TW201643172A - Preparation of high conductivity copper films - Google Patents

Preparation of high conductivity copper films Download PDF

Info

Publication number
TW201643172A
TW201643172A TW105104063A TW105104063A TW201643172A TW 201643172 A TW201643172 A TW 201643172A TW 105104063 A TW105104063 A TW 105104063A TW 105104063 A TW105104063 A TW 105104063A TW 201643172 A TW201643172 A TW 201643172A
Authority
TW
Taiwan
Prior art keywords
copper
composition
ink
complex
film
Prior art date
Application number
TW105104063A
Other languages
Chinese (zh)
Other versions
TWI680134B (en
Inventor
尚塔爾 帕蓋特
湯瑪士 拉塞勒
派翠克 馬朗方
Original Assignee
加拿大國家研究委員會
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 加拿大國家研究委員會 filed Critical 加拿大國家研究委員會
Publication of TW201643172A publication Critical patent/TW201643172A/en
Application granted granted Critical
Publication of TWI680134B publication Critical patent/TWI680134B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/044Forming conductive coatings; Forming coatings having anti-static properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/06Coating with compositions not containing macromolecular substances
    • C08J7/065Low-molecular-weight organic substances, e.g. absorption of additives in the surface of the article
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • C09D11/033Printing inks characterised by features other than the chemical nature of the binder characterised by the solvent
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • C09D11/037Printing inks characterised by features other than the chemical nature of the binder characterised by the pigment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/32Inkjet printing inks characterised by colouring agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/36Inkjet printing inks based on non-aqueous solvents
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0393Flexible materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • H05K1/097Inks comprising nanoparticles and specially adapted for being sintered at low temperature
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • H05K3/1283After-treatment of the printed patterns, e.g. sintering or curing methods
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0145Polyester, e.g. polyethylene terephthalate [PET], polyethylene naphthalate [PEN]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0154Polyimide
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0158Polyalkene or polyolefin, e.g. polyethylene [PE], polypropylene [PP]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0162Silicon containing polymer, e.g. silicone

Abstract

A copper precursor composition contains: a first copper complex of an imine or a first cyclic amine coordinated to a first copper precursor compound; and, a second copper complex of a primary amine or a second cyclic amine coordinated to a second copper precursor compound. A copper precursor composition contains a copper complex of an imine coordinated to a copper precursor compound. The copper precursor composition is thermally degradable at a temperature lower than a comparable composition containing only primary amine copper complexes under otherwise the same conditions to produce a metallic copper film having a resistivity of about 200 [mu][Omega],cm or less. Inks containing the copper precursor composition and a solvent may be deposited on a substrate and sintered to produce a metallic copper film. The substrate with the film thereon is useful in electronic devices.

Description

高導電性銅膜之製備 Preparation of highly conductive copper film

本發明係關於製造基板上之高導電性銅膜(特別是用於彈性電路)的方法和組成物。 This invention relates to methods and compositions for making highly conductive copper films on substrates, particularly for flexible circuits.

低成本電子裝置的製造仰賴使用額外印刷技術將電路印刷在不昂貴的塑膠基板上之能力。製造可用於低成本印刷技術(例如噴墨、網版、彈性或凹版)的導電油墨,同時提供必要的電性和機械表現,在可印刷的電子材料中仍然是挑戰,原因是較小的尺寸和較高的密度會衍生出新的課題。雖然片狀銀導電油墨符合許多今日的條件,且銀奈米粒子油墨具有優異的電特性因而有前瞻性,然而具成本效益且以銅為基礎的油墨儘管在電遷移方面表現良好,但具有的選項有限,此一問題困擾著銀電路,且隨著導入更高密度的設計而顯得更形重要。 The manufacture of low cost electronic devices relies on the ability to print circuits on inexpensive plastic substrates using additional printing techniques. Manufacturing conductive inks that can be used in low-cost printing technologies such as inkjet, screen, elastic or gravure, while providing the necessary electrical and mechanical properties, remains a challenge in printable electronic materials due to the smaller size And higher density will lead to new topics. Although sheet-like silver conductive inks meet many of today's conditions, and silver nanoparticle inks have excellent electrical properties and are therefore forward-looking, cost-effective copper-based inks, although performing well in electromigration, have The options are limited, and this problem plagues the silver circuit and becomes even more important as it introduces higher density designs.

無水甲酸銅(II)(Cu(OOCH)2)的熱解已知在約200℃發生,而在以甲酸銅(I)為中間產物的逐步陽離子還原反應中產生Cu0、H2和CO2。由於銅配位化合物並不昂貴、易於製備和處理、相容於多個不同的印刷方法且具有優異的電特性,因此成為受注目的油墨材料。例如,配位至己胺和辛胺等烷基胺的甲酸銅(II)會在相對溫和的條件下經由熱解轉化成金屬銅,而提供電阻值低至5.0微 歐姆˙公分的銅線路。不幸地,一般使用的燒結條件皆會導致聚對苯二甲酸乙二酯(PET)變形,特別是受到張力時更是如此,因而限制其用途。此外,在輥對輥方法中,30分鐘程度的燒結時間導致其失去吸引力。PET為不昂貴的基板,適用於藉由網版或噴墨印刷製造低成本電子材料。 The pyrolysis of anhydrous copper (II) formate (Cu(OOCH) 2 ) is known to occur at about 200 ° C, while Cu 0 , H 2 and CO 2 are produced in a stepwise cation reduction reaction with copper (I) as an intermediate. . Copper coordination compounds are attracting ink materials because they are inexpensive, easy to prepare and handle, compatible with a variety of different printing methods, and have excellent electrical properties. For example, copper (II) formate coordinated to an alkylamine such as hexylamine and octylamine will be converted to metallic copper by pyrolysis under relatively mild conditions to provide a copper circuit having a resistance value as low as 5.0 micro ohms. Unfortunately, the commonly used sintering conditions result in the deformation of polyethylene terephthalate (PET), especially when subjected to tension, thus limiting its use. Further, in the roll-to-roll method, the sintering time of about 30 minutes causes it to lose its attraction. PET is an inexpensive substrate suitable for making low cost electronic materials by screen or inkjet printing.

與吡啶衍生物配位的甲酸銅已被用作金屬銅的前驅物(US 6,770,122)。與哌啶衍生物配位的甲酸銅已被用作金屬銅的前驅物(US 2014/0349017)。然而,這些文件並未顯示製造一種可印刷油墨之用塗,該可印刷油墨亦可在低溫、較少時間以及與PET相容的周圍壓力下燒結以產生低電阻銅膜。 Copper formate coordinated to the pyridine derivative has been used as a precursor for metallic copper (US 6,770,122). Copper formate coordinated to a piperidine derivative has been used as a precursor for metallic copper (US 2014/0349017). However, these documents do not show the use of a printable ink that can be sintered at low temperatures, less time, and ambient pressure compatible with PET to produce a low resistance copper film.

本說明書所提供的一種銅前驅物組成物係包含:第一銅錯合物,包含配位至第一銅前驅物化合物之亞胺或第一環胺;及第二銅錯合物,包含配位至第二銅前驅物化合物之一級胺或第二環胺,該銅前驅物組成物在其餘相同條件之下,相較於僅包含該第二銅錯合物之可比組成物可在較低溫度熱降解,而製造具有約200微歐姆˙公分或以下電阻的金屬銅膜。 A copper precursor composition provided by the present specification comprises: a first copper complex comprising an imine or a first cyclic amine coordinated to a first copper precursor compound; and a second copper complex comprising Positioning to a second amine or second cyclic amine of the second copper precursor compound, the copper precursor composition being lower than the comparable composition comprising only the second copper complex under the same conditions The temperature is thermally degraded to produce a metallic copper film having a resistance of about 200 micro ohms or less.

進一步提供銅前驅物組成物,包含銅錯合物,其包含配位至銅前驅物化合物的亞胺。 Further provided is a copper precursor composition comprising a copper complex comprising an imine coordinated to a copper precursor compound.

進一步提供銅油墨,包含上述的銅前驅物組成物及溶劑。 Further provided is a copper ink comprising the above copper precursor composition and a solvent.

進一步提供基板,包含沉積在基板表面上的銅油墨線路。 A substrate is further provided comprising a copper ink line deposited on the surface of the substrate.

進一步提供製造金屬銅膜的方法,包含:將銅油墨沉 積在基板表面上並燒結油墨以製造金屬銅膜。 Further provided is a method of manufacturing a metallic copper film, comprising: sinking copper ink The ink is deposited on the surface of the substrate and sintered to produce a metallic copper film.

其他特徵將會在以下詳細描述中被描述或揭露。應理解在此描述的每個特徵皆可與任何一個或多個其他已描述特徵合併使用,且每個特徵未必要仰賴另一特徵的存在,除非明顯牽涉到該技術領域中的任一技術。 Other features will be described or disclosed in the following detailed description. It is to be understood that each of the features described herein can be used in combination with any one or more of the other described features, and that each feature does not necessarily depend on the presence of another feature, unless any one of skill in the art is apparent.

為了便於理解,較佳實施方式將藉由實例並參考隨附圖示來描述,其中:圖1A描繪將電阻(微歐姆˙公分)顯示為加熱至170℃後3ButPy相對EtHex之重量分率的函數之圖。 For ease of understanding, the preferred embodiment will be described by way of example and with reference to the accompanying drawings, wherein: FIG. 1A depicts the resistance (micro ohm ̇ cm) as a function of the weight fraction of 3ButPy versus EtHex after heating to 170 °C. Picture.

圖1B描繪將由EtHex(黑菱形)及60% 3ButPy(白方形)構成之銅膜的電阻(微歐姆˙公分)顯示為燒結溫度的函數之圖。 Figure 1B depicts a graph showing the resistance (micro ohm ̇ cm) of a copper film composed of EtHex (black diamond) and 60% 3ButPy (white square) as a function of sintering temperature.

圖2描繪由各個DiMetPip油墨構成並於110℃及150℃燒結之銅膜的電阻(微歐姆˙公分)之圖。 Fig. 2 is a graph showing the electric resistance (micro ohm ̇ cm) of a copper film composed of each DiMetPip ink and sintered at 110 ° C and 150 ° C.

圖3A描繪配位至各個亞胺之甲酸銅(II)的TGA之圖。 Figure 3A depicts a graph of the TGA of copper (II) formate coordinated to each imine.

圖3B描繪配位至各個亞胺之甲酸銅(II)的DTGA之圖。 Figure 3B depicts a DTGA of copper (II) formate coordinated to each imine.

在一實施方式中,銅前驅物組成物係包含:第一銅錯合物,包含配位至第一銅前驅物化合物之亞胺或第一環胺;及第二銅錯合物,包含配位至第二銅前驅物化合物之一級胺或第二環胺。較佳為,第一銅錯合物係包含:兩個環胺,可相同亦可不同,較佳為相同;兩個亞胺,可相同亦可不同,較佳為相同;或一個環胺和一個亞胺。較佳為,第二銅錯合物係包含:兩個一級胺,可相同亦可不同,較佳為相同;兩個環胺,可相同亦可不同,較佳為相同; 或一個一級胺和一個環胺。第一和第二銅錯合物為不同的錯合物。 In one embodiment, the copper precursor composition comprises: a first copper complex comprising an imine or a first cyclic amine coordinated to the first copper precursor compound; and a second copper complex comprising Positioned to a second amine or a second cyclic amine of the second copper precursor compound. Preferably, the first copper complex comprises: two cyclic amines, which may be the same or different, preferably the same; the two imines may be the same or different, preferably the same; or a cyclic amine and An imine. Preferably, the second copper complex comprises: two primary amines, which may be the same or different, preferably the same; the two cyclic amines may be the same or different, preferably the same; Or a primary amine and a cyclic amine. The first and second copper complexes are different complexes.

