TW201706439A - 碳化矽膜之保形沉積 - Google Patents

碳化矽膜之保形沉積 Download PDF

Info

Publication number
TW201706439A
TW201706439A TW105103396A TW105103396A TW201706439A TW 201706439 A TW201706439 A TW 201706439A TW 105103396 A TW105103396 A TW 105103396A TW 105103396 A TW105103396 A TW 105103396A TW 201706439 A TW201706439 A TW 201706439A
Authority
TW
Taiwan
Prior art keywords
tantalum carbide
carbide film
depositing
ruthenium
substrate according
Prior art date
Application number
TW105103396A
Other languages
English (en)
Other versions
TWI693295B (zh
Inventor
巴德里 N 凡拉德拉彥
龔伯
桂喆
Original Assignee
諾發系統有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US14/616,435 external-priority patent/US10325773B2/en
Application filed by 諾發系統有限公司 filed Critical 諾發系統有限公司
Publication of TW201706439A publication Critical patent/TW201706439A/zh
Application granted granted Critical
Publication of TWI693295B publication Critical patent/TWI693295B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02529Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • C23C16/325Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0834Compounds having one or more O-Si linkage
    • C07F7/0838Compounds with one or more Si-O-Si sequences
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/36Carbonitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02167Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon carbide not containing oxygen, e.g. SiC, SiC:H or silicon carbonitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • H01L21/02312Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a gas or vapour
    • H01L21/02315Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a gas or vapour treatment by exposure to a plasma

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Ceramic Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Formation Of Insulating Films (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本案揭露用以提供碳化矽膜的方法及系統。碳化矽層可在採用一或更多含矽前驅物的製程條件下得以提供,該含矽前驅物具有一或更多矽-氫鍵、及/或矽-矽鍵。 該含矽前驅物亦可具有一或更多矽-氧鍵、及/或矽-碳鍵。處於實質上低能態的一或更多自由基物種可與含矽前驅物進行反應,從而形成碳化矽膜。該一或更多自由基物種可形成於遠端電漿源中。

