TW201640501A - Semiconductor memory device - Google Patents

Semiconductor memory device Download PDF

Info

Publication number
TW201640501A
TW201640501A TW104123495A TW104123495A TW201640501A TW 201640501 A TW201640501 A TW 201640501A TW 104123495 A TW104123495 A TW 104123495A TW 104123495 A TW104123495 A TW 104123495A TW 201640501 A TW201640501 A TW 201640501A
Authority
TW
Taiwan
Prior art keywords
data
bit
storage capacitor
memory cells
voltage
Prior art date
Application number
TW104123495A
Other languages
Chinese (zh)
Other versions
TWI581262B (en
Inventor
木原雄治
Original Assignee
力晶科技股份有限公司 30078 新竹科學工業園區力行一路12號
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 力晶科技股份有限公司 30078 新竹科學工業園區力行一路12號 filed Critical 力晶科技股份有限公司 30078 新竹科學工業園區力行一路12號
Publication of TW201640501A publication Critical patent/TW201640501A/en
Application granted granted Critical
Publication of TWI581262B publication Critical patent/TWI581262B/en

Links

Abstract

The multi-value DRAM, includes: a plurality of memory cells, in each of which including a selective transistor, which is connected to a word line; a first storage capacitor, which is connected to bit line via selective transistor and memory complex values, wherein the semiconductor memory device, comprising: a plurality of sample and hold circuit, which is containing a second storage capacitor and is disposed corresponding to multi-bit line; a plurality of single slope integrating A/D converter, which is correspond to multi-bit line and is disposed in the back section of the sample and hold circuit, which convert the data to a digital value from the reading via sample and hold circuit; and a memory controller, which applying a voltage of digital value to each memory cells for refreshing each memory cells, and applying a voltage of digital value to each memory cells which is corresponding to the writing data.

Description

半導體記憶裝置Semiconductor memory device

本發明是有關於例如將多值的資料以單一記憶胞記憶的動態隨機存取記憶體(以下稱為DRAM)等的半導體記憶裝置。The present invention relates to a semiconductor memory device such as a dynamic random access memory (hereinafter referred to as DRAM) in which a plurality of values of data are memorized by a single memory cell.

圖1為如專利文獻1所揭示之依據習知例1的DRAM構成方塊示意圖。在圖1中,在位元線BL與字元線WL的交點附近連接有記憶胞MC,此記憶胞MC由選擇MOS電晶體Q與資料保持用電容器C所組成。自記憶胞MC讀取資料時,將字元線WL切換至高位準並且將位元線BL預充電後,電容器C的電壓通過位元線BL的寄生電容,藉由栓鎖型感測放大器101進行感測而將讀取資料讀出。另外,寫入資料通過位元線BL而寫入電容器C。在此,為了保持電容器C的資料,對應再新信號將相對於電容器C預定值寫入並保持。1 is a block diagram showing the structure of a DRAM according to Conventional Example 1 as disclosed in Patent Document 1. In FIG. 1, a memory cell MC is connected in the vicinity of the intersection of the bit line BL and the word line WL, and this memory cell MC is composed of a selection MOS transistor Q and a data holding capacitor C. When the data is read from the memory cell MC, after the word line WL is switched to the high level and the bit line BL is precharged, the voltage of the capacitor C passes through the parasitic capacitance of the bit line BL, by the latch type sense amplifier 101. Sensing is performed to read the read data. In addition, the write data is written to the capacitor C through the bit line BL. Here, in order to maintain the data of the capacitor C, the corresponding renewed signal will be written and held with respect to the predetermined value of the capacitor C.

圖2為如專利文獻2所揭示之依據習知例2的多值DRAM構成方塊示意圖。圖2中,例如為了將蓄電電容器131充電而使用5個相異的電壓位準。在此,5個電壓位準差各自為0.5V。據此,獲得自0V至2V的範圍於1個DRAM胞中存儲5個相異邏輯值的能力。2 is a block diagram showing the constitution of a multi-value DRAM according to the conventional example 2 as disclosed in Patent Document 2. In FIG. 2, for example, in order to charge the storage capacitor 131, five different voltage levels are used. Here, the five voltage level differences are each 0.5V. Accordingly, the ability to store 5 distinct logic values in one DRAM cell from 0V to 2V is obtained.

多工器電路130以5個電壓位準的其中1個電壓位準,對蓄電電容器131進行充電。所述電路更具備有提供為了對蓄電電容器131進行充電的電流之恆定電流源125、具備有電晶體的增幅器132、以及為了啟動讀取動作的開關133。類比數位轉換器(以下稱為AD轉換器)134將顯示5個相異邏輯值的蓄電電容器131的電壓位準Vc在「0」與「4」之間的數位值進行轉換。多工器電路130在寫入或再新動作時,為了啟動5個電壓位準的任一個而具備5個開關SW1~SW5。在圖2的例子中,1.0V的電壓位準施加於蓄電電容器131而進行充電。 [先前技術文獻] [專利文獻]The multiplexer circuit 130 charges the storage capacitor 131 at one of five voltage levels. The circuit further includes a constant current source 125 that supplies a current for charging the storage capacitor 131, an amplifier 132 including a transistor, and a switch 133 for starting a reading operation. An analog-to-digital converter (hereinafter referred to as an AD converter) 134 converts the voltage level Vc of the storage capacitor 131 that displays five different logical values between "0" and "4". The multiplexer circuit 130 includes five switches SW1 to SW5 in order to activate any of the five voltage levels during writing or re-operation. In the example of FIG. 2, a voltage level of 1.0 V is applied to the storage capacitor 131 to be charged. [Prior Technical Literature] [Patent Literature]

[專利文獻1]日本專利特開平9-008251號公報       [專利文獻2]美國專利申請公開第2005/0018501號說明書[Patent Document 1] Japanese Patent Laid-Open Publication No. Hei 9-008251 [Patent Document 2] US Patent Application Publication No. 2005/0018501

[發明所欲解決之課題][Problems to be solved by the invention]

習知例2雖然已揭示多值DRAM,但尚存有形成面積較大的問題點。Although the multi-value DRAM has been disclosed in the conventional example 2, there is still a problem that the formation area is large.

