TW201640738A - 使用高介電質共振器的介電質耦合透鏡 - Google Patents
使用高介電質共振器的介電質耦合透鏡 Download PDFInfo
- Publication number
- TW201640738A TW201640738A TW105100834A TW105100834A TW201640738A TW 201640738 A TW201640738 A TW 201640738A TW 105100834 A TW105100834 A TW 105100834A TW 105100834 A TW105100834 A TW 105100834A TW 201640738 A TW201640738 A TW 201640738A
- Authority
- TW
- Taiwan
- Prior art keywords
- resonators
- lens
- substrate
- relative dielectric
- waveguide
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q13/00—Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
- H01Q13/06—Waveguide mouths
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q19/00—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
- H01Q19/06—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens
- H01Q19/062—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens for focusing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P3/00—Waveguides; Transmission lines of the waveguide type
- H01P3/12—Hollow waveguides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/36—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q15/00—Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
- H01Q15/02—Refracting or diffracting devices, e.g. lens, prism
- H01Q15/10—Refracting or diffracting devices, e.g. lens, prism comprising three-dimensional array of impedance discontinuities, e.g. holes in conductive surfaces or conductive discs forming artificial dielectric
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/0087—Apparatus or processes specially adapted for manufacturing antenna arrays
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P5/00—Coupling devices of the waveguide type
- H01P5/08—Coupling devices of the waveguide type for linking dissimilar lines or devices
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Aerials With Secondary Devices (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
- Control Of Motors That Do Not Use Commutators (AREA)
- Microwave Amplifiers (AREA)
Abstract
說明用於含有高介電質共振器之透鏡的技術。在一項實例中,一透鏡包含用於傳播一電磁波的一基材,以及分散於該基材各處的複數個共振器。該複數個共振器之各者具有至少部分基於該電磁波的一波長而選擇的一直徑,並且係由具有至少部分基於該電磁波之一頻率所選擇之一共振頻率的一介電質材料所形成。該複數個共振器之各者亦具有大於該基材之一相對介電率的一相對介電率。該複數個共振器之至少兩者根據一晶格常數而在該基材內予以隔開,該晶格常數定義介於該等共振器之一第一者的一中心與該等共振器之一相鄰第二者的一中心之間的一距離。
Description
本揭露關於波聚焦技術。
可用的射頻頻譜經常受到管轄法規與標準所限制。對頻寬需求的增加(亦即,增加的資料流通量)導致提供光纖資料速率且可支持密集部署架構之數種無線點對點技術的崛起。毫米波通訊系統可使用於此功能,其提供短連結、高資料速率、低成本、高密度、高安全性、以及低傳輸功率之操作上的好處。
這些優點使毫米波通訊系統有利於在射頻頻譜上發送各種波。同軸纜線可用於載送毫米波,雖然該等纜線對於結合在毫米波通訊系統中而言目前是非常昂貴的。
大體而言,本揭露係關於一種含有高介電質共振器的透鏡。該透鏡包含一基材以及分散於該基材各處的複數個高介電質共振器,其中該複數個高介電質共振器中之各高介電質共振器具有相對高於該基材之一相對介電率的一相對介電率,且其中該複數個高介電質
