacial surface energy between the imprint resist and air or between at least a component of the imprint resist and air.

Description

用於縮短奈米壓印微顯中的填充時間的基材預處理 Substrate pretreatment for shortening the filling time in nanoimprint microdisplay [相關申請案] [Related application]

本申請案和2016年6月28日提申之名稱為“SUBSTRATE PRETREATMENT FOR REDUCING FILL TIME IN NANOIMPRINT LITHOGRAPHY”的美國專利申請案第15/195,789號有關,該申請案主張2016年1月22日提申之名成為“SUBSTRATE PRETREATMENT FOR REDUCING FILL TIME IN NANOIMPRINT LITHOGRAPHY”的美國專利申請案第15/004,679號的優先權,該案又主張2015年9月8日提申之名稱為“SUBSTRATE PRETREATMENT FOR REDUCING FILL TIME IN NANOIMPRINT LITHOGRAPHY”的美國專利申請案第62/215,316的優先權,以上每一申請案的全部內容藉此參照而被併於本文中。 This application is related to U.S. Patent Application Serial No. 15/195,789, entitled "SUBSTRATE PRETREATMENT FOR REDUCING FILL TIME IN NANOIMPRINT LITHOGRAPHY", filed on June 28, 2016, which claims to be filed on January 22, 2016 The name of the U.S. Patent Application Serial No. 15/004,679, entitled "SUBSTRATE PRETREATMENT FOR REDUCING FILL TIME IN NANOIMPRINT LITHOGRAPHY", which claims to be "SUBSTRATE PRETREATMENT FOR REDUCING FILL TIME" on September 8, 2015. The priority of U.S. Patent Application Serial No. 62/215,316, the entire disclosure of which is incorporated herein by reference.

本發明係有關於一種藉由處理奈米壓印微影基材以提升壓印光阻材料在基材上的擴展來提高奈米壓印微影處理的產出率的技術。 SUMMARY OF THE INVENTION The present invention is directed to a technique for improving the yield of nanoimprint lithography by processing a nanoimprint lithography substrate to enhance the spread of the embossed photoresist material on the substrate.

隨著半導體處理工業在增加每單位的電路數量的同時為了更大的產量而努力,關注已被聚焦在可靠的高解析度圖案化技術的持續開發上。現今使用的此種技術中的一者一般被稱為壓印微影術(imprint lithography)。壓印微影處理被詳細地描述於許多公開文獻中,譬如美國專利申請公開案第2004/0065252號及美國專利第6,936,194號及第8,349,241號中,所有這些文獻藉此參照而被併於本文中。已使用壓印微影術的其它領域的發展包括了生物技術、光學技術、及機械系統。 As the semiconductor processing industry strives to increase production per unit of circuit while increasing the number of circuits per unit, attention has been focused on the continued development of reliable high-resolution patterning techniques. One of the techniques used today is commonly referred to as imprint lithography. The embossing lithography process is described in detail in a number of publications, such as U.S. Patent Application Publication No. 2004/0065252, and U.S. Patent No. 6,936,194, the disclosure of which is incorporated herein by reference. . Other areas of development that have used imprint lithography include biotechnology, optical technology, and mechanical systems.

一種被描述於前述專利文獻的每一者中的壓印微影技術包括形成一凹凸圖案(relief pattern)於一壓印光阻材料中以及將一和該凹凸圖案相對應的圖案轉移至一底下的基材上。該圖案化處理使用一和該基材間隔開的模板及一被沉基材該模板和該基材之間的可聚合成分(壓印光阻材料)。在一些情況下,該壓印光阻材料以分離的、間隔開的液滴的形式被配置在該基材上。在該壓印光阻材料接觸該模板之前,該等液滴被容許擴展。在該壓印光阻材料接觸該模板之後,該光阻材料被允許均勻地填充介於該基材和該模板之間的空間,然後該壓印光阻材料被固化以形成一層,其具有一保有該模板表面的形狀的圖案。在固化之間,該模板與該被圖案化的層分離,使得該模板和該基材被分開來。 An imprint lithography technique as described in each of the aforementioned patent documents includes forming a relief pattern in an imprint photoresist material and transferring a pattern corresponding to the concavo-convex pattern to a bottom On the substrate. The patterning process uses a template spaced apart from the substrate and a polymerizable component (imprinted photoresist material) between the template and the substrate. In some cases, the embossed photoresist material is disposed on the substrate in the form of separate, spaced apart droplets. The droplets are allowed to expand before the embossed photoresist material contacts the stencil. After the embossed photoresist material contacts the stencil, the photoresist material is allowed to uniformly fill a space between the substrate and the stencil, and then the embossed photoresist material is cured to form a layer having a A pattern that retains the shape of the surface of the template. Between curing, the template is separated from the patterned layer such that the template and the substrate are separated.

一壓印微影處理的產出率大致上取決於許多因素。當該壓印光阻材料以分離的、間隔開的液滴的形式被配置在該基材上時,產出率至少部分地取決於該等液滴在該基材上的擴展的效率及均勻度。壓印光阻材料的擴展可用多項因素來限制,譬如介於液滴和該基材及/或該模板之被液滴未完成的濕潤之間的氣隙。 The yield of an embossing lithography process is roughly dependent on many factors. When the embossed photoresist material is disposed on the substrate in the form of separate, spaced apart droplets, the yield is dependent at least in part on the efficiency and uniformity of the expansion of the droplets on the substrate. degree. The expansion of the embossed photoresist material can be limited by a number of factors, such as an air gap between the droplets and the substrate and/or the template being wetted by the droplets that are not completed.

在一第一態樣中,一種奈米壓印微影方法包括將一預處理組成物配置在一基材上以形成一預處理塗層於該基材上、及將分離的壓印光阻材料部分配置在該預處理塗層上,每一分離的壓印光阻材料部分覆蓋該基材的一目標區域。該預處理組成物包括一可聚合成分(polymerizable component),且該壓印光阻材料是一可聚合成分。當每一分離的壓印光阻材料部分擴展超出其目標區域時,一包括該預處理組成物和該壓印光阻材料的混合物之合成的可聚合塗層被形成在該基材上。該合成的可聚合塗層和一奈米壓印微影模板接觸且被聚合化以產生一合成的聚合層於該基材上。該預處理組成物和空氣之間的界面能(interfacial surface energy)大過該壓印光阻材料和空氣之間或該壓印光阻材料的至少一成分和空氣之間的界面能。 In a first aspect, a nanoimprint lithography method includes disposing a pretreatment composition on a substrate to form a pretreatment coating on the substrate, and separating the embossed photoresist A portion of the material is disposed on the pretreatment coating, and each of the separate imprinted photoresist materials partially covers a target region of the substrate. The pretreatment composition comprises a polymerizable component and the imprinted photoresist material is a polymerizable component. A polymerizable coating comprising a composite of the pretreatment composition and the imprinted photoresist material is formed on the substrate as each discrete embossed photoresist material portion extends beyond its target area. The synthetic polymerizable coating is contacted with a nanoimprint lithography template and polymerized to produce a synthetic polymeric layer on the substrate. The interfacial surface energy between the pretreatment composition and the air is greater than the interfacial energy between the imprinted photoresist material and the air or between at least one component of the imprinted photoresist material and the air.

第二態樣包括一種用第一態樣的方法所形成之奈米壓印微影堆疊。 The second aspect includes a nanoimprint lithography stack formed by the method of the first aspect.

第三態樣包括一種用第一態樣的方法來製造一裝置。該裝置可以是一經過處理的基材、一光學構件、或一石英模複製物。 The third aspect includes a method of fabricating a device using the first aspect. The device can be a treated substrate, an optical member, or a quartz mold replica.

第四態樣包括第三態樣所製造的裝置。 The fourth aspect includes the device fabricated in the third aspect.

在第五態樣中,一種奈米壓印微影套件包括一預處理組成物及一壓印光阻材料。該預處理組成物包括一可聚合成分,該壓印光阻材料是一可聚合組成物,且介於該預處理組成物和空氣之間的界面能大過該壓印光阻材料和空氣之間或該壓印光阻材料的至少一成分和空氣之間的界面能。 In a fifth aspect, a nanoimprint lithography kit includes a pretreatment composition and an imprint photoresist material. The pretreatment composition comprises a polymerizable component, the imprinted photoresist material is a polymerizable composition, and an interface energy between the pretreatment composition and air is greater than the imprinted photoresist material and air The interfacial energy between at least one component of the imprinted photoresist material and the air.

在第六態樣中,一種預處理奈米壓印微影基材的方法包括用一預處理組成物塗覆該基材及將壓印光阻材料的分離的部分配置在該預處理組成物上。該預處理組成物包括一可聚合成分。被配置在該預處理組成物上的該等分離的部分內的壓印光阻材料擴展得比被配置在同一基材上沒有該預處理組成物的部分內的壓印光阻材料快。在該壓印光阻材料的該等分離的部分在該預處理組成物上的配置和該壓印光阻材料與該奈米壓印微影模板接觸之間經過一被界定的時間長度之後,該壓印光阻材料和一奈米壓印微影模板接觸。在該壓印光阻材料與該奈米壓印微影模板接觸時,介於被配置在該預處理組成物上的該壓印光阻材料的該等分離的部分之間的間隙的體積小於在該基材上沒有該預處理組成物的部分內的該壓印光阻材料的該等分離的部分的配置之間已經過了該被界定的時間長度之後之 介於被配置在同一基材上沒有該預處理組成物的部分內之相同的壓印光阻材料之間的間隙的體積。 In a sixth aspect, a method of pretreating a nanoimprint lithography substrate comprises coating the substrate with a pretreatment composition and disposing a separate portion of the imprinted photoresist material in the pretreatment composition on. The pretreatment composition comprises a polymerizable component. The embossed photoresist material disposed within the separate portions of the pretreatment composition expands faster than the embossed photoresist material disposed within the portion of the same substrate that is free of the pretreatment composition. After a defined length of time between the arrangement of the separated portions of the imprinted photoresist material on the pretreatment composition and the contact of the imprinted photoresist material with the nanoimprint lithography template, The embossed photoresist material is in contact with a nano-imprint lithography template. When the embossed photoresist material is in contact with the nanoimprint lithography template, the volume of the gap between the separated portions of the embossed photoresist material disposed on the pretreatment composition is less than The configuration of the separated portions of the imprinted photoresist material in the portion of the substrate that does not have the pretreatment composition has passed the defined length of time The volume of the gap between the same imprinted photoresist material disposed within the portion of the same substrate that does not have the pretreatment composition.

在第七態樣中,一種奈米壓印微影堆疊包括一奈米壓印微影基材及一形成在該奈米壓印微影基材的一表面上之合成的聚合層。該合成的聚合層的化學成分是不均勻的,且包括多個被邊界分隔開的中心區域。該合成的聚合層在邊界處的化學成分不同於該合成的聚合層在該等中心區域內部的化學成分。在一些情況下,該奈米壓印微影基材包括一黏著層,且該合成的聚合層被形成在該黏著層的一表面上。在某些情況下,該合成的聚合層的中心區域和邊界是由一預處理組成物和一壓印光阻材料的非均質的混合物所形成。 In a seventh aspect, a nanoimprint lithography stack includes a nanoimprint lithography substrate and a synthetic polymeric layer formed on a surface of the nanoimprint lithography substrate. The chemical composition of the synthesized polymeric layer is non-uniform and includes a plurality of central regions separated by boundaries. The chemical composition of the synthesized polymeric layer at the boundary is different from the chemical composition of the synthetic polymeric layer within the central region. In some cases, the nanoimprint lithography substrate includes an adhesive layer, and the resultant polymeric layer is formed on a surface of the adhesive layer. In some cases, the central region and boundaries of the resultant polymeric layer are formed from a heterogeneous mixture of a pretreatment composition and an embossed photoresist material.

上述態樣的實施可包括一或多個下面的特徵或可由一包括一或多個下面的特徵的處理或構件形成。 Implementations of the above aspects may include one or more of the following features or may be formed by a process or member that includes one or more of the following features.

將該預處理組成物配置在該奈米壓印微影基材上可藉由將該預處理組成物旋轉塗覆於該奈米壓印微影基材上來達成。在一些情況下,該奈米壓印微影基材包含一黏著層,且將該預處理組成物配置在該奈米壓印微影基材上包括了將該預處理組成物配置在該黏著層上。 Disposing the pretreatment composition on the nanoimprint lithography substrate can be accomplished by spin coating the pretreatment composition onto the nanoimprint lithography substrate. In some cases, the nanoimprint lithography substrate comprises an adhesive layer, and disposing the pretreatment composition on the nanoimprint lithography substrate comprises disposing the pretreatment composition on the adhesive On the floor.

將該壓印光阻材料的該等分離的部分配置在該預處理塗層上可包括將該壓印光阻材料的液滴分佈在該預處理塗層上。在一些情況下,該壓印光阻材料的一分離的部分接觸該壓印光阻材料的至少一其它的分離的部分,其在該合成的可聚合塗層接觸該奈米壓印微影模板之前形 成一介於兩個分離的部分之間的邊界。當該合成的可聚合塗層接觸該奈米壓印微影模板時,該壓印光阻材料的每一分離的部分和該壓印光阻材料的至少一其它的分離的部分可被該預處理組成物分隔開。在某些情況下,該合成的塗層是該預處理組成物和該壓印光阻材料的一非均質的混合物。 Disposing the separate portions of the embossed photoresist material on the pretreatment coating can include dispensing droplets of the embossed photoresist material onto the pretreatment coating. In some cases, a separate portion of the imprinted photoresist material contacts at least one other discrete portion of the imprinted photoresist material that contacts the nanoimprint lithography template at the resultant polymerizable coating. Preform A boundary between two separate parts. When the synthetic polymerizable coating contacts the nanoimprint lithography template, each separate portion of the imprinted photoresist material and at least one other separated portion of the imprinted photoresist material may be subjected to the pre-preparation The treatment composition is separated. In some cases, the synthetic coating is a heterogeneous mixture of the pretreatment composition and the imprinted photoresist material.

將該合成的可聚合塗層聚合化以產生該合成的聚合層可包括將該該預處理組成物的一成分和該壓印光阻材料的一成分共價鍵結(covalently bonding)。該合成的可聚合塗層的化學成分可以是非均勻的。該奈米壓印微影模板和該合成的可聚合塗層可被分開。 Polymerizing the synthetic polymerizable coating to produce the synthetic polymeric layer can include covalently bonding a component of the pretreatment composition to a component of the imprinted photoresist material. The chemical composition of the synthetic polymerizable coating can be non-uniform. The nanoimprint lithography template and the synthetic polymerizable coating can be separated.

在一些情況下,該預處理組成物和空氣之間的界面能與該壓印光阻材料和空氣之間的界面能兩者間的差異是在0.5mN/m至25mN/m、0.5mN/m至15mN/m、或0.5mN/m至7mN/m的範圍之內。在某些情況下,該壓印光阻材料和空氣之間的界面能是在20mN/m至60mN/m、28mN/m至40mN/m、或32mN/m至35mN/m的範圍之內。在其它情況下,該預處理組成物和空氣之間的界面能是在30mN/m至45mN/m的範圍之內。該預處理組成物在23℃的黏度典型地是在1cP至200cP、1cP至100cP、或1cP至50cP的範圍之內,且該壓印光阻材料在23℃的黏度典型地是在1cP至50cP、1cP至25cP、或5cP至15cP的範圍之內。 In some cases, the difference between the interface energy between the pretreatment composition and air and the interfacial energy between the imprinted photoresist material and air is between 0.5 mN/m and 25 mN/m, 0.5 mN/ m to 15 mN/m, or within the range of 0.5 mN/m to 7 mN/m. In some cases, the interfacial energy between the imprinted photoresist material and air is in the range of 20 mN/m to 60 mN/m, 28 mN/m to 40 mN/m, or 32 mN/m to 35 mN/m. In other cases, the interfacial energy between the pretreatment composition and air is in the range of 30 mN/m to 45 mN/m. The viscosity of the pretreatment composition at 23 ° C is typically in the range of 1 cP to 200 cP, 1 cP to 100 cP, or 1 cP to 50 cP, and the viscosity of the imprinted photoresist material at 23 ° C is typically from 1 cP to 50 cP. , from 1 cP to 25 cP, or from 5 cP to 15 cP.

該預處理組成物可包括一單體(monomer)。 在一些情況下,該預處理組成物包括一單一的單體,其主要由一單一的單體所組成,或是一單一的單體。在某些情況下,該預處理組成物包括兩個或更多個單體(如,單官能基、雙官能基、或多官能基丙烯酸酯單體)。該預處理組成物可包括丙氧基化(3)三羥甲基丙烷三丙烯酸酯、三羥甲基丙烷三丙烯酸酯、二季戊四醇五丙烯酸酯、三羥甲基丙烷乙氧基三丙烯酸酯、1,12-十二烷二醇二丙烯酸酯、聚乙二醇二丙烯酸酯、四甘醇二丙烯酸酯、1,3-金剛烷二醇二丙烯酸酯、壬二醇二丙烯酸酯、間-二甲苯二丙烯酸酯、三環癸烷二甲醇二丙烯酸酯、或其任何組合。該預處理組成物可包括1,12-十二烷二醇二丙烯酸酯、三環癸烷二甲醇二丙烯酸酯、或其組合;四甘醇二丙烯酸酯、三環癸烷二甲醇二丙烯酸酯、或其組合;20wt%至40wt% 1,12-十二烷二醇二丙烯酸酯及60wt%至80wt%三環癸烷二甲醇二丙烯酸酯;或者約30wt% 1,12-十二烷二醇二丙烯酸酯及約70wt%三環癸烷二甲醇二丙烯酸酯。於某些情況中,該預處理組成物不含聚合反應引發劑。 The pretreatment composition can include a monomer. In some cases, the pretreatment composition comprises a single monomer consisting essentially of a single monomer or a single monomer. In some cases, the pretreatment composition includes two or more monomers (eg, monofunctional, difunctional, or polyfunctional acrylate monomers). The pretreatment composition may include propoxylated (3) trimethylolpropane triacrylate, trimethylolpropane triacrylate, dipentaerythritol pentaacrylate, trimethylolpropane ethoxy triacrylate, 1,12-dodecanediol diacrylate, polyethylene glycol diacrylate, tetraethylene glycol diacrylate, 1,3-adamantanediol diacrylate, decanediol diacrylate, m-two Toluene diacrylate, tricyclodecane dimethanol diacrylate, or any combination thereof. The pretreatment composition may include 1,12-dodecanediol diacrylate, tricyclodecane dimethanol diacrylate, or a combination thereof; tetraethylene glycol diacrylate, tricyclodecane dimethanol diacrylate Or a combination thereof; 20 wt% to 40 wt% 1,12-dodecanediol diacrylate and 60 wt% to 80 wt% tricyclodecane dimethanol diacrylate; or about 30 wt% 1,12-dodecane di Alcohol diacrylate and about 70% by weight of tricyclodecane dimethanol diacrylate. In some cases, the pretreatment composition is free of a polymerization initiator.

該壓印光阻材料可包括0wt%至80wt%、20wt%至80wt%、或40wt%至80wt%的一或多個單官能基丙烯酸酯;20wt%至98wt%的一或多個雙官能基或多官能基丙烯酸酯;1wt%至10wt%的一或多個光引發劑;及1wt%至10wt%的一或多個表面活性劑。在某些情況下,壓印光阻材料包括90wt%至98wt%的一或多個雙官能基或多官能基丙烯酸酯且實質上沒有單官能基丙烯酸酯。在 某些情況下,壓印光阻材料包括一或多個單官能基丙烯酸酯以及20wt%至75wt%的一或多個雙官能基或多官能基丙烯酸酯。 The imprinted photoresist material may comprise from 0 wt% to 80 wt%, from 20 wt% to 80 wt%, or from 40 wt% to 80 wt% of one or more monofunctional acrylates; from 20 wt% to 98 wt% of one or more difunctional groups Or a polyfunctional acrylate; from 1% to 10% by weight of one or more photoinitiators; and from 1% to 10% by weight of one or more surfactants. In some cases, the embossed photoresist material comprises from 90 wt% to 98 wt% of one or more difunctional or polyfunctional acrylates and is substantially free of monofunctional acrylates. in In some cases, the embossed photoresist material comprises one or more monofunctional acrylates and from 20% to 75% by weight of one or more difunctional or polyfunctional acrylates.

該預處理組成物的該可聚合成分以及該壓印光阻材料的一可聚合成分可起反應,用以在該合成的可聚合塗層的聚合期間形成一共價鍵結。該預處理組成物和該壓印光阻材料可分別包括一單體,其具有一共同的官能基團(如,一丙烯酸酯基團)。 The polymerizable component of the pretreatment composition and a polymerizable component of the imprinted photoresist material can react to form a covalent bond during polymerization of the synthetic polymerizable coating. The pretreatment composition and the imprinted photoresist material may each comprise a monomer having a common functional group (eg, an acrylate group).

描述於此說明書中的發明主體的一或多個實施例的細節配合附圖及下面的描述被提出。該發明主體的其它特徵、態樣、及好處從下面的描述、圖式、及申請專利範圍將會變得明顯。 The details of one or more embodiments of the inventive subject matter described in this specification are presented in conjunction with the drawings and the description below. Other features, aspects, and advantages of the invention will become apparent from the following description, drawings, and claims.

100‧‧‧壓印微影系統 100‧‧‧imprint lithography system

102‧‧‧基材 102‧‧‧Substrate

104‧‧‧基材夾頭 104‧‧‧Substrate chuck

106‧‧‧桌台 106‧‧‧Table

108‧‧‧模板 108‧‧‧ Template

110‧‧‧平台 110‧‧‧ platform

112‧‧‧表面的圖案 112‧‧‧Surface pattern

114‧‧‧間隔開的凹陷 114‧‧‧ spaced apart depressions

116‧‧‧凸起 116‧‧‧ bumps

118‧‧‧夾頭 118‧‧‧ chuck

120‧‧‧壓印頭 120‧‧ ‧ Imprint head

122‧‧‧流體施配系統 122‧‧‧ Fluid Dispensing System

124‧‧‧壓印光阻材料 124‧‧‧ Imprinted photoresist material

126‧‧‧能量源 126‧‧‧Energy source

128‧‧‧路徑 128‧‧‧ Path

130‧‧‧處理器 130‧‧‧Processor

132‧‧‧記憶體 132‧‧‧ memory

134‧‧‧表面 134‧‧‧ surface

200‧‧‧奈米壓印微影堆疊 200‧‧•Nano imprint lithography stack

202‧‧‧圖案化的聚合層 202‧‧‧ patterned polymeric layer

204‧‧‧殘留層 204‧‧‧Residual layer

206‧‧‧凸起 206‧‧‧ bumps

208‧‧‧凹陷 208‧‧‧ dent

t1‧‧‧厚度 T1‧‧‧ thickness

t2‧‧‧厚度 T2‧‧‧ thickness

300‧‧‧第一液體 300‧‧‧First liquid

302‧‧‧第二液體 302‧‧‧Second liquid

304‧‧‧基材 304‧‧‧Substrate

306‧‧‧氣體 306‧‧‧ gas

400‧‧‧處理 400‧‧‧Process

402-410‧‧‧操作 402-410‧‧‧ operation

500‧‧‧基底 500‧‧‧Base

502‧‧‧黏著層 502‧‧‧Adhesive layer

506‧‧‧預處理塗層 506‧‧‧Pretreatment coating

504‧‧‧預處理組成物 504‧‧‧Pretreatment composition

tp‧‧‧厚度 Tp‧‧‧ thickness

600‧‧‧壓印光阻材料的液滴(液滴) 600‧‧‧Dropped droplets of liquid photoresist (droplets)

602‧‧‧目標區域 602‧‧‧Target area

604‧‧‧合成的塗層 604‧‧‧Synthetic coating

606‧‧‧區域 606‧‧‧Area

608‧‧‧區域 608‧‧‧Area

610‧‧‧邊界 610‧‧‧ border

900‧‧‧合成的塗層 900‧‧‧Synthetic coating

902‧‧‧奈米壓印微影堆疊 902‧‧N. Nanoimprint lithography stack

904‧‧‧合成的聚合層 904‧‧‧Synthesized polymeric layer

1000‧‧‧合成的塗層 1000‧‧‧Synthetic coating

1002‧‧‧奈米壓印微影堆疊 1002‧‧•nano imprint lithography stack

1004‧‧‧聚合層 1004‧‧‧polymer layer

1006‧‧‧區域 1006‧‧‧Area

1008‧‧‧區域 1008‧‧‧Area

1100‧‧‧液滴 1100‧‧‧ droplets

1102‧‧‧黏著層 1102‧‧‧Adhesive layer

1104‧‧‧環 1104‧‧‧ Ring

1200‧‧‧液滴 1200‧‧‧ droplets

1202‧‧‧預處理塗層 1202‧‧‧Pretreatment coating

1204‧‧‧合成的塗層 1204‧‧‧Synthetic coating

1206‧‧‧邊界 1206‧‧‧ border

1208‧‧‧區域 1208‧‧‧Area

1300‧‧‧液滴 1300‧‧‧ droplets

1302‧‧‧預處理塗層 1302‧‧‧Pretreatment coating

1306‧‧‧邊界 1306‧‧‧ border

1400‧‧‧液滴 1400‧‧‧ droplets

1402‧‧‧預處理塗層 1402‧‧‧Pretreatment coating

1404‧‧‧合成的塗層 1404‧‧‧Synthetic coating

1406‧‧‧邊界 1406‧‧‧ border

PC1-PC9‧‧‧預處理組成物 PC1-PC9‧‧‧Pretreatment composition

圖1顯示一微影系統的簡化側視圖。 Figure 1 shows a simplified side view of a lithography system.

圖2顯示圖1中所示的基材的簡化側視圖,該基材上形成有一圖案層。 Figure 2 shows a simplified side view of the substrate shown in Figure 1 with a patterned layer formed thereon.

圖3A-3D顯示在一第一液體層上的一第二液體的液滴之間的擴展相互作用。 Figures 3A-3D show the extended interaction between droplets of a second liquid on a first liquid layer.

圖4是一流程圖,其顯示一用於促進奈米壓印微影產出率的處理。 Figure 4 is a flow chart showing a process for promoting the yield of nanoimprint lithography.