本發明目的為解決以上的問題點,而提供相較於先前技術,能夠相對於相同記憶容量而以小面積形成的多值DRAM等的半導體記憶裝置。 [解決課題之手段]SUMMARY OF THE INVENTION An object of the present invention is to provide a semiconductor memory device of a multi-value DRAM or the like which can be formed in a small area with respect to the same memory capacity as compared with the prior art. [Means for solving the problem]

有關於本發明的半導體記憶裝置,其是具有多個記憶胞的多值DRAM。多個記憶胞各自包括:選擇電晶體,連接至多條字元線中的1條字元線;以及第1蓄電電容器,記憶各個多值,且經由所述選擇電晶體連接至多條位元線中的1條位元線。所述半導體記憶裝置包括: 多個採樣保持電路,各自包含第2蓄電電容器,且對應所述多條位元線而各自設置; 多個單斜率型AD轉換器,對應所述多條位元線而各自設置在各個所述採樣保持電路的後段,經由各個所述採樣保持電路從各個所述記憶胞將資料各自讀取出來,並轉換成數位值;以及     控制裝置,為了使各個所述記憶胞再新,將對應所述轉換成數位值的電壓施加於各個所述記憶胞而進行寫入,且將對應於預定寫入資料的所述數位值的電壓施加在各個所述記憶胞而進行寫入。Regarding the semiconductor memory device of the present invention, it is a multi-value DRAM having a plurality of memory cells. Each of the plurality of memory cells includes: a selection transistor connected to one of the plurality of word lines; and a first storage capacitor that memorizes each multivalue and is connected to the plurality of bit lines via the selection transistor 1 bit line. The semiconductor memory device includes: a plurality of sample and hold circuits each including a second power storage capacitor and correspondingly disposed corresponding to the plurality of bit lines; and a plurality of single slope type AD converters corresponding to the plurality of bit lines And each is disposed in a subsequent stage of each of the sample and hold circuits, and each of the data is read out from each of the memory cells via each of the sample and hold circuits, and converted into a digital value; and a control device, in order to make each of the memory cells Further, a voltage corresponding to the converted digital value is applied to each of the memory cells for writing, and a voltage corresponding to the digital value of the predetermined write data is applied to each of the memory cells for writing In.

在所述的半導體記憶裝置中,更包括位元轉換器。位元轉換器將轉換的所述數位值轉換成二位元資料且作為讀取資料而輸出,並將所述寫入資料轉換成多值的數位值而輸出至所述控制裝置位元轉換器。In the semiconductor memory device, a bit converter is further included. The bit converter converts the converted digital value into two-bit data and outputs as read data, and converts the written data into a multi-valued digital value and outputs the same to the control device bit converter .

另外,在所述的半導體記憶裝置中,所述控制裝置包括電壓產生裝置。電壓產生裝置產生對應於所述數位值的數目的彼此相異的多個電壓。Further, in the semiconductor memory device, the control device includes a voltage generating device. The voltage generating device generates a plurality of voltages different from each other corresponding to the number of the digit values.

更進一步,所述第1蓄電電容器與所述第2蓄電電容器在同一製程中形成。Further, the first storage capacitor and the second storage capacitor are formed in the same process.

基於上述,依據本發明有關的半導體記憶裝置,可提供相較於先前技術相對於相同記憶容量,能以小面積形成的多值DRAM等的半導體記憶裝置。Based on the above, according to the semiconductor memory device of the present invention, it is possible to provide a semiconductor memory device of a multi-value DRAM or the like which can be formed in a small area with respect to the same memory capacity as in the prior art.

以下,關於本發明的實施態樣請參照圖示並進行說明。另外,以下的各實施態樣中,關於同樣的構成要件標註相同的標號。Hereinafter, an embodiment of the present invention will be described with reference to the drawings. In the following embodiments, the same components are denoted by the same reference numerals.

圖3為繪示依據本發明的一實施態樣的多值DRAM構成方塊圖。在此,作為多值DRAM,以下說明了4位元DRAM的例子,但本發明不以此為限,可適用於將3位元以上的多個數位值(多值)記憶於各記憶胞MC的多值DRAM等的半導體記憶裝置。3 is a block diagram showing the construction of a multi-value DRAM according to an embodiment of the present invention. Here, as a multi-value DRAM, an example of a 4-bit DRAM is described below, but the present invention is not limited thereto, and is applicable to storing a plurality of digit values (multi-values) of 3 bits or more in each memory cell MC. A semiconductor memory device such as a multi-value DRAM.