Description

碳化矽膜之保形沉積
本揭露內容概括地相關於碳化矽膜的形成。
碳化矽(SiC)類的薄膜具有獨特的物理、化學、及機械特性,且係使用於各種應用中,尤其積體電路應用。SiC類的薄膜包括:氧參雜SiC(亦稱為碳氧化矽(SiOC))、氮參雜SiC(亦稱為碳氮化矽(SiNC))、氧氮參雜SiC(亦稱為碳氮氧化矽(SiONC))、及無參雜碳化矽。
本發明提供製備碳化矽的方法及系統。實質上保形的碳化矽層可使用採用含矽前驅物的製程而得以提供,該含矽前驅物具有一或更多矽-氫鍵、及/或矽-矽鍵。含矽前驅物亦可具有一或更多矽-氧鍵、矽-氮鍵、及/或矽-碳鍵。藉由使(複數)矽-氫鍵斷裂 (例如使氫原子從前驅物脫離)、或使(複數)矽-矽鍵斷裂(若存在於前驅物中)可使前驅物具有反應性,同時保留前驅物中的矽-氧鍵、矽-氮鍵、及/或矽-碳鍵其中一者或多者。所產生的膜可包括一或更多矽-氧及/或矽-碳鍵。藉由將前驅物轉變為自由基或其他反應性物種(其中氫原子或其他原子被抽離),可將前驅物轉變成反應性的、卻實質上完整的形式。舉例而言,氫或其他原子可藉由使前驅物曝露於自由基物種而抽離。在某些實施例中,處於實質上低能態的一或更多自由基物種可與(複數)含矽前驅物進行反應,從而形成碳化矽。該一或更多自由基物種可形成於遠端電漿源中。碳化矽可用於廣泛的各種應用中,包括但不限於用作襯套、間隔件、蝕刻停止、銅擴散阻障物、孔洞密封物、及極低k值介電層。
本揭露內容的某些實施態樣相關於在基板上沉積碳化矽膜的方法,該方法可以下列操作為特點:(a)提供基板至反應腔室;(b) 提供含矽前驅物至基板,其中該含矽前驅物具有(i)一或更多的矽-氫鍵及/或矽-矽鍵、(ii)無碳-氧鍵、及(iii)無碳-氮鍵;以及(c)從源氣體導入處於實質上低能態的一或更多自由基物種,以與含矽前驅物反應,從而在使該含矽前驅物之矽-氫鍵或矽-矽鍵斷裂、卻實質上保留該含矽前驅物之矽-碳鍵的情況下於該基板上形成該碳化矽膜。作為範例,碳化矽膜可包括氧參雜碳化矽、氮參雜碳化矽、或無參雜碳化矽。
在一些情形中,含矽前驅物不具烷氧基團(-C-O-R),其中R係有機官能基,且不具胺基團 (-C-NR1 R2 ),其中R1 及R2 各自獨立地為氫或有機官能基。在某些實施例中,在(b)及(c)期間,不提供包含碳-氧鍵或碳-氮鍵的化合物至該基板。進一步講,在某些實施例中,碳化矽膜在不執行原子層沉積的情形下形成。
在某些實施例中,含矽前驅物係環形矽氧烷,例如七甲基環四矽氧烷(heptamethylcyclotetrasiloxane)、及四甲基環四矽氧烷(tetramethylcyclotetrasiloxane)。在某些實施例中,該含矽前驅物係線形矽氧烷,例如二矽氧烷、或三矽氧烷。在某些實施例中,含矽前驅物係烷基矽烷,例如二矽烷、或三矽烷。在某些實施例中,含矽前驅物係矽氮烷。
在某些實施例中,自由基物種包括氫自由基、氧自由基、及/或氮自由基。在一些實施例中,導入一或更多自由基物種涉及使該源氣體曝露於遠端電漿,該遠端電漿可從RF電源或微波電源產生。
在某些實施例中,碳化矽膜中矽-氧或矽-氮鍵對矽-碳鍵的比率係介於約3:1與約0.5:1之間。在一些情形中,基板上的碳化矽膜具有至少約90%的保形度。在一些應用中,該基板包括具有閘極電極的電晶體,該方法更包括在該閘極電極的一或更多側壁上形成碳化矽膜。在一些應用中,碳化矽膜包括極低k值介電薄膜。
本揭露內容的某些實施態樣相關於在基板上沉積碳化矽膜的設備,該設備可以下列特徵為特點:反應腔室,其係配置成在碳化矽膜沉積期間固持該基板;電漿腔室,其係耦接至該反應腔室、且係配置成在該反應腔室外產生電漿;二或更多氣體入口,其係耦接至該反應腔室;以及控制器。該控制器可包括用以執行下列操作的指令:(a)使含矽前驅物流過該氣體入口其中一者,進入該反應腔室,其中該含矽前驅物具有(i)一或更多矽-氫鍵及/或矽-矽鍵、(ii)無碳-氧鍵、及(iii)無碳-氮鍵;(b)從該電漿腔室中的電漿提供處於實質上低能態的一或更多自由基物種;以及(c)使該一或更多自由基物種流過氣體入口其中另一者,進入該反應腔室中,從而與該含矽前驅物進行反應,從而於該基板上形成碳化矽膜。
在一些設計中,該設備在該反應腔室與該電漿腔室之間具有介於約1cm與約30cm之間的距離。在各種實施例中,該電漿腔室具有RF電源或微波電源。
在某些實施例中,控制器更包括下列指令:在(a)至(c)期間不提供包括碳-氧鍵或碳-氮鍵的化合物。在某些實施例中,該控制器的指令不包括使用原子層沉積沉積碳化矽膜的指令。
在一些實施例中,含矽前驅物不具烷氧基團(-C-O-R),且不具胺基團 (-C-NR1 R2) ,其中R係有機官能基,且其中R1 及R2 各自獨立地為氫或有機官能基。在一些實施例中,該含矽前驅物係矽氧烷。在一些實施例中,該含矽前驅物係烷基矽烷。在一些實施例中,該含矽前驅物係矽氮烷。
在一些設備中,一或更多自由基物種係從選自氫、氮、及氨組成之群組的氣體產生。作為範例,一或更多自由基物種係氫原子。在一些應用中,該碳化矽膜中矽-氧鍵或矽-氮鍵對矽-碳鍵的比率係介於約3:1與約0.5:1之間。在一些應用中,該碳化矽膜係極低k值介電薄膜。
在某些實施例中,控制器係配置成維持反應腔室於約250℃與約400℃之間的溫度。在某些實施例中,該控制器係配置成維持反應腔室於約0.2Torr與約40Torr之間的壓力。
該等及其他實施例係於以下參照圖式進一步加以描述。
以下揭露內容呈現各種細節,以輔助解釋相關的概念,該相關概念可在沒有該等細節的一些或全部者的情形下實施。儘管一些概念將結合具體實施例而加以描述,但將理解該等實施例並非意圖為限制性。在一些情形中,為了促進對所描述概念的理解,已熟知的製程操作、結構、及其他特徵不做詳細描述。
本申請案中,用語「半導體晶圓」、「晶圓」、「基板」、「晶圓基板」、以及「部分製造的積體電路」係可互換地使用。此領域通常技術者將理解,用語「部分製造的積體電路」可指處於矽晶圓上積體電路製造之許多階段的任何者期間的矽晶圓。半導體元件產業中所使用之晶圓或基板典型地具有200mm、或300mm、或450mm的直徑。以下實施方式假設本發明係於晶圓上實施。然而,本發明並非如此限制。工件可具有各種形狀、尺寸、以及材料。除半導體晶圓外,其他可利用本發明的工件包括各種物件,例如,印刷電路板、磁性記錄媒體、磁性記錄感測器、鏡、光學元件、微機械元件、及其類似物。 序言
半導體裝置的加工典型地涉及在積體電路製造製程中於基板上沉積一或更多薄膜。在該製造製程的一些實施態樣中,如SiC、SiON、SiONC、及SiCN之類的薄膜係使用原子層沉積(ALD)、化學氣相沉積(CVD)、電漿加強化學氣相沉積(PECVD)、或任何其他適當的沉積方法而沉積。如此處使用,用語「碳化矽」包括參雜碳化矽,例如氧參雜碳化矽、氮參雜碳化矽、及氮氧參雜碳化矽。參雜碳化矽可具有廣泛範圍的參雜物濃度。舉例而言,無論參雜物原子係氧、氮、或其他元素的原子,參雜碳化矽具有最多約50%之原子百分比的參雜物原子。參雜位準提供期望的膜特性。在一範例中,製程可產生具有約10-15%之原子百分比碳、及約40%之原子百分比氧的SiOC膜。在另一範例中,膜包括約30-35%之原子百分比的碳、及約25-30%之原子百分比的氧。當然,碳化矽膜的電學特性將有所不同。典型地,為了良好的電學特性,碳成分係相對低的。
用以沉積SiC的前驅物分子包括具有矽-氫(Si-H)鍵及/或矽-矽(Si-Si)鍵、及矽-碳(Si-C)鍵的含矽分子。用以沉積SiOC的前驅物分子包括具有矽-氫(Si-H)鍵及/或矽-矽(Si-Si)鍵、及矽-氧(Si-O)鍵、及/或矽-碳(Si-C)鍵的含矽分子。用以沉積SiNC的前驅物分子包括具有矽-氫(Si-H)鍵及/或矽-矽(Si-Si)鍵、及矽-氮(Si-N)鍵、及/或矽-碳(Si-C)鍵的含矽分子。用以沉積SiONC的前驅物分子包括具有矽-氫(Si-H)鍵、及/或矽-矽(Si-Si)鍵、及矽-氮(Si-N)鍵、矽-氧(Si-O)鍵、及/或矽-碳(Si-C)鍵的含矽分子。現今的PECVD製程可利用現場電漿處理,其中直接鄰近受處理基板提供電漿。
已發現沉積高品質碳化矽薄膜可能有某些挑戰,例如,提供具有優異階梯覆蓋率、低介電常數、高崩潰電壓、低漏電流、高孔隙率的膜層,及/或在不氧化金屬表面的情形下,於曝露金屬表面範圍提供覆蓋物。
儘管本揭露內容不受限於任何特定的理論,但據信在典型PECVD製程中的電漿條件使含矽前驅物分子以產生不期望結果的方式斷開。舉例而言,PECVD可能使前驅物分子中的Si-O及/或SiC鍵斷裂,從而產生高反應性的自由基或具有高黏附係數的其他分段類型。該分段、以及所產生的碳化矽膜可包括具有「懸鍵」的矽、碳、及/或氧原子,意謂著該矽、碳、及/或氧原子具有反應性的未成對價電子。具有高黏附係數的前驅物分子及其片段可能沉積出具有不良階梯覆蓋率的碳化矽膜,這是因為反應性的前驅物片段可能不成比例地黏附於下凹特徵部中之側壁及其他結構的上部區域。
懸鍵可在所沉積的SiOC或SiONC膜中產生矽醇基團(Si-OH)。結果,該膜層可能具有不利的高介電常數。膜層品質亦可能由於直接電漿條件傾向從所沉積膜層中抽離碳而受損。
再者,懸鍵可在所沉積的碳化矽膜中產生增多的矽-氫鍵(Si-H)。在直接電漿沉積條件下,斷裂的Si-C鍵可被Si-H取代。碳化矽膜中Si-H鍵的存在可產生具有不良電學特性的膜層。舉例而言,因為Si-H鍵為電子提供洩漏路徑,所以Si-H鍵的存在可能降低崩潰電壓,並可能增加漏電流。
進一步講,懸鍵可在碳化矽膜中導致產生不受控之化學的、或形態的結構。在一些情形中,如此結構為具有低孔隙率或無孔隙的緻密細線,使得膜層具有不可接受之高介電常數。多孔性的欠缺可為直接電漿條件使環形矽氧烷中Si-C鍵及/或Si-O鍵斷裂的結果,不然該Si-C鍵及/或Si-O鍵將提供極低k值介電材料中的多孔性。