圖5A顯示一基材。圖5B顯示一被配置在該基材上的一預處理塗層。 Figure 5A shows a substrate. Figure 5B shows a pretreatment coating disposed on the substrate.

圖6A-6D顯示從配置在一具有預處理塗層的 基材上的壓印光阻材料的液滴成為一合成的塗層的形成。 Figures 6A-6D show the configuration from a pretreatment coating The droplets of the imprinted photoresist material on the substrate form the formation of a synthetic coating.

圖7A-7D分別顯示沿著圖6A-6D的w-w、x-x、y-y及z-z線的剖面圖。 Figures 7A-7D show cross-sectional views along the w-w, x-x, y-y, and z-z lines of Figures 6A-6D, respectively.

圖8A及8B顯示被一基材上的液滴移位之預處理塗層。 Figures 8A and 8B show a pretreatment coating displaced by droplets on a substrate.

圖9A-9C顯示和一均質的合成的塗層接觸的模板及所得到的奈米壓印微影堆疊結果的剖面圖。 Figures 9A-9C show cross-sectional views of a template in contact with a homogeneous synthetic coating and the results of the resulting nanoimprint lithography stack.

圖10A-10C顯示和一非均質的合成的塗層接觸的模板及所得到的奈米壓印微影堆疊結果的剖面圖。 Figures 10A-10C show cross-sectional views of a template in contact with a heterogeneous synthetic coating and the results of the resulting nanoimprint lithography stack.

圖11是對應於比較例1之壓印光阻材料的液滴在擴展於一沒有預處理塗層的基材的黏著層上之後的影像。 Figure 11 is an image of a droplet corresponding to the imprinted photoresist material of Comparative Example 1 after being spread over an adhesive layer of a substrate without a pretreatment coating.

圖12是描述於實例1中之壓印光阻材料的液滴在擴展於一預處理塗層上之後的影像。 Figure 12 is an image of the droplets of the imprinted photoresist material described in Example 1 after being spread over a pretreatment coating.

圖13是描述於實例2中之壓印光阻材料的液滴在擴展於一預處理塗層上之後的影像。 Figure 13 is an image of the droplets of the imprinted photoresist material described in Example 2 after being spread over a pretreatment coating.

圖14是描述於實例3中之壓印光阻材料的液滴在擴展於一預處理塗層上之後的影像。 Figure 14 is an image of the droplets of the imprinted photoresist material described in Example 3 after being spread over a pretreatment coating.

圖15是以用於壓印光阻材料及實例2的預處理的預擴展時間的函數來顯示缺陷密度。 Figure 15 shows the defect density as a function of the pre-expansion time for the imprinted photoresist material and the pre-treatment of Example 2.

圖16顯示液滴直徑vs.擴展預處理組成物的時間。 Figure 16 shows the droplet diameter vs. the time to extend the pretreatment composition.

圖17A是以兩個成分的預處理組成物中的一個成分的分數(fractional)的函數來顯示黏度。圖17B 顯示液滴直徑vs.兩個成分的預處理組成物中不同的分比例。圖17C顯示兩個成分的預處理組成物的表面張力vs.兩個成分的預處理組成物中的一個成分的分數。 Figure 17A shows the viscosity as a function of the fractional fraction of one of the two component pretreatment compositions. Figure 17B The droplet diameter vs. different fractions of the pretreatment composition of the two components are shown. Figure 17C shows the surface tension vs. the fraction of one component of the pretreatment composition of the two components.

圖1顯示一種被用來形成凹凸圖案於基材102上的壓印微影系統100。基材102可包括一基底及一黏附在該基底上的黏著層。基材102可被耦合至基材夾頭104。如圖所示,基材夾頭104是一真空夾頭。然而,基材夾頭104可以是包括但不侷限於真空式、銷針式、溝槽式、電磁式、及/或類此者。示範性的夾頭被描述於美國專利第6,873,087號中,其內容藉此參照被併於本文中。基材102及基材夾頭104可被桌台106進一步支撐。桌台106可提供沿著x軸、y軸及z軸的運動。桌台106、基材102及基材夾頭104亦可被設置在一基座上。 FIG. 1 shows an imprint lithography system 100 that is used to form a relief pattern on a substrate 102. The substrate 102 can include a substrate and an adhesive layer adhered to the substrate. Substrate 102 can be coupled to substrate chuck 104. As shown, the substrate chuck 104 is a vacuum chuck. However, the substrate chuck 104 can be, but is not limited to, vacuum, pin, groove, electromagnetic, and/or the like. An exemplary collet is described in U.S. Patent No. 6,873,087, the disclosure of which is incorporated herein by reference. Substrate 102 and substrate chuck 104 can be further supported by table 106. Table 106 can provide motion along the x-axis, y-axis, and z-axis. The table 106, the substrate 102, and the substrate holder 104 can also be disposed on a pedestal.

和該基材102分離的是一模板108。模板108大致上包括一矩形的或方形的平台(mesa)110,其凸出該模板面向基材102的表面一些距離。平台110的一表面可被形成圖案。在一些情況下,平台110被稱為模具110或遮罩110。模板108、模具110、或者兩者可用包括但不限於熔融矽石、石英、矽、矽氮化物、有機聚合物、矽氧烷聚合物、硼矽酸鹽玻璃、氟碳聚合物、金屬(例如鉻、鉭)、硬化藍寶石及類此者、或它們的組合等材料來形成。如圖所示,表面的圖案112包括了由多個間隔開的 凹陷114及凸起116所界定的特徵構造,但其實施例並不侷限於這些構造。表面的圖案112可界定任何原始的圖案,其形成一將被形成在基材102上的圖案的基礎。 Separated from the substrate 102 is a template 108. The template 108 generally includes a rectangular or square mesa 110 that projects some distance from the surface of the substrate 102. A surface of the platform 110 can be patterned. In some cases, platform 110 is referred to as mold 110 or mask 110. Template 108, mold 110, or both may include, but are not limited to, fused vermiculite, quartz, tantalum, niobium nitride, organic polymers, siloxane polymers, borosilicate glass, fluorocarbon polymers, metals (eg, Chromium, bismuth), hardened sapphire, and the like, or a combination thereof, are formed. As shown, the pattern 112 of the surface includes a plurality of spaced apart The features defined by the recesses 114 and the projections 116 are not limited to these configurations. The pattern 112 of the surface can define any original pattern that forms the basis of a pattern to be formed on the substrate 102.

模板108被耦合至夾頭118。夾頭118典型地被建構成但不侷限於真空式、銷針式、溝槽式、電磁式、或其它類似的夾頭種類。示範性的夾頭被描述於美國專利第6,873,087號中,其內容藉此參照被併於本文中。此外,夾頭108可被耦合至壓印頭120,使得夾頭118及/或壓印頭120可被建構來促進模板108的移動。 The template 108 is coupled to the collet 118. The collet 118 is typically constructed, but not limited to, a vacuum, pin, groove, electromagnetic, or other similar type of collet. An exemplary collet is described in U.S. Patent No. 6,873,087, the disclosure of which is incorporated herein by reference. Additionally, the collet 108 can be coupled to the imprint head 120 such that the collet 118 and/or the imprint head 120 can be constructed to facilitate movement of the template 108.

系統100可進一步包括一流體施配系統122。該流體施配系統122可被用來將壓印光阻材料124放置在基材102上。壓印光阻材料124可使用例如液滴施配、旋轉塗覆、浸泡塗覆、化學氣相沉積(CVD)、物理氣相沉積(PVD)、薄膜沉積、厚膜沉積、或類此者的技術來沉積在基材102上。在液滴施配方法中,壓印光阻材料124係以分離的、間隔開的液滴的形式被配置在基材102上,如圖1中所示。 System 100 can further include a fluid dispensing system 122. The fluid dispensing system 122 can be used to place the imprinted photoresist material 124 on the substrate 102. The imprinted photoresist material 124 can be used, for example, in droplet dispensing, spin coating, immersion coating, chemical vapor deposition (CVD), physical vapor deposition (PVD), thin film deposition, thick film deposition, or the like. Techniques are deposited on the substrate 102. In the droplet dispensing method, the embossed photoresist material 124 is disposed on the substrate 102 in the form of separate, spaced apart droplets, as shown in FIG.

系統100可進一步包括一能量源126,其被耦合以沿著路徑128導入能量。壓印頭120及桌台106可被建構來用和路徑128重疊的方式放置該模板108和該基材102。系統100可用一和桌台106、壓印頭120、流體施配系統122、及/或能量源126溝通的處理器130來加以調節,且可用一儲存在記憶體132內的電腦可讀的程式來操作。 System 100 can further include an energy source 126 coupled to direct energy along path 128. Imprint head 120 and table 106 can be constructed to place the template 108 and the substrate 102 in a manner that overlaps the path 128. The system 100 can be adjusted by a processor 130 that communicates with the table 106, the embossing head 120, the fluid dispensing system 122, and/or the energy source 126, and can be stored in a computer readable program stored in the memory 132. To operate.

壓印頭120可施加一力量至該模板108,使得模具110接觸壓印光阻材料124。在所想要的空間已填滿了壓印光阻材料124之後,能量源126產生能量(如,電磁輻射能或熱能),造成壓印光阻材料124固化(如,聚合及/或交聯),順符該基材102的表面134的形狀並將表面112圖案化。在壓印光阻材料124固化以形成一聚合層於基材102上之後,模具110和該聚合層分離。 The embossing head 120 can apply a force to the stencil 108 such that the mold 110 contacts the embossed photoresist material 124. After the desired space has been filled with the imprinted photoresist material 124, the energy source 126 generates energy (eg, electromagnetic radiant energy or thermal energy), causing the imprinted photoresist material 124 to cure (eg, polymerize and/or crosslink) The shape of the surface 134 of the substrate 102 is followed and the surface 112 is patterned. After the imprinted photoresist material 124 is cured to form a polymeric layer on the substrate 102, the mold 110 and the polymeric layer are separated.

圖2顯示藉由將壓印光阻材料124固化來形成奈米壓印微影堆疊200,用以在基材102上產生圖案化的聚合層202。圖案化層202的壓印光阻材料124可包括一殘留層204及多個特徵構造,其被顯示為凸起206和凹陷208,其中,凸起206具有厚度t1及殘留層204具有厚度t2。在奈米壓印微影中,一或多個凸起206、凹陷208、或這兩者平行於基材102的長度小於100nm、小於50nm或小於25nm。在一些情況中,一或多個凸起206、凹陷208、或這兩者的長度介於1nm和25nm之間、或介於1nm和10nm之間。 2 shows a nanoimprint lithography stack 200 formed by curing embossed photoresist material 124 to create a patterned polymeric layer 202 on substrate 102. The imprinted photoresist material 124 of the patterned layer 202 can include a residual layer 204 and a plurality of features configured as bumps 206 and recesses 208, wherein the bumps 206 have a thickness t 1 and the residual layer 204 has a thickness t 2 . In nanoimprint lithography, one or more of the protrusions 206, recesses 208, or both are parallel to the length of the substrate 102 of less than 100 nm, less than 50 nm, or less than 25 nm. In some cases, the length of one or more of the protrusions 206, recesses 208, or both is between 1 nm and 25 nm, or between 1 nm and 10 nm.

上述的系統及處理可進一步被實施在其它壓印微影處理及系統中,譬如描述於美國專利第6,932,934號;第7,077,992號;第7,197,396號;以及第7,396,475號的壓印微影處理及系統中,這些專利的內容藉此參照被併於本案中。 The above described systems and processes can be further implemented in other embossing lithography processes and systems, such as those described in U.S. Patent Nos. 6,932,934, 7,077,992, 7,197,396, and 7,396,475. The contents of these patents are hereby incorporated by reference.

對於壓印光阻材料124被配置在基材102上成為如圖1所示之分離的部分(“液滴”)的依需供液式 (drop-on-demand)或液滴施配式奈米壓印微影處理而言,壓印光阻材料的液滴在模具110接觸該壓印光阻材料之前及之後典型地擴展於該基材102上。如果壓印光阻材料124的液滴的擴展不足以覆蓋基材102或填充模具110的凹陷114的話,則聚合層202會被形成為具有空隙形式的缺陷。因此,依需供液式奈米壓印微影處理典型地包括一介於壓印光阻材料124液滴開始施配和該模具110開始朝向該基材102上的該壓印光阻材料移動(以及後續的該基材和該模板之間的空間的填充)之間的延遲。因此,一自動化的奈米壓印微影處理的產出率通常會受限於該壓印光阻材料在該基材上的擴散速率以及該模板的填充速率。因此,依需供液式或液滴施配式奈米壓印微影處理的產出率可藉由縮短“填充時間”(即,完全填滿介於該模板和基材之間的空間使得空隙不存在所需要的時間)來改善。 For the imprinted photoresist material 124 disposed on the substrate 102 as a separate portion ("droplet") as shown in Figure 1 For drop-on-demand or droplet dispensing nanoimprint lithography, droplets of the imprinted photoresist material typically extend to the substrate before and after the mold 110 contacts the imprinted photoresist material. On the material 102. If the expansion of the droplets of the imprinted photoresist material 124 is insufficient to cover the substrate 102 or fill the recesses 114 of the mold 110, the polymeric layer 202 may be formed to have defects in the form of voids. Accordingly, the on-demand liquid-implanted nanoimprint lithography process typically includes a movement of the imprinted photoresist material 124 to begin dispensing and the mold 110 begins to move toward the substrate 102 ( And a delay between the subsequent filling of the space between the substrate and the template. Thus, the yield of an automated nanoimprint lithography process is typically limited by the rate of diffusion of the imprinted photoresist material onto the substrate and the fill rate of the stencil. Thus, the yield of on-demand liquid or droplet dispensing nanoimprint lithography can be achieved by shortening the "fill time" (ie, completely filling the space between the template and the substrate). The gap does not exist for the required time) to improve.

縮短填充時間的一個方式是在該模具朝向該基材的移動被開始之前提高壓印光阻材料的液滴的擴展速率及該壓印光阻材料覆蓋該基材的覆蓋率。提高該基材的覆蓋率係減小介於壓印光阻材料的液滴之間的間隙的體積,藉以在該壓印光阻材料接觸該模具時減小被包陷在該等間隙內的氣體量並減少在所形成的被圖案化的層內的缺陷的數量及嚴重性。如本文中所述,壓印光阻材料的擴展速率及基材覆蓋的均勻度可藉由使用一液體預處理該基材來改善,該液體可在形成該圖案化的層的期間促進該壓印光阻材料的分離的部分快速且均勻的擴展並將該壓印光阻 材料聚合,使得當該壓印光阻材料接觸該模具時被包陷在間隙內的氣體量及在所得到的圖案化的層內的缺陷的數量及嚴重性都被降低。 One way to reduce the fill time is to increase the rate of expansion of the droplets of the imprinted photoresist material and the coverage of the imprinted photoresist material over the substrate before the movement of the mold toward the substrate is initiated. Increasing the coverage of the substrate reduces the volume of the gap between the droplets of the imprinted photoresist material, thereby reducing the entrapment in the gaps as the imprinted photoresist material contacts the mold The amount of gas reduces the amount and severity of defects in the formed patterned layer. As described herein, the rate of expansion of the imprinted photoresist material and the uniformity of substrate coverage can be improved by pretreating the substrate with a liquid that promotes the pressure during formation of the patterned layer. The separated portion of the printed photoresist material spreads quickly and evenly and the embossed photoresist The material is polymerized such that the amount of gas trapped within the gap and the number and severity of defects within the resulting patterned layer as the embossed photoresist contacts the mold are reduced.

一第二液體在一第一液體上的分離的部分的擴展可藉由參考圖3A-3D來理解。圖3A-3D顯示第一液體300及第二液體302在基材304上且和氣體306(如,空氣、鈍氣,譬如氦氣或氮氣、或鈍氣的組合)接觸。第一液體300以塗層或層的形式出現在基材304上(塗層和層在本文中被可互換地使用)。在一些情況下,第一液體300係以一具有數奈米(如,介於1nm至15nm、或介於5nm至10nm)的厚度的層出現。第二液體302係以一分離的部分(“液滴”)出現。第一液體300和第二液體302的特性可相對於彼此不同。例如,在一些情況下,第一液體300比第二液體302更黏稠且更緻密。 The expansion of the separated portion of a second liquid on a first liquid can be understood by reference to Figures 3A-3D. 3A-3D show the first liquid 300 and the second liquid 302 being in contact with the substrate 304 and with a gas 306 (eg, a combination of air, blunt gas, such as helium or nitrogen, or blunt gas). The first liquid 300 appears on the substrate 304 in the form of a coating or layer (the coatings and layers are used interchangeably herein). In some cases, the first liquid 300 appears as a layer having a thickness of a few nanometers (eg, between 1 nm and 15 nm, or between 5 nm and 10 nm). The second liquid 302 appears as a separate portion ("droplet"). The characteristics of the first liquid 300 and the second liquid 302 may be different with respect to each other. For example, in some cases, the first liquid 300 is more viscous and denser than the second liquid 302.

介於第二液體302和第一液體300之間的該界面能,或表面張力被標記為γL1L2。介於第一液體300和氣體306之間的界面能被標記為γL1G。介於第二液體302和氣體306之間的界面能被標記為γL2G。介於第一液體300和基材304之間的界面能被標記為γSL1。介於第二液體302和基材304之間的界面能被標記為γSL2The interfacial energy, or surface tension, between the second liquid 302 and the first liquid 300 is labeled γ L1L2 . The interface between the first liquid 300 and the gas 306 can be labeled as γ L1G . The interface between the second liquid 302 and the gas 306 can be labeled as γ L2G . The interface between the first liquid 300 and the substrate 304 can be labeled as γ SL1 . The interface between the second liquid 302 and the substrate 304 can be labeled as γ SL2 .

圖3A將第二液體302顯示為一被滴在第一液體300上的液滴。第二液體302並未使第一液體300變形且未接觸基材304。如圖所示,第一液體300和第二液體302沒有彼此相混,介於第一液體和第二液體之間的界面 被顯示為平的。在平衡時,第二液體302在第一液體300上的接觸角度是θ,它透過楊氏等式(Young’s equation)和界面能γL1G、γL2G及γL1L2相關聯:γ L1G =γ L1L2+γ L2G .cos(θ) (1)如果, 則θ=0°,且第二液體302完全擴展於第一液體300上。如果第一及第二液體彼此相混的話,則在一段時間之後,γ L1L2=0 (3)在此情況下,第二液體302完全擴展在第一液體300上的條件是 對於第一液體300是薄膜且第二液體302是小液滴而言,彼此相混可藉由擴散處理來限制。因此,為了要使第二液體302擴展於第一液體300上,當第二液體302以液滴的形式被滴在第一液體300上時,不等式(2)更適用於擴展的初始階段。 FIG. 3A shows the second liquid 302 as a droplet that is dropped on the first liquid 300. The second liquid 302 does not deform the first liquid 300 and does not contact the substrate 304. As shown, the first liquid 300 and the second liquid 302 are not mixed with each other, and the interface between the first liquid and the second liquid is shown to be flat. At equilibrium, the contact angle of the second liquid 302 on the first liquid 300 is θ, which is related to the interfacial energy γ L1G , γ L2G and γ L1L2 by the Young's equation: γ L 1 G = γ L 1 L 2 + γ L 2 G . Cos(θ) (1) If, Then θ = 0°, and the second liquid 302 is completely expanded on the first liquid 300. If the first and second liquids are mixed with each other, then after a period of time, γ L 1 L 2 =0 (3). In this case, the condition that the second liquid 302 is completely expanded on the first liquid 300 is For the first liquid 300 to be a thin film and the second liquid 302 to be a small liquid droplet, the mixing with each other can be restricted by a diffusion treatment. Therefore, in order to expand the second liquid 302 onto the first liquid 300, when the second liquid 302 is dropped on the first liquid 300 in the form of droplets, the inequality (2) is more suitable for the initial stage of expansion.

圖3B顯示當第一液體300的底層很厚時,形成第二液體302的液滴的接觸角度。在此例子中,該液滴沒有接觸基材304。第二液體302的液滴和第一液體300的層以角度α、β、及θ相交,其中α+β+θ=2π (5)沿著每一界面的力平衡有三個條件:γ L2G +γ L1L2.cos(θ)+γ L1G .cos(α)=0 (6) FIG. 3B shows the contact angle of the droplets forming the second liquid 302 when the bottom layer of the first liquid 300 is thick. In this example, the droplet does not contact the substrate 304. The droplets of the second liquid 302 and the layers of the first liquid 300 intersect at angles α , β, and θ, where α + β + θ = 2 π (5) There are three conditions for the force balance along each interface: γ L 2 G + γ L 1 L 2 . Cos(θ)+ γ L 1 G . Cos( α )=0 (6)

γ L2G .cos(θ)+γ L1L2+γ L1G .cos(β)=0 (7) γ L 2 G . Cos(θ)+ γ L 1 L 2 + γ L 1 G . Cos(β)=0 (7)

γ L2G .cos(α)+γ L1L2.cos(β)+γ L1G =0 (8)如果第一液體300和第二液體302彼此相混的話,則γ L1L2=0 (9)且等式(6)-(8)變成:γ L2G+ γ L1G .cos(α)=0 (10) γ L 2 G . Cos( α )+ γ L 1 L 2 . Cos(β)+ γ L 1 G =0 (8) If the first liquid 300 and the second liquid 302 are mixed with each other, γ L 1 L 2 =0 (9) and the equations (6)-(8) Becomes: γ L 2 G + γ L 1 G . Cos( α )=0 (10)

γ L2G .cos(θ)+γ L1G .cos(β)=0 (11) γ L 2 G . Cos(θ)+ γ L 1 G . Cos(β)=0 (11)

γ L2G .cos(α)+γ L1G =0 (12)等式(10)及(12)給出 以及α=0,π (14)當第二液體302弄濕該第一液體300時,α=π (15) γ L 2 G . Cos( α )+ γ L 1 G =0 (12) Equations (10) and (12) are given And α =0, π (14) when the second liquid 302 wets the first liquid 300, α = π (15)

γ L2G =γ L1G (16)且等式(11)給出cos(θ)+cos(β)=0 (17)將此結果結合等式(5)及(15)給出θ=0 (18) γ L 2 G = γ L 1 G (16) and equation (11) gives cos(θ) + cos(β) = 0 (17). This result is given in conjunction with equations (5) and (15). =0 (18)

β=π (19)因此,等式(15)、(18)、及(19)給出角度α、β、及θ的解答。當時,該等界面之間沒有平衡。等式(12)變成一不等式,即使 是α=π,且第二液體302連續地擴展於該第一液體300上。 β = π (19) Therefore, equations (15), (18), and (19) give solutions for angles α , β, and θ. when There is no balance between these interfaces. Equation (12) becomes an inequality, even if α = π , and the second liquid 302 continuously expands on the first liquid 300.

圖3C顯示一接觸基材304同時亦具有一與第一液體300接觸的界面的第二液體302的液滴的一更為複雜的幾何形狀。介於第一液體300、第二液體302、及氣體306之間的界面區域(其由角度α、β、θ1所界定)以及界於第一液體300、第二液體302及基材304之間的界面區域(其由角度θ2所界定)必需被考慮,用以決定第二液體在第一液體上的擴展行為。 3C shows a more complex geometry of a droplet of the second liquid 302 that contacts the substrate 304 while also having an interface with the first liquid 300. An interface region between the first liquid 300, the second liquid 302, and the gas 306 (defined by the angles α , β, θ 1 ) and the first liquid 300, the second liquid 302, and the substrate 304 The interfacial region (which is defined by the angle θ 2 ) must be considered to determine the spreading behavior of the second liquid on the first liquid.

介於第一液體300、第二液體302、及氣體306之間的界面區域是有等式(6)-(8)所主導。因為第一液體300和第二液體302彼此不相混,所以γ L1L2=0 (21)等式(14)給出角度α的解答。在此例子中,假定α=0 (22)且θ1=π (23) The interface region between the first liquid 300, the second liquid 302, and the gas 306 is dominated by equations (6)-(8). Since the first liquid 300 and the second liquid 302 are not mixed with each other, γ L 1 L 2 =0 (21) Equation (14) gives the solution of the angle α . In this example, assume that α = 0 (22) and θ 1 = π (23)

β=π (24)當時,第二液體302的液滴和第一液體300之間沒有平衡,且液滴沿著第二液體和氣體之間的界面連續地擴展直到被其他物理限制(如,體積的守衡及相互混合)所侷限為止。 == π (24) At the same time, there is no balance between the droplets of the second liquid 302 and the first liquid 300, and the droplets continuously expand along the interface between the second liquid and the gas until they are otherwise physically restricted (eg, volumetric balance and mutual Mixed) is limited.

關於第一液體300、第二液體302及基材304 之間的界面區域,一類似等式(1)的等式應被考慮:γ SL1=γ SL2+γ L1L2.cos(θ2) (26) Regarding the interface region between the first liquid 300, the second liquid 302, and the substrate 304, an equation similar to the equation (1) should be considered: γ SL 1 = γ SL 2 + γ L 1 L 2 . Cos(θ 2 ) (26)

該液滴完全地擴展,且θ2=0。 The droplet is fully expanded and θ 2 =0.

再次地,對於可彼此相混的液體而言,第二項γL1L2=0,且不等式(27)被簡化為 Again, for liquids that can be mixed with each other, the second term γ L1L2 =0, and inequality (27) is reduced to

當擴展之前及之後的能量被考慮時,用於液滴擴展的結合條件被表示為 When energy before and after expansion is considered, the binding condition for droplet expansion is expressed as

這應會有一能量較佳的轉換(即,將該系統的能量最小化的轉換)。 This should have a better energy conversion (ie, a conversion that minimizes the energy of the system).

在不等式(29)中的四個項之間不同的關係將決定液滴擴展特徵。如果不等式(25)是有效的而不等式(28)是無效的話,則第二液體302的液滴一開始可沿著第一液體300的表面擴展。或者,只要不等式(28)能保持而不等式(25)不能保持,則該液滴可沿著液體-固體界面開始擴展。最終,第一液體300和第二液體302將彼此相混,因而導入更多的複雜性。 A different relationship between the four terms in inequality (29) will determine the droplet extension feature. If inequality (25) is valid and equation (28) is not valid, the droplets of the second liquid 302 may initially expand along the surface of the first liquid 300. Alternatively, as long as inequality (28) can be maintained and inequality (25) cannot be maintained, the droplets can begin to expand along the liquid-solid interface. Eventually, the first liquid 300 and the second liquid 302 will mix with one another, thus introducing more complexity.