圖3中,依據本實施態樣的多值DRAM具備了記憶陣列10、AD轉換器及輸入和輸出閘極電路(以下稱為ADC及I/O閘極電路)11、恆定電壓產生電路12、位元轉換器13、資料輸入緩衝器14、資料輸出緩衝器15、附有反相輸入終端的及閘16、附有反相輸入終端的及閘17、行位址選通(CAS)時鐘產生器18、列位址選通(RAS)時鐘產生器19、再新控制器20、再新計數器21、列位址緩衝器22、行位址緩衝器23、列解碼器24、行解碼器25、位址輸入終端61以及資料輸入和輸出終端62而構成。In FIG. 3, the multi-value DRAM according to the present embodiment includes a memory array 10, an AD converter, and input and output gate circuits (hereinafter referred to as ADC and I/O gate circuits) 11, a constant voltage generating circuit 12, Bit converter 13, data input buffer 14, data output buffer 15, gate 16 with inverting input terminal, gate 17 with inverting input terminal, row address strobe (CAS) clock generation 18, column address strobe (RAS) clock generator 19, re-new controller 20, re-counter 21, column address buffer 22, row address buffer 23, column decoder 24, row decoder 25 The address input terminal 61 and the data input and output terminal 62 are configured.

圖4為繪示圖3的記憶陣列10的構成電路圖。圖4中,記憶陣列10為具備多數N條的字元線WLn(n=1, 2, …, N)及多數M條的位元線BLm(m=1, 2, …, M)。各字元線WLn及各位元線BLm以格子狀配置,在各字元線與各位元線交差處附近,設置有多個記憶胞MC,所述多個記憶胞各自具備有連接至多條字元線中的1條字元線的具有閘極的選擇電晶體Q,以及經由所述選擇電晶體Q的源極及汲極各自連接至多條位元線中的1條位元線BLm且記憶各個多值的蓄電電容器C。4 is a circuit diagram showing the structure of the memory array 10 of FIG. In FIG. 4, the memory array 10 is provided with a plurality of N word lines WLn (n = 1, 2, ..., N) and a plurality of M bit lines BLm (m = 1, 2, ..., M). Each of the word line WLn and each of the bit lines BLm is arranged in a lattice shape, and a plurality of memory cells MC are provided in the vicinity of the intersection of each word line and each of the bit lines, and the plurality of memory cells are each provided with a plurality of characters connected thereto. a selection transistor Q having a gate of one word line in the line, and a source and a drain via the selection transistor Q are each connected to one bit line BLm of the plurality of bit lines and memorize each Multi-valued storage capacitor C.

圖3中,資料輸入緩衝器14自資料輸入和輸出終端62接收輸入的數位資料IO0~IOp,並且在暫時記憶後,輸出至位元轉換器13。資料輸出緩衝器15將自位元轉換器13轉換後的讀取數位資料IO0~IOp暫時記憶,並且輸出至資料輸入和輸出終端62。輸出啟用信號/OE輸入至附有反相輸入終端的及閘17的第1反相輸入終端。寫入啟用信號/WE輸入至附有反相輸入終端的及閘16的第1輸入終端。行位址選通信號/CAS輸入至附有反相輸入終端的及閘16的第2輸入終端以及CAS時鐘產生器18。自及閘16的輸出信號輸入至附有反相輸入終端的及閘17的第2輸入終端以及資料輸入緩衝器14。另外,自及閘17的輸出信號輸入至資料輸出緩衝器15。In FIG. 3, the data input buffer 14 receives the input digital data IO0~IOp from the data input and output terminal 62, and outputs it to the bit converter 13 after temporary storage. The data output buffer 15 temporarily memorizes the read digit data IO0 to IOp converted from the bit converter 13, and outputs it to the data input and output terminal 62. The output enable signal /OE is input to the first inverting input terminal of the AND gate 17 with the inverting input terminal. The write enable signal /WE is input to the first input terminal of the AND gate 16 with the inverting input terminal. The row address strobe signal /CAS is input to the second input terminal of the AND gate 16 with the inverting input terminal and the CAS clock generator 18. The output signal from the gate 16 is input to the second input terminal and the data input buffer 14 of the AND gate 17 to which the inverting input terminal is attached. Further, the output signal from the AND gate 17 is input to the data output buffer 15.

CAS時鐘產生器18依據行位址選通信號/CAS產生CAS時鐘,並輸出至資料輸出緩衝器15、行位址緩衝器23以及再新控制器20。RAS時鐘產生器19依據列位址選通信號/RAS產生RAS時鐘,並輸出至CAS時鐘產生器18、ADC及I/O閘極電路11以及列解碼器24。再新控制器20依據CAS時鐘產生再新信號,並輸出至再新計數器21。再新計數器21依據再新信號將再新計數值增強後,並將計數值輸出至列位址緩衝器22。The CAS clock generator 18 generates a CAS clock in accordance with the row address strobe signal /CAS, and outputs it to the data output buffer 15, the row address buffer 23, and the renew controller 20. The RAS clock generator 19 generates a RAS clock in accordance with the column address strobe signal /RAS, and outputs it to the CAS clock generator 18, the ADC and I/O gate circuit 11, and the column decoder 24. The new controller 20 generates a renewed signal based on the CAS clock and outputs it to the renew counter 21. The re-counter 21 increments the re-count value according to the re-new signal, and outputs the count value to the column address buffer 22.

