TW201719151A - 缺陷識別系統 - Google Patents

缺陷識別系統 Download PDF

Info

Publication number
TW201719151A
TW201719151A TW105133987A TW105133987A TW201719151A TW 201719151 A TW201719151 A TW 201719151A TW 105133987 A TW105133987 A TW 105133987A TW 105133987 A TW105133987 A TW 105133987A TW 201719151 A TW201719151 A TW 201719151A
Authority
TW
Taiwan
Prior art keywords
defect
light
composition
wafer
time
Prior art date
Application number
TW105133987A
Other languages
English (en)
Inventor
黃俊榮
Original Assignee
台灣積體電路製造股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台灣積體電路製造股份有限公司 filed Critical 台灣積體電路製造股份有限公司
Publication of TW201719151A publication Critical patent/TW201719151A/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/94Investigating contamination, e.g. dust
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9501Semiconductor wafers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • G01N2021/8854Grading and classifying of flaws
    • G01N2021/8861Determining coordinates of flaws
    • G01N2021/8864Mapping zones of defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • G01N2021/8887Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges based on image processing techniques

Landscapes

  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Signal Processing (AREA)
  • Manufacturing & Machinery (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Microelectronics & Electronic Packaging (AREA)

Abstract

一種缺陷識別系統和缺陷識別方法。該方法包括檢測晶圓以產生缺陷映射表並且通過使用缺陷映射表定位晶圓上的至少一個缺陷;分析從至少一個缺陷的一個反射的光以得到光的光譜;比較得到的光譜的波形與分別在不同物質的光譜中的多個波形;根據比較確定缺陷的組成。