圖3D顯示一接觸基材304同時具有一和第一液體300的界面的第二液體302的液滴的圖式。如圖3D所示,有兩個該第二液體302的液滴的每一側都有兩個相交會的界面區域。第一個界面區域是第一液體300、第二液體302、及氣體306相會的地方,其以角度α、β、及 θ1來標示。相交會的第二個界面區域是第一液體300、第二液體302、及基材304相會的地方,其以角度θ2來標示。在此處,當介於第二液體302和基材304之間的界面的表面張力大過介於第一液體300和基材的表面張力(γSL2 γSL1)時,隨著液滴的擴展,θ1接近於0°且θ2接近180°。亦即,第二液體302的該液滴沿著該第一液體300和該第二液體之間的界面擴展且不會沿介於該第二液體和該基材304之間的界面擴展。 3D shows a pattern of droplets of a second liquid 302 that contacts the substrate 304 while having an interface with the first liquid 300. As shown in Figure 3D, each of the two droplets of the second liquid 302 has two intersecting interface regions. The first interface region is where the first liquid 300, the second liquid 302, and the gas 306 meet, and is indicated by angles α , β, and θ 1 . The second interface region of the intersection is where the first liquid 300, the second liquid 302, and the substrate 304 meet, which is indicated by the angle θ 2 . Here, when the surface tension between the interface between the second liquid 302 and the substrate 304 is greater than the surface tension between the first liquid 300 and the substrate (γ SL2) When γ SL1 ), θ 1 is close to 0° and θ 2 is close to 180° as the droplet expands. That is, the droplet of the second liquid 302 expands along the interface between the first liquid 300 and the second liquid and does not spread along the interface between the second liquid and the substrate 304.

等式(6)-(8)可適用於介於第一液體300、第二液體302、及氣體306之間的界面。第一液體300和第二液體302是不會彼此相混的,所以γ L1L2=0 (30)。 Equations (6)-(8) are applicable to the interface between the first liquid 300, the second liquid 302, and the gas 306. The first liquid 300 and the second liquid 302 are not mixed with each other, so γ L 1 L 2 =0 (30).

等式(14)給出了角度α的解答。對於α=π (31),等式(11)給出了cos(θ1)+cos(β)=0 (32)以及θ1=0 (33) Equation (14) gives the solution of the angle α . For α = π (31), equation (11) gives cos(θ 1 ) + cos(β) = 0 (32) and θ 1 = 0 (33)

β=π (34)當時,第二液體302的液滴和第一液體300之間沒有平衡,且液滴沿著第二液體和氣體之間的界面連續地擴展直到被其他物理限制(如,體積的守衡及相互混合)所侷限為止。 == π (34) At the same time, there is no balance between the droplets of the second liquid 302 and the first liquid 300, and the droplets continuously expand along the interface between the second liquid and the gas until they are otherwise physically restricted (eg, volumetric balance and mutual Mixed) is limited.

關於第二液體302和基材304之間的界面區域,γSL1SL2L1L2.cos(θ2) (36) Regarding the interface region between the second liquid 302 and the substrate 304, γ SL1 = γ SL2 + γ L1L2 . Cos(θ 2 ) (36)

如果 且該等液體是彼此不相混的話,亦即,γ L1L2→0 (39) in case And the liquids are not mixed with each other, that is, γ L 1 L 2 →0 (39)

,則角度θ2接近180°,然後變成是未界定的。亦即,第二液體302具有沿著基材界面收縮且沿著第一液體300和氣體306之間的界面擴展的傾向。 Then, the angle θ 2 is close to 180° and then becomes undefined. That is, the second liquid 302 has a tendency to shrink along the substrate interface and expand along the interface between the first liquid 300 and the gas 306.

第二液體302在第一液體300上的擴展和用於完整擴展的表面能量關係可被總結成三種不同情況。在第一種情況中,第二液體302的液滴被配置在第一液體300的層上,且該第二液體302的液滴沒有接觸基材304。該第一液體300的層可以是厚或是薄,且第一液體300和第二液體302是彼此不相混的。在理想狀況下,當第一液體300在氣體306中的表面能量大於或等於第二液體302在氣體中的表面能量(γ L1G γ L2G )時,第二液體302的液滴的完全擴展可發生在第一液體300的層上。在第二種情況中,第二液體302的液滴被配置在該第一液體300的層上,同時接觸該基材304並同一時間擴展於該基材304上。第一液體300和第二液體302是彼此不相混的。 在理想狀況下,當:(i)第一液體300在氣體中的表面能量大於或等於第二液體302在氣體中的表面能量(γ L1G γ L2G )時;及(ii)第一液體和基材304之間的界面的表面能量大於第二液體和基材之間的界面的表面能量(γ SL1 γ SL2)時,完整的擴展就會發生。在第三種情況中,第二液體302的液滴被配置在該第一液體300的層上,同時接觸該基材304。擴展會沿著第二液體302和第一液體300之間的界面或是第二液體和基材304之間的界面發生。第一液體300和第二液體302是彼此不相混的。在理想狀況下,完整的擴展是在(i)第一液體300在氣體中的表面能量和第一液體與基材304之間的界面的表面能量的總合大於或等於第二液體302在氣體中的表面能量和第二液體與基材之間的界面的表面能量的總合(γ L1G +γ SL1 γ L2G +γ SL2),同時第一液體300在氣體中的表面能量大於或等於第二液體302在氣體中的表面能量(γ L1G γ L2G )時,或在(ii)介於第一液體和基材304之間的界面的表面能量大於第二液體和基材之間的界面的表面能量(γ SL1 γ SL2)時發生。當第二液體302包括多於一個成分時,完整的擴展係在(i)第一液體300在氣體中的表面能量和第一液體與基材304之間的界面的表面能量的總合大於或等於第二液體302在氣體中的表面能量和第二液體與基材之間的界面的表面能量的總合(γ L1G +γ SL1 γ L2G +γ SL2),同時第一液體300在氣體中的表面能量大於或等於第二液體302的至少一成分在氣體中的表 面能量時,或在(ii)介於第一液體和基材304之間的界面的表面能量大於第二液體的成分中的一種成分和基材之間的界面的表面能量時發生。 The expansion of the second liquid 302 on the first liquid 300 and the surface energy relationship for full expansion can be summarized into three different situations. In the first case, the droplets of the second liquid 302 are disposed on the layer of the first liquid 300, and the droplets of the second liquid 302 are not in contact with the substrate 304. The layer of the first liquid 300 may be thick or thin, and the first liquid 300 and the second liquid 302 are not miscible with each other. Under ideal conditions, when the surface energy of the first liquid 300 in the gas 306 is greater than or equal to the surface energy of the second liquid 302 in the gas ( γ L 1 G At γ L 2 G ), complete expansion of the droplets of the second liquid 302 can occur on the layers of the first liquid 300. In the second case, droplets of the second liquid 302 are disposed on the layer of the first liquid 300 while contacting the substrate 304 and expanding over the substrate 304 at the same time. The first liquid 300 and the second liquid 302 are not miscible with each other. Under ideal conditions, when: (i) the surface energy of the first liquid 300 in the gas is greater than or equal to the surface energy of the second liquid 302 in the gas ( γ L 1 G γ L 2 G ); and (ii) the surface energy of the interface between the first liquid and the substrate 304 is greater than the surface energy of the interface between the second liquid and the substrate ( γ SL 1 When γ SL 2 ), a complete extension will occur. In the third case, the droplets of the second liquid 302 are disposed on the layer of the first liquid 300 while contacting the substrate 304. The expansion may occur along the interface between the second liquid 302 and the first liquid 300 or the interface between the second liquid and the substrate 304. The first liquid 300 and the second liquid 302 are not miscible with each other. In an ideal situation, the complete expansion is at (i) the sum of the surface energy of the first liquid 300 in the gas and the surface energy of the interface between the first liquid and the substrate 304 is greater than or equal to the second liquid 302 in the gas The sum of the surface energy in the surface energy and the surface energy between the second liquid and the substrate ( γ L 1 G + γ SL 1 γ L 2 G + γ SL 2 ), while the surface energy of the first liquid 300 in the gas is greater than or equal to the surface energy of the second liquid 302 in the gas ( γ L 1 G γ L 2 G ), or at (ii) the surface energy of the interface between the first liquid and the substrate 304 is greater than the surface energy of the interface between the second liquid and the substrate ( γ SL 1 γ SL 2 ) occurs. When the second liquid 302 includes more than one component, the complete expansion is greater than or equal to (i) the sum of the surface energy of the first liquid 300 in the gas and the surface energy of the interface between the first liquid and the substrate 304. Equal to the sum of the surface energy of the second liquid 302 in the gas and the surface energy of the interface between the second liquid and the substrate ( γ L 1 G + γ SL 1 γ L 2 G + γ SL 2 ) while the surface energy of the first liquid 300 in the gas is greater than or equal to the surface energy of at least one component of the second liquid 302 in the gas, or (ii) between the first liquid Occurs when the surface energy of the interface between the substrate 304 and the substrate is greater than the surface energy of the interface between the component of the second liquid and the substrate.

藉由使用一被選擇的液體預處理組成物來預處理一奈米壓印微影基材用以具有一表面能量大於壓印光阻材料在環境氛圍中(如,空氣或鈍氣中)的表面能量,在依需供液式奈米壓印微影處理壓中,壓印光阻材料在基材上擴展的速率可被提高且在該壓印光阻材料接觸該模板之前,該壓印光阻材料在基材上的一更為均勻的厚度可被建立,藉以促進在該奈米壓印微影處理的產出率。此基材預處理的處理藉由改善液滴擴展並縮小在壓印之前該等壓印光阻材料液滴之間的間隙體積來縮短施配時間。當使用於本文中時,“施配時間”通常係指在液滴施配與模板接觸液滴之間的時間。如果該預處理組成物包括能夠和該壓印光阻材料彼此相混的可聚合成分的話,則這對於未添加不想要的成分而形成聚合層可作出有利的貢獻,且可獲得更為均勻的固化結果,藉以提供更為均勻的機械及蝕刻特性。 Pretreating a nanoimprint lithographic substrate by using a selected liquid pretreatment composition for having a surface energy greater than that of the imprinted photoresist material in an ambient atmosphere (eg, air or blunt gas) Surface energy, in an on-demand liquid nanoimprint lithography process, the rate at which the imprinted photoresist material spreads over the substrate can be increased and the imprint is applied before the imprinted photoresist material contacts the template A more uniform thickness of the photoresist material on the substrate can be established to promote the yield of the nanoimprint lithography process. This substrate pretreatment process shortens the dispensing time by improving droplet expansion and reducing the gap volume between the embossed photoresist droplets prior to imprinting. As used herein, "dispensing time" generally refers to the time between the dispensing of a droplet and the contact of a droplet with a template. If the pretreatment composition comprises a polymerizable component capable of being mixed with the imprinted photoresist material, this can make a favorable contribution to the formation of the polymer layer without adding an undesired component, and can be obtained more uniformly. The curing results to provide more uniform mechanical and etch characteristics.

圖4是一流程圖,其顯示一用來提高依需供液式奈米壓印微影處理的產出率的處理400。處理400包括操作402-410。在操作402中,一預處理組成物被配置在一奈米壓印微影基材上以形成一預處理塗層於該基材上。在操作404中,壓印光阻材料的分離的部分(“液滴”)被配置在該預處理塗層上,其中,每一液滴覆蓋該 基材的一目標區域。該預處理組成物和該壓印光阻材料被選擇使得該預處理組成物和該空氣之間的界面能高於該壓印光阻材料和空氣之間的界面能。 4 is a flow chart showing a process 400 for increasing the yield of a solution-on-demand nanoimprint lithography process. Process 400 includes operations 402-410. In operation 402, a pretreatment composition is disposed on a nanoimprint lithography substrate to form a pretreatment coating on the substrate. In operation 404, separate portions ("droplets") of the imprinted photoresist material are disposed on the pretreatment coating, wherein each droplet covers the A target area of the substrate. The pretreatment composition and the imprinted photoresist material are selected such that an interface energy between the pretreatment composition and the air is higher than an interfacial energy between the imprinted photoresist material and air.

在操作406中,當該壓印光阻材料的每一液滴擴展超出其目標區域時,一合成的可聚合塗層(“合成的塗層”)被形成在該基材上。合成的塗層包括該預處理組成物和該壓印光阻材料的一均質的或非均質的混合物。在操作408中,該合成的塗層和一奈米壓印微影模板(“模板”)接觸,且被容許擴展並填充介於該模板和該基材之間的空間,且在操作410中,該合成的塗層被聚合化以獲得一聚合層於該基材上。在該合成的塗層的聚合化之後,該模板與該聚合層被分離,留下一奈米壓印微影堆疊。當使用於本文中時,“奈米壓印微影堆疊”大致上係指該基材和黏附於該基材上的聚合層,該基材及該聚合層的每一者或這兩者可包括一或多個額外的(如,介於它們之間的)層。在一例子中,該基材包括一基底(base)及一黏附於該基底上的黏著層。 In operation 406, a synthetic polymerizable coating ("synthetic coating") is formed on the substrate as each droplet of the imprinted photoresist material expands beyond its target area. The composite coating comprises a homogenous or heterogeneous mixture of the pretreatment composition and the imprinted photoresist material. In operation 408, the composite coating is in contact with a nanoimprint lithography template ("template") and is allowed to expand and fill the space between the template and the substrate, and in operation 410 The synthetic coating is polymerized to obtain a polymeric layer on the substrate. After polymerization of the resultant coating, the template is separated from the polymeric layer leaving a nanoimprinted lithographic stack. As used herein, "nanoimprint lithography stack" generally refers to the substrate and a polymeric layer adhered to the substrate, either or both of the substrate and the polymeric layer. Includes one or more additional layers (eg, between them). In one example, the substrate includes a base and an adhesive layer adhered to the substrate.

在該光阻材料擴展期間,壓印光阻材料的表面能量在該模板和該基材之間的毛細管作用上扮演一重要的角色。在該被形成的毛細管彎液面(capillary meniscus)的兩側的壓力差和該液體的表面能量成正比。表面能量愈高,用於液體擴展的驅動力就愈大。因此,典型地,表面能量愈高的壓印光阻材料愈好。在和一預處理組成物相互作用的同時,該光阻材料液滴擴展的動力 (dynamics)取決於該壓印光阻材料和該預處理組成物這兩者的黏度。具有愈高的黏度的壓印光阻材料或預處理組成物傾向於減慢液滴擴展動力,因而例如會減慢該壓印處理。該毛細管壓力差和該界面張力(γ)成正比,且和有效半徑(γ)成反比,而且亦取決於該液體在該毛細管的表面上的弄濕角度(wetting angle)θ。對於奈米壓印微影處理中的快速填充而言,具有高表面張力及低接觸角度的壓印光阻材料是所想要的。壓印光阻材料在一奈米壓印微影模板表面的表面上的接觸角度典型地係小於90°、小於50°、或小於30°。 During the expansion of the photoresist material, the surface energy of the imprinted photoresist material plays an important role in the capillary action between the template and the substrate. The pressure difference across the formed capillary meniscus is proportional to the surface energy of the liquid. The higher the surface energy, the greater the driving force for liquid expansion. Therefore, typically, the higher the surface energy, the better the imprinted photoresist material. While interacting with a pretreatment composition, the dynamics of the droplet extension of the photoresist material depends on the viscosity of both the imprinted photoresist material and the pretreatment composition. An imprinted photoresist material or pretreatment composition having a higher viscosity tends to slow the droplet extension power, and thus, for example, slows down the imprint process. The capillary pressure difference is proportional to the interfacial tension ( γ ) and inversely proportional to the effective radius ( γ ) and also depends on the wetting angle θ of the liquid on the surface of the capillary. Imprinted photoresist materials with high surface tension and low contact angle are desirable for fast filling in nanoimprint lithography. The contact angle of the embossed photoresist material on the surface of the surface of the embossed lithography template is typically less than 90°, less than 50°, or less than 30°.

在處理400中,該預處理組成物和該壓印光阻材料包括例如描述於美國專利第7,157,036號及美國專利第8,076,386號中以及在Chou等人1995,‘Imprint of sub-25nm vias and trenches in polymers’,Applied Physics Letters 67(21):3114-3116;Chou等人1996,‘Nanoimprint lithography’,Journal of Vacuum Science Technology B 14(6):4129-4133;及Long等人2007,‘Materials for step and flash imprint lithography(S-FIL®)’,Journal of Materials Chemistry 17:3575-3580等文獻中的成分的混合物,所有這些專利及文獻的內容藉此參照被併於本文中。適合的成分包括可聚合的單體(“單體”)、交聯劑、樹脂、光引發劑、表面活性劑、或它們的任何組合。單體的種類包括丙烯酸酯類、甲基丙烯酸酯類、乙烯基醚類、及環氧化物,以及它們的多官能基衍生物。在一些情 況中,該預處理組成物、該壓印光阻材料、或這兩者是實質上沒有矽。在其它情況中,該預處理組成物、該壓印光阻材料、或這兩者是含有矽的。含矽的單體例如包括矽氧烷及二矽氧烷。樹脂可以是含矽的的樹脂(例如,倍半矽氧烷)及不含係的樹脂(例如,酚醛樹脂)。該預處理組成物、該壓印光阻材料、或這兩者亦可包括一或多個聚合引發劑或自由基產生劑。聚合引發劑的種類例如包括光引發劑(例如,醯偶姻類、呫噸酮類及苯甲酮類)、光酸產生劑(例如,磺酸鹽類及鎓鹽類)、及光鹼產生劑(例如,鄰位-硝苄基胺甲酸酯類、肟烏拉坦類及O-醯基肟類)。 In process 400, the pretreatment composition and the embossed photoresist material are described, for example, in U.S. Patent No. 7,157,036 and U.S. Patent No. 8,076,386, and in Chou et al. 1995, 'Imprint of sub-25 nm vias and trenches in Polymers', Applied Physics Letters 67(21): 3114-3116; Chou et al. 1996, 'Nanoimprint lithography', Journal of Vacuum Science Technology B 14(6): 4129-4133; and Long et al. 2007, 'Materials for step And flash imprint lithography (S-FIL®)', Journal of Materials Chemistry 17: 3575-3580, etc., the contents of which are incorporated herein by reference. Suitable ingredients include polymerizable monomers ("monomers"), crosslinkers, resins, photoinitiators, surfactants, or any combination thereof. The types of monomers include acrylates, methacrylates, vinyl ethers, and epoxides, as well as their polyfunctional derivatives. In some sentiments In this case, the pretreatment composition, the imprinted photoresist material, or both are substantially free of defects. In other cases, the pretreatment composition, the imprinted photoresist material, or both are germanium-containing. The ruthenium-containing monomer includes, for example, a decane and a dioxane. The resin may be a ruthenium-containing resin (for example, a sesquioxane) and a system-free resin (for example, a phenol resin). The pretreatment composition, the imprinted photoresist material, or both may also include one or more polymerization initiators or radical generators. The types of the polymerization initiator include, for example, photoinitiators (for example, samarium, xanthone, and benzophenone), photoacid generators (for example, sulfonates and phosphonium salts), and photobase generation. Agents (for example, ortho-nitrobenzyl carbamates, urethanes, and O-mercaptoquinones).

適合的單體包括單官能基、雙官能基或多官能基丙烯酸酯類、甲基丙烯酸酯類、乙烯基醚類以及環氧化物類,其中該單-、二-及多-分別係指一、二及三或多個所示官能基。某些或所有此等單體可被氟化(例如,全氟化)。舉例來說,在丙烯酸酯的例子中,該預處理組成物、該壓印光阻材料、或這兩者可含有一或多種單官能基丙烯酸酯類、一或多種雙官能基丙烯酸酯類、一或多種多官能基丙烯酸酯類或其組合。 Suitable monomers include monofunctional, difunctional or polyfunctional acrylates, methacrylates, vinyl ethers, and epoxides, wherein the mono-, di-, and poly- , two and three or more of the indicated functional groups. Some or all of these monomers may be fluorinated (eg, perfluorinated). For example, in the case of an acrylate, the pretreatment composition, the imprinted photoresist material, or both may contain one or more monofunctional acrylates, one or more difunctional acrylates, One or more polyfunctional acrylates or a combination thereof.

適合的單官能基丙烯酸酯類之實例包括異冰片基丙烯酸酯、3,3,5-三甲基環己基丙烯酸酯、二環戊烯基丙烯酸酯、苄基丙烯酸酯、1-萘基丙烯酸酯、4-氰苄基丙烯酸酯、五氟苄基丙烯酸酯、2-苯乙基丙烯酸酯、苯基丙烯酸酯、(2-乙基-2-甲基-1,3-二噁烷-4-基)甲基丙烯 酸酯、正己基丙烯酸酯、4-第三丁基環己基丙烯酸酯、甲氧聚乙二醇(350)單丙烯酸酯以及甲氧聚乙二醇(550)單丙烯酸酯。 Examples of suitable monofunctional acrylates include isobornyl acrylate, 3,3,5-trimethylcyclohexyl acrylate, dicyclopentenyl acrylate, benzyl acrylate, 1-naphthyl acrylate , 4-cyanobenzyl acrylate, pentafluorobenzyl acrylate, 2-phenylethyl acrylate, phenyl acrylate, (2-ethyl-2-methyl-1,3-dioxane-4- Methyl propylene Acid ester, n-hexyl acrylate, 4-tert-butylcyclohexyl acrylate, methoxypolyethylene glycol (350) monoacrylate, and methoxypolyethylene glycol (550) monoacrylate.

適合的二丙烯酸酯類之實例包括乙二醇二丙烯酸酯、二甘醇二丙烯酸酯、三甘醇二丙烯酸酯、四甘醇二丙烯酸酯、聚乙二醇二丙烯酸酯(例如Mn,avg=575)、1,2-丙二醇二丙烯酸酯,二丙二醇二丙烯酸酯、三丙二醇二丙烯酸酯、聚丙二醇二丙烯酸酯、1,3-丙二醇二丙烯酸酯、1,4-丁二醇二丙烯酸酯、2-丁烯-1,4-二丙烯酸酯、1,3-丁二醇二丙烯酸酯、3-甲基-1,3-丁二醇二丙烯酸酯、1,5-戊二醇二丙烯酸酯、1,6-己二醇二丙烯酸酯、1H,1H,6H,6H-全氟-1,6-己二醇二丙烯酸酯、1,9-壬二醇二丙烯酸酯、1,10-癸二醇二丙烯酸酯、1,12-十二烷二醇二丙烯酸酯、新戊二醇二丙烯酸酯、環己烷二甲醇二丙烯酸酯、三環癸烷二甲醇二丙烯酸酯、雙酚A二丙烯酸酯、乙氧基化雙酚A二丙烯酸酯、間-二甲苯二丙烯酸酯、乙氧基化(3)雙酚A二丙烯酸酯、乙氧基化(4)雙酚A二丙烯酸酯、乙氧基化(10)雙酚A二丙烯酸酯、二環戊烷基二丙烯酸酯、1,2-金剛烷二醇二丙烯酸酯、2,4-二乙基戊烷-1,5-二醇二丙烯酸酯、聚乙二醇(400)二丙烯酸酯、聚乙二醇(300)二丙烯酸酯、1,6-己二醇(EO)2二丙烯酸酯、1,6-己二醇(EO)5二丙烯酸酯、以及烷氧化脂族二丙烯酸酯。 Examples of suitable diacrylates include ethylene glycol diacrylate, diethylene glycol diacrylate, triethylene glycol diacrylate, tetraethylene glycol diacrylate, polyethylene glycol diacrylate (eg, Mn, avg = 575), 1,2-propanediol diacrylate, dipropylene glycol diacrylate, tripropylene glycol diacrylate, polypropylene glycol diacrylate, 1,3-propanediol diacrylate, 1,4-butanediol diacrylate, 2-butene-1,4-diacrylate, 1,3-butanediol diacrylate, 3-methyl-1,3-butanediol diacrylate, 1,5-pentanediol diacrylate 1,6-hexanediol diacrylate, 1H, 1H, 6H, 6H-perfluoro-1,6-hexanediol diacrylate, 1,9-nonanediol diacrylate, 1,10-anthracene Diol diacrylate, 1,12-dodecanediol diacrylate, neopentyl glycol diacrylate, cyclohexane dimethanol diacrylate, tricyclodecane dimethanol diacrylate, bisphenol A Acrylate, ethoxylated bisphenol A diacrylate, m-xylene diacrylate, ethoxylated (3) bisphenol A diacrylate, ethoxylated (4) bisphenol A diacrylate, Ethoxylated (10) bisphenol A Acrylate, dicyclopentane diacrylate, 1,2-adamantanediol diacrylate, 2,4-diethylpentane-1,5-diol diacrylate, polyethylene glycol (400 Diacrylate, polyethylene glycol (300) diacrylate, 1,6-hexanediol (EO) 2 diacrylate, 1,6-hexanediol (EO) 5 diacrylate, and alkoxylated grease Group diacrylate.

適合的多官能基丙烯酸酯類之實例包括三羥 甲基丙烷三丙烯酸酯、丙氧基化三羥甲基丙烷三丙烯酸酯(例如,丙氧基化(3)三羥甲基丙烷三丙烯酸酯、丙氧基化(6)三羥甲基丙烷三丙烯酸酯)、三羥甲基丙烷乙氧基三丙烯酸酯(例如,n~1.3,3,5)、二(三羥甲基丙烷)四丙烯酸酯、丙氧基化甘油基三丙烯酸酯(例如,丙氧基化(3)甘油基三丙烯酸酯)、三(2-羥乙基)異氰基尿酸三丙烯酸酯、季戊四醇三丙烯酸酯、季戊四醇四丙烯酸酯、乙氧基化季戊四醇四丙烯酸酯、二季戊四醇五丙烯酸酯、三季戊四醇八丙烯酸酯。 Examples of suitable polyfunctional acrylates include trihydroxyl Methylpropane triacrylate, propoxylated trimethylolpropane triacrylate (for example, propoxylated (3) trimethylolpropane triacrylate, propoxylated (6) trimethylolpropane Triacrylate), trimethylolpropane ethoxy triacrylate (eg, n~1.3,3,5), bis(trimethylolpropane)tetraacrylate, propoxylated glyceryl triacrylate ( For example, propoxylated (3) glyceryl triacrylate), tris(2-hydroxyethyl)isocyano uric acid triacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, ethoxylated pentaerythritol tetraacrylate Dipentaerythritol pentaacrylate, tripentaerythritol octaacrylate.