在另一實施方式中,銅前驅物組成物係包含銅錯合物,其包含配位至銅前驅物化合物的亞胺。 In another embodiment, the copper precursor composition comprises a copper complex comprising an imine coordinated to a copper precursor compound.

環胺包含環狀結構,其在環中包含一個或多個氮原子。環可包含例如1、2或3個氮原子。至少任一氮原子應可用於配位至銅。較佳為,該環1或2個氮原子,更佳為1個氮原子。該環亦包含至少1個碳原子,較佳為1-7個碳原子。該環亦可包含一個或多個雜原子,例如O或S。較佳為,該環僅包含氮和碳原子。較佳為,該環胺包含4元環、5元環、6元環、7元環或8元環。5元環、6元環和7元環為特佳。6元環為最佳。環胺可包含一個或多個環結構,其中該環結構為融合或非融合。至少任一環結構包含氮原子,然而該其他環結構可或可不包含氮原子。環結構可為芳香族或非芳香族。 Cyclic amines contain a cyclic structure that contains one or more nitrogen atoms in the ring. The ring may contain, for example, 1, 2 or 3 nitrogen atoms. At least any nitrogen atom should be available for coordination to copper. Preferably, the ring has 1 or 2 nitrogen atoms, more preferably 1 nitrogen atom. The ring also contains at least one carbon atom, preferably from 1 to 7 carbon atoms. The ring may also contain one or more heteroatoms such as O or S. Preferably, the ring contains only nitrogen and carbon atoms. Preferably, the cyclic amine comprises a 4-membered ring, a 5-membered ring, a 6-membered ring, a 7-membered ring or an 8-membered ring. 5-membered ring, 6-membered ring and 7-membered ring are particularly good. The 6-member ring is the best. The cyclic amine can comprise one or more ring structures, wherein the ring structure is fused or non-fused. At least either of the ring structures contains a nitrogen atom, although the other ring structure may or may not contain a nitrogen atom. The ring structure can be aromatic or non-aromatic.

該環可為非取代或由一個或多個取代基取代。取代基可包括例如氫、鹵素、羥基、巰基、羰基、取代的羰基、烷基、取代的烷基、烯基、取代的烯基、炔基和取代的炔基。取代的取代基可由上方列出的一個或多個取代基取代。較佳為,取代基包含烷基、取代的烷基、烯基、取代的烯基、炔基或取代的炔基。在某些實施方式中,環上的取代基為較佳,原因是環上的取代基可協助第一銅錯合物更相容於第二銅錯合物。在此方面,第一銅錯合物之環上的取代基較佳為如同構成第二銅錯合物之一級胺或環胺的部分之有機基團具有相似的溶解度特性。第一和第二銅錯合物的相容可減少其中一個或另一銅錯合物結晶的傾向。 The ring may be unsubstituted or substituted with one or more substituents. Substituents may include, for example, hydrogen, halogen, hydroxy, decyl, carbonyl, substituted carbonyl, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, and substituted alkynyl. Substituted substituents may be substituted by one or more substituents listed above. Preferably, the substituent comprises an alkyl group, a substituted alkyl group, an alkenyl group, a substituted alkenyl group, an alkynyl group or a substituted alkynyl group. In certain embodiments, a substituent on the ring is preferred because the substituent on the ring can assist the first copper complex to be more compatible with the second copper complex. In this regard, the substituent on the ring of the first copper complex preferably has similar solubility characteristics as the organic group constituting the moiety of the primary or cyclic amine of the second copper complex. The compatibility of the first and second copper complexes reduces the tendency of one or the other copper complex to crystallize.

環胺較佳為包含1至30個碳原子及1至3個氮原子。 環胺更佳為包含4至20個碳原子。環胺更加為包含1個氮原子,其位在環結構中且可用於配位至第一銅前驅物化合物的銅。較佳為,環胺中的環結構包含4至6個碳原子。環結構上的任何取代基較佳為各自包含1至8個碳原子。較佳為,環結構包含氫以外的1至3個取代基。較佳為環胺中具有1個環結構。 The cyclic amine preferably contains from 1 to 30 carbon atoms and from 1 to 3 nitrogen atoms. More preferably, the cyclic amine contains 4 to 20 carbon atoms. The cyclic amine further contains one nitrogen atom, which is located in the ring structure and can be used for copper coordinated to the first copper precursor compound. Preferably, the ring structure in the cyclic amine contains from 4 to 6 carbon atoms. Any substituent on the ring structure preferably contains from 1 to 8 carbon atoms each. Preferably, the ring structure contains from 1 to 3 substituents other than hydrogen. It is preferred that the cyclic amine has one ring structure.

含氮環結構的一些實例包括未取代或取代的氮丙啶、二嗪、吖丁啶、二氫吖丁、二吖丁啶、吡咯啶、吡咯、咪唑啶、吡唑啶、咪唑、吡唑啉、吡唑、三唑、四唑、哌啶、吡啶、四氫哌喃、吡喃、哌嗪、吡嗪、嘧啶、噠嗪、嗎福啉、三嗪、氮雜環、氮呯、高哌嗪、二氮呯、氮雜環辛烷、氮環辛四烯及其結構異構物。吡啶和哌啶為特佳。 Some examples of nitrogen-containing ring structures include unsubstituted or substituted aziridines, diazines, azetidine, dihydroindole, dipyridinium, pyrrolidine, pyrrole, imidazolidinium, pyrazole, imidazole, pyrazole Porphyrin, pyrazole, triazole, tetrazole, piperidine, pyridine, tetrahydropyran, pyran, piperazine, pyrazine, pyrimidine, pyridazine, morphine, triazine, nitrogen heterocycle, hydrazine, high Piperazine, diazonium, azacyclooctane, aziridine tetraene and structural isomers thereof. Pyridine and piperidine are particularly preferred.

環結構上氫以外的取代基較佳為包含C1-8烷基基團、C2-8烯基基團和C2-8炔基基團。C1-8烷基基團為更佳。C1-8烷基基團包含例如甲基、乙基、正丙基、異丙基、正丁基、第二丁基、第三丁基、戊基、已基、庚基、辛基及其異構物。 The substituent other than hydrogen on the ring structure preferably contains a C 1-8 alkyl group, a C 2-8 alkenyl group and a C 2-8 alkynyl group. A C 1-8 alkyl group is more preferred. a C 1-8 alkyl group includes, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, t-butyl, t-butyl, pentyl, hexyl, heptyl, octyl and Its isomers.

在此特別提出烷基取代的吡啶和哌啶。在吡啶或哌啶環上,一個或多個烷基基團可被取代。較佳為,有1至3個烷基取代基,更佳為1或2個烷基取代基。烷基取代基較佳為C1-8烷基基團。 Alkyl-substituted pyridines and piperidines are specifically mentioned here. One or more alkyl groups may be substituted on the pyridine or piperidine ring. Preferably, there are from 1 to 3 alkyl substituents, more preferably 1 or 2 alkyl substituents. The alkyl substituent is preferably a C 1-8 alkyl group.

亞胺包含至少一個配位至銅的氮原子。通式(I)的亞胺為較佳: 其中R1、R2和R3為相同或不同,且可為H、烷基(例如C1-8烷基)、烯基(例如C2-8烯基)、炔基(例如C2-8炔基)、環烷基(例如C3-8環烷基)、芳基(例如C6-14芳基)、烷芳基(例如C7-20烷芳基)、芳烷基(例如C7-20芳烷基)、OH、O-烷基(例如O-C1-8烷基)、O-芳烷基(例如O-C7-20芳烷基)、O-烷芳基(例如O-C7-20烷芳基)、CO2-烷基(例如CO2-(C1-8烷基))、SO2-烷基(例如SO2-(C1-8烷基))或SO-烷基(例如SO-(C1-8烷基))或R1及R2結合形成環(例如C3-C8環),前提是至少其中一個R1、R2和R3並非H。 The imine contains at least one nitrogen atom coordinated to copper. The imine of the formula (I) is preferably: Wherein R 1, R 2 and R 3 are the same or different and may be H, alkyl (e.g. C 1-8 alkyl), alkenyl (e.g., C 2-8 alkenyl), alkynyl group (e.g., C 2- 8 alkynyl), cycloalkyl (eg C 3-8 cycloalkyl), aryl (eg C 6-14 aryl), alkaryl (eg C 7-20 alkaryl), aralkyl (eg C 7-20 aralkyl), OH, O-alkyl (eg OC 1-8 alkyl), O-aralkyl (eg OC 7-20 aralkyl), O-alkylaryl (eg OC 7 -20 alkaryl), CO 2 -alkyl (eg CO 2 -(C 1-8 alkyl)), SO 2 -alkyl (eg SO 2 -(C 1-8 alkyl)) or SO-alkyl ( For example, SO-(C 1-8 alkyl)) or R 1 and R 2 combine to form a ring (for example, a C 3 -C 8 ring), provided that at least one of R 1 , R 2 and R 3 is not H.

在R1、R2和R3,烷基基團包括例如甲基、乙基、正丙基、異丙基、正丁基、第二丁基、第三丁基、戊基、已基、庚基、辛基及其異構物。芳基基團包括例如苯基、萘基和蒽基。環烷基基團包括例如環丙基、環丁基、環戊基、環已基、環庚基及環辛基。芳烷基基團包括例如(C6-14芳基)(C1-4烷基)x,其中x為1-3。烷芳基基團包括例如(C1-4烷基)(C6-14芳基)。 In R 1 , R 2 and R 3 , the alkyl group includes, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, t-butyl, t-butyl, pentyl, hexyl, Heptyl, octyl and their isomers. Aryl groups include, for example, phenyl, naphthyl and anthracenyl. Cycloalkyl groups include, for example, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl and cyclooctyl. The aralkyl group includes, for example, (C 6-14 aryl)(C 1-4 alkyl) x wherein x is 1-3. Alkaryl groups include, for example, (C 1-4 alkyl) (C 6-14 aryl).

在此特別提出環狀亞胺。環狀亞胺的一些實例為未取代和取代的氮雜環丙烯、吖丁和二氫吡咯。 A cyclic imine is specifically proposed here. Some examples of cyclic imines are unsubstituted and substituted azacyclopropenes, hydrazines and dihydropyrroles.

通式R-NH2的一級胺為較佳,其中R為有機基團。R較佳為C3-C20有機基團,更佳為C6-C12有機基團。該有機基團較佳為未取代的烷基基團、未取代的烯基基團或未取代的炔基基團,更佳為未取代的烷基基團。未取代的烷基、烯基或炔基基團較佳為直鏈或支鏈。一級胺的一些特別實例包括己胺、辛胺和乙基己胺。 A primary amine of the formula R-NH 2 is preferred wherein R is an organic group. R is preferably a C 3 - C 20 organic group, more preferably a C 6 - C 12 organic group. The organic group is preferably an unsubstituted alkyl group, an unsubstituted alkenyl group or an unsubstituted alkynyl group, more preferably an unsubstituted alkyl group. The unsubstituted alkyl, alkenyl or alkynyl group is preferably straight or branched. Some specific examples of primary amines include hexylamine, octylamine, and ethylhexylamine.