有時在PECVD中採用的直接電漿條件可在沉積中導致產生定向性,這是因為使前驅物分子斷裂的能量可為在表面處產生許多離子攻擊的低頻率。定向的沉積亦可導致碳化矽膜的沉積具有不良的階梯覆蓋率。直接電漿係在沉積期間電漿(適當濃度的電子及正離子)位於基板表面附近、有時與基板表面僅相隔電漿鞘的電漿。
典型的PECVD製程有時候不適用於在曝露的銅、或其他金屬表面上沉積碳化矽膜,這是因為如此製程可氧化金屬。PECVD製程可使用如氧 (O2 )、臭氧(O3 )、二氧化碳 (CO2 )、或其他氧化物種的氧化劑,從而形成如SiOC的氧參雜碳化矽。 沉積期間基板表面處之環境
圖1A繪示在基板上沉積有碳化矽膜所產生之結構的橫剖面。膜101可在於基板100附近產生相對適度之環境的製程條件下形成。基板100可為任何晶圓、半導體晶圓、部份製造積體電路、印刷電路板、顯示螢幕、或其他適當工件。取決於待生產之參雜結構的類型,用以沉積碳化矽膜101的製程可包括一或更多含矽前驅物,該一或更多含矽前驅物具有一或更多Si-H鍵、及/或一或更多Si-Si鍵、以及其他鍵 (如矽-碳鍵、矽-氧鍵、及/或矽-氮鍵)。在某些實施例中,前驅物不包括氧-碳鍵及氮-碳鍵。作為範例,前驅物不包括烷氧基團及胺基團。
圖1B-1D中描繪採用碳化矽膜的某些應用。在一些實施例中,含矽前驅物可包括含矽-氧前驅物、含矽-氮前驅物、及/或含矽-碳前驅物。含矽-氧前驅物可包括一或更多Si-O鍵、含矽-氮前驅物可包括一或更多Si-N鍵、且含矽-碳前驅物可包括一或更多Si-C鍵。舉例而言,在一些實施例中,含矽前驅物可包括具有Si-O及Si-C鍵、或者Si-N及Si-C鍵的單一反應物A。在一些實施例中,含矽前驅物可包括具有Si-O鍵或Si-N鍵的反應物B、以及具有Si-C鍵的反應物C。將瞭解,在本揭露內容之範疇中,可採用任何數目之適當的反應物。例示性含矽前驅物的化學結構係於以下進一步詳細討論。
含矽前驅物包括一或更多Si-H鍵及/或一或更多Si-Si鍵。在沉積製程期間,使Si-H鍵及/或Si-Si鍵斷裂,並且在沉積碳化矽膜101中於含矽前驅物之間充當形成鍵結的反應位置。斷鍵亦可於熱處理期間(在沉積期間、或之後進行)充當交聯的位置。反應位置或交聯位置處的鍵結作用可在所產生之碳化矽膜101中共同地形成主幹或基體。
在一些實施例中,製程條件可在所沉積之碳化矽膜101層中實質地保留Si-C鍵,以及(若存在的話)Si-O及Si-N鍵。據此,基板100附近的反應條件供以使Si-H及/或Si-Si鍵斷裂,例如從斷裂的Si-H鍵抽離氫,但反應條件不供以從Si-O鍵抽離氧、從Si-N鍵抽離氮、或從Si-C鍵抽離碳。通常,所述反應條件存在於工件之曝露面處(沉積碳化矽膜之面)。反應條件更存在工件之上的某一距離處,例如工件之上約0.5微米至約150毫米。實際上,前驅物的活化作用可於工件之上一實質距離處以氣相進行。典型地,相關反應條件在基板之整個曝露面上將係均勻的、或實質上均勻的,但某些應用可容許些許變異。
除含矽前驅物外,工件附近的環境可包括一或更多自由基物種(較佳地處於實質上的低能態)。如此物種的範例包括氫原子自由基。在一些實施例中,氫原子自由基的全部者、實質上全部者、或大部分者可處於基態,例如工件附近至少約90%或95%的氫原子自由基係處於基態。在某些實施例中,氫係在如氦的載體中得以提供。作為範例,氫氣可在氦載體中以約1-10%氫的濃度加以提供。壓力、載體氣體(例如氦)分數、及其他製程條件係選擇成使氫原子作為低能態自由基碰撞基板,而不進行再結合。
如本文其它處所解釋,可將氫氣供應至遠端電漿源中,以產生氫自由基。氫自由基一旦產生,便可處於激發能態。舉例而言,處於激發能態的氫可具有至少10.2eV的能量(第一激發態)。受激發的氫自由基可能導致含氫前驅物之非選擇性分解。舉例而言,處於激發態的氫自由基可輕易地使Si-H、Si-Si、Si-N、Si-O、及Si-C鍵斷裂,這可改變碳化矽膜的組成、物理或電學特性。在一些實施例中,當受激發的氫自由基失去其能量,或者鬆弛下來,則受激發的氫自由基可變為實質上低能態的氫自由基、或基態的氫自由基。處於實質上低能態、或基態的氫自由基能夠選擇性地使Si-H及Si-Si鍵斷裂,而基本上保留Si-O、Si-N、及Si-C鍵。在一些實施例中,製程條件可設置成使得受激發的氫自由基失去能量,或鬆弛下來,以形成實質上低能態、或基態的氫自由基。舉例而言,遠端電漿源或相關的元件可設計成使得氫自由基從遠端電漿源擴散至基板的停留時間大於受激發之氫自由基的能量鬆弛時間。受激發之氫自由基的能量鬆弛時間可為約等於或小於1´10-3 秒。
氫原子自由基中的大部分係處於基態,該狀態可藉由各種技術達成。如以下描述,一些設備係設計為達成該狀態。可對設備特徵及製程控制特徵進行檢測及調諧,從而產生大部分氫原子自由基處於基態的適度狀態。舉例而言,可操作設備,並且針對電漿源下游(亦即,基板附近)的帶電粒子進行。可調諧製程及設備,直至在基板附近實質上沒有帶電粒子存在為止。另外,可將設備及製程特徵調諧成該設備及製程特徵開始從標準前驅物(例如,三甲基矽烷)產生高品質碳化矽膜的配置。選擇支持如此膜沉積的相對適度的條件。
自由基物種的其他範例包括:如元素氧自由基(原子的、或雙原子的)之含氧物種、如元素氮自由基(原子的、或雙原子的)之含氮物種、及如氨自由基的含N-H 自由基,其中氮係可選地包括於膜層中。前述自由基物種可產自包括氫、氮、含N-H物種、或其混合物的氣體。在一些實施例中,沉積膜的基本上所有原子係由前驅物分子提供。在如此情形中,用以驅動沉積反應的低能量自由基可獨有地為氫、或實質上不貢獻於沉積層之質量的其他物種。在一些實施例中,如以下進一步討論,自由基物種可藉由遠端電漿源產生。在一些實施例中,較高能態的自由基、或甚至離子可潛在地存在於晶圓平面附近。
在一些實施例中,製程條件採用處於實質上足夠低能態的自由基物種,以使Si-H鍵及/或Si-Si鍵斷裂而實質上保留Si-O、Si-N、及Si-C鍵。此製程條件可不具有處於高能態(如基態以上的狀態)之大量的離子、電子、或自由基物種。在一些實施例中,鄰近膜層區域中離子的濃度不大於約107 /cm3 。大量離子或高能自由基的存在可能傾向於使Si-O、Si-N、及Si-C鍵斷裂,這可產生具有不期望電學特性(例如,高介電常數、及/或低崩潰電壓)及不良保形度的膜層。據信過度反應性的環境會產生具有高黏附係數 (黏附係數代表化學地或物理地黏附於工件側壁的傾向性)的反應性前驅物片段,導致不良的保形度。
在鄰近基板100的環境中,含矽前驅物典型地係與其他物種(尤其,載體氣體)一起傳送。在一些實施例中, 含矽前驅物係與自由基物種及其他物種(包括其他反應性物種、及/或載體氣體)一起存在。在一些實施例中,含矽前驅物可作為混合物導入。自沉積反應表面起的上游處,含矽前驅物可與惰性載體氣體混合。例示惰性載體氣體包括但不限於氬(Ar)及氦(He)。此外,含矽前驅物可在具有主要及次要物種的混合物中導入,且該次要物種包括以相對低的濃度存在於碳化矽膜101中的某種元素或結構特徵(例如環形結構、籠狀結構、不飽和鍵等)。多種前驅物可酌情以等莫耳數的方式或相對類似之比例的方式存在,從而形成所產生碳化矽膜101中的主幹或基體。在其他實施例中,不同前驅物的相對量實質上與等莫耳數有偏差。
在一些實施例中,一或更多含矽前驅物提供所沉積之碳化矽膜基本上所有的質量,且來自遠端電漿之少量的氫或其他元素提供小於膜層質量的約5%的原子百分比、或小於約2%的原子百分比。在一些實施例中,僅自由基物種與一或更多含矽前驅物貢獻於所沉積之碳化矽膜的組成。在其他實施例中,沉積反應包括共反應物,而不是一或更多含矽前驅物與自由基物種。如此共反應物的範例包括二氧化碳(CO2 )、一氧化碳(CO)、水(H2 O)、甲醇(CH3 OH)、氧(O2 )、臭氧(O3 )、氮(N2 )、氧化氮((N2 O)、氨(NH3 )、甲烷 (CH4 )、乙烷(C2 H6 )、乙炔(C2 H2 )、乙烯(C2 H4 )、二硼烷、及其組合。如此材料可用作氮化劑、氧化劑、還原劑等。在一些情形中,藉由將與含矽前驅物一起提供之碳的一部分移除,該等材料可用以調諧所沉積膜層中碳的含量。 在採用無氫共反應物的一些實施例中,共反應物係經由與含矽前驅物相同的流動路徑導入至反應器,例如包括噴淋頭卻典型不直接曝露於電漿的路徑。在一些實施例中,氧及/或二氧化碳係與前驅物一起導入,從而在沉積期間藉由從膜層或前驅物中移除碳而改變碳化矽膜的組成。在採用無氫共反應物的一些實施例中,共反應物係經由與氫相同的流動路徑導入至反應器,使得共反應物係至少部分地轉換為自由基及/或離子。在如此實施例中,氫自由基及共反應物自由基都與(複數)含矽前驅物進行反應,從而產生所沉積的碳化矽膜。
在使用共反應物、且共反應物係與被轉換為自由基物種的物種(例如,氫)一起導入至腔室的某些實施例中,相較於反應器中的其他氣體(包括如氫的自由基源、以及如氦的任何(複數)載體氣體),該共反應物係以少的量而提供至反應器。舉例而言,共反應物可以約0.05 wt.%或較少、或約0.01wt.%或較少、或約0.001 wt.%或較少存在於製程氣體中。舉例而言,(進入電漿源的)反應物混合物可為約10L/m He、約200-500sccm H2 、以及約1-5sccm氧。當共反應物與含矽前驅物一起導入腔室時(例如,透過噴淋頭),該共反應物可以較高的濃度存在,例如約2%或較少、或約0.1%或較少。當共反應物係相對弱的反應物時(例如,如二氧化碳的弱氧化劑),該共反應物可以甚至更高的濃度存在,例如約10%或較少、或約4%或較少。
鄰近基板100之環境中的溫度可為促進沉積反應的任何適當溫度,但有時會受限於包含碳化矽膜101之裝置的應用。鄰近基板100之環境中的溫度可大幅地藉由基座的溫度而控制,基板100在碳化矽膜101的沉積期間係受支撐於該基座上。在一些實施例中,操作溫度可介於約50℃與約500℃之間。舉例而言,在許多積體電路應用中,操作溫度可介於約200℃與約400℃之間。在一些實施例中,增加溫度可導致基板表面上交聯的增加。