適當的交聯劑實例包括例如在此所述之該等雙官能基丙烯酸酯類及多官能基丙烯酸酯類。 Examples of suitable crosslinking agents include, for example, the difunctional acrylates and polyfunctional acrylates described herein.

光起始劑較佳地為自由基產生劑。適當的自由基產生劑之實例包括但不侷限於任意地具有取代基之2,4,5-三芳基咪唑二聚物例如2-(o-氯苯基)-4,5-二苯基咪唑二聚物、2-(o-氯苯基)-4,5-二(甲氧苯基)咪唑二聚物、2-(o-氟苯基)-4,5-二苯基咪唑二聚物、以及2-(o-或p-甲氧苯基)-4,5-二苯基咪唑二聚物;二苯甲酮衍生物例如二苯甲酮、N,N’-四甲基-4,4’-二胺基二苯甲酮(米蚩酮(Michler’s ketone))、N,N’-四乙基-4,4’-二胺基二苯甲酮、4-甲氧基-4’-二甲胺基二苯甲酮、4-氯二苯甲酮、4,4’-二甲氧基二苯甲酮、以及4,4’-二胺基二苯甲酮;α-胺基芳香族酮類衍生物例如2-苄基-2-二甲胺基-1-(4-嗎啉基苯基)-丁酮-1,2-甲基-1-[4-(甲硫基)苯基]-2-嗎啉基-丙-1-酮;醌類例如2-乙基蒽醌、菲醌,2-t-丁基 蒽醌、八甲基蒽醌、1,2-苯并蒽醌、2,3-苯并蒽醌、2-苯基蒽醌、2,3-二苯基蒽醌、1-氯蒽醌,2-甲基蒽醌、1,4-萘醌、9,10-菲醌、2-甲基-1,4-萘醌、以及2,3-二甲基蒽醌;苯偶姻醚類衍生物例如苯偶姻甲醚、苯偶姻乙醚、以及苯偶姻苯醚;苯偶姻衍生物例如苯偶姻、甲基苯偶姻、乙基苯偶姻、以及丙基苯偶姻;苄基衍生物例如苄基二甲基縮酮;吖啶衍生物例如9-苯基吖啶以及1,7-雙(9,9’-吖啶基)庚烷;N-苯甘胺酸衍生物例如N-苯甘胺酸;苯乙酮衍生物例如苯乙酮、3-甲基苯乙酮、苯乙酮苄基縮酮(acetophenone benzyl ketal)、1-羥基環己基苯基酮、以及2,2-二甲氧基-2-苯基苯乙酮;噻噸酮衍生物例如噻噸酮、二乙基噻噸酮、2-異丙基噻噸酮、以及2-氯噻噸酮、氧化醯基膦衍生物例如氧化2,4,6-三甲基苯甲醯基二苯基膦、氧化雙(2,4,6-三甲基苯甲醯基)苯基膦、以及氧化雙(2,6-二甲氧基苯甲醯基)-2,4,4-三甲基戊基膦;肟酯衍生物例如1,2-辛二酮、1-[4-(苯硫基)-,2-(O-苯甲醯基脂)]、乙酮以及1-[9-乙基-6-(2-甲基苯甲醯基)-9H-咔唑-3-基]-,1-(O-乙醯基肟);以及呫噸酮、茀酮、苯甲醛茀、芴、蒽醌、三苯胺、咔唑、1-(4-異丙苯基)-2-羥基-2-甲基丙-1-酮、以及2-羥基-2-甲基-1-苯基丙-1-酮。 The photoinitiator is preferably a free radical generator. Examples of suitable radical generating agents include, but are not limited to, 2,4,5-triarylimidazole dimers optionally having a substituent such as 2-(o-chlorophenyl)-4,5-diphenylimidazole Dimer, 2-(o-chlorophenyl)-4,5-bis(methoxyphenyl)imidazole dimer, 2-(o-fluorophenyl)-4,5-diphenylimidazole dimerization And 2-(o- or p-methoxyphenyl)-4,5-diphenylimidazole dimer; benzophenone derivatives such as benzophenone, N,N'-tetramethyl- 4,4'-Diaminobenzophenone (Michler's ketone), N,N'-tetraethyl-4,4'-diaminobenzophenone, 4-methoxy- 4'-dimethylaminobenzophenone, 4-chlorobenzophenone, 4,4'-dimethoxybenzophenone, and 4,4'-diaminobenzophenone; Amine aromatic ketone derivatives such as 2-benzyl-2-dimethylamino-1-(4-morpholinylphenyl)-butanone-1,2-methyl-1-[4-(A Thio)phenyl]-2-morpholinyl-propan-1-one; anthraquinones such as 2-ethylhydrazine, phenanthrenequinone, 2-t-butyl Anthraquinone, octamethylguanidine, 1,2-benzopyrene, 2,3-benzopyrene, 2-phenylindole, 2,3-diphenylanthracene, 1-chloroindole, 2-methylindole, 1,4-naphthoquinone, 9,10-phenanthrenequinone, 2-methyl-1,4-naphthoquinone, and 2,3-dimethylhydrazine; benzoin ether derivatives Such as benzoin methyl ether, benzoin ethyl ether, and benzoin phenyl ether; benzoin derivatives such as benzoin, methyl benzoin, ethyl benzoin, and propyl benzoin; benzyl Base derivatives such as benzyl dimethyl ketal; acridine derivatives such as 9-phenyl acridine and 1,7-bis(9,9'-acridinyl)heptane; N-phenylglycine derivatives For example, N-phenylglycine; acetophenone derivatives such as acetophenone, 3-methylacetophenone, acetophenone benzyl ketal, 1-hydroxycyclohexyl phenyl ketone, and 2 , 2-dimethoxy-2-phenylacetophenone; thioxanthone derivatives such as thioxanthone, diethylthioxanthone, 2-isopropylthioxanthone, and 2-chlorothioxanthone, a phosphinylphosphine derivative such as oxidized 2,4,6-trimethylbenzhydryldiphenylphosphine, bis(2,4,6-trimethylbenzylidene)phenylphosphine oxide, and oxidized double (2,6-dimethyl Oxylbenzylidene)-2,4,4-trimethylpentylphosphine; an oxime ester derivative such as 1,2-octanedione, 1-[4-(phenylthio)-, 2-(O -benzimidyl lipid)], ethyl ketone and 1-[9-ethyl-6-(2-methylbenzhydryl)-9H-indazol-3-yl]-, 1-(O-B醯 肟 肟); and xanthone, anthrone, benzaldehyde, hydrazine, hydrazine, triphenylamine, carbazole, 1-(4-isopropylphenyl)-2-hydroxy-2-methylpropan-1 a ketone, and 2-hydroxy-2-methyl-1-phenylpropan-1-one.

該等自由基產生劑之市售產物之實例包括但不侷限於IRGACURE 184,250,270,290,369,379,651,500,754,819,907,784,1173,2022,2100,2959,4265,BP, MBF,OXE01,OXE02,PAG121,PAG203,CGI-1700,-1750,-1850,CG24-61,CG2461,DAROCUR 1116,1173,LUCIRIN TPO,TPO-L,LR8893,LR8953,LR8728及LR8970(由BASF生產);以及由UCB生產之EBECRYL P36。 Examples of commercially available products of such free radical generators include, but are not limited to, IRGACURE 184, 250, 270, 290, 369, 379, 651,500, 754, 819, 907, 784, 1173, 2022, 2100, 2959, 4265, BP, MBF, OXE01, OXE02, PAG121, PAG203, CGI-1700, -1750, -1850, CG24-61, CG2461, DAROCUR 1116, 1173, LUCIRIN TPO, TPO-L, LR8893, LR8953, LR8728 and LR8970 (manufactured by BASF) ; and EBECRYL P36 produced by UCB.

氧化醯基膦類聚合引發劑或烷基酚類聚合引發劑是較佳的。在以上列示之實例中,該氧化醯基膦類聚合引發劑為氧化醯基膦類化合物例如氧化2,4,6-三甲基苯甲醯基二苯基膦、氧化雙(2,4,6-三甲基苯甲醯基)苯基膦、以及氧化雙(2,6-二甲氧基苯甲醯基)-2,4,4-三甲基戊基膦。於以上列示之實例中,該烷基酚類聚合引發劑為苯偶姻酮衍生物例如苯偶姻甲酮、苯偶姻乙醚以及苯偶姻苯醚;苯偶姻類衍生物例如苯偶姻、甲基苯偶姻、乙基苯偶姻以及丙基苯偶姻、苄基類衍生物例如苄基二甲基縮酮;苯乙酮類衍生物例如苯乙酮、3-甲基苯乙酮、苯乙酮苄基縮酮、1-羥基環己基苯基酮以及2,2-二甲氧基-2-苯基苯乙酮;以及α-胺基芳香族酮類衍生物例如2-苄基-2-二甲胺基-1-(4-嗎啉基苯基)-丁酮-1,2-甲基-1-[4-(甲硫基)苯基]-2-嗎啉基丙-1-酮。 A sulfonium phosphine-based polymerization initiator or an alkylphenol-based polymerization initiator is preferred. In the examples listed above, the ceramide-based phosphine-based polymerization initiator is a cerium oxide-based phosphine compound such as oxidized 2,4,6-trimethylbenzhydryldiphenylphosphine, oxidized bis (2,4) , 6-trimethylbenzimidyl)phenylphosphine, and bis(2,6-dimethoxybenzylidene)-2,4,4-trimethylpentylphosphine oxide. In the examples listed above, the alkylphenol-based polymerization initiator is a benzoinone derivative such as benzoin ketone, benzoin ethyl ether, and benzoin phenyl ether; a benzoin derivative such as a benzophenone Margin, methyl benzoin, ethyl benzoin and propyl benzoin, benzyl derivatives such as benzyl dimethyl ketal; acetophenone derivatives such as acetophenone, 3-methylbenzene Ethyl ketone, acetophenone benzyl ketal, 1-hydroxycyclohexyl phenyl ketone, and 2,2-dimethoxy-2-phenylacetophenone; and α-aminoaromatic ketone derivatives such as 2 -benzyl-2-dimethylamino-1-(4-morpholinylphenyl)-butanone-1,2-methyl-1-[4-(methylthio)phenyl]-2-? Orolinyl propan-1-one.

該光引發劑的含量是所有成分(用於溶劑的成分除外)的總重量的0.1wt%或更多及50wt%或更少,較佳地為0.1wt%或更多及20wt%或更少,更佳地為1wt%或更多及20wt%或更少。 The content of the photoinitiator is 0.1 wt% or more and 50 wt% or less, preferably 0.1 wt% or more and 20 wt% or less, based on the total weight of all components (excluding the components for the solvent). More preferably, it is 1 wt% or more and 20 wt% or less.

當該光引發劑的含量是溶劑成分除外的總重 量的1wt%或更多時,該可固化的成分的固化速率被加快。因此,反應效率可被改善。當該光引發劑的含量是溶劑成分除外的總重量的50wt%或更少時,所獲得之被固化的產物可以是一具有一定機械強度之被固化的產物。 When the content of the photoinitiator is the total weight excluding the solvent component When the amount is 1% by weight or more, the curing rate of the curable component is accelerated. Therefore, the reaction efficiency can be improved. When the content of the photoinitiator is 50% by weight or less based on the total weight of the solvent component, the obtained cured product may be a cured product having a certain mechanical strength.

適合的光起始劑之實例包括IRGACURE 907,IRGACURE 4265,651,1173,819,TPO以及TPO-L。 Examples of suitable photoinitiators include IRGACURE 907, IRGACURE 4265, 651, 1173, 819, TPO and TPO-L.

一表面活性劑可被施加一壓印微影模板的被圖案化的表面上、可被加至壓印微影光阻材料上、或這兩者上以減小該被固化的光阻材料和該模板之間的分離力,藉以減少壓印微影處理中所形成的壓印圖案內的缺陷並提高可用一壓印微影模板製造之成功的壓印數量。選擇一用於壓印光阻材料的解放劑的因素包括例如和該表面的親和力、該被處理的表面之想要的表面特性、及該解放劑在該壓印光阻材料內的保存期(shelf life)。雖然某些解放劑和該模板形成共價鍵結,但被氟化的非離子表面活性劑透過非共價鍵結交互作用(譬如,氫鍵及凡得瓦爾相交互作用)與模板相互作用。 a surfactant can be applied to the patterned surface of an embossed lithography template, can be applied to the embossed lithographic photoresist material, or both to reduce the cured photoresist material and The separation force between the stencils reduces defects in the embossed pattern formed in the embossing lithography process and increases the number of successful embossings that can be fabricated using an embossed lithography template. Factors in selecting a liberating agent for imprinting the photoresist material include, for example, affinity with the surface, desired surface characteristics of the treated surface, and shelf life of the liberating agent within the embossed photoresist material ( Shelf life). While certain liberating agents form covalent bonds with the template, the fluorinated nonionic surfactant interacts with the template through non-covalent bonding interactions (eg, hydrogen bonding and van der Waals interaction).

適合的表面活性劑之實例包括氟化及非氟化表面活性劑。該氟化及非氟化表面活性劑可為離子性或非離子性表面活性劑。適當的非離子性氟化表面活性劑包括含氟-脂肪族聚合性酯類、全氟醚類表面活性劑、聚氧乙烯之含氟表面活性劑、聚烷基醚類之含氟表面活性劑、氟烷基聚醚類等等。適當的非離子性非氟化表面活性劑包括乙氧基化醇類、乙氧基化烷基酚類,聚氧化乙烯-聚氧化 丙烯嵌段共聚物。 Examples of suitable surfactants include fluorinated and non-fluorinated surfactants. The fluorinated and non-fluorinated surfactants can be ionic or nonionic surfactants. Suitable nonionic fluorinated surfactants include fluorine-containing aliphatic polymeric esters, perfluoroether surfactants, polyoxyethylene fluorosurfactants, polyalkyl ether fluorosurfactants , fluoroalkyl polyethers and the like. Suitable nonionic non-fluorinated surfactants include ethoxylated alcohols, ethoxylated alkyl phenols, polyethylene oxide-polyoxygenation Propylene block copolymer.

例示性之市售表面活性劑成分包括但不侷限於由位於美國德拉威州Wilmington之E.I.du Pont de Nemours and Company製造之ZONYL® FSO及ZONYL® FS-300;由位於明尼蘇達州Maplewood之3M公司製造之FC-4432及FC-4430;由位於俄亥俄州Cincinnati之Pilot Chemical公司製造之MASURF® FS-1700、FS-2000及FS-2800;由位於德州Mansfield之Chemguard公司製造之S-107B;由日本NEOS Chemical Chuo-ku,Kobe-shi公司製造之FTERGENT 222F、FTERGENT 250、FTERGENT 251;由位於俄亥俄州Akron之OMNOVA Solutions Inc.公司製造之PolyFox PF-656;由位於紐澤西州Florham Park之BASF公司製造之Pluronic L35、L42、L43、L44、L63、L64等等;由位於紐澤西州Edison之Croda Inc.公司製造之Brij 35、58、78等等。 Exemplary commercially available surfactant ingredients include, but are not limited to, ZONYL® FSO and ZONYL® FS-300 manufactured by EI du Pont de Nemours and Company, Wilmington, Delaware, USA; 3M Company, Maplewood, Minnesota Manufactured FC-4432 and FC-4430; MASURF® FS-1700, FS-2000 and FS-2800 manufactured by Pilot Chemical Company, Cincinnati, Ohio; S-107B, manufactured by Chemguard, Inc., Mansfield, Texas; NEOS Chemical Chuo-ku, FTERGENT 222F, FTERGENT 250, FTERGENT 251 manufactured by Kobe-shi; PolyFox PF-656 manufactured by OMNOVA Solutions Inc. of Akron, Ohio; BASF Corporation, located in Florham Park, New Jersey Pluronic L35, L42, L43, L44, L63, L64, etc. manufactured by Brij 35, 58, 78, etc., manufactured by Croda Inc. of Edison, New Jersey.

此外,在不減損本發明的效果的前提下,除了上述的成分之外,該預處理組成物及該壓印光阻材料可根據不同的目的包括一或多種非可聚合的成分。此種成分的例子包括敏化劑、氫授體、抗氧化劑、聚合物成分、及其它添加物。 Further, the pretreatment composition and the imprinted photoresist material may include one or more non-polymerizable components according to different purposes, in addition to the above-described components, without detracting from the effects of the present invention. Examples of such ingredients include sensitizers, hydrogen donors, antioxidants, polymer components, and other additives.

敏化劑是為了加速聚合反應或改善反應轉換率的目的而被添加的化合物。適合的敏化劑的例子包括敏化染料。 The sensitizer is a compound added for the purpose of accelerating the polymerization reaction or improving the conversion rate of the reaction. Examples of suitable sensitizers include sensitizing dyes.

敏化染料是藉由吸收具有特定波長的光來激 活(excited)以與作為成分(B)的光引發劑相互作用的化合物。當使用於本文中時,相互作用(interact)係指從在激活狀態的該敏化染料到作為成分(B)的光引發劑的能量傳遞、電子傳遞、等等。 Sensitizing dyes are stimulated by absorbing light of a specific wavelength Excited as a compound that interacts with the photoinitiator as component (B). As used herein, interaction refers to energy transfer, electron transfer, and the like from the sensitizing dye in an activated state to a photoinitiator as component (B).

適合的敏化染料的例子包括但不侷限於蒽衍生物,蒽醌衍生物,芘衍生物,苝衍生物,咔唑衍生物,二苯甲酮衍生物,噻噸酮衍生物,呫噸酮衍生物,香豆素衍生物,吩噻嗪衍生物,樟腦醌衍生物,吖啶染料,噻喃鎓鹽(thiopyrylium salt)染料,部花青染料,喹啉染料,苯乙烯基喹啉染料,酮基香豆素染料,噻噸染料,呫噸染料,奧申諾(oxonol)染料,花青染料,若丹明染料以及吡喃鎓鹽染料。 Examples of suitable sensitizing dyes include, but are not limited to, anthracene derivatives, anthracene derivatives, anthracene derivatives, anthracene derivatives, carbazole derivatives, benzophenone derivatives, thioxanthone derivatives, xanthone Derivatives, coumarin derivatives, phenothiazine derivatives, camphorquinone derivatives, acridine dyes, thiopyrylium salt dyes, merocyanine dyes, quinoline dyes, styrylquinoline dyes, Ketocoyl coumarin dyes, thioxanthene dyes, xanthene dyes, oxonol dyes, cyanine dyes, rhodamine dyes, and pyrylium salt dyes.

這些敏化劑中的一種可被單獨使用、或者是兩種或更多種這些敏化劑可作為一混合物來使用。 One of these sensitizers may be used alone, or two or more of these sensitizers may be used as a mixture.

氫授體是和由作為成分(B)的光引發劑所產生的引發自由基(initiation radicals)、或和聚合物的生長端的自由基反應,用以產生更多反應性的自由基。氫授體較佳地是在成分(B)是一或多個光自由基產生劑時被添加的。 The hydrogen donor is a free radical reaction with initiation radicals produced by the photoinitiator as component (B) or with the growth end of the polymer to generate more reactive free radicals. The hydrogen donor is preferably added when component (B) is one or more photoradical generators.

適合的氫授體的特定例子包括但不限於胺類化合物例如n-丁胺,二-n-丁胺,三-n-丁胺,烯丙基硫脲,s-苄基異硫脲-p-甲苯亞磺酸鹽,三乙胺,二乙胺乙基甲基丙烯酸酯,三乙基四胺,4,4’-雙(二烷胺基)二苯甲酮,N,N-二甲胺基苯甲酸乙酯,N,N-二甲胺基苯甲酸異戊 酯,戊基-4-二甲胺基苯甲酸酯,三乙醇胺和N-苯基甘胺酸;以及巰基化合物例如2-巰基-N-苯基苯并咪唑和巰基丙酸酯。 Specific examples of suitable hydrogen donors include, but are not limited to, amine compounds such as n-butylamine, di-n-butylamine, tri-n-butylamine, allylthiourea, s-benzylisothiourea-p -toluenesulfinate, triethylamine, diethylamine ethyl methacrylate, triethyltetramine, 4,4'-bis(dialkylamino)benzophenone, N,N-dimethyl Ethyl benzoate, isoamyl N,N-dimethylaminobenzoate Esters, pentyl-4-dimethylaminobenzoic acid esters, triethanolamine and N-phenylglycine; and mercapto compounds such as 2-mercapto-N-phenylbenzimidazole and mercaptopropionate.

這些氫授體的一種可被單獨地使用,或者兩種或更多種這些氫授體係作為一混合物來使用。而且,該等氫授體具有和敏化劑一樣的功能。 One of these hydrogen donors may be used singly or two or more of these hydrogen donor systems may be used as one mixture. Moreover, the hydrogen donors have the same function as the sensitizer.

在壓印光阻材料中的這些成分(不可聚合的化合物(non-polymerizable component))的含量是所有成分(用於溶劑的成分除外)的總重量的0wt%或更多及50wt%或更少,較佳地為0.1wt%或更多及50wt%或更少,更佳地為0.1wt%或更多及20質量%或更少。 The content of these components (non-polymerizable components) in the imprinted photoresist material is 0 wt% or more and 50 wt% or less based on the total weight of all components (excluding the components for the solvent). It is preferably 0.1% by weight or more and 50% by weight or less, more preferably 0.1% by weight or more and 20% by mass or less.

此外,該壓印光阻材料可包括一或多種溶劑作為額外的成分。較佳的溶劑包括但不侷限於在平常壓力下沸點為80℃或更高及200℃或更低的溶劑。更為較佳的是各溶劑具有羥基、醚結構、酯結構或酮結構中之至少一者。 Additionally, the embossed photoresist material can include one or more solvents as an additional component. Preferred solvents include, but are not limited to, solvents having a boiling point of 80 ° C or higher and 200 ° C or lower at normal pressure. More preferably, each solvent has at least one of a hydroxyl group, an ether structure, an ester structure or a ketone structure.

適合的溶劑的特定例子包括醇類溶劑例如丙醇、異丙醇及丁醇;醚類溶劑例如乙二醇單甲基醚、乙二醇二甲基醚、乙二醇單乙基醚、乙二醇二乙基醚、乙二醇單丁基醚及丙二醇二甲基醚;酯類溶劑例如醋酸丁酯、乙二醇單乙基醚醋酸酯、乙二醇單丁基醚醋酸酯及丙二醇單甲基醚醋酸酯;以及酮類溶劑例如甲基異丁基酮、二異丁基酮、環己酮、2-庚酮、γ-丁內酯及乳酸乙酯。以選自此等溶劑之單一溶劑或混合溶劑為佳。 Specific examples of suitable solvents include alcohol solvents such as propanol, isopropanol and butanol; ether solvents such as ethylene glycol monomethyl ether, ethylene glycol dimethyl ether, ethylene glycol monoethyl ether, B Glycol diethyl ether, ethylene glycol monobutyl ether and propylene glycol dimethyl ether; ester solvents such as butyl acetate, ethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether acetate and propylene glycol Monomethyl ether acetate; and ketone solvents such as methyl isobutyl ketone, diisobutyl ketone, cyclohexanone, 2-heptanone, γ-butyrolactone, and ethyl lactate. It is preferred to use a single solvent or a mixed solvent selected from such solvents.

在一些例子中,該預處理組成物可和一或多種溶劑結合。在該預處理組成物係以旋轉塗覆的方式被施加的一個例子中,該預處理組成物和一或多種溶劑結合以促進在該基材上的擴展,擴展之後,實質上所有的溶劑都被蒸發掉,用以將該預處理組成物留在該基材上。 In some examples, the pretreatment composition can be combined with one or more solvents. In one example where the pretreatment composition is applied in a spin coating manner, the pretreatment composition is combined with one or more solvents to promote expansion on the substrate, after expansion, substantially all of the solvent It is evaporated to leave the pretreatment composition on the substrate.

適合用來和該預處理組成物結合的溶劑大致上包括相關於該壓印光阻材料被描述的溶劑。對於以旋轉塗覆來施用該預處理組成物而言,從塗覆特性的觀點來看,一選自於丙二醇單甲基醚醋酸酯、丙二醇單甲基醚、環己酮、2-庚酮、γ-丁內酯及乳酸乙酯的單一溶劑或混合式溶劑是特別適合的。 Solvents suitable for use in combination with the pretreatment composition generally comprise a solvent as described in relation to the imprinted photoresist material. For the application of the pretreatment composition by spin coating, from the viewpoint of coating characteristics, one selected from the group consisting of propylene glycol monomethyl ether acetate, propylene glycol monomethyl ether, cyclohexanone, and 2-heptanone A single solvent or a mixed solvent of γ-butyrolactone and ethyl lactate is particularly suitable.

將和該預處理組成物結合的溶劑成分的含量可藉由被形成的硬化層的黏度、塗層特性、薄膜厚度等等來適當地調整,且較佳地是該預處理組成物和該溶劑的總重量的70wt%或更多、90wt%或更多、更佳地是95wt%或更多。更大的溶劑成分的含量可讓該預處理組成物的薄膜厚度更薄。如果溶劑成分的含量是溶劑/預處理組成物混合物的70wt%或更少的話,則無法獲得適當的塗層特性。 The content of the solvent component to be combined with the pretreatment composition can be appropriately adjusted by the viscosity of the hardened layer to be formed, the coating property, the film thickness, and the like, and is preferably the pretreatment composition and the solvent. 70 wt% or more, 90 wt% or more, more preferably 95 wt% or more of the total weight. The larger solvent component content allows the film thickness of the pretreatment composition to be thinner. If the content of the solvent component is 70% by weight or less of the solvent/pretreatment composition mixture, appropriate coating characteristics cannot be obtained.