Description

缺陷識別系統
本發明是有關於一種半導體製造方法及裝置,且特別是有關於一種缺陷識別系統和缺陷識別方法。
現今半導體元件的製程係運用各種材料和機器來產生最終產品。製造商致力於減少加工過程中的微粒污染以改善產品良率。由於半導體元件的複雜度增加(例如,更多層及製程)以及更大晶圓的發展,進一步凸顯了對缺陷檢測和控制的需求。
製造過程中需要頻繁地使用晶圓掃描器對半成品進行檢測,以便及時發現缺陷。晶圓掃描器可以檢測缺陷、分析缺陷以識別缺陷種類,並定位晶圓上的缺陷,從而幫助工作人員評估和修正會引起這些缺陷的製程。
然而,由於產品製造中有上百道製程,會造成缺陷的可能因素相當多,且缺陷的來源也難以追溯。因此,對於缺陷的評估將高度依賴人員的知識和專業,且將花費大量的時間和精力,但結果通常不令人滿意。
本發明一實施例提供了一種缺陷識別系統,其包括:光源,被配置為將光投射在晶圓上;檢測元件,被配置為檢測晶圓以產生缺陷映射表,並且使用缺陷映射表來定位晶圓上的至少一個缺陷;光分析元件,被配置為分析從所述至少一個缺陷中的一個缺陷處反射的光以得到此光的光譜;以及處理元件,連接檢測元件和光分析元件,其中,處理元件經程式化以將所得到的光譜波形與分別在不同物質的光譜中的多個波形進行比較以確定缺陷的組成。
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。
以下公開內容提供了許多用於實現所提供主題的不同特徵的不同實施例或實例。下面描述了元件和配置的具體實例以簡化本發明。當然,這些僅僅是實例,而不旨在限制本發明。例如,以下描述中,在第二特徵上方或者之上形成第一特徵可以包括直接接觸形成的第一特徵和第二特徵的實例,並且也可以包括在第一特徵和第二特徵之間形成額外特徵,從而使得第一特徵和第二特徵不直接接觸的實例。此外,本揭露可在不同實施例中重複參考標號和/或字元。該重複是為了簡單和清楚的目的,其本身並不指定所討論的不同實施例和/或配置之間的關係。
而且,為便於描述,在此可以使用諸如“在…之下”、“在…下方”、“下部”、“在…之上”、“上部”等空間關聯術語,以描述如圖所示的一個元件或特徵與另一個(或另一些)元件或特徵的關係。除了圖中所示的方位外,空間關聯術語旨在包括裝置在使用或操作中的不同方位。裝置可以以其他方式定向(旋轉90度或在其他方位上),而此處使用的空間關連描述符可以同樣地作出相應的解釋。
在半導體產品的製造中,會使用光源(例如,雷射)掃描晶圓的表面以對晶圓實施檢測,以並且測量從表面反射的光以偵測潛在的缺陷。在本揭露中,上述反射的光進一步導向用於分析反射光光譜的光譜分析儀。由於在製造過程中會產生或帶來的微粒有限,而且所有的物質都有自己獨特的光譜,在本應用中,藉由分析從缺陷反射的光得到的光譜會與預前建立的不同組成的光譜比較,以取得出現在缺陷處的微粒的組成。根據所取得的組成,藉由將所取得的組成與製造時間表中的製程所涉及的物質比較,可以估計出缺陷發生的大概時間。因此,如果所取得的組成與製程中涉及的一種或多種物質匹配,則可以確定引起缺陷的製程。
鑒於上述,本揭露提供了缺陷識別系統。在一些實施例中,缺陷識別系統包括光源、檢測元件、光分析元件和處理元件。該光源被配置為向晶圓投射光。檢測元件被配置為檢測晶圓以產生缺陷映射表並且使用缺陷映射表定位晶圓上的至少一個缺陷。光分析元件被配置為分析從至少一個缺陷的一個缺陷處反射的光以取得該光的光譜。處理元件連接至檢測元件和光分析元件,其中,處理元件經由程式化以對所取得的光譜的波形與分別在不同物質的光譜中的多個波形進行比較,並且根據比較結果確定缺陷的組成。
圖1是根據本發明的一些實施例所繪示的缺陷識別系統的示意圖。在一些實施例中,缺陷識別系統10包括光源102、檢測元件104、光分析元件106、處理元件108和光學元件110、112、114、116、118和120。
在一些實施例中,光源102是諸如半導體雷射或雷射光梳的雷射或是其他可產生不同波長的光的光發生器。光源102將光投射在晶圓12上,使得從晶圓12反射的光可以由檢測元件104和光分析元件106偵測,而用於後續的檢測和分析。