輸入的位址A0~Aq輸入至列位址緩衝器22以及行位址緩衝器23。列位址緩衝器22將輸入的位址A0~Aq中的預定位元的列位址暫時記憶後,輸出至列解碼器24。列解碼器24依據輸入的列位址,產生為了選擇1條的字元線WLn的字元線選擇信號並輸出。另外,行位址緩衝器23將輸入的位址A0~Aq中的預定位元的行位址暫時記憶後,輸出至行解碼器25。行解碼器25依據輸入的行位址,產生為了選擇1條的位元線BLm的位元線選擇信號並輸出。The input address A0~Aq is input to the column address buffer 22 and the row address buffer 23. The column address buffer 22 temporarily stores the column address of the predetermined bit in the input addresses A0 to Aq, and outputs it to the column decoder 24. The column decoder 24 generates and outputs a word line selection signal for selecting one word line WLn in accordance with the input column address. Further, the row address buffer 23 temporarily memorizes the row address of the predetermined bit in the input addresses A0 to Aq, and outputs it to the row decoder 25. The row decoder 25 generates a bit line selection signal for selecting one bit line BLm and outputs it according to the input row address.

圖3中,ADC以及I/O閘極電路11連接記憶陣列10的位元線BL1~BLM、RAS時鐘產生器19、行解碼器25、位元轉換器13以及恆定電壓產生電路12,依據自RAS時鐘產生器19的RAS時鐘,使用自恆定電壓產生電路12的恆定電壓,相對於對應自行解碼器25的行位址的位元線BLm之各個記憶胞MC進行資料的讀取、再新以及寫入。在此,恆定電壓產生電路12產生電壓Vdd、(3/4)Vdd、(1/2)Vdd、(1/4)Vdd之4個固定電壓。另外,選擇電晶體Q例如是原生電晶體或者是通道電晶體(pass transistor),在蓄電電容C的連接時變成開啟。In FIG. 3, the ADC and the I/O gate circuit 11 are connected to the bit lines BL1 to BLM of the memory array 10, the RAS clock generator 19, the row decoder 25, the bit converter 13, and the constant voltage generating circuit 12, according to The RAS clock of the RAS clock generator 19 uses the constant voltage from the constant voltage generating circuit 12 to read, renew, and re-read the data with respect to the respective memory cells MC of the bit line BLm corresponding to the row address of the self-decoder 25. Write. Here, the constant voltage generating circuit 12 generates four fixed voltages of voltage Vdd, (3/4) Vdd, (1/2) Vdd, and (1/4) Vdd. Further, the selection transistor Q is, for example, a native transistor or a pass transistor, and is turned on when the storage capacitor C is connected.

圖5為繪示圖3的AD轉換器及輸入和輸出閘極電路11的詳細構成電路圖。圖5中,對應1條位元線BLm並各自設置有選擇電晶體Q、採樣保持電路31、2位元AD轉換器32等。FIG. 5 is a circuit diagram showing the detailed construction of the AD converter and the input and output gate circuits 11 of FIG. In FIG. 5, one bit line BLm is provided and each is provided with a selection transistor Q, a sample and hold circuit 31, a 2-bit AD converter 32, and the like.

圖5中,字元線WLn連接至選擇電晶體Q的閘極,資料記憶用蓄電電容器C的一端經由選擇電晶體Q的汲極‧源極連接至位元線BLm,另外,另一端連接至例如電壓Vdd/2的電壓源。位元線BLm藉由與位元線BLm的連接時變成開啟的位元線選擇電晶體Q10連接至採樣保持電路31。採樣保持電路31以具備採樣保持用蓄電電容器Csh及緩衝增幅用操作放大器A1構成,將自位元線BLm讀取的位元線電壓Vb採樣保持後,輸出至2位元AD轉換器32。2位元AD轉換器32將輸入的位元線電壓轉換成2位元數位值的資料,並且輸出至位元轉換器13及記憶控制器30。記憶控制器30依據所述轉換的數位值或者自位元轉換器13寫入資料的數位值,藉由將4個選擇電晶體Q11~Q14其中1個對應的電晶體開啟,對應的外加電壓施加於蓄電電容器C,並進行寫入或者再新。在此,例如對應數位值「11」並將電壓Vdd寫入、對應數位值「10」並將電壓(3/4)Vdd寫入、對應數位值「01」並將電壓(1/2)Vdd寫入、對應數位值「00」並將電壓(1/4)Vdd寫入。In FIG. 5, the word line WLn is connected to the gate of the selection transistor Q, and one end of the data storage storage capacitor C is connected to the bit line BLm via the drain ‧ source of the selection transistor Q, and the other end is connected to For example, a voltage source of voltage Vdd/2. The bit line BLm is connected to the sample-and-hold circuit 31 by the bit line selection transistor Q10 which becomes turned on when connected to the bit line BLm. The sample-and-hold circuit 31 includes a sample-and-hold storage capacitor Csh and a buffer amplification amplifier A1, and samples and holds the bit line voltage Vb read from the bit line BLm, and outputs it to the 2-bit AD converter 32. The bit AD converter 32 converts the input bit line voltage into a data of a 2-bit digital value, and outputs it to the bit converter 13 and the memory controller 30. The memory controller 30 applies the corresponding applied voltage according to the converted digital value or the digital value written from the bit converter 13 by turning on one of the four selected transistors Q11~Q14. The capacitor C is stored and written or renewed. Here, for example, the digital value "11" is written and the voltage Vdd is written, the corresponding digital value "10" is written, and the voltage (3/4) Vdd is written, the corresponding digital value "01" is input, and the voltage (1/2) Vdd is written. Write, corresponding to the digit value "00" and write the voltage (1/4) Vdd.

圖5中,記憶胞MC以具備蓄電電容器C選擇電晶體Q構成,但本發明不以此為限,若為包含蓄電電容器C的構成即不能以此為限。In FIG. 5, the memory cell MC is configured to include the transistor Q with the storage capacitor C. However, the present invention is not limited thereto, and the configuration including the storage capacitor C is not limited thereto.