雖然這些溶劑可被使用在該壓印光阻材料中,但該壓印光阻材料應實質不包含溶劑為佳。當使用於本文中時,“實質不包含溶劑”一詞係指沒有溶劑以外之包含在該溶劑內部的其它溶劑(如,雜質)。例如,在依據此實施例的壓印光阻材料內的溶劑含量較佳地是整個壓 印光阻材料的3wt%或更少、更佳地是1wt%或更少。當使用於本文中時,溶劑係指通常被使用在可固化的組成物中或光引發劑中的溶劑。換言之,溶劑並不受限於它們的種類,只要該溶劑能夠溶解並均勻地散佈使用於本發明中的化合物且不和這些化合物反應即可。 Although these solvents can be used in the imprinted photoresist material, the imprinted photoresist material should preferably contain no solvent. As used herein, the term "substantially free of solvent" refers to other solvents (eg, impurities) contained within the solvent other than the solvent. For example, the solvent content in the imprint photoresist material according to this embodiment is preferably the entire pressure 3 wt% or less, more preferably 1 wt% or less of the photoresist material. As used herein, solvent refers to a solvent that is typically used in a curable composition or in a photoinitiator. In other words, the solvent is not limited to their kind as long as the solvent can dissolve and uniformly disperse the compound used in the present invention and does not react with these compounds.

在一些例子中,壓印光阻材料包括0wt%至80wt%(例如,20wt%至80wt%或者40wt%至80wt%)的一或多種單官能基丙烯酸酯;90wt%至98wt%的一或多種雙官能基或多官能基丙烯酸酯(例如,該壓印光阻材料可以實質上沒有單官能基丙烯酸酯類)或20wt%至75wt%之一或多種雙官能基或多官能基丙烯酸酯(例如,當有一或多個單官能基丙烯酸酯類存在時);1wt%至10wt%的一或多種光引發劑;及1wt%至10wt%的一或多種表面活性劑。在一例子中,該壓印光阻材料包括約40wt%至約50wt%的一或多種單官能基丙烯酸酯、約45wt%至約55wt%的一或多種雙官能基丙烯酸酯、約4wt%至約6wt%的一或多種光引發劑、及約3wt%的表面活性劑。在另一例子中,該壓印光阻材料包括約44wt%的一或多種單官能基丙烯酸酯、約48wt%的一或多種雙官能基丙烯酸酯、約5wt%的一或多種光引發劑、及約3wt%的表面活性劑。在又另一例子中,該壓印光阻材料包括約10wt%的第一單官能基丙烯酸酯(例如,異冰片基丙烯酸酯)、約34wt%之第二單官能基丙烯酸酯(例如,苄基丙烯酸酯)、約48wt%之雙官能基丙烯酸酯(例如,新 戊二醇二丙烯酸酯)、約2wt%的第一光引發劑(例如,IRGACURE TPO)、約3wt%的第二光引發劑(例如,DAROCUR 4265)、及約3wt%的表面活性劑。適合的表面活性劑的例子包括X-R-(OCH2CH2)nOH,其中R=烷基、芳基或聚(丙二醇),X=H或-(OCH2CH2)nOH,且n為整數(例如,2至20,5至15,或10-12)(例如,X=-(OCH2CH2)nOH,R=聚(丙二醇),且n=10-12);一含氟表面活性劑,其中X=全氟烷基或全氟醚,或其組合。該壓印光阻材料在23℃的黏度典型地是在1cP至50cP、1cP至25cP、或5cP至15cP的範圍內。介於該壓印光阻材料和空氣之間的界面能典型地是在20mN/m至60mN/m、28mN/m至40mN/m、或32mN/m至35mN/m的範圍內。黏度及界面能係如描述於本文的例子般地被界定。 In some examples, the imprinted photoresist material comprises from 0 wt% to 80 wt% (eg, from 20 wt% to 80 wt% or from 40 wt% to 80 wt%) of one or more monofunctional acrylates; from 90 wt% to 98 wt% of one or more A difunctional or polyfunctional acrylate (eg, the imprinted photoresist material may be substantially free of monofunctional acrylates) or from 20 wt% to 75 wt% of one or more difunctional or polyfunctional acrylates (eg, When one or more monofunctional acrylates are present; 1% to 10% by weight of one or more photoinitiators; and from 1% to 10% by weight of one or more surfactants. In one example, the embossed photoresist material comprises from about 40 wt% to about 50 wt% of one or more monofunctional acrylates, from about 45 wt% to about 55 wt% of one or more difunctional acrylates, and about 4 wt% to About 6 wt% of one or more photoinitiators, and about 3 wt% of surfactant. In another example, the embossed photoresist material comprises about 44% by weight of one or more monofunctional acrylates, about 48% by weight of one or more difunctional acrylates, about 5% by weight of one or more photoinitiators, And about 3 wt% of a surfactant. In yet another example, the embossed photoresist material comprises about 10% by weight of a first monofunctional acrylate (eg, isobornyl acrylate), about 34% by weight of a second monofunctional acrylate (eg, benzyl Base acrylate), about 48% by weight of a difunctional acrylate (eg, neopentyl glycol diacrylate), about 2% by weight of a first photoinitiator (eg, IRGACURE TPO), about 3% by weight of a second photoinitiator An agent (for example, DAROCUR 4265), and about 3 wt% of a surfactant. Examples of suitable surfactants include XR-(OCH 2 CH 2 ) n OH wherein R = alkyl, aryl or poly(propylene glycol), X = H or -(OCH 2 CH 2 ) n OH, and n is An integer (for example, 2 to 20, 5 to 15, or 10-12) (for example, X = -(OCH 2 CH 2 ) n OH, R = poly(propylene glycol), and n = 10-12); a surfactant wherein X = perfluoroalkyl or perfluoroether, or a combination thereof. The viscosity of the embossed photoresist material at 23 ° C is typically in the range of 1 cP to 50 cP, 1 cP to 25 cP, or 5 cP to 15 cP. The interfacial energy between the imprinted photoresist material and air is typically in the range of 20 mN/m to 60 mN/m, 28 mN/m to 40 mN/m, or 32 mN/m to 35 mN/m. Viscosity and interfacial energy are defined as described in the examples herein.

在一例子中,一預處理組成物包括0wt%至80wt%(例如,20wt%至80wt%或者40wt%至80wt%)的一或多種單官能基丙烯酸酯類;90wt%至100wt%的一或多種雙官能基或多官能基丙烯酸酯類(例如,該預處理組成物係實質上沒有單官能基丙烯酸酯類)或者20wt%至75wt%的一或多種雙官能基或多官能基丙烯酸酯類(例如,存在有一或多種單官能基丙烯酸酯類時);0wt%至10wt%的一或多種光引發劑;及0wt%至10wt%的一或多種表面活性劑。 In one example, a pretreatment composition comprises from 0 wt% to 80 wt% (eg, from 20 wt% to 80 wt% or from 40 wt% to 80 wt%) of one or more monofunctional acrylates; from 90 wt% to 100 wt% of one or a plurality of difunctional or polyfunctional acrylates (for example, the pretreatment composition is substantially free of monofunctional acrylates) or from 20% to 75% by weight of one or more difunctional or polyfunctional acrylates (for example, when one or more monofunctional acrylates are present); from 0 wt% to 10 wt% of one or more photoinitiators; and from 0 wt% to 10 wt% of one or more surfactants.

該預處理組成物典型地和該壓印光阻材料是 可混溶的(miscible)。該預處理組成物典型地具有低的蒸氣壓力,使得它保持一薄膜的形態在該基材上,直到該合成的塗層被聚合化為止。在一例子中,該預處理組成物在25℃的蒸氣壓力係小於1x10-4mmHg。該預處理組成物亦典型地具有低的黏度以促進該預處理組成物在該基材上的快速擴展。在一例子中,該預處理組成物在23℃的黏度典型地是在1cP至200cP、1cP至100cP、或1cP至50cP的範圍內。介於該預處理組成物和空氣之間的界面能典型地是在30mN/m和45mN/m之間。該預處理組成物典型地被選擇成是化學上穩定的,使得在使用期間不會發生分解。 The pretreatment composition is typically miscible with the imprinted photoresist material. The pretreatment composition typically has a low vapor pressure such that it maintains the morphology of a film on the substrate until the resultant coating is polymerized. In one example, the pretreatment composition has a vapor pressure system at 25 ° C of less than 1 x 10 -4 mm Hg. The pretreatment composition also typically has a low viscosity to promote rapid expansion of the pretreatment composition on the substrate. In one example, the viscosity of the pretreatment composition at 23 ° C is typically in the range of 1 cP to 200 cP, 1 cP to 100 cP, or 1 cP to 50 cP. The interfacial energy between the pretreatment composition and air is typically between 30 mN/m and 45 mN/m. The pretreatment composition is typically selected to be chemically stable such that decomposition does not occur during use.

該預處理組成物和該壓印光阻材料較佳地應在儘可能小的含量下包括雜質。當使用於本文中時,雜質係指除了上文中提到的成分之外的任何其它東西。因此,該預處理組成物和該壓印光阻材料較佳地係經由一淨化處理被獲得。此一淨化處理較佳地係使用一過濾器等來過濾。詳言之,對於使用一過濾器的過濾而言,上文中提到的成分及非必要的添加成分較佳地應被混合,然後經由一過濾器(其具有一例如0.001微米或更大及5.0微米或更小的孔洞尺寸)加以過濾。對於使用一過濾器的過濾而言,更佳的是此過濾應以多階段或重複多次來實施。而且,經過過濾的溶液可再度被過濾。孔洞尺寸不同的多個過濾器可被使用在該過濾中。用聚乙烯樹脂、聚丙烯樹脂、氟樹脂、尼龍樹脂或類此者製成的過濾器可被使用在 該過濾中,但該過濾器並不侷限於此。混在該組成物中的雜質(譬如,微粒)可透過此淨化處理加以去除。這可防止雜質(譬如,微粒)造成圖案缺陷發生,其係因為在固化可固化的組成物期間粗心的不平整而被形成在被固化的薄膜中。 The pretreatment composition and the imprinted photoresist material should preferably include impurities at a level as small as possible. As used herein, an impurity refers to anything other than the ingredients mentioned above. Therefore, the pretreatment composition and the imprinted photoresist material are preferably obtained via a purification process. This purification treatment is preferably filtered using a filter or the like. In particular, for filtration using a filter, the ingredients mentioned above and optional additions should preferably be mixed and then passed through a filter (which has a 0.001 micron or greater and 5.0, for example). Filter the size of the pores in microns or smaller). For filtration using a filter, it is more preferred that the filtration be carried out in multiple stages or repeatedly. Moreover, the filtered solution can be filtered again. Multiple filters of different hole sizes can be used in the filter. A filter made of polyethylene resin, polypropylene resin, fluororesin, nylon resin or the like can be used. This filtering, but the filter is not limited to this. Impurities (e.g., particles) mixed in the composition can be removed by this purification treatment. This prevents impurities (such as fine particles) from causing pattern defects to be formed in the cured film because of careless unevenness during curing of the curable composition.

在使用該預處理組成物和該壓印光阻材料來製造半導體積體電路的例子中,儘可能地避免含有金屬原子的雜質(金屬雜質)混入到可固化的組成物中是較佳的,用以防止產品的操作被禁止。在此一情況中,包含在該可固化的組成物中的金屬雜質的濃度較佳地是10ppm或更低、更佳地是100ppb或更低。 In the example of manufacturing the semiconductor integrated circuit using the pretreatment composition and the imprinted photoresist material, it is preferable to avoid impurities (metal impurities) containing metal atoms from being mixed into the curable composition as much as possible. To prevent the operation of the product from being prohibited. In this case, the concentration of the metal impurities contained in the curable composition is preferably 10 ppm or less, more preferably 100 ppb or less.

預處理組成物可為一單一可聚合成分(例如,單體像是單官能基丙烯酸酯、雙官能基丙烯酸酯或多官能基丙烯酸酯)、二或多種可聚合成分之混合物(例如,兩或多種單體之混合物)、或者一或多種可聚合成分與一或多種其它成分之混合物(例如,多種單體之混合物;兩或多種單體與一表面活性劑、一光起始劑或此兩者之混合物等等)。在一些例子中,預處理組成物包括三羥甲基丙烷三丙烯酸酯、三羥甲基丙烷乙氧基三丙烯酸酯、1,12-十二烷二醇二丙烯酸酯、聚乙二醇二丙烯酸酯、四甘醇二丙烯酸酯、1,3-金剛烷二醇二丙烯酸酯、壬二醇二丙烯酸酯、間-二甲苯二丙烯酸酯、二環戊基二丙烯酸酯、或其任何組合。 The pretreatment composition can be a single polymerizable component (eg, a monomer such as a monofunctional acrylate, a difunctional acrylate or a polyfunctional acrylate), a mixture of two or more polymerizable components (eg, two or a mixture of a plurality of monomers), or a mixture of one or more polymerizable components and one or more other components (eg, a mixture of a plurality of monomers; two or more monomers with a surfactant, a photoinitiator or both) a mixture of people, etc.). In some examples, the pretreatment composition includes trimethylolpropane triacrylate, trimethylolpropane ethoxy triacrylate, 1,12-dodecanediol diacrylate, polyethylene glycol diacrylate Ester, tetraethylene glycol diacrylate, 1,3-adamantanediol diacrylate, decanediol diacrylate, m-xylene diacrylate, dicyclopentyl diacrylate, or any combination thereof.

可聚合成分的混合物可產生相輔相成的效果 (synergistic effects),產出的預處理組成物具有比具有單一可聚合成分的該預處理組成物更有利的特性(如,低黏度、良好的抗蝕刻性及薄膜穩定性)組合。在一例子中,該預處理組成物是1,12-十二烷二醇二丙烯酸酯及三環癸烷二甲醇二丙烯酸酯的混合物。在另一例子中,該預處理混合物是三環癸烷二甲醇二丙烯酸酯及四甘醇二丙烯酸酯的混合物。該預處理組成物通常會加以選擇,使得該預處理組成物的一或多種成分在該合成的可聚合塗層的聚合期間和壓印光阻材料的一或多種成分聚合(如,共價鍵結)。在一些情況中,該預處理組成物包括一亦在該壓印光阻材料內之可聚合的成分、或包括一可聚合成分,其具有一和該壓印光阻材料內的一或多個可聚合成分共用的官能基團(如,丙烯酸酯基團)。該預處理組成物的適合的例子包括例如在此描述之多官能基丙烯酸酯類,包括丙氧基化(3)三羥甲基丙烷三丙烯酸酯、三羥甲基丙烷三丙烯酸酯以及二季戊四醇五丙烯酸酯。 Mixture of polymerizable ingredients produces complementary effects (synergistic effects), the resulting pretreatment composition has a combination of properties (eg, low viscosity, good etch resistance, and film stability) that are more advantageous than the pretreatment composition having a single polymerizable component. In one example, the pretreatment composition is a mixture of 1,12-dodecanediol diacrylate and tricyclodecane dimethanol diacrylate. In another example, the pretreatment mixture is a mixture of tricyclodecane dimethanol diacrylate and tetraethylene glycol diacrylate. The pretreatment composition is typically selected such that one or more components of the pretreatment composition polymerize with one or more components of the imprinted photoresist material during polymerization of the synthetic polymerizable coating (eg, covalent bonds) Knot). In some cases, the pretreatment composition includes a polymerizable component also within the imprinted photoresist material, or includes a polymerizable component having one and one or more of the imprinted photoresist material A functional group (e.g., an acrylate group) shared by the polymerizable component. Suitable examples of such pretreatment compositions include, for example, the polyfunctional acrylates described herein, including propoxylated (3) trimethylolpropane triacrylate, trimethylolpropane triacrylate, and dipentaerythritol. Pentaacrylate.

預處理組成物可被選擇,使得抗蝕刻性可和該壓印光阻材料的抗蝕刻性相似,藉提升蝕刻均勻度。在某些情況中,該預處理組成物被選擇,使得在該預處理組成物和空氣之間的界面的界面能大過該壓印光阻材料和該預處理組成物間的界面能,藉以促進該液體的壓印光阻材料在該液體的預處理組成物上的快速擴展,用以在該合成的塗層和該模板接觸之前形成一均勻的合成的塗層於該基材上。介於該預處理組成物和空氣之間的界面能典型地比 介於該壓印光阻材料和空氣之間的界面能或該壓印光阻材料的至少一成分與空氣之間的界面能大了0.5mN/m至25mN/m、0.5mN/m至15mN/m、0.5mN/m至7mN/m、1mN/m至25mN/m、1mN/m至15mN/m、或1mN/m至7mN/m,但這些範圍可根據該預處理組成物和該壓印光阻材料的化學及物理特性以及介於這兩種液體之間的相互作用而改變。當表面能量之間的差異太小時,會造成壓印光阻材料的擴展太小的結果,且液滴保持蓋子狀的球形且保持著被該預處理組成物分隔開。當表面能量之間的差異太大時,會造成壓印光阻材料過度擴展的結果,即太多壓印光阻材料朝向鄰近的液滴移動而造成液滴中心空缺,使得該合成的塗層在液滴中心處有下凹的區域。因此,當表面能量之間的差異太小或太大時,所獲得之合成的塗層是不均勻的,而有顯著的下凹或外凸的區域。當表面能量之間的差異被適當地選擇時,壓印光阻材料快速地擴展以獲得實質均勻的合成的塗層。該預處理組成物和該壓印光阻材料的有利的選擇可讓填充時間被減少50-90%,使得填充可在小於1秒,在一些情況中甚至小於0.1秒的時間內被達成。 The pretreatment composition can be selected such that the etch resistance can be similar to the etch resistance of the embossed photoresist material by increasing the etching uniformity. In some cases, the pretreatment composition is selected such that the interface at the interface between the pretreatment composition and the air is greater than the interfacial energy between the imprinted photoresist material and the pretreatment composition, thereby A rapid expansion of the imprinted photoresist material that promotes the liquid onto the pretreatment composition of the liquid is used to form a uniform synthetic coating on the substrate prior to contacting the composite coating with the template. The interface energy between the pretreatment composition and the air is typically better than The interfacial energy between the imprinted photoresist material and the air or the interface energy between the at least one component of the imprinted photoresist material and the air is 0.5 mN/m to 25 mN/m, 0.5 mN/m to 15 mN. /m, 0.5 mN/m to 7 mN/m, 1 mN/m to 25 mN/m, 1 mN/m to 15 mN/m, or 1 mN/m to 7 mN/m, but these ranges may be based on the pretreatment composition and the pressure The chemical and physical properties of the printed photoresist material and the interaction between the two liquids vary. When the difference between the surface energies is too small, the expansion of the imprinted photoresist material is too small, and the droplets remain in a cap-like shape and remain separated by the pretreatment composition. When the difference between the surface energies is too large, the result of excessive expansion of the imprinted photoresist material is caused, that is, too much imprinted photoresist material moves toward the adjacent droplets to cause the center of the droplet to be vacant, so that the synthesized coating There is a concave area at the center of the droplet. Thus, when the difference between the surface energies is too small or too large, the resulting composite coating is non-uniform with significant depressed or convex regions. When the difference between the surface energies is appropriately selected, the imprinted photoresist material rapidly expands to obtain a substantially uniform synthetic coating. An advantageous choice of the pretreatment composition and the imprinted photoresist material allows the fill time to be reduced by 50-90% so that the fill can be achieved in less than 1 second, and in some cases even less than 0.1 second.

參考處理400的操作402,圖5A顯示一包括了包括一基底500及黏著層502的基材102。基底500典型地是一矽晶圓。其它適合用於基底500的材料包括熔融的矽石、石英、矽鍺、砷化鎵、磷化銦。黏著層502是用來增強該聚合層對該基底500的黏著,藉以降低在該合成 的塗層的聚合化之後,該模板與該聚合層分離期間缺陷形成在該聚合層中。該黏著層502的厚度典型地介於1奈米和10奈米之間。適合用於該黏著層502的材料的例子包括揭露在美國專利第7,759,407號;第8,361,546號;第8,557,351號;第8,808,808號;及第8,846,195號中的材料,所有這些材料藉由此參照被併於本文中。在一個例子中,一黏著層是由包含ISORAD 501,CYMEL 303ULF,CYCAT 4040或TAG 2678(四級銨嵌段之三氟甲烷磺酸),及PM Acetate(一種由田納西州Kingsport之Eastman Chemical Company公司提供、由2-(1-甲氧基)丙基醋酸酯組成之溶劑)之組成物所形成。在一些例子中,基材102包括一或多個額外的層介於該基底500和黏著層502之間。在某些情況中,基材102包括一或多個額外的層於黏著層502上。為了簡化起見,基材102被顯示為只包括基底500和黏著層502。 Referring to operation 402 of process 400, FIG. 5A shows a substrate 102 including a substrate 500 and an adhesive layer 502. Substrate 500 is typically a single wafer. Other suitable materials for the substrate 500 include molten vermiculite, quartz, tantalum, gallium arsenide, and indium phosphide. The adhesive layer 502 is used to enhance the adhesion of the polymeric layer to the substrate 500, thereby reducing the synthesis. After the polymerization of the coating, defects are formed in the polymeric layer during separation of the template from the polymeric layer. The thickness of the adhesive layer 502 is typically between 1 nm and 10 nm. Examples of materials suitable for use in the adhesive layer 502 include materials disclosed in U.S. Patent Nos. 7,759,407; 8,361,546; 8,557,351; 8,808,808; and 8,846,195, all of which are incorporated herein by reference. In this article. In one example, an adhesive layer is comprised of ISORAD 501, CYMEL 303ULF, CYCAT 4040 or TAG 2678 (tetra-ammonium block of trifluoromethanesulfonic acid), and PM Acetate (a type of Eastman Chemical Company of Kingsport, Tennessee) A composition comprising a solvent consisting of 2-(1-methoxy)propyl acetate is provided. In some examples, substrate 102 includes one or more additional layers between the substrate 500 and the adhesive layer 502. In some cases, substrate 102 includes one or more additional layers on adhesive layer 502. For simplicity, the substrate 102 is shown to include only the substrate 500 and the adhesive layer 502.

圖5B顯示該預處理組成物504已被配置在基材102上以形成預處理塗層506之後的該預處理組成物。如圖5B所示,預處理塗層506被直接形成在基材102的該黏著層502上。在一些情況中,該預處理塗層506被形成在基材102的另一表面上(如,直接形成在基底500上)。預處理塗層506係使用例如旋轉塗覆、浸泡塗覆、化學氣相沉積(CVD)、物理氣相沉積(PVD)等技術來形成在基材102上。例如,在旋轉塗覆、浸泡塗覆及類此者的例子中,該預處理組成物可被溶解在一或多種溶劑中 (如,醋酸丙二醇甲醚酯(PGMEA)、丙二醇甲醚(PGME)、及類此者),用以施用於該基材上,該溶劑然後被蒸發掉留下該預處理塗層。預處理塗層506的厚度tp典型地介於1奈米和100奈米之間(如,介於1奈米和50奈米之間、介於1奈米和25奈米之間、或介於1奈米和10奈米之間)。 FIG. 5B shows the pretreatment composition after the pretreatment composition 504 has been disposed on the substrate 102 to form the pretreatment coating 506. As shown in FIG. 5B, a pretreatment coating 506 is formed directly on the adhesive layer 502 of the substrate 102. In some cases, the pretreatment coating 506 is formed on another surface of the substrate 102 (eg, formed directly on the substrate 500). The pretreatment coating 506 is formed on the substrate 102 using techniques such as spin coating, dip coating, chemical vapor deposition (CVD), physical vapor deposition (PVD), and the like. For example, in spin coating, dip coating, and the like, the pretreatment composition can be dissolved in one or more solvents (eg, propylene glycol methyl ether acetate (PGMEA), propylene glycol methyl ether (PGME) And, for example, for application to the substrate, the solvent is then evaporated to leave the pretreatment coating. The thickness of the pretreatment coating 506 t p typically between 1 nm and 100 nm (e.g., between 1 nm and 50 nm, between 1 nm and 25 nm, or Between 1 nm and 10 nm).

再參考圖4,處理400的操作404包括了將壓印光阻材料的液滴配置到該預處理組成物上,使得每一壓印光阻材料的液滴覆蓋基材的一目標區域。該等壓印光阻材料的液滴的體積典型地介於0.6pL和30pL之間,且液滴中心之間的距離典型地介於35微米和350微米之間。在一些例子中,壓印光阻材料和該預處理組成物之間的體積比係介於1:1和15:1之間。在操作406中,當每一壓印光阻材料的液滴擴展超出其目標區域形成一合成的塗層時,一合成的塗層被形成在該基材上。當使用於本文中時,“預擴展”係指壓印光阻材料的液滴在液滴一開始接觸該預處理塗層並擴展超出其目標區域以及模板接觸該合成的塗層這兩個時間之間發生的自發性擴展。 Referring again to FIG. 4, operation 404 of process 400 includes disposing droplets of imprinted photoresist material onto the pretreatment composition such that droplets of each imprinted photoresist material cover a target area of the substrate. The volume of droplets of the embossed photoresist material is typically between 0.6 pL and 30 pL, and the distance between the centers of the droplets is typically between 35 microns and 350 microns. In some examples, the volume ratio between the imprinted photoresist material and the pretreatment composition is between 1:1 and 15:1. In operation 406, a synthetic coating is formed on the substrate as the droplets of each of the imprinted photoresist material expand beyond their target regions to form a composite coating. As used herein, "pre-expanded" means that the droplets of the imprinted photoresist material contact the pre-treatment coating at the beginning and expand beyond its target area and the template contacts the composite coating. Spontaneous expansion between the two.

圖6A-6D顯示當壓印光阻材料液滴配置到目標區域上時壓印光阻材料的液滴在預處理塗層上的俯視圖,以及該合成的塗層在液滴擴展之前、期間、及終了時的俯視圖。雖然該等液滴被顯示為方形的網格,但液滴圖案並不侷限於方形或幾何圖案。 6A-6D show top views of the droplets of the imprinted photoresist material on the pretreatment coating as the droplets of imprinted photoresist material are disposed onto the target area, and the composite coating is before, during, and during droplet expansion. And the top view at the end. Although the droplets are shown as a square grid, the droplet pattern is not limited to a square or geometric pattern.