銅前驅物化合物係包含銅離子,較佳為銅(II)離子,及配位至銅離子的一個或多個配位基。該一個或多個配位基可為可藉由熱作用而從銅離子移除的配位基。在相關領域中已知適用於銅 前驅物化合物的配位基。適合的配位基之一些實例包括藉由碳原子以外的原子(例如氧、氮、硫、鹵素)而鍵結至銅的有機或無機配位基。可使用包含至少上述任一者的組合。無機配位基包括例如硝酸根、碳酸根、鹵化物、過氯酸根、氫氧化物及四氟硼酸根。有機配位基包括例如羧酸根、磺酸根和醯胺。較佳為,有兩個配位基配位至銅前驅物化合物。該兩個配位基可為相同或不同,較佳為相同。該一個或多個配位基較佳為包含羧酸根陰離子,例如甲酸根、乙酸根、草酸根、丙酸根、丁酸根、乙基已酸根、新癸酸根、五氟丙酸根、檸檬酸根、乙醇酸根、苯甲酸根、三氟乙酸根、苯乙酸根、乙醯丙酮酸根及六氟乙醯-丙酮酸根基團。C1-12鏈烷酸根為特佳。甲酸根為最佳。第一及第二銅前驅物化合物可為相同或不同,較佳為相同。 The copper precursor compound comprises copper ions, preferably copper (II) ions, and one or more ligands coordinated to the copper ions. The one or more ligands can be a ligand that can be removed from the copper ions by thermal action. Ligands suitable for copper precursor compounds are known in the related art. Some examples of suitable ligands include organic or inorganic ligands bonded to copper by atoms other than carbon atoms (e.g., oxygen, nitrogen, sulfur, halogen). Combinations comprising at least any of the above may be used. Inorganic ligands include, for example, nitrates, carbonates, halides, perchlorates, hydroxides, and tetrafluoroborates. Organic ligands include, for example, carboxylates, sulfonates, and decylamines. Preferably, two ligands are coordinated to the copper precursor compound. The two ligands may be the same or different, preferably the same. The one or more ligands preferably comprise a carboxylate anion such as formate, acetate, oxalate, propionate, butyrate, ethylhexanoate, neodecanoate, pentafluoropropionate, citrate, Glycolate, benzoate, trifluoroacetate, phenylacetate, acetylacetonate and hexafluoroacetic acid-pyruvate groups. C 1-12 alkanoates are particularly preferred. Formate is the best. The first and second copper precursor compounds may be the same or different, preferably the same.

銅錯合物可藉由使環胺、亞胺或一級胺反應而製造,視情況可加入銅前驅物化合物。銅前驅物化合物可包含一個或多個配位的離去基團(例如水、氨等),其在反應期間由環胺、亞胺或一級胺取代。該反應可在溶劑中進行,較佳為可促進離去基團的取代且不會與環胺、亞胺或一級胺競爭與銅配位的溶劑。此種溶劑在相關領域中已知,例如乙腈、二甲基亞碸(DMSO)、四氫呋喃(THF)等。在某些情況下,反應可在較高溫度下進行以協助離去基團的取代。環胺、亞胺或一級胺之量取決於欲與銅配位的分子之量。使用2莫耳當量的環胺、亞胺或一級胺與1莫耳當量的銅前驅物化合物允許2個分子的環胺、亞胺或一級胺配位至銅。 The copper complex can be produced by reacting a cyclic amine, an imine or a primary amine, and a copper precursor compound can be added as the case may be. The copper precursor compound may comprise one or more coordinating leaving groups (eg, water, ammonia, etc.) which are substituted by a cyclic amine, imine or primary amine during the reaction. The reaction can be carried out in a solvent, preferably a solvent which promotes the substitution of the leaving group and does not compete with the cyclic amine, imine or primary amine for copper coordination. Such solvents are known in the related art, such as acetonitrile, dimethyl hydrazine (DMSO), tetrahydrofuran (THF), and the like. In some cases, the reaction can be carried out at a higher temperature to assist in the substitution of the leaving group. The amount of cyclic amine, imine or primary amine depends on the amount of molecule to be coordinated to the copper. The use of 2 molar equivalents of cyclic amine, imine or primary amine with 1 molar equivalent of copper precursor compound allows for the coordination of 2 molecules of cyclic amine, imine or primary amine to copper.

銅前驅物組成物中的第一銅錯合物和第二銅錯合物之量可經由簡單的實驗調整以按照第一和第二銅錯合物的性質決定 彼此之間的最佳比例。第一銅錯合物相對於第二銅錯合物之量(w/w)可介於約1-99%,以第一和第二銅錯合物的總重量為基準,較佳為約5-95%,更佳為約10-75%,或約20-75%,或約40-75%,或約50-75%,或約60-66%。 The amount of the first copper complex and the second copper complex in the copper precursor composition can be adjusted by simple experimentation to determine the properties of the first and second copper complexes. The best ratio between each other. The amount of the first copper complex relative to the second copper complex (w/w) may be between about 1 and 99%, based on the total weight of the first and second copper complexes, preferably about 5-95%, more preferably about 10-75%, or about 20-75%, or about 40-75%, or about 50-75%, or about 60-66%.

銅油墨包含溶劑及銅前驅物組成物。銅前驅物組成物可包含約1-99重量%油墨,以油墨的重量為基準。較佳為,銅前驅物組成物包含約5-95重量%,或約10-90重量%,或約20-80重量%油墨。考慮所有其他組成物,包括銅前驅物組成物、存在的任何黏著劑和任何其他組成物,該溶劑通常會補足油墨的剩餘部分。在某些情況下,該剩餘部分可為約1-99重量%,以油墨的重量為基準。該溶劑較佳為包含約5-95重量%,或約15-95重量%,或約20-75重量%,或約20-40重量%油墨。 The copper ink contains a solvent and a copper precursor composition. The copper precursor composition can comprise from about 1 to 99% by weight ink based on the weight of the ink. Preferably, the copper precursor composition comprises from about 5 to 95% by weight, or from about 10 to 90% by weight, or from about 20 to 80% by weight of the ink. Consider all other compositions, including the copper precursor composition, any adhesive present, and any other composition that will typically make up the remainder of the ink. In some cases, the remainder may be from about 1 to 99% by weight based on the weight of the ink. The solvent preferably comprises from about 5 to 95% by weight, or from about 15 to 95% by weight, or from about 20 to 75% by weight, or from about 20 to 40% by weight of the ink.

該溶劑可包含水媒介、有機媒介或其混合物。水媒介包含水或其中分散一個或多個其他成分的水。有機媒介可包含有機溶劑或有機溶劑的混合物。銅前驅物組成物較佳為於溶劑中可分散,更佳為可溶。 The solvent can comprise an aqueous medium, an organic vehicle, or a mixture thereof. The aqueous medium contains water or water in which one or more other ingredients are dispersed. The organic vehicle may comprise an organic solvent or a mixture of organic solvents. The copper precursor composition is preferably dispersible in a solvent, more preferably soluble.

有機溶劑包括例如醇為主的溶劑、二醇為主的溶劑、酮為主的溶劑、酯為主的溶劑、醚為主的溶劑、脂肪族或脂環族烴為主的溶劑、芳香族烴為主的溶劑、含氰基的烴溶劑和其他溶劑。 The organic solvent includes, for example, an alcohol-based solvent, a diol-based solvent, a ketone-based solvent, an ester-based solvent, an ether-based solvent, an aliphatic or alicyclic hydrocarbon-based solvent, and an aromatic hydrocarbon. Main solvent, cyano group-containing hydrocarbon solvent and other solvents.

醇為主的溶劑包括例如甲醇、乙醇、丙醇、異丙醇、1-丁醇、異丁醇、2-丁醇、第三丁醇、戊醇、異戊醇、2-戊醇、新戊醇、第三戊醇、己醇、2-己醇、庚醇、2-庚醇、辛醇、2-乙基己醇、2-辛醇、環戊醇、環己醇、環庚醇、甲基環戊醇、甲基環己醇、甲基環庚醇、苯甲醇、乙烯二醇單乙酸鹽、乙烯二醇單乙基醚、乙烯 二醇單苯基醚、乙烯二醇單丁基醚、乙烯二醇單甲基醚、丙烯二醇單甲基醚、丙烯二醇單乙基醚、二乙烯二醇單甲基醚、二乙烯二醇單乙基醚、二丙烯二醇單甲基醚、二丙烯二醇單乙基醚、二丙烯二醇單丁基醚、2-(2-甲氧基乙氧基)乙醇、2-(N,N-二甲基胺)乙醇、3-(N,N-二甲基胺)丙醇等。 Alcohol-based solvents include, for example, methanol, ethanol, propanol, isopropanol, 1-butanol, isobutanol, 2-butanol, tert-butanol, pentanol, isoamyl alcohol, 2-pentanol, new Pentanol, third pentanol, hexanol, 2-hexanol, heptanol, 2-heptanol, octanol, 2-ethylhexanol, 2-octanol, cyclopentanol, cyclohexanol, cycloheptanol , methylcyclopentanol, methylcyclohexanol, methylcycloheptanol, benzyl alcohol, ethylene glycol monoacetate, ethylene glycol monoethyl ether, ethylene Glycol monophenyl ether, ethylene glycol monobutyl ether, ethylene glycol monomethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, diethylene glycol monomethyl ether, diethylene Glycol monoethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol monobutyl ether, 2-(2-methoxyethoxy)ethanol, 2- (N,N-dimethylamine)ethanol, 3-(N,N-dimethylamine)propanol, and the like.

二醇為主的溶劑包括例如乙烯二醇、丙烯二醇、1,2-丁二醇、1,3-丁二醇、1,4-丁二醇、1,5-戊二醇、新戊基二醇、異戊二烯二醇(3-甲基-1,3-丁二醇)、1,2-己二醇、1,6-己二醇、3-甲基-1,5-戊二醇、1,2-辛二醇、辛二醇(2-乙基-1,3-己二醇)、2-丁基-2-乙基-1,3-丙二醇、2.5-二甲基-2.5-己二醇1,2-環己二醇、1,4-環己二醇、1,4-環己烷二甲醇等。 The diol-based solvent includes, for example, ethylene glycol, propylene glycol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, neopentane Glycol, isoprene diol (3-methyl-1,3-butanediol), 1,2-hexanediol, 1,6-hexanediol, 3-methyl-1,5- Pentylene glycol, 1,2-octanediol, octanediol (2-ethyl-1,3-hexanediol), 2-butyl-2-ethyl-1,3-propanediol, 2.5-dimethyl Base-2.5-hexanediol 1,2-cyclohexanediol, 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol, and the like.

酮為主的溶劑包括例如乙酮、乙基甲基酮、甲基丁基酮、甲基異丁基酮、乙基丁基酮、二丙基酮、二異丁基酮、甲基戊基酮、環己酮、甲基環己酮等。 Ketone-based solvents include, for example, ethyl ketone, ethyl methyl ketone, methyl butyl ketone, methyl isobutyl ketone, ethyl butyl ketone, dipropyl ketone, diisobutyl ketone, methyl amyl Ketone, cyclohexanone, methylcyclohexanone, and the like.