在一些實施例中,檢測元件104包括光電倍增偵測器或其它光感測元件,諸如電荷耦合裝置(CCD)、背照式(BSI)感測器或互補金屬氧化物半導體(CMOS)感測器,用於偵測從晶圓12反射的光以檢測晶圓12上的缺陷。
在一些實施例中,光分析元件106是可偵測從晶圓12反射的光並且分析所偵測光的光譜的光譜分析儀。在一些實施例中,光分析元件106根據所分析的光譜進一步計算反射光的光組成。在一些實施例中,待計算的光組成包括Lab色彩空間中的亮度L*、色彩組成a*或色彩組成b*或它們的組合。
在一些實施例中,處理組件108是單核或多核的中央處理單元(CPU)或任何其它的可程式化的通用或專用微處理器、數位訊號處理器(DSP)、可程式化控制器、專用積體電路(ASIC)、可程式設計邏輯裝置(PLD)、其它類似的裝置或這些裝置的組合。處理元件108連接至檢測元件104和光分析元件106。在一些實施例中,處理元件108配置為存取和執行記錄在電腦可讀儲存媒體(未示出)中的程式,以根據本發明的一些實施例來實現偵測識別的方法。
如圖1所示,光源102產生了離散波長的偏振光。此光會穿過隔離光束的濾鏡110。濾鏡110更包括可擴大光束並將光束聚焦在針孔光圈上的光學元件。可選擇針孔光圈的直徑以使光束較易對準。具有所選波長的光會通過濾鏡110而至分光器112,分光器112會反射適當偏振的光並且將此光導向物鏡114。物鏡114會將光縮小並投射在晶圓12上。此光會聚焦在物鏡114的焦平面上。
根據共焦成像原理,照射在晶圓12上的光會被散射,其中一部分的光會反射回物鏡114,並且通過上述的光路返回。返回的光穿過分光器112和116並且到達具有針孔光圈的濾鏡118。穿過光圈的光會在檢測元件104上成像,檢測元件104產生晶圓12的缺陷映射表。檢測元件104進一步使用缺陷映射表來定位晶圓12上的缺陷。另一方面,在返回的光穿過分光器116的同時,光的一部分會被導向具有針孔光圈的濾鏡120。穿過光圈的光會由光分析元件106偵測,之後光分析元件106會分析從缺陷處反射的光以得到光譜。之後,經過檢測元件104和光分析元件106處理的資料會傳送至處理元件108以用於進一步處理。
在一些實施例中,缺陷識別系統10適於根據本發明的一些實施例實現缺陷識別方法。具體地,圖2是根據本發明的一些實施例所繪示的缺陷識別的方法的流程圖。
在步驟202中,檢測元件104檢測晶圓12以產生缺陷映射表並且使用此缺陷映射表定位晶圓12上的缺陷。在一些實施例中,檢測元件104會逐行(by lines)掃描晶圓12以產生可代表從晶圓12的行反射的光的行資料(data of lines),將由行資料形成的樣本影像的多個特徵與參考影像的多個相應特徵比較,並且根據比較結果,將樣本影像中偏離參考影像的相應特徵的特徵識別為缺陷。在一些實施例中,缺陷識別系統10還包括連接至檢測元件104的用於儲存參考影像的電腦可讀取儲存媒體(未示出)。
在步驟204中,光分析元件106分析從所述至少一個缺陷中的一個缺陷反射的光以取得光的光譜。在步驟206中,處理元件108會將所取得光譜的波形與分別在不同物質(諸如鎢(W)、金(Au)、銅(Cu)、鈦(Ti)、鉭(Ta)或碳(C)或任何其它元素或化學組成)的光譜中的多個波形進行比較。在步驟208中,處理元件108會根據步驟206中的比較結果確定缺陷的組成。
在一些實施例中,上述物質的光譜是由處理元件108使用歷史分析資料預先建立的並且儲存在連接至處理元件108的電腦可讀儲存媒體(未示出)的光譜資料庫中。具體地,處理元件108確定了可能在晶圓12製程中涉及的多個組成,並且藉由使用注射或注入工具在晶圓12上分別設置這些物質。之後,處理元件108會控制光源102以將光投射在晶圓12的設置區域上,並且啟動光分析元件106以分析從設置區域反射的光,以取得物質的光譜。
例如,圖3是根據本發明的一些實施例所繪示的金(Au)在波長分佈內的反射光譜(任何入射角)。參照圖3,Au反射光譜的波形30示出了光反射率與從晶圓上的Au設置區域反射的光的光波長之間的關係。將波形30與當前偵測的光譜的波形比較,一旦金的光譜與當前的光譜匹配,則可確定晶圓上微粒的組成為含Au。
