TW201720756A - Thermal energetic methods of applying biologically active ceramics - Google Patents

Thermal energetic methods of applying biologically active ceramics Download PDF

Info

Publication number
TW201720756A
TW201720756A TW105130073A TW105130073A TW201720756A TW 201720756 A TW201720756 A TW 201720756A TW 105130073 A TW105130073 A TW 105130073A TW 105130073 A TW105130073 A TW 105130073A TW 201720756 A TW201720756 A TW 201720756A
Authority
TW
Taiwan
Prior art keywords
condition
bioactive ceramic
kaolinite
tourmaline
less
Prior art date
Application number
TW105130073A
Other languages
Chinese (zh)
Inventor
法蘭西斯可 瓊斯 西帝羅-菲爾何
夏農 凡斯曼
史蒂芬 米得屯
Original Assignee
複合能源技術有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 複合能源技術有限公司 filed Critical 複合能源技術有限公司
Publication of TW201720756A publication Critical patent/TW201720756A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/024Woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/14Layered products comprising a layer of metal next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/16Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer formed of particles, e.g. chips, powder or granules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B9/047Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material made of fibres or filaments
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/36Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/44Oxides or hydroxides of elements of Groups 2 or 12 of the Periodic System; Zincates; Cadmates
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/36Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/45Oxides or hydroxides of elements of Groups 3 or 13 of the Periodic System; Aluminates
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/36Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/46Oxides or hydroxides of elements of Groups 4 or 14 of the Periodic System; Titanates; Zirconates; Stannates; Plumbates
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/77Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with silicon or compounds thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/77Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with silicon or compounds thereof
    • D06M11/79Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with silicon or compounds thereof with silicon dioxide, silicic acids or their salts
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M23/00Treatment of fibres, threads, yarns, fabrics or fibrous goods made from such materials, characterised by the process
    • D06M23/02Processes in which the treating agent is releasably affixed or incorporated into a dispensing means
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M23/00Treatment of fibres, threads, yarns, fabrics or fibrous goods made from such materials, characterised by the process
    • D06M23/16Processes for the non-uniform application of treating agents, e.g. one-sided treatment; Differential treatment
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P1/00General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
    • D06P1/44General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders
    • D06P1/673Inorganic compounds
    • D06P1/67383Inorganic compounds containing silicon
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P5/00Other features in dyeing or printing textiles, or dyeing leather, furs, or solid macromolecular substances in any form
    • D06P5/003Transfer printing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/02Coating on the layer surface on fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • B32B2255/205Metallic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2437/00Clothing

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Materials For Medical Uses (AREA)

Abstract

The subject matter described herein is directed to methods of applying bioceramic compositions using thermal energetic methods, and articles made by such methods.

Description

施用生物活性陶瓷之熱能源方法Thermal energy method for applying bioactive ceramics

熱敏性黏著劑係在施用熱時形成鍵以連結黏著劑與黏著物之黏著劑。可使用熱敏性黏著劑在熱及壓力之組合作用下將各種類型之基材黏著至表面或物體,例如將一個紙薄片黏著至另一紙薄片、將紙薄片黏著至固體物體或將紙薄片黏著至膜。然而,熱敏性黏著劑對於許多黏著劑應用不能令人滿意,此乃因在許多應用中,難以同時加熱黏著劑、基材及基材擬附接之物體或表面。The heat-sensitive adhesive forms a bond to bond the adhesive and the adhesive when heat is applied. A heat-sensitive adhesive can be used to adhere various types of substrates to surfaces or objects under a combination of heat and pressure, such as adhering a sheet of paper to another sheet of paper, adhering the sheet to a solid object, or adhering the sheet to membrane. However, heat-sensitive adhesives are unsatisfactory for many adhesive applications because in many applications it is difficult to simultaneously heat the adhesive, the substrate, and the object or surface to which the substrate is to be attached.

在一些實施例中,本發明提供將材料施用至物件上之方法,條件係該材料包括生物活性陶瓷層及黏著劑層,其中黏著劑層與物件接觸;且其中在將熱施用至材料上後將生物活性陶瓷施用於物件上。In some embodiments, the present invention provides a method of applying a material to an article, the condition comprising a bioactive ceramic layer and an adhesive layer, wherein the adhesive layer is in contact with the article; and wherein after applying heat to the material The bioactive ceramic is applied to the article.