酯為主的溶劑包括例如甲基甲酸酯、乙基甲酸酯、甲基乙酸酯、乙基乙酸酯、異丙基乙酸酯、丁基乙酸酯、異丁基乙酸酯、第二丁基乙酸酯、第三丁基乙酸酯、戊基乙酸酯、異戊基乙酸酯、第三戊基乙酸酯、苯基乙酸酯、甲基丙酸酯、乙基丙酸酯、異丙基丙酸酯、丁基丙酸酯、異丁基丙酸酯、第二丁基丙酸酯、第三丁基丙酸酯、戊基丙酸酯、異戊基丙酸酯、第三戊基丙酸酯、苯基丙酸酯、甲基2-乙基已酸酯、乙基2-乙基已酸酯、丙基2-乙基已酸酯、異丙基2-乙基已酸酯、丁基2-乙基已酸酯、甲基乳酸酯、乙基乳酸酯、甲基甲氧基丙酸酯、甲基乙氧基丙酸酯、乙基甲氧基丙酸酯、乙基乙氧基丙酸酯、乙烯二醇單甲基醚乙酸酯、二乙烯二醇單 甲基醚乙酸酯、乙烯二醇單乙基醚乙酸酯、乙烯二醇單丙基醚乙酸酯、乙烯二醇單異丙基醚乙酸酯、乙烯二醇單丁基醚乙酸酯、乙烯二醇單第二丁基醚乙酸酯、乙烯二醇單異丁基醚乙酸酯、乙烯二醇單第三丁基醚乙酸酯、丙烯二醇單甲基醚乙酸酯、丙烯二醇單乙基醚乙酸酯、丙烯二醇單丙基醚乙酸酯、丙烯二醇單異丙基醚乙酸酯、丙烯二醇單丁基醚乙酸酯、丙烯二醇單第二丁基醚乙酸酯、丙烯二醇單異丁基醚乙酸酯、丙烯二醇單第三丁基醚乙酸酯、丁烯二醇單甲基醚乙酸酯、丁烯二醇單乙基醚乙酸酯、丁烯二醇單丙基醚乙酸酯、丁烯二醇單異丙基醚乙酸酯、丁烯二醇單丁基醚乙酸酯、丁烯二醇單第二丁基醚乙酸酯、丁烯二醇單異丁基醚乙酸酯、丁烯二醇單第三丁基醚乙酸酯、甲基乙醯乙酸酯、乙基乙醯乙酸酯、甲基氧代丁酸酯、乙基氧代丁酸酯、y-內酯、o-內酯等。 Esters-based solvents include, for example, methyl formate, ethyl formate, methyl acetate, ethyl acetate, isopropyl acetate, butyl acetate, isobutyl acetate , second butyl acetate, tert-butyl acetate, pentyl acetate, isoamyl acetate, third amyl acetate, phenyl acetate, methyl propionate, Ethyl propionate, isopropyl propionate, butyl propionate, isobutyl propionate, second butyl propionate, tert-butyl propionate, pentyl propionate, isoprene Propionate, third amyl propionate, phenylpropionate, methyl 2-ethylhexanoate, ethyl 2-ethylhexanoate, propyl 2-ethylhexanoate, iso Propyl 2-ethyl hexanoate, butyl 2-ethyl hexanoate, methyl lactate, ethyl lactate, methyl methoxy propionate, methyl ethoxy propionate, Ethyl methoxy propionate, ethyl ethoxy propionate, ethylene glycol monomethyl ether acetate, diethylene glycol single Methyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol monopropyl ether acetate, ethylene glycol monoisopropyl ether acetate, ethylene glycol monobutyl ether acetate Ester, ethylene glycol monobutyl ether acetate, ethylene glycol monoisobutyl ether acetate, ethylene glycol monobutyl ether acetate, propylene glycol monomethyl ether acetate , propylene glycol monoethyl ether acetate, propylene glycol monopropyl ether acetate, propylene glycol monoisopropyl ether acetate, propylene glycol monobutyl ether acetate, propylene glycol single Second butyl ether acetate, propylene glycol monoisobutyl ether acetate, propylene glycol monobutyl ether acetate, butylene glycol monomethyl ether acetate, butylene glycol Monoethyl ether acetate, butylene glycol monopropyl ether acetate, butylene glycol monoisopropyl ether acetate, butylene glycol monobutyl ether acetate, butylene glycol single Second butyl ether acetate, butylene glycol monoisobutyl ether acetate, butylene glycol mono-tert-butyl ether acetate, methyl acetonitrile acetate, ethyl acetoacetic acid Ester, methyl oxobutyrate, ethyl oxobutyrate, y - lactone, o-lactone, and the like.

醚為主的溶劑包括例如四氫呋喃、四氫哌喃、嗎呋啉、乙烯二醇二甲基醚、二乙烯二醇二甲基醚、三乙烯二醇二甲基醚、二丁基醚、二乙基醚、二氧雜環等。 The ether-based solvent includes, for example, tetrahydrofuran, tetrahydropyran, morpholine, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, dibutyl ether, and Ethyl ether, dioxane, and the like.

脂肪族或脂環族烴溶劑包括例如戊烷、己烷、環己烷、甲基環己烷、二甲基環己烷、乙基環己烷、庚烷、辛烷、十氫萘、溶劑石油腦等。 The aliphatic or alicyclic hydrocarbon solvent includes, for example, pentane, hexane, cyclohexane, methylcyclohexane, dimethylcyclohexane, ethylcyclohexane, heptane, octane, decahydronaphthalene, solvent Oil brain and so on.

芳香族烴溶劑包括例如苯、甲苯、乙基苯、二甲苯、三甲基苯(例如均三甲苯)、二乙基苯、茴香烴、異丁基苯、蒔蘿烴、四氫萘、氯苯、苄醚、苯甲醚、苯甲腈、丙基苯、茴香烴、異丁基苯、二氫茚、四氫奈、荰、二氫茚等。 The aromatic hydrocarbon solvent includes, for example, benzene, toluene, ethylbenzene, xylene, trimethylbenzene (for example, mesitylene), diethylbenzene, anisole, isobutylbenzene, dihydrocarbon, tetrahydronaphthalene, chlorine. Benzene, benzyl ether, anisole, benzonitrile, propylbenzene, anisine, isobutylbenzene, indoline, tetrahydronaphthalene, anthracene, indoline, and the like.

含氰基的烴溶劑包括例如1-丙腈、1-丁腈、1-己腈、環己腈、苯甲腈、1,3-二丙腈、1,4-二丁腈、1,6-二戊腈、1,4-二環己 腈、1,4-二苯甲腈等。 The cyano group-containing hydrocarbon solvent includes, for example, 1-propanenitrile, 1-butyronitrile, 1-capronitrile, cyclohexanenitrile, benzonitrile, 1,3-dipropionitrile, 1,4-dibutyronitrile, 1,6 -dipentyl nitrile, 1,4-bicyclohexyl Nitrile, 1,4-dibenzonitrile, and the like.

在某些情況下,溶劑可與用於形成銅錯合物的胺或亞胺相同。 In some cases, the solvent can be the same as the amine or imine used to form the copper complex.

銅油墨亦可包含黏著劑。黏著劑為可將油墨黏著至薄膜並將油墨黏著至油墨所沈積之表面的任何材料。黏著劑較佳為包含聚合物材料、較佳為有機聚合物。黏著劑量能以銅在銅前驅物組成物中的總重量表達。較佳為,黏著劑能以2.5-55重量%出現在油墨中,以銅在銅前驅物組成物中的重量為基準。銅在銅前驅物組成物中的重量係指銅的總重量(無構成前驅物組成物之其他成分)。更佳為,黏著劑為約5-35重量%,以銅在銅前驅物組成物中的重量為基準。黏著劑較佳為包含有機聚合物黏著劑,例如乙基纖維素、聚吡咯烷酮、環氧基、酚樹脂、酚甲醛樹脂(例如NovolacTM、ResoleTM)、丙烯酸、尿烷、矽烷、苯乙烯丙烯醇、聚碳酸聚烯烴、聚乙烯縮醛、聚酯、聚尿烷、聚烯烴、氟塑料、含氟彈性體、熱塑性彈性體或其任何混合物。 Copper inks may also contain an adhesive. Adhesives are any materials that adhere the ink to the film and adhere the ink to the surface on which the ink is deposited. The adhesive preferably comprises a polymeric material, preferably an organic polymer. The adhesive dose can be expressed as the total weight of copper in the copper precursor composition. Preferably, the adhesive can be present in the ink in an amount of from 2.5 to 55% by weight based on the weight of copper in the copper precursor composition. The weight of copper in the copper precursor composition refers to the total weight of copper (without other constituents constituting the precursor composition). More preferably, the adhesive is from about 5 to about 35% by weight based on the weight of copper in the copper precursor composition. Adhesive preferably comprises an organic polymer adhesives, such as ethyl cellulose, polyvinyl pyrrolidone, epoxy, phenolic resins, phenol-formaldehyde resins (e.g. Novolac TM, Resole TM), acrylic, urethane, silicone alkoxy, styrene acrylonitrile Alcohol, polycarbonate polyolefin, polyvinyl acetal, polyester, polyurethane, polyolefin, fluoroplastic, fluoroelastomer, thermoplastic elastomer or any mixture thereof.

基板可為油墨可沈積的任何表面,較佳為任何可印刷表面。表面可包含例如聚對苯二甲酸乙二酯(PET)、聚烯烴(例如填充二氧化矽的聚烯烴(TeslinTM))、聚萘二甲酸乙二醇酯(PEN)、聚二甲基矽氧烷(PDMS)、聚苯乙烯、聚碳酸酯(PC)、聚亞醯胺(例如KaptonTM)、矽膜、環氧樹脂(例如玻璃強化環氧樹脂積層)、紡織品(例如纖維素紡織品)、紙、玻璃、金屬、介電塗層等。較佳為塑膠基板。較佳為彈性基板。較佳為聚對苯二甲酸乙二酯、聚萘二甲酸乙二醇酯、聚碳酸酯和FR-4(玻璃強化環氧樹脂積層),特佳為聚對苯二甲酸乙二酯、聚萘二甲酸乙二醇酯和FR-4。其中特佳為聚對苯二甲酸 乙二酯(PET)。 The substrate can be any surface on which the ink can be deposited, preferably any printable surface. Surface may comprise, for example, polyethylene terephthalate (PET), polyolefin (e.g., polyolefins filled with silicon dioxide (Teslin TM)), polyethylene terephthalate polyethylene naphthalate (PEN), poly dimethyl silicone siloxane (PDMS), polystyrene, polycarbonate (PC), polyphenylene Amides (e.g. Kapton TM), silicon film, an epoxy resin (e.g., a glass reinforced epoxy laminate), textiles (e.g. cellulose textiles) , paper, glass, metal, dielectric coating, etc. Preferably, it is a plastic substrate. It is preferably an elastic substrate. Preferred are polyethylene terephthalate, polyethylene naphthalate, polycarbonate and FR-4 (glass reinforced epoxy resin laminate), particularly preferably polyethylene terephthalate, poly Ethylene naphthalate and FR-4. Among them, polyethylene terephthalate (PET) is particularly preferred.

油墨可藉由任何適當的方法沈積在表面上,例如網版印刷、噴墨印刷、彈性凸版印刷(例如壓印)、凹版印刷、膠版印刷、噴槍、氣溶膠噴塗印刷、排版、旋塗、含浸塗佈、噴霧塗佈、輥塗、刮刀塗布、棒式塗佈、狹縫塗布、刷塗或任何其他方法。較佳為印刷方式。沈積後,油墨可經乾燥或硬化,例如藉由允許油墨在周遭環境下乾燥或將油墨加熱適當長的時間以蒸發溶劑。本發明的油墨特別適用於噴墨、網版、輥對輥、彈性凸版或凹版印刷。油墨適用於輥對輥印刷,原因是需要較低的溫度和較少的燒結時間。 The ink can be deposited on the surface by any suitable method, such as screen printing, ink jet printing, flexographic printing (eg, embossing), gravure printing, offset printing, spray guns, aerosol spray printing, typesetting, spin coating, impregnation Coating, spray coating, roll coating, knife coating, bar coating, slit coating, brush coating or any other method. It is preferably a printing method. After deposition, the ink can be dried or hardened, for example by allowing the ink to dry in a surrounding environment or heating the ink for a suitable length of time to evaporate the solvent. The inks of the present invention are particularly useful for ink jet, screen, roll-to-roll, flexographic or gravure printing. The ink is suitable for roll-to-roll printing because of the lower temperatures and less sintering time.