需注意的是,根據所確定的缺陷的組成,處理元件108可以進一步推斷缺陷的發生時間。具體地,在一些實施例中,處理元件108可使用缺陷的組成,查詢分別涉及製造時間表中製程的物質(諸如,鎢(W)、銅(Cu)或碳(C)),以確定引起此缺陷的製程。例如,如果缺陷的組成確定為含碳,則由於晶圓盒是含碳的工具,可以進一步確定引起缺陷的可疑工具是晶圓盒且可疑的製程是使用晶圓盒的製程。
根據上述,可以推斷缺陷的組成,並且可以確定引起缺陷的製程或製造工具,因此可以增強缺陷識別的能力、減小時間週期並且改進業務影響。
需注意的是,在一些實施例中,在取得反射光的光譜之後,處理元件108可以根據所取得的光譜進一步計算反射光的光組成並且相應地估計缺陷的發生時間。具體地說,通過對缺陷的組成和發生時間之間的交叉比較,可以更準確地推論缺陷的發生時間或引起缺陷的製程。
詳言之,圖4是根據本發明的一些實施例所繪示的缺陷識別方法的流程圖。參照圖4,在步驟402中,檢測元件104檢測晶圓12以產生缺陷映射表並且使用缺陷映射表定位晶圓12上的缺陷。在步驟404中,光分析元件106分析由至少一個缺陷中的一個缺陷反射的光以取得光的光譜。在步驟406中,處理元件108比較所取得的光譜的波形與分別在不同物質的光譜中的多個波形。在步驟408中,處理元件108根據步驟406中的比較結果,確定缺陷的組成。上述步驟402至408與先前實施例中的步驟202至208相同或類似,因此不在此處重複其詳細的描述。
本實施例和先前實施例的不同之處在於步驟410,在步驟410中,處理元件108根據所取得的光譜進一步計算從缺陷反射的光的至少一個光組成。在一些實施例中,待計算的光組成包括Lab色彩空間中的亮度L*、色彩組成a*或色彩組成b*或它們的組合。
在步驟412中,處理元件108比較至少一個光組成的一個與缺陷的相應的光組成的特性曲線。在步驟414中,處理元件108根據步驟412中的比較結果估計缺陷的發生時間。具體地,在一些實施例中,處理元件108查詢了所述光組成中的一個的特性曲線,並且在特性曲線中查找當前測量的光組成以找出相應的時間週期。特性曲線記錄了光組成隨著時間的衰減,而被找到的時間週期代表了此光組成從缺陷剛發生時所計算的光組成衰減至當前計算的光組成需要花費多長時間。因此,處理元件108可以通過從分析反射光的檢測時間點減去時間週期以得到缺陷的發生時間。在一些實施例中,上述光組成的特性曲線是之前處理元件108使用測量的歷史資料來建立的並且儲存在連接至處理元件108的電腦可讀儲存媒體(未示出)中。具體地,以亮度為例,處理元件108收集不同時間點測量的從缺陷處反射的光的亮度的多個測量值並且收集執行測量的時間。之後,處理元件108在xy座標平面中標記測量值、使用回歸分析法計算測量值的趨勢線,並且使用趨勢線作為亮度的特性曲線。在一些實施例中,可以進一步處理測量值,諸如計算測量值的對比值或計算測量值或對比值的自然對數值,以提高測量值隨著時間的變化量。
在步驟416中,處理元件108根據缺陷的組成查詢分別涉及製造時間表中多個製程的物質,並且根據缺陷的產生時間查詢製造時間表,以確定引起缺陷的製程。
詳言之,由於製造時間表記錄了製程中所用的物質,因此當確定了缺陷的組成,透過將該缺陷的組成與製程中涉及的物質進行比較,將很容易地發現引起缺陷的製程。另一方面,由於製造時間表也記錄了製程的時間週期,因此當預估了缺陷的發生時間(或發生日期),透過對估計的缺陷發生時間與製造時間表中的製程的時間週期進行比較,也將很容易地發現引起缺陷的製程。因此,透過對缺陷的組成和發生時間之間的交叉比較,可以得到引起缺陷的更準確確定的製程。
應該注意,在一些實施例中,處理元件108根據亮度估計了缺陷的發生時間。相應地,處理元件108查詢了亮度的特性曲線,並且之後在特性曲線中查找當前測量的亮度以發現相應的時間週期。在一些實施例中,處理元件108計算了亮度的對比值的自然對數值,以比較自然對數值與亮度的特性曲線來發現相應的時間週期。最後,處理元件108從測量亮度的檢測時間點減去時間週期,而得到缺陷的發生時間。