除非上下文另外明確指出,否則如此文件中所使用,單數形式「一(a、an)」及「該(the)」包含複數個指示物。除非另外定義,否則本文所用之所有技術及科學術語具有與熟習此項技術者通常所理解相同之涵義。如此文件中所使用,術語「包括」意指「包含但不限於」。 本發明係關於製作包括生物活性陶瓷之材料且藉由熱轉移將該等材料施用至一批物件上。生物活性陶瓷可(例如)吸收及反射有益遠紅外線能量(FIR)。FIR係3微米至100微米之電磁輻射之紅外線光譜區域(國際IR輻射照明分類委員會(International Commission on Illumination classification of IR radiation)),其能夠滲透至皮膚下方最深1.5英吋(幾乎4 cm)。特定而言,在8微米至12微米範圍內,FIR可呈現許多有益有益效應。然而,關於收穫有益範圍之遠紅外線能量且將其傳輸至個體存在許多難題。甚至更大之難題在於設想將有益範圍之遠紅外線能量提供至個體身體之特定區或區域之策略。 本發明提供將發射遠紅外線之生物活性陶瓷施用至服裝(例如衣物)上之熱能源方法。熱轉移係藉由使用(例如)熱壓機將熱施用至材料上來將材料施用至各種 物項(亦即物件)之過程。舉例而言,熱施用材料可在一側含有熱敏性黏著劑且在另一側含有生物活性陶瓷;藉此在將某一量之熱施用至材料上時,該材料黏著至其所施用之基材。舉例而言,在使用熱轉移將裝飾設計施用至織物上時,最終結果係製得包括發射之遠紅外線之生物活性陶瓷之經裝飾衣物。可將包括生物活性陶瓷之材料施用至各種物件上,例如服裝(襯衫、袖套等)、家具(座椅)、寢具及諸多其他物件。 本文亦闡述組合物及套組,其包括:一或多個生物活性陶瓷層及視情況黏著劑層及/或絕熱層。可使用套組及組合物將生物活性陶瓷施用至物件上。舉例而言,可使用套組將生物活性陶瓷施用至包括聚酯及/或彈力纖維之織物上。該等套組可包括一或多個具有生物活性陶瓷層之薄片。每一生物活性陶瓷層可包括熱敏性黏著劑。該等套組可進一步包括試劑組以將生物活性陶瓷附接於物件上。在一些實例中,試劑組可包含一或多個類型可用於將生物活性陶瓷附接至織物上之熱敏性膠。在其他情形下,試劑組可包含抗黏性薄片。該套組亦可包括關於其使用之書面說明書。 本文所闡述標的物之又一特徵係將包括生物活性陶瓷之材料薄片靶向附接於物件上。將材料靶向附接至物件(例如襯衫或另一衣服物件)可提供生物活性陶瓷至暴露於物件之個體之特定靶向。舉例而言,在肩、後背或腹部區域中包括生物活性陶瓷之濃縮物之襯衫可提供遠紅外線能量由生物陶瓷更有效地發射/反射至身體中之肩、腹部及/或背部區的有益效應(圖1)。可使用材料於物件/基材上之靶向附接來將生物活性陶瓷施用至物件之期望區域,例如襯衫之肩、肘、腕、腰部、胸部區域、膝、踝及其他區域。將材料靶向施用至物件上繼而可使得形成向所選區域或身體區域提供遠紅外線能量之有益效應之物件。材料之靶向附接亦可用於產生定製物件。舉例而言,定製物件不僅可將由生物活性陶瓷發射之遠紅外線能量之有益效應靶向特定目標區域/區,且亦其亦可用於產生獨特設計。亦可使用材料至物件之靶向施用來將生物活性陶瓷之不同濃縮物提供至物件之一或多個區域。 本文所闡述標的物之另一特徵係包括生物活性陶瓷之轉移材料。轉移材料可包括一或多個層。舉例而言,轉移材料可包括:(1)內襯,其在製造中支撐產品且保護黏著劑直至將材料施用至最終使用表面上為止;(2)黏著劑,其可為壓敏性或熱敏性;(3)面材,其可為膜或錨定上塗層及黏著劑之其他特種紙、織物或膜,面材亦可包括生物活性陶瓷;(4)生物活性陶瓷;及(4)上塗層,其係可經施用以促進或增加使用習用及數位印刷技術之油墨黏著或改質光澤或其他性質之物理表面塗層。舉例而言,在一實施例中,該組合物包括(a)約1 wt%至約90 wt%高嶺石(Al2 Si2 O5 (OH)4 );(b)約1 wt%至約90 wt%電氣石;(c)約1 wt%至約90 wt%氧化鋁(Al2 O3 );(d)約1 wt%至約90 wt%二氧化矽(SiO2 );及(e)約1 wt%至約90 wt%氧化鋯(ZrO2 ),條件係該等量係基於生物活性陶瓷組合物之總重量;且條件係轉移材料層鋪至轉移薄片上。在另一實施例中,該組合物包括(a)約1 wt%至約90 wt%高嶺石(Al2 Si2 O5 (OH)4 );(b)約1 wt%至約90 wt%電氣石;(c)約1 wt%至約90 wt%氧化鋁(Al2 O3 );(d)約1 wt%至約90 wt%二氧化矽(SiO2 );及(e)約1 wt%至約90 wt%二氧化鈦(TiO2 ),條件係該等量係基於生物活性陶瓷組合物之總重量;且條件係轉移材料層鋪至轉移薄片上。在另一實施例中,該組合物包括(a)約1 wt%至約90 wt%高嶺石(Al2 Si2 O5 (OH)4 );(b)約1 wt%至約90 wt%電氣石;(c)約1 wt%至約90 wt%氧化鋁(Al2 O3 );(d)約1 wt%至約90 wt%二氧化矽(SiO2 );及(e)約1 wt%至約90 wt%氧化鎂(MgO),條件係該等量係基於生物活性陶瓷組合物之總重量;且條件係轉移材料層鋪至轉移薄片上。在另一實施例中,該組合物包括(a)約20 wt%至約80 wt%高嶺石(Al2 Si2 O5 (OH)4 );(b)約1 wt%至約30 wt%電氣石;(c)約1 wt%至約40 wt%氧化鋁(Al2 O3 );(d)約1 wt%至約40 wt%二氧化矽(SiO2 );及(e)約1 wt%至約20 wt%氧化鋯(ZrO2 ),條件係該等量係基於生物活性陶瓷組合物之總重量;且條件係轉移材料層鋪至轉移薄片上。在另一實施例中,該組合物包括(a)約20 wt%至約80 wt%高嶺石(Al2 Si2 O5 (OH)4 );(b)約1 wt%至約30 wt%電氣石;(c)約1 wt%至約40 wt%氧化鋁(Al2 O3 );(d)約1 wt%至約40 wt%二氧化矽(SiO2 );及(e)約1 wt%至約20 wt%二氧化鈦(TiO2 ),條件係該等量係基於生物活性陶瓷組合物之總重量;且條件係轉移材料層鋪至轉移薄片上。在另一實施例中,該組合物包括(a)約20 wt%至約80 wt%高嶺石(Al2 Si2 O5 (OH)4 );(b)約1 wt%至約30 wt%電氣石;(c)約1 wt%至約40 wt%氧化鋁(Al2 O3 );(d)約1 wt%至約40 wt%二氧化矽(SiO2 );及(e)約1 wt%至約20 wt%氧化鎂(MgO),條件係該等量係基於生物活性陶瓷組合物之總重量;且條件係轉移材料層鋪至轉移薄片上。在另一實施例中,生物活性陶瓷組合物包括:(a)約20 wt%至約60 wt%高嶺石(Al2 Si2 O5 (OH)4 );(b)約5 wt%至約25 wt%電氣石;(c)約1 wt%至約25 wt%氧化鋁(Al2 O3 );(d)約1 wt%至約20 wt%二氧化矽(SiO2 );及(e)約1 wt%至約20 wt%氧化鋯(ZrO2 ),條件係該等量係基於生物活性陶瓷組合物之總重量;且條件係轉移材料層鋪至轉移薄片上。在另一實施例中,生物活性陶瓷組合物包括:(a)約20 wt%至約60 wt%高嶺石(Al2 Si2 O5 (OH)4 );(b)約5 wt%至約25 wt%電氣石;(c)約1 wt%至約25 wt%氧化鋁(Al2 O3 );(d)約1 wt%至約20 wt%二氧化矽(SiO2 );及(e)約1 wt%至約20 wt%二氧化鈦(TiO2 ),條件係該等量係基於生物活性陶瓷組合物之總重量;且條件係轉移材料層鋪至轉移薄片上。在另一實施例中,生物活性陶瓷組合物包括:(a)約20 wt%至約60 wt%高嶺石(Al2 Si2 O5 (OH)4 );(b)約5 wt%至約25 wt%電氣石;(c)約1 wt%至約25 wt%氧化鋁(Al2 O3 );(d)約1 wt%至約20 wt%二氧化矽(SiO2 );及(e)約1 wt%至約20 wt%氧化鎂(MgO),條件係該等量係基於生物活性陶瓷組合物之總重量;且條件係轉移材料層鋪至轉移薄片上。在另一實施例中,生物活性陶瓷組合物包括:(a)約40 wt%至約60 wt%高嶺石(Al2 Si2 O5 (OH)4 );(b)約5 wt%至約15 wt%電氣石;(c)約15 wt%至約25 wt%氧化鋁(Al2 O3 );(d)約10 wt%至約20 wt%二氧化矽(SiO2 );及(e)約1 wt%至約20 wt%氧化鋯(ZrO2 ),條件係該等量係基於生物活性陶瓷組合物之總重量;且條件係轉移材料層鋪至轉移薄片上。在另一實施例中,生物活性陶瓷組合物包括:(a)約40 wt%至約60 wt%高嶺石(Al2 Si2 O5 (OH)4 );(b)約5 wt%至約15 wt%電氣石;(c)約15 wt%至約25 wt%氧化鋁(Al2 O3 );(d)約10 wt%至約20 wt%二氧化矽(SiO2 );及(e)約1 wt%至約20 wt%二氧化鈦(TiO2 ),條件係該等量係基於生物活性陶瓷組合物之總重量;且條件係轉移材料層鋪至轉移薄片上。在另一實施例中,生物活性陶瓷組合物包括:(a)約40 wt%至約60 wt%高嶺石(Al2 Si2 O5 (OH)4 );(b)約5 wt%至約15 wt%電氣石;(c)約15 wt%至約25 wt%氧化鋁(Al2 O3 );(d)約10 wt%至約20 wt%二氧化矽(SiO2 );及(e)約1 wt%至約20 wt%氧化鎂(MgO),條件係該等量係基於生物活性陶瓷組合物之總重量;且條件係轉移材料層鋪至轉移薄片上。在又一實施例中,生物活性陶瓷包括:(a)約50 wt%高嶺石(Al2 Si2 O5 (OH)4 );(b)約10 wt%電氣石;(c)約18 wt%氧化鋁(Al2 O3 );(d)約14 wt%二氧化矽(SiO2 );及(e)約8 wt%氧化鋯(ZrO2 );條件係該等量係基於生物活性陶瓷組合物之總重量;且條件係轉移材料層鋪至轉移薄片上。在又一實施例中,生物活性陶瓷包括:(a)約50 wt%高嶺石(Al2 Si2 O5 (OH)4 );(b)約10 wt%電氣石;(c)約18 wt%氧化鋁(Al2 O3 );(d)約14 wt%二氧化矽(SiO2 );及(e)約8 wt%二氧化鈦(TiO2 );條件係該等量係基於生物活性陶瓷組合物之總重量;且條件係轉移材料層鋪至轉移薄片上。在又一實施例中,生物活性陶瓷包括:(a)約50 wt%高嶺石(Al2 Si2 O5 (OH)4 );(b)約10 wt%電氣石;(c)約18 wt%氧化鋁(Al2 O3 );(d)約14 wt%二氧化矽(SiO2 );及(e)約8 wt%氧化鎂(MgO);條件係該等量係基於生物活性陶瓷組合物之總重量;且條件係轉移材料層鋪至轉移薄片上。在一些該等實施例中,物質之生物活性陶瓷組合物包括電氣石且電氣石包括NaFe2+ 3 Al6 Si6 O18 (BO3 )3 (OH)3 OH。熱能源轉移方法 本發明提供將發射遠紅外線之生物活性陶瓷施用至服裝(例如衣物)之熱能源方法,條件係該材料包括生物活性陶瓷層及黏著劑層,其中黏著劑層與物件接觸;且其中在向材料施用熱後將生物活性陶瓷施用於物件上。在一些情況下,該材料包括一個以上層。舉例而言,可將黏著劑層以中間層形式施用於(例如)紙與生物活性陶瓷之間。在將某一量之熱施用至黏著劑層上後,可在生物活性陶瓷與物件之間產生連結。該等所產生層間連結可沈積於一個或兩個表面上。在一些情形下,該等所產生層間連結沈積於物件與生物活性陶瓷之間,但並不沈積於黏著劑與紙之間。在此情形下,可易於自生物活性陶瓷「剝離」紙。 可獨立調節各個參數以在生物活性陶瓷與物件之間達成高鍵結強度,該等參數包含: (a)生物陶瓷層中所使用之黏著劑材料之類型; (b)生物陶瓷層中所使用之絕熱材料之類型; (c)生物活性陶瓷層之厚度及/或黏著劑塗層之厚度; (d)鍵結溫度; (e)所施用壓力之量;及 (f)施用熱及壓力之時間段。 黏著劑層可為有機或無機、可溶性或不溶性。在一些情形下,黏著劑薄片具有黏性層及離型紙。在一些情形下,黏著劑薄片具有一結構,其中黏性層及離型紙已使用,例如此時已自黏性層剝離離型紙且已使用黏著劑層附著一或多個黏著物。或者,可使用在室溫下並不展現表面黏性且無需離型紙之熱敏性黏著劑薄片。在該等情形下,熱敏性黏著劑可含有固體塑化劑及熱塑性樹脂作為組份。可藉由以下方式來獲得熱敏性黏著劑材料:混合增黏劑或諸如此類與此一熱敏性黏著劑且將混合物施用至生物活性層中實施印刷之相對表面上。在一些情形下,此一熱敏性黏著劑材料中之黏著劑層之表面可在室溫下根本不展現表面黏性,然而,其可在加熱時展現表面黏性。 熱敏性黏著劑之非限制性實例包含:SU-8、苯并環丁烯(BCB)、乙烯-乙酸乙烯酯共聚物(EVA)、乙烯-丙烯酸乙酯共聚物(EEA)、乙烯-丙烯酸共聚物(EAA)、離子聚合物樹脂、聚酯、聚丙烯、低密度聚乙烯(LDPE)、熱塑性聚胺基甲酸酯黏著劑(TPU)、聚胺基甲酸酯反應性熱熔化黏著劑、非晶形聚烯烴、烴樹脂、氫化烴樹脂、氫化純單體樹脂、松香樹脂。 增黏劑之非限制性實例包含:松香樹脂、松香酯、氫化松香樹脂、二聚化松香樹脂及改質松香樹脂;烴樹脂,包含C5脂肪族樹脂、C9芳香族樹脂、C5/C9脂肪族/芳香族樹脂;及萜樹脂。 該材料可另外包括絕熱層。在一些情形下,絕熱層具有反射性性質。絕熱層之非限制性實例包含鋁箔、鍍鋁布、鋁粉、銅、銀、碳、纖維玻璃、玻璃棉、纖維素、岩棉、聚苯乙烯發泡體、胺基甲酸酯發泡體、蛭石、珍珠岩及軟木。 生物活性陶瓷層之厚度及/或黏著劑塗層之厚度可有所變化。舉例而言,生物活性陶瓷層之厚度及/或黏著劑塗層之厚度可各自獨立地小於1微米、小於2微米、小於3微米、小於4微米、小於5微米、小於6微米、小於7微米、小於8微米、小於9微米、小於10微米、小於20微米、小於30微米、小於40微米、小於50微米、小於60微米、小於70微米、小於80微米、小於90微米、小於100微米、小於110微米、小於120微米、小於130微米、小於140微米、小於150微米、小於160微米、小於170微米、小於180微米、小於190微米、小於200微米、小於210微米、小於220微米、小於230微米、小於240微米、小於250微米、小於260微米、小於270微米、小於280微米、小於290微米、小於300微米、小於310微米、小於320微米、小於330微米、小於340微米、小於350微米、小於360微米、小於370微米、小於380微米、小於390微米、小於400微米、小於410微米、小於420微米、小於430微米、小於440微米、小於450微米、小於460微米、小於470微米、小於480微米、小於490微米、小於500微米、小於510微米、小於520微米、小於530微米、小於540微米、小於550微米、小於560微米、小於570微米、小於580微米、小於590微米、小於600微米、小於610微米、小於620微米、小於630微米、小於640微米、小於650微米、小於660微米、小於670微米、小於680微米、小於690微米、小於700微米、小於710微米、小於720微米、小於730微米、小於740微米、小於750微米、小於760微米、小於770微米、小於780微米、小於790微米、小於800微米、小於810微米、小於820微米、小於830微米、小於840微米、小於850微米、小於860微米、小於870微米、小於880微米、小於890微米、小於900微米、小於910微米、小於920微米、小於930微米、小於940微米、小於950微米、小於960微米、小於970微米、小於980微米、小於990微米或小於1毫米。 黏著劑鍵結可在各種溫度(包含低鍵結溫度)下提供生物活性陶瓷至物件之附接。舉例而言,黏著劑層之存在可在1000℃至室溫之溫度下提供生物活性陶瓷之附接。在一些情形下,黏著劑鍵結可發生於以下溫度下:小於1000℃、小於990℃、小於980℃、小於970℃、小於960℃、小於950℃、小於940℃、小於930℃、小於920℃、小於910℃、小於900℃、小於890℃、小於880℃、小於870℃、小於860℃、小於850℃、小於840℃、小於830℃、小於820℃、小於810℃、小於800℃、小於790℃、小於780℃、小於770℃、小於760℃、小於750℃、小於740℃、小於730℃、小於720℃、小於710℃、小於700℃、小於690℃、小於680℃、小於670℃、小於660℃、小於650℃、小於640℃、小於630℃、小於620℃、小於610℃、小於600℃、小於590℃、小於580℃、小於570℃、小於560℃、小於550℃、小於540℃、小於530℃、小於520℃、小於510℃、小於500℃、小於490℃、小於480℃、小於470℃、小於460℃、小於450℃、小於440℃、小於430℃、小於420℃、小於410℃、小於400℃、小於390℃、小於380℃、小於370℃、小於360℃、小於350℃、小於340℃、小於330℃、小於320℃、小於310℃、小於300℃、小於290℃、小於280℃、小於270℃、小於260℃、小於250℃、小於240℃、小於230℃、小於220℃、小於210℃、小於200℃、小於190℃、小於180℃、小於170℃、小於160℃、小於150℃、小於140℃、小於130℃、小於120℃、小於110℃或小於100℃。 可基於所施用壓力之量來影響生物活性陶瓷與物件之間之鍵結強度。在一些情形下,使用熱壓機施用10 PSI (磅/平方英吋)至100 PSI、10 PSI至90 PSI、10 PSI至80 PSI、10 PSI至70 PSI、10 PSI至60 PSI、10 PSI至50 PSI、10 PSI至40 PSI、10 PSI至30 PSI、10 PSI至20 PSI、20 PSI至80 PSI或30 PSI至40 PSI。 亦可基於施用熱及壓力之時間段來影響生物活性陶瓷與物件之間之鍵結強度。在一些情形下,熱及壓力可施用於物件上小於10分鐘、小於9分鐘、小於8分鐘、小於7分鐘、小於6分鐘、小於5分鐘、小於4分鐘、小於3分鐘、小於2分鐘、小於1分鐘、小於50秒、小於40秒、小於30秒、小於20秒、小於15秒或小於10秒。在一些情形下,熱及壓力可施用於物件上約1秒至約2秒、約5秒至約15秒、約10秒至約20秒、約10秒至約30秒或另一適宜時間段。 此外,該材料可包括兩種或更多種生物活性陶瓷及/或該材料可包括絕熱層。在該材料包括兩種或更多種生物活性陶瓷之情形下,每一生物活性陶瓷層可獨立地具有相同、實質上相同或不同之物質組成。 在一些情形下,本發明提供熱轉移材料,條件係熱轉移材料包括至少一個生物活性陶瓷層,且條件係至少一個生物活性陶瓷層包括: a.     約1 wt%至約90 wt%高嶺石(Al2 Si2 O5 (OH)4 ); b.     約1 wt%至約90 wt%電氣石; c.     約1 wt%至約90 wt%氧化鋁(Al2 O3 ); d.     約1 wt%至約90 wt%二氧化矽(SiO2 );及 e.     約1 wt%至約90 wt%氧化鋯(ZrO2 );條件係該等量係基於生物陶瓷層之總重量;且條件係轉移材料層鋪至轉移薄片上。轉移材料可視情況含有黏著劑層及/或絕熱層。 在一些情形下,本發明提供熱轉移材料,條件係熱轉移材料包括至少一個生物活性陶瓷層,且條件係至少一個生物活性陶瓷層包括: a.     約1 wt%至約90 wt%高嶺石(Al2 Si2 O5 (OH)4 ); b.     約1 wt%至約90 wt%電氣石; c.     約1 wt%至約90 wt%氧化鋁(Al2 O3 ); d.     約1 wt%至約90 wt%二氧化矽(SiO2 );及 e.     約1 wt%至約90 wt%二氧化鈦(TiO2 );條件係該等量係基於生物陶瓷層之總重量;且條件係轉移材料層鋪至轉移薄片上。轉移材料可視情況含有黏著劑層及/或絕熱層。 在一些情形下,本發明提供熱轉移材料,條件係熱轉移材料包括至少一個生物活性陶瓷層,且條件係至少一個生物活性陶瓷層包括: a.     約1 wt%至約90 wt%高嶺石(Al2 Si2 O5 (OH)4 ); b.     約1 wt%至約90 wt%電氣石; c.     約1 wt%至約90 wt%氧化鋁(Al2 O3 ); d.     約1 wt%至約90 wt%二氧化矽(SiO2 );及 e.     約1 wt%至約90 wt%氧化鎂(MgO);條件係該等量係基於生物陶瓷層之總重量;且條件係轉移材料層鋪至轉移薄片上。轉移材料可視情況含有黏著劑層及/或絕熱層。 在一些情形下,本發明提供熱轉移材料,條件係熱轉移材料包括至少一個生物活性陶瓷層,且條件係至少一個生物活性陶瓷層包括: a.     約20 wt%至約80 wt%高嶺石(Al2 Si2 O5 (OH)4 ); b.     約1 wt%至約30 wt%電氣石; c.     約1 wt%至約40 wt%氧化鋁(Al2 O3 ); d.     約1 wt%至約40 wt%二氧化矽(SiO2 );及 e.     約1 wt%至約20 wt%氧化鋯(ZrO2 );條件係該等量係基於生物陶瓷層之總重量;且條件係轉移材料層鋪至轉移薄片上。轉移材料可視情況含有黏著劑層及/或絕熱層。 在一些情形下,本發明提供熱轉移材料,條件係熱轉移材料包括至少一個生物活性陶瓷層,且條件係至少一個生物活性陶瓷層包括: a.     約20 wt%至約80 wt%高嶺石(Al2 Si2 O5 (OH)4 ); b.     約1 wt%至約30 wt%電氣石; c.     約1 wt%至約40 wt%氧化鋁(Al2 O3 ); d.     約1 wt%至約40 wt%二氧化矽(SiO2 );及 e.     約1 wt%至約20 wt%二氧化鈦(TiO2 );條件係該等量係基於生物陶瓷層之總重量;且條件係轉移材料層鋪至轉移薄片上。轉移材料可視情況含有黏著劑層及/或絕熱層。 在一些情形下,本發明提供熱轉移材料,條件係熱轉移材料包括至少一個生物活性陶瓷層,且條件係至少一個生物活性陶瓷層包括: a.     約20 wt%至約80 wt%高嶺石(Al2 Si2 O5 (OH)4 ); b.     約1 wt%至約30 wt%電氣石; c.     約1 wt%至約40 wt%氧化鋁(Al2 O3 ); d.     約1 wt%至約40 wt%二氧化矽(SiO2 );及 e.     約1 wt%至約20 wt%氧化鎂(MgO);條件係該等量係基於生物陶瓷層之總重量;且條件係轉移材料層鋪至轉移薄片上。轉移材料可視情況含有黏著劑層及/或絕熱層。 在一些情形下,本發明提供熱轉移材料,條件係熱轉移材料包括至少一個生物活性陶瓷層,且條件係至少一個生物活性陶瓷層包括: a.     約20 wt%至約60 wt%高嶺石(Al2 Si2 O5 (OH)4 ); b.     約5 wt%至約25 wt%電氣石; c.     約1 wt%至約25 wt%氧化鋁(Al2 O3 ); d.     約1 wt%至約20 wt%二氧化矽(SiO2 );及 e.     約1 wt%至約20 wt%氧化鋯(ZrO2 );條件係該等量係基於生物陶瓷層之總重量;且條件係轉移材料層鋪至轉移薄片上。轉移材料可視情況含有黏著劑層及/或絕熱層。 在其他情形下,本發明提供熱轉移材料,條件係熱轉移材料包括至少一個生物活性陶瓷層,且條件係至少一個生物活性陶瓷層包括: a.     約20 wt%至約60 wt%高嶺石(Al2 Si2 O5 (OH)4 ); b.     約5 wt%至約25 wt%電氣石; c.     約1 wt%至約25 wt%氧化鋁(Al2 O3 ); d.     約1 wt%至約20 wt%二氧化矽(SiO2 );及 e.     約1 wt%至約20 wt%二氧化鈦(TiO2 );條件係該等量係基於生物陶瓷層之總重量;且條件係轉移材料層鋪至轉移薄片上。轉移材料可視情況含有黏著劑層及/或絕熱層。 在其他情形下,本發明提供熱轉移材料,條件係熱轉移材料包括至少一個生物活性陶瓷層,且條件係至少一個生物活性陶瓷層包括: a.     約20 wt%至約60 wt%高嶺石(Al2 Si2 O5 (OH)4 ); b.     約5 wt%至約25 wt%電氣石; c.     約1 wt%至約25 wt%氧化鋁(Al2 O3 ); d.     約1 wt%至約20 wt%二氧化矽(SiO2 );及 e.     約1 wt%至約20 wt%氧化鎂(MgO);條件係該等量係基於生物陶瓷層之總重量;且條件係轉移材料層鋪至轉移薄片上。轉移材料可視情況含有黏著劑層及/或絕熱層。 在其他或額外實施例中,本發明提供熱轉移材料,條件係熱轉移材料包括至少一個生物活性陶瓷層,且條件係至少一個生物活性陶瓷層包括: a.     約40 wt%至約60 wt%高嶺石(Al2 Si2 O5 (OH)4 ); b.     約5 wt%至約15 wt%電氣石; c.     約15 wt%至約25 wt%氧化鋁(Al2 O3 ); d.     約10 wt%至約20 wt%二氧化矽(SiO2 );及 e.     約1 wt%至約20 wt%氧化鋯(ZrO2 );條件係該等量係基於生物陶瓷層之總重量;且條件係轉移材料層鋪至轉移薄片上。轉移材料可視情況含有黏著劑層及/或絕熱層。 在其他或額外實施例中,本發明提供熱轉移材料,條件係熱轉移材料包括至少一個生物活性陶瓷層,且條件係至少一個生物活性陶瓷層包括: a.     約40 wt%至約60 wt%高嶺石(Al2 Si2 O5 (OH)4 ); b.     約5 wt%至約15 wt%電氣石; c.     約15 wt%至約25 wt%氧化鋁(Al2 O3 ); d.     約10 wt%至約20 wt%二氧化矽(SiO2 );及 e.     約1 wt%至約20 wt%二氧化鈦(TiO2 );條件係該等量係基於生物陶瓷層之總重量;且條件係轉移材料層鋪至轉移薄片上。轉移材料可視情況含有黏著劑層及/或絕熱層。 在其他或額外實施例中,本發明提供熱轉移材料,條件係熱轉移材料包括至少一個生物活性陶瓷層,且條件係至少一個生物活性陶瓷層包括: a.     約40 wt%至約60 wt%高嶺石(Al2 Si2 O5 (OH)4 ); b.     約5 wt%至約15 wt%電氣石; c.     約15 wt%至約25 wt%氧化鋁(Al2 O3 ); d.     約10 wt%至約20 wt%二氧化矽(SiO2 );及 e.     約1 wt%至約20 wt%氧化鎂(MgO);條件係該等量係基於生物陶瓷層之總重量;且條件係轉移材料層鋪至轉移薄片上。轉移材料可視情況含有黏著劑層及/或絕熱層。 在一些實施例中,生物活性陶瓷層包括 a.     約50 wt%高嶺石(Al2 Si2 O5 (OH)4 ); b.     約10 wt%電氣石; c.     約18 wt%氧化鋁(Al2 O3 ); d.     約14 wt%二氧化矽(SiO2 );及 e.     約8 wt%氧化鋯(ZrO2 );條件係該等量係基於生物陶瓷層之總重量;且條件係轉移材料層鋪至轉移薄片上。轉移材料可視情況含有黏著劑層及/或絕熱層。 在一些實施例中,生物活性陶瓷層包括 a.     約50 wt%高嶺石(Al2 Si2 O5 (OH)4 ); b.     約10 wt%電氣石; c.     約18 wt%氧化鋁(Al2 O3 ); d.     約14 wt%二氧化矽(SiO2 );及 e.     約8 wt%二氧化鈦(TiO2 );條件係該等量係基於生物陶瓷層之總重量;且條件係轉移材料層鋪至轉移薄片上。轉移材料可視情況含有黏著劑層及/或絕熱層。 在一些實施例中,生物活性陶瓷層包括 a.     約50 wt%高嶺石(Al2 Si2 O5 (OH)4 ); b.     約10 wt%電氣石; c.     約18 wt%氧化鋁(Al2 O3 ); d.     約14 wt%二氧化矽(SiO2 );及 e.     約8 wt%氧化鎂(MgO);條件係該等量係基於生物陶瓷層之總重量;且條件係轉移材料層鋪至轉移薄片上。轉移材料可視情況含有黏著劑層及/或絕熱層。 轉移材料可視情況含有黏著劑層及/或絕熱層。在一些實施例中,生物活性陶瓷包括在約45 wt%至約55 wt%範圍內之高嶺石。在其他或額外實施例中,生物活性陶瓷包括在約47 wt%至約53 wt%範圍內之高嶺石。在其他或額外實施例中,生物活性陶瓷含有在約48 wt%至約52 wt%範圍內之高嶺石。物件 本文提供將生物活性陶瓷施用於物件上之熱能源方法。熱能可單獨使用或與壓力組合使用以將生物活性陶瓷納入物件中。在一實施例中,使用熱能將生物活性陶瓷以層形式施用於物件表面之至少一部分上(例如施用於衣服物件之肩、肘、腕、腰部、胸部區域、腹部、膝或踝上)。 在一些情形下,該物件係聚合織物,例如聚酯、棉花或彈力纖維。在一些實施例中,該物件包括至少一種彈性體。彈性體包含(但不限於)黏彈性聚合物,例如天然橡膠、合成橡膠、橡膠狀及橡膠樣聚合材料。合成橡膠之一種實例係聚氯丁二烯(氯丁橡膠)。在一實施例中,彈性體係選自聚氯丁二烯、耐綸、聚氯乙烯彈性體、聚苯乙烯彈性體、聚乙烯彈性體、聚丙烯彈性體、聚乙烯丁醛彈性體、聚矽氧、熱塑性彈性體及其組合。在一些情形下,該物件包括至少一種非彈性體。在一些實施例中,該物件進一步包括選自由以下組成之群之聚合物:聚氧苄基亞甲基二醇酐、聚氯乙烯、聚苯乙烯、聚乙烯、聚丙烯、聚丙烯腈、聚乙烯丁醛、聚乳酸及其組合。在其他情形下,該物件包括選自由以下組成之群之彈性體:聚氯丁二烯、耐綸、聚氯乙烯彈性體、聚苯乙烯彈性體、聚乙烯彈性體、聚丙烯彈性體、聚乙烯丁醛彈性體、聚矽氧、熱塑性彈性體及其組合。 不飽和橡膠係可藉由硫硫化固化之橡膠。不飽和橡膠之非限制性實例包含天然聚異戊二烯、合成聚異戊二烯、氯丁二烯、丁基橡膠、鹵化丁基橡膠、苯乙烯-丁二烯橡膠、腈橡膠、氫化腈橡膠。 飽和橡膠係不能藉由硫硫化固化之橡膠。飽和橡膠之非限制性實例包含乙烯丙烯橡膠、環氧氯丙烷橡膠、聚丙烯酸橡膠、聚矽氧橡膠、氟聚矽氧橡膠、氟彈性體、全氟彈性體、聚醚嵌段醯胺、氯磺化聚乙烯、乙烯-乙酸乙烯酯。 熱塑性彈性體(TPE)係自彈性材料及熱塑性材料之組合獲得之複合材料。TPE係分散且交聯於熱塑性材料之連續相中之彈性材料。 在其他情形下,該物件包括選自由以下組成之群之基材:羊毛、絲、棉花、帆布、黃麻、玻璃、耐綸、聚酯、丙烯酸、彈力纖維、聚氯丁二烯、擴展之含有聚四氟乙烯之壓層織物及其組合。在其他或額外實施例中,提供將生物活性陶瓷附接至進一步包括速成透明膠之物件之熱能源方法。 可使用本發明之熱轉移方法將生物活性陶瓷納入各種類型之物件上或納入物件之界定區域上(例如襯衫之肩、肘、腕、腰部及胸部區域;或一條褲子之膝及踝)。在一些情形下,該物件係衣服物件,例如襯衫、袖套、短褲、褲子、毛衣及其他衣服物件。在其他或額外實施例中,該物件係選自由以下組成之群:服裝、珠寶、貼片、墊子、鞋內底、寢具、支身件(body support)、發泡滾輪、洗劑、肥皂、膠帶、玻璃器皿、家具、塗料、油墨、標記、地毯、席墊、食物及/或飲料容器、飲料套、頭飾、鞋類、耳機及其組合。在其他實施例中,服裝包括腕帶、墊子、膝鐲、腳鐲、袖套或貼片。在一些實施例中,該物件包括表面、運動表面或人工草皮。可將本發明之生物活性陶瓷施用至物件上且直接或間接暴露於標的物之皮膚上。 在一實施例中,該物件係選自襯衫、褲子、短褲、洋裝、裙子、夾克、有沿帽、內衣、短襪、無沿帽、手套、圍巾、尿布及諸如此類之服裝。在又一實施例中,該物件係選自手鐲、項鍊、耳環、獎章、垂飾、戒指及諸如此類之珠寶。在另一實施例中,該物件係選自毛毯、床單、枕頭、枕套、棉被、被套、床罩、褥墊及諸如此類之寢具。在另一實施例中,該物件係選自綁膝、肘撐、壓縮護臂、壓縮護腿、護腕及諸如此類之支身件。 在一些實施例中,將本發明之生物活性陶瓷施用至物件上之熱能源方法包括將生物活性陶瓷與聚合物或油墨混合。可將各種聚合物與本發明之生物活性陶瓷混合且施用至物件上,該等聚合物包含(例如)聚矽氧、水凝膠(例如交聯聚(乙烯醇)及聚(甲基丙烯酸羥乙基酯))、經醯基取代之乙酸纖維素及其烷基衍生物、部分地及完全水解之伸烷基-乙酸乙烯酯共聚物、非塑化聚氯乙烯、聚乙酸乙烯酯之交聯均聚物及共聚物、丙烯酸及/或甲基丙烯酸之交聯聚酯、聚乙烯基烷基醚、聚氟乙烯、聚碳酸酯、聚胺基甲酸酯、聚醯胺、聚碸、苯乙烯丙烯腈共聚物、交聯聚(環氧乙烷)、聚(伸烷基)、聚(乙烯基 咪唑)、聚(酯)、聚(對苯二甲酸乙二酯)、聚膦氮烯及氯磺化聚烯烴及其組合。在一些實施例中,聚合物包括乙烯/乙酸乙烯酯。 適於與生物活性陶瓷一起包含於服裝中之其他不可蝕性材料包含(例如)蛋白質(例如玉米醇溶蛋白、節枝彈性蛋白、膠原、明膠、酪蛋白)、絲、羊毛、聚酯、聚原酸酯、聚磷酸酯、聚碳酸酯、聚酐、聚膦氮烯、聚草酸酯、聚胺基酸、聚羥基烷酸酯、聚乙二醇、聚乙酸乙烯酯、聚羥基酸、聚酐、水凝膠(包含聚(甲基丙烯酸羥乙基酯))、聚乙二醇、聚(N-異丙基丙烯醯胺)、聚(N-乙烯基-2-吡咯啶酮)、纖維素聚乙烯醇、聚矽氧水凝膠、聚丙烯醯胺及聚丙烯酸。 在一些實施例中,將本發明之生物活性陶瓷施用至物件上之熱能源方法包括基於矽之方式。聚矽氧通常係惰性合成化合物。聚矽氧塗層係(例如)絲網印刷、噴霧或以其他方式直接施用至本發明物件上之油墨、塗料、油、膜、塗層、油脂或樹脂。在一些情形下,可將聚矽氧塗層施用於包括生物活性陶瓷之層上。服裝 可用於本文中之衣服基材包含藉由熟習布料製作技術者已知之任一方法製得之織物或紡織品基材。該等技術包含(但不限於)編織、針織、鉤編、毯製、打結、黏結及諸如此類。用於布料基材之適宜起始材料包含天然或合成(例如聚合)纖維及長絲。在一實施例中,布料基材包含但不限於選自羊毛、絲、棉、帆布、黃麻、玻璃、耐綸、聚酯、丙烯酸、彈力纖維、聚氯丁二烯、擴展之含有聚四氟乙烯之壓層織物(例如Gore-Tex®織物)及其組合之材料。 實際上,生物陶瓷組合物可施用至或納入其內之任一物件皆適宜。在一實施例中,該物件係選自服裝(例如衣物,例如珠寶)、貼片(例如經製作以黏著至皮膚之貼片,例如經皮貼片、經皮水凝膠貼片等)、黏帶(例如肌內效貼布(kinesio))、無黏膠帶、墊子、鞋內底、性能袖、製服、便裝/休閒穿著、寢具(包含床單、床墊、床罩、枕頭及枕套)、支身件、支架、發泡滾輪、洗劑、肥皂、膠帶、玻璃器皿、家具、塗料、油墨、標記、地毯、席墊、食物及/或飲料容器、飲料套(例如瓶或罐)、頭飾(例如頭盔、有沿帽等)、鞋類(例如鞋子、運動鞋、涼鞋等)、耳機、表面、運動表面、人工草皮及諸如此類。 在一些實施例中,服裝包含運動服裝、運動配件及運動設備,包含但不限於矯形嵌入物、製服、鞋類、鞋內底、性能袖、潛水服、救生圈、襯衫、短褲、腕帶、臂帶、頭飾(例如頭巾式護帽)、頭帶、手套、夾克、褲子、有沿帽及背包、雪橇、滑雪杖、滑雪板、滑板、直排輪溜冰鞋、自行車、衝浪板、滑水橇、噴射雪橇、潛水設備、繩索、鏈子、護目鏡及毛毯。在一些實施例中,服裝係運動配件,包含(但不限於)毛毯。在一些實施例中,服裝經構形以用於矯形應用,包含(但不限於)矯形嵌入物、鞋子及諸如此類。 在另一實施例中,該物件係選自襯衫、褲子、短褲、洋裝、裙子、夾克、有沿帽、內衣、短襪、無沿帽、手套、圍巾、尿布及諸如此類之服裝。在又一實施例中,該物件係選自手鐲、項鍊、耳環、獎章、垂飾、戒指及諸如此類之珠寶。在另一實施例中,該物件係選自毛毯、床單、枕頭、枕套、棉被、被套、床罩、褥墊及諸如此類之寢具。在另一實施例中,該物件係選自綁膝、肘撐、壓縮護臂、壓縮護腿、護腕及諸如此類之支身件。在一些實施例中,服裝包含便裝/休閒穿著。 在其他或額外實施例中,提供納入生物陶瓷組合物之物件或施用有生物陶瓷之物件,條件係該物件係選自由以下組成之群:服裝、珠寶、貼片、墊子、鞋內底、寢具、支身件、發泡滾輪、洗劑、肥皂、膠帶、玻璃器皿、家具、塗料、油墨、標記、地毯、席墊、食物及/或飲料容器、飲料套、頭飾、鞋類、耳機及其組合。在其他或額外實施例中,該物件包括服裝,例如衣服。在一些實施例中,服裝係便裝/休閒穿著服裝。在一些實施例中,服裝係運動服裝。在一些實施例中,服裝包括襯衫、夾克、短褲或長褲。在其他實施例中,服裝包括腕帶、墊子、膝鐲、腳鐲、袖套、性能袖、頭飾(例如頭巾式護帽)、貼片、鞋類或鞋內底。 在一些實施例中,該物件係表面、運動表面或人工草皮。圖案 本文所闡述之製造方法可用於將生物活性陶瓷施用於服裝內之特定位置處或整個服裝內。舉例而言,本文所揭示之製造方法可用於將生物活性陶瓷施用至服裝之內側、外側或任一內/外組合。 在一些實施例中,服裝包括約5%生物活性陶瓷(以總重量計)、約10%生物活性陶瓷(以總重量計)、約15%生物活性陶瓷(以總重量計)、約20%生物活性陶瓷(以總重量計)、約25%生物活性陶瓷(以總重量計)、約30%生物活性陶瓷(以總重量計)、約35%生物活性陶瓷(以總重量計)、約40%生物活性陶瓷(以總重量計)、約45%生物活性陶瓷(以總重量計)、約50%生物活性陶瓷(以總重量計)、約55%生物活性陶瓷(以總重量計)、約60%生物活性陶瓷(以總重量計)、約65%生物活性陶瓷(以總重量計)、約70%生物活性陶瓷(以總重量計)、約75%生物活性陶瓷(以總重量計)、約80%生物活性陶瓷(以總重量計)、約85%生物活性陶瓷(以總重量計)、約90%生物活性陶瓷(以總重量計)或約95%生物活性陶瓷(以總重量計)。 在一些實施例中,將生物活性陶瓷施用至服裝之一部分或整個表面上。在一些情形下,將生物活性陶瓷施用至物件中大於1%之表面積、大於5%之表面積、大於10%之表面積、大於15%之表面積、大於20%之表面積、大於25%之表面積、大於30%之表面積、大於35%之表面積、大於40%之表面積、大於45%之表面積、大於50%之表面積、大於55%之表面積、大於60%之表面積、大於65%之表面積、大於70%之表面積、大於75%之表面積、大於80%之表面積、大於85%之表面積、大於90%之表面積、大於95%之表面積或大於99%之表面積上。 在一些情形下,將生物活性陶瓷施用至物件中不超過1%之表面積、不超過5%之表面積、不超過10%之表面積、不超過15%之表面積、不超過20%之表面積、不超過25%之表面積、不超過30%之表面積、不超過35%之表面積、不超過40%之表面積、不超過45%之表面積、不超過50%之表面積、不超過55%之表面積、不超過60%之表面積、不超過65%之表面積、不超過70%之表面積、不超過75%之表面積、不超過80%之表面積、不超過85%之表面積、不超過90%之表面積、不超過95%之表面積或不超過99%之表面積上。 在一些情形下,將生物活性陶瓷施用至物件中約1%之表面積、約2%之表面積、約3%之表面積、約4%之表面積、約5%之表面積、約6%之表面積、約7%之表面積、約8%之表面積、約9%之表面積、約10%之表面積、約11%之表面積、約12%之表面積、約13%之表面積、約14%之表面積、約15%之表面積、約16%之表面積、約17%之表面積、約18%之表面積、約19%之表面積、約20%之表面積、約21%之表面積、約22%之表面積、約23%之表面積、約24%之表面積、約25%之表面積、約26%之表面積、約27%之表面積、約28%之表面積、約29%之表面積、約30%之表面積、約31%之表面積、約32%之表面積、約33%之表面積、約34%之表面積、約35%之表面積、約36%之表面積、約37%之表面積、約38%之表面積、約39%之表面積、約40%之表面積、約41%之表面積、約42%之表面積、約43%之表面積、約44%之表面積、約45%之表面積、約46%之表面積、約47%之表面積、約48%之表面積、約49%之表面積、約50%之表面積、約51%之表面積、約52%之表面積、約53%之表面積、約54%之表面積、約55%之表面積、約56%之表面積、約57%之表面積、約58%之表面積、約59%之表面積、約60%之表面積、約61%之表面積、約62%之表面積、約63%之表面積、約64%之表面積、約65%之表面積、約66%之表面積、約67%之表面積、約68%之表面積、約69%之表面積、約70%之表面積、約71%之表面積、約72%之表面積、約73%之表面積、約74%之表面積、約75%之表面積、約76%之表面積、約77%之表面積、約78%之表面積、約79%之表面積、約80%之表面積、約81%之表面積、約82%之表面積、約83%之表面積、約84%之表面積、約85%之表面積、約86%之表面積、約87%之表面積、約88%之表面積、約89%之表面積、約90%之表面積、約91%之表面積、約92%之表面積、約93%之表面積、約94%之表面積、約95%之表面積、約96%之表面積、約97%之表面積、約98%之表面積、約99%之表面積或約100%之表面積上。 可以各種規則或不規則圖案將生物活性陶瓷添加至物件中,或提供所選區域之立體圖。生物活性陶瓷圖案可覆蓋服裝之整個表面或圖案可覆蓋服裝之一部分。覆蓋服裝之生物陶瓷圖案可具有擁有各種形狀及大小之中斷區域。舉例而言,圖案可為蜂巢圖案(例如具有六邊形中斷區域)、網格圖案(例如具有正方形或矩形中斷區域)、隨機圖案(例如具有隨機分佈之中斷區域)等。一般而言,中斷區域可以規則分開或不規則分開之間隔分佈於表面上。中斷區域可形成為各種規則或不規則形狀,例如圓形、半圓形、菱形、六邊形、多葉形、八邊形、卵形、五角形、矩形、正方形、星形、梯形、三角形、楔形等。若期望,一或多個中斷區域可成形為標誌、字母或數字。在一些實施例中,中斷區域之大小可為約0.1mm、約1 mm、約2 mm、約3 mm、約4 mm、約5 mm、約6 mm、約7 mm、約8 mm、約9 mm、約10 mm或其他期望距離。在一些實施例中,中斷區域之範圍可為0.1 mm至約1 mm、1 mm至約5 mm、1 mm至約10 mm、1 mm至約15 mm、1 mm至約20 mm、1 mm至約25 mm、1 mm至約30 mm或其他期望距離。一般而言,中斷區域可具有相同或不同之形狀或大小。 可以覆蓋物件之內部及/或外部表面之塗層形式來施用生物活性陶瓷圖案。生物活性陶瓷圖案可滲透材料(例如織物)。生物活性陶瓷圖案可以連續、不連續、規則或不規則圖案或其任一組合覆蓋織物之各個部分。生物活性陶瓷圖案可滲透服裝物件之內部表面、服裝物件之外部表面或其任一組合之小於1%、小於5%、小於10%、小於15%、小於20%、小於25%、小於30%、小於35%、小於40%、小於45%、小於50%、小於55%、小於60%、小於65%、小於70%、小於75%、小於80%、小於85%、小於90%、小於95%或小於99%。生物活性陶瓷 本發明之一態樣提供包括一或多個生物活性陶瓷層之材料。材料可包括複數個陶瓷層。舉例而言,材料可包括一個、兩個、三個、四個、五個、六個、七個、八個、九個、十個或另一適宜數量之陶瓷層。每一陶瓷層可包括相同、實質上相同或不同組成之生物活性陶瓷。 在一實施例中,生物活性陶瓷層包括: a.     約1 wt%至約90 wt%高嶺石(Al2 Si2 O5 (OH)4 ); b.     約1 wt%至約90 wt%電氣石; c.     約1 wt%至約90 wt%氧化鋁(Al2 O3 ); d.     約1 wt%至約90 wt%二氧化矽(SiO2 );及 e.     約1 wt%至約90 wt%氧化鋯(ZrO2 );條件係該等量係以生物陶瓷組合物之總重量計。 在另一實施例中,生物活性陶瓷層包括: a.     約1 wt%至約90 wt%高嶺石(Al2 Si2 O5 (OH)4 ); b.     約1 wt%至約90 wt%電氣石; c.     約1 wt%至約90 wt%氧化鋁(Al2 O3 ); d.     約1 wt%至約90 wt%二氧化矽(SiO2 );及 e.     約1 wt%至約90 wt%二氧化鈦(TiO2 );條件係該等量係以生物陶瓷組合物之總重量計。 在另一實施例中,生物活性陶瓷層包括: a.     約1 wt%至約90 wt%高嶺石(Al2 Si2 O5 (OH)4 ); b.     約1 wt%至約90 wt%電氣石; c.     約1 wt%至約90 wt%氧化鋁(Al2 O3 ); d.     約1 wt%至約90 wt%二氧化矽(SiO2 );及 e.     約1 wt%至約90 wt%氧化鎂(MgO);條件係該等量係以生物陶瓷組合物之總重量計。 在一實施例中,生物活性陶瓷層包括: a.     約20 wt%至約80 wt%高嶺石(Al2 Si2 O5 (OH)4 ); b.     約1 wt%至約30 wt%電氣石; c.     約1 wt%至約40 wt%氧化鋁(Al2 O3 ); d.     約1 wt%至約40 wt%二氧化矽(SiO2 );及 e.     約1 wt%至約20 wt%氧化鋯(ZrO2 );條件係該等量係以生物陶瓷組合物之總重量計。 在另一實施例中,生物活性陶瓷層包括: a.     約20 wt%至約80 wt%高嶺石(Al2 Si2 O5 (OH)4 ); b.     約1 wt%至約30 wt%電氣石; c.     約1 wt%至約40 wt%氧化鋁(Al2 O3 ); d.     約1 wt%至約40 wt%二氧化矽(SiO2 );及 e.     約1 wt%至約20 wt%二氧化鈦(TiO2 );條件係該等量係以生物陶瓷組合物之總重量計。 在另一實施例中,生物活性陶瓷層包括: a.     約20 wt%至約80 wt%高嶺石(Al2 Si2 O5 (OH)4 ); b.     約1 wt%至約30 wt%電氣石; c.     約1 wt%至約40 wt%氧化鋁(Al2 O3 ); d.     約1 wt%至約40 wt%二氧化矽(SiO2 );及 e.     約1 wt%至約20 wt%氧化鎂(MgO);條件係該等量係以生物陶瓷組合物之總重量計。 在一實施例中,生物活性陶瓷層包括: a.     約20 wt%至約60 wt%高嶺石(Al2 Si2 O5 (OH)4 ); b.     約5 wt%至約25 wt%電氣石; c.     約1 wt%至約25 wt%氧化鋁(Al2 O3 ); d.     約1 wt%至約20 wt%二氧化矽(SiO2 );及 e.     約1 wt%至約20 wt%氧化鋯(ZrO2 );條件係該等量係以生物陶瓷組合物之總重量計。 在另一實施例中,生物活性陶瓷層包括: a.     約20 wt%至約60 wt%高嶺石(Al2 Si2 O5 (OH)4 ); b.     約5 wt%至約25 wt%電氣石; c.     約1 wt%至約25 wt%氧化鋁(Al2 O3 ); d.     約1 wt%至約20 wt%二氧化矽(SiO2 );及 e.     約1 wt%至約20 wt%二氧化鈦(TiO2 );條件係該等量係以生物陶瓷組合物之總重量計。 在另一實施例中,生物活性陶瓷層包括: a.     約20 wt%至約60 wt%高嶺石(Al2 Si2 O5 (OH)4 ); b.     約5 wt%至約25 wt%電氣石; c.     約1 wt%至約25 wt%氧化鋁(Al2 O3 ); d.     約1 wt%至約20 wt%二氧化矽(SiO2 );及 e.     約1 wt%至約20 wt%氧化鎂(MgO);條件係該等量係以生物陶瓷組合物之總重量計。 在其他或額外實施例中,提供一種生物活性陶瓷層,其包括: a.     約40 wt%至約60 wt%高嶺石(Al2 Si2 O5 (OH)4 ); b.     約5 wt%至約15 wt%電氣石; c.     約15 wt%至約25 wt%氧化鋁(Al2 O3 ); d.     約10 wt%至約20 wt%二氧化矽(SiO2 );及 e.     約1 wt%至約20 wt%氧化鋯(ZrO2 );條件係該等量係以生物陶瓷組合物之總重量計。 在另一實施例中,提供一種生物活性陶瓷層,其包括: a.     約40 wt%至約60 wt%高嶺石(Al2 Si2 O5 (OH)4 ); b.     約5 wt%至約15 wt%電氣石; c.     約15 wt%至約25 wt%氧化鋁(Al2 O3 ); d.     約10 wt%至約20 wt%二氧化矽(SiO2 );及 約1 wt%至約20 wt%二氧化鈦(TiO2 );條件係該等量係以生物陶瓷組合物之總重量計。在另一實施例中,提供一種生物活性陶瓷層,其包括: a.     約40 wt%至約60 wt%高嶺石(Al2 Si2 O5 (OH)4 ); b.     約5 wt%至約15 wt%電氣石; c.     約15 wt%至約25 wt%氧化鋁(Al2 O3 ); d.     約10 wt%至約20 wt%二氧化矽(SiO2 );及 e.     約1 wt%至約20 wt%氧化鎂(MgO);條件係該等量係以生物陶瓷組合物之總重量計。 在一些實施例中,提供一種生物活性陶瓷層,其包括: a.     約50 wt%高嶺石(Al2 Si2 O5 (OH)4 ); b.     約10 wt%電氣石; c.     約18 wt%氧化鋁(Al2 O3 ); d.     約14 wt%二氧化矽(SiO2 );及 e.     約8 wt%氧化鋯(ZrO2 );條件係該等量係以生物陶瓷組合物之總重量計。 在其他實施例中,提供一種生物活性陶瓷層,其包括: a.     約50 wt%高嶺石(Al2 Si2 O5 (OH)4 ); b.     約10 wt%電氣石; c.     約18 wt%氧化鋁(Al2 O3 ); d.     約14 wt%二氧化矽(SiO2 );及 e.     約8 wt%二氧化鈦(TiO2 );條件係該等量係以生物陶瓷組合物之總重量計。 在其他實施例中,提供一種生物活性陶瓷層,其包括: a.     約50 wt%高嶺石(Al2 Si2 O5 (OH)4 ); b.     約10 wt%電氣石; c.     約18 wt%氧化鋁(Al2 O3 ); d.     約14 wt%二氧化矽(SiO2 );及 e.     約8 wt%氧化鎂(MgO);條件係該等量係以生物陶瓷組合物之總重量計。 本文所闡述標的物之另一特徵係包含高嶺石之生物活性陶瓷層。如本文中所使用,術語「高嶺石」維持其在礦物及寶石技術中已知之含義。在一些實施例中,生物陶瓷組合物包括在約1 wt%至90 wt%範圍內之高嶺石。在一些實施例中,生物陶瓷組合物包括在約20 wt%至80 wt%範圍內之高嶺石。在一些實施例中,生物陶瓷組合物包括在約40 wt%至60 wt%範圍內之高嶺石。在一些實施例中,生物陶瓷組合物包括在約1 wt%至90 wt%範圍內之高嶺石。在一些實施例中,生物陶瓷組合物包括在約45 wt%至約55 wt%範圍內之高嶺石。在其他或額外實施例中,提供包括在約47 wt%至約53 wt%範圍內之高嶺石之生物活性陶瓷層。在其他或額外實施例中,提供含有在約48 wt%至約52 wt%範圍內之高嶺石之生物陶瓷組合物。在其他實施例中,提供含有約50% wt%高嶺石之生物陶瓷組合物。 本文所闡述標的物之另一特徵係包含電氣石之生物活性陶瓷層。如本文中所使用,術語「電氣石」維持其在礦物及寶石技術中已知之含義。舉例而言,電氣石係具有相同晶格之同形礦物質之群。電氣石群之每一成員具有其自身化學式,此乃因其元素分佈具有較小差異。舉例而言,在一些實施例中,電氣石具有下列通式X1 Y3 Al6 (BO3 )3 Si6 O18 (OH)4 ,其中:X = Na及/或Ca且Y = Mg、Li、Al及/或Fe2+ ,其可由下式(Na,Ca)(Mg,Li,Al,Fe2+ )3 Al6 (BO3 )3 Si6 O18 (OH)4 代表。 在一些實施例中,Al可由其他元素代替。舉例而言,在鈣鎂電氣石中,Al部分地由Mg代替,此將式擴展為(Na,Ca)(Mg,Li,Al,Fe2+ )3 (Al,Mg,Cr)6 (BO3 )3 Si6 O18 (OH)4 。 在一些實施例中,電氣石係含有三個O原子及一個F原子以代替OH基團之鈉鐵電氣石。鈉鐵電氣石分子亦含有呈3+氧化態之Fe原子,其可繪示為:(Na,Ca)(Mg,Li,Al,Fe2+ ,Fe3+ )3 (Al,Mg,Cr)6 (BO3 )3 Si6 O18 (OH,O,F)4 。在其他實施例中,電氣石 係下列物質中之一或多者: ● 黑電氣石:NaFe2+ 3 Al6 (BO3 )3 Si6 O18 (OH)4 ; ● 鎂電氣石:NaMg3 Al6 (BO3 )3 Si6 O18 (OH)4 ; ● 鋰電氣石:Na(Li,Al)3 Al6 (BO3 )3 Si6 O18 (OH)4 ; ● 鈣鋰電氣石:Ca(Li,Al)3 Al6 (BO3 )3 Si6 O18 (OH)4 ; ● 鈣鎂電氣石:Ca(Mg,Fe2+ )3 Al5 Mg(BO3 )3 Si6 O18 (OH)4 ; ● 鈉鐵電氣石:NaFe3+ 3 Al6 (BO3 )3 Si6 O18 O3 F。 在一實施例中,生物陶瓷組合物電氣石包括NaFe2+ 3 Al6 Si6 O18 (BO3 )3 (OH)3 OH。 本文所闡述物件、物質組合物、方法器件及系統之另一態樣係具有微米粒徑之生物活性陶瓷組合物。舉例而言,在一些實施例中,提供在生物陶瓷中含有最大尺寸為約0.1微米 (μm)至約250微米之任一顆粒之生物陶瓷組合物。在其他或額外實施例中,提供一種生物活性陶瓷組合物,條件係生物活性陶瓷中之任一顆粒之最大尺寸為約0.5微米至約25微米。在一些情形下,生物活性陶瓷顆粒可具有約0.1μm至約1 μm、約0.1μm至約10 μm、約0.1μm至約20 μm、約0.1μm至約30 μm、約0.1μm至約40 μm、約0.1μm至約50 μm、約0.1μm至約60 μm、約0.1μm至約70 μm、約0.1μm至約80 μm、約0.1μm至約90 μm、約0.1μm至約100 μm或其他期望大小之直徑或橫截面面積。在一些情形下,入口可具有約10 μm至約100 μm、約10 μm至約200 μm、約10 μm至約300 μm、約10 μm至約400 μm、約10 μm至約500 μm或其他期望大小之橫截面直徑。 在其他或額外實施例中,提供可具體而言使用熱能源方法施用於物件上之生物活性陶瓷材料,其中生物活性陶瓷包括電氣石、高嶺石及至少一種氧化物。在一些情形下,本發明之生物活性陶瓷包括電氣石、高嶺石、氧化鋁及二氧化矽。在一些情形下,本發明之生物活性陶瓷包括電氣石、高嶺石、氧化鋁、二氧化矽及一種其他氧化物。在一些情形下,其他氧化物係氧化鋯。在一些情形下,其他氧化物係二氧化鈦(TiO2 )。在一些情形下,其他氧化物係氧化鎂(MgO)。 高嶺石係包括氧化物之層狀矽酸鹽礦物質。在一些情形下,在高嶺石內包括各種氧化物。在一些情形下,生物活性陶瓷包括並非高嶺石之一部分之其他氧化物。在一些實施例中,生物活性陶瓷包括一種氧化物、兩種氧化物、三種氧化物、四種氧化物、五種氧化物、六種氧化物、七種氧化物、八種氧化物、九種氧化物、十種氧化物、十一種氧化物、十二種氧化物或更多種氧化物。在一些情形下,其他氧化物係高度耐火性氧化物。 在一些實施例中,本發明之生物活性陶瓷之氧化物具有各種氧化態。本發明氧化物具有+1、+2、+3、+4、+5、+6、+7或+8之氧化數。在一些情形下,本發明之生物活性陶瓷具有一種以上氧化物,其中至少一種氧化物具有不同於其他氧化物之氧化數。舉例而言,在一些情形下,本發明之生物陶瓷組合物包括具有+2或 +3氧化態之氧化鋁(Al2 O3 )、具有+4氧化態之二氧化矽(SiO2 )及具有+4氧化態之氧化鋯(ZrO2 )。 具有+1氧化態之氧化物之非限制性實例包含:氧化銅(I) (Cu2 O)、一氧化二碳(C2 O)、一氧化二氯(Cl2 O)、氧化鋰(Li2 O)、氧化鉀(K2 O)、氧化銣(Rb2 O)、氧化銀(Ag2 O)、氧化鉈(I) (Tl2 O)、氧化鈉(Na2 O)或水(氧化氫) (H2 O)。 具有+2氧化態之氧化物之非限制性實例包含:氧化鋁(II) (AlO)、氧化鋇(BaO)、氧化鈹(BeO)、氧化鎘(CdO)、氧化鈣(CaO)、一氧化碳(CO)、氧化鉻(II) (CrO)、氧化鈷(II) (CoO)、氧化銅(II) (CuO)、氧化鐵(II) (FeO)、氧化鉛l(II) (PbO)、氧化鎂(MgO)、氧化汞(II) (HgO)、氧化鎳(II) (NiO)、一氧化氮(NO)、氧化鈀(II) (PdO)、氧化鍶(SrO)、一氧化硫(SO)、二氧化二硫(S2 O2 )、氧化錫(II) (SnO)、氧化鈦(II) (TiO)、氧化釩(II) (VO)或氧化鋅(ZnO)。 具有+3氧化態之氧化物之非限制性實例包含:氧化鋁(Al2 O3 )、三氧化銻(Sb2 O3 )、三氧化砷(As2 O3 )、氧化鉍(III) (Bi2 O3 )、三氧化硼(B2 O3 )、氧化鉻(III) (Cr2 O3 )、三氧化二氮(N2 O3 )、氧化鉺(III) (Er2 O3 )、氧化釓(III) (Gd2 O3 )、氧化鎵(III) (Ga2 O3 )、氧化鈥(III) (Ho2 O3 )、氧化銦(III) (In2 O3 )、氧化鐵(III) (Fe2 O3 )、氧化鑭(La2 O3 )、氧化鑥(III) (Lu2 O3 )、氧化鎳(III) (Ni2 O3 )、三氧化磷(P4 O6 )、氧化鉕(III) (Pm2 O3 )、氧化銠(III) (Rh2 O3 )、氧化釤(III) (Sm2 O3 )、氧化鈧(Sc2 O3 )、氧化鋱(III) (Tb2 O3 )、氧化鉈(III) (Tl2 O3 )、氧化銩(III) (Tm2 O3 )、氧化鈦(III) (Ti2 O3 )、氧化鎢(III) (W2 O3 )、氧化釩(III) (V2 O3 )、氧化鐿(III) (Yb2 O3 )、氧化釔(III) (Y2 O3 )。 具有+4氧化態之氧化物之非限制性實例包含:二氧化碳(CO2 )、三氧化碳(CO3 )、氧化鈰(IV) (CeO2 )、二氧化氯(ClO2 )、氧化鉻(IV) (CrO2 )、四氧化二氮(N2 O4 )、二氧化鍺(GeO2 )、氧化鉿(IV) (HfO2 )、二氧化鉛(PbO2 )、二氧化錳(MnO2 )、二氧化氮(NO2 )、氧化鈈(IV) (PuO2 )、氧化銠(IV) (RhO2 )、氧化釕(IV) (RuO2 )、二氧化硒(SeO2 )、二氧化矽(SiO2 )、二氧化硫(SO2 )、二氧化碲(TeO2 )、二氧化釷(ThO2 )、二氧化錫(SnO2 )、二氧化鈦(TiO2 )、氧化鎢(IV) (WO2 )、二氧化鈾(UO2 )、氧化釩(IV) (VO2 )或二氧化鋯(ZrO2 )。 具有+5氧化態之氧化物之非限制性實例包含:五氧化銻(Sb2 O5 )、五氧化砷(As2 O5 )、五氧化二氮(N2 O5 )、五氧化鈮(Nb2 O5 )、五氧化磷(P2 O5 )、五氧化鉭(Ta2 O5 )或氧化釩(V) (V2 O5 )。具有+6氧化態之氧化物之非限制性實例包含:三氧化鉻(CrO3 )、三氧化鉬(MoO3 )、三氧化錸(ReO3 )、三氧化硒(SeO3 )、三氧化硫(SO3 )、三氧化碲(TeO3 )、三氧化鎢(WO3 )、三氧化鈾(UO3 )或三氧化氙(XeO3 )。 具有+7氧化態之氧化物之非限制性實例包含:七氧化二氯(Cl2 O7 )、七氧化錳(Mn2 O7 )、氧化錸(VII) (Re2 O7 )或氧化鍀(VII) (Tc2 O7 )。具有+8氧化態之氧化物之非限制性實例包含:四氧化鋨(OsO4)、四氧化釕(RuO4 )、四氧化氙(XeO4 )、四氧化銥(IrO4 )或四氧化𨭆(HsO4 )。具有各種氧化態之氧化物之非限制性實例包含四氧化銻(Sb2 O4 )、氧化鈷(II,III) (Co3 O4 )、氧化鐵(II,III) (Fe3 O4 )、氧化鉛(II,IV) (Pb3 O4 )、氧化錳(II,III) (Mn3 O4 )或氧化銀(I,III) (AgO)。 在其他或額外實施例中,本發明之物質之生物陶瓷組合物進一步包括金屬。金屬可呈元素形式,例如金屬原子或金屬離子。金屬之非限制性實例包含週期表之過渡金屬、主族金屬及第3族、第4族、第5族、第6族、第7族、第8族、第9族、第10族、第11族、第12族、第13族、第14族及第15族之金屬。金屬之非限制性實例包含鈧、鈦、釩、鉻、錳、鐵、鈷、鎳、銅、鋅、釔、鋯、鈮、鉬、鍀、釕、銠、鈀、銀、鎘、鑭、鉿、鉭、鎢、錸、鋨、銥、鉑、金、汞、錫、鉛及鉍。 生物活性陶瓷中之礦物質及氧化物之比例可視情況端視諸多變量而有所改變,該等變量包含(例如)擬發射之熱輻射、更具體而言遠紅外線輻射之量、擬治療之疾病或病狀、投與模式、個別個體之需求、所治療疾病或病狀之嚴重程度或從業人員之判斷。物理性質 端視(例如)礦物質是否係自特定地理區域提取或礦物質是否係以化學方式合成,電氣石及高嶺石具有不同顆粒、礦物學、化學及物理性質。舉例而言,在世界上許多地區,高嶺石具有與雜質量有關之粉-橙-紅色著色。通常,雜質包括氧化鐵。在一些實施例中,本發明高嶺石具有高純度值,且其特徵在於優白色。 在一些實施例中,電氣石或高嶺石之純度與自生物活性陶瓷輻射之紅外線能量之量有關。在一些情形下,本發明之生物活性陶瓷之高嶺石或電氣石大於99%純、大於98%純、大於97%純、大於96%純、大於95%純、大於94%純、大於93%純、大於92%純、大於91%純、大於90%純、大於89%純、大於88%純、大於87%純、大於86%純、大於85%純、大於80%純、大於75%純、大於70%純、大於65%純、大於60%純或大於55%純。 在一些實施例中,高嶺石或電氣石之粒度與自生物活性陶瓷輻射之紅外線能量之量有關。舉例而言,與包括較精細大小礦物質之生物活性陶瓷相比,包括較粗糙大小礦物質之生物活性陶瓷反射不同量之紅外線能量。在一些實施例中,生物活性陶瓷之粒度在以下範圍內:約100奈米至約0.1微米、約100奈米至約1微米、約100奈米至約10微米、約100奈米至約25微米、約100奈米至約50微米、約100奈米至約75微米、約100奈米至約100微米、約100奈米至約125微米、約100奈米至約150微米、約100奈米至約175微米、約100奈米至約200微米、約100奈米至約225微米或約100奈米至約250微米。 在一些實施例中,生物活性陶瓷之粒度在以下範圍內:約0.5微米至約1微米、約0.5微米至約10微米、約0.5微米至約25微米、約0.5微米至約50微米、約0.5微米至約75微米、約0.5微米至約100微米、約0.5微米至約125微米、約0.5微米至約150微米、約0.5微米至約175微米、約0.5微米至約200微米、約0.5微米至約225微米或約0.5微米至約250微米。遠紅外線發射、傳輸及反射 本文所闡述物件、物質組合物、方法及套組之又一態樣係在加熱或暴露於熱時發射、傳輸及/或反射紅外線波長之生物活性陶瓷。在一些實施例中,提供將生物活性陶瓷附接至物件上之熱能源方法。在一些實施例中,提供吸收、儲存及/或反射熱能(例如遠紅外線能量或射線)之生物活性陶瓷。在一些實施例中,提供發射、傳輸或反射屬遠紅外線且包括約1微米至約1毫米之波長之紅外線波長之生物活性陶瓷。在其他或額外實施例中,提供將發射、傳輸或反射約3微米至約15微米之紅外線波長之生物活性陶瓷附接於物件上之熱能源方法。在其他或額外實施例中,本文闡述一種生物活性陶瓷,該生物陶瓷在25℃室溫下於介於約7微米與約12微米之間之紅外線中之反射率至少為80%。 可使用(例如)熱量計或Flir熱成像照相機量測生物活性陶瓷之材料發射率。可使用熱量計量測可由包括生物活性陶瓷之服裝接收、儲存及/或釋放之熱能之量。Flir熱成像照相機可產生各種類型包括本發明之生物活性陶瓷之服裝之熱影像。Flir熱成像照相機可檢測每一熱影像中之最多上千個量測點且提供每一影像之發射率數據。 調配本發明之生物活性陶瓷層以具有期望耐火性質。在一些實施例中,本發明之每一生物活性陶瓷獨立地反射約99%之所接收紅外線能量或射線、約98%之所接收紅外線能量或射線、約97%之所接收紅外線能量或射線、約96%之所接收紅外線能量或射線、約95%之所接收紅外線能量或射線、約94%之所接收紅外線能量或射線、約93%之所接收紅外線能量或射線、約92%之所接收紅外線能量或射線、約91%之所接收紅外線能量或射線、約90%之所接收紅外線能量或射線、約89%之所接收紅外線能量或射線、約88%之所接收紅外線能量或射線、約87%之所接收紅外線能量或射線、約86%之所接收紅外線能量或射線、約85%之所接收紅外線能量或射線、約84%之所接收紅外線能量或射線、約83%之所接收紅外線能量或射線、約82%之所接收紅外線能量或射線、約81%之所接收紅外線能量或射線、約80%之所接收紅外線能量或射線、約79%之所接收紅外線能量或射線、約78%之所接收紅外線能量或射線、約77%之所接收紅外線能量或射線、約76%之所接收紅外線能量或射線、約75%之所接收紅外線能量或射線、約74%之所接收紅外線能量或射線、約73%之所接收紅外線 能量或射線、約72%之所接收紅外線能量或射線、約 71%之所接收紅外線能量或射線、約70%之所接收紅外線能量或射線、約65%之所接收紅外線能量或射線、約60%之所接收紅外線能量或射線、約55%之所接收紅外線能量或射線、約50%之所接收紅外線能量或射線、約45%之所接收紅外線能量或射線、約40%之所接收紅外線能量或射線、約35%之所接收紅外線能量或射線、約30%之所接收紅外線能量或射線、約 25%之所接收紅外線能量或射線、約20%之所接收紅外線能量或射線、約15%之所接收紅外線能量或射線、約10%之所接收紅外線能量或射線或約5%之所接收紅外線能量或射線。 在一些情形下,本發明之生物活性陶瓷層反射大於99%之所接收紅外線能量或射線、大於98%之所接收紅外線能量或射線、大於97%之所接收紅外線能量或射線、大於96%之所接收紅外線能量或射線、大於95%之所接收紅外線能量或射線、大於94%之所接收紅外線能量或射線、大於93%之所接收紅外線能量或射線、大於92%之所接收紅外線能量或射線、大於91%之所接收紅外線能量或射線、大於90%之所接收紅外線能量或射線、大於89%之所接收紅外線能量或射線、大於88%之所接收紅外線能量或射線、大於87%之所接收紅外線能量或射線、大於86%之所接收紅外線能量或射線、大於85%之所接收紅外線能量或射線、大於84%之所接收紅外線能量或射線、大於83%之所接收紅外線能量或射線、大於82%之所接收紅外線能量或射線、大於81%之所接收紅外線能量或射線、大於80%之所接收紅外線能量或射線、大於79%之所接收紅外線能量或射線、大於78%之所接收紅外線能量或射線、大於77%之所接收紅外線能量或射線、大於76%之所接收紅外線能量或射線、大於75%之所接收紅外線能量或射線、大於74%之所接收紅外線能量或射線、大於73%之所接收紅外線能量或射線、大於72%之所接收紅外線能量或射線、大於71%之所接收紅外線能量或射線、大於70%之所接收紅外線能量或射線、大於65%之所接收紅外線能量或射線、大於60%之所接收紅外線能量或射線、大於55%之所接收紅外線能量或射線、大於50%之所接收紅外線能量或射線、大於45%之所接收紅外線能量或射線、大於40%之所接收紅外線能量或射線、大於35%之所接收紅外線能量或射線、大於30%之所接收紅外線能量或射線、大於 25%之所接收紅外線能量或射線、大於20%之所接收紅外線能量或射線、大於15%之所接收紅外線能量或射線、大於10%之所接收紅外線能量或射線或大於5%之所接收紅外線能量或射線。 在一些情形下,本發明之生物活性陶瓷層反射小於99%之所接收紅外線能量或射線、小於98%之所接收紅外線能量或射線、小於97%之所接收紅外線能量或射線、小於96%之所接收紅外線能量或射線、小於95%之所接收紅外線能量或射線、小於94%之所接收紅外線能量或射線、小於93%之所接收紅外線能量或射線、小於92%之所接收紅外線能量或射線、小於91%之所接收紅外線能量或射線、小於90%之所接收紅外線能量或射線、小於89%之所接收紅外線能量或射線、小於88%之所接收紅外線能量或射線、小於87%之所接收紅外線能量或射線、小於86%之所接收紅外線能量或射線、小於85%之所接收紅外線能量或射線、小於84%之所接收紅外線能量或射線、小於83%之所接收紅外線能量或射線、小於82%之所接收紅外線能量或射線、小於81%之所接收紅外線能量或射線、小於80%之所接收紅外線能量或射線、小於79%之所接收紅外線能量或射線、小於78%之所接收紅外線能量或射線、小於77%之所接收紅外線能量或射線、小於76%之所接收紅外線能量或射線、小於75%之所接收紅外線能量或射線、小於74%之所接收紅外線能量或射線、小於73%之所接收紅外線能量或射線、小於72%之所接收紅外線能量或射線、小於71%之所接收紅外線能量或射線、小於70%之所接收紅外線能量或射線、小於65%之所接收紅外線能量或射線、小於60%之所接收紅外線能量或射線、小於55%之所接收紅外線能量或射線、小於50%之所接收紅外線能量或射線、小於45%之所接收紅外線能量或射線、小於40%之所接收紅外線能量或射線、小於35%之所接收紅外線能量或射線、小於30%之所接收紅外線能量或射線、小於25%之所接收紅外線能量或射線、小於20%之所接收紅外線能量或射線、小於15%之所接收紅外線能量或射線、小於10%之所接收紅外線能量或射線或小於5%之所接收紅外線能量或射線。 在一些實施例中,生物陶瓷朝向個體身體反射遠紅外線能量且在一些實施例中生物陶瓷遠離個體身體反射遠紅外線能量。在遠離身體反射紅外線能量時,生物陶瓷可提供冷卻效應。在一些實施例中,生物陶瓷毗鄰或靠近絕熱體。在一些實施例中,包括絕熱生物陶瓷之物件向個體提供冷卻效應,條件係在加熱或暴露於熱時,生物陶瓷遠離個體反射遠紅外線射線。 在一些實施例中,本發明服裝包括與生物活性陶瓷層接觸或毗鄰其之絕熱體層。在一些實施例中,生物陶瓷層位於物件與穿戴物件者之間。在一些實施例中,物件位於生物陶瓷層與穿戴物件者之間。在一些實施例中,絕熱層係最接近穿戴物件者之層。在一些實施例中,絕熱層係最遠離穿戴物件者之層。在一些實施例中,絕熱層既不最接近穿戴物件者亦非其最遠層。絕熱體層可用於包括生物陶瓷之服裝經製作以遠離個體身體反射遠紅外線能量之實施例中。在一些實施例中,絕熱體係低導熱率材料且防止遠紅外線能量在某一方向上反射。在一些情形下,絕熱層包括鋁箔類層。在一些情形下,絕熱層包括碳。可使用不同類型之材料反射紅外線,絕熱體之非限制性實例包含碳、橡膠、玻璃、紙、塑膠、木材、布料、箔或聚苯乙烯發泡塑料(Styrofoam)。 本發明服裝可向個體提供治療有效量之紅外線。在一些情形下,服裝係包括生物活性陶瓷之襯衫,且在暴露於熱時,包括生物陶瓷之襯衫向個體提供至少1.5焦耳/cm2 之遠紅外線射線。在一些情形下,服裝係運動服裝、運動配件或運動設備,包含但不限於矯形嵌入物、潛水服、救生圈、襯衫、短褲、腕帶、臂帶、頭帶、手套、夾克、褲子、有沿帽及背包、雪橇、滑雪杖、滑雪板、滑板、直排輪溜冰鞋、自行車、衝浪板、滑水橇、噴射雪橇、潛水設備、繩索、鏈子、護目鏡及/或毛毯。在一些實施例中,服裝係運動配件,包含(但不限於)毛毯。在一些實施例中,服裝經構形以用於矯形應用,包含(但不限於)矯形嵌入物、鞋子及諸如此類。在一些情形下,服裝係貼片(例如經製作以黏著至或不黏著至皮膚之貼片,例如經皮貼片、經皮水凝膠貼片等)、黏帶(例如肌內效貼布)、無黏膠帶、墊子、鞋內底、寢具(包含床單、床墊、床罩、枕頭及/或枕套)、支身件、發泡滾輪、洗劑、肥皂、膠帶、玻璃器皿、家具、塗料、油墨、標記、地毯、席墊、食物及/或飲料容器、飲料套(例如瓶或罐)、頭飾(例如頭盔、有沿帽等)、鞋類(例如鞋子、運動鞋、涼鞋等)、耳機、表面、運動表面、人工草皮及諸如此類。在一些情形下,服裝係襯衫、褲子、短褲、洋裝、裙子、夾克、有沿帽、內衣、短襪、無沿帽、手套、圍巾、尿布、毛毯、棉被、被套、床罩、褥墊及諸如此類。在另一實施例中,該物件係選自綁膝、肘撐、壓縮護臂、壓縮護腿、護腕及諸如此類之支身件。 在一些實施例中,本文所闡述之標的物向個體提供1焦耳/cm2 至45焦耳/cm2 、2-10焦耳/cm2 或4-6焦耳/cm2 之遠紅外線能量射線或射線。在某些實施例中,生物陶瓷調配物向個體提供至少1焦耳/cm2 、1.5焦耳/cm2 、至少2焦耳/cm2 、至少3焦耳/cm2 、至少4焦耳/cm2 、至少5焦耳/cm2 、至少6焦耳/cm2 、至少7焦耳/cm2 、至少8焦耳/cm2 、至少9焦耳/cm2 、至少10焦耳/cm2 、至少11焦耳/cm2 、至少12焦耳/cm2 、至少13焦耳/cm2 、至少14焦耳/cm2 、至少15焦耳/cm2 、至少16焦耳/cm2 、至少17焦耳/cm2 、至少18焦耳/cm2 、至少19焦耳/cm2 、至少20焦耳/cm2 、至少21焦耳/cm2 、至少22焦耳/cm2 、至少23焦耳/cm2 、至少24焦耳/cm2 、至少25焦耳/cm2 、至少26焦耳/cm2 、至少27焦耳/cm2 、至少28焦耳/cm2 、至少29焦耳/cm2 、至少30焦耳/cm2 、至少31焦耳/cm2 、至少32焦耳/cm2 、至少33焦耳/cm2 、至少34焦耳/cm2 、至少35焦耳/cm2 、至少36焦耳/cm2 、至少37焦耳/cm2 、至少38焦耳/cm2 、至少39焦耳/cm2 、至少40焦耳/cm2 、至少41焦耳/cm2 、至少42焦耳/cm2 、至少43焦耳/cm2 、至少44焦耳/cm2 或約45焦耳/cm2 之遠紅外線能量或射線。 在一些情形下,本發明服裝可向個體提供至多1.5焦耳/cm2 、至多2焦耳/cm2 、至多3焦耳/cm2 、至多4焦耳/cm2 、至多5焦耳/cm2 、至多6焦耳/cm2 、至多7焦耳/cm2 、至多8焦耳/cm2 、至多9焦耳/cm2 、至多10焦耳/cm2 、至多11焦耳/cm2 、至多12焦耳/cm2 、至多13焦耳/cm2 、至多14焦耳/cm2 、至多15焦耳/cm2 、至多16焦耳/cm2 、至多17焦耳/cm2 、至多18焦耳/cm2 、至多19焦耳/cm2 、至多20焦耳/cm2 、至多21焦耳/cm2 、至多22焦耳/cm2 、至多23焦耳/cm2 、至多24焦耳/cm2 、至多25焦耳/cm2 、至多26焦耳/cm2 、至多27焦耳/cm2 、至多28焦耳/cm2 、至多29焦耳/cm2 、至多30焦耳/cm2 、至多31焦耳/cm2 、至多32焦耳/cm2 、至多33焦耳/cm2 、至多34焦耳/cm2 、至多35焦耳/cm2 、至多36焦耳/cm2 、至多37焦耳/cm2 、至多38焦耳/cm2 、至多39焦耳/cm2 、至多40焦耳/cm2 、至多41焦耳/cm2 、至多42焦耳/cm2 、至多43焦耳/cm2 、至多44焦耳/cm2 或至多45焦耳/cm2 之遠紅外線能量或射線。 在一些情形下,本發明服裝向個體提供介於1.5焦耳/cm2 與45焦耳/cm2 之間、介於1.5焦耳/cm2 與40焦耳/cm2 之間、介於1.5焦耳/cm2 與35焦耳/cm2 之間、介於1.5焦耳/cm2 與30焦耳/cm2 之間、介於1.5焦耳/cm2 與25焦耳/cm2 之間、介於1.5焦耳/cm2 與20焦耳/cm2 之間、介於1.5焦耳/cm2 與15焦耳/cm2 之間、介於1.5焦耳/cm2 與10焦耳/cm2 之間、介於1.5焦耳/cm2 與5焦耳/cm2 之間、介於2焦耳/cm2 與45焦耳/cm2 之間、介於2焦耳/cm2 與40焦耳/cm2 之間、介於2焦耳/cm2 與35焦耳/cm2 之間、介於2焦耳/cm2 與30焦耳/cm2 之間、介於2焦耳/cm2 與25焦耳/cm2 之間、介於2焦耳/cm2 與20焦耳/cm2 之間、介於2焦耳/cm2 與15焦耳/cm2 之間、介於2焦耳/cm2 與10焦耳/cm2 之間、介於2焦耳/cm2 與5焦耳/cm2 之間之遠紅外線能量或射線。在一些情形下,裝置係襯衫,且襯衫提供向個體至多45焦耳/cm2 之遠紅外線能量或射線。 紅外線能量可由分子吸收、反射或發射。在許多情形下,由物體在室溫或近室溫(大約25℃)下發射之熱輻射係紅外線。 舉例而言,在本文所闡述標的物之某些應用中,紅外線能量由分子在旋轉及/或振動運動下發射或吸收。在某些實施例中,本文所提供之生物陶瓷材料提供紅外線能量,且經由偶極距變化來引發分子中之振動模式。在一些實施例中,本發明之生物陶瓷吸收熱會經由偶極距變化來引發至少一個生物陶瓷分子中之振動模式。此外,在某些實施例中,在生物陶瓷中之分子改變其旋轉-振動能量時,來自熱輻射之紅外線能量由其吸收且反射。在其他或額外實施例中,本文提供包括陶瓷材料調配物之生物陶瓷及在與個體(作為一實例,包含人類個體)接觸或施用至其上時提供增強之生物調節性質之振動技術。 下列非限制性實例用於進一步闡釋本發明。實例 實例 1生物陶瓷粉末組合物製備 在巴西亞馬遜州(Amazon State)之帕林廷斯(Parintins)城市之郊區提取高嶺石。該城市位於亞馬遜河下游地區(座標:格林威治(Greenwich)南緯:2° 37' 42" /西經:56° 44' 11",高於海平面50 m)。或者,藉由自採礦公司/供應商購買來獲得高嶺石。 使用過氧化氫(H2 O2 )洗滌所提取高嶺石並乾燥。然後將經乾燥高嶺石細緻研磨且與電氣石、氧化鋁(Al2 O3 )、二氧化矽(SiO2 )及氧化鋯(ZrO2 )混合直至達成均質混合物為止。所得生物陶瓷組合物含有50 wt%高嶺石、10 wt%電氣石、18 wt%氧化鋁、14 wt%二氧化矽及8 wt%氧化鋯。 或者,使用過氧化氫(H2 O2 )洗滌所提取高嶺石並乾燥。然後將經乾燥高嶺石細緻研磨且與電氣石、氧化鋁(Al2 O3 )、二氧化矽(SiO2 )及二氧化鈦(TiO2 )混合直至達成均質混合物為止。所得生物陶瓷組合物含有50 wt%高嶺石、10 wt%電氣石、18 wt%氧化鋁、14 wt%二氧化矽及8 wt%二氧化鈦。 或者,使用過氧化氫(H2 O2 )洗滌所提取高嶺石並乾燥。然後將經乾燥高嶺石細緻研磨且與電氣石、氧化鋁(Al2 O3 )、二氧化矽(SiO2 )及氧化鎂(MgO)混合直至達成均質混合物為止。所得生物陶瓷組合物含有50 wt%高嶺石、10 wt%電氣石、18 wt%氧化鋁、14 wt%二氧化矽及8 wt%氧化鎂。 亦合成生物陶瓷組合物。所得生物陶瓷含有本文所闡述包含約50%高嶺石、約10%電氣石、約18%氧化鋁、約14%二氧化矽及約8%氧化鋯之任一組合物。 另外,亦合成生物陶瓷組合物。所得生物陶瓷含有本文所闡述包含約50%高嶺石、約10%電氣石、約18%氧化鋁、約14%二氧化矽及約8%二氧化鈦之任一組合物。 另外,亦合成生物陶瓷組合物。所得生物陶瓷含有本文所闡述包含約50%高嶺石、約10%電氣石、約18%氧化鋁、約14%二氧化矽及約8%二氧化鎂之任一組合物。實例 2熱轉移方法 本發明之生物活性陶瓷係耐火、無機、多晶組合物,其可藉由研磨、壓碎或另一適宜方法減小至粉末化形式。以粉末形式,將生物活性陶瓷模製成平坦之單一層狀薄片。使包括熱敏性黏著劑之第二層與生物活性陶瓷之一個表面接觸。視情況,使包括絕熱體之第三層與生物活性陶瓷之另一表面接觸。 2 代表將包括生物活性陶瓷之材料施用至服裝上之熱能源方法。201 圖解說明包括黏著劑層204 、生物活性陶瓷層205 及絕熱層206 之材料。 在步驟202 中,獲得包含88 wt%聚醯胺及12 wt%彈力纖維之織物基材。使201 中所闡述之材料與織物基材接觸,從而黏著劑層204 接觸織物基材。將熱施用至材料上,其中熱在小於一分鐘之時間段中具有小於500℉之溫度202 。由此將包括生物活性陶瓷及絕熱層之材料成功地施用至上布料203 (由襯衫207 及運動褲307 代表)上。實例 3熱轉移方法 使用熱轉移方法以期望圖案將生物活性陶瓷附接至襯衫上。使包括生物活性陶瓷層及黏著劑層之轉移薄片與襯衫接觸。(a) FX-TF-WB-91M;(b)油墨 :FX油墨(FX-WB);及(c)組合物 :FX-WB (67%)及生物活性陶瓷(33%)。 使用熱轉移FX機器將熱及壓力施用於材料上,由此將生物活性陶瓷轉移至物件上。簡言之,在9號絲網中使用下列設置實施熱轉移印刷:(a)溫度:300℉ (148℃);(b)留置時間:7秒;(c)壓力:40 PSI;(d)冷剝離。 1 圖解說明使用熱轉移方法產生之包括生物活性陶瓷之襯衫。實例 4熱轉移方法 使用熱轉移方法以期望圖案將生物活性陶瓷附接至襯衫上。使包括生物活性陶瓷層及黏著劑層之轉移薄片與襯衫接觸。(a) FX-TF-WB-91M;(b)油墨 :FX油墨(FX-WB);及(c)組合物 :FX-WB (67%)及生物活性陶瓷(33%)。 使用熱轉移FX機器將熱及壓力施用於材料上,由此將生物活性陶瓷轉移至物件上。簡言之,在9號絲網中使用下列設置實施熱轉移印刷:(a)溫度:340℉ (171℃);(b)留置時間:7秒;(c)壓力:40 PSI;(d)冷剝離。 1 圖解說明使用熱轉移方法產生之包括生物活性陶瓷之襯衫。實例 5熱轉移方法 使用熱轉移方法以期望圖案將生物活性陶瓷附接至襯衫上。使包括生物活性陶瓷層及黏著劑層之轉移薄片與襯衫接觸。(a) 熱轉移紙;(b)油墨 :熱轉移油墨;其中組合物 係67%熱轉移油墨及33%生物活性陶瓷。 使用熱壓機器將熱及壓力施用於材料上,由此將生物活性陶瓷轉移至物件上。簡言之,使用下列設置實施熱轉移印刷:(a)溫度:360-370℉ (b)留置時間:3-5秒;(c)壓力:60-80 PSI;(d)熱剝離。實例 6熱轉移方法 使用熱轉移方法以期望圖案將生物活性陶瓷附接至襯衫上。使包括生物活性陶瓷層及黏著劑層之轉移薄片與襯衫接觸。(a) 熱轉移紙;(b)油墨 :熱轉移油墨;其中組合物 係67%熱轉移油墨及33%生物活性陶瓷。 使用熱壓機器將熱及壓力施用於材料上,由此將生物活性陶瓷轉移至物件上。簡言之,使用下列設置實施熱轉移印刷:(a)溫度:340℉ (b)留置時間:10秒;(c)壓力:60-80 PSI;(d)溫剝離。實例 7熱轉移方法 使用熱轉移方法以期望圖案將生物活性陶瓷附接至襯衫上。使包括生物活性陶瓷層及黏著劑層之轉移薄片與襯衫接觸。(a) 熱轉移紙;(b)油墨 :熱轉移油墨;其中組合物 係67%熱轉移油墨及33%生物活性陶瓷。 使用熱壓機器將熱及壓力施用於材料上,由此將生物活性陶瓷轉移至物件上。簡言之,使用下列設置實施熱轉移印刷:(a)溫度:300℉ (b)留置時間:15秒;(c)壓力:60-80 PSI;(d)冷剝離。實例 8熱轉移方法 使用熱轉移方法以期望圖案將生物活性陶瓷附接至襯衫上。使包括生物活性陶瓷層及黏著劑層之轉移薄片與襯衫接觸。