共振器以一幾何圖案來配置,於此一方式中,一個高介電質共振器的該共振能夠轉移能量到任何環繞的高介電質共振器。
在一項實施例中,本揭露係關於一種含有高介電質共振器的透鏡。在一項實例中,一透鏡包含用於傳播一電磁波的一基材,以及分散於該基材各處的複數個共振器。該複數個共振器之各者具有至少部分基於該電磁波的一波長而選擇的一直徑,並且其係由具有至少部分基於該電磁波之一頻率所選擇之一共振頻率的一介電質材料所形成。該複數個共振器之各者亦具有大於該基材之一相對介電率的一相對介電率。該複數個共振器之至少兩者根據一晶格常數而在該基材內予以隔開,該晶格常數定義介於該等共振器之一第一者的一中心與該等共振器之一相鄰第二者的一中心之間的一距離。
在另一實施例中,本揭露係關於一種波導系統設備。該設備包含一波導、一天線、以及定位於該天線與該波導之間的一透鏡。該透鏡包含用於傳播由該天線發送或接收之一電磁波的一基材以及分散於該基材各處的複數個共振器。該複數個共振器之各者具有至少部分基於該電磁波的一波長而選擇的一直徑,並且其係由具有至少部分基於該電磁波之一頻率所選擇之一共振頻率的一介電質材料所形成。該複數個高介電質共振器之各者具有大於該基材之一相對介電率的一相對介電率。該複數個共振器之至少兩者根據一晶格常數而在該基材內予以隔開,該晶格常數定義介於該等共振器之一第一者的一中心與該等共振器之一相鄰第二者的一中心之間的一距離。
在另一實施例中,本揭露係關於一種形成一透鏡之方法。該方法包含以一介電質材料形成複數個共振器,該介電質材料具有至少部分基於欲與透鏡一起使用之一電磁波的頻率而選擇的一共振頻率。該等共振器之各者具有至少部分基於電磁波之一波長而選擇的一直徑。該複數個共振器之各者具有大於基材之一相對介電率的一相對介電率。該複數個共振器之至少兩者經配置以根據一晶格常數在該基材內予以隔開,該晶格常數定義介於該等共振器之第一者的中心與該等共振器之相鄰第二者的中心之間的一距離。
以下在附圖及說明中提出本揭露之一或多項實施例之細節。.可從說明與圖式以及從申請專利範圍中明白了解本揭露之其他特徵、目的、以及優點。
10‧‧‧系統
12‧‧‧波導
14‧‧‧埠
16‧‧‧透鏡
18‧‧‧HDR
20‧‧‧天線
30A‧‧‧系統
30B‧‧‧系統
30C‧‧‧系統
30D‧‧‧系統
32‧‧‧波導
34‧‧‧埠
36‧‧‧天線
38B‧‧‧透鏡
38C‧‧‧透鏡
38D‧‧‧透鏡
40‧‧‧HDR
50A‧‧‧系統
50B‧‧‧系統
50C‧‧‧系統
50D‧‧‧系統
52‧‧‧波導
54‧‧‧埠
56‧‧‧天線
56A‧‧‧電磁場
56B‧‧‧電磁場
56C‧‧‧電磁場
56D‧‧‧電磁場
58B‧‧‧梯形透鏡
58C‧‧‧透鏡
58D‧‧‧透鏡
60‧‧‧天線
66‧‧‧圖解
80‧‧‧球狀HDR;HDR球體
82‧‧‧圓柱狀HDR;HDR
84‧‧‧立方體HDR;HDR
800‧‧‧方法
802‧‧‧步驟
804‧‧‧步驟
圖1係一方塊圖,其繪示根據本揭露之一或多項技術的實例系統,該實例系統包括一波導以及具有高介電質共振器的一介電質耦合透鏡。
圖2A至圖2D係方塊圖,其繪示根據本揭露之一或多項技術之組件(例如一波導、一透鏡、以及一天線)的實例配置。
圖3A至圖3D係概念圖,其等繪示根據本揭露之一或多項技術之不同實例系統中的實例電磁場。
圖4係一方塊圖,其繪示根據本揭露之一或多項技術之用於在圖3A至圖3D的方塊圖中的電磁場強度之圖解(key)。
圖5係繪示根據本揭露之一或多項技術之在不同系統之不同頻率之信號強度的圖。
圖6A至圖6C係方塊圖,其繪示根據本揭露之一或多項技術之使用於HDR之結構的多種形狀。
圖7係一流程圖,其繪示根據本揭露之一或多項技術之形成具有複數個共振器之透鏡的方法。
本揭露說明可被使用來改善天線與波導之間之耦合效率的一透鏡結構。透鏡結構包括由具有一低相對介電率之一材料所形成的一基材以及在該基材內予以隔開的複數個高介電質共振器(HDR),於此方式中,讓能量在HDR之間轉移。HDR係被製造以在特定頻率共振的物體,且可例如由陶瓷類型的材料所構成。當所具有的頻率達到或接近HDR之共振頻率的電磁(EM)波通過HDR時,該波的能量會被放大。當HDR之間的能量轉移結合由HDR的共振引起之EM波能量放大來進行時,EM波具有比單獨通過波導之波之功率比多於三倍的功率比。在各種通訊系統中,使用此透鏡結構作為波導與天線之間的介面產生對共軸纜線與其他點對點技術的低耗損與低反射替代選項。
圖1係一方塊圖,其繪示根據本揭露之一或多項技術的實例系統,該實例系統包括波導以及具有高介電質共振器的介電質耦合透鏡。在此系統10中,波導12具有延伸通過波導12的埠14。透鏡16定位於波導12與天線20之間。透鏡16包括以幾何圖案分佈於透鏡16各處的複數個HDR 18。透鏡16接收來自天線20的一信號,
該信號傳播經過HDR 18且到波導12的一第一端內。信號除了其他事物以外可以是一電磁波或一聲波。在一些實例中,信號係一60GHz毫米波信號。信號通過埠14離開波導12。
波導12係一引導波的結構。波導12通常將信號侷限在一維度中行進。當在開放空間中時,波一般作為球狀波在所有方向上傳播。當此發生時,波以所行進之距離的平方成比例損失它們的功率。在理想的情況下,當一波導將一波侷限於在僅僅單一方向上行進時,該波在傳播的同時損失極少功率至無功率損失。
波導12係在其長度的各端上具有一開口的結構,該兩開口,亦即埠(例如埠14),係藉由沿著波導12之內部之長度的一中空部分來連接。波導12可以由例如銅、黃銅、銀、鋁、或具有一低體積電阻率(bulk resistivity)的其他金屬所製成。在一些實例中,若波導12的內壁以低體積電阻率金屬電鍍,波導12可以由具有不良傳導性特性的金屬、塑膠、或其他非傳導材料製成。在一項實例中,波導12具有2.5mm×1.25mm的大小,且由Teflon®製成,其具有相對介電率εr,=2.1以及損耗正切=0.0002,於波導12的內壁上具有1mm厚的鋁覆層。
透鏡16係以低相對介電率材料基材製成的結構,譬如例如Teflon®。在其他實例中,透鏡16的基材部分可例如由例如石英玻璃、堇青石、硼矽玻璃、全氟烷氧基、聚乙烯、或氟化乙烯丙烯的材料製成。在一些實例中,透鏡16具有一梯形形狀,其具有相鄰波導12之一端而定位的一漸縮端。在其他實例中,透鏡16具有一矩形形