圖6A顯示在液滴一開始被配置到該預處理塗 層上時,在預處理塗層506上的液滴600的俯視圖,使得液滴覆蓋目標區域602但並未擴展超出目標區域。在液滴600被配置到該預處理塗層506之後,該等液滴自發性地擴展以覆蓋該基材的一大於該目標區域的表面區域,藉以形成一合成的塗層於該基材上。圖6B顯示合成的塗層604在預擴展期間(在液滴600的部分擴展超出目標區域602之後)且典型地在該壓印光阻材料和該預處理組成物之間有部分相混之後的俯視圖。如圖所示,該合成的塗層604是該液體的預處理組成物和該液體的壓印光阻材料的混合物,其中區域606包含大部分的壓印光阻材料(“富含”壓印光阻材料),及區域608包含大部分的該預處理組成物(“富含”預處理組成物)。隨著預擴展的進行,合成的塗層604可形成該預處理組成物和該壓印光阻材料的一更均勻的混合物。 Figure 6A shows that the droplet is initially configured to the pretreatment coating On top of the layer, a top view of the droplets 600 on the pretreatment coating 506 is such that the droplets cover the target area 602 but do not extend beyond the target area. After the droplets 600 are disposed to the pretreatment coating 506, the droplets spontaneously expand to cover a surface area of the substrate that is larger than the target area, thereby forming a composite coating on the substrate. . 6B shows the composite coating 604 during pre-expansion (after the portion of the droplet 600 has expanded beyond the target region 602) and typically after partial mixing between the imprinted photoresist material and the pre-treatment composition. Top view. As shown, the composite coating 604 is a mixture of the liquid pretreatment composition and the liquid imprinted photoresist material, wherein the region 606 contains a majority of the imprinted photoresist material ("rich" embossing). The photoresist material, and region 608, contains most of the pretreatment composition ("rich" pretreatment composition). As the pre-expansion progresses, the resultant coating 604 can form a more uniform mixture of the pre-treatment composition and the imprinted photoresist material.

擴展可進行到一或多個區域606接觸到一或多個相鄰的區域606為止。圖6C及6D顯示在擴展末了時的該合成的塗層604。如圖6C所示,每一區域606已擴展為在邊界610處接觸每一鄰近的區域606,其中,區域608縮小為區域606之間分離的(不連續的)部分。在其它情況中,如圖6D所示,區域606擴展以形成一連續的層,使得區域608變成不可區分。在圖6D中,該合成的塗層604可以是該預處理組成物和該壓印光阻材料的一均質的混合物。 The expansion may proceed until one or more regions 606 contact one or more adjacent regions 606. Figures 6C and 6D show the composite coating 604 at the end of the expansion. As shown in FIG. 6C, each region 606 has been expanded to contact each adjacent region 606 at boundary 610, wherein region 608 is reduced to a separate (discontinuous) portion between regions 606. In other cases, as shown in Figure 6D, region 606 expands to form a continuous layer such that region 608 becomes indistinguishable. In Figure 6D, the composite coating 604 can be a homogeneous mixture of the pretreatment composition and the imprinted photoresist material.

圖7A-7D分別是沿著圖6A-6D的w-w、x-x、 y-y及z-z線的剖面圖。圖7A是沿著圖6A的w-w線的剖面圖,其顯示覆蓋該基材102的一對應於目標區域602的表面區域的該壓印光阻材料的液滴600。每一目標區域(及每一最初被配置的液滴)具有一c-c線標示的中心,且b-b線標示兩個目標區域602的中心之間的一等距離的位置。為了簡化起見,液滴600被顯示為接觸基材102的黏著層502,且該壓印光阻材料和該預處理組成物被顯示為沒有彼此相混。圖7B是沿著圖6B的x-x線的剖面圖,其顯示在區域606已擴展超出目標區域602之後在區域606之間有區域608露出來的該合成的塗層604。圖7C是沿著圖6C的y-y線在該預擴展末了時的剖面圖,其將該合成的塗層604顯示成該預處理組成物和該壓印光阻材料的一均質的混合物。如圖所示,區域606已擴展用以覆蓋一比圖7B所示更大的基材表面,且區域608被相應地縮小。最初從液滴600開始的區域606被顯示為是外凸的,然而,合成的塗層604可以是實質平的或包括下凹的區域。在某些情況中,因該壓印光阻材料形成一連續的層於該預處理組成物上(沒有彼此相混或有完全或部分彼此相混),所以預擴展可持續超出圖7C中所示的範圍。圖7D是沿著圖6D的z-z線的剖面圖,其顯示出因為該合成的塗層在液滴中心cc附近的下凹區域在邊界610處相遇,所以在該擴展的最後,該合成的塗層604成為該預處理組成物和該壓印光阻材料的一均質的混合物,使得該可聚合的塗層在液滴邊界處的厚度大於在液滴中心處的該合成的 塗層的厚度。如圖7C及7D所示,當合成的塗層接觸該奈米壓印微影模板時,該合成的塗層604在兩個目標區域的中心之間的一等距離位置的厚度不同於該兩個目標區域的一者的中心處的合成的塗層的厚度。 7A-7D are w-w, x-x, respectively, along Figs. 6A-6D, A cross-sectional view of the y-y and z-z lines. 7A is a cross-sectional view taken along line w-w of FIG. 6A showing droplets 600 of the imprinted photoresist material overlying a surface area of the substrate 102 corresponding to the target region 602. Each target area (and each initially configured drop) has a center indicated by a c-c line, and the b-b line indicates an equidistant position between the centers of the two target areas 602. For the sake of simplicity, the droplets 600 are shown as contacting the adhesive layer 502 of the substrate 102, and the imprinted photoresist material and the pre-treatment composition are shown not to be mixed with each other. 7B is a cross-sectional view taken along line x-x of FIG. 6B showing the composite coating 604 exposed between regions 606 after region 606 has expanded beyond target region 602. Figure 7C is a cross-sectional view along the y-y line of Figure 6C at the end of the pre-expansion, showing the composite coating 604 as a homogeneous mixture of the pre-treatment composition and the imprinted photoresist material. As shown, region 606 has been expanded to cover a larger substrate surface than that shown in Figure 7B, and region 608 is correspondingly shrunk. Region 606, which initially begins with droplet 600, is shown to be convex, however, composite coating 604 can be substantially flat or include a recessed region. In some cases, since the imprinted photoresist material forms a continuous layer on the pretreatment composition (not mixed with each other or completely or partially mixed with each other), the pre-expansion may continue beyond that in Figure 7C. The range shown. Figure 7D is a cross-sectional view along line zz of Figure 6D showing that the resultant coating meets at the boundary 610 at a depressed region near the center cc of the droplet, so at the end of the expansion, the resultant coating Layer 604 becomes a homogeneous mixture of the pretreatment composition and the imprinted photoresist material such that the thickness of the polymerizable coating at the droplet boundary is greater than the resultant at the center of the droplet The thickness of the coating. As shown in Figures 7C and 7D, when the resultant coating contacts the nanoimprint lithography template, the thickness of the resultant coating 604 at an equidistant position between the centers of the two target regions is different from the two The thickness of the composite coating at the center of one of the target areas.

再次參考圖4,處理400的操作408及410其分別包括將該合成的塗層和一模板接觸,並將該合成的塗層聚合以產出一奈米壓印微影堆疊,其具有一合成的塗層於該奈米壓印微影基材上。 Referring again to FIG. 4, operations 408 and 410 of process 400 include respectively contacting the composite coating with a template and polymerizing the resultant coating to produce a nanoimprinted lithographic stack having a composite The coating is applied to the nanoimprint lithographic substrate.

在一些例子中,如圖7C及7D所示,該合成的塗層604在預擴展結束時(即,在該合成的塗層和該模板接觸的前一刻)是一均質的混合物或實質均質的混合物(如,在空氣-合成的塗層界面處)。因此,該模板接觸一均質的混合物,該混合物的絕大部分係來自於該壓印光阻材料。因此,該壓印光阻材料的釋離特性將一般性地主導該合成的塗層和該模板的相互作用,以及該聚合層與該模板的分離,其包括導因於該模板和該聚合層之間的分離力之缺陷的形成(或沒有缺陷形成)。 In some examples, as shown in Figures 7C and 7D, the composite coating 604 is a homogeneous mixture or substantially homogeneous at the end of the pre-expansion (i.e., immediately before the combined coating and the template are in contact). Mixture (eg, at the air-synthetic coating interface). Thus, the template is in contact with a homogeneous mixture, the vast majority of which is derived from the imprinted photoresist material. Thus, the release characteristics of the imprinted photoresist material will generally dominate the interaction of the composite coating with the template, as well as the separation of the polymeric layer from the template, including the template and the polymeric layer. The formation of defects between the separation forces (or no defect formation).

然而,如圖8A及8B所示,該合成的塗層604可包括區域608及606,它們分別富含預處理組成物和富含壓印光阻材料,使得模板110接觸到該合成的塗層604之具有不同的物理及化學特性的區域。為了簡化起見,在區域606內的壓印光阻材料被顯示為已將該預處理塗層移位,使得區域606和該基材直接接觸,且顯示出沒有彼此相混。因此,在區域608內的預處理組成物的厚度 是不均一的。在圖8A中,區域606的最大高度p大過該預處理組成物的最大高度i,使得模板110主要是接觸到區域606。在圖8B中,區域608的最大高度i大過壓印光阻材料的最大高度p,使得模板110主要是接觸到區域608。因此,模板110與所得到的合成聚合層的分離以及與此相關的缺陷密度是不均一的且這是因為模板和壓印光阻材料之間以及模板與預處理組成物之間有不同的相互作用。因此,對於某些預處理組成物而言(如,包括單一官能基或兩個或更多個單體的混合物,但沒有表面活性劑的預處理組成物),該合成塗層在該模板與該合成塗層接觸的氣-液界面形成一均質的混合物,或至少一實質均質的混合物是較佳的。 However, as shown in Figures 8A and 8B, the composite coating 604 can include regions 608 and 606 that are respectively enriched with a pretreatment composition and an embossed photoresist material such that the template 110 contacts the composite coating. 604 areas with different physical and chemical properties. For simplicity, the imprinted photoresist material in region 606 is shown to have displaced the pretreatment coating such that region 606 is in direct contact with the substrate and is shown not to be mixed with one another. Therefore, the thickness of the pretreatment composition in region 608 It is not uniform. In FIG. 8A, the maximum height p of the region 606 is greater than the maximum height i of the pre-treatment composition such that the template 110 is primarily in contact with the region 606. In FIG. 8B, the maximum height i of the region 608 is greater than the maximum height p of the imprinted photoresist material such that the template 110 is primarily in contact with the region 608. Thus, the separation of the template 110 from the resulting synthetic polymeric layer and the associated defect density are not uniform and because of the different mutualities between the template and the imprinted photoresist material and between the template and the pretreatment composition. effect. Thus, for certain pretreatment compositions (eg, including a single functional group or a mixture of two or more monomers, but no pretreatment composition of the surfactant), the synthetic coating is in the template The gas-liquid interface of the synthetic coating contacts forms a homogeneous mixture, or at least a substantially homogeneous mixture is preferred.

圖9A-9C及10A-10C是剖面圖,其顯示出模板110和具有基底500以及黏著層502的基材102上合成的塗層604在該合成的塗層和該模板接觸之前、接觸期間、以及該模板與該合成聚合層分離之後產出一奈米壓印微影堆疊的情形。在圖9A-9C中,該合成的塗層604被顯示成該預處理組成物和該壓印光阻材料的均質的混合物。在圖10A-10C中,該合成的塗層604被顯示成該預處理組成物和該壓印光阻材料的一非均質的混合物。 9A-9C and 10A-10C are cross-sectional views showing a template 110 and a coating 604 synthesized on a substrate 102 having a substrate 500 and an adhesive layer 502 prior to contact, contact, contact between the composite coating and the template, And the case where the template is separated from the synthetic polymeric layer to produce a nanoimprinted lithographic stack. In Figures 9A-9C, the composite coating 604 is shown as a homogeneous mixture of the pretreatment composition and the imprinted photoresist material. In Figures 10A-10C, the composite coating 604 is shown as a heterogeneous mixture of the pretreatment composition and the imprinted photoresist material.

圖9A顯示模板110開始和基材102上的該均質的合成的塗層900接觸初期的剖面圖。在圖9B中,模板110朝向基材102持續前進,使得該合成的塗層900填滿模板110的凹陷。在該合成的塗層900聚合化以產出一 均質的聚合層於基材102上之後,模板110和該聚合層分離。圖9C顯示具有均質的合成的聚合層904的奈米壓印微影堆疊902的剖面圖。 FIG. 9A shows a cross-sectional view of the initial beginning of contact of the template 110 with the homogeneous synthetic coating 900 on the substrate 102. In FIG. 9B, the template 110 continues to advance toward the substrate 102 such that the resultant coating 900 fills the depressions of the template 110. The synthesized coating 900 is polymerized to yield one After the homogeneous polymeric layer is on substrate 102, template 110 and the polymeric layer are separated. 9C shows a cross-sectional view of a nanoimprint lithography stack 902 having a homogeneous synthetic polymeric layer 904.

圖10A顯示模板110開始和基材102上合成的塗層604接觸初期的剖面圖。非均質的合成的塗層1000包括區域606和608。如圖所示,區域606中的壓印光阻材料和區域608中的預處理組成物很少或甚至沒有彼此相混。在圖10B中,模板110朝向基材102持續前進,使得合成的塗層1000填滿模板110的凹陷。在該合成的塗層1000聚合化以產出一非均質的聚合層於基材102上之後,模板110和該聚合層分離。圖10C顯示出具有非均質的合成的聚合層1004的奈米壓印微影堆疊1002的剖面圖,其中區域1006及1008對應於該非均質的合成的塗層1000的區域606及608。因此,該合成的聚合層1002的化學成分是非均質的或是不均一的,且包括區域1006(其具有源自於富含壓印光阻材料的混合物的成分)及區域1008(其具有源自於富含預處理組成物的混合物的成分)。區域1006和1008的相對大小(如,外露的表面積、被模板覆蓋的表面積、或體積)至少部分地會因為該合成的塗層接觸該模板之前的預擴展的程度或與模板接觸所造成的擴展而改變。在一些情況中,區域1006可被區域1008分隔開或包圍,使得合成的聚合層包括多個被邊界分隔開的中心區域,其中該合成的聚合層1004在邊界處的化學成分不同於該合成的聚合層在中心區域內部的化 學成分。 FIG. 10A shows a cross-sectional view of the initial stage of contact of the template 110 with the coating 604 synthesized on the substrate 102. The heterogeneous synthetic coating 1000 includes regions 606 and 608. As shown, the imprinted photoresist material in region 606 and the pre-treatment composition in region 608 are few or even not mixed with each other. In FIG. 10B, the template 110 continues to advance toward the substrate 102 such that the resultant coating 1000 fills the depressions of the template 110. After the synthetic coating 1000 is polymerized to produce a heterogeneous polymeric layer on the substrate 102, the template 110 and the polymeric layer are separated. 10C shows a cross-sectional view of a nanoimprint lithography stack 1002 having a heterogeneous synthetic polymeric layer 1004, wherein regions 1006 and 1008 correspond to regions 606 and 608 of the heterogeneous synthetic coating 1000. Thus, the chemical composition of the synthesized polymeric layer 1002 is heterogeneous or non-homogeneous and includes a region 1006 having a composition derived from a mixture of embossed photoresist materials and a region 1008 (which has In the composition of the mixture enriched in the pretreatment composition). The relative size of regions 1006 and 1008 (e.g., exposed surface area, surface area covered by the stencil, or volume) may be due, at least in part, to the extent of pre-expansion or expansion of the composite coating prior to contact with the stencil. And change. In some cases, region 1006 can be separated or surrounded by region 1008 such that the resultant polymeric layer includes a plurality of central regions separated by boundaries, wherein the chemical composition of the composite polymeric layer 1004 at the boundary is different than the Synthesis of the polymerized layer inside the central region Learning ingredients.

上文中提到的該合成的塗層604和該模板110的接觸可在一含有凝結性氣體的氛圍(其在下文中被稱為“凝結性氣體氛圍”)中被實施。當使用於本文中時,該凝結性氣體係指一種被毛細管壓力凝結及液化的氣體,該毛細管壓力是在一形成在該模板110上的細微圖案的凹陷及介於一模具和一基材之間的間隙被充滿該氛圍中的氣體以及該預處理組成物和該壓印光阻材料時所產生的。在合成的塗層和該模板接觸時,該凝結性氣體在該預處理組成物和該壓印光阻材料與該模板110接觸之前如該氛圍中的一氣體般地離開。 The contact of the synthetic coating 604 and the template 110 mentioned above may be carried out in an atmosphere containing a coagulating gas (which is hereinafter referred to as "condensable gas atmosphere"). As used herein, the coagulated gas system refers to a gas that is coagulated and liquefied by capillary pressure, the capillary pressure being a depression of a fine pattern formed on the template 110 and interposed between a mold and a substrate. The gap between the spaces is filled with the gas in the atmosphere as well as the pretreatment composition and the imprinted photoresist material. When the resultant coating is in contact with the stencil, the condensable gas exits as a gas in the atmosphere before the pretreatment composition and the embossed photoresist material are in contact with the stencil 110.

當該合成的塗層和一模板在該凝結性氣體氛圍中接觸時,填入到一細微圖案的凹陷內的氣體被液化,使得一氣泡消失,產生絕佳的填充特性。該凝結性氣體可被溶解在該預處理組成物及/或該壓印光阻材料中。 When the resultant coating and a template are contacted in the coagulated gas atmosphere, the gas filled in the depression of the fine pattern is liquefied, so that a bubble disappears, resulting in excellent filling characteristics. The coagulated gas can be dissolved in the pretreatment composition and/or the imprinted photoresist material.

該凝結性氣體的沸點並沒有限制,只要該溫度等於或低於該合成的塗層和模板接觸時的環境溫度即可。該沸點較佳地為-10℃至23℃、更佳地為10℃至23℃。在此範圍內可獲得較佳的填充特性。 The boiling point of the coagulated gas is not limited as long as the temperature is equal to or lower than the ambient temperature at which the synthetic coating and the template are in contact. The boiling point is preferably from -10 ° C to 23 ° C, more preferably from 10 ° C to 23 ° C. Better filling characteristics are obtained within this range.

該凝結性氣體在該合成的塗層和模板接觸時的環境溫度下的蒸氣壓力沒有限制,只要該壓力等於或低於該合成的塗層和模板接觸時壓印的模具壓力即可。該蒸氣壓力較佳地為0.1至0.4MPa。在此範圍內可獲得較佳的填充特性。一在環境溫度下大於0.4MPa的蒸氣壓力對於 讓空氣泡消失而言有不夠充分地有效的傾向。另一方面,一在環境溫度下小於0.1MPa的蒸氣壓力則傾向於必須降低壓力及必需有一複雜的設備。 The vapour pressure of the condensable gas at the ambient temperature at which the synthetic coating is contacted with the stencil is not limited as long as the pressure is equal to or lower than the embossed mold pressure at which the synthetic coating contacts the stencil. The vapor pressure is preferably from 0.1 to 0.4 MPa. Better filling characteristics are obtained within this range. a vapor pressure greater than 0.4 MPa at ambient temperature There is a tendency to make the air bubbles disappear and not sufficiently effective. On the other hand, a vapor pressure of less than 0.1 MPa at ambient temperature tends to have to be reduced in pressure and a complicated equipment is necessary.

合成的塗層和模板接觸時的環境壓力沒有限制且較佳地是20℃至25℃。 The ambient pressure at which the synthetic coating is contacted with the stencil is not limited and is preferably from 20 ° C to 25 ° C.

適當的凝結性氣體之具體實例包括前額(frons),其包含氯氟烴(CFC)例如三氯氟甲烷、氟烴(FC)、氫氯氟烴(HCFC)、氫氟烴(HFC)例如1,1,1,3,3-五氟丙烷(CHF2CH2CF3,HFC-245fa,PFP),以及氫氟醚(HFE)例如五氟乙基甲基醚(CF3CF2OCH3,HFE-245mc)。在這些中,從該合成的塗層和模板在20℃至25℃的環境溫度下接觸時有絕佳的填充特性的觀點來看,1,1,1,3,3-五氟丙烷(23℃蒸氣壓:0.14MPa,沸點:15℃),三氯氟甲烷(23℃蒸氣壓:0.1056MPa,沸點:24℃),及五氟乙基甲基醚是較佳的。此外,1,1,1,3,3-五氟丙烷從絕佳的安全的觀點來看是特佳的。這些凝結性氣體的一種可被單獨地使用、或兩個或更多種這些凝結性氣體可以一混合物被使用。 Specific examples of suitable coagulating gases include foreheads (frons) comprising chlorofluorocarbons (CFCs) such as trichlorofluoromethane, fluorocarbons (FC), hydrochlorofluorocarbons (HCFCs), hydrofluorocarbons (HFCs), for example 1,1,1,3,3-pentafluoropropane (CHF 2 CH 2 CF 3 , HFC-245fa, PFP), and hydrofluoroether (HFE) such as pentafluoroethyl methyl ether (CF 3 CF 2 OCH 3 , HFE-245mc). Among these, 1,1,1,3,3-pentafluoropropane (23) from the viewpoint that the synthesized coating and the template have excellent filling characteristics when contacted at an ambient temperature of from 20 ° C to 25 ° C °C vapor pressure: 0.14 MPa, boiling point: 15 ° C), trichlorofluoromethane (23 ° C vapor pressure: 0.1056 MPa, boiling point: 24 ° C), and pentafluoroethyl methyl ether are preferred. In addition, 1,1,1,3,3-pentafluoropropane is particularly good from the standpoint of excellent safety. One of these coagulation gases may be used alone, or two or more of these coagulation gases may be used in a mixture.

這些凝結性氣體可和非凝結性氣體(譬如,空氣、氮氣、二氧化碳、氦氣、及氬氣)形成混合物被使用。從填充特性的觀點來看,氦氣被用作為非凝結性氣體和一凝結性氣體形成混合物是較佳的。氦氣可穿透模具205。因此,當形成在模具205上的細微的圖案的凹陷在一模板被充滿該等氣體(凝結性氣體和氦氣)下於該氛圍 中接觸該合成的塗層時,在氦氣穿透該模具的同時,該凝結性氣體和該預處理組成物及/或該壓印光阻材料一起被液化。 These coagulated gases can be used in combination with non-condensable gases such as air, nitrogen, carbon dioxide, helium, and argon. From the standpoint of the filling property, it is preferable that helium is used as a mixture of a non-condensable gas and a condensable gas. Helium can penetrate the mold 205. Therefore, when the depression of the fine pattern formed on the mold 205 is filled with the gas (condensable gas and helium) in the atmosphere When the synthetic coating is contacted, the coagulation gas is liquefied together with the pretreatment composition and/or the imprinted photoresist material while the helium gas penetrates the mold.

藉由將模板與該合成的聚合層分離而獲得的該聚合層具有一特殊的圖案形狀。如圖2所示,殘留層204可保持在具有此被形成的圖案形狀的區域以外的一區域中。在此情況中,出現在具有被獲得的圖案形狀的被固化層202的將被去除的區域中的殘留層204係藉由氣體蝕刻來將其去除掉。因此,可獲得一具該所想要的圖案形狀(如,從模板110的形狀獲得的圖案形狀)之沒有該殘留層的圖案化的被固化層(即,基材102的表面上的該所想要的部分被外露出來)。 The polymeric layer obtained by separating the template from the synthesized polymeric layer has a special pattern shape. As shown in FIG. 2, the residual layer 204 can be held in an area other than the area having the pattern shape formed. In this case, the residual layer 204 appearing in the region to be removed of the cured layer 202 having the obtained pattern shape is removed by gas etching. Thus, a patterned cured layer without the residual layer (i.e., the substrate on the surface of the substrate 102) having the desired pattern shape (e.g., the pattern shape obtained from the shape of the template 110) can be obtained. The desired part is exposed.)

在此內文中,用來去除殘留層204之適合的方法的例子包括藉由諸如蝕刻的技術來去除在具有一圖案形狀之被固化層202的凹陷處的殘留層204以露出在此具有一圖案形狀之被固化層202的該圖案中的凹陷處的基材102的表面的方法。 In this context, an example of a suitable method for removing the residual layer 204 includes removing the residual layer 204 at the recess of the cured layer 202 having a pattern shape by a technique such as etching to expose a pattern there. A method of shaping the surface of the substrate 102 at the depression in the pattern of the cured layer 202.

在藉由蝕刻來去除在具有一圖案形狀之被固化層202的凹陷處的殘留層204的例子中,一特定的方法並沒有限制,且可使用此領域中所習知的傳統方法,例如,使用一蝕刻氣體的乾蝕刻。此領域中習知的傳統乾蝕刻設備可使用在該乾蝕刻處理中。乾蝕刻氣體根據將接受此蝕刻的該被固化層的基本成分被適當地選擇。例如,可採用鹵素氣體(例如,CF4、C2F6、C3F8、CCl2F2、CCl4、 CBrF3、BCl3、PCl3、SF6及Cl2),含氧原子氣體(例如,O2、CO及CO2),惰性氣體(例如,He、N2及Ar)或者氣體像是H2或NH3。這些氣體可以一混合物的形式被使用。 In the example of removing the residual layer 204 at the recess of the cured layer 202 having a pattern shape by etching, a specific method is not limited, and a conventional method known in the art can be used, for example, Dry etching using an etching gas is used. Conventional dry etching apparatus known in the art can be used in the dry etching process. The dry etching gas is appropriately selected depending on the basic composition of the solidified layer that will receive this etching. For example, a halogen gas (for example, CF 4 , C 2 F 6 , C 3 F 8 , CCl 2 F 2 , CCl 4 , CBrF 3 , BCl 3 , PCl 3 , SF 6 , and Cl 2 ), an oxygen atom-containing gas may be used. (eg, O 2 , CO, and CO 2 ), an inert gas (eg, He, N 2 , and Ar) or a gas such as H 2 or NH 3 . These gases can be used in the form of a mixture.

當所用的基材102(將被處理的基材)是對該被固化層202的黏著藉由表面處理(譬如,矽烷耦合處理、矽氮烷處理、及有機薄膜形成)加以改善的基材時,此一經過表面處理的層亦可在具有一圖案形狀之被固化層202的凹陷處的殘留層204的蝕刻之後藉由蝕刻來加以去除。 When the substrate 102 (substrate to be treated) used is a substrate to which the adhesion to the cured layer 202 is improved by surface treatment (for example, decane coupling treatment, decane treatment, and organic film formation) The surface treated layer may also be removed by etching after etching of the residual layer 204 at the recess of the cured layer 202 having a pattern shape.