(a) 熱轉移紙;(b)油墨 :熱轉移油墨;其中組合物 係70%熱轉移油墨及30%生物活性陶瓷。 使用熱壓機器將熱及壓力施用於材料上,由此將生物活性陶瓷轉移至物件上。簡言之,使用下列設置實施熱轉移印刷:(a)溫度:360-370℉ (b)留置時間:8-10秒;(c)壓力:60-80 PSI;(d)熱剝離。實例 9熱轉移方法 使用熱轉移方法以期望圖案將生物活性陶瓷附接至襯衫上。使包括生物活性陶瓷層及黏著劑層之轉移薄片與襯衫接觸。(a) 熱轉移紙;(b)油墨 :熱轉移油墨;其中組合物 係67%熱轉移油墨及33%生物活性陶瓷。 使用熱壓機器將熱及壓力施用於材料上,由此將生物活性陶瓷轉移至物件上。簡言之,使用下列設置實施熱轉移印刷:(a)溫度:350℉ (b)留置時間:15秒;(c)壓力:60-80 PSI;(d)熱剝離。實例 10熱轉移方法 使用熱轉移方法以期望圖案將生物活性陶瓷附接至襯衫上。使包括生物活性陶瓷層及黏著劑層之轉移薄片與襯衫接觸。(a) 熱轉移紙;(b)油墨 :熱轉移油墨;其中組合物 係67%熱轉移油墨及33%生物活性陶瓷。 使用熱壓機器將熱及壓力施用於材料上,由此將生物活性陶瓷轉移至物件上。簡言之,使用下列設置實施熱轉移印刷:(a)溫度:275℉ (b)留置時間:10秒;(c)壓力:60-80 PSI;(d)溫剝離。實例 11熱轉移方法 使用熱轉移方法以期望圖案將生物活性陶瓷附接至襯衫上。使包括生物活性陶瓷層及黏著劑層之轉移薄片與襯衫接觸。(a) 熱轉移紙;(b)油墨 :熱轉移油墨;其中組合物 係60%熱轉移油墨及40%生物活性陶瓷。 使用熱壓機器將熱及壓力施用於材料上,由此將生物活性陶瓷轉移至物件上。簡言之,使用下列設置實施熱轉移印刷:(a)溫度:400℉ (b)留置時間:30秒;(c)壓力:40-60 PSI;(d)熱剝離。實例 12 由使用熱能源方法施用至織物上之生物活性陶瓷發射之遠紅外線能量 目標 設計此研究以評估由施用使用熱能源方法至織物上之生物活性陶瓷層發射之遠紅外線能量之效應。方法 在University of South of Santa Catarina Ethics Committee評估之後,使用雄性Swiss小鼠(30-35g)實施實驗。向動物足蹠注射弗羅因德氏完全佐劑(Freud’s complete adjuvant) (CFA, 20 μl - 70%)且將其暴露於包括生物活性陶瓷層之織物中界定時間段。簡言之,將包括生物活性陶瓷之織物置於動物盒內部。在暴露於產品24 h之後,將機械及熱痛覺過敏評價為對於0.4g馮-弗雷長絲(von frey filament)之10次呈現之反應頻率或藉由施用至動物右後爪之熱刺激(熱板方法)來評價。每天實施評估且持續10天。在評估之後,將動物置於其盒中且再暴露於織物直至後續評估(24小時後)。另外,在實驗之第1、3及10天分別使用測微計及數位溫度計評估水腫形成及後爪溫度。將對照動物置於假布料(僅織物)上且實施相同實驗方案。 儘管本文已展示且闡述本發明之較佳實施例,但熟習此項技術者應明瞭,該等實施例僅係以實例形式提供。熟習此項技術者現將構想出多種變化形式、改變形式及取代形式,此並不背離本發明。應理解,可在實踐本發明中採用本文所闡述之本發明實施例之各種替代方式。下列申請專利範圍意欲界定本發明範圍並由此覆蓋該等申請專利範圍及其等效形式範圍內之方法及結構。As used in this document, the singular forms "a", "an" and "the" are meant to include the plural. All technical and scientific terms used herein have the same meaning as commonly understood by those skilled in the art, unless otherwise defined. As used in this document, the term "include" means "including but not limited to". The present invention relates to making materials comprising bioactive ceramics and applying the materials to a batch of articles by thermal transfer. Bioactive ceramics can, for example, absorb and reflect beneficial far infrared energy (FIR). The FIR is an infrared spectral region of electromagnetic radiation from 3 microns to 100 microns (International Commission on Illumination classification of IR radiation) that penetrates to a depth of 1.5 inches (almost 4 cm) below the skin. In particular, in the range of 8 microns to 12 microns, FIR can exhibit a number of beneficial beneficial effects. However, there are many challenges with regard to harvesting the far-infrared energy of the beneficial range and transmitting it to individuals. An even greater challenge is to envision a strategy that provides a far-reaching infrared energy of a beneficial range to a particular zone or region of an individual's body. The present invention provides a thermal energy method for applying a bioactive ceramic that emits far infrared rays to a garment, such as a garment. Thermal transfer is the process of applying a material to various items (i.e., articles) by applying heat to the material using, for example, a hot press. For example, the heat application material may contain a heat sensitive adhesive on one side and a bioactive ceramic on the other side; thereby, when a certain amount of heat is applied to the material, the material adheres to the substrate to which it is applied . For example, when a decorative design is applied to a fabric using heat transfer, the end result is a decorative garment comprising a bioactive ceramic that emits far infrared rays. Materials including bioactive ceramics can be applied to various articles such as garments (shirts, sleeves, etc.), furniture (seats), bedding, and many other items. Also described herein are compositions and kits comprising: one or more bioactive ceramic layers and optionally an adhesive layer and/or a thermal barrier. The bioactive ceramic can be applied to the article using sets and compositions. For example, a bioactive ceramic can be applied to a fabric comprising polyester and/or spandex using a kit. The kits can include one or more sheets having a bioactive ceramic layer. Each bioactive ceramic layer can include a heat sensitive adhesive. The kits can further include a reagent set to attach the bioactive ceramic to the article. In some examples, the set of reagents can include one or more types of heat sensitive gels that can be used to attach bioactive ceramics to fabrics. In other cases, the reagent set may comprise an anti-adhesive sheet. The kit may also include written instructions regarding its use. Yet another feature of the subject matter described herein is the targeted attachment of a sheet of material comprising a bioactive ceramic to an article. Targeting the material to an item, such as a shirt or another item of clothing, can provide a specific targeting of the bioactive ceramic to the individual exposed to the item. For example, a shirt comprising a concentrate of bioactive ceramic in the shoulder, back or abdomen region can provide beneficial effects of far infrared energy energy being more efficiently emitted/reflected by the bioceramic to the shoulder, abdomen and/or back regions of the body. (figure 1). Bioactive ceramics can be applied to desired areas of the article using targeted attachment of the material to the article/substrate, such as the shoulders, elbows, wrists, waist, chest area, knees, ankles, and other areas of the shirt. Targeted application of the material to the article can then result in the formation of an article that provides a beneficial effect of far infrared energy to the selected region or body region. Targeted attachment of materials can also be used to create custom objects. For example, a customized item can not only target the beneficial effects of far infrared energy emitted by the bioactive ceramic to a particular target area/area, but it can also be used to create a unique design. Targeted application of materials to articles can also be used to provide different concentrates of bioactive ceramics to one or more regions of the article. Another feature of the subject matter described herein is a transfer material comprising a bioactive ceramic. The transfer material can include one or more layers. For example, the transfer material can include: (1) a liner that supports the product during manufacture and protects the adhesive until the material is applied to the final use surface; (2) an adhesive that can be pressure sensitive or heat sensitive. (3) a facestock, which may be a film or other specialty paper, fabric or film that anchors the topcoat and the adhesive, the facestock may also include bioactive ceramics; (4) bioactive ceramics; and (4) A coating that can be applied to promote or increase the physical surface coating of ink adhesion or modification gloss or other properties using conventional and digital printing techniques. For example, in one embodiment, the composition comprises (a) from about 1 wt% to about 90 wt% kaolinite (Al)2 Si2 O5 (OH)4 (b) from about 1 wt% to about 90 wt% tourmaline; (c) from about 1 wt% to about 90 wt% alumina (Al)2 O3 (d) from about 1 wt% to about 90 wt% of cerium oxide (SiO2 And (e) from about 1 wt% to about 90 wt% zirconia (ZrO)2 The conditions are based on the total weight of the bioactive ceramic composition; and the conditions are that the transfer material layer is applied to the transfer sheet. In another embodiment, the composition comprises (a) from about 1 wt% to about 90 wt% kaolinite (Al)2 Si2 O5 (OH)4 (b) from about 1 wt% to about 90 wt% tourmaline; (c) from about 1 wt% to about 90 wt% alumina (Al)2 O3 (d) from about 1 wt% to about 90 wt% of cerium oxide (SiO2 And (e) from about 1 wt% to about 90 wt% of titanium dioxide (TiO2 The conditions are based on the total weight of the bioactive ceramic composition; and the conditions are that the transfer material layer is applied to the transfer sheet. In another embodiment, the composition comprises (a) from about 1 wt% to about 90 wt% kaolinite (Al)2 Si2 O5 (OH)4 (b) from about 1 wt% to about 90 wt% tourmaline; (c) from about 1 wt% to about 90 wt% alumina (Al)2 O3 (d) from about 1 wt% to about 90 wt% of cerium oxide (SiO2 And (e) from about 1 wt% to about 90 wt% magnesium oxide (MgO), provided that the amount is based on the total weight of the bioactive ceramic composition; and the condition is that the transfer material layer is applied to the transfer sheet. In another embodiment, the composition comprises (a) from about 20 wt% to about 80 wt% kaolinite (Al)2 Si2 O5 (OH)4 (b) from about 1 wt% to about 30 wt% tourmaline; (c) from about 1 wt% to about 40 wt% alumina (Al)2 O3 (d) from about 1 wt% to about 40 wt% of cerium oxide (SiO2 And (e) from about 1 wt% to about 20 wt% zirconia (ZrO)2 The conditions are based on the total weight of the bioactive ceramic composition; and the conditions are that the transfer material layer is applied to the transfer sheet. In another embodiment, the composition comprises (a) from about 20 wt% to about 80 wt% kaolinite (Al)2 Si2 O5 (OH)4 (b) from about 1 wt% to about 30 wt% tourmaline; (c) from about 1 wt% to about 40 wt% alumina (Al)2 O3 (d) from about 1 wt% to about 40 wt% of cerium oxide (SiO2 And (e) from about 1 wt% to about 20 wt% of titanium dioxide (TiO2 The conditions are based on the total weight of the bioactive ceramic composition; and the conditions are that the transfer material layer is applied to the transfer sheet. In another embodiment, the composition comprises (a) from about 20 wt% to about 80 wt% kaolinite (Al)2 Si2 O5 (OH)4 (b) from about 1 wt% to about 30 wt% tourmaline; (c) from about 1 wt% to about 40 wt% alumina (Al)2 O3 (d) from about 1 wt% to about 40 wt% of cerium oxide (SiO2 And (e) from about 1 wt% to about 20 wt% magnesium oxide (MgO), provided that the amount is based on the total weight of the bioactive ceramic composition; and the condition is that the transfer material layer is applied to the transfer sheet. In another embodiment, the bioactive ceramic composition comprises: (a) from about 20 wt% to about 60 wt% kaolinite (Al)2 Si2 O5 (OH)4 (b) from about 5 wt% to about 25 wt% tourmaline; (c) from about 1 wt% to about 25 wt% alumina (Al)2 O3 (d) from about 1 wt% to about 20 wt% of cerium oxide (SiO2 And (e) from about 1 wt% to about 20 wt% zirconia (ZrO)2 The conditions are based on the total weight of the bioactive ceramic composition; and the conditions are that the transfer material layer is applied to the transfer sheet. In another embodiment, the bioactive ceramic composition comprises: (a) from about 20 wt% to about 60 wt% kaolinite (Al)2 Si2 O5 (OH)4 (b) from about 5 wt% to about 25 wt% tourmaline; (c) from about 1 wt% to about 25 wt% alumina (Al)2 O3 (d) from about 1 wt% to about 20 wt% of cerium oxide (SiO2 And (e) from about 1 wt% to about 20 wt% of titanium dioxide (TiO2 The conditions are based on the total weight of the bioactive ceramic composition; and the conditions are that the transfer material layer is applied to the transfer sheet. In another embodiment, the bioactive ceramic composition comprises: (a) from about 20 wt% to about 60 wt% kaolinite (Al)2 Si2 O5 (OH)4 (b) from about 5 wt% to about 25 wt% tourmaline; (c) from about 1 wt% to about 25 wt% alumina (Al)2 O3 (d) from about 1 wt% to about 20 wt% of cerium oxide (SiO2 And (e) from about 1 wt% to about 20 wt% magnesium oxide (MgO), provided that the amount is based on the total weight of the bioactive ceramic composition; and the condition is that the transfer material layer is applied to the transfer sheet. In another embodiment, the bioactive ceramic composition comprises: (a) from about 40 wt% to about 60 wt% kaolinite (Al)2 Si2 O5 (OH)4 (b) from about 5 wt% to about 15 wt% tourmaline; (c) from about 15 wt% to about 25 wt% alumina (Al)2 O3 (d) from about 10 wt% to about 20 wt% of cerium oxide (SiO2 And (e) from about 1 wt% to about 20 wt% zirconia (ZrO)2 The conditions are based on the total weight of the bioactive ceramic composition; and the conditions are that the transfer material layer is applied to the transfer sheet. In another embodiment, the bioactive ceramic composition comprises: (a) from about 40 wt% to about 60 wt% kaolinite (Al)2 Si2 O5 (OH)4 (b) from about 5 wt% to about 15 wt% tourmaline; (c) from about 15 wt% to about 25 wt% alumina (Al)2 O3 (d) from about 10 wt% to about 20 wt% of cerium oxide (SiO2 And (e) from about 1 wt% to about 20 wt% of titanium dioxide (TiO2 The conditions are based on the total weight of the bioactive ceramic composition; and the conditions are that the transfer material layer is applied to the transfer sheet. In another embodiment, the bioactive ceramic composition comprises: (a) from about 40 wt% to about 60 wt% kaolinite (Al)2 Si2 O5 (OH)4 (b) from about 5 wt% to about 15 wt% tourmaline; (c) from about 15 wt% to about 25 wt% alumina (Al)2 O3 (d) from about 10 wt% to about 20 wt% of cerium oxide (SiO2 And (e) from about 1 wt% to about 20 wt% magnesium oxide (MgO), provided that the amount is based on the total weight of the bioactive ceramic composition; and the condition is that the transfer material layer is applied to the transfer sheet. In yet another embodiment, the bioactive ceramic comprises: (a) about 50 wt% kaolinite (Al)2 Si2 O5 (OH)4 (b) about 10 wt% tourmaline; (c) about 18 wt% alumina (Al)2 O3 (d) about 14 wt% cerium oxide (SiO2 ); and (e) about 8 wt% zirconia (ZrO)2 The conditions are based on the total weight of the bioactive ceramic composition; and the conditions are that the transfer material layer is applied to the transfer sheet. In yet another embodiment, the bioactive ceramic comprises: (a) about 50 wt% kaolinite (Al)2 Si2 O5 (OH)4 (b) about 10 wt% tourmaline; (c) about 18 wt% alumina (Al)2 O3 (d) about 14 wt% cerium oxide (SiO2 ); and (e) about 8 wt% titanium dioxide (TiO2 The conditions are based on the total weight of the bioactive ceramic composition; and the conditions are that the transfer material layer is applied to the transfer sheet. In yet another embodiment, the bioactive ceramic comprises: (a) about 50 wt% kaolinite (Al)2 Si2 O5 (OH)4 (b) about 10 wt% tourmaline; (c) about 18 wt% alumina (Al)2 O3 (d) about 14 wt% cerium oxide (SiO2 And (e) about 8 wt% magnesium oxide (MgO); the conditions are based on the total weight of the bioactive ceramic composition; and the condition is that the transfer material layer is applied to the transfer sheet. In some such embodiments, the bioactive ceramic composition of matter comprises tourmaline and tourmaline comprises NaFe2+ 3 Al6 Si6 O18 (BO3 )3 (OH)3 OH.Thermal energy transfer method The present invention provides a thermal energy method for applying a far-infrared-emitting bioactive ceramic to a garment, such as a garment, the condition comprising a bioactive ceramic layer and an adhesive layer, wherein the adhesive layer is in contact with the article; and wherein the material is in the material The bioactive ceramic is applied to the article after application of heat. In some cases, the material includes more than one layer. For example, the adhesive layer can be applied as an intermediate layer between, for example, paper and a bioactive ceramic. After a certain amount of heat is applied to the adhesive layer, a bond can be created between the bioactive ceramic and the article. The resulting interlayer bonds can be deposited on one or both surfaces. In some cases, the resulting interlayer bonds are deposited between the article and the bioactive ceramic, but are not deposited between the adhesive and the paper. In this case, the paper can be easily "stripped" from the bioactive ceramic. Individual parameters can be independently adjusted to achieve high bond strength between the bioactive ceramic and the article, including: (a) the type of adhesive material used in the bioceramic layer; (b) used in the bioceramic layer Type of insulating material; (c) thickness of the bioactive ceramic layer and/or thickness of the adhesive coating; (d) bonding temperature; (e) amount of applied pressure; and (f) application of heat and pressure period. The adhesive layer can be organic or inorganic, soluble or insoluble. In some cases, the adhesive sheet has a viscous layer and a release paper. In some cases, the adhesive sheet has a structure in which an adhesive layer and a release paper have been used, for example, the release paper has been peeled off from the adhesive layer and one or more adhesives have been adhered using the adhesive layer. Alternatively, a heat-sensitive adhesive sheet which does not exhibit surface tack at room temperature and which does not require a release paper can be used. In such cases, the heat-sensitive adhesive may contain a solid plasticizer and a thermoplastic resin as a component. The heat sensitive adhesive material can be obtained by mixing a tackifier or the like with the heat sensitive adhesive and applying the mixture to the opposite surface of the biologically active layer for printing. In some cases, the surface of the adhesive layer in the heat-sensitive adhesive material may exhibit no surface tack at room temperature, however, it may exhibit surface tack when heated. Non-limiting examples of heat sensitive adhesives include: SU-8, benzocyclobutene (BCB), ethylene-vinyl acetate copolymer (EVA), ethylene-ethyl acrylate copolymer (EEA), ethylene-acrylic acid copolymer (EAA), ionic polymer resin, polyester, polypropylene, low density polyethylene (LDPE), thermoplastic polyurethane adhesive (TPU), polyurethane reactive hot melt adhesive, non Crystalline polyolefin, hydrocarbon resin, hydrogenated hydrocarbon resin, hydrogenated pure monomer resin, rosin resin. Non-limiting examples of tackifiers include: rosin resin, rosin ester, hydrogenated rosin resin, dimerized rosin resin and modified rosin resin; hydrocarbon resin, including C5 aliphatic resin, C9 aromatic resin, C5/C9 aliphatic / aromatic resin; and enamel resin. The material may additionally comprise a thermal insulation layer. In some cases, the insulating layer has reflective properties. Non-limiting examples of the heat insulating layer include aluminum foil, aluminum plated cloth, aluminum powder, copper, silver, carbon, fiber glass, glass wool, cellulose, rock wool, polystyrene foam, urethane foam , vermiculite, perlite and cork. The thickness of the bioactive ceramic layer and/or the thickness of the adhesive coating can vary. For example, the thickness of the bioactive ceramic layer and/or the thickness of the adhesive coating can each independently be less than 1 micron, less than 2 microns, less than 3 microns, less than 4 microns, less than 5 microns, less than 6 microns, less than 7 microns. Less than 8 microns, less than 9 microns, less than 10 microns, less than 20 microns, less than 30 microns, less than 40 microns, less than 50 microns, less than 60 microns, less than 70 microns, less than 80 microns, less than 90 microns, less than 100 microns, less than 110 microns, less than 120 microns, less than 130 microns, less than 140 microns, less than 150 microns, less than 160 microns, less than 170 microns, less than 180 microns, less than 190 microns, less than 200 microns, less than 210 microns, less than 220 microns, less than 230 microns Less than 240 microns, less than 250 microns, less than 260 microns, less than 270 microns, less than 280 microns, less than 290 microns, less than 300 microns, less than 310 microns, less than 320 microns, less than 330 microns, less than 340 microns, less than 350 microns, less than 360 microns, less than 370 microns, less than 380 microns, less than 390 microns, less than 400 microns, less than 410 microns, less than 420 microns, less than 430 microns Less than 440 microns, less than 450 microns, less than 460 microns, less than 470 microns, less than 480 microns, less than 490 microns, less than 500 microns, less than 510 microns, less than 520 microns, less than 530 microns, less than 540 microns, less than 550 microns, less than 560 microns, less than 570 microns, less than 580 microns, less than 590 microns, less than 600 microns, less than 610 microns, less than 620 microns, less than 630 microns, less than 640 microns, less than 650 microns, less than 660 microns, less than 670 microns, less than 680 microns Less than 690 microns, less than 700 microns, less than 710 microns, less than 720 microns, less than 730 microns, less than 740 microns, less than 750 microns, less than 760 microns, less than 770 microns, less than 780 microns, less than 790 microns, less than 800 microns, less than 810 microns, less than 820 microns, less than 830 microns, less than 840 microns, less than 850 microns, less than 860 microns, less than 870 microns, less than 880 microns, less than 890 microns, less than 900 microns, less than 910 microns, less than 920 microns, less than 930 microns Less than 940 microns, less than 950 microns, less than 960 microns, less than 970 microns, less than 980 microns, less than 9 90 microns or less than 1 mm. Adhesive bonding provides attachment of bioactive ceramics to objects at various temperatures, including low bonding temperatures. For example, the presence of an adhesive layer can provide attachment of bioactive ceramics at temperatures between 1000 ° C and room temperature. In some cases, the adhesive bond can occur at a temperature of less than 1000 ° C, less than 990 ° C, less than 980 ° C, less than 970 ° C, less than 960 ° C, less than 950 ° C, less than 940 ° C, less than 930 ° C, less than 920 °C, less than 910 ° C, less than 900 ° C, less than 890 ° C, less than 880 ° C, less than 870 ° C, less than 860 ° C, less than 850 ° C, less than 840 ° C, less than 830 ° C, less than 820 ° C, less than 810 ° C, less than 800 ° C, Less than 790 ° C, less than 780 ° C, less than 770 ° C, less than 760 ° C, less than 750 ° C, less than 740 ° C, less than 730 ° C, less than 720 ° C, less than 710 ° C, less than 700 ° C, less than 690 ° C, less than 680 ° C, less than 670 °C, less than 660 ° C, less than 650 ° C, less than 640 ° C, less than 630 ° C, less than 620 ° C, less than 610 ° C, less than 600 ° C, less than 590 ° C, less than 580 ° C, less than 570 ° C, less than 560 ° C, less than 550 ° C, Less than 540 ° C, less than 530 ° C, less than 520 ° C, less than 510 ° C, less than 500 ° C, less than 490 ° C, less than 480 ° C, less than 470 ° C, less than 460 ° C, less than 450 ° C, less than 440 ° C, less than 430 ° C, less than 420 °C, less than 410 ° C, less than 400 ° C, less than 390 ° C, small At 380 ° C, less than 370 ° C, less than 360 ° C, less than 350 ° C, less than 340 ° C, less than 330 ° C, less than 320 ° C, less than 310 ° C, less than 300 ° C, less than 290 ° C, less than 280 ° C, less than 270 ° C, less than 260 °C, less than 250 ° C, less than 240 ° C, less than 230 ° C, less than 220 ° C, less than 210 ° C, less than 200 ° C, less than 190 ° C, less than 180 ° C, less than 170 ° C, less than 160 ° C, less than 150 ° C, less than 140 ° C, Less than 130 ° C, less than 120 ° C, less than 110 ° C or less than 100 ° C. The bond strength between the bioactive ceramic and the article can be affected based on the amount of pressure applied. In some cases, use a hot press to apply 10 PSI (pounds per square inch) to 100 PSI, 10 PSI to 90 PSI, 10 PSI to 80 PSI, 10 PSI to 70 PSI, 10 PSI to 60 PSI, 10 PSI to 50 PSI, 10 PSI to 40 PSI, 10 PSI to 30 PSI, 10 PSI to 20 PSI, 20 PSI to 80 PSI or 30 PSI to 40 PSI. The bonding strength between the bioactive ceramic and the article can also be influenced based on the period of application of heat and pressure. In some cases, heat and pressure may be applied to the article for less than 10 minutes, less than 9 minutes, less than 8 minutes, less than 7 minutes, less than 6 minutes, less than 5 minutes, less than 4 minutes, less than 3 minutes, less than 2 minutes, less than 1 minute, less than 50 seconds, less than 40 seconds, less than 30 seconds, less than 20 seconds, less than 15 seconds, or less than 10 seconds. In some cases, heat and pressure may be applied to the article for from about 1 second to about 2 seconds, from about 5 seconds to about 15 seconds, from about 10 seconds to about 20 seconds, from about 10 seconds to about 30 seconds, or another suitable period of time. . Furthermore, the material may comprise two or more bioactive ceramics and/or the material may comprise a thermal insulation layer. Where the material comprises two or more bioactive ceramics, each bioactive ceramic layer can independently have the same, substantially the same or different composition of matter. In some cases, the invention provides a thermal transfer material, the conditional thermal transfer material comprising at least one bioactive ceramic layer, and the condition that the at least one bioactive ceramic layer comprises: a. from about 1 wt% to about 90 wt% kaolinite ( Al2 Si2 O5 (OH)4 b) from about 1 wt% to about 90 wt% tourmaline; c. from about 1 wt% to about 90 wt% alumina (Al2 O3 d; about 1 wt% to about 90 wt% cerium oxide (SiO2 ); and e. from about 1 wt% to about 90 wt% zirconia (ZrO)2 The conditions are based on the total weight of the bioceramic layer; and the condition is that the transfer material layer is laid onto the transfer sheet. The transfer material may optionally contain an adhesive layer and/or a thermal insulation layer. In some cases, the invention provides a thermal transfer material, the conditional thermal transfer material comprising at least one bioactive ceramic layer, and the condition that the at least one bioactive ceramic layer comprises: a. from about 1 wt% to about 90 wt% kaolinite ( Al2 Si2 O5 (OH)4 b) from about 1 wt% to about 90 wt% tourmaline; c. from about 1 wt% to about 90 wt% alumina (Al2 O3 d; about 1 wt% to about 90 wt% cerium oxide (SiO2 ); and e. from about 1 wt% to about 90 wt% titanium dioxide (TiO2 The conditions are based on the total weight of the bioceramic layer; and the condition is that the transfer material layer is laid onto the transfer sheet. The transfer material may optionally contain an adhesive layer and/or a thermal insulation layer. In some cases, the invention provides a thermal transfer material, the conditional thermal transfer material comprising at least one bioactive ceramic layer, and the condition that the at least one bioactive ceramic layer comprises: a. from about 1 wt% to about 90 wt% kaolinite ( Al2 Si2 O5 (OH)4 b) from about 1 wt% to about 90 wt% tourmaline; c. from about 1 wt% to about 90 wt% alumina (Al2 O3 d; about 1 wt% to about 90 wt% cerium oxide (SiO2 And e. from about 1 wt% to about 90 wt% magnesium oxide (MgO); the conditions are based on the total weight of the bioceramic layer; and the condition is that the transfer material layer is laid onto the transfer sheet. The transfer material may optionally contain an adhesive layer and/or a thermal insulation layer. In some cases, the invention provides a thermal transfer material, the conditional thermal transfer material comprising at least one bioactive ceramic layer, and the condition that the at least one bioactive ceramic layer comprises: a. from about 20 wt% to about 80 wt% kaolinite ( Al2 Si2 O5 (OH)4 b) from about 1 wt% to about 30 wt% tourmaline; c. from about 1 wt% to about 40 wt% alumina (Al2 O3 d; about 1 wt% to about 40 wt% cerium oxide (SiO2 ); and e. from about 1 wt% to about 20 wt% zirconia (ZrO)2 The conditions are based on the total weight of the bioceramic layer; and the condition is that the transfer material layer is laid onto the transfer sheet. The transfer material may optionally contain an adhesive layer and/or a thermal insulation layer. In some cases, the invention provides a thermal transfer material, the conditional thermal transfer material comprising at least one bioactive ceramic layer, and the condition that the at least one bioactive ceramic layer comprises: a. from about 20 wt% to about 80 wt% kaolinite ( Al2 Si2 O5 (OH)4 b) from about 1 wt% to about 30 wt% tourmaline; c. from about 1 wt% to about 40 wt% alumina (Al2 O3 d; about 1 wt% to about 40 wt% cerium oxide (SiO2 ); and e. from about 1 wt% to about 20 wt% titanium dioxide (TiO2 The conditions are based on the total weight of the bioceramic layer; and the condition is that the transfer material layer is laid onto the transfer sheet. The transfer material may optionally contain an adhesive layer and/or a thermal insulation layer. In some cases, the invention provides a thermal transfer material, the conditional thermal transfer material comprising at least one bioactive ceramic layer, and the condition that the at least one bioactive ceramic layer comprises: a. from about 20 wt% to about 80 wt% kaolinite ( Al2 Si2 O5 (OH)4 b) from about 1 wt% to about 30 wt% tourmaline; c. from about 1 wt% to about 40 wt% alumina (Al2 O3 d; about 1 wt% to about 40 wt% cerium oxide (SiO2 And e. from about 1 wt% to about 20 wt% magnesium oxide (MgO); the conditions are based on the total weight of the bioceramic layer; and the condition is that the transfer material layer is laid onto the transfer sheet. The transfer material may optionally contain an adhesive layer and/or a thermal insulation layer. In some cases, the invention provides a thermal transfer material, the conditional thermal transfer material comprising at least one bioactive ceramic layer, and the condition that the at least one bioactive ceramic layer comprises: a. from about 20 wt% to about 60 wt% kaolinite ( Al2 Si2 O5 (OH)4 b; about 5 wt% to about 25 wt% tourmaline; c. about 1 wt% to about 25 wt% alumina (Al2 O3 d; about 1 wt% to about 20 wt% cerium oxide (SiO2 ); and e. from about 1 wt% to about 20 wt% zirconia (ZrO)2 The conditions are based on the total weight of the bioceramic layer; and the condition is that the transfer material layer is laid onto the transfer sheet. The transfer material may optionally contain an adhesive layer and/or a thermal insulation layer. In other instances, the invention provides a thermal transfer material, the conditional thermal transfer material comprising at least one bioactive ceramic layer, and the condition that the at least one bioactive ceramic layer comprises: a. from about 20 wt% to about 60 wt% kaolinite ( Al2 Si2 O5 (OH)4 b; about 5 wt% to about 25 wt% tourmaline; c. about 1 wt% to about 25 wt% alumina (Al2 O3 d; about 1 wt% to about 20 wt% cerium oxide (SiO2 ); and e. from about 1 wt% to about 20 wt% titanium dioxide (TiO2 The conditions are based on the total weight of the bioceramic layer; and the condition is that the transfer material layer is laid onto the transfer sheet. The transfer material may optionally contain an adhesive layer and/or a thermal insulation layer. In other instances, the invention provides a thermal transfer material, the conditional thermal transfer material comprising at least one bioactive ceramic layer, and the condition that the at least one bioactive ceramic layer comprises: a. from about 20 wt% to about 60 wt% kaolinite ( Al2 Si2 O5 (OH)4 b; about 5 wt% to about 25 wt% tourmaline; c. about 1 wt% to about 25 wt% alumina (Al2 O3 d; about 1 wt% to about 20 wt% cerium oxide (SiO2 And e. from about 1 wt% to about 20 wt% magnesium oxide (MgO); the conditions are based on the total weight of the bioceramic layer; and the condition is that the transfer material layer is laid onto the transfer sheet. The transfer material may optionally contain an adhesive layer and/or a thermal insulation layer. In further or additional embodiments, the invention provides a thermal transfer material, the condition that the thermal transfer material comprises at least one bioactive ceramic layer, and wherein the at least one bioactive ceramic layer comprises: a. from about 40 wt% to about 60 wt% Kaolinite (Al2 Si2 O5 (OH)4 b) from about 5 wt% to about 15 wt% tourmaline; c. from about 15 wt% to about 25 wt% alumina (Al2 O3 d; about 10 wt% to about 20 wt% cerium oxide (SiO2 ); and e. from about 1 wt% to about 20 wt% zirconia (ZrO)2 The conditions are based on the total weight of the bioceramic layer; and the condition is that the transfer material layer is laid onto the transfer sheet. The transfer material may optionally contain an adhesive layer and/or a thermal insulation layer. In further or additional embodiments, the invention provides a thermal transfer material, the condition that the thermal transfer material comprises at least one bioactive ceramic layer, and wherein the at least one bioactive ceramic layer comprises: a. from about 40 wt% to about 60 wt% Kaolinite (Al2 Si2 O5 (OH)4 b) from about 5 wt% to about 15 wt% tourmaline; c. from about 15 wt% to about 25 wt% alumina (Al2 O3 d; about 10 wt% to about 20 wt% cerium oxide (SiO2 ); and e. from about 1 wt% to about 20 wt% titanium dioxide (TiO2 The conditions are based on the total weight of the bioceramic layer; and the condition is that the transfer material layer is laid onto the transfer sheet. The transfer material may optionally contain an adhesive layer and/or a thermal insulation layer. In further or additional embodiments, the invention provides a thermal transfer material, the condition that the thermal transfer material comprises at least one bioactive ceramic layer, and wherein the at least one bioactive ceramic layer comprises: a. from about 40 wt% to about 60 wt% Kaolinite (Al2 Si2 O5 (OH)4 b) from about 5 wt% to about 15 wt% tourmaline; c. from about 15 wt% to about 25 wt% alumina (Al2 O3 d; about 10 wt% to about 20 wt% cerium oxide (SiO2 And e. from about 1 wt% to about 20 wt% magnesium oxide (MgO); the conditions are based on the total weight of the bioceramic layer; and the condition is that the transfer material layer is laid onto the transfer sheet. The transfer material may optionally contain an adhesive layer and/or a thermal insulation layer. In some embodiments, the bioactive ceramic layer comprises a. about 50 wt% kaolinite (Al2 Si2 O5 (OH)4 b) about 10 wt% tourmaline; c. about 18 wt% alumina (Al2 O3 ); d. About 14 wt% cerium oxide (SiO2 ); and e. about 8 wt% zirconia (ZrO)2 The conditions are based on the total weight of the bioceramic layer; and the condition is that the transfer material layer is laid onto the transfer sheet. The transfer material may optionally contain an adhesive layer and/or a thermal insulation layer. In some embodiments, the bioactive ceramic layer comprises a. about 50 wt% kaolinite (Al2 Si2 O5 (OH)4 b) about 10 wt% tourmaline; c. about 18 wt% alumina (Al2 O3 ); d. About 14 wt% cerium oxide (SiO2 ); and e. about 8 wt% titanium dioxide (TiO2 The conditions are based on the total weight of the bioceramic layer; and the condition is that the transfer material layer is laid onto the transfer sheet. The transfer material may optionally contain an adhesive layer and/or a thermal insulation layer. In some embodiments, the bioactive ceramic layer comprises a. about 50 wt% kaolinite (Al2 Si2 O5 (OH)4 b) about 10 wt% tourmaline; c. about 18 wt% alumina (Al2 O3 ); d. About 14 wt% cerium oxide (SiO2 And e. about 8 wt% magnesium oxide (MgO); the conditions are based on the total weight of the bioceramic layer; and the condition is that the transfer material layer is laid onto the transfer sheet. The transfer material