狀。其他實例的特徵係具有其他各種形狀的一透鏡。在一項實例中,透鏡16係由長度2mm的Teflon®基材所形成、其具有半徑0.35mm的HDR球體、在天線20與透鏡16之間的間隔係1.35mm。
在一些實施例中,透鏡16含有以一幾何圖案而配置在基材內的複數個HDR 18。一般而言,為了改善耦合效率,幾何圖案可經設計以適配一波導大小。在一些實例中,此圖案係在離波導12最遠之一垂直平面中之三乘三網格的等間隔HDR 18,且一垂直線的三個等間隔HDR 18中央對準定位於三乘三網格與波導12之間,其中該垂直線的三個等間隔HDR 18適配波導12與埠14的大小。此幾何圖案可具有聚焦的好處。從俯視圖來看,HDR的配置採用三角形的形式。EM波(特別是達到或接近HDR之共振頻率的那些EM波)係由在靠近天線之透鏡16前部分中之九個HDR的任一個所捕獲。在一些實例中,該共振頻率經選擇以匹配該電磁波的頻率。在一些實例中,複數個共振器的共振頻率係在一毫米波段內。在一項實例中,複數個共振器的共振頻率係60GHz。這些HDR之各者可隨後將波折射朝向在單一垂直線的三個等間隔HDR中具有相同垂直配置的各別HDR。以大振幅振盪駐波的形成於透鏡16中。在最終經過埠14聚焦波到波導12內之前,這甚至進一步放大EM波的強度。
HDR 18亦可以具有具體間隔的其他幾何圖案來配置。例如,在一些實例中,如果需要的話,一垂直線的兩個球體可被使用,譬如以配合波導12的大小。HDR 18會以一個HDR的共振能夠轉移能量到任何環繞的HDR的此一方式來予以隔開。此間隔係關於
HDR 18的米氏共振(Mie resonance)以及系統效率。藉由考慮在系統中之任何電磁波的波長,可選擇間隔來改善系統效率。各HDR 18具有一直徑與一晶格常數。在一些實例中,至少部分基於欲與透鏡一起使用的波導來選擇晶格常數與共振頻率。晶格常數係從一個HDR的中心至一相鄰HDR的中心的距離。在一些實例中,HDR 18具有1mm的一晶格常數。在一些實例中,晶格常數小於電磁波的波長。
HDR之直徑與HDR之晶格常數的比例(直徑D/晶格常數a)可被使用來表徵在透鏡16中之HDR 18的幾何配置。此比例可隨著透鏡結構的相對介電率對比度而改變。在一些實例中,共振器的直徑對晶格常數的比例係小於一。在一項實例中,D可係0.7mm且a可係1mm,比例係0.7。此比例越高,透鏡的耦合效率會變得越低。在一項實例中,用於如圖1所示之HDR 18之幾何配置之晶格常數的最大極限將是發射波的波長。晶格常數應該小於波長,但對於強效率而言,晶格常數應該遠小於波長。這些參數的相對大小可隨著透鏡結構的相對介電率對比度而改變。可選擇晶格常數,以在發射波之波長內得到希望的性能。在一項實例中,晶格常數可係1mm且波長可係5mm,亦即,是波長五分之一的一晶格常數。通常,波長(λ)係在空氣介質中的波長。假如使用另一介電質材料用於該介質,此式的波長則應該由λeff所取代,其係:
其中,ε r係該介質材料的相對介電率。
在HDR 18與透鏡16之基材之間的高相對介電率對比度導致在HDR 18之良好定義共振模式中的激發。換言之,相對於透鏡16之基材材料的相對介電率,形成HDR 18的材料具有高的相對介電率。較高的對比度將提供更高的性能,且因此HDR 18的相對介電率係決定HDR 18之共振性質時的一重要參數。因為能量將洩漏到透鏡16的基材材料內,所以低對比度可能造成HDR 18的弱共振。一高對比度提供一完美邊界情況(boundary condition)的近似,其意指極少能量至沒有能量洩漏到透鏡16的基材材料內。對於形成HDR 18的材料具有比透鏡16之基材之相對介電率多於5至10倍的相對介電率的一實例可假設有此近似。在一些實例中,複數個共振器之各者具有一相對介電率,該相對介電率係該基材之一相對介電率的至少兩倍大。在其他實例中,複數個共振器之各者具有一相對介電率,該相對介電率係該基材之一相對介電率的至少十倍大。就給定的共振頻率而言,相對介電率越高,介電質共振器越小,且能量會更集中在介電質共振器內。在一些實例中,複數個共振器係由一陶瓷材料製成。HDR 18係由多種陶瓷材料的任一者製成,例如,除了其他事物以外包括例如BaZnTa氧化物(BaZnTa oxide)、BaZnCoNb、Zr鈦基(Zrtitanium-based)材料、鈦基材料、鈦酸鋇基材料、氧化鈦基材料、Y5V、以及X7R。在一項實例中,HDR 18可具有40之一相對介電率。
雖然在圖1中繪示,以舉例為目的而成球狀,在其他實例中,HDR 18可以各種不同形狀形成。在其他實例中,HDR 18之各者可具有圓柱狀形狀。仍在其他的實例中,HDR 18之各者可具有一
立方體或其他平行六面體形狀。HDR 18可採用其他幾何形狀。HDR 18的功能可依據形狀而改變,如在下文關於圖5的進一步詳細說明。
天線20可為發射一電磁波信號的一裝置。天線20亦可為經由埠14與透鏡16接收來自波導12波的一裝置。該等波可為在射頻頻譜中的任何電磁波,例如包括60GHz毫米波。只要HDR直徑與晶格常數遵循上文所陳述的限制,系統10的透鏡16則可例如使用於在一段射頻頻譜中的任何波。在一些實例中,透鏡16可用於電磁波頻譜的毫米波段中。在一些實例中,透鏡16可與例如頻率範圍從10GHz至120GHz的信號一起使用。在其他實例中,透鏡16可與例如頻率範圍從10GHz至300GHz的信號一起使用。
具有HDR 18的透鏡16可使用於各種系統,例如包括低成本纜線市場、無接觸量測應用、晶片對晶片通訊、以及提供光纖資料速率且可支持密集部署架構的各種其他無線點對點應用。
在一些實例中,例如圖1之透鏡16的透鏡可經形成,以包括基材與複數個高介電質共振器,其中在基材內之HDR的配置係在形成期間內受到控制,使得HDR能夠以選擇的距離彼此隔開。HDR之間的距離(亦即,晶格常數)可基於欲與透鏡一起使用之一電磁波信號的一波長而選擇。例如,晶格常數可遠小於波長。在一些實例中,在透鏡16的形成期間內,透鏡16的基材材料可被分成多個部分。在決定HDR之平面的位置之處,基材材料可被分段。半球狀溝槽可在各HDR之位置處被包括在基材材料之多個部分中。在具有不同形狀HDR的其他實例中,半圓柱狀或半矩形溝槽可被包括在基材材料