描述於上文中的製造處理可產生一在所想要的位置具有所想要的圖案形狀(如,從模板110的形狀獲得的圖案形狀)之沒有該殘留層的圖案化的被固化層,且可產生一具有此圖案化的被固化層的物件。基材102可如本文中所述地被進一步處理。 The manufacturing process described above can produce a patterned cured layer without the residual layer having a desired pattern shape (eg, a pattern shape obtained from the shape of the template 110) at a desired location, and An article having the patterned cured layer can be produced. Substrate 102 can be further processed as described herein.

該被獲得之圖案化的被固化層例如可被使用在稍後提到的半導體處理中或亦可被用作為一光學件(包括用作為該光學件的一部分),譬如一衍射光柵或一偏極器,用以獲得一光學構件。在此一例子中,一至少具有基材102及設置在該基材102上的該圖案化的被固化層的光學元件可被製備。對於一反色調處理(reverse tone process)而言,不需要一分離的殘留層蝕刻。然而,應解的是,該黏著層蝕刻可和該光阻材料蝕刻相容。 The obtained patterned cured layer can be used, for example, in the semiconductor processing mentioned later or can also be used as an optical member (including as a part of the optical member), such as a diffraction grating or a bias. A pole piece for obtaining an optical member. In this example, an optical component having at least a substrate 102 and the patterned cured layer disposed on the substrate 102 can be prepared. For a reverse tone process, a separate residual layer etch is not required. However, it should be understood that the adhesion layer etch can be etched compatible with the photoresist material.

殘留層去除之後,沒有殘留層的該圖案化的 被固化層304被用作為蝕刻表面外露的基材102的一部分時的一抗蝕膜。此領域中習知的傳統乾蝕刻設備可使用在該乾蝕刻處理中。蝕刻氣體根據將接受此蝕刻的該被固化層的基本成分及基材102的基本成分被適當地選擇。例如,可採用鹵素氣體(例如,CF4、C2F6、C3F8、CCl2F2、CCl4、CBrF3、BCl3、PCl3、SF6及Cl2),含氧原子氣體(例如,O2、CO及CO2),惰性氣體(例如,He、N2及Ar)或者氣體像是H2或NH3。這些氣體可以一混合物的形式被使用。用於上文中提到的殘留層的去除的蝕刻氣體和用於基材處理的蝕刻氣體可以是相同的或是不同的。 After the residual layer is removed, the patterned cured layer 304 having no residual layer is used as a resist film when etching a portion of the exposed substrate 102. Conventional dry etching apparatus known in the art can be used in the dry etching process. The etching gas is appropriately selected depending on the basic components of the solidified layer that will receive the etching and the basic components of the substrate 102. For example, a halogen gas (for example, CF 4 , C 2 F 6 , C 3 F 8 , CCl 2 F 2 , CCl 4 , CBrF 3 , BCl 3 , PCl 3 , SF 6 , and Cl 2 ), an oxygen atom-containing gas may be used. (eg, O 2 , CO, and CO 2 ), an inert gas (eg, He, N 2 , and Ar) or a gas such as H 2 or NH 3 . These gases can be used in the form of a mixture. The etching gas used for the removal of the residual layer mentioned above and the etching gas used for the substrate processing may be the same or different.

如已經提過的,預處理組成物和壓印光阻材料的一非均質的混合物可被形成在具有一圖案形狀的該被固化層202中。 As already mentioned, a heterogeneous mixture of the pretreatment composition and the imprinted photoresist material can be formed in the cured layer 202 having a pattern shape.

該預處理組成物較佳地具有和該壓印光阻材料的抗乾蝕刻劑大致相同的抗乾蝕刻劑。這讓基材102即使是在一有高濃度的預處理組成物的區域中仍可被有利地處理。因此,基材102可被均勻地處理。 The pretreatment composition preferably has an anti-dry etchant that is substantially the same as the dry etch resist of the imprinted photoresist material. This allows the substrate 102 to be advantageously processed even in a region having a high concentration of the pretreatment composition. Therefore, the substrate 102 can be uniformly processed.

除了上面提到的一連串的步驟(製造處理)之外,一電子成分可被形成,用以根據從該模板110的形狀所獲得的圖案形狀在基材102上形成一電路結構。因此,一被使用在半導體裝置等等中的電路基材可被製造出來。此等半導體裝置的例子包括LSI、系統LSI、DRAM、SDRAM、RDRAM、D-RDRAM、及NAND快閃記憶體。此電路基材亦可被連接至例如一用於電路基材的電 路控制機構,用以形成電子設備,譬如顯示器、照相機及醫療設備。 In addition to the series of steps (manufacturing process) mentioned above, an electronic component can be formed to form a circuit structure on the substrate 102 in accordance with the shape of the pattern obtained from the shape of the template 110. Therefore, a circuit substrate used in a semiconductor device or the like can be manufactured. Examples of such semiconductor devices include LSI, system LSI, DRAM, SDRAM, RDRAM, D-RDRAM, and NAND flash memory. The circuit substrate can also be connected to, for example, an electrical circuit for a circuit substrate A road control mechanism for forming electronic devices such as displays, cameras, and medical devices.

同樣地,不具有殘留層的該圖案化的被硬化產物亦可被用作為用乾蝕刻來處理基材時的抗蝕刻膜以製造一光學構件。 Similarly, the patterned hardened product having no residual layer can also be used as an etch-resistant film when the substrate is treated by dry etching to fabricate an optical member.

或者,一石英基材可被用作為該基材102,且該圖案化的被硬化產物202可被用作為一抗蝕刻膜。在此例子中,該石英基材可用乾蝕刻來處理以製備一石英壓印模具(複製模具)的複製品。 Alternatively, a quartz substrate can be used as the substrate 102, and the patterned hardened product 202 can be used as an anti-etching film. In this example, the quartz substrate can be processed by dry etching to produce a replica of a quartz imprint mold (replica mold).

在製備一電路基材或一電子構件時,該圖案化的被硬化產物202可最終從該被處理的基材上被去除掉,或可被建構成當作構成該裝置的一個元件而被留下來。 The patterned hardened product 202 may eventually be removed from the treated substrate during preparation of a circuit substrate or an electronic component, or may be constructed to be retained as an element constituting the device. Come down.

實例 Instance

在下面的實例中,在該壓印光阻材料和空氣之間的界面被報告的界面能是用最大氣泡壓力方法所測得的。該等測量值係使用德國的Krüss GmbH of Hamburg公司所製造的BP2氣泡壓力張力儀所測得的。在該最大氣泡壓力方法中,在一藉由毛細管而形成在一液體中的氣泡的內的最大內部壓力被測量。藉由一直徑是已知的毛細管,表面張力可用Young-Laplace公式計算出來。對於預處理組成物而言,在預處理組成物和空氣之間的界面處的界面能是用最大氣泡壓力方法來測量或是由製造商所報告的數 值獲得。 In the example below, the interface energy reported at the interface between the imprinted photoresist material and air is measured using the maximum bubble pressure method. These measurements were measured using a BP2 bubble pressure tensiometer manufactured by Krüss GmbH of Hamburg, Germany. In the maximum bubble pressure method, the maximum internal pressure within a bubble formed in a liquid by a capillary is measured. The surface tension can be calculated by the Young-Laplace formula by a capillary having a known diameter. For the pretreatment composition, the interface energy at the interface between the pretreatment composition and the air is measured by the maximum bubble pressure method or by the number reported by the manufacturer. The value is obtained.

黏度是用Brookfield DV-II+Pro來測量,用一設定在23℃之溫度控制浴的小量樣本槽(small sample adapter)來實施。被報告的黏度值是五個測量值的平均值。 Viscosity was measured using a Brookfield DV-II+Pro and was carried out using a small sample adapter set to a temperature control bath at 23 °C. The reported viscosity value is the average of the five measurements.

黏著層係藉由將一黏性組成物固化來製備在基材上的,黏性組成物係藉由將約77克的ISORAD 501、約22克的CYMEL 303ULF、及約1克的TAG 2678混合、將此混合物加入到約1900克的PM醋酸鹽中來獲得的。該黏性組成物被旋轉塗覆在一以每分鐘500至4000轉的轉速旋轉的基材(如,一矽晶圓)上,用以提供一具有均一的厚度之實質平滑的(如果不是平面的)層。該被旋轉塗覆的組成物被曝露於160℃的熱白緻光能量(thermal actinic energy)約2分鐘。所得到的黏著層約3奈米至約4奈米厚。 The adhesive layer is prepared on the substrate by curing a viscous composition by mixing about 77 grams of ISORAD 501, about 22 grams of CYMEL 303ULF, and about 1 gram of TAG 2678. This mixture was obtained by adding it to about 1900 g of PM acetate. The viscous composition is spin coated onto a substrate (e.g., a wafer) that rotates at a speed of 500 to 4000 revolutions per minute to provide a substantially smooth (if not planar) layer having a uniform thickness. Layer). The spin-coated composition was exposed to thermal actinic energy at 160 ° C for about 2 minutes. The resulting adhesive layer is from about 3 nanometers to about 4 nanometers thick.

在對照例1及實例1-3中,一在空氣/壓印光阻材料界面的表面張力是33mN/m的壓印光阻材料被用來展示該壓印光阻材料在不同表面上的擴展。該壓印光阻材料是一可聚合組成物,其包括約45wt%單官能基丙烯酸酯(例如,異冰片基丙烯酸酯及苄基丙烯酸酯)、約48wt%雙官能基丙烯酸酯(例如,新戊二醇二丙烯酸酯)、及約5wt%光起始劑(例如,TPO及4265)、及約3wt%表面活性劑(例如,X-R-(OCH2CH2)nOH之混合物,其中R=烷基、芳基或聚(丙二醇),X=H或-(OCH2CH2)nOH,且n 為整數(例如,2至20、5至15或10-12)(舉例來說,X=-(OCH2CH2)nOH,R=聚(丙二醇),且n=10-12),以及一含氟表面活性劑,其中X=全氟烷基。 In Comparative Example 1 and Examples 1-3, an embossed photoresist material having a surface tension of 33 mN/m at the interface of the air/imprinted photoresist material was used to demonstrate the expansion of the embossed photoresist material on different surfaces. . The embossed photoresist material is a polymerizable composition comprising about 45 wt% monofunctional acrylate (e.g., isobornyl acrylate and benzyl acrylate), about 48 wt% difunctional acrylate (e.g., new) a mixture of pentanediol diacrylate), and about 5 wt% of a photoinitiator (eg, TPO and 4265), and about 3 wt% of a surfactant (eg, XR-(OCH 2 CH 2 ) n OH, wherein R = Alkyl, aryl or poly(propylene glycol), X=H or -(OCH 2 CH 2 ) n OH, and n is an integer (for example, 2 to 20, 5 to 15 or 10-12) (for example, X =-(OCH 2 CH 2 ) n OH, R = poly(propylene glycol), and n = 10-12), and a fluorosurfactant wherein X = perfluoroalkyl.

在對照例1中,該壓印光阻材料被直接配置在一奈米壓印微影基材的該黏著層上。圖11是在壓印光阻材料的液滴以網格圖案開始被施配17秒鐘之後在基材的黏著層1102上的壓印光阻材料的液滴1100的影像。如在該影像中所見,液滴1100已從該基材上的目標區域向外擴展。然而,超出目標區域的擴展仍屬有限,且外露的黏著層1102的面積大過液滴1100的面積。在此影像及其它影像中可看到的環,譬如環1104,是牛頓干涉環(Newton interference ring),其顯示出在不同的液滴區域中的厚度差異。該壓印光阻材料液滴的大小約為2.5pL。圖11中有2x7(節距)2交錯的液滴網格(如,2個單位在水平方向上,3.5個單位在線與線之間)。每一條後續的線在水平方向上偏移1個單位。 In Comparative Example 1, the embossed photoresist material was directly disposed on the adhesive layer of a nanoimprint lithography substrate. Figure 11 is an image of a droplet 1100 of an imprinted photoresist material on an adhesive layer 1102 of a substrate after the droplets of the imprinted photoresist material have been dispensed in a grid pattern for 17 seconds. As seen in the image, the drop 1100 has expanded outward from the target area on the substrate. However, the expansion beyond the target area is still limited, and the area of the exposed adhesive layer 1102 is larger than the area of the droplet 1100. The rings visible in this and other images, such as ring 1104, are Newton interference rings that exhibit thickness differences in different droplet regions. The size of the embossed photoresist material droplets is about 2.5 pL. In Figure 11, there is a 2x7 (pitch) 2 interlaced droplet grid (eg, 2 units in the horizontal direction, 3.5 units between the line and the line). Each subsequent line is offset by 1 unit in the horizontal direction.

在實例1-3中,預處理組成物A-C分別被配置在一奈米壓印微影基材上以形成一預處理塗層。壓印光阻材料的液滴被配置在該等預處理塗層上。圖12-14顯示出在壓印光阻材料的液滴開始被施配之後該預處理塗層的影像。雖然在這些實例中在預處理組成物和壓印光阻材料之間發生了彼此相混,但為了簡化起見,壓印光阻材料的液滴和預處理塗層在下文中的描述並沒有考慮彼此相混的情形。該預處理組成物係透過旋轉塗覆被配置在一晶圓基 材上。更具體地,該預處理組成物被溶解在PGMEA(0.3wt%的預處理組成物/99.7wt%的PGMEA)且被旋轉塗覆在該晶圓基材上。當該溶劑蒸發時,在該基材上所得到的預處理塗層的厚度典型地是在5奈米和10奈米的範圍內(如,8奈米)。在圖12-14中的該壓印光阻材料液滴的大小約為2.5pL。圖12及14中有2×7(節距)2交錯的液滴網格(如,2個單位在水平方向上,3.5個單位在線與線之間)。每一條後續的線在水平方向上偏移1個單位。圖13顯示2×6(節距)2交錯的液滴網格。節距數值為84.5微米。壓印光阻材料和預處理層的體積比是在1至15的範圍內(如,6~7)。 In Examples 1-3, the pretreatment compositions AC were each disposed on a nanoimprint lithography substrate to form a pretreatment coating. Droplets of imprinted photoresist material are disposed on the pretreatment coatings. Figures 12-14 show images of the pretreatment coating after the droplets of the imprinted photoresist material begin to be dispensed. Although mixing occurs between the pretreatment composition and the imprinted photoresist material in these examples, for the sake of simplicity, the droplets of the imprinted photoresist material and the pretreatment coating are not considered in the following description. Mixed with each other. The pretreatment composition is disposed on a wafer substrate by spin coating. More specifically, the pretreatment composition was dissolved in PGMEA (0.3 wt% of the pretreatment composition / 99.7 wt% of PGMEA) and was spin coated on the wafer substrate. When the solvent evaporates, the thickness of the resulting pretreatment coating on the substrate is typically in the range of 5 nm and 10 nm (e.g., 8 nm). The size of the embossed photoresist material droplets in Figures 12-14 is about 2.5 pL. In Figures 12 and 14, there are 2 x 7 (pitch) 2 interlaced droplet grids (e.g., 2 units in the horizontal direction, 3.5 units between line and line). Each subsequent line is offset by 1 unit in the horizontal direction. Figure 13 shows a 2 x 6 (pitch) 2 interlaced droplet grid. The pitch value is 84.5 microns. The volume ratio of the imprinted photoresist material to the pretreatment layer is in the range of 1 to 15 (e.g., 6 to 7).

表1列出使用在實例1-3中之預處理組成物A-C和壓印光阻材料的表面張力(空氣/液體界面)。 Table 1 lists the surface tension (air/liquid interface) of the pretreatment compositions A-C and imprinted photoresist materials used in Examples 1-3.

在實例1中(參見表1),壓印光阻材料的液滴被配置在一具有預處理組成物A塗層(Sartomer 492或“SR492”)的基材上。該SR492(可從設在美國賓州的Sartomer公司購得)是丙氧基化(3)三羥甲基丙烷三丙烯酸酯(一種多官能基丙烯酸酯)。圖12顯示在分離的 部分以交錯的網格圖案開始被施配的1.7秒鐘之後在該預處理塗層1202上的壓印光阻材料的液滴1200及所獲得的預處理塗層1204的影像。在此實例中,液滴能保持其球形蓋子狀的形狀且壓印光阻材料的擴展很有限。如圖12中所見,當液滴1200擴展超出對照例1中在黏著層上的該壓印光阻材料的擴展時,液滴仍保持被該預處理塗層1202分隔開,這在該等液滴的周圍形成邊界1206。該壓印光阻材料的某些成分擴展超出液滴中心,其形成圍繞液滴1200的區域1208。區域1208被預處理塗層1202分隔開。該有限的擴展至少部分地係歸因於預處理組成物A和壓印光阻材料之間微小的表面張力差(1mN/m),使得對於液滴擴展而言沒有顯著的能量優勢。其它因素(譬如,摩擦)亦被認為對於擴展的程度有影響。 In Example 1 (see Table 1), the droplets of the imprinted photoresist material were placed on a substrate having a pretreatment composition A coating (Sartomer 492 or "SR492"). The SR 492 (available from Sartomer, Inc., of Pennsylvania, USA) is propoxylated (3) trimethylolpropane triacrylate (a polyfunctional acrylate). Figure 12 shows the separation An image of the embossed photoresist material droplets 1200 and the obtained pretreatment coating 1204 on the pretreatment coating 1202 after 1.7 seconds of initial application in a staggered grid pattern. In this example, the droplets retain their spherical cap shape and the expansion of the imprinted photoresist material is limited. As seen in Figure 12, when the droplets 1200 expand beyond the expansion of the imprinted photoresist material on the adhesive layer in Comparative Example 1, the droplets remain separated by the pretreatment coating 1202, which is A perimeter 1206 is formed around the droplet. Some of the composition of the imprinted photoresist material extends beyond the center of the droplet, which forms a region 1208 that surrounds the droplet 1200. Region 1208 is separated by a pretreatment coating 1202. This limited expansion is due, at least in part, to the slight surface tension difference (1 mN/m) between the pretreatment composition A and the imprinted photoresist material, so that there is no significant energy advantage for droplet expansion. Other factors (such as friction) are also considered to have an impact on the extent of the expansion.

在實例2中(參見表1),壓印光阻材料的液滴被配置在一具有預處理組成物B塗層(Sartomer 351HP或“SR351HP”)的基材上。該SR351HP(可從設在美國賓州的Sartomer公司購得)是三羥甲基丙烷三丙烯酸酯(一種多官能基丙烯酸酯)。圖13顯示在分離的部分以交錯的網格圖案在液滴開始被施配的1.7秒鐘之後在該預處理塗層1302上的壓印光阻材料的液滴1300及所獲得的預處理塗層1304的影像。在1.7秒之後,液滴1300覆蓋基材的表面積的大部分且被預處理塗層1302分隔開,預處理塗層在液滴的周圍形成邊界1306。液滴1300比實例1的液滴1200更為均勻,因而可觀察到比實例1的擴展 顯著地改善的擴展結果。更大程度的擴展係至少部分地歸因於預處理組成物B和壓印光阻材料之間的表面張力差(3.1mN/m)大於實例1中預處理組成物A和壓印光阻材料之間的表面張力差。 In Example 2 (see Table 1), the droplets of the imprinted photoresist material were placed on a substrate having a pretreatment composition B coating (Sartomer 351HP or "SR351HP"). The SR351HP (available from Sartomer, Inc., of Pennsylvania, USA) is trimethylolpropane triacrylate (a polyfunctional acrylate). Figure 13 shows droplets 1300 of imprinted photoresist material on the pretreated coating 1302 in 1.7 seconds after the droplets begin to be dispensed in a staggered grid pattern at the separated portions and the resulting pretreatment coating Image of layer 1304. After 1.7 seconds, the droplets 1300 cover a substantial portion of the surface area of the substrate and are separated by the pretreatment coating 1302, which forms a boundary 1306 around the droplets. Droplet 1300 is more uniform than droplet 1200 of Example 1, and thus an extension to Example 1 can be observed Significantly improved expansion results. A greater degree of expansion is due, at least in part, to the difference in surface tension (3.1 mN/m) between the pretreatment composition B and the imprinted photoresist material, which is greater than the pretreatment composition A and the imprinted photoresist material of Example 1. The difference in surface tension between.

在實例3中(參見表1),壓印光阻材料的液滴被配置在一具有預處理組成物C塗層(Sartomer 399LV或“SR399LV”)的基材上。該SR399LV(可從設在美國賓州的Sartomer公司購得)是二季戊四醇五丙烯酸酯(一種多官能基丙烯酸酯)。圖14顯示在分離的部分以交錯的網格圖案在液滴開始被施配的1.7秒鐘之後在該預處理塗層1402上的壓印光阻材料的液滴1400及所獲得的預處理塗層1404的影像。如圖14中所見,液滴1400在邊界1406處被預處理塗層1402分隔開。然而,多數的壓印光阻材料被堆積在液滴邊界處,使得多數的可聚合材料位在該液滴邊界處,而液滴中心則實質上是空的。擴展的程度至少部分地歸因於預處理組成物C和壓印光阻材料之間很大的表面張力差(6.9mN/m)。 In Example 3 (see Table 1), the droplets of the imprinted photoresist material were placed on a substrate having a pretreatment composition C coating (Sartomer 399LV or "SR399LV"). The SR399LV (available from Sartomer, Inc., of Pennsylvania, USA) is dipentaerythritol pentaacrylate (a polyfunctional acrylate). Figure 14 shows droplets 1400 of imprinted photoresist material on the pretreatment coating 1402 after 1.7 seconds in which the droplets begin to be dispensed in a staggered grid pattern at the separated portions and the pretreatment coating obtained. Image of layer 1404. As seen in Figure 14, the droplets 1400 are separated by a pretreatment coating 1402 at a boundary 1406. However, most of the imprinted photoresist material is deposited at the droplet boundaries such that a majority of the polymerizable material is at the droplet boundary and the droplet center is substantially empty. The extent of the expansion is due, at least in part, to the large surface tension difference (6.9 mN/m) between the pretreatment composition C and the imprinted photoresist material.

缺陷密度係以實例1-3的壓印光阻材料的預擴展時間和實例2的預處理組成物B的函數來測量。圖15顯示導因於模板的未填滿的缺陷密度(空隙)。曲線1500顯示係以28奈米線/空間圖案區域的擴展時間(秒)的函數來顯示缺陷密度(每cm2的缺陷數量),其中缺陷密度在0.9秒時接近0.1/cm2。曲線1502係以在具有一特徵構造尺寸範圍的整個區域中的擴展時間(秒)的時間函 數來顯示缺陷密度(每cm2的缺陷數量),其中缺陷密度在1秒時接近0.1/cm2。兩相比較,沒有預處理時,對於整個區域而言,缺陷密度是在擴展時間介於2.5秒至3秒時接近於0.1/cm2The defect density was measured as a function of the pre-expansion time of the imprinted photoresist material of Examples 1-3 and the pre-treatment composition B of Example 2. Figure 15 shows the unfilled defect density (void) resulting from the template. Curve 1500 shows the defect density (number of defects per cm 2 ) as a function of the spread time (seconds) of the 28 nm line/space pattern region, where the defect density approaches 0.1/cm 2 at 0.9 seconds. Curve 1502 displays the defect density (number of defects per cm 2 ) as a function of time in extended time (seconds) over the entire area having a range of feature configurations, with the defect density approaching 0.1/cm 2 at 1 second. Comparing the two phases, when there is no pretreatment, the defect density is close to 0.1/cm 2 for the entire region from 2.5 seconds to 3 seconds.

預處理組成物PC1-PC9的特性被示於表2中。PC1-PC9的關鍵被示於下文中。黏度係如上文所述地在23℃的溫度下被測量。為了計算如表2中所示的在500ms的直徑比(直徑比),壓印光阻材料的液滴(液滴大小~25pL)被允許擴展於一基材上,一預處理組成物(約8奈米至10奈米厚)被塗覆在一黏著層之上,且液滴直徑在500ms的時段被記錄。每一預處理組成物的液滴直徑被除以在一沒有預處理組成物之黏著層上的壓印光阻材料在500ms的液滴直徑。如表2所示,在PC1上的壓印光阻材料在500ms的液滴直徑比在一沒有預處理塗層的黏著層上的壓印光阻材料的液滴直徑大了60%。圖16以預處理組成物PC1-PC9的時間(ms)函數來顯示液滴直徑(μm)。相對抗蝕刻性是每一預處理組成物的Ohnishi參數被除以壓印光阻材料的Ohnishi參數。預處理組成物PC1-PC9的相對抗蝕刻性(預處理組成物的抗蝕刻性對壓印光阻材料的抗蝕刻性的比率)被示於表2中。 The characteristics of the pretreatment compositions PC1-PC9 are shown in Table 2. The key to PC1-PC9 is shown below. The viscosity was measured at a temperature of 23 ° C as described above. In order to calculate the diameter ratio (diameter ratio) at 500 ms as shown in Table 2, the droplets of the imprinted photoresist material (droplet size ~25 pL) were allowed to spread over a substrate, a pretreatment composition (about 8 nm to 10 nm thick was coated on an adhesive layer, and the droplet diameter was recorded during a period of 500 ms. The droplet diameter of each pretreatment composition was divided by the embossed photoresist material on the adhesive layer without the pretreatment composition at a droplet diameter of 500 ms. As shown in Table 2, the embossed photoresist material on PC1 had a droplet diameter of 500% greater than the droplet diameter of the embossed photoresist material on the adhesive layer without the pretreatment coating. Figure 16 shows the droplet diameter (μm) as a function of time (ms) of the pretreatment compositions PC1-PC9. The relative etch resistance is the Ohnishi parameter of each pretreatment composition divided by the Ohnishi parameter of the imprinted photoresist material. The relative etching resistance of the pretreatment compositions PC1-PC9 (the ratio of the etching resistance of the pretreatment composition to the etching resistance of the imprinted photoresist material) is shown in Table 2.