油墨可沈積(例如經由印刷)在表面上以在基板上形成油墨線路。可藉由任何適當的技術以乾燥並分解線路來形成導電銅膜,其中所用的技術和條件取決於油墨線路所沈積的基板之類型。加熱基板會乾燥並燒結線路而形成導電銅膜。燒結會分解銅前驅物組成物而形成導電銅奈米粒子。加熱較佳為在以下溫度執行:約150℃或以下、或約140℃或以下、或約135℃或以下、或約130℃或以下、或約125℃或以下。加熱較佳為在以下溫度執行:約90℃或以上、或約100℃或以上。油墨線路較佳為燒結如下時間:約30分鐘或以下、或約10分鐘或以下、或約5分鐘或以下。針對溫度和時間必須有所取捨,以較低溫度燒結通常需要較長時間。燒結期間亦可調整壓力以改變形成導電銅膜所需要的溫度及/或時間。壓力較佳為約3atm或以下、或約2atm或以下。在一實施方式中,未使用額外的壓力。加熱裝置的類型亦取決於燒結所需要的溫度和時間。燒結亦可在氧化氣體環境(例如空氣)或惰性氣體環境(例如氮及/或氬氣)中針對基板進行。針對銅油墨,惰性或還原氣體環境可能較為 理想,或是去氧的氣體環境,其中氧含量較佳為約1000ppm或以下,更佳為約500ppm或以下。 The ink can be deposited (eg, via printing) on the surface to form an ink line on the substrate. The conductive copper film can be formed by drying and decomposing the circuitry by any suitable technique, depending on the type of substrate on which the ink circuitry is deposited. Heating the substrate will dry and sinter the line to form a conductive copper film. Sintering decomposes the copper precursor composition to form conductive copper nanoparticles. Heating is preferably performed at a temperature of about 150 ° C or less, or about 140 ° C or less, or about 135 ° C or less, or about 130 ° C or less, or about 125 ° C or less. Heating is preferably carried out at a temperature of about 90 ° C or above, or about 100 ° C or above. The ink line is preferably sintered for a time of about 30 minutes or less, or about 10 minutes or less, or about 5 minutes or less. There must be trade-offs for temperature and time, and sintering at lower temperatures usually takes a long time. The pressure can also be adjusted during sintering to change the temperature and/or time required to form the conductive copper film. The pressure is preferably about 3 atm or less, or about 2 atm or less. In an embodiment, no additional pressure is used. The type of heating device also depends on the temperature and time required for sintering. Sintering can also be performed on the substrate in an oxidizing gas environment (e.g., air) or an inert gas environment (e.g., nitrogen and/or argon). For copper inks, inert or reducing gas environments may be more Desirably, or an oxygen-depleted gas atmosphere, wherein the oxygen content is preferably about 1000 ppm or less, more preferably about 500 ppm or less.

本發明之油墨所需的燒結條件(時間、溫度和壓力)可為輥對輥印刷所接受,在先前技術中由於相對長的燒結時間,一級胺配位甲酸銅錯合物並不適用於輥對輥印刷。此外,燒結條件可為PET基板上的印刷所接受,在先前技術中一級胺配位甲酸銅錯合物同樣不適用於此印刷。本發明的銅前驅物組成物可降低油墨需要在短時間內被燒結以製造具有良好導電性(低電阻)的銅膜時所用的溫度。 The sintering conditions (time, temperature and pressure) required for the inks of the present invention are acceptable for roll-to-roll printing. In the prior art, the primary amine coordination copper formate complex was not suitable for roll pairs due to the relatively long sintering time. Roll printing. In addition, the sintering conditions can be accepted for printing on PET substrates, and the primary amine coordination copper formate complexes are also not suitable for this printing in the prior art. The copper precursor composition of the present invention can reduce the temperature at which the ink needs to be sintered in a short time to produce a copper film having good conductivity (low resistance).

由銅前驅物組成物製造的導電性銅膜較佳為具有如下電阻:約150微歐姆˙公分或以下、或約100微歐姆˙公分或以下、或甚至低至50微歐姆˙公分或以下。導電銅膜可具有至少如同目前已知的油墨般良好的電阻值,同時以更少時間在更低的燒結溫度下被製造。 The conductive copper film produced from the copper precursor composition preferably has the following resistance: about 150 micro ohms ̇ centimeters or less, or about 100 micro ohms ̇ centimeters or less, or even as low as 50 micro ohms ̇ centimeters or less. The conductive copper film can have a resistance value at least as good as the currently known ink while being manufactured at a lower sintering temperature in less time.

基板可被整合入電子裝置,例如電路、導電匯流排(例如光生伏打電池)、感測器、天線(例如RFID天線)、觸控感測器、薄膜電晶體和智慧型封裝(例如智慧型藥物封裝)。基板可被用作任何導電元件,例如互連器。如此製造的銅前驅物組成物和油墨會使此種電子裝置的尺寸大幅減少。 The substrate can be integrated into electronic devices such as circuits, conductive busbars (eg, photovoltaic cells), sensors, antennas (eg, RFID antennas), touch sensors, thin film transistors, and smart packages (eg, smart Drug packaging). The substrate can be used as any conductive element, such as an interconnector. The copper precursor compositions and inks thus produced can greatly reduce the size of such electronic devices.

實例 Instance 實例1:亞胺甲酸銅(II)錯合物的合成Example 1: Synthesis of Copper(II) Complex of Imidate

甲酸銅(II)錯合物的製造方法如下:將2莫耳當量的不同亞胺與1莫耳當量的甲酸銅(II)配位。 The copper(II)carboxylate complex is produced by the following method: 2 moles of different imines are coordinated to 1 mole equivalent of copper (II) formate.

雙(2-乙基-1-己胺)甲酸銅(II)(EtHex)的製造方法如下: 將1.0克的甲酸銅(II)二水合物懸浮在25毫升的乙腈中,並加入1.74毫升的2-乙基-1-己胺(一級胺)。立即將溶液過濾以移除未反應的甲酸銅(II),再透過旋轉蒸發移除乙腈。 The production method of copper (II) bis(2-ethyl-1-hexylamine)carboxylate (EtHex) is as follows: 1.0 g of copper (II) formate dihydrate was suspended in 25 ml of acetonitrile, and 1.74 ml of 2-ethyl-1-hexylamine (primary amine) was added. The solution was immediately filtered to remove unreacted copper (II) formate and the acetonitrile was removed by rotary evaporation.

雙(3-丁基吡啶)甲酸銅(II)(3ButPy)的製造方法類似一級胺甲酸銅(II)錯合物:將1.0克的甲酸銅(II)二水合物懸浮在25毫升的乙腈,並加入1.57毫升的3-丁基吡啶(吡啶)。立即將溶液過濾以移除未反應的甲酸銅,再透過旋轉蒸發移除乙腈。 The method for the preparation of copper (II) bis(3-butylpyridine)carboxylate (3ButPy) is similar to the copper (II) complex of primary amine carbamate: 1.0 g of copper (II) formate dihydrate is suspended in 25 ml of acetonitrile. And 1.57 ml of 3-butylpyridine (pyridine) was added. The solution was immediately filtered to remove unreacted copper formate and the acetonitrile was removed by rotary evaporation.

雙(3,5-二甲基哌啶)甲酸銅(II)(DiMePip)的製造方法如下:將2克的甲酸銅(II)二水合物懸浮在50毫升的乙腈,並加入2.809毫升的3,5-二甲基哌啶(哌啶)。立即將溶液過濾以移除未反應的甲酸銅(II),再透過旋轉蒸發移除乙腈。 Copper (II) bis(3,5-dimethylpiperidine)carboxylate (DiMePip) was prepared by suspending 2 g of copper (II) formate dihydrate in 50 ml of acetonitrile and adding 2.809 ml of 3 , 5-dimethylpiperidine (piperidine). The solution was immediately filtered to remove unreacted copper (II) formate and the acetonitrile was removed by rotary evaporation.

雙(辛胺)甲酸銅(II)(辛基)和雙(4-叔丁基吡啶)甲酸銅(II)(tButPy)錯合物的製造方法如上所述。 The method for producing copper (II) (octyl) bis(octyl)carboxylate and copper (II) (tButPy) complex of bis(octyl)carboxylate is as described above.

實例2:銅前驅物組成物和銅油墨的製造Example 2: Fabrication of Copper Precursor Composition and Copper Ink

個別亞胺甲酸銅(II)錯合物之油墨的製造方法如下:混合1.00克的錯合物與20%-40%(克/克)的苯甲醚。該混合物係採用行星式混合8分鐘而達到均勻狀態。 The ink of the individual copper(II) ruthenate complex is prepared by mixing 1.00 gram of the complex with 20% to 40% (grams per gram) of anisole. The mixture was homogenized by planetary mixing for 8 minutes.

銅前驅物組成物包含一級胺甲酸銅(II)錯合物以及吡啶甲酸銅(II)錯合物或哌啶甲酸銅(II)錯合物,製造方法如下:混合一級胺甲酸銅(II)錯合物以及吡啶甲酸銅(II)錯合物或哌啶甲酸銅(II)錯合物。混合物包含25%至80%(克/克)的一級胺甲酸銅(II)錯合物。銅前驅物組成物之油墨的製造方法如下:混合1.00克的銅前驅物組成物,包含所欲的一級胺甲酸銅(II)錯合物以及吡啶或哌啶甲酸銅(II)錯合物之混合物,其中有20%-40%(克/克)的苯甲醚。銅前驅物組成 物和苯甲醚之混合物係採用行星式混合8分鐘而達到均勻狀態。 The copper precursor composition comprises a copper (II) complex of primary amines and a copper (II) complex of picolinate or a copper (II) complex of piperidine. The preparation method is as follows: mixing primary copper amide (II) A complex and a copper (II) complex of picolinate or a copper (II) complex of piperidine. The mixture contains from 25% to 80% (grams per gram) of a copper (II) complex of primary amine carbamate. The ink of the copper precursor composition is produced by mixing 1.00 g of a copper precursor composition comprising the desired primary copper amide (II) complex and a copper (II) complex of pyridine or piperidine. A mixture of 20% to 40% (grams per gram) of anisole. Copper precursor composition The mixture of the substance and the anisole was uniformly mixed by planetary mixing for 8 minutes.

實例3:在基板上形成銅膜Example 3: Forming a copper film on a substrate

將上述製造的油墨印刷在KaptonTM基板(聚亞醯胺)上呈正方形,尺寸為1公分x1公分。對於含吡啶甲酸銅(II)錯合物的油墨,使用Kar-X-Reflow 306 LF對流烤箱在氧濃度低於200ppm的氮氣環境下透過對流加熱油墨,其中將該正方形在135℃至185℃加熱5分鐘。對於含哌啶甲酸銅(II)錯合物的油墨,使用氮氣手套箱中的加熱板在氧濃度低於1.0ppm的環境下透過傳導加熱油墨,其中將該正方形在110℃至150℃加熱5分鐘。相較之下,僅含一級胺甲酸銅(II)錯合物的油墨係採用兩種方法加熱。在基板上加熱油墨會導致在基板上形成銅膜。 The above-described printing ink produced in a square shape on the substrate Kapton TM (poly Amides), a size of 1 cm x1 cm. For inks containing copper(II) picolinate complex, the ink was heated by convection using a Kar-X-Reflow 306 LF convection oven under a nitrogen atmosphere with an oxygen concentration of less than 200 ppm, wherein the square was heated at 135 ° C to 185 ° C. 5 minutes. For an ink containing a copper(II) piperidine complex, a heated plate in a nitrogen glove box is used to heat the ink through conduction in an environment having an oxygen concentration of less than 1.0 ppm, wherein the square is heated at 110 ° C to 150 ° C. minute. In contrast, an ink containing only a primary copper (II) urethane complex is heated by two methods. Heating the ink on the substrate results in the formation of a copper film on the substrate.