例如,圖5繪示根據本發明的一些實施例的亮度的特性曲線圖。
在圖5中,橫軸代表實施測量的時間,而縱軸代表所測量亮度(即,L*值)的對比值。採樣點代表在不同時間點所偵測到的亮度的測量值的對比值。根據採樣點的座標,通過使用回歸分析法來計算採樣點的趨勢線500。相應地,當測量從缺陷處反射的光的當前亮度時,計算相對於缺陷的亮度與相對於晶圓中無缺陷裝置的亮度之間的亮度的對比值,並且使用對比值來查找趨勢線500以找出亮度衰減所需的時間週期。例如,如果當前測量的亮度的對比值等於55,則根據趨勢線500發現相應的時間為約65天。因此,通過從實施測量的那一天回溯65天,即可得到缺陷的發生時間。
在一些實施例中,處理元件108根據光組成的類型估計缺陷的發生時間。相應地,處理組件108查詢了光組成的特性曲線、對從所定位的缺陷處反射的光測得的光組成與缺陷的相應的光組成的特性曲線進行比較,以發現相應的時間週期。處理元件108相應地從分析反射光的檢測時間點減去時間週期以獲得缺陷的發生時間。在一些實施例中,處理元件108計算了根據光組成估計的發生時間的統計資料,以確定發生時間的最終結果,其中,該統計資料是一個平均數、中位數、標準差、置信區間(CI)或百分位數。
在一些實施例中,處理元件108主要根據亮度L*的測量值估計發生時間並且根據諸如色彩組成a*和b*的其它光組成的測量值來修正發生時間。例如,圖6繪示根據本發明的一些實施例的缺陷識別方法的流程圖。
參照圖1和圖6,在步驟602中,處理元件108比較了測量的亮度L*與缺陷的亮度L*的特性曲線。在步驟604中,處理元件108根據亮度L*的比較來估計發生時間。在步驟606中,處理元件108比較了測量的色彩組成a*與缺陷的色彩組成a*的特性曲線,並且比較了測量的色彩組成b*與缺陷的色彩組成b*的特性曲線。在步驟608中,處理元件108根據色彩組成a*和b*的比較來修正所估計的發生時間。
在一些實施例中,處理元件108將根據亮度和色彩組成a*和b*所獲得的時間週期乘以不同權重,來修正估計的發生時間。例如,圖7繪示根據本發明的一些實施例的色彩組成a*的特性曲線圖。
在圖7中,橫軸代表實施測量的時間,而縱軸代表Lab色彩空間中的色彩組成a*(即,a*值)的對比值的自然對數值。採樣點代表在相應的時間點所偵測的色彩組成a*的測量值的對比值的自然對數值。根據採樣點的座標,通過使用回歸分析法的來計算採樣點的趨勢線700。相應地,當測量從缺陷處反射的光的當前色彩組成a*時,計算相對於缺陷的色彩組成a*與相對於晶圓中無缺陷裝置的色彩組成a*之間的色彩組成a*的對比值的自然對數值,並且使用自然對數值來查找趨勢線700以找出色彩組成a*衰減所用的時間週期。例如,如果當前測量的色彩組成a*的a*值等於53,則根據趨勢線700發現相應的時間為約70天。
在一些實施例中,根據亮度所獲得的時間週期(即,65天)以及根據色彩組成a*所獲得的時間週期(即,70天)分別乘以權重80%和20%,並且計算乘積的總和(即,65*80%+70*20%=66天),用以作為時間週期的最終結果。最後,從檢測時間點減去時間週期,即可得到缺陷的發生時間。
在一些實施例中,上述光組成的權重可根據某些標準來確定。在一些實施例中,可計算能夠表示採樣點資料如何與所計算的趨勢線符合的判斷係數(即,R平方),並將其用以作為確定光組成的權重的參考。例如,參照圖7的實施例,根據a*值和圖7中的趨勢線700來計算相對於色彩組成a*的R平方,如果所計算的R平方大於或等於0.9,則色彩組成a*的權重設定為0.2,而亮度的權重設定為0.8。如果計算的R平方的值介於0.7至0.9之間,則色彩組成a*的權重設定為0.7,而亮度的權重設定為0.3。如果計算的R平方的值小於0.7,則色彩組成a*的權重設定為0,這意味著色彩組成a*沒有用作修正根據光亮L*的比較所估計的發生時間的參考。