may optionally contain an adhesive layer and/or a thermal insulation layer. The transfer material may optionally contain an adhesive layer and/or a thermal insulation layer. In some embodiments, the bioactive ceramic comprises kaolinite in the range of from about 45 wt% to about 55 wt%. In other or additional embodiments, the bioactive ceramic comprises kaolinite in the range of from about 47 wt% to about 53 wt%. In other or additional embodiments, the bioactive ceramic contains kaolinite in the range of from about 48 wt% to about 52 wt%.object Provided herein are thermal energy methods for applying bioactive ceramics to articles. Thermal energy can be used alone or in combination with pressure to incorporate bioactive ceramics into the article. In one embodiment, the bioactive ceramic is applied in layers to at least a portion of the surface of the article using thermal energy (eg, applied to the shoulder, elbow, wrist, waist, chest area, abdomen, knee or ankle of the article of clothing). In some cases, the article is a polymeric fabric such as polyester, cotton or spandex. In some embodiments, the article comprises at least one elastomer. Elastomers include, but are not limited to, viscoelastic polymers such as natural rubber, synthetic rubber, rubbery, and rubber-like polymeric materials. An example of a synthetic rubber is polychloroprene (neoprene rubber). In one embodiment, the elastic system is selected from the group consisting of polychloroprene, nylon, polyvinyl chloride elastomer, polystyrene elastomer, polyethylene elastomer, polypropylene elastomer, polyvinyl butyral elastomer, polyfluorene Oxygen, thermoplastic elastomers, and combinations thereof. In some cases, the article includes at least one non-elastomeric body. In some embodiments, the article further comprises a polymer selected from the group consisting of polyoxybenzylidene glycol anhydride, polyvinyl chloride, polystyrene, polyethylene, polypropylene, polyacrylonitrile, poly Vinyl butyral, polylactic acid, and combinations thereof. In other instances, the article comprises an elastomer selected from the group consisting of polychloroprene, nylon, polyvinyl chloride elastomer, polystyrene elastomer, polyethylene elastomer, polypropylene elastomer, poly Vinyl butyral elastomer, polyfluorene oxide, thermoplastic elastomers, and combinations thereof. The unsaturated rubber is a rubber which can be cured by sulfur vulcanization. Non-limiting examples of unsaturated rubbers include natural polyisoprene, synthetic polyisoprene, chloroprene, butyl rubber, halobutyl rubber, styrene-butadiene rubber, nitrile rubber, hydrogenated nitrile rubber. Saturated rubber is a rubber that cannot be cured by sulfur vulcanization. Non-limiting examples of saturated rubber include ethylene propylene rubber, epichlorohydrin rubber, polyacrylic rubber, polyoxyxene rubber, fluoropolyoxyethylene rubber, fluoroelastomer, perfluoroelastomer, polyether block decylamine, chlorine Sulfonated polyethylene, ethylene-vinyl acetate. A thermoplastic elastomer (TPE) is a composite material obtained from a combination of an elastic material and a thermoplastic material. The TPE is an elastomeric material that is dispersed and crosslinked in the continuous phase of the thermoplastic material. In other instances, the article comprises a substrate selected from the group consisting of wool, silk, cotton, canvas, jute, glass, nylon, polyester, acrylic, spandex, polychloroprene, expanded A laminate of polytetrafluoroethylene and combinations thereof. In other or additional embodiments, a thermal energy method of attaching a bioactive ceramic to an article further comprising an instant clear adhesive is provided. The bioactive ceramics of the present invention can be incorporated into or incorporated into various types of articles using the thermal transfer method of the present invention (e.g., shoulder, elbow, wrist, waist, and chest areas of a shirt; or a knee and ankle of a pair of pants). In some cases, the item is a piece of clothing, such as a shirt, sleeve, shorts, pants, sweater, and other items of clothing. In further or additional embodiments, the article is selected from the group consisting of: clothing, jewelry, patches, mats, insoles, bedding, body support, foam rollers, lotions, soaps , tape, glassware, furniture, paints, inks, markings, carpets, mats, food and/or beverage containers, beverage sets, headwear, footwear, earphones, and combinations thereof. In other embodiments, the garment includes a wrist strap, a cushion, a knee bracelet, an ankle bracelet, a sleeve, or a patch. In some embodiments, the article comprises a surface, a moving surface, or an artificial turf. The bioactive ceramic of the present invention can be applied to an article and directly or indirectly exposed to the skin of the subject. In one embodiment, the item is selected from the group consisting of a shirt, pants, shorts, a dress, a skirt, a jacket, a hat, an undergarment, a sock, a non-bridging cap, a glove, a scarf, a diaper, and the like. In yet another embodiment, the item is selected from the group consisting of a bracelet, a necklace, an earring, a medal, a pendant, a ring, and the like. In another embodiment, the article is selected from the group consisting of a blanket, a bed sheet, a pillow, a pillowcase, a quilt, a duvet cover, a bed cover, a mattress, and the like. In another embodiment, the article is selected from the group consisting of a knee binding, an elbow support, a compression arm guard, a compression leg guard, a wrist guard, and the like. In some embodiments, the method of applying the bioactive ceramic of the present invention to a thermal energy source on an article comprises mixing the bioactive ceramic with a polymer or ink. Various polymers can be mixed with the bioactive ceramics of the present invention and applied to articles such as polyoxyxides, hydrogels (e.g., cross-linked poly(vinyl alcohol) and poly(hydroxy methacrylate). Ethyl ester)), mercapto-substituted cellulose acetate and its alkyl derivatives, partially and fully hydrolyzed alkyl-vinyl acetate copolymer, unplasticized polyvinyl chloride, polyvinyl acetate Homopolymers and copolymers, crosslinked polyesters of acrylic acid and/or methacrylic acid, polyvinyl alkyl ethers, polyvinyl fluoride, polycarbonates, polyurethanes, polyamines, polyfluorenes, Styrene acrylonitrile copolymer, cross-linked poly(ethylene oxide), poly(alkylene), poly(vinylimidazole), poly(ester), poly(ethylene terephthalate), polyphosphazene Alkene and chlorosulfonated polyolefins and combinations thereof. In some embodiments, the polymer comprises ethylene/vinyl acetate. Other non-erodible materials suitable for inclusion in garments with bioactive ceramics include, for example, proteins (eg, zein, nodule elastin, collagen, gelatin, casein), silk, wool, polyester, polygenic Acid esters, polyphosphates, polycarbonates, polyanhydrides, polyphosphazenes, polyoxalates, polyamino acids, polyhydroxyalkanoates, polyethylene glycols, polyvinyl acetates, polyhydroxy acids, poly Anhydride, hydrogel (including poly(hydroxyethyl methacrylate)), polyethylene glycol, poly(N-isopropylacrylamide), poly(N-vinyl-2-pyrrolidone), Cellulose polyvinyl alcohol, polyoxyhydrogen hydrogel, polypropylene decylamine and polyacrylic acid. In some embodiments, the method of applying the bioactive ceramic of the present invention to a thermal energy source on an article includes a method based on hydrazine. Polyoxymethylene is usually an inert synthetic compound. The polyoxyxene coating is, for example, screen printed, sprayed or otherwise applied directly to the ink, coating, oil, film, coating, grease or resin on the article of the invention. In some cases, a polyoxyxene coating can be applied to a layer comprising a bioactive ceramic.clothing A garment substrate useful herein comprises a fabric or textile substrate made by any of the methods known to those skilled in the art of fabric making. Such techniques include, but are not limited to, weaving, knitting, crocheting, carpeting, knotting, bonding, and the like. Suitable starting materials for the cloth substrate comprise natural or synthetic (e.g. polymeric) fibers and filaments. In an embodiment, the cloth substrate comprises, but is not limited to, selected from the group consisting of wool, silk, cotton, canvas, jute, glass, nylon, polyester, acrylic, spandex, polychloroprene, and expanded polytetracycline. A laminate of vinyl fluoride (eg, Gore-Tex® fabric) and combinations thereof. In fact, any item to which the bioceramic composition can be applied or incorporated is suitable. In one embodiment, the article is selected from the group consisting of clothing (eg, clothing, such as jewelry), patches (eg, patches that are made to adhere to the skin, such as transdermal patches, transdermal hydrogel patches, etc.), Adhesive tape (eg kinesio), non-adhesive tape, mats, insole, performance sleeves, uniforms, casual/casual wear, bedding (including sheets, mattresses, bedspreads, pillows and pillowcases), Supports, brackets, foam rollers, lotions, soaps, tapes, glassware, furniture, paints, inks, markers, carpets, mats, food and/or beverage containers, beverage sets (eg bottles or cans), headwear (eg helmets, hats, etc.), footwear (eg shoes, sneakers, sandals, etc.), earphones, surfaces, sports surfaces, artificial turf and the like. In some embodiments, the garment includes athletic apparel, athletic accessories, and athletic equipment including, but not limited to, orthopedic inserts, uniforms, footwear, insole, performance sleeves, wetsuits, lifebuoys, shirts, shorts, wristbands, arms Belts, headwear (eg headscarf), headbands, gloves, jackets, pants, hats and backpacks, sleds, ski poles, snowboards, skateboards, inline skates, bicycles, surfboards, water skis, Spray sleds, diving equipment, ropes, chains, goggles and blankets. In some embodiments, the garment is a sports accessory, including but not limited to a felt. In some embodiments, the garment is configured for orthopedic applications including, but not limited to, orthopedic inserts, shoes, and the like. In another embodiment, the article is selected from the group consisting of shirts, pants, shorts, dresses, skirts, jackets, hats, undergarments, socks, non-bridging caps, gloves, scarves, diapers, and the like. In yet another embodiment, the item is selected from the group consisting of a bracelet, a necklace, an earring, a medal, a pendant, a ring, and the like. In another embodiment, the article is selected from the group consisting of a blanket, a bed sheet, a pillow, a pillowcase, a quilt, a duvet cover, a bed cover, a mattress, and the like. In another embodiment, the article is selected from the group consisting of a knee binding, an elbow support, a compression arm guard, a compression leg guard, a wrist guard, and the like. In some embodiments, the garment comprises a casual/casual wear. In further or additional embodiments, the article incorporating the bioceramic composition or the article to which the bioceramic is applied is provided, provided that the article is selected from the group consisting of: clothing, jewelry, patches, mats, insoles, bedclothes , support, foam roller, lotion, soap, tape, glassware, furniture, paint, ink, markings, carpets, mats, food and / or beverage containers, beverage sets, headwear, footwear, headphones and Its combination. In other or additional embodiments, the article includes a garment, such as a garment. In some embodiments, the garment is casual/casual wearing apparel. In some embodiments, the garment is a sports garment. In some embodiments, the garment includes a shirt, jacket, shorts, or pants. In other embodiments, the garment includes a wristband, a cushion, a knee brace, an ankle bracelet, a cuff, a performance sleeve, a headwear (eg, a headscarf), a patch, a footwear, or an insole. In some embodiments, the item is a surface, a moving surface, or an artificial turf.pattern The manufacturing methods described herein can be used to apply bioactive ceramics at specific locations within the garment or throughout the garment. For example, the methods of manufacture disclosed herein can be used to apply bioactive ceramics to the inside, outside, or any of the inner/outer combinations of garments. In some embodiments, the garment comprises about 5% bioactive ceramic (by total weight), about 10% bioactive ceramic (by total weight), about 15% bioactive ceramic (by total weight), about 20% Bioactive ceramics (by total weight), about 25% bioactive ceramics (by total weight), about 30% bioactive ceramics (by total weight), about 35% bioactive ceramics (by total weight), about 40% bioactive ceramics (by total weight), about 45% bioactive ceramics (by total weight), about 50% bioactive ceramics (by total weight), about 55% bioactive ceramics (by total weight) , about 60% bioactive ceramics (by total weight), about 65% bioactive ceramics (by total weight), about 70% bioactive ceramics (by total weight), about 75% bioactive ceramics (by total weight) , about 80% bioactive ceramics (by total weight), about 85% bioactive ceramics (by total weight), about 90% bioactive ceramics (by total weight) or about 95% bioactive ceramics (in terms of total weight) Total weight). In some embodiments, the bioactive ceramic is applied to a portion or the entire surface of the garment. In some cases, the bioactive ceramic is applied to more than 1% of the surface area of the article, greater than 5% of the surface area, greater than 10% of the surface area, greater than 15% of the surface area, greater than 20% of the surface area, greater than 25% of the surface area, greater than 30% surface area, greater than 35% surface area, greater than 40% surface area, greater than 45% surface area, greater than 50% surface area, greater than 55% surface area, greater than 60% surface area, greater than 65% surface area, greater than 70% Surface area, greater than 75% surface area, greater than 80% surface area, greater than 85% surface area, greater than 90% surface area, greater than 95% surface area or greater than 99% surface area. In some cases, the bioactive ceramic is applied to no more than 1% of the surface area of the article, no more than 5% of the surface area, no more than 10% of the surface area, no more than 15% of the surface area, no more than 20% of the surface area, no more than 25% surface area, no more than 30% surface area, no more than 35% surface area, no more than 40% surface area, no more than 45% surface area, no more than 50% surface area, no more than 55% surface area, no more than 60 % surface area, no more than 65% surface area, no more than 70% surface area, no more than 75% surface area, no more than 80% surface area, no more than 85% surface area, no more than 90% surface area, no more than 95% The surface area or surface area of no more than 99%. In some cases, the bioactive ceramic is applied to about 1% of the surface area, about 2% of the surface area, about 3% of the surface area, about 4% of the surface area, about 5% of the surface area, about 6% of the surface area, about 6% of the surface area in the article. 7% surface area, about 8% surface area, about 9% surface area, about 10% surface area, about 11% surface area, about 12% surface area, about 13% surface area, about 14% surface area, about 15% Surface area, about 16% surface area, about 17% surface area, about 18% surface area, about 19% surface area, about 20% surface area, about 21% surface area, about 22% surface area, about 23% surface area. About 24% surface area, about 25% surface area, about 26% surface area, about 27% surface area, about 28% surface area, about 29% surface area, about 30% surface area, about 31% surface area, about 32% surface area, about 33% surface area, about 34% surface area, about 35% surface area, about 36% surface area, about 37% surface area, about 38% surface area, about 39% surface area, about 40% Surface area, about 41% surface area, about 42% surface area, about 43% surface area, about 44% surface area, about 45% surface area, about 4 6% surface area, about 47% surface area, about 48% surface area, about 49% surface area, about 50% surface area, about 51% surface area, about 52% surface area, about 53% surface area, about 54% Surface area, about 55% surface area, about 56% surface area, about 57% surface area, about 58% surface area, about 59% surface area, about 60% surface area, about 61% surface area, about 62% surface area About 63% of surface area, about 64% of surface area, about 65% of surface area, about 66% of surface area, about 67% of surface area, about 68% of surface area, about 69% of surface area, about 70% of surface area, about 71% surface area, about 72% surface area, about 73% surface area, about 74% surface area, about 75% surface area, about 76% surface area, about 77% surface area, about 78% surface area, about 79% Surface area, about 80% surface area, about 81% surface area, about 82% surface area, about 83% surface area, about 84% surface area, about 85% surface area, about 86% surface area, about 87% surface area , about 88% of surface area, about 89% of surface area, about 90% of surface area, about 91% of surface area, about 92% of surface area, about 93% of surface , About 94% of the surface area, the surface area of about 95%, about 96% of the surface area, the surface area of about 97%, about 98% of the surface area, the surface area of about 99% or about 100% of the surface area. Bioactive ceramics can be added to the article in a variety of regular or irregular patterns, or provide a perspective view of the selected area. The bioactive ceramic pattern can cover the entire surface or pattern of the garment to cover a portion of the garment. The bioceramic pattern covering the garment can have an interrupted area of various shapes and sizes. For example, the pattern can be a honeycomb pattern (eg, having a hexagonal break region), a grid pattern (eg, having a square or rectangular break region), a random pattern (eg, having a randomly distributed break region), and the like. In general, the interrupted regions may be distributed on the surface at regular or irregular intervals. The interrupted area may be formed into various regular or irregular shapes, such as a circle, a semicircle, a diamond, a hexagon, a multilobal, an octagon, an oval, a pentagon, a rectangle, a square, a star, a trapezoid, a triangle, Wedge and so on. If desired, one or more of the interrupted regions can be shaped as a logo, letter or number. In some embodiments, the interrupted region can be about 0.1 mm, about 1 mm, about 2 mm, about 3 mm, about 4 mm, about 5 mm, about 6 mm, about 7 mm, about 8 mm, about 9 in size. Mm, approx. 10 mm or other desired distance. In some embodiments, the interruption region can range from 0.1 mm to about 1 mm, from 1 mm to about 5 mm, from 1 mm to about 10 mm, from 1 mm to about 15 mm, from 1 mm to about 20 mm, from 1 mm to Approximately 25 mm, 1 mm to approximately 30 mm or other desired distance. In general, the interrupted regions can have the same or different shapes or sizes. The bioactive ceramic pattern can be applied in the form of a coating covering the interior and/or exterior surfaces of the article. Bioactive ceramic patterns are permeable materials such as fabrics. The bioactive ceramic pattern can cover various portions of the fabric in a continuous, discontinuous, regular or irregular pattern, or any combination thereof. The bioactive ceramic pattern may be less than 1%, less than 5%, less than 10%, less than 15%, less than 20%, less than 25%, less than 30% of the inner surface of the article of clothing, the outer surface of the article of clothing, or any combination thereof. Less than 35%, less than 40%, less than 45%, less than 50%, less than 55%, less than 60%, less than 65%, less than 70%, less than 75%, less than 80%, less than 85%, less than 90%, less than 95% or less than 99%.Bioactive ceramic One aspect of the invention provides a material comprising one or more bioactive ceramic layers. The material can include a plurality of ceramic layers. For example, the material can include one, two, three, four, five, six, seven, eight, nine, ten, or another suitable number of ceramic layers. Each ceramic layer can comprise bioactive ceramics of the same, substantially the same or different compositions. In one embodiment, the bioactive ceramic layer comprises: a. from about 1 wt% to about 90 wt% kaolinite (Al2 Si2 O5 (OH)4 b) from about 1 wt% to about 90 wt% tourmaline; c. from about 1 wt% to about 90 wt% alumina (Al2 O3 d; about 1 wt% to about 90 wt% cerium oxide (SiO2 ); and e. from about 1 wt% to about 90 wt% zirconia (ZrO)2 The conditions are based on the total weight of the bioceramic composition. In another embodiment, the bioactive ceramic layer comprises: a. from about 1 wt% to about 90 wt% kaolinite (Al2 Si2 O5 (OH)4 b) from about 1 wt% to about 90 wt% tourmaline; c. from about 1 wt% to about 90 wt% alumina (Al2 O3 d; about 1 wt% to about 90 wt% cerium oxide (SiO2 ); and e. from about 1 wt% to about 90 wt% titanium dioxide (TiO2 The conditions are based on the total weight of the bioceramic composition. In another embodiment, the bioactive ceramic layer comprises: a. from about 1 wt% to about 90 wt% kaolinite (Al2 Si2 O5 (OH)4 b) from about 1 wt% to about 90 wt% tourmaline; c. from about 1 wt% to about 90 wt% alumina (Al2 O3 d; about 1 wt% to about 90 wt% cerium oxide (SiO2 And e. from about 1 wt% to about 90 wt% magnesium oxide (MgO); the conditions are based on the total weight of the bioceramic composition. In one embodiment, the bioactive ceramic layer comprises: a. from about 20 wt% to about 80 wt% kaolinite (Al2 Si2 O5 (OH)4 b) from about 1 wt% to about 30 wt% tourmaline; c. from about 1 wt% to about 40 wt% alumina (Al2 O3 d; about 1 wt% to about 40 wt% cerium oxide (SiO2 ); and e. from about 1 wt% to about 20 wt% zirconia (ZrO)2 The conditions are based on the total weight of the bioceramic composition. In another embodiment, the bioactive ceramic layer comprises: a. from about 20 wt% to about 80 wt% kaolinite (Al2 Si2 O5 (OH)4 b) from about 1 wt% to about 30 wt% tourmaline; c. from about 1 wt% to about 40 wt% alumina (Al2 O3 d; about 1 wt% to about 40 wt% cerium oxide (SiO2 ); and e. from about 1 wt% to about 20 wt% titanium dioxide (TiO2 The conditions are based on the total weight of the bioceramic composition. In another embodiment, the bioactive ceramic layer comprises: a. from about 20 wt% to about 80 wt% kaolinite (Al2 Si2 O5 (OH)4 b) from about 1 wt% to about 30 wt% tourmaline; c. from about 1 wt% to about 40 wt% alumina (Al2 O3 d; about 1 wt% to about 40 wt% cerium oxide (SiO2 And e. from about 1 wt% to about 20 wt% magnesium oxide (MgO); the conditions are based on the total weight of the bioceramic composition. In one embodiment, the bioactive ceramic layer comprises: a. from about 20 wt% to about 60 wt% kaolinite (Al2 Si2 O5 (OH)4 b; about 5 wt% to about 25 wt% tourmaline; c. about 1 wt% to about 25 wt% alumina (Al2 O3 d; about 1 wt% to about 20 wt% cerium oxide (SiO2 ); and e. from about 1 wt% to about 20 wt% zirconia (ZrO)2 The conditions are based on the total weight of the bioceramic composition. In another embodiment, the bioactive ceramic layer comprises: a. from about 20 wt% to about 60 wt% kaolinite (Al2 Si2 O5 (OH)4 b; about 5 wt% to about 25 wt% tourmaline; c. about 1 wt% to about 25 wt% alumina (Al2 O3 d; about 1 wt% to about 20 wt% cerium oxide (SiO2 ); and e. from about 1 wt% to about 20 wt% titanium dioxide (TiO2 The conditions are based on the total weight of the bioceramic composition. In another embodiment, the bioactive ceramic layer comprises: a. from about 20 wt% to about 60 wt% kaolinite (Al2 Si2 O5 (OH)4 b; about 5 wt% to about 25 wt% tourmaline; c. about 1 wt% to about 25 wt% alumina (Al2 O3 d; about 1 wt% to about 20 wt% cerium oxide (SiO2 And e. from about 1 wt% to about 20 wt% magnesium oxide (MgO); the conditions are based on the total weight of the bioceramic composition. In further or additional embodiments, a bioactive ceramic layer is provided comprising: a. from about 40 wt% to about 60 wt% kaolinite (Al2 Si2 O5 (OH)4 b) from about 5 wt% to about 15 wt% tourmaline; c. from about 15 wt% to about 25 wt% alumina (Al2 O3 d; about 10 wt% to about 20 wt% cerium oxide (SiO2 ); and e. from about 1 wt% to about 20 wt% zirconia (ZrO)2 The conditions are based on the total weight of the bioceramic composition. In another embodiment, a bioactive ceramic layer is provided comprising: a. from about 40 wt% to about 60 wt% kaolinite (Al2 Si2 O5 (OH)4 b) from about 5 wt% to about 15 wt% tourmaline; c. from about 15 wt% to about 25 wt% alumina (Al2 O3 d; about 10 wt% to about 20 wt% cerium oxide (SiO2 And; about 1 wt% to about 20 wt% titanium dioxide (TiO2 The conditions are based on the total weight of the bioceramic composition. In another embodiment, a bioactive ceramic layer is provided comprising: a. from about 40 wt% to about 60 wt% kaolinite (Al2 Si2 O5 (OH)4 b) from about 5 wt% to about 15 wt% tourmaline; c. from about 15 wt% to about 25 wt% alumina (Al2 O3 d; about 10 wt% to about 20 wt% cerium oxide (SiO2 And e. from about 1 wt% to about 20 wt% magnesium oxide (MgO); the conditions are based on the total weight of the bioceramic composition. In some embodiments, a bioactive ceramic layer is provided comprising: a. about 50 wt% kaolinite (Al2 Si2 O5 (OH)4 b) about 10 wt% tourmaline; c. about 18 wt% alumina (Al2 O3 ); d. About 14 wt% cerium oxide (SiO2 ); and e. about 8 wt% zirconia (ZrO)2 The conditions are based on the total weight of the bioceramic composition. In other embodiments, a bioactive ceramic layer is provided comprising: a. about 50 wt% kaolinite (Al2 Si2 O5 (OH)4 b) about 10 wt% tourmaline; c. about 18 wt% alumina (Al2 O3 ); d. About 14 wt% cerium oxide (SiO2 ); and e. about 8 wt% titanium dioxide (TiO2 The conditions are based on the total weight of the bioceramic composition. In other embodiments, a bioactive ceramic layer is provided comprising: a. about 50 wt% kaolinite (Al2 Si2 O5 (OH)4 b) about 10 wt% tourmaline; c. about 18 wt% alumina (Al2 O3 ); d. About 14 wt% cerium oxide (SiO2 And e. about 8 wt% magnesium oxide (MgO); the conditions are based on the total weight of the bioceramic composition. Another feature of the subject matter described herein is a bioactive ceramic layer comprising kaolinite. As used herein, the term "kaolinite" maintains its meaning as it is known in minerals and gemstone technology. In some embodiments, the bioceramic composition comprises kaolinite in the range of from about 1 wt% to 90 wt%. In some embodiments, the bioceramic composition comprises kaolinite in the range of from about 20 wt% to 80 wt%. In some embodiments, the bioceramic composition comprises kaolinite in the range of from about 40 wt% to 60 wt%. In some embodiments, the bioceramic composition comprises kaolinite in the range of from about 1 wt% to 90 wt%. In some embodiments, the bioceramic composition comprises kaolinite in the range of from about 45 wt% to about 55 wt%. In other or additional embodiments, a bioactive ceramic layer comprising kaolinite in the range of from about 47 wt% to about 53 wt% is provided. In other or additional embodiments, a bioceramic composition comprising kaolinite in the range of from about 48 wt% to about 52 wt% is provided. In other embodiments, a bioceramic composition comprising about 50% wt% kaolinite is provided. Another feature of the subject matter described herein is a bioactive ceramic layer comprising tourmaline. As used herein, the term "tourmaline" maintains its meaning as it is known in minerals and gemstone technology. For example, tourmaline has a group of isomorphic minerals of the same lattice. Each member of the tourmaline group has its own chemical formula because of its small difference in elemental distribution. For example, in some embodiments, tourmaline has the following general formula X1 Y3 Al6 (BO3 )3 Si6 O18 (OH)4 Where: X = Na and / or Ca and Y = Mg, Li, Al and / or Fe2+ , which can be of the formula (Na, Ca) (Mg, Li, Al, Fe2+ )3 Al6 (BO3 )3 Si6 O18 (OH)4 representative. In some embodiments, Al may be replaced by other elements. For example, in calcium magnesium tourmaline, Al is partially replaced by Mg, which extends the formula to (Na, Ca) (Mg, Li, Al, Fe).2+ )3 (Al, Mg, Cr)6 (BO3 )3 Si6 O18 (OH)4 . In some embodiments, the tourmaline contains three O atoms and one F atom in place of the OH group of soda tourmaline. The soda tourmaline molecule also contains Fe atoms in the 3+ oxidation state, which can be illustrated as: (Na, Ca) (Mg, Li, Al, Fe2+ , Fe3+ )3 (Al, Mg, Cr)6 (BO3 )3 Si6 O18 (OH, O, F)4 . In other embodiments, the tourmaline is one or more of the following: ● Black tourmaline: NaFe2+ 3 Al6 (BO3 )3 Si6 O18 (OH)4 ● Magnesium tourmaline: NaMg3 Al6 (BO3 )3 Si6 O18 (OH)4 ● Lithium tourmaline: Na(Li, Al)3 Al6 (BO3 )3 Si6 O18 (OH)4 ● Calcium lithium tourmaline: Ca (Li, Al)3 Al6 (BO3 )3 Si6 O18 (OH)4 ● Calcium Magnesium Tourmaline: Ca (Mg, Fe2+ )3 Al5 Mg (BO3 )3 Si6 O18 (OH)4 ● Soda tourmaline: NaFe3+ 3 Al6 (BO3 )3 Si6 O18 O3 F. In one embodiment, the bioceramic composition tourmaline comprises NaFe2+ 3 Al6 Si6 O18 (BO3 )3 (OH)3 OH. Another aspect of the articles, compositions of matter, method devices and systems described herein is a bioactive ceramic composition having a micron particle size. For example, in some embodiments, a bioceramic composition comprising any particle having a maximum dimension of from about 0.1 micrometers (μm) to about 250 micrometers in a bioceramic is provided. In further or additional embodiments, a bioactive ceramic composition is provided, wherein the maximum size of any of the particles in the bioactive ceramic is from about 0.5 microns to about 25 microns. In some cases, the bioactive ceramic particles can have from about 0.1 μm to about 1 μm, from about 0.1 μm to about 10 μm, from about 0.1 μm to about 20 μm, from about 0.1 μm to about 30 μm, from about 0.1 μm to about 40 μm. From about 0.1 μm to about 50 μm, from about 0.1 μm to about 60 μm, from about 0.1 μm to about 70 μm, from about 0.1 μm to about 80 μm, from about 0.1 μm to about 90 μm, from about 0.1 μm to about 100 μm or other The diameter or cross-sectional area of the desired size. In some cases, the inlet can have from about 10 μm to about 100 μm, from about 10 μm to about 200 μm, from about 10 μm to about 300 μm, from about 10 μm to about 400 μm, from about 10 μm to about 500 μm, or other desired The cross-sectional diameter of the size. In other or additional embodiments, a bioactive ceramic material that can be applied to an article, in particular using a thermal energy method, is provided, wherein the bioactive ceramic comprises tourmaline, kaolinite, and at least one oxide. In some cases, the bioactive ceramics of the present invention include tourmaline, kaolinite, alumina, and cerium oxide. In some cases, the bioactive ceramics of the present invention include tourmaline, kaolinite, alumina, ceria, and one other oxide. In some cases, other oxides are zirconia. In some cases, other oxides of titanium dioxide (TiO2 ). In some cases, the other oxide is magnesium oxide (MgO). Kaolinites include layered tantalate minerals of oxides. In some cases, various oxides are included in the kaolinite. In some cases, the bioactive ceramics include other oxides that are not part of the kaolinite. In some embodiments, the bioactive ceramic comprises an oxide, two oxides, three oxides, four oxides, five oxides, six oxides, seven oxides, eight oxides, nine species. Oxide, ten oxides, eleven oxides, twelve oxides or more. In some cases, other oxides are highly refractory oxides. In some embodiments, the oxide of the bioactive ceramic of the present invention has various oxidation states. The oxide of the present invention has an oxidation number of +1, +2, +3, +4, +5, +6, +7 or +8. In some cases, the bioactive ceramics of the present invention have more than one oxide, at least one of which has an oxidation number different from the other oxides. For example, in some cases, the bioceramic composition of the present invention comprises alumina having a +2 or +3 oxidation state (Al2 O3 ), cerium oxide having a +4 oxidation state (SiO2 And zirconium oxide (ZrO) with +4 oxidation state2 ). Non-limiting examples of oxides having a +1 oxidation state include: copper (I) oxide (Cu)2 O), carbon monoxide (C2 O), nitrous oxide (Cl2 O), lithium oxide (Li2 O), potassium oxide (K2 O), yttrium oxide (Rb2 O), silver oxide (Ag2 O), yttrium oxide (I) (Tl2 O), sodium oxide (Na2 O) or water (hydrogen peroxide) (H2 O). Non-limiting examples of oxides having a +2 oxidation state include: alumina (II) (AlO), barium oxide (BaO), cerium oxide (BeO), cadmium oxide (CdO), calcium oxide (CaO), carbon monoxide ( CO), chromium (II) oxide (CrO), cobalt (II) oxide (CoO), copper (II) oxide (CuO), iron (II) oxide (FeO), lead oxide l(II) (PbO), oxidation Magnesium (MgO), oxidized mercury (II) (HgO), nickel (II) oxide (NiO), nitrogen monoxide (NO), palladium (II) oxide (PdO), strontium oxide (SrO), sulfur monoxide (SO) ), dioxane (S2 O2 ), tin (II) oxide (SnO), titanium oxide (II) (TiO), vanadium (II) oxide (VO) or zinc oxide (ZnO). Non-limiting examples of oxides having a +3 oxidation state include: alumina (Al2 O3 ), antimony trioxide (Sb2 O3 ), arsenic trioxide (As2 O3 ), yttrium oxide (III) (Bi2 O3 ), boron trioxide (B2 O3 ), chromium (III) oxide (Cr2 O3 ), nitrous oxide (N2 O3 ), yttrium oxide (III) (Er2 O3 ), cerium (III) oxide (Gd)2 O3 ), gallium oxide (III) (Ga2 O3 ), yttrium oxide (III) (Ho2 O3 ), indium(III) oxide (In2 O3 ), iron oxide (III) (Fe2 O3 ), yttrium oxide (La2 O3 ), yttrium oxide (III) (Lu2 O3 ), nickel (III) oxide (Ni2 O3 ), phosphorus trioxide (P4 O6 ), yttrium oxide (III) (Pm2 O3 ), yttrium oxide (III) (Rh2 O3 ), yttrium oxide (III) (Sm2 O3 ), yttrium oxide (Sc2 O3 ), cerium (III) oxide (Tb)2 O3 ), yttrium oxide (III) (Tl2 O3 ), yttrium oxide (III) (Tm2 O3 ), titanium oxide (III) (Ti2 O3 ), tungsten oxide (III) (W2 O3 ), vanadium oxide (III) (V2 O3 ), yttrium oxide (III) (Yb2 O3 ), yttrium oxide (III) (Y2 O3 ). Non-limiting examples of oxides having a +4 oxidation state include: carbon dioxide (CO2 ), carbon trioxide (CO3 ), cerium oxide (IV) (CeO2 ), chlorine dioxide (ClO2 ), chromium oxide (IV) (CrO2 ), nitrous oxide (N2 O4 ), cerium oxide (GeO)2 ), cerium oxide (IV) (HfO2 ), lead dioxide (PbO)2 ), manganese dioxide (MnO)2 ), nitrogen dioxide (NO2 ), cerium oxide (IV) (PuO)2 ), cerium oxide (IV) (RhO2 ), cerium oxide (IV) (RuO2 ), selenium dioxide (SeO2 ), cerium oxide (SiO2 ), sulfur dioxide (SO2 ), cerium oxide (TeO)2 ), cerium oxide (ThO)2 ), tin dioxide (SnO)2 ), titanium dioxide (TiO2 ), tungsten oxide (IV) (WO2 ), U2 dioxide (UO)2 ), vanadium oxide (IV) (VO2 ) or zirconium dioxide (ZrO)2 ). Non-limiting examples of oxides having a +5 oxidation state include: antimony pentoxide (Sb)2 O5 ), arsenic pentoxide (As2 O5 ), nitrous oxide (N2 O5 ), pentoxide (Nb)2 O5 ), phosphorus pentoxide (P2 O5 ), pentoxide (Ta2 O5 ) or vanadium oxide (V) (V2 O5 ). Non-limiting examples of oxides having a +6 oxidation state include: chromium trioxide (CrO)3 ), molybdenum trioxide (MoO)3 ), antimony trioxide (ReO3 ), selenium trioxide (SeO3 ), sulfur trioxide (SO3 ), antimony trioxide (TeO)3 ), tungsten trioxide (WO3 ), uranium trioxide (UO)3 ) or antimony trioxide (XeO)3 ). Non-limiting examples of oxides having a +7 oxidation state include: hexachloro sulphate (Cl)2 O7 ), manganese pentoxide (Mn2 O7 ), yttrium oxide (VII) (Re2 O7 ) or yttrium oxide (VII) (Tc2 O7 ). Non-limiting examples of oxides having a +8 oxidation state include: osmium tetroxide (OsO4), ruthenium tetroxide (RuO)4 ), osmium tetroxide (XeO)4 ), osmium tetroxide (IrO4 ) or tetraoxide 𨭆 (HsO4 ). Non-limiting examples of oxides having various oxidation states include osmium tetroxide (Sb)2 O4 ), cobalt oxide (II, III) (Co3 O4 ), iron oxide (II, III) (Fe3 O4 ), lead oxide (II, IV) (Pb3 O4 ), manganese oxide (II, III) (Mn3 O4 ) or silver oxide (I, III) (AgO). In other or additional embodiments, the bioceramic composition of the material of the present invention further comprises a metal. The metal may be in the form of an element such as a metal atom or a metal ion. Non-limiting examples of metals include transition metals of the periodic table, main group metals, and Group 3, Group 4, Group 5, Group 6, Group 7, Group 8, Group 9, Group 10, Metals of Group 11, Group 12, Group 13, Group 14, and Group 15. Non-limiting examples of metals include niobium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, lanthanum, zirconium, hafnium, molybdenum, niobium, tantalum, niobium, palladium, silver, cadmium, lanthanum, cerium , antimony, tungsten, antimony, bismuth, antimony, platinum, gold, mercury, tin, lead and antimony. The proportion of minerals and oxides in bioactive ceramics may vary depending on a number of variables, including, for example, the heat radiation to be emitted, more specifically the amount of far infrared radiation, the disease to be treated. Or the condition, mode of administration, the individual's needs, the severity of the disease or condition being treated, or the judgment of the practitioner.Physical properties Whether the minerals are extracted from a particular geographic area or whether the minerals are chemically synthesized, tourmaline and kaolinite have different particle, mineralogical, chemical and physical properties. For example, in many parts of the world, kaolinite has a powder-orange-red coloration associated with the quality of the impurities. Typically, the impurities include iron oxide. In some embodiments, the kaolinite of the present invention has a high purity value and is characterized by an excellent white color. In some embodiments, the purity of the tourmaline or kaolinite is related to the amount of infrared energy radiated from the bioactive ceramic. In some cases, the bioactive ceramic kaolinite or tourmaline of the present invention is greater than 99% pure, greater than 98% pure, greater than 97% pure, greater than 96% pure, greater than 95% pure, greater than 94% pure, greater than 93%. Pure, greater than 92% pure, greater than 91% pure, greater than 90% pure, greater than 89% pure, greater than 88% pure, greater than 87% pure, greater than 86% pure, greater than 85% pure, greater than 80% pure, greater than 75% Pure, greater than 70% pure, greater than 65% pure, greater than 60% pure or greater than 55% pure. In some embodiments, the particle size of the kaolinite or tourmaline is related to the amount of infrared energy radiated from the bioactive ceramic. For example, bioactive ceramics including coarser size minerals reflect different amounts of infrared energy than bioactive ceramics that include finer size minerals. In some embodiments, the particle size of the bioactive ceramic is in the range of from about 100 nm to about 0.1 microns, from about 100 nm to about 1 micron, from about 100 nm to about 10 microns, from about 100 nm to about 25 Micron, from about 100 nanometers to about 50 microns, from about 100 nanometers to about 75 microns, from about 100 nanometers to about 100 microns, from about 100 nanometers to about 125 microns, from about 100 nanometers to about 150 microns, about 100 nanometers The meter is from about 175 microns, from about 100 nanometers to about 200 microns, from about 100 nanometers to about 225 microns or from about 100 nanometers to about 250 microns. In some embodiments, the particle size of the bioactive ceramic is in the range of from about 0.5 microns to about 1 micron, from about 0.5 microns to about 10 microns, from about 0.5 microns to about 25 microns, from about 0.5 microns to about 50 microns, and about 0.5. Micron to about 75 microns, from about 0.5 microns to about 100 microns, from about 0.5 microns to about 125 microns, from about 0.5 microns to about 150 microns, from about 0.5 microns to about 175 microns, from about 0.5 microns to about 200 microns, from about 0.5 microns to About 225 microns or from about 0.5 microns to about 250 microns.Far infrared emission, transmission and reflection Another aspect of the articles, compositions, methods, and kits described herein is a bioactive ceramic that emits, transmits, and/or reflects infrared wavelengths upon heating or exposure to heat. In some embodiments, a thermal energy method of attaching a bioactive ceramic to an article is provided. In some embodiments, a bioactive ceramic that absorbs, stores, and/or reflects thermal energy (eg, far infrared energy or radiation) is provided. In some embodiments, a bioactive ceramic that emits, transmits, or reflects infrared wavelengths that are far infrared and includes wavelengths from about 1 micron to about 1 millimeter is provided. In other or additional embodiments, a thermal energy method of attaching a bioactive ceramic that emits, transmits, or reflects an infrared wavelength of from about 3 microns to about 15 microns to an article is provided. In other or additional embodiments, a bioactive ceramic is described herein that has a reflectance of at least 80% in infrared light between about 7 microns and about 12 microns at room temperature of 25 °C. The material emissivity of the bioactive ceramic can be measured using, for example, a calorimeter or a Flir thermal imaging camera. The amount of thermal energy that can be received, stored, and/or released from a garment comprising bioactive ceramics can be measured using heat. The Flir thermal imaging camera produces thermal images of various types of garments including the bioactive ceramics of the present invention. The Flir thermal imaging camera can detect up to thousands of measurement points in each thermal image and provide emissivity data for each image. The bioactive ceramic layer of the present invention is formulated to have desirable fire resistant properties. In some embodiments, each bioactive ceramic of the present invention independently reflects about 99% of the received infrared energy or radiation, about 98% of the received infrared energy or radiation, about 97% of the received infrared energy or radiation, About 96% of the received infrared energy or radiation, about 95% of the received infrared energy or radiation, about 94% of the received infrared energy or radiation, about 93% of the received infrared energy or radiation, about 92% of the received Infrared energy or radiation, about 91% of received infrared energy or radiation, about 90% of received infrared energy or radiation, about 89% of received infrared energy or radiation, about 88% of received infrared energy or radiation, about 87% of the received infrared energy or radiation, about 86% of the received infrared energy or radiation, about 85% of the received infrared energy or radiation, about 84% of the received infrared energy or radiation, about 83% of the received infrared Energy or radiation, about 82% of the received infrared energy or radiation, about 81% of the received infrared energy or radiation, about 80% of the received infrared energy or radiation, about 79% of the received infrared Energy or radiation, about 78% of the received infrared energy or radiation, about 77% of the received infrared energy or radiation, about 76% of the received infrared energy or radiation, about 75% of the received infrared energy or radiation, about 74 % of the received infrared energy or radiation, about 73% of the received infrared energy or radiation, about 72% of the received infrared energy or radiation, about 71% of the received infrared energy or radiation, about 70% of the received infrared energy Or radiation, about 65% of the received infrared energy or radiation, about 60% of the received infrared energy or radiation, about 55% of the received infrared energy or radiation, about 50% of the received infrared energy or radiation, about 45% Receiving infrared energy or radiation, about 40% of received infrared energy or radiation, about 35% of received infrared energy or radiation, about 30% of received infrared energy or radiation, about 25% of received infrared energy or Radiation, about 20% of the received infrared energy or radiation, about 15% of the received infrared energy or radiation, about 10% of the received infrared energy or radiation or about 5% of the received infrared energy Or ray. In some cases, the bioactive ceramic layer of the present invention reflects greater than 99% of the received infrared energy or radiation, greater than 98% of the received infrared energy or radiation, greater than 97% of the received infrared energy or radiation, greater than 96% Received infrared energy or radiation, greater than 95% of received infrared energy or radiation, greater than 94% of received infrared energy or radiation, greater than 93% of received infrared energy or radiation, greater than 92% of received infrared energy or radiation , greater than 91% of received infrared energy or radiation, greater than 90% of received infrared energy or radiation, greater than 89% of received infrared energy or radiation, greater than 88% of received infrared energy or radiation, greater than 87% Receiving infrared energy or radiation, greater than 86% of received infrared energy or radiation, greater than 85% of received infrared energy or radiation, greater than 84% of received infrared energy or radiation, greater than 83% of received infrared energy or radiation, More than 82% of received infrared energy or radiation, greater than 81% of received infrared energy or radiation, greater than 80% of received infrared Energy or radiation, greater than 79% of received infrared energy or radiation, greater than 78% of received infrared energy or radiation, greater than 77% of received infrared energy or radiation, greater than 76% of received infrared energy or radiation, greater than 75 % of received infrared energy or radiation, greater than 74% of received infrared energy or radiation, greater than 73% of received infrared energy or radiation, greater than 72% of received infrared energy or radiation, greater than 71% of received infrared energy Or radiation, greater than 70% of the received infrared energy or radiation, greater than 65% of the received infrared energy or radiation, greater than 60% of the received infrared energy or radiation, greater than 55% of the received infrared energy or radiation, greater than 50% Receiving infrared energy or radiation, greater than 45% of received infrared energy or radiation, greater than 40% of received infrared energy or radiation, greater than 35% of received infrared energy or radiation, greater than 30% of received infrared energy or Radiation, greater than 25% of received infrared energy or radiation, greater than 20% of received infrared energy or radiation, greater than 15% Rays or infrared energy, greater than 10% of the energy of the received infrared ray or rays or infrared energy received or greater than 5% is. In some cases, the bioactive ceramic layer of the present invention reflects less than 99% of the received infrared energy or radiation, less than 98% of the received infrared energy or radiation, less than 97% of the received infrared energy or radiation, less than 96% Received infrared energy or radiation, less than 95% of received infrared energy or radiation, less than 94% of received infrared energy or radiation, less than 93% of received infrared energy or radiation, less than 92% of received infrared energy or radiation Less than 91% of received infrared energy or radiation, less than 90% of received infrared energy or radiation, less than 89% of received infrared energy or radiation, less than 88% of received infrared energy or radiation, less than 87% Receiving infrared energy or radiation, less than 86% of received infrared energy or radiation, less than 85% of received infrared energy or radiation, less than 84% of received infrared energy or radiation, less than 83% of received infrared energy or radiation, Less than 82% of the received infrared energy or radiation, less than 81% of the received infrared energy or radiation, less than 80% of the received infrared Energy or radiation, less than 79% of received infrared energy or radiation, less than 78% of received infrared energy or radiation, less than 77% of received infrared energy or radiation, less than 76% of received infrared energy or radiation, less than 75 % of received infrared energy or radiation, less than 74% of received infrared energy or radiation, less than 73% of received infrared energy or radiation, less than 72% of received infrared energy or radiation, less than 71% of received infrared energy Or radiation, less than 70% of received infrared energy or radiation, less than 65% of received infrared energy or radiation, less than 60% of received infrared energy or radiation, less than 55% of received infrared energy or radiation, less than 50% Receiving infrared energy or radiation, less than 45% of received infrared energy or radiation, less than 40% of received infrared energy or radiation, less than 35% of received infrared energy or radiation, less than 30% of received infrared energy or Radiation, less than 25% of received infrared energy or radiation, less than 20% of received infrared energy or radiation, less than 15% Rays or infrared energy, the infrared receiver is less than 10% of the energy rays or 5% or less of the received radiation or infrared energy. In some embodiments, the bioceramic reflects far infrared energy toward the individual's body and in some embodiments the bioceramic reflects far infrared energy away from the individual's body. Bioceramics provide a cooling effect when reflecting infrared energy away from the body. In some embodiments, the bioceramic is adjacent to or near the insulator. In some embodiments, the article comprising the adiabatic bioceramic provides a cooling effect to the individual, the condition being that the bioceramic reflects far infrared rays away from the individual upon heating or exposure to heat. In some embodiments, the garment of the present invention comprises a layer of insulation in contact with or adjacent to the bioactive ceramic layer. In some embodiments, the bioceramic layer is between the article and the article of wear. In some embodiments, the article is located between the bioceramic layer and the wearer. In some embodiments, the insulating layer is closest to the layer of the person wearing the article. In some embodiments, the insulating layer is the layer that is furthest from the person wearing the article. In some embodiments, the insulating layer is neither closest to the wearer nor the farthest layer. The insulating layer can be used in embodiments in which the garment comprising the bioceramic is fabricated to reflect far infrared energy away from the individual body. In some embodiments, the insulative system has a low thermal conductivity material and prevents far infrared energy from reflecting in a certain direction. In some cases, the insulating layer comprises an aluminum foil-like layer. In some cases, the insulating layer includes carbon. Infrared rays can be reflected using different types of materials, non-limiting examples of which include carbon, rubber, glass, paper, plastic, wood, cloth, foil or Styrofoam. The garment of the present invention can provide a therapeutically effective amount of infrared light to an individual. In some cases, the garment comprises a shirt of bioactive ceramic, and when exposed to heat, the shirt comprising the bioceramic provides at least 1.5 joules/cm to the individual.2 Far infrared rays. In some cases, clothing is sportswear, sports accessories, or sports equipment, including but not limited to orthopedic inserts, wetsuits, lifebuoys, shirts, shorts, wristbands, armbands, headbands, gloves, jackets, pants, and along Caps and backpacks, sleds, ski poles, snowboards, skateboards, inline skates, bicycles, surfboards, water skis, jet skis, diving equipment, ropes, chains, goggles and/or blankets. In some embodiments, the garment is a sports accessory, including but not limited to a felt. In some embodiments, the garment is configured for orthopedic applications including, but not limited to, orthopedic inserts, shoes, and the like. In some cases, garments are patches (eg, patches that are made to adhere or not adhere to the skin, such as transdermal patches, transdermal hydrogel patches, etc.), adhesive tapes (eg, intramuscular patches) ), non-adhesive tape, mats, insole, bedding (including sheets, mattresses, bedspreads, pillows and / or pillowcases), support parts, foaming rollers, lotions, soap, tape, glassware, furniture, Paints, inks, markings, carpets, mats, food and/or beverage containers, beverage sets (eg bottles or cans), headwear (eg helmets, hats, etc.), footwear (eg shoes, sneakers, sandals, etc.) , headphones, surfaces, moving surfaces, artificial turf and the like. In some cases, clothing is shirts, pants, shorts, dresses, skirts, jackets, hats, underwear, socks, no hats, gloves, scarves, diapers, blankets, quilts, duvet covers, bedspreads, mattresses and And so on. In another embodiment, the article is selected from the group consisting of a knee binding, an elbow support, a compression arm guard, a compression leg guard, a wrist guard, and the like. In some embodiments, the subject matter set forth herein provides 1 Joule/cm to the subject.2 Up to 45 joules/cm2 2-10 joules/cm2 Or 4-6 joules/cm2 Far infrared energy rays or rays. In certain embodiments, the bioceramic formulation provides at least 1 Joule/cm to the individual.2 1.5 joules/cm2 At least 2 joules/cm2 At least 3 joules/cm2 At least 4 joules/cm2 At least 5 joules/cm2 At least 6 joules/cm2 At least 7 joules/cm2 At least 8 joules/cm2 At least 9 joules/cm2 At least 10 joules/cm2 At least 11 joules/cm2 At least 12 joules/cm2 At least 13 joules/cm2 At least 14 joules/cm2 At least 15 joules/cm2 At least 16 joules/cm2 At least 17 joules/cm2 At least 18 joules/cm2 At least 19 joules/cm2 At least 20 joules/cm2 At least 21 joules/cm2 At least 22 joules/cm2 At least 23 joules/cm2 At least 24 joules/cm2 At least 25 joules/cm2 At least 26 joules/cm2 At least 27 joules/cm2 At least 28 joules/cm2 At least 29 joules/cm2 At least 30 joules/cm2 At least 31 joules/cm2 At least 32 joules/cm2 At least 33 joules/cm2 At least 34 joules/cm2 At least 35 joules/cm2 At least 36 joules/cm2 At least 37 joules/cm2 At least 38 joules/cm2 At least 39 joules/cm2 At least 40 joules/cm2 At least 41 joules/cm2 At least 42 joules/cm2 At least 43 joules/cm2 At least 44 joules/cm2 Or about 45 joules/cm2 Far infrared energy or radiation. In some cases, the garment of the present invention can provide up to 1.5 Joules/cm to the individual.2 Up to 2 joules/cm2 Up to 3 joules/cm2 Up to 4 joules/cm2 Up to 5 joules/cm2 Up to 6 joules/cm2 Up to 7 joules/cm2 Up to 8 joules/cm2 Up to 9 joules/cm2 Up to 10 joules/cm2 Up to 11 joules/cm2 Up to 12 joules/cm2 Up to 13 joules/cm2 Up to 14 joules/cm2 Up to 15 joules/cm2 Up to 16 joules/cm2 Up to 17 joules/cm2 Up to 18 joules/cm2 Up to 19 joules/cm2 Up to 20 joules/cm2 Up to 21 joules/cm2 Up to 22 joules/cm2 Up to 23 joules/cm2 Up to 24 joules/cm2 Up to 25 joules/cm2 Up to 26 joules/cm2 Up to 27 joules/cm2 Up to 28 joules/cm2 Up to 29 joules/cm2 Up to 30 joules/cm2 Up to 31 joules/cm2 Up to 32 joules/cm2 Up to 33 joules/cm2 Up to 34 joules/cm2 Up to 35 joules/cm2 Up to 36 joules/cm2 Up to 37 joules/cm2 Up to 38 joules/cm2 Up to 39 joules/cm2 Up to 40 joules/cm2 Up to 41 joules/cm2 Up to 42 joules/cm2 Up to 43 joules/cm2 Up to 44 joules/cm2 Or up to 45 joules/cm2 Far infrared energy or radiation. In some cases, the garment of the present invention provides an individual at 1.5 joules/cm2 With 45 joules/cm2 Between 1.5 joules/cm2 With 40 joules/cm2 Between 1.5 joules/cm2 With 35 joules/cm2 Between 1.5 joules/cm2 With 30 joules/cm2 Between 1.5 joules/cm2 With 25 joules/cm2 Between 1.5 joules/cm2 With 20 joules/cm2 Between 1.5 joules/cm2 With 15 joules/cm2 Between 1.5 joules/cm2 With 10 joules/cm2 Between 1.5 joules/cm2 With 5 joules/cm2 Between 2 joules/cm2 With 45 joules/cm2 Between 2 joules/cm2 With 40 joules/cm2 Between 2 joules/cm2 With 35 joules/cm2 Between 2 joules/cm2 With 30 joules/cm2 Between 2 joules/cm2 With 25 joules/cm2 Between 2 joules/cm2 With 20 joules/cm2 Between 2 joules/cm2 With 15 joules/cm2 Between 2 joules/cm2 With 10 joules/cm2 Between 2 joules/cm2 With 5 joules/cm2 Far between infrared energy or rays. In some cases, the device is a shirt and the shirt provides up to 45 joules/cm to the individual2 Far infrared energy or radiation. Infrared energy can be absorbed, reflected or emitted by molecules. In many cases, the thermal radiation emitted by an object at or near room temperature (about 25 ° C) is infrared. For example, in certain applications of the subject matter described herein, infrared energy is emitted or absorbed by molecules under rotational and/or vibratory motion. In certain embodiments, the bioceramic materials provided herein provide infrared energy and initiate vibrational modes in the molecule via dipole moment changes. In some embodiments, the bioceramic absorption heat of the present invention induces a vibrational pattern in at least one bioceramic molecule via a change in dipole moment. Moreover, in certain embodiments, when a molecule in a bioceramic changes its rotational-vibration energy, the infrared energy from the thermal radiation is absorbed and reflected by it. In further or additional embodiments, provided herein are bioceramics comprising a ceramic material formulation and vibration techniques that provide enhanced biomodulation properties upon contact with or upon application to an individual (as an example, including a human subject). The following non-limiting examples are provided to further illustrate the invention.Instance Instance 1 :Bioceramic powder composition Itpreparation Kaolinite is extracted on the outskirts of the city of Parintins in Amazon State, Brazil. The city is located in the lower reaches of the Amazon River (coordinate: Greenwich south latitude: 2° 37' 42" / west longitude: 56° 44' 11", 50 m above sea level). Alternatively, kaolinite can be obtained by purchasing from a mining company/supplier. Use hydrogen peroxide (H2 O2 The kaolinite extracted is washed and dried. The dried kaolinite is then finely ground and combined with tourmaline, alumina (Al2 O3 ), cerium oxide (SiO2 And zirconia (ZrO)2 Mix until a homogeneous mixture is reached. The resulting bioceramic composition contained 50 wt% kaolinite, 10 wt% tourmaline, 18 wt% alumina, 14 wt% ceria, and 8 wt% zirconia. Or, use hydrogen peroxide (H2 O2 The kaolinite extracted is washed and dried. The dried kaolinite is then finely ground and combined with tourmaline, alumina (Al2 O3 ), cerium oxide (SiO2 And titanium dioxide (TiO2 Mix until a homogeneous mixture is reached. The resulting bioceramic composition contained 50 wt% kaolinite, 10 wt% tourmaline, 18 wt% alumina, 14 wt% ceria, and 8 wt% titanium dioxide. Or, use hydrogen peroxide (H2 O2 The kaolinite extracted is washed and dried. The dried kaolinite is then finely ground and combined with tourmaline, alumina (Al2 O3 ), cerium oxide (SiO2 And magnesium oxide (MgO) is mixed until a homogeneous mixture is reached. The resulting bioceramic composition contained 50 wt% kaolinite, 10 wt% tourmaline, 18 wt% alumina, 14 wt% ceria, and 8 wt% magnesia. Bioceramic compositions are also synthesized. The resulting bioceramic contains any of the compositions described herein comprising about 50% kaolinite, about 10% tourmaline, about 18% alumina, about 14% ceria, and about 8% zirconia. In addition, bioceramic compositions are also synthesized. The resulting bioceramic contains any of the compositions described herein comprising about 50% kaolinite, about 10% tourmaline, about 18% alumina, about 14% ceria, and about 8% titanium dioxide. In addition, bioceramic compositions are also synthesized. The resulting bioceramic contains any of the compositions described herein comprising about 50% kaolinite, about 10% tourmaline, about 18% alumina, about 14% ceria, and about 8% magnesium dioxide.Instance 2 :Thermal transfer method The bioactive ceramics of the present invention are refractory, inorganic, polycrystalline compositions which can be reduced to a powdered form by grinding, crushing or another suitable method. The bioactive ceramic is molded into a flat, single layered sheet in powder form. A second layer comprising a heat sensitive adhesive is brought into contact with a surface of the bioactive ceramic. Optionally, the third layer comprising the insulator is brought into contact with the other surface of the bioactive ceramic.Figure 2 Representative of a method of applying a material comprising a bioactive ceramic to a thermal energy method on a garment.201 Graphical illustration including adhesive layer204 Bioactive ceramic layer205 And thermal insulation layer206 Material. In the steps202 A fabric substrate comprising 88 wt% polyamine and 12 wt% spandex was obtained. Make201 The material described in the material is in contact with the fabric substrate, thereby adhering the adhesive layer204 Contact the fabric substrate. Applying heat to the material, wherein the heat has a temperature of less than 500 °F in a period of less than one minute202 . Thereby successfully applying the material including the bioactive ceramic and the heat insulating layer to the upper cloth203 (by shirt207 And sweatpants307 On behalf of).Instance 3 :Thermal transfer method The bioactive ceramic is attached to the shirt in a desired pattern using a thermal transfer method. The transfer sheet comprising the bioactive ceramic layer and the adhesive layer is brought into contact with the shirt. (a)membrane : FX-TF-WB-91M; (b)Ink :FX ink (FX-WB); and (c)combination : FX-WB (67%) and bioactive ceramics (33%). Heat and pressure are applied to the material using a heat transfer FX machine whereby the bioactive ceramic is transferred to the article. Briefly, thermal transfer printing was performed in the No. 9 screen using the following settings: (a) Temperature: 300 °F (148 °C); (b) Indwelling time: 7 seconds; (c) Pressure: 40 PSI; (d) Cold peeling.Figure 1 A shirt comprising a bioactive ceramic produced using a thermal transfer method is illustrated.Instance 4 :Thermal transfer method The bioactive ceramic is attached to the shirt in a desired pattern using a thermal transfer method. The transfer sheet comprising the bioactive ceramic layer and the adhesive layer is brought into contact with the shirt. (a)membrane : FX-TF-WB-91M; (b)Ink :FX ink (FX-WB); and (c)combination : FX-WB (67%) and bioactive ceramics (33%). Heat and pressure are applied to the material using a heat transfer FX machine whereby the bioactive ceramic is transferred to the article. Briefly, thermal transfer printing was performed in the No. 9 screen using the following settings: (a) Temperature: 340 °F (171 °C); (b) Indwelling time: 7 seconds; (c) Pressure: 40 PSI; (d) Cold peeling.Figure 1 A shirt comprising a bioactive ceramic produced using a thermal transfer method is illustrated.Instance 5 :Thermal transfer method The bioactive ceramic is attached to the shirt in a desired pattern using a thermal transfer method. The transfer sheet comprising the bioactive ceramic layer and the adhesive layer is brought into contact with the shirt. (a)membrane : Thermal transfer paper; (b)Ink : heat transfer ink;combination It is a 67% thermal transfer ink and 33% bioactive ceramic. Heat and pressure are applied to the material using a hot press machine whereby the bioactive ceramic is transferred to the article. Briefly, thermal transfer printing was performed using the following settings: (a) Temperature: 360-370 °F (b) Indwelling time: 3-5 seconds; (c) Pressure: 60-80 PSI; (d) Thermal peeling.Instance 6 :Thermal transfer method The bioactive ceramic is attached to the shirt in a desired pattern using a thermal transfer method. The transfer sheet comprising the bioactive ceramic layer and the adhesive layer is brought into contact with the shirt. (a)membrane : Thermal transfer paper; (b)Ink : heat transfer ink;combination It is a 67% thermal transfer ink and 33% bioactive ceramic. Heat and pressure are applied to the material using a hot press machine whereby the bioactive ceramic is transferred to the article. Briefly, thermal transfer printing was performed using the following settings: (a) Temperature: 340 °F (b) Indwelling time: 10 seconds; (c) Pressure: 60-80 PSI; (d) Warm stripping.Instance 7 :Thermal transfer method The bioactive ceramic is attached to the shirt in a desired pattern using a thermal transfer method. The transfer sheet comprising the bioactive ceramic layer and the adhesive layer is brought into contact with the shirt. (a)membrane : Thermal transfer paper; (b)Ink : heat transfer ink;combination It is a 67% thermal transfer ink and 33% bioactive ceramic. Heat and pressure are applied to the material using a hot press machine whereby the bioactive ceramic is transferred to the article. Briefly, thermal transfer printing was performed using the following settings: (a) Temperature: 300 °F (b) Indwelling time: 15 seconds; (c) Pressure: 60-80 PSI; (d) Cold peeling.Instance 8 :Thermal transfer method The bioactive ceramic is attached to the shirt in a desired pattern using a thermal transfer method. The transfer sheet comprising the bioactive ceramic layer and the adhesive layer is brought into contact with the shirt. (a)membrane : Thermal transfer paper; (b)Ink : heat transfer ink;combination It is 70% heat transfer ink and 30% bioactive ceramic. Heat and pressure are applied to the material using a hot press machine whereby the bioactive ceramic is transferred to the article. Briefly, thermal transfer printing was performed using the following settings: (a) Temperature: 360-370 °F (b) Indwelling time: 8-10 seconds; (c) Pressure: 60-80 PSI; (d) Thermal stripping.Instance 9 :Thermal transfer method The bioactive ceramic is attached to the shirt in a desired pattern using a thermal transfer method. The transfer sheet comprising the bioactive ceramic layer and the adhesive layer is brought into contact with the shirt. (a)membrane : Thermal transfer paper; (b)Ink : heat transfer ink;combination It is a 67% thermal transfer ink and 33% bioactive ceramic. Heat and pressure are applied to the material using a hot press machine whereby the bioactive ceramic is transferred to the article. Briefly, thermal transfer printing was performed using the following settings: (a) Temperature: 350 °F (b) Indwelling time: 15 seconds; (c) Pressure: 60-80 PSI; (d) Thermal stripping.Instance 10 :Thermal transfer method The bioactive ceramic is attached to the shirt in a desired pattern using a thermal transfer method. The transfer sheet comprising the bioactive ceramic layer and the adhesive layer is brought into contact with the shirt. (a)membrane : Thermal transfer paper; (b)Ink : heat transfer ink;combination It is a 67% thermal transfer ink and 33% bioactive ceramic. Heat and pressure are applied to the material using a hot press machine whereby the bioactive ceramic is transferred to the article. Briefly, thermal transfer printing was performed using the following settings: (a) Temperature: 275 °F (b) Indwelling time: 10 seconds; (c) Pressure: 60-80 PSI; (d) Warm stripping.Instance 11 :Thermal transfer method The bioactive ceramic is attached to the shirt in a desired pattern using a thermal transfer method. The transfer sheet comprising the bioactive ceramic layer and the adhesive layer is brought into contact with the shirt. (a)membrane : Thermal transfer paper; (b)Ink : heat transfer ink;combination It is a 60% thermal transfer ink and 40% bioactive ceramic. Heat and pressure are applied to the material using a hot press machine whereby the bioactive ceramic is transferred to the article. Briefly, thermal transfer printing was performed using the following settings: (a) Temperature: 400 °F (b) Indwelling time: 30 seconds; (c) Pressure: 40-60 PSI; (d) Thermal peeling.Instance 12 : Far-infrared energy emitted by bioactive ceramics applied to fabrics using thermal energy methods aims : This study was designed to evaluate the effect of the far infrared energy emitted by the application of the thermal energy method to the bioactive ceramic layer on the fabric.method : After evaluation by the University of South of Santa Catarina Ethics Committee, experiments were performed using male Swiss mice (30-35 g). Freud's complete adjuvant (CFA, 20 [mu]l - 70%) was injected into the animal's ankle and exposed to a fabric comprising the bioactive ceramic layer for a defined period of time. Briefly, a fabric comprising bioactive ceramics is placed inside the animal box. After 24 h exposure to the product, mechanical and thermal hyperalgesia was evaluated as the frequency of response to 10 presentations of 0.4 g von frey filament or by thermal stimulation applied to the right hind paw of the animal ( Hot plate method) to evaluate. The assessment was performed daily for 10 days. After the evaluation, the animals were placed in their boxes and re-exposed to the fabric until subsequent evaluation (after 24 hours). In addition, edema formation and hind paw temperature were evaluated using a micrometer and a digital thermometer on days 1, 3 and 10 of the experiment, respectively. Control animals were placed on a fake cloth (fabric only) and the same experimental protocol was performed. While the preferred embodiment of the invention has been shown and described, it will be understood that A variety of variations, modifications, and substitutions will now be apparent to those skilled in the art without departing from the invention. It is to be understood that various alternatives to the embodiments of the invention described herein may be employed in the practice of the invention. The following claims are intended to define the scope of the invention and the scope of the invention