包含烷基亞胺錯合物、或者烷基亞胺錯合物以及吡啶或哌啶錯合物的混合物之油墨,被分解成無明顯破裂的薄膜。然而,僅包含tButPy和3ButPy的油墨被分解成具有明顯破裂的薄膜。結果,針對由僅包含tButPy和3ButPy的油墨所製造的薄膜進行電阻量測並不可靠。減低加熱速度並降低燒結溫度並無法改善由僅包含tButPy和3ButPy的油墨所製造的薄膜之薄膜品質。含EtHex和3ButPy之混合物的油墨結合了EtHex的良好薄膜形成特性和3ButPy的低分解溫度。 An ink comprising an alkylimine complex, or a mixture of an alkylimine complex and a pyridine or piperidine complex, is broken down into a film that does not have significant cracking. However, inks containing only tButPy and 3ButPy are broken down into films having significant cracking. As a result, resistance measurement for a film made of an ink containing only tButPy and 3ButPy is not reliable. Reducing the heating rate and lowering the sintering temperature does not improve the film quality of the film produced from the ink containing only tButPy and 3ButPy. An ink containing a mixture of EtHex and 3ButPy combines the good film formation characteristics of EtHex with the low decomposition temperature of 3ButPy.

實例4:銅線路的電阻Example 4: Resistance of copper lines

銅膜的電阻值係採用四點探測技術在1公分x 1公分的正方形上被判定。使用Lucas實驗室的Keithley 220可程式化電流源、HP 3478A多用電表和SP4探針進行四點探測測量。 The resistance value of the copper film was determined on a square of 1 cm x 1 cm using a four-point detection technique. Four-point probing measurements were performed using Lucis Lab's Keithley 220 programmable current source, HP 3478A multimeter, and SP4 probe.

3ButPy(例如3ButPy/[3ButPy+EtHex])的最佳重量分 率係在約170℃判定以確保所有不同類型的摻合物皆被燒結。圖1A顯示薄膜電阻隨著3ButPy分率的增加而逐漸下降。6.5微歐姆˙公分的最小電阻會在60% 3ButPy時出現。在圖1B中,將純EtHex錯合物(菱形)的電阻值與60% 3ButPy(方形)的摻合物進行比較以便以溫度的函數評估成效。在兩個情況中,當燒結溫度上升到170℃則電阻傾向較低,但上升到185℃時,則會伴隨電阻值錯誤以及黑化表面增加。因此,在燒結溫度170℃以上時,氧化在使薄膜的電特性降低方面扮演重要角色。在170℃,3ButPy/EtHex油墨在電阻方面的表現超越純EtHex油墨,且在135℃產生的薄膜具有13.9微歐姆˙公分的電阻,然而,EtHex衍生線路為非導電性。檢驗在這些燒結條件下的PET基板之行為時,已發現PET基板在高達135℃時並不會出現扭曲的跡象。表1以在不同溫度下燒結5分鐘獲得的電阻值為基準顯示EtHex和3ButPy/EtHex油墨的基板相容性。表2顯示在不同燒結溫度下從EtHex和3ButPy/EtHex油墨形成的銅膜之片電阻。 The best weight score for 3ButPy (eg 3ButPy/[3ButPy+EtHex]) The rate is judged at about 170 ° C to ensure that all of the different types of blends are sintered. Figure 1A shows that the sheet resistance gradually decreases as the 3ButPy fraction increases. 6.5 micro ohms The minimum resistance of ̇ cm will appear at 60% 3ButPy. In Figure IB, the resistance of a pure EtHex complex (diamond) was compared to a 60% 3 ButPy (square) blend to evaluate the effect as a function of temperature. In both cases, when the sintering temperature rises to 170 ° C, the resistance tends to be low, but when it rises to 185 ° C, the resistance value is wrong and the blackened surface is increased. Therefore, when the sintering temperature is 170 ° C or more, oxidation plays an important role in lowering the electrical characteristics of the film. At 170 ° C, the 3ButPy/EtHex ink performed better than the pure EtHex ink in resistance, and the film produced at 135 ° C had a resistance of 13.9 micro ohms per square centimeter, however, the EtHex derived line was non-conductive. When examining the behavior of the PET substrate under these sintering conditions, it has been found that the PET substrate does not show signs of distortion at up to 135 °C. Table 1 shows the substrate compatibility of EtHex and 3ButPy/EtHex inks based on the resistance values obtained by sintering at different temperatures for 5 minutes. Table 2 shows the sheet resistance of the copper film formed from EtHex and 3ButPy/EtHex inks at different sintering temperatures.

表3顯示以170℃燒結時從不同組成物的3ButPy/EtHex油墨所製造的銅膜之片電阻(歐姆/□)。 Table 3 shows sheet resistance (ohm/□) of a copper film produced from 3ButPy/EtHex inks of different compositions when sintered at 170 °C.

圖2以溫度為函數顯示由不同含DiMePip的油墨所製造的銅膜電阻。由純EtHex製造的薄膜顯示所有油墨混合物的最低電阻,但是當在110℃燒結時不會導電。雖然由純DiMetPip製造的薄膜顯示較高的導電性,但DiMetPip和包含超過50% DiMetPip的混合物在110℃燒結時會導電。因此,DiMetPip和EtHex的混合物只在低於EtHex的溫度下燒結時才會形成導電銅膜,且形成的銅膜之導電性優於只由DiMetPip形成的薄膜。只具有EtHex的油墨必須在更高的溫度下燒結才能形成導電銅膜,而只有DiMetPip的話會產生具有較低導電度(較高電阻)的銅膜。 Figure 2 shows the copper film resistance produced by different DiMePip-containing inks as a function of temperature. Films made from pure EtHex show the lowest resistance of all ink mixtures, but do not conduct electricity when sintered at 110 °C. Although films made from pure DiMetPip show higher electrical conductivity, DiMetPip and mixtures containing more than 50% DiMetPip conduct electricity when sintered at 110 °C. Therefore, the mixture of DiMetPip and EtHex forms a conductive copper film only when sintered at a temperature lower than EtHex, and the formed copper film is superior in conductivity to a film formed only by DiMetPip. Only inks with EtHex must be sintered at a higher temperature to form a conductive copper film, and only DiMetPip produces a copper film with lower conductivity (higher resistance).

實例5:亞胺甲酸銅(II)錯合物的熱重量分析Example 5: Thermogravimetric Analysis of Copper(II) Complex of Imidate

亞胺甲酸銅(II)錯合物採用Netzsch TG 209 F1 Iris R進行熱重量分析(TGA)。系統在BOC HP氬氣(等級5.3)環境下運作,剩餘氧氣由Supelco Big-Supelpure氧/水捕捉器補捉。圖3A和圖3B 顯示錯合物在氬氣環境下加熱到400℃的質量損失(TGA)及衍生質量損失(DTGA)。圖表顯示錯合物的分解溫度按照以下順序降低:第一烷基胺>第二烷基胺>第二環狀烷基胺>第三環狀芳香族胺。 Copper(II) imidate complex was subjected to thermogravimetric analysis (TGA) using Netzsch TG 209 F1 Iris R. The system operates in a BOC HP argon (grade 5.3) environment and the remaining oxygen is captured by a Supelco Big-Supelpure oxygen/water trap. Figure 3A and Figure 3B The mass loss (TGA) and derivative mass loss (DTGA) of the complex compound heated to 400 ° C under argon were shown. The graph shows that the decomposition temperature of the complex is reduced in the following order: first alkylamine > second alkylamine > second cyclic alkylamine > third cyclic aromatic amine.

tButPy和3ButPy錯合物分別在90-130℃和75-120℃之間分解,然而,辛基和EtHex錯合物的質量損失橫跨100-155℃。質量損失的兩個峰值指出銅錯合物經過兩階段衰減而成為金屬銅。吡啶錯合物相較於烷基胺錯合物在較窄的溫度範圍內分解表示形成具有較小尺寸分佈的較小銅粒子,該結果可由銅膜的掃描電子顯微鏡(SEM)影像確認。tButPy會導致銅粒子相較於由EtHex(100±30奈米)和辛基(240±60奈米)製造的粒子具有較小的直徑和較窄的尺寸分布。 The tButPy and 3ButPy complexes decomposed between 90-130 ° C and 75-120 ° C, respectively, however, the mass loss of the octyl and EtHex complexes spanned from 100-155 ° C. The two peaks of mass loss indicate that the copper complex is a two-stage decay to become metallic copper. Decomposition of the pyridine complex over the narrower temperature range than the alkylamine complex indicates the formation of smaller copper particles having a smaller size distribution, as a result of which can be confirmed by scanning electron microscopy (SEM) images of the copper film. tButPy results in copper particles having a smaller diameter and a narrower size distribution than particles made from EtHex (100 ± 30 nm) and octyl (240 ± 60 nm).

配位至甲酸銅(II)的吡啶和哌啶衍生物相較於烷基胺對應物具有較低的分解溫度。3-丁基-吡啶配位基,其配位至甲酸銅(II),會在接近80℃時開始分解,低於烷基胺-Cu(OOCH)2衍生物30℃。雖然雙(3-丁基-吡啶)甲酸銅(II)具有不佳的薄膜形成特性,錯合物可與雙(2-乙基-1-己胺)甲酸銅(II)結合產生具有良好薄膜形成特性、燒結時間短和分解溫度低的油墨。結合吡啶-Cu(OOCH)2或哌啶-Cu(OOCH)2與烷基胺-Cu(OOCH)2的油墨在較低溫度方法中製造時會產生具有高導電值(低電阻值)的銅膜。 The pyridine and piperidine derivatives coordinated to copper (II) formate have a lower decomposition temperature than the alkylamine counterpart. The 3-butyl-pyridine ligand, which coordinates to copper (II) formate, begins to decompose at approximately 80 ° C, below the alkylamine-Cu(OOCH) 2 derivative at 30 °C. Although copper (II) bis(3-butyl-pyridine)carboxylate has poor film formation properties, the complex compound can be combined with copper (II) bis(2-ethyl-1-hexylamine)carboxylate to produce a good film. An ink having characteristics, a short sintering time, and a low decomposition temperature. An ink incorporating pyridine-Cu(OOCH) 2 or piperidine-Cu(OOCH) 2 and alkylamine-Cu(OOCH) 2 produces copper with high conductivity (low resistance) when manufactured in a lower temperature process. membrane.

參考資料:每一參考資料的整體內容係被合併在此參考資料中。 References: The overall content of each reference is incorporated in this reference.

CN 1071182. Hu G. (1993) Heat Sensitive Variable Colour Mimeograph. April 21, 2993. CN 1071182. Hu G. (1993) Heat Sensitive Variable Colour Mimeograph. April 21, 2993.

GB 1443099. Toyo Ink Mfg. Co. (1976) Phthalocyanine Pigment Composition. July 21, 1076. GB 1443099. Toyo Ink Mfg. Co. (1976) Phthalocyanine Pigment Composition. July 21, 1076.