圖6為繪示依據圖3的DRAM資料保持期間及讀取期間的動作時間圖。圖6中,繪示與對應各數位值的電壓在資料保持期間維持著並且隨時間經過些微下降,此後,字元線電壓自低位準變成高位準時,在讀取期間,由於位元線容量的關係,對應各數位值的電壓雖然彼此相異,但縮小了各鄰接的電壓差。FIG. 6 is a diagram showing the operation time of the DRAM data holding period and the reading period according to FIG. 3. FIG. In FIG. 6, the voltages corresponding to the respective digit values are maintained during the data retention period and slightly decreased with time. Thereafter, when the word line voltage changes from the low level to the high level, during the reading, due to the bit line capacity In the relationship, the voltages corresponding to the respective digit values are different from each other, but the voltage difference between the adjacent ones is reduced.

圖5及圖6中,1個記憶胞MC裡為了寫入2位元的數位資料而使用了4個電壓Vdd、(3/4)Vdd、(1/2)Vdd、(1/4)Vdd,但本發明不以此為限,也可以為使用彼此相異的4個電壓寫入般的構成。另外,如上所述,也可以為1個記憶胞MC裡寫入3位元以上的數位資料般的構成。In FIGS. 5 and 6, in one memory cell MC, four voltages Vdd, (3/4) Vdd, (1/2) Vdd, and (1/4) Vdd are used in order to write 2-bit digital data. However, the present invention is not limited thereto, and may be configured to use four voltage writings different from each other. Further, as described above, it is also possible to write a digital data of three or more bits in one memory cell MC.

圖7A為繪示圖5的2位元AD轉換器32的構成方塊圖。另外,圖7B為繪示圖7A的2位元AD轉換器32之動作的電壓波形及二進制計數值的時間圖。FIG. 7A is a block diagram showing the configuration of the 2-bit AD converter 32 of FIG. 5. In addition, FIG. 7B is a timing chart showing voltage waveforms and binary count values of the operation of the 2-bit AD converter 32 of FIG. 7A.

圖7A中,圖5的2位元AD變換器32以具備各位元線每行AD轉換器40以及相對於1個記憶陣列10設置的ADC控制器50構成。圖7A中,ADC控制器50以具備二進制計數器51以及斜波電壓產生器52構成。另外,行AD轉換器40以具備比較器41及栓鎖器42構成。斜波電壓產生器52依據自RAS時鐘產生器19的定時控制信號、依據自二進制計數器51的計數值,產生如圖7B所示具有預定的傾斜度之單斜率的斜波電壓Vramp,並且輸出至比較器41的反相輸入終端。在採樣保持電路31中,採樣保持的位元線電壓Vb輸入至比較器41的非反相輸入終端,且當比較器41的Vramp≧Vb時(圖7B的時刻t11),將高位準信號輸出至栓鎖器42。栓鎖器42對此回應後,此時的計數值B2、B1作為讀取資料輸出至記憶控制器30並進行再新。In FIG. 7A, the 2-bit AD converter 32 of FIG. 5 is configured by an AD converter 40 having bit lines per line and an ADC controller 50 provided for one memory array 10. In FIG. 7A, the ADC controller 50 is configured to include a binary counter 51 and a ramp voltage generator 52. Further, the row AD converter 40 is configured to include a comparator 41 and a latch 42. The ramp voltage generator 52 generates a ramp voltage Vramp having a single slope of a predetermined inclination as shown in FIG. 7B in accordance with the timing control signal from the RAS clock generator 19, based on the count value from the binary counter 51, and outputs it to The inverting input terminal of the comparator 41. In the sample-and-hold circuit 31, the sample-and-hold bit line voltage Vb is input to the non-inverting input terminal of the comparator 41, and when the voltage of the comparator 41 is Vramp ≧ Vb (time t11 of FIG. 7B), the high-level signal is output. To the latch 42. After the latch 42 responds to this, the count values B2 and B1 at this time are output as read data to the memory controller 30 and renewed.

圖8為繪示圖3的位元轉換器13之位元轉換的動作說明圖。如圖8所示,例如在寫入時,將二值8位元轉換至四值4位元,並且將各位元的數位值各自地寫入各記憶胞MC,另外,在讀取時,將四值4位元轉換至二值8位元並且讀取出來。FIG. 8 is an operation explanatory diagram showing bit conversion of the bit converter 13 of FIG. As shown in FIG. 8, for example, at the time of writing, binary octets are converted to quaternary 4 bits, and the digit values of the respective elements are written to the respective memory cells MC, and, at the time of reading, The four-valued 4-bit is converted to a binary 8-bit and read out.

圖9為繪示圖3的DRAM整體的動作時間圖。如圖9所示,於時刻t1列位址選通信號/RAS變成低位準時,確定列位址並且輸出後,行位址選通信號/CAS變成低位準時,確定行位址並將行位址輸出。接著,輸出啟用信號/OE將在低位準的最終階段讀取出的資料Dout輸出。FIG. 9 is a timing chart showing the entire operation of the DRAM of FIG. 3. FIG. As shown in FIG. 9, when the address strobe signal /RAS becomes a low level at time t1, the column address is determined and after the output, the row address strobe signal /CAS becomes a low level, the row address is determined and the row address is determined. Output. Next, the output enable signal /OE will output the data Dout at the final stage of the low level.