PC1:三羥甲基丙烷三丙烯酸酯(Sartomer) PC1: Trimethylolpropane triacrylate (Sartomer)

PC2:三羥甲基丙烷乙氧基三丙烯酸酯,n~1.3(Osaka Organic) PC2: Trimethylolpropane ethoxy triacrylate, n~1.3 (Osaka Organic)

PC3:1,12-十二烷二醇二丙烯酸酯 PC3: 1,12-dodecanediol diacrylate

PC4:聚乙二醇二丙烯酸酯,Mn,avg=575(Sigma-Aldrich) PC4: polyethylene glycol diacrylate, Mn, avg = 575 (Sigma-Aldrich)

PC5:四甘醇二丙烯酸酯(Sartomer) PC5: tetraethylene glycol diacrylate (Sartomer)

PC6:1,3-金剛烷二醇二丙烯酸酯 PC6: 1,3-adamantanediol diacrylate

PC7:壬二醇二丙烯酸酯 PC7: decanediol diacrylate

PC8:間-二甲苯二丙烯酸酯 PC8: m-xylene diacrylate

PC9:三環癸烷二甲醇二丙烯酸酯(Sartomer) PC9: tricyclodecane dimethanol diacrylate (Sartomer)

預處理組成物PC3及PC9以不同的重量比被結合以得到預處理組成物PC10-PC13,其重量比率被示於表3中。PC3和PC9與它們所形成的混合物的特性的比較揭露出相輔相成的效果。例如,PC3具有相對低的黏度並具有相對快的模板填充,但有相對差的抗蝕刻性。相反地,PC9具有相對好的抗蝕刻性及薄膜穩定度(低蒸發損失),但相對較黏且表現出相對慢的模板填充。然而,PC3和PC9結合可獲得有利的特性的結合之預處理組成物,其包括相對低的黏度、相對快的模板填充、及相對好 的抗蝕刻性。例如,具有30wt%的PC3和70wt%的PC9的預處理組成物被發現具有37.2nM/m的表面張力、1.61的直徑比、及3.5的Ohnishi參數。 The pretreatment compositions PC3 and PC9 were combined at different weight ratios to obtain a pretreatment composition PC10-PC13, the weight ratios of which are shown in Table 3. A comparison of the properties of PC3 and PC9 with the mixture they form reveals a complementary effect. For example, PC3 has a relatively low viscosity and has a relatively fast template fill, but has relatively poor etch resistance. Conversely, PC9 has relatively good etch resistance and film stability (low evaporation loss), but is relatively viscous and exhibits relatively slow template filling. However, PC3 and PC9 combine to obtain a combination of advantageous properties of the pretreatment composition, including relatively low viscosity, relatively fast template filling, and relatively good Resistance to etching. For example, a pretreatment composition having 30 wt% of PC3 and 70 wt% of PC9 was found to have a surface tension of 37.2 nM/m, a diameter ratio of 1.61, and an Ohnishi parameter of 3.5.

圖17A顯示包含不同的PC3及PC9比例(即,從100wt%的PC3到100wt%的PC9)的預處理組成物的黏度的曲線。圖17B顯示PC3、PC13、PC12、PC11、PC10及PC9的液滴直徑(其如關於表2所描述地被測量)。圖17C顯示表面張力(mN/m)vs.PC3及PC9的比例。 Figure 17A shows a plot of viscosity of a pretreatment composition comprising different PC3 and PC9 ratios (i.e., from 100 wt% PC3 to 100 wt% PC9). Figure 17B shows the droplet diameters of PC3, PC13, PC12, PC11, PC10 and PC9 (which were measured as described with respect to Table 2). Fig. 17C shows the ratio of surface tension (mN/m) vs. PC3 and PC9.

數個實施例已被描述。然而,應被瞭解的是,各種修改可在不連離本揭露內容的精神及範圍下被達成,因此,其它實施例落在下面的申請專利範圍所界定的範圍內。 Several embodiments have been described. However, it is to be understood that various modifications may be made without departing from the spirit and scope of the disclosure, and other embodiments are within the scope of the following claims.

102‧‧‧基材 102‧‧‧Substrate

500‧‧‧基底 500‧‧‧Base

502‧‧‧黏著層 502‧‧‧Adhesive layer

504‧‧‧預處理組成物 504‧‧‧Pretreatment composition

506‧‧‧預處理塗層 506‧‧‧Pretreatment coating

Claims (15)

一種奈米壓印微影方法,包含:將一預處理組成物配置在一基材上以形成一預處理塗層於該基材上,其中該預處理組成物包括一可聚合成分(polymerizable component);將一壓印光阻材料的分離的部分配置在該預處理塗層上,該壓印光阻材料的每一分離的部分覆蓋該基材的一目標區域,其中該壓印光阻材料是一可聚合組成物;當該壓印光阻材料的每一分離的部分擴展超出其目標區域時,形成一包括該預處理組成物和該壓印光阻材料的混合物之合成的可聚合塗層於該基材上;將該合成的可聚合塗層和一奈米壓印微影模板接觸;及將該合成的可聚合塗層聚合化以產生一合成的聚合層於該基材上,其中介於該預處理組成物和空氣之間的界面能(interfacial surface energy)大過該壓印光阻材料和空氣之間的或該壓印光阻材料的至少一成分和空氣之間的界面能。 A nanoimprint lithography method comprising: disposing a pretreatment composition on a substrate to form a pretreatment coating on the substrate, wherein the pretreatment composition comprises a polymerizable component Separating a separate portion of an imprinted photoresist material on the pretreatment coating, each separate portion of the imprinted photoresist material covering a target region of the substrate, wherein the imprinted photoresist material Is a polymerizable composition; when each separated portion of the embossed photoresist material expands beyond its target region, a synthetic polymerizable coating comprising a mixture of the pretreatment composition and the embossed photoresist material is formed Layered on the substrate; contacting the synthetic polymerizable coating with a nanoimprint lithography template; and polymerizing the synthetic polymerizable coating to produce a synthetic polymeric layer on the substrate, Wherein the interfacial surface energy between the pretreatment composition and the air is greater than the interface between the imprinted photoresist material and the air or between at least one component of the imprinted photoresist material and the air can. 如申請專利範圍第1項的方法,其中介於該預處理組成物和空氣之間的界面能與該壓印光阻材料和空氣之間的界面能兩者間的差異是在0.5mN/m至25mN/m、0.5mN/m至15mN/m、或0.5mN/m至7mN/m的範圍之內;及/或其中該壓印光阻材料和空氣之間的界面能是在20 mN/m至60mN/m、28mN/m至40mN/m、或32mN/m至35mN/m的範圍之內;及/或其中該預處理組成物和空氣之間的界面能是在30mN/m至45mN/m的範圍之內。 The method of claim 1, wherein the difference between the interfacial composition between the pretreatment composition and the air and the interfacial energy between the imprinted photoresist material and the air is 0.5 mN/m. Up to 25 mN/m, 0.5 mN/m to 15 mN/m, or 0.5 mN/m to 7 mN/m; and/or wherein the interface energy between the imprinted photoresist material and air is 20 mN/m to 60 mN/m, 28 mN/m to 40 mN/m, or 32 mN/m to 35 mN/m; and/or wherein the interfacial composition between the pretreatment composition and air is 30 mN/m Up to 45mN/m. 如申請專利範圍第1項的方法,其中該預處理組成物在23℃的黏度是在1cP至200cP、1cP至100cP、或1cP至50cP的範圍之內;及/或其中該壓印光阻材料在23℃的黏度是在1cP至50cP、1cP至25cP、或5cP至15cP的範圍之內。 The method of claim 1, wherein the pretreatment composition has a viscosity at 23 ° C ranging from 1 cP to 200 cP, 1 cP to 100 cP, or 1 cP to 50 cP; and/or wherein the imprinted photoresist material The viscosity at 23 ° C is in the range of 1 cP to 50 cP, 1 cP to 25 cP, or 5 cP to 15 cP. 如申請專利範圍第1項的方法,其中該預處理組成物包含一單體;及/或其中該預處理組成物包含一單官能基、雙官能基、多官能基丙烯酸酯單體。 The method of claim 1, wherein the pretreatment composition comprises a monomer; and/or wherein the pretreatment composition comprises a monofunctional, difunctional, polyfunctional acrylate monomer. 如申請專利範圍第1項的方法,其中該壓印光阻材料包含:0wt%至80wt%、20wt%至80wt%、或40wt%至80wt%的一或多個單官能基丙烯酸酯;20wt%至98wt%的一或多個雙官能基或多官能基丙烯酸酯;1wt%至10wt%的一或多個光引發劑;及1wt%至10wt%的一或多個表面活性劑。 The method of claim 1, wherein the embossed photoresist material comprises: 0 wt% to 80 wt%, 20 wt% to 80 wt%, or 40 wt% to 80 wt% of one or more monofunctional acrylates; 20 wt% Up to 98% by weight of one or more difunctional or polyfunctional acrylates; from 1% to 10% by weight of one or more photoinitiators; and from 1% to 10% by weight of one or more surfactants. 如申請專利範圍第1項的方法,其中該預處理組成物的該可聚合成分以及該壓印光阻材料的一可聚合成分起反應,用以在該合成的可聚合塗層的聚合期間形成一共價鍵結;及/或其中該預處理組成物和該壓印光阻材料每一者皆包含一具有一共同的官能基團的單體。 The method of claim 1, wherein the polymerizable component of the pretreatment composition and a polymerizable component of the imprinted photoresist material react to form during polymerization of the synthetic polymerizable coating layer. a covalent bond; and/or wherein the pretreatment composition and the imprinted photoresist material each comprise a monomer having a common functional group. 如申請專利範圍第1項的方法,其中將該預處理組成物配置在該奈米壓印微影基材上包含將該預處理組成物旋轉塗覆於該奈米壓印微影基材上;及/或其中該壓印光阻材料的一分離的部分接觸該壓印光阻材料的至少一其它分離的部分,這在該合成的可聚合塗層接觸該奈米壓印微影模板之前形成一介於兩個分離的部分之間的邊界。 The method of claim 1, wherein the pretreatment composition is disposed on the nanoimprint lithography substrate comprising spin coating the pretreatment composition onto the nanoimprint lithography substrate And/or wherein a separate portion of the imprinted photoresist material contacts at least one other discrete portion of the imprinted photoresist material prior to contacting the synthetic polymerizable coating with the nanoimprint lithography template A boundary is formed between two separate portions. 一種用申請專利範圍第1項的方法所形成之奈米壓印微影堆疊,其中該奈米壓印微影堆疊包含在該基材上的該合成的聚合層。 A nanoimprint lithography stack formed by the method of claim 1, wherein the nanoimprint lithography stack comprises the synthesized polymeric layer on the substrate. 一種製造一裝置的方法,該方法包含申請專利範圍第1項的奈米壓印微影方法。 A method of fabricating a device comprising the nanoimprint lithography method of claim 1 of the patent application. 一種用申請專利範圍第9項的方法所形成的裝置。 A device formed by the method of claim 9 of the patent application. 一種奈米壓印微影套件,包含:一預處理組成物;及一壓印光阻材料;其中該預處理組成物包含一可聚合成分,該壓印光阻材料是一可聚合組成物,且介於該預處理組成物和空氣之間的界面能大過該壓印光阻材料和空氣之間的或該壓印光阻材料的至少一成分和空氣之間的界面能。 A nanoimprint lithography kit comprising: a pretreatment composition; and an embossed photoresist material; wherein the pretreatment composition comprises a polymerizable component, the imprinted photoresist material being a polymerizable composition, And an interface energy between the pretreatment composition and the air is greater than an interface energy between the imprinted photoresist material and the air or between at least one component of the imprinted photoresist material and the air. 一種預處理奈米壓印微影基材的方法,該方法包含:用一預處理組成物塗覆該基材,其中該預處理組成物包括一可聚合成分; 將一壓印光阻材料的分離的部分配置在該預處理組成物上,其中被配置在該預處理組成物上的分離部分內的該壓印光阻材料擴展得比被配置在沒有該預處理組成物的同一基材上的該相同的壓印光阻材料快;及在該壓印光阻材料的該等分離的部分配置在該預處理組成物上和該壓印光阻材料與該奈米壓印微影模板接觸之間的界定時間長度過後,將該壓印光阻材料和一奈米壓印微影模板接觸,其中在該壓印光阻材料與該奈米壓印微影模板接觸時,被配置在該預處理組成物上的該壓印光阻材料的該等分離的部分之間的間隙體積小於當沒有該預處理組成物的該基材上的該壓印光阻材料的該等分離的部分的配置之間界定時間長度過後被配置在沒有該預處理組成物的同一基材上之相同壓印光阻材料之間的間隙體積。 A method of pretreating a nanoimprint lithography substrate, the method comprising: coating the substrate with a pretreatment composition, wherein the pretreatment composition comprises a polymerizable component; Separating a portion of the embossed photoresist material on the pretreatment composition, wherein the embossed photoresist material disposed in the separated portion of the pretreatment composition is expanded to be disposed without the pre-preparation Treating the same imprinted photoresist material on the same substrate of the composition faster; and disposing the separate portions of the imprinted photoresist material on the pretreatment composition and the imprinted photoresist material and the After the defined length of time between the nanoimprint lithography template contacts, the imprinted photoresist material is contacted with a nanoimprint lithography template, wherein the imprinted photoresist material and the nanoimprint lithography are When the template is in contact, a gap volume between the separated portions of the imprinted photoresist material disposed on the pretreatment composition is less than the imprint photoresist on the substrate without the pretreatment composition The configuration of the separate portions of the material defines a gap volume between the same imprinted photoresist material disposed over the same substrate without the pretreatment composition over a period of time. 如申請專利範圍第12項的方法,其中該預處理組成物沒有聚合引發劑。 The method of claim 12, wherein the pretreatment composition has no polymerization initiator. 一種奈米壓印微影堆疊,包含:一奈米壓印微影基材;及一形成在該奈米壓印微影基材的一表面上之合成的聚合層,其中該合成的聚合層的化學成分是不均勻的,且包含多個被邊界分隔開的中心區域,其中該合成的聚合層在邊界處的化學成分不同於該合成的聚合層在該等中心區域內部的化學成分。 A nanoimprint lithography stack comprising: a nanoimprint lithographic substrate; and a synthetic polymeric layer formed on a surface of the nanoimprint lithography substrate, wherein the synthetic polymeric layer The chemical composition is non-uniform and comprises a plurality of central regions separated by boundaries, wherein the chemical composition of the synthesized polymeric layer at the boundary is different from the chemical composition of the synthetic polymeric layer within the central regions. 如申請專利範圍第14項的奈米壓印微影堆疊,其 中該聚合層的中心區域和邊界是由一預處理組成物和一壓印光阻材料的非均質的混合物所形成,其中在該合成的聚合層的形成期間,該壓印光阻材料的一可聚合成分和該預處理組成物的一可聚合成分起反應以形成一共價鍵結。 A nanoimprint lithography stack as claimed in claim 14 The central region and boundary of the polymeric layer are formed by a heterogeneous mixture of a pretreatment composition and an embossed photoresist material, wherein during the formation of the synthetic polymeric layer, one of the imprinted photoresist materials The polymerizable component reacts with a polymerizable component of the pretreatment composition to form a covalent bond.
TW105127284A 2015-09-08 2016-08-25 Nanoimprint lithography method, nanoimprint lithography stack, method for manufacturing a semiconductor device and a semiconductor device made by the method, nanoimprint lithography kit, method for pretreating a nanoimprint substrate, and imprint method TWI708118B (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201562215316P 2015-09-08 2015-09-08
US62/215,316 2015-09-08
US15/004,679 US20170068159A1 (en) 2015-09-08 2016-01-22 Substrate pretreatment for reducing fill time in nanoimprint lithography
US15/004,679 2016-01-22
US15/195,789 US20170066208A1 (en) 2015-09-08 2016-06-28 Substrate pretreatment for reducing fill time in nanoimprint lithography
US15/195,789 2016-06-28

Publications (2)

Publication Number Publication Date
TW201723649A true TW201723649A (en) 2017-07-01
TWI708118B TWI708118B (en) 2020-10-21

Family

ID=58317450

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105127284A TWI708118B (en) 2015-09-08 2016-08-25 Nanoimprint lithography method, nanoimprint lithography stack, method for manufacturing a semiconductor device and a semiconductor device made by the method, nanoimprint lithography kit, method for pretreating a nanoimprint substrate, and imprint method

Country Status (5)

Country Link
JP (2) JP6141500B2 (en)
KR (2) KR102115280B1 (en)
CN (2) CN106842835B (en)
SG (2) SG10201607459WA (en)
TW (1) TWI708118B (en)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102097225B1 (en) * 2015-09-08 2020-04-03 캐논 가부시끼가이샤 Substrate pretreatment and etching uniformity in nanoimprint lithography
US10883006B2 (en) * 2016-03-31 2021-01-05 Canon Kabushiki Kaisha Pattern forming method as well as production methods for processed substrate, optical component, circuit board, electronic component and imprint mold
US10829644B2 (en) * 2016-03-31 2020-11-10 Canon Kabushiki Kaisha Pattern forming method as well as production methods for processed substrate, optical component, circuit board, electronic component and imprint mold
US10754245B2 (en) 2016-03-31 2020-08-25 Canon Kabushiki Kaisha Pattern forming method as well as production methods for processed substrate, optical component, circuit board, electronic component and imprint mold
US10754244B2 (en) * 2016-03-31 2020-08-25 Canon Kabushiki Kaisha Pattern forming method as well as production methods for processed substrate, optical component, circuit board, electronic component and imprint mold
US10845700B2 (en) 2016-03-31 2020-11-24 Canon Kabushiki Kaisha Pattern forming method as well as production methods for processed substrate, optical component, circuit board, electronic component and imprint mold
TW201825617A (en) * 2016-09-16 2018-07-16 日商富士軟片股份有限公司 Composition for forming primer layer for imprinting, primer layer for imprinting, and laminate
TW201817582A (en) * 2016-09-16 2018-05-16 日商富士軟片股份有限公司 Pattern forming method and method for producing semiconductor element
JP6741855B2 (en) * 2017-02-28 2020-08-19 富士フイルム株式会社 Composition for forming primer layer, kit, primer layer and laminate
US10317793B2 (en) * 2017-03-03 2019-06-11 Canon Kabushiki Kaisha Substrate pretreatment compositions for nanoimprint lithography
JP7425602B2 (en) 2017-03-08 2024-01-31 キヤノン株式会社 Pattern forming method, method for manufacturing processed substrates, optical components and quartz mold replicas, imprint pre-treatment coating material and set thereof with imprint resist
JP7328888B2 (en) 2017-03-08 2023-08-17 キヤノン株式会社 Method for producing cured product pattern, method for producing optical component, circuit board and quartz mold replica, imprint pretreatment coating material and its cured product
JP7039865B2 (en) * 2017-05-26 2022-03-23 大日本印刷株式会社 Pattern forming method, uneven structure manufacturing method, replica mold manufacturing method, resist pattern reformer and pattern forming system
WO2018230488A1 (en) * 2017-06-14 2018-12-20 富士フイルム株式会社 Kit, laminate, method for producing laminate, method for producing cured product pattern, and method of producing circuit board
KR102419881B1 (en) 2017-08-10 2022-07-12 캐논 가부시끼가이샤 How to form a pattern
WO2019065526A1 (en) * 2017-09-26 2019-04-04 富士フイルム株式会社 Composition for forming underlayer film for imprinting, kit, curable composition for imprinting, laminated body, method for manufacturing laminated body, method for manufacturing cured product pattern, and method for manufacturing circuit substrate
JP6754344B2 (en) * 2017-09-26 2020-09-09 富士フイルム株式会社 Composition for forming underlayer film for imprint, kit, laminate, method for manufacturing laminate, method for manufacturing cured product pattern, method for manufacturing circuit board
JP7034696B2 (en) 2017-12-14 2022-03-14 キヤノン株式会社 A method for manufacturing a cured product pattern, a method for manufacturing a processed circuit board, a method for manufacturing a circuit board, a method for manufacturing electronic components, and a method for manufacturing an imprint mold.
TWI783115B (en) 2018-02-14 2022-11-11 日商富士軟片股份有限公司 Kit, composition for forming underlayer film for imprint, method for forming pattern, method for manufacturing semiconductor device
JPWO2020059603A1 (en) * 2018-09-18 2021-09-16 富士フイルム株式会社 Imprint laminate, imprint laminate manufacturing method, pattern formation method and kit
JP7096898B2 (en) * 2018-09-28 2022-07-06 富士フイルム株式会社 A composition for forming an underlayer film for imprinting, a method for producing a composition for forming an underlayer film for imprinting, a pattern manufacturing method, a semiconductor device manufacturing method, a cured product and a kit.
US10780682B2 (en) * 2018-12-20 2020-09-22 Canon Kabushiki Kaisha Liquid adhesion composition, multi-layer structure and method of making said structure
US20200308320A1 (en) * 2019-03-26 2020-10-01 Canon Kabushiki Kaisha Curable composition comprising dual-functional photoinitiator
JP7222811B2 (en) 2019-06-04 2023-02-15 キオクシア株式会社 IMPRINT APPARATUS, IMPRINT METHOD, AND SEMICONDUCTOR DEVICE MANUFACTURING METHOD
JP2021044299A (en) 2019-09-06 2021-03-18 キオクシア株式会社 Imprint method, manufacturing method for semiconductor device, and imprint device
WO2023032642A1 (en) 2021-09-03 2023-03-09 株式会社デンソー Dynamo-electric machine
CN117410168B (en) * 2023-12-13 2024-03-29 江西兆驰半导体有限公司 Patterned sapphire substrate and preparation method thereof

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2270592B1 (en) * 2000-07-17 2015-09-02 Board of Regents, The University of Texas System Method of forming a pattern on a substrate
CN100517584C (en) * 2003-12-19 2009-07-22 北卡罗来纳大学查珀尔希尔分校 Methods for fabricating isolated micro- and nano- structures using soft or imprint lithography
KR101366505B1 (en) * 2005-06-10 2014-02-24 오브듀캇 아베 Imprint stamp comprising cyclic olefin copolymer
US8557351B2 (en) * 2005-07-22 2013-10-15 Molecular Imprints, Inc. Method for adhering materials together
US8846195B2 (en) * 2005-07-22 2014-09-30 Canon Nanotechnologies, Inc. Ultra-thin polymeric adhesion layer
CN100437155C (en) * 2006-02-17 2008-11-26 开曼群岛商亚岗科技股份有限公司 Resin layer surface micro structure mould-band rolling wheel shaping method and optical film
JP4940884B2 (en) * 2006-10-17 2012-05-30 大日本印刷株式会社 Method for producing pattern forming body
US8142702B2 (en) * 2007-06-18 2012-03-27 Molecular Imprints, Inc. Solvent-assisted layer formation for imprint lithography
JP4467611B2 (en) * 2007-09-28 2010-05-26 株式会社日立製作所 Optical imprint method
JP5065101B2 (en) * 2008-03-05 2012-10-31 東洋合成工業株式会社 Pattern formation method
GB0809062D0 (en) * 2008-05-19 2008-06-25 Zbd Displays Ltd Method for patterning a surface using selective adhesion
WO2010021291A1 (en) * 2008-08-22 2010-02-25 コニカミノルタオプト株式会社 Substrate manufacturing method, substrate manufactured by the substrate manufacturing method and magnetic recording medium using the substrate
EP2199854B1 (en) * 2008-12-19 2015-12-16 Obducat AB Hybrid polymer mold for nano-imprinting and method for making the same
JP5316132B2 (en) * 2009-03-18 2013-10-16 大日本印刷株式会社 Nanoimprint mold
JP5364533B2 (en) * 2009-10-28 2013-12-11 株式会社東芝 Imprint system and imprint method
JP2011222647A (en) * 2010-04-07 2011-11-04 Fujifilm Corp Pattern forming method and pattern substrate manufacturing method
SG186226A1 (en) * 2010-06-11 2013-01-30 Hoya Corp Substrate with adhesion promoting layer, method for producing mold, and method for producing master mold
JP5658513B2 (en) * 2010-08-27 2015-01-28 学校法人東京電機大学 Pattern formation method
JP5767615B2 (en) * 2011-10-07 2015-08-19 富士フイルム株式会社 Underlayer film composition for imprint and pattern forming method using the same
US9278857B2 (en) * 2012-01-31 2016-03-08 Seagate Technology Inc. Method of surface tension control to reduce trapped gas bubbles
JP5899145B2 (en) * 2012-06-18 2016-04-06 富士フイルム株式会社 Composition for forming underlayer film for imprint and pattern forming method
JP2014093385A (en) * 2012-11-02 2014-05-19 Fujifilm Corp Method of manufacturing adhesion film for imprint and method of forming pattern
JP6029558B2 (en) * 2013-09-30 2016-11-24 富士フイルム株式会社 Curable composition for optical imprint, pattern formation method, fine pattern, and method for manufacturing semiconductor device

Also Published As

Publication number Publication date
JP6723947B2 (en) 2020-07-15
CN106842835B (en) 2020-12-25
TWI708118B (en) 2020-10-21
JP2017152705A (en) 2017-08-31
KR102115280B1 (en) 2020-05-26
JP2017055108A (en) 2017-03-16
KR102466726B1 (en) 2022-11-15
JP6141500B2 (en) 2017-06-07
KR20170030051A (en) 2017-03-16
CN111708260B (en) 2023-11-10
CN111708260A (en) 2020-09-25
SG10202102937RA (en) 2021-04-29
CN106842835A (en) 2017-06-13
KR20200058357A (en) 2020-05-27
SG10201607459WA (en) 2017-04-27

Similar Documents

Publication Publication Date Title
TW201723649A (en) Substrate pretreatment for reducing fill time in nanoimprint lithography
US10668677B2 (en) Substrate pretreatment for reducing fill time in nanoimprint lithography
JP6736688B2 (en) Imprint resist and substrate pretreatment to reduce fill time in nanoimprint lithography
KR102232011B1 (en) Substrate pretreatment composition for nanoimprint lithography
KR102202291B1 (en) Imprint lithography method, pattern formation method, and semiconductor device manufacturing method
US20170068159A1 (en) Substrate pretreatment for reducing fill time in nanoimprint lithography
JP6731067B2 (en) Imprint resist and substrate pretreatment to reduce fill time in nanoimprint lithography
TW201723650A (en) Substrate pretreatment and etch uniformity in nanoimprint lithography