鄰近基板100之環境中的壓力可為在製程腔室中產生反應性自由基的任何適當壓力。在一些實施例中,壓力可為約35Torr或較低。舉例而言,例如在使用微波產生之電漿的實施例中,壓力可介於約10Torr與約20Torr之間。在其他範例中,例如在使用射頻(RF)產生之電漿的實施例中,壓力可小於約10Torr,或介於約0.2Torr與約8Torr之間。
圖1B-1D繪示各種應用中包括碳化矽膜之結構的橫剖面。圖1B繪示電晶體之閘極電極結構之側壁上的碳化矽垂直結構。圖1C繪示氣隙類型金屬化層中銅線之曝露側壁上的碳化矽垂直結構。圖1D繪示用於多孔介電材料的碳化矽孔洞密封物。該等應用的每一者係於以下進一步詳細討論。 前驅物的化學結構
如討論,在形成碳化矽膜期間採用的前驅物可包括含矽前驅物,且該含矽前驅物的至少一些者具有至少一Si-H鍵、及/或至少一Si-Si鍵。在某些實施例中,含矽前驅物在每一個矽原子上最多具有一個氫原子。因此,舉例而言,具有一個矽原子的前驅物最多具有與該矽原子鍵結的一個氫原子;具有兩個矽原子的前驅物具有與一個矽原子鍵結的一個氫原子,且可選地具有與第二矽原子鍵結的另一個氫原子;具有三個矽原子的前驅物至少具有與一個矽原子鍵結的一個氫原子,且可選地具有與其餘矽原子其中一者或兩者鍵結的一個或兩個另外的氫原子,以此類推。此外,含矽前驅物可包括至少一Si-O鍵、至少一Si-N鍵、及/或至少一Si-C鍵。儘管在形成碳化矽膜期間可使用任何數目的適當前驅物,但前驅物的至少一些者將包括具有以下者的含矽前驅物:至少一Si-H鍵或Si-Si鍵、及可選至少一Si-O鍵、Si-N鍵、及/或Si-C鍵。在各種實施例中,(複數)含矽前驅物不包括O-C或N-C鍵,例如,(複數)前驅物不包括烷氧基(-O-R)(其中R係如烴基的有機基團)及胺基團(-NR1 R2 )(其中R1 及R2 獨立地為氫或有機基團)。據信如此基團可能賦予前驅物或片段(如此基團位於該前驅物或片段上)高的黏附係數。在某些實施例中,在碳化矽形成期間,不傳送包括烷氧基團或胺基團的前驅物或其他化合物至基板。
在某些實施例中,為碳化矽膜設置之碳的至少一些者係藉由含矽前驅物上一或更多的烴官能基提供。如此官能基可來自烷基矽烷、烯基基團、炔基基團、芳基基團、及類似者。在某些實施例中,烴基基團具有一個單一碳原子,從而使得沉積期間Si-H及/或Si-Si鍵之斷裂反應的立體阻礙(steric hindrance)最小化。然而,前驅物不受限於單一碳的基團,仍可使用較大數目的碳原子,例如2、3、4、5、或6個碳原子。在某些實施例中,烴基基團係線形的。在某些實施例中,烴基基團係環形的。
在一些實施例中,含矽前驅物落入三或更多化學種類的其中一者,該三或更多化學種類中的任何者可單獨作為單一前驅物存在,或者與其他類型前驅物組合存在。將瞭解,可採用其他化學種類的含矽前驅物,且該含矽前驅物不受限於以下討論的化學種類。
第一,含矽前驅物可為矽氧烷。在一些實施例中,矽氧烷可為環形的。環形矽氧烷可包括如2,4,6,8-四甲基環四矽氧烷(TMCTS)及七甲基環四矽氧烷(HMCTS)的環四矽氧烷。其他環形矽氧烷亦可包括但不限於環三矽氧烷及環五矽氧烷。環形矽氧烷的實施例係可在碳化矽膜中導入多孔性的環形結構,且孔洞的尺寸對應於環的半徑。舉例而言,環四矽氧烷環可具有約6.7Å的半徑。
在一些實施例中,矽氧烷可具有三維的、或籠狀的結構。圖2繪示代表性籠狀矽氧烷前驅物的範例。籠狀矽氧烷具有經由氧原子而彼此搭橋的矽原子,從而形成多面體或任何3D結構。籠狀矽氧烷前驅物分子的範例為倍半矽氧烷(silsesquioxane)。籠狀矽氧烷結構係在Cleemput等人共同所有之美國專利第6,576,345號中進一步詳細描述,該專利係併入於此作為所有目的的參考。類似於環形矽氧烷,籠狀矽氧烷可在碳化矽膜中導入多孔性。在一些實施例中,孔隙尺寸為中型孔洞(mesoporous)。
在一些實施例中,矽氧烷係線形的。適當的線形矽氧烷的範例包括但不限於如五甲基二矽氧烷(PMDSO)及四甲基二矽氧烷(TMDSO)的二矽氧烷、以及如六甲基三矽氧烷及七甲基三矽氧烷的三矽氧烷。
第二,含矽前驅物可為烷基矽烷、或其他烴基取代矽烷。烷基矽烷包括中心矽原子,該中心矽原子具有與之鍵結的一或更多烷基基團、以及與之鍵結的一或更多氫原子。在某些實施例中,烷基基團中的任一者或多者包括1-5個碳原子。烴基基團可為飽和的、或不飽和的(例如,烯基(乙烯)、炔基基團、及芳香基團)。範例包括但不限於三甲基矽烷(3MS)、三乙基矽烷、五甲基二矽甲烷((CH3 )2 Si-CH2 -Si(CH3 )3 )、及二甲基矽烷(2MS)。
此外,二矽烷、三矽烷、或其他高矽烷可用來代替單矽烷。在一些實施例中,矽原子的其中一者可具有與其接附的含碳或烴基基團,且矽原子的其中一者可具有與其附接的一個氫原子。
第三,含矽前驅物可為含氮化合物,例如矽-氮氫化物(例如,矽氮烷)。一般而言,如此化合物包括碳,但碳僅與矽原子鍵結,而不與氮原子鍵結。在某些實施例中,含氮化合物不具有任何的碳-氮鍵。在某些實施例中,含氮化合物不具有任何的胺官能基(-C-NR1 R2 ),其中R1 及R2 係如氫原子及烴基基團(例如,烷基基團、烯基基團、或炔基基團)之相同的或不同的基團。適當矽-氮前驅物的範例包括各種矽氮烷,例如包括以下者的環形或線形矽氮烷:與一或更多矽原子鍵結的一或更多烴官能基、及與一或更多矽原子鍵結的一或更多氫原子。矽氮烷的範例包括甲基取代二矽氮烷及三矽氮烷,例如四甲基二矽氮烷及六甲基三矽氮烷。
碳化矽沉積中,複數的含矽前驅物可存在於製程氣體中。舉例而言,矽氧烷及烷基矽烷可一起使用,或者矽氧烷及二矽氮烷可一起使用。各個前驅物的相對比例可基於所選擇之前驅物的化學結構及所產生之碳化矽膜的應用而加以選擇。舉例而言,以莫耳百分比來看,矽氧烷的量可大於矽烷的量,從而如以下較詳細討論般產生多孔膜。
對沉積氧參雜碳化矽(SiOC)膜而言,適當前驅物的範例包括如環四矽氧烷(例如七甲基環四矽氧烷(HMCTS)及四甲基環四矽氧烷)的環形矽氧烷。其他環形矽氧烷亦可包括但不限於環三矽氧烷及環五矽氧烷。對沉積氧參雜碳化矽膜而言,適當前驅物的其他範例包括線形矽氧烷,例如但不限於二矽氧烷(例如五甲基二矽氧烷(PMDSO)、四甲基二矽氧烷(TMDSO))、六甲基三矽氧烷、及七甲基三矽氧烷。
對無參雜碳化矽而言,適當前驅物的範例包括由一或更多烷基、烯基、及/或炔基基團(包括1-5個碳原子)進行取代的單矽烷。範例包括但不限於三甲基矽烷(3MS),二甲基矽烷(2MS)、三乙基矽烷(TES)、及五甲基二矽甲烷。
此外,二矽烷、三矽烷或高矽烷可用來替代單矽烷。烷基矽烷類之如此二矽烷的範例係六甲基二矽烷(HMDS)。烷基矽烷類之二矽烷的另一範例可包括五甲基二矽烷(PMDS)。
其他類型的烷基矽烷可包括烷基碳矽烷,烷基碳矽烷可具有分支聚合結構,帶有與一個矽原子鍵結的一個碳、及與一個矽原子鍵結的烷基基團。範例包括二甲基三甲基矽基甲烷(DTMSM) 、以及雙-二甲基矽基乙烷(BDMSE)。
對沉積氮參雜碳化矽(SiNC)膜而言,適當前驅物的範例包括如烷基二矽氮烷、以及包括以下者之可能的化合物:與一或更多矽原子分別鍵結的胺基(-NH2 )及烷基基團。烷基二矽氮烷包括帶有與兩個矽原子鍵結之烷基基團的矽氮烷。範例包括1,1,3,3-四甲基二矽氮烷(TMDSN)。
如解釋,含矽前驅物係選擇成提供高度保形的碳化矽膜。據信具有低黏附係數的含矽前驅物能夠產生高度保形的膜層。「黏附係數」係一術語,用來描述吸附物種(例如,片段或分子)吸附/黏附至表面之數目相較於相同時間段期間撞擊在該表面上之該物種總數目的比率。符號Sc 有時係用以表示黏附係數。SC 的數值係介於0(意味著沒有物種進行黏附)與1(意味著所有撞擊物種都進行黏附)之間。各種因素影響著黏附係數,包含撞擊物種的類型、表面溫度、表面覆蓋率、表面的結構性細節、及撞擊物種的動能。某些物種本質上比其他者更「黏」,使得每一次該物種撞擊表面時,其更可能吸附在表面上。該等較黏的物種具有較大的黏附係數(所有其他因素均相同),且相較於具有較低黏附係數的較不黏物種而言,更可能黏附於下凹特徵部的入口附近。在一些情形中,前驅物的黏附係數(在相關沉積條件下)可為約0.05或較小,例如約0.001或較小。 所沉積之膜層的結構及特性
所沉積之膜層將包括矽、碳,且在某些情形中包括氧、氮、及/或一或更多的其他元素。在一些實施例中,矽的原子濃度係介於約15%與45%之間(或約25%至40%)、碳的原子濃度係介於約10%與50%之間、氧的原子濃度係介於約0%與45%之間、且氮的原子濃度係介於約0%與45%之間。在一範例中,矽的原子濃度為約30%、氧的原子濃度為約25%、且碳的原子濃度為約45%。在另一範例中,矽的原子濃度為約30%、氧的原子濃度為約45%、且碳的原子濃度為約25%。在另一範例中,膜層包含約10-15%的碳及約30-40%氧(兩者均係在原子基礎上)。在所有的情形中,膜層包含些許氫。將瞭解,相關的原子濃度可取決於前驅物的選擇而改變。矽原子將與碳形成鍵結,且可選地與氮及/或氧原子形成鍵結。在一些實施例中,所沉積之膜層包含比Si-C鍵多的Si-O鍵。這可提供具有較低介電常數之相對多孔的膜層。在一些範例中,所沉積之膜層包含介於約0.5:1與3:1之間的Si-N鍵對Si-C鍵比率。在某些實施例中,膜密度係介於約2與2.7g/cm3 之間。
在一些實施例中,前驅物的內部結構維持於所沉積的膜層中。該結構可保留前驅物中所有的或大部分的Si-C、以及(若存在的話)Si-O及/或Si-N鍵,而透過Si-H鍵及/或Si-Si鍵(存在於前驅物分子中)位置處的鍵結、及/或透過生長表面上額外的凝結反應(假設提供足夠的熱能)使各個前驅物官能基進行聯結或交聯。