在一些實施例中,處理元件108可根據多個缺陷來估計發生時間。詳言之,由於相同製程或相同階段,缺陷可能成群出現,可針對從多個缺陷追溯的發生時間進一步運用統計方法以收斂缺陷的發生時間。藉此,可獲得更準確的缺陷發生時間。
在一些實施例中,處理元件108通過使用圖4實施例教示的方法估計缺陷映射表中缺陷的發生時間。處理元件108可將缺陷映射表中所估計的缺陷發生時間進行排序,並計算所估計發生時間的中位數與一偏差的時間間隔,以確定發生時間的最終結果。在一些實施例中,該偏差等於一係數和所估計發生時間的第97百分位與中位數之差值的乘積。在一些實施例中,該係數的數值介於1至k,其中,k是大於1的任意數並且根據所選擇的信心水準來確定。在一些實施例中,該係數等於19.6(此為常態分佈的第97.5百分位點的近似值,並且用以建構大約95%的信心區間,其中,常態曲線下95%的區域位於平均值的1.96倍標準差之內)。在一些實施例中,該係數等於1.96與另一經驗值或實驗值的乘積或商數。
例如,在一些實施例中,處理元件108通過以下方程式計算缺陷的發生時間的時間間隔T:
詳言之,時間間隔T等於根據缺陷所估計的發生時間的第50個百分位P50 (即,中位數)加上偏差,此偏差等於係數和所估計發生時間的第97個百分位P97 與第50個百分位P50 之間的差值的乘積。該係數等於1.96除以1.88的商數,而1.88係根據實驗結果確定。
在一些實施例中,非暫時性的電腦可讀媒體包括處理器可執行指令,當這些指令被執行時,可以實施如以上實施例所示的用於識別晶圓上缺陷的方法。在一些實施例中,非暫時性的電腦可讀媒體是CD-R、DVD-R、快閃記憶體裝置或硬碟的碟片等,其上是以電腦可讀資料進行編碼。電腦可讀資料(諸如包括多個0和1的二進位資料),進而包括電腦指令集,此電腦指令集係配置為根據此處所提出的一或多個原則來運作。在一些實施例中,處理器可執行的電腦指令係配置用以實施缺陷識別方法(例如圖2中所教示的示例性方法的至少一部分)。許多這樣的電腦可讀媒體可由本領域通常技術人員設計,且配置為根據此處提出的技術來運作。
根據一些實施例,缺陷識別系統包括配置為向晶圓投射光的光源、配置為檢測晶圓以產生缺陷映射表並且使用缺陷映射表定位晶圓上的至少一個缺陷的檢測元件、配置為分析從至少一個缺陷的一個缺陷處反射的光的光分析元件、連接至檢測元件和光分析元件的處理元件。該處理元件是被程式設計以對所取得的光譜波形與分別在不同物質的光譜中的多個波形進行比較,並且根據比較結果確定缺陷的組成。
在一些實施例中,所述檢測元件逐行掃描所述晶圓以產生代表從所述晶圓的行反射的光的行資料,對由所述行資料形成的樣本影像的多個特性與參考影像的相應的多個特性進行比較,並且根據所述比較的結果,將所述樣本影像中偏離所述參考影像的相應特性的特性識別為缺陷。
在一些實施例中,缺陷識別系統還包括電腦可讀儲存媒體,其與檢測元件連接,其中,所述儲存媒體儲存所述參考影像。
在一些實施例中,缺陷識別系統還包括電腦可讀儲存媒體,其與處理元件連接,其中,所述儲存媒體儲存了包括所述不同物質的光譜的光譜資料庫。
在一些實施例中,所述處理元件還包括電路,所述電路根據所述缺陷的組成,查詢分別涉及製造時間表中多個製程的物質,以確定引起所述缺陷的製程。
在一些實施例中,所述處理元件還包括電路,所述電路根據所取得的所述光的光譜來計算從所述缺陷處反射的光的至少一個光組成,並且對所述至少一個光組成與所述缺陷的相應光組成的特性曲線進行比較,以估計所述缺陷的發生時間。
在一些實施例中,所述處理元件還包括電路,所述電路分析從所述缺陷處反射的光的檢測時間點減去所述特性曲線中對應於所計算的所述光組成的時間週期,以得到所述缺陷的發生時間。
在一些實施例中,所述處理元件還包括電路,所述電路根據所述缺陷的組成來查詢分別涉及製造時間表中多個製程的物質,並且根據所述缺陷的發生時間來查詢製造時間表,以確定引起所述缺陷的製程。
在一些實施例中,所述至少一個光組成包括Lab色彩空間中的亮度L*、色彩組成a*或色彩組成b*或它們的組合。
在一些實施例中,該缺陷識別系統還包括:連接處理元件的電腦可讀儲存媒體,其中,所述儲存媒體儲存所述至少一個缺陷的光組成的特性曲線。