中。HDR隨後可放置於基材材料的溝槽中。基材材料之多個部分隨後可被結合,以形成具有HDR嵌入於各處的一單一透鏡結構。
在一項實例中,根據本揭露一或多項技術,透鏡(例如,透鏡16)經揭示,其包含用於傳播電磁波的基材以及分散於基材各處的複數個共振器(例如,HDR 18)。該複數個共振器之各者具有至少部分基於該電磁波的一波長而選擇的一直徑,並且係由具有至少部分基於該電磁波之一頻率所選擇之一共振頻率的一介電質材料所形成。該複數個共振器之各者亦具有大於該基材之一相對介電率的一相對介電率。該複數個共振器之至少兩者根據一晶格常數而在該基材內予以隔開,該晶格常數定義介於該等共振器之一第一者的一中心與該等共振器之一相鄰第二者的一中心之間的一距離。在一些實例中,根據本揭露一或多項技術,此透鏡可使用作為系統的一部分,以藉由定位於天線與波導之間而將波導耦合到天線。
根據本揭露之一或多項技術,藉由以介電質材料形成複數個共振器來形成此透鏡,該介電質材料具有至少部分基於欲與透鏡一起使用之電磁波之頻率而選擇的共振頻率。該等共振器之各者具有至少部分基於電磁波之一波長而選擇的一直徑。該複數個共振器之各者具有大於基材之一相對介電率的一相對介電率。該複數個共振器之至少兩者經配置以根據一晶格常數在該基材內予以隔開,該晶格常數界定介於該等共振器之第一者的中心與該等共振器之相鄰第二者的中心之間的一距離。
圖2A至圖2D係繪示根據本揭露之一或多項技術之組件(例如波導、透鏡、以及天線)之各種實例配置的方塊圖。圖2A係一方塊圖,其繪示在波導32與天線36之間不包括透鏡的實例波導系統。在此實例系統30A中,波導32在第一端具有顯露中空內部的埠34。此中空內部延伸於波導32的整個長度且通導至在波導32之第二端的另一埠。例如,天線36可發射一信號為球狀波。這些球狀波之一些經過埠34進入波導32,於埠34處它們經聚焦以在一方向上傳播以節省能量。許多其他的球狀波可能由於天線36發射信號的方式而消失,且由於當該等波未經聚焦時球狀波消失的功率與所行進之距離的平方成比例,該波量值可能大幅減少。
圖2B係一方塊圖,其繪示包括梯形低相對介電率材料基材透鏡38B的實例波導系統。在圖2的實例中,透鏡38B不包括任何HDR元件於透鏡內。在系統30B中,透鏡38B以一三維梯形的形狀形成,且定位於波導32與天線36之間。梯形透鏡38B的一漸縮端靠近波導32的埠34,且梯形透鏡38B的一較大端靠近天線36。例如,天線36發射一信號為球狀波。這些球狀波之一些由透鏡38B接收,透鏡38B在波導32之埠34或附近聚焦球狀波,相較於沒有透鏡38B存在之圖2A的系統30A,通過波導32之能量的量值增加。
圖2C係一方塊圖,其繪示根據本揭露之一或多項技術的實例波導系統,該實例波導系統包括梯形低相對介電率材料基材透鏡38C,該透鏡38C包括配置於透鏡38C內的複數個HDR。在系統30C中,透鏡38C以一三維梯形的形狀形成,且定位於波導32與天線36之
間。梯形透鏡38C的漸縮端靠近波導32的埠34,且梯形透鏡38C的較大端靠近天線36。HDR 40配置於透鏡38C內,且HDR 40經組態以在與天線36所發射之波的相同頻率共振。相對於透鏡38C之基材材料的相對介電率,HDR 40係由具有高相對介電率的材料形成。HDR 40在透鏡38C內均勻地隔開的方式使得當HDR 40由於入射波具有達到或接近HDR 40之共振頻率的頻率而開始共振且形成具有大振盪振幅的駐波時,能量在個別HDR 40之間朝波導32轉移。在一些實例中,相較於沒有透鏡38C存在之圖2A的系統30A,在透鏡38C中之HDR 40的存在使通過波導32之波的量值增加為幾乎3.5倍。
在一些實例中,天線36發射一信號為球狀波。這些球狀波之一些係由透鏡38C所接收,透鏡38C朝波導32聚焦球狀波,以增加通過波導32之波的集中。這些球狀波亦通過HDR 40。因為球狀波具有達到或接近HDR 40之共振頻率的頻率,所以HDR 40開始共振且形成具有大振盪振幅的駐波。這些共振在HDR 40之間轉移能量,且甚至可添加能量到波,以增加該波的量值且補充在由天線36發射之後所損失的功率。球狀波離開透鏡38C且經過埠34由波導32接收,於埠34處該等波予以聚焦。
圖2D係一方塊圖,其繪示根據本揭露之一或多項技術的實例波導系統,該實例波導系統包括矩形低相對介電率材料基材透鏡38D,該透鏡38D包括配置於透鏡38D內的複數個HDR 40。在系統30D中,透鏡38D以三維矩形的形狀形成,且定位於波導32與天線36之間。矩形透鏡38D的第一端靠近波導32的埠34,且矩形透鏡
38D的第二端面對天線36。HDR 40配置於透鏡38D內,且HDR 40經組態而以與天線36所發射電磁波相同或接近相同的頻率來共振。相對於透鏡38D之基材材料的介電率,HDR 40係由具有高介電率的材料形成。HDR 40在透鏡38d內均勻地隔開的方式使得當HDR 40由於入射波具有達到或接近HDR 40之共振頻率的頻率而開始共振時,能量在個別HDR 40之間朝波導32轉移。在一些實例中,相較於不具有透鏡38D之圖2A的系統30A,這會使通過波導32之波的量值變成三倍以上。
天線36可發射一信號為球狀波。這些球狀波之一些係由透鏡38D所接收,透鏡38D朝波導32聚焦球狀波,以增加通過波導32之波的集中。這些球狀波亦通過HDR 40。因為球狀波具有達到或接近HDR 40之共振頻率的頻率,所以HDR 40開始共振且形成具有大振盪振幅的駐波。這些共振在HDR 40之間轉移能量,且可添加能量到該波,以增加該波的量值且補充在由天線36發射之後所損失的功率。球狀波離開透鏡38D且經過埠34由波導32接收,於埠34處該等波予以聚焦。
圖3A至圖3D係概念圖,其等繪示根據本揭露之一或多項技術之不同實例系統中的實例電磁場。作為實例,當電磁波根據測試通過波導時的電磁場的強度係顯示於波導、透鏡、以及天線之多種配置的不同位置上。在這些測試實例中,可使用測量為2.5mm×1.25mm的波導。波導亦具有1mm厚的鋁包覆。在使用透鏡的實例中,透鏡係由長度2mm的Teflon®製成。透鏡的位置離開天線1.35