201‧‧‧材料
203‧‧‧布料
204‧‧‧黏著劑層
205‧‧‧生物活性陶瓷層
206‧‧‧絕熱層
207‧‧‧襯衫
307‧‧‧運動褲
201‧‧‧Materials
203‧‧‧cloth
204‧‧‧Adhesive layer
205‧‧‧Bioactive ceramic layer
206‧‧‧Insulation layer
207‧‧‧ shirt
307‧‧‧ trousers

本發明之新穎及發明性特徵詳細陳述於隨附申請專利範圍中。藉由參照下列闡述利用本發明原理之闡釋性實施例之詳細闡述及附圖將會更佳地理解本發明之特徵及優點,附圖在此臨時專利申請案中係提供於下文之實例部分中。 1 係圖解說明包括生物活性陶瓷之材料至襯衫之特定區域之靶向附接的圖片。 2 係圖解說明將生物活性陶瓷施用至服裝上之熱能源方法之示意圖。 3 係圖解說明包括生物活性陶瓷之材料至運動褲之特定區域之靶向附接的圖片。The novel and inventive features of the invention are set forth in the appended claims. The features and advantages of the present invention will be more fully understood from the description of the appended claims appended claims < . Figure 1 is a diagram illustrating a targeted attachment of a material comprising a bioactive ceramic to a particular region of a shirt. Figure 2 illustrates the system applied to a schematic view of bioactive ceramic thermal energy on the clothing of the method. Figure 3 is a diagram illustrating a targeted attachment of a material comprising a bioactive ceramic to a particular region of a sweatpread.