此前所描述的製程條件於此可提供高度保形的膜結構。相對適度的製程條件可使基板表面處的離子撞擊程度最小化,使得沉積過程缺少定向性。再者,相對適度的製程條件可減少具有高黏附係數之自由基的數目,具有高黏附係數的該等自由基將具有黏附於之前沉積之層或膜之側壁的傾向。在某些實施例中,對於約2:1至10:1的縱橫比而言,碳化矽膜可沉積具有介於約25%與100%之間、較典型地介於約50%與100%之間、以及甚至更典型地介於約80%與100%之間的保形度。保形度可藉由將特徵部之底部、側壁、或頂部上之沉積膜的平均厚度與特徵部之底部、側壁、或頂部上之沉積膜的平均厚度相比而計算出來。舉例而言,保形度可藉由以下方式而計算:特徵部之側壁上沉積膜的平均厚度除以頂部處沉積膜的平均厚度、並乘以100以得到百分比。對某些應用而言,介於約85%與95%之間的保形度便足夠。在一些於特徵部(具有約2:1與約4:1之間的縱橫比)上沉積碳化矽的範例中,保形度至少為約90%。某些產線後段製程(BEOL)落入此範疇中。在一些於特徵部(具有約4:1與約6:1之間的縱橫比)上沉積碳化矽的範例中,保形度至少為80%。某些間隔件沉積製程落入此範疇中。在一些於特徵部(具有約7:1與約10:1之間(以及甚至更高)的縱橫比)上沉積碳化矽的範例中,保形度至少為90%。某些動態隨機存取記憶體(DRAM,dynamic random access memory)製造製程落入此範疇中。
該製程條件亦可提供具有高崩潰電壓及低漏電流的膜結構。藉由在SiC類材料中導入有限量的氧或氮,則由Si-H鍵及/或Si-CH2 -Si鍵所提供的洩露路徑便可被氧或氮阻擋。在低場處,Si-O及Si-N中的傳導模式可不相同。這可提供改善的電學特性,而維持相對低的介電常數。在各種實施例中,膜具有約為5或較低的有效介電常數,或者約4.0或較低,且在一些情形中約3.5或較低,且一些情形中約3.0或較低,且在另外其他實施中約2.5或較低。有效介電常數可取決於鍵結作用及密度。在某些實施例中,尤其在碳成分相對高的時候,SiOC膜係產生具有為6或較大的介電常數。若漏電流係重要的考量,則SiOC的介電常數需小於5。數值越低,其密封、及阻隔、及耐熱特性將越不良。在應用需要低的密封性及擴散限制、卓越的耐蝕刻性、熱穩定性等的一些實施例中,可使碳化矽膜緻密且高度交聯。這可藉由如以下步驟實現:a)在相對高的溫度沉積膜層、及/或b)提供相對高比率的自由基:前驅物。在一些實施例中,碳化矽膜可相對薄,且又充當有效的密封或擴散阻障。
在一些實施例中,所積的膜層可為多孔的。如此處之前討論,含矽前驅物可包括環形矽氧烷及籠狀矽氧烷。該等前驅物、及具有顯著內部開放空間的其他者可在沉積之膜層的結構中導入顯著的多孔性。所沉積之膜層中的多孔性可進一步降低介電常數。在一些實施例中,所沉積之碳化矽膜中的孔隙率係介於約20%與50%之間。多孔膜的孔洞尺寸可追隨環形或籠狀前驅物的孔洞尺寸。在某些實施例中,膜層的平均孔洞尺寸係介於約5Å與20Å之間,例如約16Å。 設備
本揭露內容的一實施態樣為配置成實現此所述之方法的設備。適當的設備包括用於實現製程操作的硬體、及具有根據本揭露內容用以控制製程操作之指令的系統控制器。在一些實施例中,用以執行前述製程操作的設備可包括遠端電漿源。遠端電漿源相較於直接電漿而言,提供適度的反應條件。適當遠端電漿設備的範例係在2013年10月24日申請之美國專利申請案第14/062,648號中描述,該案係整體併入於此,以供參考。
圖3呈現根據某些實施例之遠端電漿設備的示意圖。裝置300包括具有噴淋頭320組件的反應腔室310。在反應腔室310內,將基板330置於基台或基座335上。在一些實施例中,基座335可裝有加熱/冷卻元件。控制器340可連接至裝置300的元件,以控制裝置300的操作。例如,控制器340可包含用以控制裝置300之操作之製程條件的指令,例如溫度製程條件、及/或壓力製程條件。
在操作期間,氣體或氣體混合物係經由耦接至反應腔室310的一或更多氣體入口而被導入至反應腔室310中。在一些實施例中,二或更多氣體入口係耦接至反應腔室310。第一氣體入口355可耦接至反應腔室310並連接至容器350,且第二氣體入口365可耦接至反應腔室310並連接至遠端電漿源360。在包括遠端電漿配置的實施例中,前驅物以及產生於遠端電漿源中之自由基物種的輸送管線是分開的。因此,前驅物和自由基物種在到達基板330之前實質上不會相互作用。
一或更多的自由基物種可產生於遠端電漿源360中,並且可配置成經由氣體入口365而進入反應腔室310。任何類型的電漿源可用於遠端電漿源360中,以產生自由基物種。這包括但不限於電容式耦合電漿、電感式耦合電漿、微波電漿、DC電漿、及雷射產生電漿。電容式耦合電漿的範例可為射頻(RF)電漿。高頻電漿可配置成操作於13.56 MHz或較高。如此遠端電漿源360的範例可為California之Novellus Systems of San Jose所生產的GAMMA®。如此RF遠端電漿源360的另一範例可為Massachusetts之MKS Instruments of Wilmington所生產之Astron®,其可操作於440 kHz,並可作為栓於(用以平行地處理一或更多基板之)較大設備上的次級單元而提供。在一些實施例中,微波電漿可用作遠端電漿源360,例如同樣由MKS Instruments所生產的Astex®。微波電漿可配置成操作於2.45 GHz的頻率。提供至遠端電漿源的氣體可包括氫、氮、氧、以及如本文他處所提及的其他氣體。在某些實施例中,氫係在如氦的載體中提供。作為範例,氫氣可在氦載體中以約1-10%氫的濃度而加以提供。
可將前驅物提供於容器350中,並可經由第一氣體入口355供應至噴淋頭320。噴淋頭320將前驅物朝基板330分配至反應腔室310中。基板330可位在噴淋頭320的下方。將察知,到噴淋頭320可具有任何適當的形狀,並且可具有任何數目及排布的埠口,以便將氣體分配至基板330。可將前驅物以受控流速供應至噴淋頭320,且最終供應至基板330。
形成於遠端電漿源360中的一或更多自由基物種可以氣相朝基板330運送。一或更多自由基物種可流過第二氣體入口365進入反應腔室310。將瞭解,第二氣體入口365不必如圖3所示與基板330的表面呈橫向。在某些實施例中,第二氣體入口365可位於基板330的正上方或在其他位置中。遠端電漿源360與反應腔室310之間的距離可配置成提供適度的反應條件,使得產生於遠端電漿源360中的離子化物種實質上被中和,但至少一些處於實質上低能態的自由基物種則留存於鄰近基板330的環境中。如此低能態自由基物種不會再結合而形成穩定化合物。遠端電漿源360與反應腔室310之間的距離可為以下者的函數:電漿的侵略性(部分藉由源RF功率位準而判定)、電漿中氣體的密度(例如若有高濃度的氫原子,則其大部分可能在到達反應腔室310前再結合從而形成H2 )、及其他因素。在一些實施例中,遠端電漿源360與反應腔室310之間的距離可介於約1cm與30cm之間,例如約5cm或約15cm。
在一些實施例中,在沉積反應期間可導入一共反應物,該共反應物並非為主要的含矽前驅物或氫自由基。在一些實施例中,設備係配置成透過第二氣體入口365導入共反應物,在此情形中,共反應物係至少部分地轉變成電漿。在一些實施例中,設備係配置成透過噴淋頭320經由第一氣體入口355導入共反應物。共反應物的範例包括氧、氮、二氧化碳、及類似物。
控制器340可包含針對裝置300之操作用以控制製程條件的指令。控制器340典型地將包括一或更多記憶體裝置及一或更多處理器。處理器可包括CPU或電腦、類比及/或數位輸入/輸出連接、步進馬達控制板等。用以實施適當控制操作的指令係在處理器上執行。該等指令可儲存於與控制器340關聯的記憶體裝置上,或可經由網路而提供指令。
在某些實施例中,控制器340控制於此所述之半導體處理裝置300的全部或大部分動作。例如,控制器340可控制半導體處理裝置300有關以下者的全部或大部分動作:沉積碳化矽膜、以及可選得包括碳化矽膜之製造流程中的其他操作。控制器340可執行系統控制軟體,該系統控制軟體包括用於控制時序、氣體組成、氣體流速、腔室壓力、腔室溫度、RF功率位準、基板位置、及/或其他參數的指令組。在一些實施例中,可採用儲存在與控制器340相關聯之記憶體裝置上的其他電腦程式、腳本、或常式。為在鄰近基板330的環境處提供相對適度的反應條件,如RF功率位準、氣體至遠端電漿區域之流速、及電漿激發時序的參數可藉由控制器340而調整並維持。此外,調整基板位置可進一步減少高能自由基物種在鄰近基板330之環境處的出現。
在一些實施例中,控制器340可包括用於執行如下操作的指令:使含矽前驅物透過第一氣體入口355流入反應腔室310;從遠端電漿源360提供處於實質上低能態的一或更多自由基物種;以及使該一或更多自由基物種透過第二氣體入口365流入反應腔室310,從而與含矽前驅物進行反應,從而在基板330上形成碳化矽膜。
在一些實施例中,設備可包括與控制器340相關聯的使用者介面。使用者介面可包括顯示螢幕、設備及/或製程條件的圖形軟體顯示、以及使用者輸入裝置(如指向裝置、鍵盤、觸控螢幕、麥克風等)。
用於控制以上操作的電腦程式碼可以任何習知的電腦可讀程式語言撰寫,例如組合語言、C、C++、Pascal、Fortran、或其他語言。經編譯的目的碼或腳本係藉由處理器執行,從而執行程式中所確認的工作。
用以監控製程的訊號可藉由系統控制器的類比及/或數位輸入連接而提供。用以控制製程的訊號係輸出於處理系統的類比及數位輸出連接上。