mm。在此實例中,HDR具有球狀形狀且具有半徑0.35mm而對60GHz波具相對介電率40。晶格常數係1mm,該晶格常數意指從一個HDR的中心至相鄰HDR之中心的距離。天線發射具有最初電磁場強度5.13e+03V/m的60GHz電磁波。
圖3A係一概念圖,其繪示根據本揭露之一或多項技術之用於波導系統的實例電磁場,當電磁波通過波導時,該波導系統不具有任何透鏡(例如圖2A的系統30A)。在此實例系統50A中,波導52在第一端具有顯露中空內部的埠54。此中空內部延伸於波導52的整個長度且通導至在波導52之第二端的另一埠。例如,天線60可發射一信號為球狀波。例如,天線60可發射一信號為球狀波。這些球狀波之一些經過埠54進入波導52,於埠54處它們經聚焦以在一方向上傳播以節省能量。許多其他的球狀波可能由於天線60發射信號的方式而消失,且由於當該等波未經聚焦時球狀波消失的功率與所行進之距離的平方成比例,該波量值可能大幅減少。
在系統50A的實例中,電磁波從天線60發射且經過埠54進入波導52。一旦在波導52裡面,電磁波會聚焦且該等波之電磁場56A的強度維持固定。電磁場56A具有量測為接近5.13e+03V/m的最大值之一小中心,但隨距該中心的距離增加而快速地耗散。
圖3B係一概念圖,其繪示用於波導系統的實例電磁場,該波導系統具有梯形低相對介電率材料基材透鏡、但不具有複數個HDR於該等透鏡內(例如圖2B的系統30B)。在此系統50B中,呈三維梯形形狀的低相對介電率材料基材透鏡58B現被包括在系統
中,其耦合波導52到天線56。梯形透鏡58B的漸縮端靠近波導52的埠54,且梯形透鏡58B的較大端靠近天線56。天線56可發射一信號為球狀波。這些球狀波之一些由透鏡58B接收,透鏡58B在波導52之埠54或附近聚焦球狀波,相較於沒有透鏡58B存在之圖3A的系統50A,通過波導52之能量的量值增加。
此能量的增加可由電磁場56B所見。在系統50B的實例中,電磁波從天線60發射且經過埠54進入波導52。一旦在波導52裡面,電磁波會聚焦且該等波之電磁場56B的強度維持固定。
圖3C係一概念圖,其繪示根據本揭露之一或多項技術之用於波導系統的實例電磁場,該波導系統具有梯形低相對介電率材料基材透鏡以及配置於該等透鏡內的複數個HDR(例如圖2C的系統30C)。系統50C包含波導52、埠54、透鏡58C、以及天線60,其以類似於圖2C中之系統30C者的方式來組態。相對於圖3A與圖3B者,能量的增加顯示於電磁場56C中。在系統50C的實例中,是5.13e+03V/m的電磁場56C之部分幾乎是電磁場56C的全部。相較於沒有透鏡58C存在之圖3A的系統50A,跨電磁場56C的此增加電位差使通過波導52之波的量值增加為幾乎3.5倍。
圖3D係一概念圖,其繪示根據本揭露之一或多項技術之用於波導系統的實例電磁場,該波導系統具有矩形低相對介電率材料基材透鏡以及配置於該等透鏡內的複數個HDR(例如圖2D的系統30D)。系統50D包含波導52、埠54、透鏡58D、以及天線60,其以類似於圖2D中之系統30D者的方式來組態。
此能量的增加可由電磁場56D所見。在系統50C的實例中,是5.13e+03V/m的電磁場56D之部分幾乎是電磁場56D的全部。相較於沒有透鏡58C存在之圖3A的系統50A,跨電磁場56D的此增加電位差使通過波導52之波的量值增加為幾乎3.5倍。
圖4係一方塊圖,其繪示根據本揭露之一或多項技術之用於在圖3A至圖3D的方塊圖中的電磁場強度之圖解(key)。圖解66顯示可存在於圖3A至圖3D之方塊圖的任一者中之電磁場強度(例如,電磁場56A至56D)的變化。在此實例中,電磁場強度以V/m或每公尺之伏特來測量。天線60(在圖3A至圖3D中)發射最初具有電磁場強度5.13e+03V/m的球狀波,其在圖解66中顯示為最大可能值。圖解66的梯度顯示電磁場強度在沿著圖解66進一步向下的位置減少。
圖5係繪示根據本揭露之一或多項技術之在不同系統之不同頻率之信號強度的圖。圖5顯示為依據頻率(以GHz為單位)而變動的分貝量值(以dB為單位)。就具有含HDR之矩形透鏡的波導系統(例如,圖2D的系統30D)以及具有含HDR之梯形透鏡的波導系統(例如,圖2C的系統30C)兩者而言,通過該系統之電磁波的量值一致地大於僅具有梯形透鏡的波導系統(例如,圖2B的系統30B)或一單獨的波導(例如,圖2A的系統30A)。最大量值以及對應的功率比經測量如下:
如表1所見,當相較於一單獨的波導時,添加具有HDR的梯形Teflon®透鏡(例如,圖2C之具有HDR 40的梯形透鏡38C)會添加多於5分貝到傳播經過相關波導系統的電磁波。這等於將電磁波的功率比乘以幾乎3.5。當相較於一單獨的波導時,添加具有HDR的矩形透鏡(例如,圖2D之具有HDR 40的矩形透鏡38D)添加5分貝到傳播經過相關波導系統的電磁波,使電磁波之功率比變成三倍以上。
圖6A至圖6C係方塊圖,其繪示根據本揭露之一或多項技術之使用於HDR之結構的多種形狀。圖6A繪示根據本揭露目前之一或多項技術之球狀HDR的實例。球狀HDR 80可由各種陶瓷材料製成,例如,其除了其他事物以外包括例如BaZnTa氧化物、BaZnCoNb、Zr鈦基材料、鈦基材料、鈦酸鋇基材料、氧化鈦基材料、Y5V、以及X7R。圖6B與圖6C的HDR 82與84可由類似材料製成。球狀HDR 80係對稱的,如此天線與發射波的入射角不會整體地影響系統。HDR球體80的相對介電率與共振頻率直接相關。例如,以相同的共振頻率,HDR球體80的大小可藉由使用較高的相對介電率材料來減少。HDR球體80的TM共振頻率可使用下列公式來計算,對於模式S與極點n:
HDR球體80的TE共振頻率可使用下列公式來計算,對於模式S與極點n:
其中,a係球狀共振器的半徑。
圖6B係一方塊圖,其繪示根據本揭露目前之一或多項技術之圓柱狀HDR的實例。圓柱狀HDR 82並未繞著全部軸而對稱。因此,與圖6A的對稱球狀HDR 80相反,天線與發射波相對於圓柱狀HDR 82的入射角可在波上具有偏振效應(當其等通過圓柱狀HDR 82時),其取決於入射角。用於獨立的圓柱狀HDR 82之TE01n 模式的近似共振頻率可使用下列公式來計算:
其中,a係圓柱狀共振器的半徑且L係其長度。a以及L兩者係以毫米為單位。共振頻率f GHz 係以吉赫為單位。在0.5<a/L<2且30<ε r <50的範圍中,此公式係精確至約2%。
圖6C係一方塊圖,其繪示根據本揭露目前之一或多項技術之立方體HDR的實例。立方體HDR 84並非繞著所有軸對稱。因此,與圖6A的對稱球狀HDR 80相反,天線與發射波相對於圓柱狀
HDR 82的入射角可在波上具有偏振效應(當該等波通過立方體HDR 84時)。近似地,用於立方體HDR 84的最低共振頻率係:
其中,a係四方體邊長且c係在空氣中的光速。
圖7係一流程圖,其繪示根據本揭露之一或多項技術之形成具有複數個高介電質共振器之透鏡的方法的步驟。在此方法800中,可形成複數個共振器(例如,HDR 18),在複數個共振器中的各共振器具有大於基材之相對介電率的相對介電率(802)。例如,該複數個共振器可由一介電質材料形成,該介電質材料具有至少部分基於欲與透鏡一起使用之電磁波的頻率而選擇的共振頻率。共振器之各者可經形成,以具有至少部分基於電磁波之波長而選擇的直徑。一透鏡(例如,透鏡16)可藉由根據晶格常數配置複數個共振器於透鏡的基材材料內而形成(804)。晶格常數定義共振器之第一者的中心與該等共振器之相鄰第二者的中心之間的距離。
已描述了本發明的各種實施例。這些及其他實施例係在以下申請專利範圍的範疇之內。
10‧‧‧系統
12‧‧‧波導
14‧‧‧埠
16‧‧‧透鏡
18‧‧‧HDR
20‧‧‧天線
Claims (27)
- 一種透鏡,其包含:一基材,其用於傳播一電磁波;以及複數個共振器,其等分散於該基材各處,其中,該複數個共振器之各者具有至少部分基於該電磁波的一波長而選擇的一直徑,並且係由具有至少部分基於該電磁波之一頻率所選擇之一共振頻率的一介電質材料所形成,其中,該複數個共振器之各者具有大於該基材之一相對介電率的一相對介電率,以及其中,該複數個共振器之至少兩者根據一晶格常數而在該基材內予以隔開,該晶格常數定義介於該等共振器之一第一者的一中心與該等共振器之一相鄰第二者的一中心之間的一距離。
- 如請求項1之透鏡,其中該晶格常數小於該電磁波的該波長。
- 如請求項1至2中任一項之透鏡,其中該共振頻率經選擇以匹配該電磁波的該頻率。
- 如請求項1或2之透鏡,進一步其中該晶格常數與該共振頻率至少部分基於欲與該透鏡一起使用的波導來選擇。
- 如請求項1或2之透鏡,其中該等共振器的該直徑對該晶格常數的一比例係小於1。
- 如請求項1或2之透鏡,其中該複數個共振器之各者具有一相對介電率,該相對介電率係該基材之一相對介電率的至少兩倍大。
- 如請求項1或2之透鏡,其中該複數個共振器之各者具有一相對介電率,該相對介電率係該基材之一相對介電率的至少十倍大。
- 如請求項1或2之透鏡,其中該複數個共振器的該共振頻率係在一個毫米波段內。
- 如請求項1或2之透鏡,其中該複數個共振器的該共振頻率係60GHz。
- 如請求項1或2之透鏡,其中該複數個共振器係由一陶瓷材料製成。
- 如請求項1或2之透鏡,其中該複數個共振器係由BaZnTa氧化物(BaZnTa oxide)、BaZnCoNb、Zr鈦基(Zrtitanium-based)材料、鈦基材料、鈦酸鋇基材料、氧化鈦基材料、Y5V、以及X7R之一者製成。
- 如請求項1或2之透鏡,其中該基材係由Teflon®、石英玻璃、堇青石、硼矽玻璃、全氟烷氧基、聚乙烯、以及氟化乙烯丙烯之一者製成。
- 如請求項1或2之透鏡,其中該複數個共振器經形成為具有一球狀形狀、一圓柱狀形狀、或一立方體形狀之一者。
- 一種形成一透鏡之方法,該方法包含:以一介電質材料形成複數個共振器,該介電質材料具有至少部分基於欲與該透鏡一起使用之一電磁波的一頻率而選擇的一共振頻率,其中該等共振器之各者具有至少部分基於該電磁波的一波長選擇的一直徑,其中,該複數個共振器之各者具有大於基材之一相對介電率的一相對介電率;以及根據一晶格常數配置欲隔開之該複數個共振器之至少兩者於該基材內,該晶格常數定義該等共振器之一第一者的一中心與該等共振器之一相鄰第二者的一中心之間的一距離。
- 如請求項14之方法,其進一步包含選擇小於該電磁波之該波長的該晶格常數。
- 如請求項14至15中任一項之方法,其進一步包含選擇該共振頻率以匹配該電磁波的該頻率。
- 如請求項14或15之方法,其進一步包含至少部分基於欲與該透鏡一起使用的波導來選擇該晶格常數與該共振頻率。
- 如請求項14或15之方法,其中該等共振器的該直徑對該晶格常數的一比例係小於1。
- 如請求項14或15之方法,其中該複數個共振器之各者具有一相對介電率,該相對介電率係該基材之一相對介電率的至少兩倍大。
- 如請求項14或15之方法,其中該複數個共振器之各者具有一相對介電率,該相對介電率係該基材之一相對介電率的至少十倍大。
- 如請求項14或15之方法,其中該等共振器的該共振頻率係在一個毫米波段內。
- 如請求項14或15之方法,其中該等共振器的該共振頻率係60GHz。
- 如請求項14或15之方法,其中該等共振器係由一陶瓷材料製成。
- 如請求項14或15之方法,其中該等共振器係由BaZnTa氧化物(BaZnTa oxide)、BaZnCoNb、Zr鈦基(Zrtitanium-based)材料、鈦基材料、鈦酸鋇基材料、氧化鈦基材料、Y5V、以及X7R之一者製成。
- 如請求項14或15之方法,其中該基材係由Teflon®、石英玻璃、堇青石、硼矽玻璃、全氟烷氧基、聚乙烯、以及氟化乙烯丙烯之一者製成。
- 如請求項14或15之方法,其中該複數個共振器經形成為具有一球狀形狀、一圓柱狀形狀、或一立方體形狀之一者。