依據如上構成的實施態樣,更具備有對應多條位元線BL1~BLm,各自設置在各採樣保持電路31的後段,自各記憶胞MC藉由各採樣保持電路31將資料各自讀取出來並轉換成數位值的多個單斜率型AD轉換器32,以及將對應轉換數位值的電壓為了將記憶胞進行再新,施加並寫入,並且將對應預定寫入資料的資料施加於各記憶胞的寫入記憶控制器30。在此,記憶控制器30包含產生對應數位值之數值互異的4個電壓的恆定電壓產生電路12。另外,更具有將轉換的數位值轉換成二位元資料並作為讀取資料而輸出,並將寫入資料轉換為多值的數位值輸出至控制裝置的位元轉換器13。According to the embodiment configured as described above, the plurality of bit lines BL1 to BLm are further provided, and each of the plurality of bit lines BL1 to BLm is provided in the subsequent stage of each of the sample and hold circuits 31, and each of the memory cells MC reads the data by the respective sample and hold circuits 31. a plurality of single-slope AD converters 32 converted into digital values, and voltages corresponding to the converted digital values are applied and written in order to renew the memory cells, and data corresponding to the predetermined write data is applied to the respective memory cells. Write to memory controller 30. Here, the memory controller 30 includes a constant voltage generating circuit 12 that generates four voltages having mutually different values corresponding to the digital values. Further, it is further provided with a bit converter 13 that converts the converted digit value into binary data and outputs it as read data, and converts the written data into a multi-valued digital value to the control device.

在以上的實施態樣中,選擇電晶體Q10、採樣保持電路31以及包含2進制AD轉換器32的ADC,以及I/O閘極電路11的各位元線對應部分在各位元線線幅中形成,且特別地是,採樣保持電路31的採樣保持用蓄電電容器Csh在各位元線的線幅中,因與資料記憶用蓄電電容器C在同一CMOS製程中形成,與使用檢測放大101的先前技術相較,可減少其占有面積,而且能藉由以多值記憶於記憶胞MC內,相對於相同記憶容量可大幅減低所需的面積。In the above embodiment, the transistor Q10, the sample and hold circuit 31, and the ADC including the binary AD converter 32, and the corresponding portions of the I/O gate circuits 11 are in the bit line width. In particular, the sample-and-hold storage capacitor Csh of the sample-and-hold circuit 31 is formed in the same CMOS process as the data storage storage capacitor C in the line width of each bit line, and the prior art using the detection amplification 101 In comparison, the occupied area can be reduced, and the required area can be greatly reduced with respect to the same memory capacity by being memorized in the memory cell MC with multiple values.

在以上的說明書中,原生電晶體為其臨界值例如約為0V,可藉由不注入相對於通道臨界值調整用的不純物而形成。另外,通道電晶體為依據閘極電壓在源極‧汲極間可選擇地開啟或關閉之可為切換的開關電晶體。 [產業上的利用可能性]In the above description, the native transistor has a critical value of, for example, about 0 V, which can be formed by not injecting impurities for adjustment with respect to the channel threshold. In addition, the channel transistor is a switchable transistor that can be selectively switched on or off depending on the gate voltage between the source and the drain. [Industry use possibility]

如上所詳述,依據本發明有關的半導體記憶裝置,可提供與先前技術相較,相對於相同記憶容量能以小面積形成的多值DRAM等的半導體記憶裝置。As described in detail above, according to the semiconductor memory device of the present invention, it is possible to provide a semiconductor memory device of a multi-value DRAM or the like which can be formed in a small area with respect to the same memory capacity as compared with the prior art.

10‧‧‧記憶陣列
11‧‧‧AD轉換器以及輸入和輸出閘極電路(ADC以及I/O閘極電路)
12‧‧‧恆定電壓產生電路
13‧‧‧位元轉換器
14‧‧‧資料輸入緩衝器
15‧‧‧資料輸出緩衝器
16,17‧‧‧及閘
18‧‧‧CAS時鐘產生器
19‧‧‧RAS時鐘產生器
20‧‧‧再新控制器
21‧‧‧再新計數器
22‧‧‧列位址緩衝器
23‧‧‧行位址緩衝器
24‧‧‧列解碼器
25‧‧‧行解碼器
30‧‧‧記憶控制器
31‧‧‧採樣保持電路
32‧‧‧2位元AD轉換器
40‧‧‧行AD轉換器
41‧‧‧比較器
42‧‧‧栓鎖器
50‧‧‧ADC控制器
51‧‧‧二進制計數器
52‧‧‧斜波電壓產生器
61‧‧‧位址輸入終端
62‧‧‧資料輸出終端
A1‧‧‧操作放大器
BL、BL1~BLm‧‧‧位元線
C、Csh‧‧‧蓄電電容器
MC‧‧‧記憶胞
Q、Q10~Q14‧‧‧MOS電晶體
WL、WL1~WLN‧‧‧字元線
10‧‧‧ memory array
11‧‧‧AD converter and input and output gate circuits (ADC and I/O gate circuits)
12‧‧‧ Constant voltage generating circuit
13‧‧‧ bit converter
14‧‧‧Data input buffer
15‧‧‧ Data output buffer
16,17‧‧‧ and gate
18‧‧‧CAS clock generator
19‧‧‧RAS clock generator
20‧‧‧Renew controller
21‧‧‧ new counter
22‧‧‧ column address buffer
23‧‧‧ row address buffer
24‧‧‧ column decoder
25‧‧‧ line decoder
30‧‧‧Memory Controller
31‧‧‧Sampling and holding circuit
32‧‧‧2 bit AD converter
40‧‧‧ row AD converter
41‧‧‧ Comparator
42‧‧‧Locker
50‧‧‧ADC controller
51‧‧‧ binary counter
52‧‧‧ ramp voltage generator
61‧‧‧ address input terminal
62‧‧‧data output terminal
A1‧‧‧Operational Amplifier
BL, BL1~BLm‧‧‧ bit line
C, Csh‧‧‧ storage capacitor
MC‧‧‧ memory cell
Q, Q10~Q14‧‧‧MOS transistor
WL, WL1~WLN‧‧‧ character line