一般來講,此處描述方法可在包括半導體處理設備的系統上執行,例如(複數)處理工具、(複數)腔室、(複數)處理平台、及/或特定的處理元件(晶圓基座、氣體流動系統等)。該等系統可與電子設備整合,以在半導體晶圓或基板的處理之前、期間、以及之後,控制該等系統的運作。一般來講,該電子設備係稱為「控制器」,其可控制系統或複數系統的各種元件或子部件。取決於處理條件及/或系統類型,系統控制器可程式設計成控制此處所揭露製程的任何者,包括處理氣體的傳送、溫度設定(例如,加熱及/或冷卻)、壓力設定、真空設定、功率設定、射頻(RF )產生器設定、RF匹配電路設定、頻率設定、流速設定、流體傳送設定、位置和操作設定、晶圓轉移(進出與特定系統相連接或相接合之工具及其他轉移工具、及/或裝載室)。
廣泛地講,控制器可定義為具有用以接收指令、發佈指令、控制操作、啟動清洗操作、啟動終點量測以及類似者之各種積體電路、邏輯、記憶體、及/或軟體的電子設備。積體電路可包括:儲存程式指令之韌體形式的晶片、數位訊號處理器(DSP,digital signal processors)、定義為特殊用途積體電路(ASIC,application specific integrated circuits )的晶片、及/或一或更多微處理器、或執行程式指令(例如,軟體)的微控制器。程式指令可為以各種單獨設定(或程式檔案)之形式而傳達至控制器或系統的指令,該單獨設定(或程式檔案)為實行特定的製程(在半導體晶圓上,或針對半導體晶圓)定義操作參數。在一些實施例中,操作參數可為由製程工程師為了在一或更多以下者的製造期間實現一或更多處理步驟而定義之配方的一部分:疊層、材料(例如,碳化矽)、表面、電路、以及/或者晶圓的晶粒。
在一些實施例中,控制器可系統的一部分,該系統可為此處所描述之範例的一部分。如此系統包括半導體處理裝備,該半導體處理裝備包括(複數)處理工具、(複數)腔室、(複數)處理平臺、及/或特定的處理元件(晶圓基座、氣體流動系統等)。該等系統可與電子設備整合,以在半導體晶圓或基板的處理之前、期間、以及之後,控制系統的運作。該電子設備可稱為「控制器」,其可控制系統或複數系統的各種元件或子部件。取決於處理需求及/或系統類型,控制器可程式設計成控制此處所揭露製程的任何者,包括處理氣體的傳送、溫度設定(例如,加熱及/或冷卻)、壓力設定、真空設定、功率設定、射頻(RF, radio frequency )產生器設定、RF匹配電路設定、頻率設定、流速設定、流體傳送設定、位置和操作設定、晶圓轉移(進出與特定系統相連接或相接合之工具及其他轉移工具、及/或裝載室)。
除此處所描述之碳化矽沉積外,例示性系統還可包含電漿蝕刻腔室或模組、沉積腔室或模組、旋轉淋洗腔室或模組、金屬電鍍腔室或模組、清洗腔室或模組、斜角緣部蝕刻腔室或模組、物理氣相沉積沉積(PVD)腔室或模組、化學氣相沉積(CVD)腔室或模組、原子層沉積(ALD )腔室或模組、原子層蝕刻(ALE)腔室或模組、離子植入腔室或模組、徑跡腔室(track chamber)或模組、以及可在半導體晶圓的製造和加工中相關聯的、或使用的任何其他半導體處理系統。
如以上所提及,取決於待藉由工具而執行之(複數)製程步驟,控制器可與半導體加工工廠中之一或更多的以下者進行通訊:其他工具電路或模組、其他工具元件、叢集工具(cluster tools)、其他工具介面、鄰近的工具、相鄰的工具、遍及工廠而分布的工具、主電腦、另一控制器、或材料輸送中使用之工具,該材料輸送中使用之工具將晶圓容器帶至工具位置及/或裝載埠,或自工具位置及/或裝載埠帶來晶圓容器。 應用
本揭露內容可藉由參照高品質碳化矽膜的以下應用而得以進一步瞭解,該應用意為純粹地示範性。本揭露內容不受限於具體應用的範疇,該等具體應用僅為該揭露內容之實施態樣的說明。
在一些實施例中,碳化矽膜可在曝露的銅上進行沉積。沉積碳化矽膜期間,基板附近的反應條件可無氧化劑(氧化劑如O2 、O3 、及CO2 、及其自由基)。因此,碳化矽膜可在不使銅氧化(使銅氧化的範例例如:產生氧化銅)的情況下直接沉積於曝露的銅上。如此膜層可用作蝕刻停止層,其亦可用作銅擴散阻障。碳化矽膜的存在可提供夠低的介電常數與優異的洩漏特性,從而用作擴散阻障。碳化矽膜本身或以雙層堆疊方式(例如沉積於曝露銅上的碳化矽/ SiNC雙層)可作為蝕刻停止及/或擴散阻障。在一些實施例中,碳化矽膜可設置於鄰近的金屬化層之間,該金屬化層典型地係藉由鑲嵌製程而產生。碳化矽膜可抗蝕刻並可足夠緻密,使得使銅離子進入介電材料之鄰近區域的擴散最小化。在一些實施例中,針對碳化矽膜所採用的前驅物可為非環形。非環形前驅物可包括PMDSO或TMDSO。非環形前驅物可提供足夠高的密度,從而用作密封或擴散阻障。在一些實施例中,藉由採用含氮前驅物或電漿活化含氮自由基(如元素氮自由基或氨自由基),便可在膜層中含入氮。
在一些實施例中,碳化矽膜可沉積成為鄰近金屬或半導體結構的垂直結構。碳化矽的沉積沿著該金屬或半導體結構的側壁提供優異的階梯覆蓋率,從而產生垂直結構。在某些實施例中,該垂直結構可稱為間隔件或襯套。圖1B繪示沉積於電晶體之閘極電極結構之側壁上之碳化矽襯套的橫剖面圖。如圖1B所示,該電晶體可為具有矽基板110(具有源極112及汲極113)的CMOS電晶體。閘極介電質114可沉積於矽基板110上,且閘極電極可沉積於閘極介電質114上,從而形成電晶體。碳化矽襯套111可沉積於閘極電極115及閘極介電質114的側壁上。在另一範例中,圖1C繪示在氣隙類型金屬化層中沉積於曝露銅線之側壁上之碳化矽的橫剖面。可將氣隙120導入介於銅線122之間的積體電路層中,該銅線122可降低該層的有效k值。碳化矽襯套121可沉積於銅線122的側壁上,且不保形的介電層123可沉積於氣隙120、襯套121、及銅線122上。如此氣隙類型金屬化層的範例可描述於Fei Wang等人之美國專利公開案第2004/0232552號中,該公開案係併入於此,作為參考。
在一些實施例中,碳化矽膜可沉積在已圖案化之多孔介電材料的側壁上。極低k值介電材料可由多孔結構組成。如此材料中的孔洞可在後續層的沉積期間為金屬的進入提供區域,該後續層的沉積包括擴散阻障(包含如鉭(Ta) 之金屬)的沉積。若過多金屬遷移至介電材料中,則介電材料可能在相鄰銅金屬化線之間提供短路。圖1D繪示作為多孔介電材料之孔洞密封物的碳化矽的橫剖面。多孔介電層132可具有切入多孔介電層132的溝槽或穿孔,以形成孔洞130。碳化矽131可沿著孔洞130進行沉積,從而有效地密封孔洞130。利用碳化矽131對孔洞130進行密封可避免損傷多孔介電層132,不然該多孔介電層132可能遭受使用電漿之其他密封技術的處理。碳化矽131可足夠緻密作為孔洞密封物,且可包括如PMDSO及TMDSO之非環形含矽前驅物。在一些實施例中,如多孔介電層132之已蝕刻介電材料可首先藉由「k值恢復」製程進行處理,該製程使多孔介電層132曝露於UV輻射及還原劑。此恢復製程係在Varadarajan等人共同所有之美國專利公開案第2011/0111533號中進一步描述,該公開案係併入於此,作為所有目的之參考。在另一「k值恢復」製程中,可將多孔介電層132曝露於UV輻射及化學矽烷化劑。此恢復製程係在Varadarajan等人共同所有之美國專利公開案第2011/0117678號中進一步描述,該公開案係併入於此,作為所有目的之參考。將孔洞130曝露於恢復處理後(該恢復處理使表面更為親水、且提供單層的材料),可沉積一層保形沉積的碳化矽131,從而有效地密封多孔介電層132的孔洞。
在一些實施例中,碳化矽膜本身可沉積成為極低k值介電材料。習知地將極低k值介電質定義為具有低於2.5之介電常數的該等材料。在如此配置中,碳化矽之極低k值介電材料可為多孔介電層。介電層的孔洞可藉由使用環形或籠狀前驅物分子而導入,該環形或籠狀前驅物分子包括環形矽氧烷及倍半矽氧烷。在一範例中,碳化矽之極低k值介電層的孔隙率可介於約20%與50%之間。進一步講,極低k值介電層可具有小於約100 Å的平均孔洞尺寸,例如介於約5 Å與20 Å之間。舉例而言,環矽氧烷環可具有約6.7 Å的半徑。儘管增加孔洞的數目及尺寸可降低介電常數,但若孔洞過多,則可能有損介電層的機械完整性。 範例
圖4呈現兩種氧參雜碳化矽膜的掃描電子顯微照片:左側的一者係使用具有烷氧基團的前驅物而沉積,且右側的一者係使用類似卻不含烷氧基團的前驅物而沉積。除前驅物差異外,設備及沉積條件係相同的。膜層所沉積於其上的特徵部具有7:1的縱橫比及約60nm的寬度。如顯示,使用含烷氧前驅物所產生之膜層的保形度約為55%,且使用無烷氧前驅物所產生之膜層的保形度約為75%。
儘管以上描述已針對清楚及理解的目的而加以詳細描述,但顯然某些改變與修正可在隨附申請專利範圍之範疇內加以實施。應注意有許多替代方式實行所描述之製程、系統、及設備。因此,所描述的實施例應被考慮為說明性而非限制性。
111‧‧‧襯套
112‧‧‧源極
113‧‧‧汲極
114‧‧‧閘極介電質
115‧‧‧閘極電極
120‧‧‧氣隙
121‧‧‧襯套
122‧‧‧銅線
123‧‧‧介電層
130‧‧‧孔洞
131‧‧‧碳化矽
132‧‧‧介電層
300‧‧‧裝置
310‧‧‧反應腔室
320‧‧‧噴淋頭
330‧‧‧基板
335‧‧‧基座
340‧‧‧控制器
350‧‧‧容器
355‧‧‧氣體入口
360‧‧‧遠端電漿源
365‧‧‧氣體入口
圖1A繪示沉積於基板範圍之SiC膜之範例的橫剖面。
圖1B繪示電晶體之閘極電極結構之側壁上的SiC垂直結構。
圖1C繪示氣隙類型金屬化層中銅線之曝露側壁上的SiC垂直結構。
圖1D繪示用於多孔介電材料的SiC孔洞密封物。
圖2繪示代表性籠狀矽氧烷前驅物的範例。
圖3繪示具有遠端電漿源之處理設備的示意圖。
圖4呈現兩顯微照片,對產生於相似條件下、但採用兩種不同前驅物之氧參雜碳化矽所具有之特徵進行比較,該兩種不同前驅物的一者包括烷氧基團,且另一者沒有烷氧基團。
300‧‧‧裝置
310‧‧‧反應腔室
320‧‧‧噴淋頭
330‧‧‧基板
335‧‧‧基座
340‧‧‧控制器
350‧‧‧容器
355‧‧‧氣體入口
360‧‧‧遠端電漿源
365‧‧‧氣體入口