EP 0335237. BASF AG. (1989) Inks for Ink-jet Printing. October 4, 1989. EP 0335237. BASF AG. (1989) Inks for Ink-jet Printing. October 4, 1989.

US 5,980,622. Byers GW. (1999) Magenta Dyes for Ink-jet Inks. November 9, 1999. US 5,980,622. Byers GW. (1999) Magenta Dyes for Ink-jet Inks. November 9, 1999.

US 6,521,032. Lehmann et al. (2003) Magenta Inks Comprising Copper Complex Azo Dyes Based on 1-Naohthol-di- or tri-Sulfonic Acids. February 18, 2003. US 6,521,032. Lehmann et al. (2003) Magenta Inks Comprising Copper Complex Azo Dyes Based on 1-Naohthol-di- or tri-Sulfonic Acids. February 18, 2003.

US 6,770,122. Du Pont. (2004) Copper Deposition Using Copper Formate Complexes. September 29, 2004. US 6,770,122. Du Pont. (2004) Copper Deposition Using Copper Formate Complexes. September 29, 2004.

US 7,473,307. Song et al. (2009) Electroless Copper Plating Solution, Method of Producing the Same and Electro Less Copper Plating Method. January 6, 2009. US 7,473,307. Song et al. (2009) Electroless Copper Plating Solution, Method of Producing the Same and Electro Less Copper Plating Method. January 6, 2009.

US 8,262,894. Xu et al. High Speed Copper Plating Bath. September 11, 2012. US 8,262,894. Xu et al. High Speed Copper Plating Bath. September 11, 2012.

US 2008/178761. Tomotake et al. (2008) Method of Forming Metal Pattern, and Metal Salt Mixture. July 31, 2008. US 2008/178761. Tomotake et al. (2008) Method of Forming Metal Pattern, and Metal Salt Mixture. July 31, 2008.

US 2014/349017. Abe T. (2014) Copper Film-forming Composition, and Method for Producing Cooper Film by Using the Composition. November 27, 2014. US 2014/349017. Abe T. (2014) Copper Film-forming Composition, and Method for Producing Cooper Film by Using the Composition. November 27, 2014.

WO 2004/035691. Nippon Kayaku KK. (2004) Phthalocyanine Compound for Ink-jet Printing, Water-soluble Green Ink Composition Containing Such Compound and Coloring Substance Using Such Composition. September 1, 2004. WO 2004/035691. Nippon Kayaku KK. (2004) Phthalocyanine Compound for Ink-jet Printing, Water-soluble Green Ink Composition Containing Such Compound and Coloring Substance Using Such Composition. September 1, 2004.

WO 2006/093398. Inktec Co., Ltd. (2006) Conductive Inks and Manufacturing Method Thereof. September 8, 2006. WO 2006/093398. Inktec Co., Ltd. (2006) Conductive Inks and Manufacturing Method Thereof. September 8, 2006.

JPH 10279868. Canon KK. (1998) Ink Containing Organometallic Compound, Electrode, Electron-emitting Element and Production of Image Former. October 20, 1998. JPH 10279868. Canon KK. (1998) Ink Containing Organometallic Compound, Electrode, Electron-emitting Element and Production of Image Former. October 20, 1998.

JP 2000-136333. Dainichiseika Color Chem. (2000) Colored Composition for Color Filter, Production of Color Filter, and Color Filter Produced Thereby. May 16, 2000. JP 2000-136333. Dainichiseika Color Chem. (2000) Colored Composition for Color Filter, Production of Color Filter, and Color Filter Produced. May 16, 2000.

JP 2004-162110. Mitsubishi Paper Mills Ltd. (2004) Copper/Amine Composition. June 10, 2004. JP 2004-162110. Mitsubishi Paper Mills Ltd. (2004) Copper/Amine Composition. June 10, 2004.

JP 2009-256218. Toray Industries. (2009) Copper Precursor Composition, and Method of Preparing Copper Film Using the Same. November 5, 2009. JP 2009-256218. Toray Industries. (2009) Copper Precursor Composition, and Method of Preparing Copper Film Using the Same. November 5, 2009.

Araki T, Sugahara T, Jiu J, Nagao S, Nogi M, Koga H, Uchida H, Shinozaki K, Suganuma K. (2013) Cu Salt Ink Formulation for Printed Electronics using Photonic Sintering. Langmuir. 29(35), 11192-11197. Araki T, Sugahara T, Jiu J, Nagao S, Nogi M, Koga H, Uchida H, Shinozaki K, Suganuma K. (2013) Cu Salt Ink Formulation for Printed Electronics using Photonic Sintering. Langmuir. 29(35), 11192- 11197.

Choi Y-H, Lee J, Kim SJ, Yeon D-H, Byun Y. (2012) Highly conductive polymer-decorated Cu electrode films printed on glass substrates with novel precursor-based inks and pastes. J. Mater. Chem. 22, 3624-3631. Choi YH, Lee J, Kim SJ, Yeon DH, Byun Y. (2012) Highly conductive polymer-decorated Cu electrode films printed on glass substrates with novel precursor-based inks and pastes. J. Mater. Chem. 22, 3624-3631 .

Farraj Y, Grouchko M, Magdassi S. (2015) Self-reduction of a copper complex MOD ink for inkjet printing conductive patterns on plastics. Chem. Comm. 51, 1587-1590. Farraj Y, Grouchko M, Magdassi S. (2015) Self-reduction of a copper complex MOD ink for inkjet printing conductive patterns on plastics. Chem. Comm. 51, 1587-1590.

Hwang J, Kim S, Ayag KR, Kim H. (2014) Ink Electrode Material using Copper Formate-Bicarbonate Complex for Printed Electronics. Bull. Korean Chem. Soc. 35(1), 147-150. Hwang J, Kim S, Ayag KR, Kim H. (2014) Ink Electrode Material Using Copper Formate-Bicarbonate Complex for Printed Electronics. Bull. Korean Chem. Soc. 35(1), 147-150.

Kim I, Kim Y, Woo K, Ryu E-H, Yon K-Y, Cao G, Moon J. (2013) Synthesis of oxidation-resistant core-shell copper nanoparticles. RSC Adv. 3, 15169-15177. Kim I, Kim Y, Woo K, Ryu E-H, Yon K-Y, Cao G, Moon J. (2013) Synthesis of oxidation-resistant core-shell copper nanoparticles. RSC Adv. 3, 15169-15177.

Lyons AM, Nakahara S, Marcus MA, Pearce EM, Waszczak JV. (1991) Preparation of copper poly(2-vinylpyridine) nanocomposites. J. Phys Chem. 95(3), 1098-1105. Lyons AM, Nakahara S, Marcus MA, Pearce EM, Waszczak JV. (1991) Preparation of copper poly(2-vinylpyridine) nanocomposites. J. Phys Chem. 95(3), 1098-1105.

Shin D-H, Woo S, Yem H, Cha M, Cho S, Kang M, Jeong S, Kim Y, Kang K, Piao Y. (2014) A Self-Reducible and Alcohol-Soluble Copper-Based Metal-Organic Decomposition Ink for Printed Electronics. ACS Appl. Mater. Interfaces. 6(5), 3312-3319. Shin DH, Woo S, Yem H, Cha M, Cho S, Kang M, Jeong S, Kim Y, Kang K, Piao Y. (2014) A Self-Reducible and Alcohol-Soluble Copper-Based Metal-Organic Decomposition Ink for Printed Electronics. ACS Appl. Mater. Interfaces. 6(5), 3312-3319.

Yabuki A, Arriffin N, Yanase M. (2011) Low-temperature synthesis of copper conductive film by thermal decomposition of copper-amine compositiones. Thin Solid Films. 519, 6530-6533. Yabuki A, Arriffin N, Yanase M. (2011) Low-temperature synthesis of copper conductive film by thermal decomposition of copper-amine compositiones. Thin Solid Films. 519, 6530-6533.

Yabuki A, Tanaka S. (2012) Electrically conductive copper film prepared at low temperature by thermal decomposition of copper amine complexes with various amines. Mater. Res. Bull. 47(12), 4107-4111. Yabuki A, Tanaka S. (2012) Electrically conductive copper film prepared at low temperature by thermal decomposition of copper amine complexes with various amines. Mater. Res. Bull. 47(12), 4107-4111.

Yabuki A, Tachibana Y, Fathona IW. (2014) Synthesis of copper conductive film by low-temperature thermal decomposition of copper-aminediol complexes under an air atmosphere. Mater. Chem. & Phys. 148(1-2), 299-304. Yabuki A, Tachibana Y, Fathona IW. (2014) Synthesis of copper conductive film by low-temperature thermal decomposition of copper-aminediol complexes under an air atmosphere. Mater. Chem. & Phys. 148(1-2), 299-304 .

在檢視過以上描述後,新特徵對於熟悉相關領域者將顯而易見。然而,應理解申請專利範圍不應限於實施方式,而應該 按照整體申請專利範圍和說明書的字句給予最寬廣的解釋。 After reviewing the above description, new features will be apparent to those skilled in the relevant art. However, it should be understood that the scope of the patent application should not be limited to the implementation, but should The broadest interpretation is given in terms of the overall scope of the patent application and the description.

Claims (17)

一種銅前驅物組成物,其包含:第一銅錯合物,其包含配位至第一銅前驅物化合物之亞胺或第一環胺;及第二銅錯合物,其包含配位至第二銅前驅物化合物之一級胺或第二環胺,該銅前驅物組成物在其餘相同條件之下,相較於僅包含該第二銅錯合物之可比組成物可在較低溫度熱降解,而製造具有約200微歐姆˙公分或以下電阻的金屬銅膜。 A copper precursor composition comprising: a first copper complex comprising an imine or a first cyclic amine coordinated to a first copper precursor compound; and a second copper complex comprising coordination to a second copper precursor compound or a second cyclic amine, the copper precursor composition being heatable at a lower temperature than the comparable composition comprising only the second copper complex under the same conditions Degradation, a metal copper film having a resistance of about 200 micro ohms or less is produced. 如請求項1之組成物,其中該第一銅錯合物包含兩個亞胺或兩個環胺。 The composition of claim 1, wherein the first copper complex comprises two imines or two cyclic amines. 如請求項1或2之組成物,其中該第一銅錯合物包含環胺,且該環胺包含6元環。 The composition of claim 1 or 2, wherein the first copper complex comprises a cyclic amine and the cyclic amine comprises a 6-membered ring. 如請求項3之組成物,其中該6元環為吡啶或哌啶。 The composition of claim 3, wherein the 6-membered ring is pyridine or piperidine. 如請求項1至4中任一項之組成物,其中該環胺被一個或多個C1-8烷基團取代。 The composition of any one of claims 1 to 4, wherein the cyclic amine is substituted with one or more C 1-8 alkyl groups. 如請求項1至5中任一項之組成物,其中該第一銅前驅物化合物包含銅(II)離子及配位至該銅(II)離子的一個或多個羧酸根陰離子。 The composition of any one of claims 1 to 5, wherein the first copper precursor compound comprises a copper (II) ion and one or more carboxylate anions coordinated to the copper (II) ion. 如請求項6之組成物,其中該一個或多個羧酸根陰離子為兩個甲酸根基團。 The composition of claim 6, wherein the one or more carboxylate anions are two formate groups. 如請求項1至7中任一項之組成物,其中該第二銅錯合物包含兩個一級胺。 The composition of any one of claims 1 to 7, wherein the second copper complex comprises two primary amines. 如請求項1至8中任一項之組成物,其中該一級胺具有通式R-NH2,其中R為C6-C12未取代之烷基團。 The composition of any one of claims 1 to 8, wherein the primary amine has the formula R-NH 2 wherein R is a C 6 -C 12 unsubstituted alkyl group. 如請求項1至9中任一項之組成物,其中該一級胺為辛胺或乙基己基胺。 The composition of any one of claims 1 to 9, wherein the primary amine is octylamine or ethylhexylamine. 如請求項1至10中任一項之組成物,其中該第二銅前驅物化合物包含銅(II)離子及配位至該銅(II)離子的一個或多個羧酸根陰離子。 The composition of any one of claims 1 to 10, wherein the second copper precursor compound comprises a copper (II) ion and one or more carboxylate anions coordinated to the copper (II) ion. 如請求項11之組成物,其中該一個或多個羧酸根陰離子為兩個甲酸根基團。 The composition of claim 11, wherein the one or more carboxylate anions are two formate groups. 如請求項1至12中任一項之組成物,其中該第一銅錯合物在該組成物中的含量為約20-75%(w/w),以該第一和第二銅錯合物的總重量為基準。 The composition of any one of claims 1 to 12, wherein the first copper complex is present in the composition in an amount of from about 20 to about 75% (w/w), with the first and second copper The total weight of the compound is based on the basis. 一種銅油墨,其包含如請求項1至13中任一項所定義的銅前驅物組成物及溶劑。 A copper ink comprising the copper precursor composition as defined in any one of claims 1 to 13 and a solvent. 一種基板,其包含微量的沉積在基板表面上之如請求項14之銅油墨。 A substrate comprising a trace amount of copper ink as claimed in claim 14 deposited on a surface of a substrate. 一種製造金屬銅膜之方法,其包含:將如請求項14所定義的銅油墨沉積在基板表面上,並將該油墨燒結以製造金屬銅膜。 A method of producing a metallic copper film, comprising: depositing a copper ink as defined in claim 14 on a surface of a substrate, and sintering the ink to produce a metallic copper film. 如請求項16之方法,其中該溫度為125℃或以下。 The method of claim 16, wherein the temperature is 125 ° C or below.
TW105104063A 2015-06-11 2016-02-05 Preparation of high conductivity copper films TWI680134B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562174426P 2015-06-11 2015-06-11
US62/174,426 2015-06-11