圖1為繪示依據習知例1的DRAM構成方塊圖。 圖2為繪示依據習知例2的多值DRAM構成方塊圖。 圖3為繪示依據本發明的一實施態樣的多值DRAM構成方塊圖。 圖4為繪示圖3的記憶陣列10的構成電路圖。 圖5為繪示圖3的AD轉換器及輸入和輸出閘極電路11的詳細構成電路圖。 圖6為繪示依據圖3的DRAM資料保持期間及讀取期間的動作時間圖。 圖7A為繪示圖5的2位元AD轉換器32的構成方塊圖。 圖7B為繪示圖7A的2位元AD轉換器32之動作的電壓波形及二進制計數值的時間圖。 圖8為繪示圖3的位元轉換器13之位元轉換的動作說明圖。 圖9為繪示圖3的DRAM整體的動作時間圖。FIG. 1 is a block diagram showing the structure of a DRAM according to Conventional Example 1. 2 is a block diagram showing the construction of a multi-value DRAM according to Conventional Example 2. 3 is a block diagram showing the construction of a multi-value DRAM according to an embodiment of the present invention. 4 is a circuit diagram showing the structure of the memory array 10 of FIG. FIG. 5 is a circuit diagram showing the detailed construction of the AD converter and the input and output gate circuits 11 of FIG. FIG. 6 is a diagram showing the operation time of the DRAM data holding period and the reading period according to FIG. 3. FIG. FIG. 7A is a block diagram showing the configuration of the 2-bit AD converter 32 of FIG. 5. FIG. 7B is a timing diagram showing voltage waveforms and binary count values of the operation of the 2-bit AD converter 32 of FIG. 7A. FIG. 8 is an operation explanatory diagram showing bit conversion of the bit converter 13 of FIG. FIG. 9 is a timing chart showing the entire operation of the DRAM of FIG. 3. FIG.

10‧‧‧記憶陣列 10‧‧‧ memory array

11‧‧‧AD轉換器以及輸入和輸出閘極電路(ADC以及I/O閘極電路) 11‧‧‧AD converter and input and output gate circuits (ADC and I/O gate circuits)

12‧‧‧恆定電壓產生電路 12‧‧‧ Constant voltage generating circuit

13‧‧‧位元轉換器 13‧‧‧ bit converter

30‧‧‧記憶控制器 30‧‧‧Memory Controller

31‧‧‧採樣保持電路 31‧‧‧Sampling and holding circuit

32‧‧‧2位元AD轉換器 32‧‧‧2 bit AD converter

A1‧‧‧操作放大器 A1‧‧‧Operational Amplifier

BLm‧‧‧位元線 BLm‧‧‧ bit line

C、Csh‧‧‧蓄電電容器 C, Csh‧‧‧ storage capacitor

MC‧‧‧記憶胞 MC‧‧‧ memory cell

Q、Q10~Q14‧‧‧MOS電晶體 Q, Q10~Q14‧‧‧MOS transistor

WLn‧‧‧字元線 WLn‧‧‧ character line

Claims (5)

一種半導體記憶裝置,其是多值DRAM,包括:     多個記憶胞,所述多個記憶胞各自包括:         選擇電晶體,連接至多條字元線中的1條字元線;以及         第1蓄電電容器,記憶各個多值,且經由所述選擇電晶體連接至多條位元線中的1條位元線;     多個採樣保持電路,各自包含第2蓄電電容器,且對應所述多條位元線而各自設置;     多個單斜率型AD轉換器,對應所述多條位元線而各自設置在各個所述採樣保持電路的後段,經由各個所述採樣保持電路從各個所述記憶胞將資料各自讀取出來,並轉換成數位值;以及     控制裝置,為了使各個所述記憶胞再新,將對應所述轉換成數位值的電壓施加於各個所述記憶胞而進行寫入,且將對應於預定寫入資料的所述數位值的電壓施加在各個所述記憶胞而進行寫入。A semiconductor memory device, which is a multi-value DRAM, comprising: a plurality of memory cells each comprising: a selection transistor connected to one word line of the plurality of word lines; and a first storage capacitor Respecting each of the plurality of values, and connecting to one of the plurality of bit lines via the selection transistor; the plurality of sample and hold circuits each including the second storage capacitor and corresponding to the plurality of bit lines Each of the plurality of single-slope type AD converters is disposed in a subsequent stage of each of the sample and hold circuits corresponding to the plurality of bit lines, and each of the data is read from each of the memory cells via each of the sample and hold circuits Extracted and converted into a digital value; and a control device that, in order to renew each of the memory cells, applies a voltage corresponding to the converted digital value to each of the memory cells for writing, and will correspond to a predetermined A voltage of the digital value written to the data is applied to each of the memory cells for writing. 如申請專利範圍第1項所述的半導體記憶裝置,更包括:     位元轉換器,將轉換的所述數位值轉換成二位元資料且作為讀取資料而輸出,並將所述寫入資料轉換成多值的數位值而輸出至所述控制裝置。The semiconductor memory device of claim 1, further comprising: a bit converter that converts the converted digital value into two-bit data and outputs the data as read data, and writes the data Converted to a multi-valued digit value for output to the control device. 如申請專利範圍第1項或第2項所述的半導體記憶裝置,其中所述控制裝置包括:     電壓產生裝置,產生對應於所述數位值的數目的彼此相異的多個電壓。The semiconductor memory device according to claim 1 or 2, wherein the control device comprises: a voltage generating device that generates a plurality of voltages different from each other corresponding to the number of the digit values. 如申請專利範圍第1項或第2項所述的半導體記憶裝置,其中所述第1蓄電電容器與所述第2蓄電電容器在同一製程中形成。The semiconductor memory device according to claim 1 or 2, wherein the first storage capacitor and the second storage capacitor are formed in the same process. 如申請專利範圍第3項所述的半導體記憶裝置,其中所述第1蓄電電容器與所述第2蓄電電容器在同一製程中形成。The semiconductor memory device according to claim 3, wherein the first storage capacitor and the second storage capacitor are formed in the same process.
TW104123495A 2015-05-11 2015-07-21 Semiconductor memory device TWI581262B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015096800A JP5941577B1 (en) 2015-05-11 2015-05-11 Semiconductor memory device