Claims (34)

  1. 一種在基板上沉積碳化矽膜的方法,該方法包括: (a)  提供該基板至一反應腔室; (b) 提供一含矽前驅物至該基板,其中該含矽前驅物具有:(i)一或更多的矽-氫鍵及/或矽-矽鍵、(ii)無碳-氧鍵、及(iii)無碳-氮鍵;以及 (c)  從一源氣體導入處於實質上一低能態的一或更多自由基物種,以與該含矽前驅物反應,從而在使該含矽前驅之矽-氫鍵或矽-矽鍵斷裂、卻實質上保留該含矽前驅物之矽-碳鍵的情況下於該基板上形成該碳化矽膜。
  2. 如申請專利範圍第1項之在基板上沉積碳化矽膜的方法,其中該碳化矽膜包括一氧參雜碳化矽、一氮參雜碳化矽、或一無參雜碳化矽。
  3. 如申請專利範圍第1項之在基板上沉積碳化矽膜的方法,其中在(b)及(c)期間,不提供包括碳-氧鍵或碳-氮鍵的化合物至該基板。
  4. 如申請專利範圍第1項之在基板上沉積碳化矽膜的方法,其中該碳化矽膜係在不執行原子層沉積的情形下形成。
  5. 如申請專利範圍第1項之在基板上沉積碳化矽膜的方法,其中該含矽前驅物不具有烷氧基團(-C-O-R),並且不具有胺基團 (-C-NR1 R2 ),其中R係一有機官能基,且其中R1 及R2 各自獨立地為氫或一有機官能基。
  6. 如申請專利範圍第5項之在基板上沉積碳化矽膜的方法,其中該含矽前驅物係一環形矽氧烷。
  7. 如申請專利範圍第6項之在基板上沉積碳化矽膜的方法,其中該環形矽氧烷係選自由七甲基環四矽氧烷(heptamethylcyclotetrasiloxane)及四甲基環四矽氧烷(tetramethylcyclotetrasiloxane)組成的群組。
  8. 如申請專利範圍第5項之在基板上沉積碳化矽膜的方法,其中該含矽前驅物係一線形矽氧烷。
  9. 如申請專利範圍第8項之在基板上沉積碳化矽膜的方法,其中該線形矽氧烷係選自由二矽氧烷及三矽氧烷組成的群組。
  10. 如申請專利範圍第5項之在基板上沉積碳化矽膜的方法,其中該含矽前驅物係一烷基矽烷。
  11. 如申請專利範圍第10項之在基板上沉積碳化矽膜的方法,其中該烷基矽烷係二矽烷或三矽烷。
  12. 如申請專利範圍第5項之在基板上沉積碳化矽膜的方法,其中該含矽前驅物係一胺基矽烷。
  13. 如申請專利範圍第1-12項其中任一項之在基板上沉積碳化矽膜的方法,其中該自由基物種係氫自由基、氧自由基、及/或氮自由基。
  14. 如申請專利範圍第1-12項其中任一項之在基板上沉積碳化矽膜的方法,其中導入該一或更多自由基物種包括使該源氣體曝露於一遠端電漿。
  15. 如申請專利範圍第14項之在基板上沉積碳化矽膜的方法,更包括自一RF電源或一微波電源產生該遠端電漿。
  16. 如申請專利範圍第1-12項其中任一項之在基板上沉積碳化矽膜的方法,其中該碳化矽膜中矽-氧或矽-氮鍵對矽-碳鍵的比率係介於約3:1與約0.5:1之間。
  17. 如申請專利範圍第1-12項其中任一項之在基板上沉積碳化矽膜的方法,其中該基板上該碳化矽膜具有至少約90%的一保形度。
  18. 如申請專利範圍第1-12項其中任一項之在基板上沉積碳化矽膜的方法,其中該基板包括具有一閘極電極的一電晶體,該方法更包括在該閘極電極的一或更多側壁上形成該碳化矽膜。
  19. 如申請專利範圍第1-12項其中任一項之在基板上沉積碳化矽膜的方法,其中該碳化矽膜包括一極低k值介電薄膜。
  20. 一種在基板上沉積碳化矽膜的設備,該設備包括: 一反應腔室,其係配置成在碳化矽膜沉積期間固持該基板; 一電漿腔室,其係耦接至該反應腔室、且係配置成在該反應腔室外側產生一電漿; 二或更多的氣體入口,其係耦接至該反應腔室;以及 一控制器,其包括用以執行以下操作的指令: (a)  使一含矽前驅物流過該氣體入口其中一者進入該反應腔室,其中該含矽前驅物具有:(i)一或更多的矽-氫鍵及/或矽-矽鍵、(ii)無碳-氧鍵、及(iii)無碳-氮鍵; (b)  從該電漿腔室中之該電漿提供處於實質上一低能態的一或更多自由基物種;以及 (c)  使該一或更多自由基物種流過該氣體入口其中另一者進入該反應腔室中,從而與該含矽前驅物進行反應,從而於該基板上形成該碳化矽膜。
  21. 如申請專利範圍第20項之在基板上沉積碳化矽膜的設備,其中該反應腔室與該電漿腔室之間的一距離係介於約1cm與約30cm之間。
  22. 如申請專利範圍第20項之在基板上沉積碳化矽膜的設備,其中該電漿腔室包括一RF電源或微波電源。
  23. 如申請專利範圍第20項之在基板上沉積碳化矽膜的設備,其中該控制器更包括用以在(a)至(c)期間不提供包括碳-氧鍵或碳-氮鍵化合物的指令。
  24. 如申請專利範圍第20項之在基板上沉積碳化矽膜的設備,其中該控制器的指令不包括使用原子層沉積以沉積該碳化矽膜的指令。
  25. 如申請專利範圍第20-24項其中任一項之在基板上沉積碳化矽膜的設備,其中該含矽前驅物不具有烷氧基團(-C-O-R),且不具有胺基團 (-C-NR1 R2 ),其中R係一有機官能基,且其中R1 及R2 各自獨立地為氫或一有機官能基。
  26. 如申請專利範圍第20-24項其中任一項之在基板上沉積碳化矽膜的設備,其中該含矽前驅物係一矽氧烷。
  27. 如申請專利範圍第20-24項其中任一項之在基板上沉積碳化矽膜的設備,其中該含矽前驅物係一烷基矽烷。
  28. 如申請專利範圍第20-24項其中任一項之在基板上沉積碳化矽膜的設備,其中該含矽前驅物係一矽氮烷。
  29. 如申請專利範圍第20-24項其中任一項之在基板上沉積碳化矽膜的設備,其中該一或更多自由基物種係產生於選自以下者組成之群組的一氣體:氫、氮、及氨。
  30. 如申請專利範圍第29項之在基板上沉積碳化矽膜的設備,其中該一或更多自由基物種係氫原子。
  31. 如申請專利範圍第20-24項其中任一項之在基板上沉積碳化矽膜的設備,其中該控制器係配置成維持該反應腔室於約250℃與約400℃之間的一溫度。
  32. 如申請專利範圍第20-24項其中任一項之在基板上沉積碳化矽膜的設備,其中該控制器係配置成維持該反應腔室於約0.2Torr與約40Torr之間的一壓力。
  33. 如申請專利範圍第20-24項其中任一項之在基板上沉積碳化矽膜的設備,其中該碳化矽膜中矽-氧或矽-氮鍵對矽-碳鍵的比率係介於約3:1與約0.5:1之間。
  34. 如申請專利範圍第20-24項其中任一項之在基板上沉積碳化矽膜的設備,其中該碳化矽膜係一極低k值介電薄膜。
TW105103396A 2015-02-06 2016-02-03 碳化矽膜之保形沉積 TWI693295B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/616,435 US10325773B2 (en) 2012-06-12 2015-02-06 Conformal deposition of silicon carbide films
US14/616,435 2015-02-06