根據一些實施例,缺陷識別方法包括檢測晶圓以產生缺陷映射表,並使用缺陷映射表定位晶圓上的至少一個缺陷,分析從至少一個缺陷的一個缺陷處反射的光,比較所取得的光譜的波形與分別在不同物質的光譜中的多個波形,並且根據比較結果確定缺陷的組成。
在一些實施例中,檢測晶圓以產生缺陷映射表並且定位缺陷映射表中的至少一個缺陷的步驟包括:逐行掃描晶圓以產生代表從所述晶圓的行反射的光的行資料;對由所述行資料形成的樣本影像的多個特性與參考影像的相應的多個特性進行比較;以及根據所述比較的結果,將所述樣本影像中偏離於所述參考影像的相應特性的特性識別為缺陷。
在一些實施例中,在根據所述比較確定所述缺陷的組成的步驟之後,所述方法還包括:根據所述缺陷的組成,查詢分別涉及製造時間表中的多個製程中的物質,以確定引起所述缺陷的製程。
在一些實施例中,在對所取得的所述光譜的波形與分別在不同物質的光譜中的多個波形進行比較的步驟之前,所述方法還包括:確定多個製程中涉及的多個組成;以及在所述晶圓上分別設置所述多個組成,將光投射在所述晶圓的設置區域上,並且分析從所述設置區域反射的光,以得到所述不同物質的光譜。
在一些實施例中,在分析從所述至少一個缺陷的一個缺陷處反射的光以得到所述光的光譜的步驟之後,所述方法還包括:根據所取得的所述光的所述的光譜,計算從所述缺陷處反射的光的至少一個光組成,並且對所述至少一個光組成與所述缺陷的相應的光組成的特性曲線進行比較,以估計所述缺陷的發生時間。
在一些實施例中,根據比較結果估計所述缺陷的發生時間的步驟包括:從測量所述缺陷的所述光組成的檢測時間減去所述特性曲線中對應於所測得的所述光組成的時間週期,以得到所述缺陷的發生時間。
在一些實施例中,該方法還包括:根據所述缺陷的組成來查詢分別涉及製造時間表中的多個製程中的物質,並且根據所述缺陷的發生時間來查詢所述製造時間表,以確定引起所述缺陷的製程。
在一些實施例中,所述至少一個光組成包括Lab顏色空間中的亮度L*、色彩組成a*或色彩組成b*或它們的組合。
在一些實施例中,在對從定位的所述缺陷處反射的光測得的所述至少一個光組成與所述缺陷的相應的光組成的特性曲線進行比較的步驟之前,所述方法還包括:收集從所述缺陷處反射的所述光的所述至少一個光組成的一個光組成的多個測量值以及用於實施所述測量的時間;以及計算所述光組成的所述測量值和實施所述測量的所述時間的趨勢線以作為所述光組成的所述特性曲線。
根據一些實施例,當執行實施用於識別晶圓上的至少一個缺陷的方法時,非暫時性的電腦可讀媒體包括處理器可執行指令。該方法包括檢測晶圓以產生缺陷映射表並定位缺陷映射表中的至少一個缺陷,分析從至少一個缺陷中的一個反射的光以得到光的光譜,比較所取得的光譜的波形與分別在不同物質的光譜中的多個波形,並且根據比較結果確定缺陷的組成。
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。
10‧‧‧缺陷識別系統
102‧‧‧光源
104‧‧‧檢測元件
106‧‧‧光分析元件
108‧‧‧處理元件
110、118、120‧‧‧濾鏡
112、116‧‧‧分光器
114‧‧‧物鏡
12‧‧‧晶圓
30‧‧‧波形
500、700‧‧‧趨勢線
S202~S208‧‧‧本發明一實施例之缺陷識別方法的步驟
S402~S416‧‧‧本發明一實施例之缺陷識別方法的步驟
S602~S608‧‧‧本發明一實施例之缺陷識別方法的步驟
圖1是根據本發明的一些實施例所繪示的缺陷識別系統的示意圖。 圖2是根據本發明的一些實施例所繪示的缺陷識別方法的流程圖。 圖3是根據本發明的一些實施例所繪示的金(Au)在波長分佈的任何入射角的反射光譜。 圖4是根據本發明的一些實施例所繪示的缺陷識別方法的流程圖。 圖5是根據本發明的一些實施例所繪示的亮度的特性曲線圖。 圖6是根據本發明的一些實施例所繪示的缺陷識別方法的流程圖。 圖7是根據本發明的一些實施例所繪示的色彩組成a*的特性曲線圖。
S202~S206‧‧‧本發明一實施例之缺陷識別方法的步驟