- 一種系統,其包含:一波導;一天線;以及一透鏡,其定位於該天線與該波導之間,其中該透鏡包含:一基材,其用於傳播由該天線發送或接收的一電磁波;以及 複數個共振器,其等分散於該基材各處,其中該複數個共振器之各者具有至少部分基於該電磁波的一波長選擇的一直徑,並且其係由具有至少部分基於該電磁波之一頻率所選擇之一共振頻率的一介電質材料所形成,其中,該複數個共振器之各者具有大於該基材之一相對介電率的一相對介電率,且其中,該複數個共振器之至少兩者根據一晶格常數而在該基材內予以隔開,該晶格常數定義介於該等共振器之一第一者的一中心與該等共振器之一相鄰第二者的一中心之間的一距離。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
WOPCT/US15/11089 | 2015-01-13 | ||
PCT/US2015/011089 WO2016114756A1 (en) | 2015-01-13 | 2015-01-13 | Dielectric coupling lens using dielectric resonators of high permittivity |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201640738A true TW201640738A (zh) | 2016-11-16 |
TWI712211B TWI712211B (zh) | 2020-12-01 |
Family
ID=52396853
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW105100834A TWI712211B (zh) | 2015-01-13 | 2016-01-12 | 使用高介電質共振器的介電質耦合透鏡 |
Country Status (7)
Country | Link |
---|---|
US (1) | US10454181B2 (zh) |
EP (1) | EP3245687B1 (zh) |
JP (1) | JP6585722B2 (zh) |
KR (1) | KR102252830B1 (zh) |
CN (1) | CN107210532B (zh) |
TW (1) | TWI712211B (zh) |
WO (1) | WO2016114756A1 (zh) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160309062A1 (en) * | 2015-04-15 | 2016-10-20 | Appbanc, Llc | Metrology carousel device for high precision measurements |
JP2022510103A (ja) * | 2018-11-27 | 2022-01-26 | ロジャーズ コーポレーション | 結合された誘電体共振器および誘電体導波路 |
KR102647980B1 (ko) * | 2018-12-20 | 2024-03-15 | 가부시키가이샤 무라타 세이사쿠쇼 | 멀티플렉서 |
CN111276792B (zh) * | 2020-01-22 | 2022-05-27 | Oppo广东移动通信有限公司 | 电子设备 |
US11978949B2 (en) * | 2021-12-14 | 2024-05-07 | Hewlett-Packard Development Company, L.P. | Cavities having antennas |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6187402A (ja) * | 1984-10-04 | 1986-05-02 | Murata Mfg Co Ltd | 複数の誘電体を用いたアンテナ |
JPH03128305U (zh) | 1990-04-06 | 1991-12-24 | ||
US6093246A (en) * | 1995-09-08 | 2000-07-25 | Sandia Corporation | Photonic crystal devices formed by a charged-particle beam |
JP3163981B2 (ja) | 1996-07-01 | 2001-05-08 | 株式会社村田製作所 | 送受信装置 |
JP2001160704A (ja) | 1999-12-03 | 2001-06-12 | Sumitomo Metal Mining Co Ltd | 球形誘電体共振器とその製造方法 |
JPWO2004059784A1 (ja) | 2002-12-26 | 2006-05-11 | 松下電器産業株式会社 | 誘電体フィルタ |
KR20090097399A (ko) * | 2008-03-11 | 2009-09-16 | 삼성전자주식회사 | 복수 개의 도파관을 사용하여 분산을 갖는 메타물질을구현하는 기판 |
JP5555936B2 (ja) * | 2009-08-14 | 2014-07-23 | 国立大学法人京都工芸繊維大学 | マイクロ波共振器装置とその調整方法及びそれを用いたアンテナ装置 |
WO2013133175A1 (ja) | 2012-03-05 | 2013-09-12 | 国立大学法人京都工芸繊維大学 | 3次元メタマテリアル |
-
2015
- 2015-01-13 WO PCT/US2015/011089 patent/WO2016114756A1/en active Application Filing
- 2015-01-13 EP EP15701292.3A patent/EP3245687B1/en active Active
- 2015-01-13 KR KR1020177022144A patent/KR102252830B1/ko active IP Right Grant
- 2015-01-13 JP JP2017536299A patent/JP6585722B2/ja active Active