Publications (2)

Publication Number Publication Date
TW201640501A true TW201640501A (en) 2016-11-16
TWI581262B TWI581262B (en) 2017-05-01

Family

ID=56244612

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104123495A TWI581262B (en) 2015-05-11 2015-07-21 Semiconductor memory device

Country Status (3)

Country Link
JP (1) JP5941577B1 (en)
CN (1) CN106158008B (en)
TW (1) TWI581262B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109256157B (en) * 2017-07-12 2022-04-01 格科微电子(上海)有限公司 Method for realizing multi-value memory
JP2020113347A (en) 2019-01-08 2020-07-27 キオクシア株式会社 Semiconductor storage device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3315293B2 (en) * 1995-01-05 2002-08-19 株式会社東芝 Semiconductor storage device
JP3723599B2 (en) * 1995-04-07 2005-12-07 株式会社ルネサステクノロジ Semiconductor memory device
JPH11306771A (en) * 1998-04-22 1999-11-05 Sanyo Electric Co Ltd Semiconductor memory
JP2001291385A (en) * 2000-04-05 2001-10-19 Nec Corp Semiconductor memory, its testing device, and testing method
EP1492126A1 (en) * 2003-06-27 2004-12-29 Dialog Semiconductor GmbH Analog or multilevel DRAM cell having natural transistor
ITRM20050353A1 (en) * 2005-07-04 2007-01-05 Micron Technology Inc DETECTOR LOW POWER HIGHER DETECTION AMPLIFIER.
JP5034379B2 (en) * 2006-08-30 2012-09-26 富士通セミコンダクター株式会社 Semiconductor memory and system
WO2011106054A1 (en) * 2010-02-23 2011-09-01 Rambus Inc. Multilevel dram
KR101924231B1 (en) * 2010-10-29 2018-11-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor memory device
US8854865B2 (en) * 2010-11-24 2014-10-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor memory device
JP6083611B2 (en) * 2011-08-30 2017-02-22 パナソニックIpマネジメント株式会社 Solid-state imaging device and imaging device
US9019754B1 (en) * 2013-12-17 2015-04-28 Micron Technology, Inc. State determination in resistance variable memory

Also Published As

Publication number Publication date
CN106158008A (en) 2016-11-23
TWI581262B (en) 2017-05-01
JP2016212938A (en) 2016-12-15
CN106158008B (en) 2019-06-28
JP5941577B1 (en) 2016-06-29

Similar Documents

Publication Publication Date Title
US5539690A (en) Write verify schemes for flash memory with multilevel cells
US8614924B2 (en) Non-volatile memory systems and methods
KR100256616B1 (en) Nonvolatile semiconductor memory device
US5761117A (en) Non-volatile multi-state memory device with memory cell capable of storing multi-state data
US5497354A (en) Bit map addressing schemes for flash memory
TW389909B (en) Nonvolatile semiconductor memory device and its usage
US6655758B2 (en) Method for storing data in a nonvolatile memory
JP2009211733A (en) Magnetic storage device
US7196927B2 (en) Wide dynamic range and high speed voltage mode sensing for a multilevel digital non-volatile memory
KR101024134B1 (en) Non volatile memory device and program method of the same
TWI581262B (en) Semiconductor memory device
KR20000034852A (en) Ferroelectric memory device
JPH11110985A (en) Non-volatile semiconductor memory and its writing method
US9318195B1 (en) Multi-level memory apparatus and data sensing method thereof
US11170861B1 (en) Non-volatile memory with multi-level cell array and associated program control method
US20210358543A1 (en) Non-volatile memory with multi-level cell array and associated read control method
US6317361B2 (en) Semiconductor memory capable of detecting defective data in the memory cells thereof
KR100221523B1 (en) Non-volatile multi-state memory apparatus having memory cell which can store multi- state information
CN113223587A (en) Volatile memory device and data sensing method thereof
US8064273B2 (en) Memory device and methods thereof
US6801445B2 (en) Multiple level RAM device
JPH0969294A (en) Non-volatile multi-value memory device
JPH0991973A (en) Nonvolatile multilevel memory
JP4413944B2 (en) Semiconductor memory device
JPH11134890A (en) Sensing amplifier and nonvolatile multivalue memory device using the sensing amplifier