201‧‧‧材料 201‧‧‧Materials

203‧‧‧布料 203‧‧‧cloth

204‧‧‧黏著劑層 204‧‧‧Adhesive layer

205‧‧‧生物活性陶瓷層 205‧‧‧Bioactive ceramic layer

206‧‧‧絕熱層 206‧‧‧Insulation layer

207‧‧‧襯衫 207‧‧‧ shirt

Claims (158)

一種將材料施用至物件上之方法,條件係該材料包括生物活性陶瓷層及黏著劑層,其中該黏著劑層與該物件接觸;且其中在將熱施用至該材料後將該生物活性陶瓷施用於該物件上。A method of applying a material to an article, the condition comprising a bioactive ceramic layer and an adhesive layer, wherein the adhesive layer is in contact with the article; and wherein the bioactive ceramic is applied after applying heat to the material On the object. 如請求項1之方法,其中該生物活性陶瓷層及該黏著劑層構成轉移紙。The method of claim 1, wherein the bioactive ceramic layer and the adhesive layer constitute a transfer paper. 如請求項1之方法,其中該物件包括織物。The method of claim 1, wherein the article comprises a fabric. 如請求項3之方法,其中該織物包括聚合織物。The method of claim 3, wherein the fabric comprises a polymeric fabric. 如請求項4之方法,其中該聚合織物包括聚酯、棉或彈力纖維。The method of claim 4, wherein the polymeric fabric comprises polyester, cotton or spandex. 如請求項5之方法,其中該聚合織物包括彈力纖維。The method of claim 5, wherein the polymeric fabric comprises spandex. 如請求項6之方法,其中用於彈力纖維織物之彈性體包括氯丁橡膠、聚氯丁二烯、耐綸、聚氯乙烯、聚苯乙烯、聚乙烯、聚丙烯、聚乙烯丁醛、聚矽氧、熱塑性彈性體或其組合。The method of claim 6, wherein the elastomer for the elastic fiber fabric comprises neoprene, polychloroprene, nylon, polyvinyl chloride, polystyrene, polyethylene, polypropylene, polyvinyl butyral, poly Oxide, thermoplastic elastomer or a combination thereof. 如請求項3之方法,其中該織物包括非彈性體。The method of claim 3, wherein the fabric comprises a non-elastomer. 如請求項8之方法,其中該非彈性體包括聚氧苄基亞甲基二醇酐、聚氯乙烯、聚苯乙烯、聚乙烯、聚丙烯、聚丙烯腈、聚乙烯丁醛、聚乳酸或其組合。The method of claim 8, wherein the non-elastomer comprises polyoxybenzylidene glycol anhydride, polyvinyl chloride, polystyrene, polyethylene, polypropylene, polyacrylonitrile, polyvinyl butyral, polylactic acid or combination. 如請求項1之方法,其中該物件包括羊毛、絲、棉花、帆布、黃麻、玻璃、耐綸、聚酯、丙烯酸、彈力纖維、聚氯丁二烯、擴展之含有聚四氟乙烯之壓層織物、速成透明膠或其組合。The method of claim 1, wherein the article comprises wool, silk, cotton, canvas, jute, glass, nylon, polyester, acrylic, spandex, polychloroprene, expanded polytetrafluoroethylene Layer fabric, quick-form transparent glue or a combination thereof. 如請求項1之方法,其中該物件包括服裝、珠寶、貼片、墊子、鞋內底、寢具、支身件、發泡滾輪、洗劑、肥皂、膠帶、玻璃器皿、家具、塗料、油墨、標記、地毯、席墊、食物及/或飲料容器、飲料套、頭飾、鞋類、耳機或其組合。The method of claim 1, wherein the article comprises clothing, jewelry, patch, mat, insole, bedding, body member, foam roller, lotion, soap, tape, glassware, furniture, paint, ink , markings, carpets, mats, food and/or beverage containers, beverage sets, headwear, footwear, earphones or combinations thereof. 如請求項11之方法,其中該服裝包括襯衫、褲子、短褲、洋裝、裙子、夾克、有沿帽、內衣、短襪、無沿帽、手套、圍巾、腕帶、膝帶、踝帶及壓縮袖套。The method of claim 11, wherein the garment comprises a shirt, pants, shorts, dress, skirt, jacket, hat, underwear, socks, no cap, gloves, scarf, wristband, knee strap, ankle strap, and compression Sleeve. 如請求項11之方法,其中該寢具包括毛毯、床單、枕頭、枕套、棉被、被套、床罩、褥墊及諸如此類。The method of claim 11, wherein the bedding comprises a blanket, a bed sheet, a pillow, a pillowcase, a quilt, a duvet cover, a bed cover, a mattress, and the like. 如請求項11之方法,其中該等支身件包括貼片、墊子、黏帶、無黏膠帶、鞋內底及壓縮袖套。The method of claim 11, wherein the support members comprise a patch, a mat, an adhesive tape, a non-adhesive tape, an insole, and a compression cuff. 如請求項1之方法,條件係將兩個或更多個生物活性陶瓷層施用於該物件上。The method of claim 1, wherein the condition is to apply two or more bioactive ceramic layers to the article. 如請求項1之方法,條件係兩個或更多個生物活性陶瓷層具有不同組成。As in the method of claim 1, the condition is that two or more bioactive ceramic layers have different compositions. 如請求項1之方法,條件係兩個或更多個生物活性陶瓷層具有相同組成。As in the method of claim 1, the condition is that two or more bioactive ceramic layers have the same composition. 如請求項1之方法,條件係至少一個生物活性陶瓷層包括:約20 wt%至約80 wt%高嶺石(Al2 Si2 O5 (OH)4 )及約1 wt%至約30 wt%電氣石。The method of claim 1, wherein the at least one bioactive ceramic layer comprises: from about 20 wt% to about 80 wt% kaolinite (Al 2 Si 2 O 5 (OH) 4 ) and from about 1 wt% to about 30 wt% tourmaline. 如請求項18之方法,條件係至少一個生物活性陶瓷層包括:約20 wt%至約80 wt%高嶺石(Al2 Si2 O5 (OH)4 )、約1 wt%至約30 wt%電氣石及至少一種氧化物。The method of claim 18, wherein the at least one bioactive ceramic layer comprises: from about 20 wt% to about 80 wt% kaolinite (Al 2 Si 2 O 5 (OH) 4 ), from about 1 wt% to about 30 wt% Tourmaline and at least one oxide. 如請求項19之方法,其中該至少一種氧化物包括氧化鋯、二氧化鈦或氧化鎂。The method of claim 19, wherein the at least one oxide comprises zirconia, titania or magnesia. 如請求項19之方法,其中該至少一種氧化物包括氧化鋯。The method of claim 19, wherein the at least one oxide comprises zirconia. 如請求項19之方法,其中該至少一種氧化物包括二氧化鈦。The method of claim 19, wherein the at least one oxide comprises titanium dioxide. 如請求項19之方法,其中該至少一種氧化物包括氧化鎂。The method of claim 19, wherein the at least one oxide comprises magnesium oxide. 如請求項1之方法,條件係至少一個生物活性陶瓷層包括: a.  至多約90 wt%高嶺石(Al2 Si2 O5 (OH)4 ); b.  至多約90 wt%電氣石; c.  至多約90 wt%氧化鋁(Al2 O3 ); d.  至多約90 wt%二氧化矽(SiO2 );及 e.  至多約90 wt%氧化鋯(ZrO2 ); 條件係該等量係以該生物陶瓷組合物之總重量計。The method of claim 1, wherein the at least one bioactive ceramic layer comprises: a. up to about 90 wt% kaolinite (Al 2 Si 2 O 5 (OH) 4 ); b. up to about 90 wt% tourmaline; c Up to about 90 wt% alumina (Al 2 O 3 ); d. up to about 90 wt% cerium oxide (SiO 2 ); and e. up to about 90 wt% zirconia (ZrO 2 ); It is based on the total weight of the bioceramic composition. 如請求項1之方法,條件係至少一個生物活性陶瓷層包括: a.  至多約90 wt%高嶺石(Al2 Si2 O5 (OH)4 ); b.  至多約90 wt%電氣石; c.  至多約90 wt%氧化鋁(Al2 O3 ); d.  至多約90 wt%二氧化矽(SiO2 );及 e.  至多約90 wt%二氧化鈦(TiO2 ); 條件係該等量係以該生物陶瓷組合物之總重量計。The method of claim 1, wherein the at least one bioactive ceramic layer comprises: a. up to about 90 wt% kaolinite (Al 2 Si 2 O 5 (OH) 4 ); b. up to about 90 wt% tourmaline; c Up to about 90 wt% alumina (Al 2 O 3 ); d. up to about 90 wt% cerium oxide (SiO 2 ); and e. up to about 90 wt% titanium dioxide (TiO 2 ); conditions are the same amount Based on the total weight of the bioceramic composition. 如請求項1之方法,條件係至少一個生物活性陶瓷層包括: a.  至多約90 wt%高嶺石(Al2 Si2 O5 (OH)4 ); b.  至多約90 wt%電氣石; c.  至多約90 wt%氧化鋁(Al2 O3 ); d.  至多約90 wt%二氧化矽(SiO2 );及 e.  至多約90 wt%氧化鎂(MgO); 條件係該等量係以該生物陶瓷組合物之總重量計。The method of claim 1, wherein the at least one bioactive ceramic layer comprises: a. up to about 90 wt% kaolinite (Al 2 Si 2 O 5 (OH) 4 ); b. up to about 90 wt% tourmaline; c Up to about 90 wt% alumina (Al 2 O 3 ); d. up to about 90 wt% cerium oxide (SiO 2 ); and e. up to about 90 wt% magnesium oxide (MgO); conditions are the same amount Based on the total weight of the bioceramic composition. 如請求項1之方法,條件係至少一個生物活性陶瓷層包括: a.  約1 wt%至約90 wt%高嶺石(Al2 Si2 O5 (OH)4 ); b.  約1 wt%至約90 wt%電氣石; c.  約1 wt%至約90 wt%氧化鋁(Al2 O3 ); d.  約1 wt%至約90 wt%二氧化矽(SiO2 );及 e.  約1 wt%至約90 wt%氧化鋯(ZrO2 ); 條件係該等量係以該生物陶瓷組合物之總重量計。The method of claim 1, wherein the at least one bioactive ceramic layer comprises: a. from about 1 wt% to about 90 wt% kaolinite (Al 2 Si 2 O 5 (OH) 4 ); b. about 1 wt% to About 90 wt% tourmaline; c. about 1 wt% to about 90 wt% alumina (Al 2 O 3 ); d. about 1 wt% to about 90 wt% ceria (SiO 2 ); and e. 1 wt% to about 90 wt% zirconia (ZrO 2 ); conditions are based on the total weight of the bioceramic composition. 如請求項1之方法,條件係至少一個生物活性陶瓷層包括: a.  約1 wt%至約90 wt%高嶺石(Al2 Si2 O5 (OH)4 ); b.  約1 wt%至約90 wt%電氣石; c.  約1 wt%至約90 wt%氧化鋁(Al2 O3 ); d.  約1 wt%至約90 wt%二氧化矽(SiO2 );及 e.  約1 wt%至約90 wt%二氧化鈦(TiO2 ); 條件係該等量係以該生物陶瓷組合物之總重量計。The method of claim 1, wherein the at least one bioactive ceramic layer comprises: a. from about 1 wt% to about 90 wt% kaolinite (Al 2 Si 2 O 5 (OH) 4 ); b. about 1 wt% to About 90 wt% tourmaline; c. about 1 wt% to about 90 wt% alumina (Al 2 O 3 ); d. about 1 wt% to about 90 wt% ceria (SiO 2 ); and e. 1 wt% to about 90 wt% titanium dioxide (TiO 2 ); conditions are based on the total weight of the bioceramic composition. 如請求項1之方法,條件係至少一個生物活性陶瓷層包括: a.  約1 wt%至約90 wt%高嶺石(Al2 Si2 O5 (OH)4 ); b.  約1 wt%至約90 wt%電氣石; c.  約1 wt%至約90 wt%氧化鋁(Al2 O3 ); d.  約1 wt%至約90 wt%二氧化矽(SiO2 );及 e.  約1 wt%至約90 wt%氧化鎂(MgO); 條件係該等量係以該生物陶瓷組合物之總重量計。The method of claim 1, wherein the at least one bioactive ceramic layer comprises: a. from about 1 wt% to about 90 wt% kaolinite (Al 2 Si 2 O 5 (OH) 4 ); b. about 1 wt% to About 90 wt% tourmaline; c. about 1 wt% to about 90 wt% alumina (Al 2 O 3 ); d. about 1 wt% to about 90 wt% ceria (SiO 2 ); and e. 1 wt% to about 90 wt% magnesium oxide (MgO); conditions are based on the total weight of the bioceramic composition. 如請求項1之方法,條件係至少一個生物活性陶瓷層包括: a.  至多約80 wt%高嶺石(Al2 Si2 O5 (OH)4 ); b.  至多約30 wt%電氣石; c.  至多約40 wt%氧化鋁(Al2 O3 ); d.  至多約40 wt%二氧化矽(SiO2 );及 e.  至多約20 wt%氧化鋯(ZrO2 ); 條件係該等量係以該生物陶瓷組合物之總重量計。The method of claim 1, wherein the at least one bioactive ceramic layer comprises: a. up to about 80 wt% kaolinite (Al 2 Si 2 O 5 (OH) 4 ); b. up to about 30 wt% tourmaline; Up to about 40 wt% alumina (Al 2 O 3 ); d. up to about 40 wt% cerium oxide (SiO 2 ); and e. up to about 20 wt% zirconia (ZrO 2 ); It is based on the total weight of the bioceramic composition. 如請求項1之方法,條件係至少一個生物活性陶瓷層包括: a.  至多約80 wt%高嶺石(Al2 Si2 O5 (OH)4 ); b.  至多約30 wt%電氣石; c.  至多約40 wt%氧化鋁(Al2 O3 ); d.  至多約40 wt%二氧化矽(SiO2 );及 e.  至多約20 wt%二氧化鈦(TiO2 ); 條件係該等量係以該生物陶瓷組合物之總重量計。The method of claim 1, wherein the at least one bioactive ceramic layer comprises: a. up to about 80 wt% kaolinite (Al 2 Si 2 O 5 (OH) 4 ); b. up to about 30 wt% tourmaline; Up to about 40 wt% alumina (Al 2 O 3 ); d. up to about 40 wt% cerium oxide (SiO 2 ); and e. up to about 20 wt% titanium dioxide (TiO 2 ); conditions are the same amount Based on the total weight of the bioceramic composition. 如請求項1之方法,條件係至少一個生物活性陶瓷層包括: a.  至多約80 wt%高嶺石(Al2 Si2 O5 (OH)4 ); b.  至多約30 wt%電氣石; c.  至多約40 wt%氧化鋁(Al2 O3 ); d.  至多約40 wt%二氧化矽(SiO2 );及 e.  至多約20 wt%氧化鎂(MgO); 條件係該等量係以該生物陶瓷組合物之總重量計。The method of claim 1, wherein the at least one bioactive ceramic layer comprises: a. up to about 80 wt% kaolinite (Al 2 Si 2 O 5 (OH) 4 ); b. up to about 30 wt% tourmaline; Up to about 40 wt% alumina (Al 2 O 3 ); d. up to about 40 wt% cerium oxide (SiO 2 ); and e. up to about 20 wt% magnesium oxide (MgO); conditions are the same amount Based on the total weight of the bioceramic composition. 如請求項1之方法,條件係至少一個生物活性陶瓷層包括: a.  約20 wt%至約80 wt%高嶺石(Al2 Si2 O5 (OH)4 ); b.  約1 wt%至約30 wt%電氣石; c.  約1 wt%至約40 wt%氧化鋁(Al2 O3 ); d.  約1 wt%至約40 wt%二氧化矽(SiO2 );及 e.  約1 wt%至約20 wt%氧化鋯(ZrO2 ); 條件係該等量係以該生物陶瓷組合物之總重量計。The method of claim 1, wherein the at least one bioactive ceramic layer comprises: a. from about 20 wt% to about 80 wt% kaolinite (Al 2 Si 2 O 5 (OH) 4 ); b. about 1 wt% to About 30 wt% tourmaline; c. about 1 wt% to about 40 wt% alumina (Al 2 O 3 ); d. about 1 wt% to about 40 wt% ceria (SiO 2 ); and e. 1 wt% to about 20 wt% zirconia (ZrO 2 ); conditions are based on the total weight of the bioceramic composition. 如請求項1之方法,條件係至少一個生物活性陶瓷層包括: a.  約20 wt%至約80 wt%高嶺石(Al2 Si2 O5 (OH)4 ); b.  約1 wt%至約30 wt%電氣石; c.  約1 wt%至約40 wt%氧化鋁(Al2 O3 ); d.  約1 wt%至約40 wt%二氧化矽(SiO2 );及 e.  約1 wt%至約20 wt%二氧化鈦(TiO2 ); 條件係該等量係以該生物陶瓷組合物之總重量計。The method of claim 1, wherein the at least one bioactive ceramic layer comprises: a. from about 20 wt% to about 80 wt% kaolinite (Al 2 Si 2 O 5 (OH) 4 ); b. about 1 wt% to About 30 wt% tourmaline; c. about 1 wt% to about 40 wt% alumina (Al 2 O 3 ); d. about 1 wt% to about 40 wt% ceria (SiO 2 ); and e. 1 wt% to about 20 wt% titanium dioxide (TiO 2 ); conditions are based on the total weight of the bioceramic composition. 如請求項1之方法,條件係至少一個生物活性陶瓷層包括: a.  約20 wt%至約80 wt%高嶺石(Al2 Si2 O5 (OH)4 ); b.  約1 wt%至約30 wt%電氣石; c.  約1 wt%至約40 wt%氧化鋁(Al2 O3 ); d.  約1 wt%至約40 wt%二氧化矽(SiO2 );及 e.  約1 wt%至約20 wt%氧化鎂(MgO); 條件係該等量係以該生物陶瓷組合物之總重量計。The method of claim 1, wherein the at least one bioactive ceramic layer comprises: a. from about 20 wt% to about 80 wt% kaolinite (Al 2 Si 2 O 5 (OH) 4 ); b. about 1 wt% to About 30 wt% tourmaline; c. about 1 wt% to about 40 wt% alumina (Al 2 O 3 ); d. about 1 wt% to about 40 wt% ceria (SiO 2 ); and e. 1 wt% to about 20 wt% magnesium oxide (MgO); conditions are based on the total weight of the bioceramic composition. 如請求項1之方法,條件係至少一個生物活性陶瓷層包括: a.  至多約60 wt%高嶺石(Al2 Si2 O5 (OH)4 ); b.  至多約25 wt%電氣石; c.  至多約25 wt%氧化鋁(Al2 O3 ); d.  至多約20 wt%二氧化矽(SiO2 );及 e.  至多約20 wt%氧化鋯(ZrO2 )。The method of claim 1, wherein the at least one bioactive ceramic layer comprises: a. up to about 60 wt% kaolinite (Al 2 Si 2 O 5 (OH) 4 ); b. up to about 25 wt% tourmaline; c Up to about 25 wt% alumina (Al 2 O 3 ); d. up to about 20 wt% ceria (SiO 2 ); and e. up to about 20 wt% zirconium oxide (ZrO 2 ). 如請求項1之方法,條件係至少一個生物活性陶瓷層包括: a.  至多約60 wt%高嶺石(Al2 Si2 O5 (OH)4 ); b.  至多約25 wt%電氣石; c.  至多約25 wt%氧化鋁(Al2 O3 ); d.  至多約20 wt%二氧化矽(SiO2 );及 e.  至多約20 wt%二氧化鈦(TiO2 )。The method of claim 1, wherein the at least one bioactive ceramic layer comprises: a. up to about 60 wt% kaolinite (Al 2 Si 2 O 5 (OH) 4 ); b. up to about 25 wt% tourmaline; c Up to about 25 wt% alumina (Al 2 O 3 ); d. up to about 20 wt% ceria (SiO 2 ); and e. up to about 20 wt% titanium dioxide (TiO 2 ). 如請求項1之方法,條件係至少一個生物活性陶瓷層包括: a.  至多約60 wt%高嶺石(Al2 Si2 O5 (OH)4 ); b.  至多約25 wt%電氣石; c.  至多約25 wt%氧化鋁(Al2 O3 ); d.  至多約20 wt%二氧化矽(SiO2 );及 e.  至多約20 wt%氧化鎂(MgO2 )。The method of claim 1, wherein the at least one bioactive ceramic layer comprises: a. up to about 60 wt% kaolinite (Al 2 Si 2 O 5 (OH) 4 ); b. up to about 25 wt% tourmaline; c Up to about 25 wt% alumina (Al 2 O 3 ); d. up to about 20 wt% ceria (SiO 2 ); and e. up to about 20 wt% magnesium oxide (MgO 2 ). 如請求項1之方法,條件係至少一個生物活性陶瓷層包括: a.  約20 wt%至約60 wt%高嶺石(Al2 Si2 O5 (OH)4 ); b.  約5 wt%至約25 wt%電氣石; c.  約1 wt%至約25 wt%氧化鋁(Al2 O3 ); d.  約1 wt%至約20 wt%二氧化矽(SiO2 );及 e.  約1 wt%至約20 wt%氧化鋯(ZrO2 )。The method of claim 1, wherein the at least one bioactive ceramic layer comprises: a. from about 20 wt% to about 60 wt% kaolinite (Al 2 Si 2 O 5 (OH) 4 ); b. about 5 wt% to About 25 wt% tourmaline; c. about 1 wt% to about 25 wt% alumina (Al 2 O 3 ); d. about 1 wt% to about 20 wt% ceria (SiO 2 ); and e. 1 wt% to about 20 wt% zirconia (ZrO 2 ). 如請求項1之方法,條件係至少一個生物活性陶瓷層包括: a.  約20 wt%至約60 wt%高嶺石(Al2 Si2 O5 (OH)4 ); b.  約5 wt%至約25 wt%電氣石; c.  約1 wt%至約25 wt%氧化鋁(Al2 O3 ); d.  約1 wt%至約20 wt%二氧化矽(SiO2 );及 e.  約1 wt%至約20 wt%二氧化鈦(TiO2 )。The method of claim 1, wherein the at least one bioactive ceramic layer comprises: a. from about 20 wt% to about 60 wt% kaolinite (Al 2 Si 2 O 5 (OH) 4 ); b. about 5 wt% to About 25 wt% tourmaline; c. about 1 wt% to about 25 wt% alumina (Al 2 O 3 ); d. about 1 wt% to about 20 wt% ceria (SiO 2 ); and e. 1 wt% to about 20 wt% titanium dioxide (TiO 2 ). 如請求項1之方法,條件係至少一個生物活性陶瓷層包括: a.  約20 wt%至約60 wt%高嶺石(Al2 Si2 O5 (OH)4 ); b.  約5 wt%至約25 wt%電氣石; c.  約1 wt%至約25 wt%氧化鋁(Al2 O3 ); d.  約1 wt%至約20 wt%二氧化矽(SiO2 );及 e.  約1 wt%至約20 wt%氧化鎂(MgO2 )。The method of claim 1, wherein the at least one bioactive ceramic layer comprises: a. from about 20 wt% to about 60 wt% kaolinite (Al 2 Si 2 O 5 (OH) 4 ); b. about 5 wt% to About 25 wt% tourmaline; c. about 1 wt% to about 25 wt% alumina (Al 2 O 3 ); d. about 1 wt% to about 20 wt% ceria (SiO 2 ); and e. 1 wt% to about 20 wt% magnesium oxide (MgO 2 ). 如請求項1之方法,條件係至少一個生物活性陶瓷層包括: a.  至多約60 wt%高嶺石(Al2 Si2 O5 (OH)4 ); b.  至多約15 wt%電氣石; c.  至多約25 wt%氧化鋁(Al2 O3 ); d.  至多約20 wt%二氧化矽(SiO2 );及 e.  至多約20 wt%氧化鋯(ZrO2 )。The method of claim 1, wherein the at least one bioactive ceramic layer comprises: a. up to about 60 wt% kaolinite (Al 2 Si 2 O 5 (OH) 4 ); b. up to about 15 wt% tourmaline; c Up to about 25 wt% alumina (Al 2 O 3 ); d. up to about 20 wt% ceria (SiO 2 ); and e. up to about 20 wt% zirconium oxide (ZrO 2 ). 如請求項1之方法,條件係至少一個生物活性陶瓷層包括: a.  至多約60 wt%高嶺石(Al2 Si2 O5 (OH)4 ); b.  至多約15 wt%電氣石; c.  至多約25 wt%氧化鋁(Al2 O3 ); d.  至多約20 wt%二氧化矽(SiO2 );及 e.  至多約20 wt%二氧化鈦(TiO2 )。The method of claim 1, wherein the at least one bioactive ceramic layer comprises: a. up to about 60 wt% kaolinite (Al 2 Si 2 O 5 (OH) 4 ); b. up to about 15 wt% tourmaline; c Up to about 25 wt% alumina (Al 2 O 3 ); d. up to about 20 wt% ceria (SiO 2 ); and e. up to about 20 wt% titanium dioxide (TiO 2 ). 如請求項1之方法,條件係至少一個生物活性陶瓷層包括: a.  至多約60 wt%高嶺石(Al2 Si2 O5 (OH)4 ); b.  至多約15 wt%電氣石; c.  至多約25 wt%氧化鋁(Al2 O3 ); d.  至多約20 wt%二氧化矽(SiO2 );及 e.  至多約20 wt%氧化鎂(MgO2 )。The method of claim 1, wherein the at least one bioactive ceramic layer comprises: a. up to about 60 wt% kaolinite (Al 2 Si 2 O 5 (OH) 4 ); b. up to about 15 wt% tourmaline; c Up to about 25 wt% alumina (Al 2 O 3 ); d. up to about 20 wt% ceria (SiO 2 ); and e. up to about 20 wt% magnesium oxide (MgO 2 ). 如請求項1之方法,條件係至少一個生物活性陶瓷層包括: a.  約40 wt%至約60 wt%高嶺石(Al2 Si2 O5 (OH)4 ); b.  約5 wt%至約15 wt%電氣石; c.  約15 wt%至約25 wt%氧化鋁(Al2 O3 ); d.  約10 wt%至約20 wt%二氧化矽(SiO2 );及 e.  約1 wt%至約20 wt%氧化鋯(ZrO2 )。The method of claim 1, wherein the at least one bioactive ceramic layer comprises: a. from about 40 wt% to about 60 wt% kaolinite (Al 2 Si 2 O 5 (OH) 4 ); b. about 5 wt% to About 15 wt% tourmaline; c. about 15 wt% to about 25 wt% alumina (Al 2 O 3 ); d. about 10 wt% to about 20 wt% ceria (SiO 2 ); and e. 1 wt% to about 20 wt% zirconia (ZrO 2 ). 如請求項1之方法,條件係至少一個生物活性陶瓷層包括: a.  約40 wt%至約60 wt%高嶺石(Al2 Si2 O5 (OH)4 ); b.  約5 wt%至約15 wt%電氣石; c.  約15 wt%至約25 wt%氧化鋁(Al2 O3 ); d.  約10 wt%至約20 wt%二氧化矽(SiO2 );及 e.  約1 wt%至約20 wt%二氧化鈦(TiO2 )。The method of claim 1, wherein the at least one bioactive ceramic layer comprises: a. from about 40 wt% to about 60 wt% kaolinite (Al 2 Si 2 O 5 (OH) 4 ); b. about 5 wt% to About 15 wt% tourmaline; c. about 15 wt% to about 25 wt% alumina (Al 2 O 3 ); d. about 10 wt% to about 20 wt% ceria (SiO 2 ); and e. 1 wt% to about 20 wt% titanium dioxide (TiO 2 ). 如請求項1之方法,條件係至少一個生物活性陶瓷層包括: a.  約40 wt%至約60 wt%高嶺石(Al2 Si2 O5 (OH)4 ); b.  約5 wt%至約15 wt%電氣石; c.  約15 wt%至約25 wt%氧化鋁(Al2 O3 ); d.  約10 wt%至約20 wt%二氧化矽(SiO2 );及 e.  約1 wt%至約20 wt%氧化鎂(MgO2 )。The method of claim 1, wherein the at least one bioactive ceramic layer comprises: a. from about 40 wt% to about 60 wt% kaolinite (Al 2 Si 2 O 5 (OH) 4 ); b. about 5 wt% to About 15 wt% tourmaline; c. about 15 wt% to about 25 wt% alumina (Al 2 O 3 ); d. about 10 wt% to about 20 wt% ceria (SiO 2 ); and e. 1 wt% to about 20 wt% magnesium oxide (MgO 2 ). 如請求項1之方法,條件係至少一個生物活性陶瓷層包括: a.  約50 wt%高嶺石(Al2 Si2 O5 (OH)4 ); b.  約10 wt%電氣石; c.  約18 wt%氧化鋁(Al2 O3 ); d.  約14 wt%二氧化矽(SiO2 );及 e.  約8 wt%氧化鋯(ZrO2 )。The method of claim 1, wherein the at least one bioactive ceramic layer comprises: a. about 50 wt% kaolinite (Al 2 Si 2 O 5 (OH) 4 ); b. about 10 wt% tourmaline; c. 18 wt% alumina (Al 2 O 3 ); d. about 14 wt% cerium oxide (SiO 2 ); and e. about 8 wt% zirconia (ZrO 2 ). 如請求項1之方法,條件係至少一個生物活性陶瓷層包括: a.  約50 wt%高嶺石(Al2 Si2 O5 (OH)4 ); b.  約10 wt%電氣石; c.  約18 wt%氧化鋁(Al2 O3 ); d.  約14 wt%二氧化矽(SiO2 );及 e.  約8 wt%二氧化鈦(TiO2 )。The method of claim 1, wherein the at least one bioactive ceramic layer comprises: a. about 50 wt% kaolinite (Al 2 Si 2 O 5 (OH) 4 ); b. about 10 wt% tourmaline; c. 18 wt% alumina (Al 2 O 3 ); d. about 14 wt% ceria (SiO 2 ); and e. about 8 wt% titanium dioxide (TiO 2 ). 如請求項1之方法,條件係至少一個生物活性陶瓷層包括: a.  約50 wt%高嶺石(Al2 Si2 O5 (OH)4 ); b. 約10 wt%電氣石; c.  約18 wt%氧化鋁(Al2 O3 ); d.約14 wt%二氧化矽(SiO2 );及 e.  約8 wt%氧化鎂(MgO2 )。The method of claim 1, wherein the at least one bioactive ceramic layer comprises: a. about 50 wt% kaolinite (Al 2 Si 2 O 5 (OH) 4 ); b. about 10 wt% tourmaline; c. 18 wt% alumina (Al 2 O 3 ); d. about 14 wt% ceria (SiO 2 ); and e. about 8 wt% magnesium oxide (MgO 2 ). 如請求項1之方法,其中該黏著劑層係有機層。The method of claim 1, wherein the adhesive layer is an organic layer. 如請求項1之方法,其中該黏著劑層係無機層。The method of claim 1, wherein the adhesive layer is an inorganic layer. 如請求項1之方法,其中該黏著劑層係可溶性。The method of claim 1, wherein the adhesive layer is soluble. 如請求項1之方法,其中該黏著劑層係不溶性。The method of claim 1, wherein the adhesive layer is insoluble. 如請求項1之方法,其中該黏著劑層係熱敏性膠。The method of claim 1, wherein the adhesive layer is a heat sensitive adhesive. 如請求項1之方法,其中該黏著劑層包括多種試劑。The method of claim 1, wherein the adhesive layer comprises a plurality of reagents. 如請求項1之方法,其中該黏著劑層進一步包括黏性層及離型紙。The method of claim 1, wherein the adhesive layer further comprises a viscous layer and a release paper. 如請求項1之方法,其中該黏著劑層在室溫下並非黏性。The method of claim 1, wherein the adhesive layer is not viscous at room temperature. 如請求項1之方法,其中該黏著劑層在室溫下為黏性。The method of claim 1, wherein the adhesive layer is viscous at room temperature. 如請求項1之方法,條件係該材料進一步包括絕熱層。The method of claim 1, wherein the material further comprises a heat insulating layer. 如請求項60之方法,條件係該絕熱層包括碳。The method of claim 60, wherein the insulating layer comprises carbon. 如請求項60之方法,條件係該絕熱層包括鋁箔。The method of claim 60, wherein the insulating layer comprises aluminum foil. 如請求項60之方法,條件係該絕熱層包括鍍鋁布。The method of claim 60, wherein the insulating layer comprises an aluminized cloth. 如請求項60之方法,條件係該絕熱層包括鋁粉。The method of claim 60, wherein the insulating layer comprises aluminum powder. 如請求項60之方法,條件係該絕熱層包括銅。The method of claim 60, wherein the insulating layer comprises copper. 如請求項60之方法,條件係該絕熱層包括銀。The method of claim 60, wherein the insulating layer comprises silver. 如請求項60之方法,條件係該絕熱層包括纖維玻璃。The method of claim 60, wherein the insulating layer comprises fiberglass. 如請求項60之方法,條件係該絕熱層包括玻璃棉。The method of claim 60, wherein the insulating layer comprises glass wool. 如請求項60之方法,條件係該絕熱層包括纖維素。The method of claim 60, wherein the insulating layer comprises cellulose. 如請求項60之方法,條件係該絕熱層包括岩棉。The method of claim 60, wherein the insulating layer comprises rock wool. 如請求項60之方法,條件係該絕熱層包括聚苯乙烯發泡體。The method of claim 60, wherein the insulating layer comprises a polystyrene foam. 如請求項60之方法,條件係該絕熱層包括胺基甲酸酯發泡體。The method of claim 60, wherein the insulating layer comprises a urethane foam. 如請求項60之方法,條件係該絕熱層包括蛭石。The method of claim 60, wherein the insulating layer comprises vermiculite. 如請求項60之方法,條件係該絕熱層包括珍珠岩。The method of claim 60, wherein the insulating layer comprises perlite. 如請求項60之方法,條件係該絕熱層包括軟木。As in the method of claim 60, the condition is that the insulating layer comprises cork. 如請求項1之方法,條件係該熱具有小於1000℉之溫度。The method of claim 1, wherein the heat has a temperature of less than 1000 °F. 如請求項1之方法,條件係該熱具有小於900℉之溫度。The method of claim 1, wherein the heat has a temperature of less than 900 °F. 如請求項1之方法,條件係該熱具有小於800℉之溫度。As in the method of claim 1, the condition is that the heat has a temperature of less than 800 °F. 如請求項1之方法,條件係該熱具有小於700℉之溫度。The method of claim 1, wherein the heat has a temperature of less than 700 °F. 如請求項1之方法,條件係該熱具有小於600℉之溫度。The method of claim 1, wherein the heat has a temperature of less than 600 °F. 如請求項1之方法,條件係該熱具有小於500℉之溫度。The method of claim 1, wherein the heat has a temperature of less than 500 °F. 如請求項1之方法,條件係該熱具有小於400℉之溫度。The method of claim 1, wherein the heat has a temperature of less than 400 °F. 如請求項1之方法,條件係該熱具有小於390℉之溫度。As in the method of claim 1, the condition is that the heat has a temperature of less than 390 °F. 如請求項1之方法,條件係該熱具有小於380℉之溫度。The method of claim 1, wherein the heat has a temperature of less than 380 °F. 如請求項1之方法,條件係該熱具有小於370℉之溫度。The method of claim 1, wherein the heat has a temperature of less than 370 °F. 如請求項1之方法,條件係該熱具有小於360℉之溫度。As in the method of claim 1, the condition is that the heat has a temperature of less than 360 °F. 如請求項1之方法,條件係該熱具有小於350℉之溫度。As in the method of claim 1, the condition is that the heat has a temperature of less than 350 °F. 如請求項1之方法,條件係該熱具有小於340℉之溫度。The method of claim 1, wherein the heat has a temperature of less than 340 °F. 如請求項1之方法,條件係該熱具有小於330℉之溫度。As in the method of claim 1, the condition is that the heat has a temperature of less than 330 °F. 如請求項1之方法,條件係該熱具有小於320℉之溫度。The method of claim 1, wherein the heat has a temperature of less than 320 °F. 如請求項1之方法,條件係該熱具有小於310℉之溫度。As in the method of claim 1, the condition is that the heat has a temperature of less than 310 °F. 如請求項1之方法,條件係該熱具有小於300℉之溫度。The method of claim 1, wherein the heat has a temperature of less than 300 °F. 如請求項1之方法,條件係該熱具有小於290℉之溫度。The method of claim 1, wherein the heat has a temperature of less than 290 °F. 如請求項1之方法,條件係該熱具有小於280℉之溫度。The method of claim 1, wherein the heat has a temperature of less than 280 °F. 如請求項1之方法,條件係該熱具有小於270℉之溫度。The method of claim 1, wherein the heat has a temperature of less than 270 °F. 如請求項1之方法,條件係該熱具有小於260℉之溫度。The method of claim 1, wherein the heat has a temperature of less than 260 °F. 如請求項1之方法,條件係該熱具有小於250℉之溫度。The method of claim 1, wherein the heat has a temperature of less than 250 °F. 如請求項1之方法,條件係該熱具有小於240℉之溫度。The method of claim 1, wherein the heat has a temperature of less than 240 °F. 如請求項1之方法,條件係該熱具有小於230℉之溫度。As in the method of claim 1, the condition is that the heat has a temperature of less than 230 °F. 如請求項1之方法,條件係該熱具有小於220℉之溫度。The method of claim 1, wherein the heat has a temperature of less than 220 °F. 如請求項1之方法,條件係該熱具有小於210℉之溫度。As in the method of claim 1, the condition is that the heat has a temperature of less than 210 °F. 如請求項1之方法,條件係該熱具有小於200℉之溫度。As in the method of claim 1, the condition is that the heat has a temperature of less than 200 °F. 如請求項1之方法,條件係將該熱施用約1秒至5分鐘之時間段。As in the method of claim 1, the condition is to apply the heat for a period of from about 1 second to about 5 minutes. 如請求項1之方法,條件係將該熱施用約1秒至1分鐘之時間段。As in the method of claim 1, the condition is to apply the heat for a period of from about 1 second to 1 minute. 如請求項1之方法,條件係將該熱施用約1秒至30秒之時間段。As in the method of claim 1, the condition is to apply the heat for a period of from about 1 second to 30 seconds. 如請求項1之方法,條件係將該熱施用約1秒至20秒之時間段。As in the method of claim 1, the condition is to apply the heat for a period of from about 1 second to 20 seconds. 如請求項1之方法,條件係將該熱施用約1秒至15秒之時間段。As in the method of claim 1, the condition is to apply the heat for a period of from about 1 second to 15 seconds. 如請求項1之方法,條件係將該熱施用約5秒至15秒之時間段。As in the method of claim 1, the condition is to apply the heat for a period of time ranging from about 5 seconds to 15 seconds. 如請求項1之方法,條件係將該熱施用約5秒至10秒之時間段。As in the method of claim 1, the condition is to apply the heat for a period of from about 5 seconds to 10 seconds. 如請求項1之方法,條件係將該熱施用約8秒至10秒之時間段。As in the method of claim 1, the condition is to apply the heat for a period of from about 8 seconds to 10 seconds. 如請求項1之方法,條件係將該熱施用約7秒至12秒之時間段。As in the method of claim 1, the condition is to apply the heat for a period of from about 7 seconds to 12 seconds. 如請求項1之方法,條件係使用熱壓機施用該熱。As in the method of claim 1, the condition is that the heat is applied using a hot press. 如請求項1之方法,條件係該熱壓機在該物件上施加約5 PSI至約80 PSI之壓力。The method of claim 1, wherein the hot press applies a pressure of from about 5 PSI to about 80 PSI on the article. 如請求項1之方法,條件係該熱壓機在該物件上施加約20 PSI至約50 PSI之壓力。The method of claim 1, wherein the hot press applies a pressure of from about 20 PSI to about 50 PSI on the article. 如請求項1之方法,條件係該熱壓機在該物件上施加約25 PSI至約45 PSI之壓力。The method of claim 1, wherein the hot press applies a pressure of from about 25 PSI to about 45 PSI on the article. 如請求項1之方法,條件係該熱壓機在該物件上施加約30 PSI至約40 PSI之壓力。The method of claim 1, wherein the hot press applies a pressure of from about 30 PSI to about 40 PSI on the article. 一種施用於物件上之套組,該套組包括一或多個生物活性陶瓷薄片,其中至少一種生物活性陶瓷薄片包括黏著劑層。A kit for application to an article, the kit comprising one or more bioactive ceramic sheets, wherein at least one bioactive ceramic sheet comprises an adhesive layer. 如請求項117之套組,條件係該兩個或更多個生物活性陶瓷層具有相同或實質上相同之物質組成。As in the set of claim 117, the condition is that the two or more bioactive ceramic layers have the same or substantially the same composition of matter. 如請求項117之套組,條件係該兩個或更多個生物活性陶瓷層具有不同之物質組成。As in the set of claim 117, the condition is that the two or more bioactive ceramic layers have different material compositions. 如請求項117之套組,條件係該套組進一步包括絕熱層。As in the set of claim 117, the condition is that the set further includes a thermal insulation layer. 如請求項120之套組,條件係該絕熱層包括碳。As in the set of claim 120, the condition is that the insulating layer comprises carbon. 如請求項120之套組,條件係該絕熱層包括鋁箔層。As in the set of claim 120, the condition is that the insulating layer comprises an aluminum foil layer. 如請求項120之套組,條件係該絕熱層包括鍍鋁布。As in the kit of claim 120, the condition is that the insulating layer comprises an aluminized cloth. 如請求項120之套組,條件係該絕熱層包括鋁粉。As in the set of claim 120, the condition is that the insulating layer comprises aluminum powder. 如請求項120之套組,條件係該絕熱層包括銅。As in the set of claim 120, the condition is that the insulating layer comprises copper. 如請求項120之套組,條件係該絕熱層包括銀。As in the set of claim 120, the condition is that the insulating layer comprises silver. 如請求項120之套組,條件係該絕熱層包括纖維玻璃。As in the set of claim 120, the condition is that the insulating layer comprises fiberglass. 如請求項120之套組,條件係該絕熱層包括玻璃棉。As in the set of claim 120, the condition is that the insulating layer comprises glass wool. 如請求項120之套組,條件係該絕熱層包括纖維素。As in the set of claim 120, the condition is that the insulating layer comprises cellulose. 如請求項120之套組,條件係該絕熱層包括岩棉。As in the set of claim 120, the condition is that the insulating layer comprises rock wool. 如請求項120之套組,條件係該絕熱層包括聚苯乙烯發泡體。As in the set of claim 120, the condition is that the insulating layer comprises a polystyrene foam. 如請求項120之套組,條件係該絕熱層包括胺基甲酸酯發泡體。As in the set of claim 120, the condition is that the insulating layer comprises a urethane foam. 如請求項120之套組,條件係該絕熱層包括蛭石。As in the set of claim 120, the condition is that the insulating layer comprises vermiculite. 如請求項120之套組,條件係該絕熱層包括珍珠岩。As in the set of claim 120, the condition is that the insulating layer comprises perlite. 如請求項120之套組,條件係該絕熱層包括軟木。As in the set of claim 120, the condition is that the insulating layer comprises cork. 如請求項117之套組,條件係該生物活性陶瓷包括: a.  約50 wt%高嶺石(Al2 Si2 O5 (OH)4 ); b.  約10 wt%電氣石; c.  約18 wt%氧化鋁(Al2 O3 ); d.  約14 wt%二氧化矽(SiO2 );及 e.  約8 wt%氧化鋯(ZrO2 )。The set of claim 117, the condition that the bioactive ceramic comprises: a. about 50 wt% kaolinite (Al 2 Si 2 O 5 (OH) 4 ); b. about 10 wt% tourmaline; c. about 18 Wt% alumina (Al 2 O 3 ); d. about 14 wt% cerium oxide (SiO 2 ); and e. about 8 wt% zirconia (ZrO 2 ). 如請求項117之套組,條件係該生物活性陶瓷包括: a.  約50 wt%高嶺石(Al2 Si2 O5 (OH)4 ); b.  約10 wt%電氣石; c.  約18 wt%氧化鋁(Al2 O3 ); d.  約14 wt%二氧化矽(SiO2 );及 e.  約8 wt%二氧化鈦(TiO2 )。The set of claim 117, the condition that the bioactive ceramic comprises: a. about 50 wt% kaolinite (Al 2 Si 2 O 5 (OH) 4 ); b. about 10 wt% tourmaline; c. about 18 Wt% alumina (Al 2 O 3 ); d. about 14 wt% ceria (SiO 2 ); and e. about 8 wt% titanium dioxide (TiO 2 ). 如請求項117之套組,條件係該生物活性陶瓷包括: a.  約50 wt%高嶺石(Al2 Si2 O5 (OH)4 ); b.  約10 wt%電氣石; c.  約18 wt%氧化鋁(Al2 O3 ); d.  約14 wt%二氧化矽(SiO2 );及 e.  約8 wt%氧化鎂(MgO)。The set of claim 117, the condition that the bioactive ceramic comprises: a. about 50 wt% kaolinite (Al 2 Si 2 O 5 (OH) 4 ); b. about 10 wt% tourmaline; c. about 18 Wt% alumina (Al 2 O 3 ); d. about 14 wt% ceria (SiO 2 ); and e. about 8 wt% magnesium oxide (MgO). 如請求項117之套組,條件係該物件包括織物。As in the set of claim 117, the condition is that the article comprises a fabric. 如請求項117之套組,條件係該織物包括丙烯酸纖維、竹、寬幅布、粗麻布、帆布、 Coolmax、棉、牛仔布、彈力纖維、法蘭絨、羊毛、紗布、Gore-Tex、大麻、人字細纖紋布、毛線衫、黃麻、編織物、亞麻布、萊卡編織物(Lycra knit)、氯丁橡膠、耐綸、聚酯、速成透明膠、人造絲、緞子、絲、智慧羊毛、胺綸纖維、聚氯丁二烯、擴展之含有聚四氟乙烯之壓層織物或其組合。As set forth in claim 117, the condition is that the fabric comprises acrylic, bamboo, wide fabric, burlap, canvas, Coolmax, cotton, denim, spandex, flannel, wool, gauze, Gore-Tex, marijuana , herringbone fine fiber cloth, sweater, jute, woven fabric, linen, Lycra knit, neoprene, nylon, polyester, instant transparent plastic, rayon, satin, silk, wisdom Wool, aramid fiber, polychloroprene, expanded polytetrafluoroethylene laminated fabric or a combination thereof. 如請求項117之套組,條件係該物件包括聚合物。As in the set of claim 117, the condition is that the article comprises a polymer. 如請求項117之套組,條件係該聚合物包括聚氧苄基亞甲基二醇酐、聚氯乙烯、聚苯乙烯、聚乙烯、聚丙烯、聚丙烯腈、聚乙烯丁醛、聚乳酸及其組合。The kit of claim 117, wherein the polymer comprises polyoxybenzylidene glycol anhydride, polyvinyl chloride, polystyrene, polyethylene, polypropylene, polyacrylonitrile, polyvinyl butyral, polylactic acid. And their combinations. 一種熱轉移材料,條件係該熱轉移材料包括生物活性陶瓷,條件係該生物活性陶瓷包括: a.  約1 wt%至約90 wt%高嶺石(Al2 Si2 O5 (OH)4 ); b.  約1 wt%至約90 wt%電氣石; c.  約1 wt%至約90 wt%氧化鋁(Al2 O3 ); d.  約1 wt%至約90 wt%二氧化矽(SiO2 );及 e.  約1 wt%至約90 wt%氧化鋯(ZrO2 ); 條件係該等量係以該生物陶瓷組合物之總重量計,且條件係該轉移材料層鋪至轉移薄片上。A heat transfer material, the condition being that the heat transfer material comprises a bioactive ceramic, and the condition is that the bioactive ceramic comprises: a. from about 1 wt% to about 90 wt% of kaolinite (Al 2 Si 2 O 5 (OH) 4 ); b. from about 1 wt% to about 90 wt% tourmaline; c. from about 1 wt% to about 90 wt% alumina (Al 2 O 3 ); d. from about 1 wt% to about 90 wt% ceria (SiO 2 ); and e. from about 1 wt% to about 90 wt% zirconia (ZrO 2 ); the conditions are based on the total weight of the bioceramic composition, and the conditions are that the transfer material layer is spread to the transfer sheet on. 一種熱轉移材料,條件係該熱轉移材料包括生物活性陶瓷,條件係該生物活性陶瓷包括: a.  約1 wt%至約90 wt%高嶺石(Al2 Si2 O5 (OH)4 ); b.  約1 wt%至約90 wt%電氣石; c.  約1 wt%至約90 wt%氧化鋁(Al2 O3 ); d.  約1 wt%至約90 wt%二氧化矽(SiO2 );及 e.  約1 wt%至約90 wt%二氧化鈦(TiO2 ); 條件係該等量係以該生物陶瓷組合物之總重量計,且條件係該轉移材料層鋪至轉移薄片上。A heat transfer material, the condition being that the heat transfer material comprises a bioactive ceramic, and the condition is that the bioactive ceramic comprises: a. from about 1 wt% to about 90 wt% of kaolinite (Al 2 Si 2 O 5 (OH) 4 ); b. from about 1 wt% to about 90 wt% tourmaline; c. from about 1 wt% to about 90 wt% alumina (Al 2 O 3 ); d. from about 1 wt% to about 90 wt% ceria (SiO 2 ); and e. from about 1 wt% to about 90 wt% of titanium dioxide (TiO 2 ); conditions are based on the total weight of the bioceramic composition, and the conditions are that the layer of transfer material is applied to the transfer sheet . 一種熱轉移材料,條件係該熱轉移材料包括生物活性陶瓷,條件係該生物活性陶瓷包括: a.  約1 wt%至約90 wt%高嶺石(Al2 Si2 O5 (OH)4 ); b.  約1 wt%至約90 wt%電氣石; c.  約1 wt%至約90 wt%氧化鋁(Al2 O3 ); d.  約1 wt%至約90 wt%二氧化矽(SiO2 );及 e.  約1 wt%至約90 wt%氧化鎂(MgO);條件係該等量係以該生物陶瓷組合物之總重量計,且條件係該轉移材料層鋪至轉移薄片上。A heat transfer material, the condition being that the heat transfer material comprises a bioactive ceramic, and the condition is that the bioactive ceramic comprises: a. from about 1 wt% to about 90 wt% of kaolinite (Al 2 Si 2 O 5 (OH) 4 ); b. from about 1 wt% to about 90 wt% tourmaline; c. from about 1 wt% to about 90 wt% alumina (Al 2 O 3 ); d. from about 1 wt% to about 90 wt% ceria (SiO 2 ); and e. from about 1 wt% to about 90 wt% magnesium oxide (MgO); conditions are based on the total weight of the bioceramic composition, and the conditions are that the transfer material layer is applied to the transfer sheet . 一種熱轉移材料,條件係該熱轉移材料包括生物活性陶瓷,條件係該生物活性陶瓷包括: a.  約20 wt%至約80 wt%高嶺石(Al2 Si2 O5 (OH)4 ); b.  約1 wt%至約30 wt%電氣石; c.  約1 wt%至約40 wt%氧化鋁(Al2 O3 ); d.  約1 wt%至約40 wt%二氧化矽(SiO2 );及 e.  約1 wt%至約20 wt%氧化鋯(ZrO2 ); 條件係該等量係以該生物陶瓷組合物之總重量計,且條件係該轉移材料層鋪至轉移薄片上。A heat transfer material, the condition being that the heat transfer material comprises a bioactive ceramic, the condition being that the bioactive ceramic comprises: a. from about 20 wt% to about 80 wt% kaolinite (Al 2 Si 2 O 5 (OH) 4 ); b. from about 1 wt% to about 30 wt% tourmaline; c. from about 1 wt% to about 40 wt% alumina (Al 2 O 3 ); d. from about 1 wt% to about 40 wt% ceria (SiO 2 ); and e. from about 1 wt% to about 20 wt% zirconia (ZrO 2 ); the conditions are based on the total weight of the bioceramic composition, and the conditions are that the transfer material layer is spread to the transfer sheet on. 一種熱轉移材料,條件係該熱轉移材料包括生物活性陶瓷,條件係該生物活性陶瓷包括: a.  約20 wt%至約80 wt%高嶺石(Al2 Si2 O5 (OH)4 ); b.  約1 wt%至約30 wt%電氣石; c.  約1 wt%至約40 wt%氧化鋁(Al2 O3 ); d.  約1 wt%至約40 wt%二氧化矽(SiO2 );及 e.  約1 wt%至約20 wt%二氧化鈦(TiO2 ); 條件係該等量係以該生物陶瓷組合物之總重量計,且條件係該轉移材料層鋪至轉移薄片上。A heat transfer material, the condition being that the heat transfer material comprises a bioactive ceramic, the condition being that the bioactive ceramic comprises: a. from about 20 wt% to about 80 wt% kaolinite (Al 2 Si 2 O 5 (OH) 4 ); b. from about 1 wt% to about 30 wt% tourmaline; c. from about 1 wt% to about 40 wt% alumina (Al 2 O 3 ); d. from about 1 wt% to about 40 wt% ceria (SiO 2 ); and e. from about 1 wt% to about 20 wt% of titanium dioxide (TiO 2 ); the conditions are based on the total weight of the bioceramic composition, and the conditions are that the layer of transfer material is applied to the transfer sheet . 一種熱轉移材料,條件係該熱轉移材料包括生物活性陶瓷,條件係該生物活性陶瓷包括: a.  約20 wt%至約80 wt%高嶺石(Al2 Si2 O5 (OH)4 ); b.  約1 wt%至約30 wt%電氣石; c.  約1 wt%至約40 wt%氧化鋁(Al2 O3 ); d.  約1 wt%至約40 wt%二氧化矽(SiO2 );及 e.  約1 wt%至約20 wt%氧化鎂(MgO); 條件係該等量係以該生物陶瓷組合物之總重量計,且條件係該轉移材料層鋪至轉移薄片上。A heat transfer material, the condition being that the heat transfer material comprises a bioactive ceramic, the condition being that the bioactive ceramic comprises: a. from about 20 wt% to about 80 wt% kaolinite (Al 2 Si 2 O 5 (OH) 4 ); b. from about 1 wt% to about 30 wt% tourmaline; c. from about 1 wt% to about 40 wt% alumina (Al 2 O 3 ); d. from about 1 wt% to about 40 wt% ceria (SiO 2 ); and e. from about 1 wt% to about 20 wt% magnesium oxide (MgO); conditions are based on the total weight of the bioceramic composition, and the conditions are that the transfer material layer is applied to the transfer sheet . 一種熱轉移材料,條件係該熱轉移材料包括生物活性陶瓷,條件係該生物活性陶瓷包括: a.  約20 wt%至約60 wt%高嶺石(Al2 Si2 O5 (OH)4 ); b.  約5 wt%至約25 wt%電氣石; c.  約1 wt%至約25 wt%氧化鋁(Al2 O3 ); d.  約1 wt%至約20 wt%二氧化矽(SiO2 );及 e.  約1 wt%至約20 wt%氧化鋯(ZrO2 ); 條件係該等量係以該生物陶瓷組合物之總重量計,且條件係該轉移材料層鋪至轉移薄片上。A heat transfer material, the condition being that the heat transfer material comprises a bioactive ceramic, and the condition is that the bioactive ceramic comprises: a. about 20 wt% to about 60 wt% kaolinite (Al 2 Si 2 O 5 (OH) 4 ); b. from about 5 wt% to about 25 wt% tourmaline; c. from about 1 wt% to about 25 wt% alumina (Al 2 O 3 ); d. from about 1 wt% to about 20 wt% ceria (SiO 2 ); and e. from about 1 wt% to about 20 wt% zirconia (ZrO 2 ); the conditions are based on the total weight of the bioceramic composition, and the conditions are that the transfer material layer is spread to the transfer sheet on. 一種熱轉移材料,條件係該熱轉移材料包括生物活性陶瓷,條件係該生物活性陶瓷包括: a.  約20 wt%至約60 wt%高嶺石(Al2 Si2 O5 (OH)4 ); b.  約5 wt%至約25 wt%電氣石; c.  約1 wt%至約25 wt%氧化鋁(Al2 O3 ); d.  約1 wt%至約20 wt%二氧化矽(SiO2 );及 e.  約1 wt%至約20 wt%二氧化鈦(TiO2 ); 條件係該等量係以該生物陶瓷組合物之總重量計,且條件係該轉移材料層鋪至轉移薄片上。A heat transfer material, the condition being that the heat transfer material comprises a bioactive ceramic, and the condition is that the bioactive ceramic comprises: a. about 20 wt% to about 60 wt% kaolinite (Al 2 Si 2 O 5 (OH) 4 ); b. from about 5 wt% to about 25 wt% tourmaline; c. from about 1 wt% to about 25 wt% alumina (Al 2 O 3 ); d. from about 1 wt% to about 20 wt% ceria (SiO 2 ); and e. from about 1 wt% to about 20 wt% of titanium dioxide (TiO 2 ); the conditions are based on the total weight of the bioceramic composition, and the conditions are that the layer of transfer material is applied to the transfer sheet . 一種熱轉移材料,條件係該熱轉移材料包括生物活性陶瓷,條件係該生物活性陶瓷包括: a.  約20 wt%至約60 wt%高嶺石(Al2 Si2 O5 (OH)4 ); b.  約5 wt%至約25 wt%電氣石; c.  約1 wt%至約25 wt%氧化鋁(Al2 O3 ); d.  約1 wt%至約20 wt%二氧化矽(SiO2 );及 e.  約1 wt%至約20 wt%氧化鎂(MgO); 條件係該等量係以該生物陶瓷組合物之總重量計,且條件係該轉移材料層鋪至轉移薄片上。A heat transfer material, the condition being that the heat transfer material comprises a bioactive ceramic, and the condition is that the bioactive ceramic comprises: a. about 20 wt% to about 60 wt% kaolinite (Al 2 Si 2 O 5 (OH) 4 ); b. from about 5 wt% to about 25 wt% tourmaline; c. from about 1 wt% to about 25 wt% alumina (Al 2 O 3 ); d. from about 1 wt% to about 20 wt% ceria (SiO 2 ); and e. from about 1 wt% to about 20 wt% magnesium oxide (MgO); conditions are based on the total weight of the bioceramic composition, and the conditions are that the transfer material layer is applied to the transfer sheet . 一種熱轉移材料,條件係該熱轉移材料包括生物活性陶瓷,條件係該生物活性陶瓷包括: a.  約40 wt%至約60 wt%高嶺石(Al2 Si2 O5 (OH)4 ); b.  約5 wt%至約15 wt%電氣石; c.  約15 wt%至約25 wt%氧化鋁(Al2 O3 ); d.  約10 wt%至約20 wt%二氧化矽(SiO2 );及 e.  約1 wt%至約20 wt%氧化鋯(ZrO2 ); 條件係該等量係基於該生物活性陶瓷組合物之總重量;且條件係該轉移材料層鋪至轉移薄片上。A heat transfer material, the condition being that the heat transfer material comprises a bioactive ceramic, the condition being that the bioactive ceramic comprises: a. from about 40 wt% to about 60 wt% kaolinite (Al 2 Si 2 O 5 (OH) 4 ); b. from about 5 wt% to about 15 wt% tourmaline; c. from about 15 wt% to about 25 wt% alumina (Al 2 O 3 ); d. from about 10 wt% to about 20 wt% ceria (SiO 2 ); and e. from about 1 wt% to about 20 wt% zirconia (ZrO 2 ); the condition is based on the total weight of the bioactive ceramic composition; and the condition is that the transfer material layer is spread to the transfer sheet on. 一種熱轉移材料,條件係該熱轉移材料包括生物活性陶瓷,條件係該生物活性陶瓷包括: a.  約40 wt%至約60 wt%高嶺石(Al2 Si2 O5 (OH)4 ); b.  約5 wt%至約15 wt%電氣石; c.  約15 wt%至約25 wt%氧化鋁(Al2 O3 ); d.  約10 wt%至約20 wt%二氧化矽(SiO2 );及 e.  約1 wt%至約20 wt%二氧化鈦(TiO2 ); 條件係該等量係基於該生物活性陶瓷組合物之總重量;且條件係該轉移材料層鋪至轉移薄片上。A heat transfer material, the condition being that the heat transfer material comprises a bioactive ceramic, the condition being that the bioactive ceramic comprises: a. from about 40 wt% to about 60 wt% kaolinite (Al 2 Si 2 O 5 (OH) 4 ); b. from about 5 wt% to about 15 wt% tourmaline; c. from about 15 wt% to about 25 wt% alumina (Al 2 O 3 ); d. from about 10 wt% to about 20 wt% ceria (SiO 2 ); and e. from about 1 wt% to about 20 wt% of titanium dioxide (TiO 2 ); conditions are based on the total weight of the bioactive ceramic composition; and the condition is that the transfer material layer is applied to the transfer sheet . 一種熱轉移材料,條件係該熱轉移材料包括生物活性陶瓷,條件係該生物活性陶瓷包括: a.  約40 wt%至約60 wt%高嶺石(Al2 Si2 O5 (OH)4 ); b.  約5 wt%至約15 wt%電氣石; c.  約15 wt%至約25 wt%氧化鋁(Al2 O3 ); d.  約10 wt%至約20 wt%二氧化矽(SiO2 );及 e.  約1 wt%至約20 wt%氧化鎂(MgO); 條件係該等量係基於該生物活性陶瓷組合物之總重量;且條件係該轉移材料層鋪至轉移薄片上。A heat transfer material, the condition being that the heat transfer material comprises a bioactive ceramic, the condition being that the bioactive ceramic comprises: a. from about 40 wt% to about 60 wt% kaolinite (Al 2 Si 2 O 5 (OH) 4 ); b. from about 5 wt% to about 15 wt% tourmaline; c. from about 15 wt% to about 25 wt% alumina (Al 2 O 3 ); d. from about 10 wt% to about 20 wt% ceria (SiO 2 ); and e. from about 1 wt% to about 20 wt% magnesium oxide (MgO); the conditions are based on the total weight of the bioactive ceramic composition; and the condition is that the transfer material layer is applied to the transfer sheet . 一種熱轉移材料,條件係該熱轉移材料包括生物活性陶瓷,條件係該生物活性陶瓷包括: a.  約50 wt%高嶺石(Al2 Si2 O5 (OH)4 ); b.  約10 wt%電氣石; c.  約18 wt%氧化鋁(Al2 O3 ); d.  約14 wt%二氧化矽(SiO2 );及 e.  約8 wt%氧化鋯(ZrO2 ); 條件係該等量係基於該生物活性陶瓷組合物之總重量;且條件係該轉移材料層鋪至轉移薄片上。A heat transfer material, the condition being that the heat transfer material comprises a bioactive ceramic, the condition being that the bioactive ceramic comprises: a. about 50 wt% kaolinite (Al 2 Si 2 O 5 (OH) 4 ); b. about 10 wt % tourmaline; c. about 18 wt% alumina (Al 2 O 3 ); d. about 14 wt% cerium oxide (SiO 2 ); and e. about 8 wt% zirconia (ZrO 2 ); The equivalent is based on the total weight of the bioactive ceramic composition; and the condition is that the layer of transfer material is applied to the transfer sheet. 一種熱轉移材料,條件係該熱轉移材料包括生物活性陶瓷,條件係該生物活性陶瓷包括: a.  約50 wt%高嶺石(Al2 Si2 O5 (OH)4 ); b.  約10 wt%電氣石; c.  約18 wt%氧化鋁(Al2 O3 ); d.  約14 wt%二氧化矽(SiO2 );及 e.  約8 wt%二氧化鈦(TiO2 ); 條件係該等量係基於該生物活性陶瓷組合物之總重量;且條件係該轉移材料層鋪至轉移薄片上。A heat transfer material, the condition being that the heat transfer material comprises a bioactive ceramic, the condition being that the bioactive ceramic comprises: a. about 50 wt% kaolinite (Al 2 Si 2 O 5 (OH) 4 ); b. about 10 wt % tourmaline; c. about 18 wt% alumina (Al 2 O 3 ); d. about 14 wt% cerium oxide (SiO 2 ); and e. about 8 wt% titanium dioxide (TiO 2 ); The amount is based on the total weight of the bioactive ceramic composition; and the condition is that the layer of transfer material is applied to the transfer sheet. 一種熱轉移材料,條件係該熱轉移材料包括生物活性陶瓷,條件係該生物活性陶瓷包括: a.  約50 wt%高嶺石(Al2 Si2 O5 (OH)4 ); b.  約10 wt%電氣石; c.  約18 wt%氧化鋁(Al2 O3 ); d.  約14 wt%二氧化矽(SiO2 );及 e.  約8 wt%氧化鎂(MgO); 條件係該等量係基於該生物活性陶瓷組合物之總重量;且條件係該轉移材料層鋪至轉移薄片上。A heat transfer material, the condition being that the heat transfer material comprises a bioactive ceramic, the condition being that the bioactive ceramic comprises: a. about 50 wt% kaolinite (Al 2 Si 2 O 5 (OH) 4 ); b. about 10 wt % tourmaline; c. about 18 wt% alumina (Al 2 O 3 ); d. about 14 wt% cerium oxide (SiO 2 ); and e. about 8 wt% magnesium oxide (MgO); The amount is based on the total weight of the bioactive ceramic composition; and the condition is that the layer of transfer material is applied to the transfer sheet. 如請求項117之套組,條件係該套組進一步包括關於將該生物活性陶瓷薄片施用於物件上之書面說明書。As set forth in claim 117, the condition is that the kit further includes written instructions for applying the bioactive ceramic sheet to the article.
TW105130073A 2015-09-14 2016-09-14 Thermal energetic methods of applying biologically active ceramics TW201720756A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US201562218448P 2015-09-14 2015-09-14