Claims (1)

  1. 一種缺陷識別系統,包括: 光源,被配置為投射光於晶圓上; 檢測元件,被配置為檢測所述晶圓以產生缺陷映射表,並且使用所述缺陷映射表來定位所述晶圓上的至少一個缺陷; 光分析元件,被配置為分析從所述至少一個缺陷中的一個缺陷處反射的光以得到所述光的光譜;以及 處理元件,連接所述檢測元件和所述光分析元件,其中,所述處理元件經程式化以將所得到的所述光譜的波形與分別在不同物質的光譜中的多個波形進行比較以確定所述缺陷的組成。
TW105133987A 2015-11-16 2016-10-21 缺陷識別系統 TW201719151A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US14/941,670 US9719941B2 (en) 2015-11-16 2015-11-16 Defect recognition system and defect recognition method

Publications (1)

Publication Number Publication Date
TW201719151A true TW201719151A (zh) 2017-06-01

Family

ID=58690973

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105133987A TW201719151A (zh) 2015-11-16 2016-10-21 缺陷識別系統

Country Status (3)

Country Link
US (1) US9719941B2 (zh)
CN (1) CN106711057A (zh)
TW (1) TW201719151A (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI688088B (zh) * 2019-07-24 2020-03-11 晶相光電股份有限公司 影像感測裝置及影像感測系統
CN110854035A (zh) * 2019-11-27 2020-02-28 上海华力微电子有限公司 晶圆边缘缺陷的检测方法及装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6797975B2 (en) * 2000-09-21 2004-09-28 Hitachi, Ltd. Method and its apparatus for inspecting particles or defects of a semiconductor device
US7433034B1 (en) * 2005-06-17 2008-10-07 Nanometrics Incorporated Darkfield defect inspection with spectral contents
US8045145B1 (en) * 2007-06-06 2011-10-25 Kla-Tencor Technologies Corp. Systems and methods for acquiring information about a defect on a specimen
JP2013205239A (ja) * 2012-03-28 2013-10-07 Hitachi High-Technologies Corp 基板表面検査方法及びその装置

Also Published As

Publication number Publication date
CN106711057A (zh) 2017-05-24
US20170138866A1 (en) 2017-05-18
US9719941B2 (en) 2017-08-01

Similar Documents

Publication Publication Date Title
JP6671426B2 (ja) 欠陥特定情報を用いるウェハ上の欠陥の検出
TWI672636B (zh) 對一晶圓上偵測之缺陷進行分類之方法、系統及非暫時性電腦可讀媒體
KR102019534B1 (ko) 결함 특유의, 다중 채널 정보를 이용한 웨이퍼 상의 결함 검출
US9293298B2 (en) Defect discovery and inspection sensitivity optimization using automated classification of corresponding electron beam images
KR101764658B1 (ko) 결함 해석 지원 장치, 결함 해석 지원 장치에 의해 실행되는 프로그램 및 결함 해석 시스템
JP5444092B2 (ja) 検査方法およびその装置
JP6545164B2 (ja) ウェハ検査プロセスの1つ以上のパラメータを決定するための方法、コンピュータ読み出し可能な媒体およびシステム
US10157457B2 (en) Optical measurement of opening dimensions in a wafer
JP2018516451A (ja) 検査ツールの検査感度を高めるシステム及び方法
US20020140930A1 (en) System and method for performing optical inspection utilizing diffracted light
IL262170A (en) A system, method and product A computer program for correcting a change figure is produced from a comparison between a target matrix and a reference matrix
TW201719151A (zh) 缺陷識別系統
US10359613B2 (en) Optical measurement of step size and plated metal thickness
TWI692824B (zh) 缺陷識別系統、缺陷識別方法及電腦可讀媒體
US20210191372A1 (en) Analysis of additive manufacturing processes
TW202014930A (zh) 以彩色相機進行光譜分析之方法
US10168524B2 (en) Optical measurement of bump hieght
US11379969B2 (en) Method for process monitoring with optical inspections
TWI844712B (zh) 檢查半導體晶圓之方法及系統
WO2023096932A1 (en) Optical metrology with influence map of unknown section
WO2018031574A1 (en) Optical measurement of bump hieght
JP2004363223A (ja) 欠陥検査装置、欠陥検査システム、欠陥検査方法および欠陥検査プログラム