- 2015-01-13 CN CN201580072488.1A patent/CN107210532B/zh active Active
- 2015-01-13 US US15/537,652 patent/US10454181B2/en active Active
-
2016
- 2016-01-12 TW TW105100834A patent/TWI712211B/zh active
Also Published As
Publication number | Publication date |
---|---|
JP6585722B2 (ja) | 2019-10-02 |
JP2018507601A (ja) | 2018-03-15 |
US10454181B2 (en) | 2019-10-22 |
KR20170102975A (ko) | 2017-09-12 |
KR102252830B1 (ko) | 2021-05-18 |
EP3245687B1 (en) | 2019-11-27 |
CN107210532B (zh) | 2020-01-31 |
EP3245687A1 (en) | 2017-11-22 |
TWI712211B (zh) | 2020-12-01 |
US20170346190A1 (en) | 2017-11-30 |
CN107210532A (zh) | 2017-09-26 |
WO2016114756A1 (en) | 2016-07-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI712211B (zh) | 使用高介電質共振器的介電質耦合透鏡 | |
JP6281868B2 (ja) | フォトニック結晶スラブ電磁波吸収体および高周波金属配線回路、電子部品、および送信器、受信器および近接無線通信システム | |
US8054146B2 (en) | Structures with negative index of refraction | |
CN106486729B (zh) | 基于人工表面等离激元的紧凑型闭环谐振器 | |
JP7144730B2 (ja) | ダイヤモンドセンサシステム | |
JP6596748B2 (ja) | シート型メタマテリアルおよびシート型レンズ | |
Jiménez-Sáez et al. | Photonic crystal THz high-Q resonator for chipless wireless identification | |
US20150048692A1 (en) | Power transmission apparatus and method, and resonance device used therein | |
JP5442702B2 (ja) | ミリ波帯用電波ハーフミラーおよびその透過率平坦化方法 | |
CN104007141B (zh) | 一种零折射率超材料平板波导耦合回音壁模的传感器 | |
Kuzmichev et al. | An open resonator for physical studies | |
JP6082938B2 (ja) | 3次元メタマテリアル | |
Ishiyama et al. | Unit cell block including dielectric cube wrapped with metallic wire mesh for 3-D isotropic CRLH metamaterials | |
CN107039722A (zh) | 一种人工表面等离子体耦合谐振腔波导 | |
Radkovskaya et al. | Transmission properties of two shifted magnetoinductive waveguides | |
KR101839222B1 (ko) | 테라헤르츠 전파 특성 향상을 위한 금속 도파로 | |
RU2488926C1 (ru) | Антенный излучатель с узкой диаграммой направленности на основе метаматериала | |
Khobzei et al. | Overview of applications of wire medium in radio engineering means | |
Kogut et al. | Excitation of high-Q whispering gallery modes in a hemispherical shielded dielectric cavity using a slot transmission line | |
US10158160B2 (en) | Devices and method for metamaterials | |
Lin et al. | 3D Printing a Maxwell Fish Eye Lens With Periodic Structures | |
WO2024180541A1 (en) | A sensor unit and resonator circuit thereof | |
Guo et al. | Experimental demonstration of photonic crystal resonator enabling wavefront shaping and beam steering | |
Yahyaoui et al. | Research Article Transmission Control of Electromagnetic Waves by Using Quarter-Wave Plate and Half-Wave Plate All-Dielectric Metasurfaces Based on Elliptic Dielectric Resonators | |
RU2428775C2 (ru) | Открытый резонатор |