Publications (2)

Publication Number Publication Date
TW201643172A true TW201643172A (en) 2016-12-16
TWI680134B TWI680134B (en) 2019-12-21

Family

ID=57502729

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105104063A TWI680134B (en) 2015-06-11 2016-02-05 Preparation of high conductivity copper films

Country Status (8)

Country Link
US (1) US10954406B2 (en)
EP (1) EP3307705B1 (en)
JP (1) JP6775531B2 (en)
KR (1) KR102522823B1 (en)
CN (1) CN107614481B (en)
CA (1) CA2988797C (en)
TW (1) TWI680134B (en)
WO (1) WO2016197234A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11427727B2 (en) * 2016-12-24 2022-08-30 Electroninks Incorporated Copper based conductive ink composition and method of making the same
KR20190131242A (en) * 2018-05-16 2019-11-26 도레이첨단소재 주식회사 Conductive fiber assemblies and manufacturing method thereof

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5413260B2 (en) 1973-09-04 1979-05-29
DE3810958A1 (en) 1988-03-31 1989-10-12 Basf Ag INK FOR INK JET RECORDING PROCESS
CN1071182A (en) 1991-09-28 1993-04-21 胡贵友 Heat-sensitive colour-changing ink
JP3912844B2 (en) 1997-04-09 2007-05-09 キヤノン株式会社 Ink containing organic metal, electrode, electron-emitting device, and method of manufacturing image forming apparatus
US5980622A (en) 1997-08-29 1999-11-09 Hewlett-Packard Company Magenta dyes for ink-jet inks
JP3813750B2 (en) 1998-08-27 2006-08-23 大日精化工業株式会社 Color filter manufacturing method and color filter
ES2185549T3 (en) 1999-09-27 2003-05-01 Ciba Sc Holding Ag CARMESI RED COLOR INKS (MAGENTA) CONTAINING COPPER COMPLEX AZOIC COLORANTS BASED ON 1-NAFTOL-DI- OR -TRISULPHONIC ACIDS.
US6369256B1 (en) * 2000-06-09 2002-04-09 National Research Council Of Canada Self-reducible copper(II) source reagents for chemical vapor deposition of copper metal
US7629017B2 (en) * 2001-10-05 2009-12-08 Cabot Corporation Methods for the deposition of conductive electronic features
US6770122B2 (en) 2001-12-12 2004-08-03 E. I. Du Pont De Nemours And Company Copper deposition using copper formate complexes
JP2005520053A (en) * 2002-01-18 2005-07-07 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Volatile copper (II) complexes for depositing copper thin films by atomic layer deposition
CN1688741A (en) * 2002-08-09 2005-10-26 纳幕尔杜邦公司 Pyrrolyl complexes of copper for copper metal deposition
TW200416261A (en) 2002-10-18 2004-09-01 Nippon Kayaku Kk Phthalocyanine compound for ink-jet printing, water-soluble green ink composition containing such compound and coloring substance using such composition
JP2004162110A (en) 2002-11-12 2004-06-10 Mitsubishi Paper Mills Ltd Copper/amine composition
JP4964152B2 (en) 2005-03-04 2012-06-27 インクテック カンパニー リミテッド Conductive ink composition and method for producing the same
JP5205717B2 (en) * 2006-07-04 2013-06-05 セイコーエプソン株式会社 Copper formate complex, method for producing copper particles, and method for producing wiring board
JP5045015B2 (en) * 2006-07-28 2012-10-10 セイコーエプソン株式会社 Method for producing copper formate, method for producing copper particles, and method for producing wiring board
JP2008205430A (en) 2007-01-26 2008-09-04 Konica Minolta Holdings Inc Method of forming metallic pattern and metal salt mixture
KR20080083790A (en) 2007-03-13 2008-09-19 삼성전자주식회사 Eletroless copper plating solution, production process of the same and eletroless copper plating method
CN101519356A (en) * 2008-02-28 2009-09-02 华东理工大学 Spiro bisimine and preparation method and application thereof
JP2009256218A (en) 2008-04-14 2009-11-05 Toray Ind Inc Copper precursor composition, and method of preparing copper film using the same
US9095898B2 (en) * 2008-09-15 2015-08-04 Lockheed Martin Corporation Stabilized metal nanoparticles and methods for production thereof
US8262894B2 (en) 2009-04-30 2012-09-11 Moses Lake Industries, Inc. High speed copper plating bath
KR20120036476A (en) * 2010-10-08 2012-04-18 에스케이이노베이션 주식회사 Preparation of ink composition containing copper(ii) formate complex
CN102605355B (en) * 2012-02-21 2014-07-02 北京化工大学 Copper film on surface of substrate as well preparation method and application thereof
JP5876749B2 (en) * 2012-02-29 2016-03-02 国立大学法人広島大学 Conductive substance precursor composition and method for producing conductive substance using the same
US10590295B2 (en) * 2012-02-29 2020-03-17 Singapore Asahi Chemical & Solder Ind. Pte. Ltd Inks containing metal precursors nanoparticles
JP5923351B2 (en) * 2012-03-16 2016-05-24 株式会社Adeka Composition for forming copper film and method for producing copper film using the composition
JP2013206722A (en) * 2012-03-28 2013-10-07 Fujifilm Corp Liquid composition, metal copper film, conductor wiring, and method for manufacturing metal copper film
BR112015000524B1 (en) * 2012-07-09 2021-03-30 Shikoku Chemicals Corporation METHOD FOR FORMING A COPPER FILM AND METHOD FOR MANUFACTURING A WIRING PLATE
KR101288106B1 (en) * 2012-12-20 2013-07-26 (주)피이솔브 Metal precursors and their inks
JP2014182913A (en) * 2013-03-19 2014-09-29 Fujifilm Corp Composition for conductive film formation, and method for producing conductive film using the same
KR20140142406A (en) * 2013-06-03 2014-12-12 고성국 ink composition for using organic copper precursor and manufacturing method thereof
JP6156991B2 (en) * 2013-07-25 2017-07-05 株式会社Adeka Composition for forming copper film and method for producing copper film using the same
CN104341860B (en) * 2013-08-01 2019-04-09 索尼公司 Nanometer conductive ink and preparation method thereof
KR102233293B1 (en) * 2014-01-15 2021-03-29 (주)창성 Method for preparing ink composition containing copper formate-amine complex
JP6468889B2 (en) * 2014-03-11 2019-02-13 三井金属鉱業株式会社 Conductive composition and method for producing conductor using the same
EP3158015B1 (en) * 2014-06-19 2019-12-04 National Research Council of Canada Molecular inks
US20160057866A1 (en) * 2014-08-19 2016-02-25 Jsr Corporation Metal film forming method and conductive ink used in said method
US9809489B2 (en) * 2014-09-12 2017-11-07 Jsr Corporation Composition for forming a conductive film, a conductive film, a method for producing a plating film, a plating film, and an electronic device
WO2018076110A1 (en) * 2016-10-25 2018-05-03 Ggi International Printed electronics

Also Published As

Publication number Publication date
CA2988797C (en) 2023-08-01
US20180134909A1 (en) 2018-05-17
EP3307705B1 (en) 2021-05-05
KR20180018694A (en) 2018-02-21
KR102522823B1 (en) 2023-04-18
TWI680134B (en) 2019-12-21
JP2018525770A (en) 2018-09-06
CA2988797A1 (en) 2016-12-15
CN107614481B (en) 2021-05-07
EP3307705A4 (en) 2019-01-23
EP3307705A1 (en) 2018-04-18
CN107614481A (en) 2018-01-19
WO2016197234A1 (en) 2016-12-15
JP6775531B2 (en) 2020-10-28
US10954406B2 (en) 2021-03-23

Similar Documents

Publication Publication Date Title
TWI607114B (en) Method for producing electroconductive film and electroconductive film
CN109790409B (en) Copper ink and conductive solderable copper traces made therefrom
KR100895192B1 (en) Organic silver complex compound used in paste for conductive pattern forming
WO2007140480A2 (en) Printed resistors and processes for forming same
CN105358640B (en) The manufacturing method of conductive film formation composition and conductive film
TW201343810A (en) Liquid composition, metallic film and conductor wiring, and fabricating method of metallic film
US20130236637A1 (en) Process for manufacturing copper hydride fine particle dispersion, electroconductive ink, and process for manufacturing substrate equipped with conductor
TW201643172A (en) Preparation of high conductivity copper films
Knapp et al. Precursors for Atmospheric Plasma‐Enhanced Sintering: Low‐Temperature Inkjet Printing of Conductive Copper
US20070281091A1 (en) Polyimide insulative layers in multi-layered printed electronic features
TW201437266A (en) Composition for electroconductive film formation and method of forming electroconductive film by using the same
CN103702786B (en) Silver microparticle and the conductive paste containing this silver-colored microparticle, conductive film and electronic device
JP2014067677A (en) Conductive paste and printed wiring board
TW201415489A (en) Composition for forming conductive film and method for producing conductive film
CN111051442B (en) copper ink
PAQUET et al. Patent 2988797 Summary
TWI783103B (en) Copper ink for high conductivity fine printing
WO2024006882A2 (en) Conductive ink compositions comprising gold complexes
TW201503163A (en) Composition for electroconductive film formation and method of forming electroconductive film by using the same
JP2014075455A (en) Method for manufacturing conductive substrate