Publications (2)

Publication Number Publication Date
TW201706439A true TW201706439A (zh) 2017-02-16
TWI693295B TWI693295B (zh) 2020-05-11

Family

ID=56624924

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105103396A TWI693295B (zh) 2015-02-06 2016-02-03 碳化矽膜之保形沉積

Country Status (4)

Country Link
KR (3) KR102701197B1 (zh)
CN (2) CN105862010A (zh)
SG (1) SG10201600832VA (zh)
TW (1) TWI693295B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI680982B (zh) * 2017-05-24 2020-01-01 美商慧盛材料美國責任有限公司 作為高成長速率含矽膜的前驅物的官能化環矽氮烷
US11848199B2 (en) 2018-10-19 2023-12-19 Lam Research Corporation Doped or undoped silicon carbide deposition and remote hydrogen plasma exposure for gapfill
US11894227B2 (en) 2012-06-12 2024-02-06 Novellus Systems, Inc. Conformal deposition of silicon carbide films
TWI837151B (zh) * 2018-07-24 2024-04-01 美商蘭姆研究公司 使用含矽及含碳前驅物的基於遠端電漿之矽碳化物膜沉積

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9234276B2 (en) 2013-05-31 2016-01-12 Novellus Systems, Inc. Method to obtain SiC class of films of desired composition and film properties
US10297442B2 (en) * 2013-05-31 2019-05-21 Lam Research Corporation Remote plasma based deposition of graded or multi-layered silicon carbide film
TW201822259A (zh) * 2016-09-09 2018-06-16 美商諾發系統有限公司 氧摻雜矽碳化物膜之基於遠程電漿的沉積
EP3555908A4 (en) * 2016-12-16 2020-08-26 Elwha Llc MANUFACTURING AND ENGRAVING PROCESSES OF POROUS SILICON CARBIDE STRUCTURES
US9837270B1 (en) * 2016-12-16 2017-12-05 Lam Research Corporation Densification of silicon carbide film using remote plasma treatment
KR102324630B1 (ko) * 2017-03-29 2021-11-10 삼성전자주식회사 집적회로 소자의 제조 방법
CN110612596B (zh) * 2017-04-13 2023-08-15 应用材料公司 用于沉积低介电常数膜的方法与设备
KR102626483B1 (ko) * 2018-03-01 2024-01-17 램 리써치 코포레이션 반도체 프로세싱을 위한 실리콘-기반 증착
KR20210003709A (ko) 2018-06-01 2021-01-12 (주) 디에스테크노 식각 특성이 향상된 화학기상증착 실리콘 카바이드 벌크
CN112969818A (zh) * 2018-10-03 2021-06-15 弗萨姆材料美国有限责任公司 用于制备含硅和氮的膜的方法
WO2022020701A1 (en) * 2020-07-24 2022-01-27 Versum Materials Us, Llc Cyclosiloxanes and films made therewith
US20220195606A1 (en) * 2020-12-23 2022-06-23 Raytheon Technologies Corporation Method for metal vapor infiltration of cmc parts and articles containing the same

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1077479A1 (en) * 1999-08-17 2001-02-21 Applied Materials, Inc. Post-deposition treatment to enchance properties of Si-O-C low K film
TW516076B (en) * 2000-06-13 2003-01-01 Applied Materials Inc Method and apparatus for increasing the utilization efficiency of gases during semiconductor processing
US6365527B1 (en) * 2000-10-06 2002-04-02 United Microelectronics Corp. Method for depositing silicon carbide in semiconductor devices
US6798043B2 (en) * 2001-06-28 2004-09-28 Agere Systems, Inc. Structure and method for isolating porous low-k dielectric films
US20030085408A1 (en) * 2001-11-02 2003-05-08 Neng-Hui Yang Oxygen-doped silicon carbide etch stop layer
US6849561B1 (en) * 2003-08-18 2005-02-01 Asm Japan K.K. Method of forming low-k films
US7088003B2 (en) * 2004-02-19 2006-08-08 International Business Machines Corporation Structures and methods for integration of ultralow-k dielectrics with improved reliability
US7253123B2 (en) * 2005-01-10 2007-08-07 Applied Materials, Inc. Method for producing gate stack sidewall spacers
KR101563763B1 (ko) * 2008-05-07 2015-10-27 더 트러스티즈 오브 프린스턴 유니버시티 전자 장치들 또는 다른 물품들 위의 코팅들에 사용하기 위한 혼성 층들
US20100081293A1 (en) * 2008-10-01 2010-04-01 Applied Materials, Inc. Methods for forming silicon nitride based film or silicon carbon based film
WO2012061593A2 (en) * 2010-11-03 2012-05-10 Applied Materials, Inc. Apparatus and methods for deposition of silicon carbide and silicon carbonitride films
US8771807B2 (en) * 2011-05-24 2014-07-08 Air Products And Chemicals, Inc. Organoaminosilane precursors and methods for making and using same
US20130217239A1 (en) * 2011-09-09 2013-08-22 Applied Materials, Inc. Flowable silicon-and-carbon-containing layers for semiconductor processing
US8586487B2 (en) * 2012-01-18 2013-11-19 Applied Materials, Inc. Low temperature plasma enhanced chemical vapor deposition of conformal silicon carbon nitride and silicon nitride films
US10211310B2 (en) * 2012-06-12 2019-02-19 Novellus Systems, Inc. Remote plasma based deposition of SiOC class of films

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11894227B2 (en) 2012-06-12 2024-02-06 Novellus Systems, Inc. Conformal deposition of silicon carbide films
TWI680982B (zh) * 2017-05-24 2020-01-01 美商慧盛材料美國責任有限公司 作為高成長速率含矽膜的前驅物的官能化環矽氮烷
TWI837151B (zh) * 2018-07-24 2024-04-01 美商蘭姆研究公司 使用含矽及含碳前驅物的基於遠端電漿之矽碳化物膜沉積
US11848199B2 (en) 2018-10-19 2023-12-19 Lam Research Corporation Doped or undoped silicon carbide deposition and remote hydrogen plasma exposure for gapfill

Also Published As

Publication number Publication date
KR20160097149A (ko) 2016-08-17
KR102515238B1 (ko) 2023-03-30
KR20240134095A (ko) 2024-09-06
CN113846310A (zh) 2021-12-28
CN105862010A (zh) 2016-08-17
KR20220024372A (ko) 2022-03-03
SG10201600832VA (en) 2016-09-29
KR102701197B1 (ko) 2024-08-29
TWI693295B (zh) 2020-05-11

Similar Documents

Publication Publication Date Title
US11894227B2 (en) Conformal deposition of silicon carbide films
KR102515238B1 (ko) 실리콘 카바이드 막들의 컨포멀한 증착
US10832904B2 (en) Remote plasma based deposition of oxygen doped silicon carbide films
CN110313051B (zh) 使用远程等离子体处理使碳化硅膜致密化
CN109791871B (zh) 基于远程等离子体的渐变或多层的碳化硅膜的沉积
KR102480201B1 (ko) 산소 도핑된 실리콘 카바이드 막들의 리모트 플라즈마 기반 증착
TW201510268A (zh) 具有所欲成分及膜特性之矽碳化物類薄膜的取得方法