Publications (1)

Publication Number Publication Date
TW201720756A true TW201720756A (en) 2017-06-16

Family

ID=58289864

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105130073A TW201720756A (en) 2015-09-14 2016-09-14 Thermal energetic methods of applying biologically active ceramics

Country Status (2)

Country Link
TW (1) TW201720756A (en)
WO (1) WO2017048786A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3080523B1 (en) * 2018-04-25 2020-08-07 Salomon Sas CLOTHING INCLUDING REFLECTIVE COATING
FR3080567B1 (en) * 2018-04-26 2020-07-17 Arnaud Emmanuel Andre Tortel COMPOSITE PIECE COMPRISING A MATERIAL CAPABLE OF RETURNING FAR INFRARED
CN109505173A (en) * 2018-11-27 2019-03-22 杭州卓达染整有限公司 A kind of digital transfering printing process for Zein fiber fabric
IT202100012461A1 (en) * 2021-05-14 2022-11-14 Akosol S R L Bioceramic composition and relative article
IT202100012494A1 (en) * 2021-05-14 2022-11-14 Akosol S R L Bioceramic composition and relative article
CN116356448B (en) * 2023-02-21 2023-10-20 武汉猫人云商科技有限公司 Multifunctional polyester fiber, preparation method thereof and application thereof in producing night clothes

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5830540A (en) * 1994-09-15 1998-11-03 Eltron Research, Inc. Method and apparatus for reactive plasma surfacing
US8007854B2 (en) * 2006-01-04 2011-08-30 The University Of Connecticut Ceramic coating and method of preparation thereof
US8585753B2 (en) * 2006-03-04 2013-11-19 John James Scanlon Fibrillated biodegradable prosthesis
US10252945B2 (en) * 2012-09-26 2019-04-09 Multiple Energy Technologies Llc Bioceramic compositions

Also Published As

Publication number Publication date
WO2017048786A1 (en) 2017-03-23

Similar Documents

Publication Publication Date Title
TW201720756A (en) Thermal energetic methods of applying biologically active ceramics
US6319864B1 (en) Triple layer, laminated fabric with waterproof, non-breathable inner layer
KR100944767B1 (en) Preparing method of moisture permeable waterproof-processed fabric improved in its excellent dry feel and anti-abrasion property having a pattern visually and moisture permeable waterproof garment thereby and preparing method of seam-sealing tape for making clothing
TWI491503B (en) Laminated fabric construction with polyolefin compositions
ES2427864T3 (en) Garment bands that include polymeric compositions
CN100488414C (en) Method for preparing plane cocoon warm-keeping type bedding and clothing
JP2016505474A (en) Bioceramic composition
US20070163027A1 (en) Clothing with Water-Absorbent Material
KR20160090825A (en) Shape enhancing garments with discontinuous elastic polymer composition
KR101449704B1 (en) Textile sheet for clothes having high moisture movement and warm function by improving blood flow
CN109291563B (en) Antibacterial health-care ultraviolet-proof environment-friendly composite fabric and preparation method thereof
CN106003896B (en) Heat-preservation antibacterial textile material
CN201294889Y (en) Warming compound fabric
CN202507615U (en) Composite shell fabric
WO2022197743A1 (en) Bioceramic compositions for cancer recovery
CN110678093B (en) Functional fabric and method for producing same
CN207041757U (en) Suitable for fireman&#39;s fire extinguishing protective garment of cold region
CN211608239U (en) Sweat-proof T-shirt
CN211581627U (en) HPPE waterproof anti-cutting clothing
CN202504260U (en) Mesh composite fabric
CN219396350U (en) Multifunctional antistatic protective clothing
JPH09241954A (en) Lining fabric of multi-layer structure
TWM316095U (en) Multi-layer energetic protector strap structure
CN207383542U (en) Chest cold-proof underwear
TWI616573B (en) Heat-generating fabric and method of manufacturing the same